xref: /llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.h (revision 96f37ae45310885e09195be09d9c05e1c1dff86b)
1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
11 
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/IndexedMap.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/UniqueVector.h"
17 #include "llvm/CodeGen/LexicalScopes.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/TargetRegisterInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include <optional>
23 
24 #include "LiveDebugValues.h"
25 
26 class TransferTracker;
27 
28 // Forward dec of unit test class, so that we can peer into the LDV object.
29 class InstrRefLDVTest;
30 
31 namespace LiveDebugValues {
32 
33 class MLocTracker;
34 class DbgOpIDMap;
35 
36 using namespace llvm;
37 
38 using DebugVariableID = unsigned;
39 using VarAndLoc = std::pair<DebugVariable, const DILocation *>;
40 
41 /// Mapping from DebugVariable to/from a unique identifying number. Each
42 /// DebugVariable consists of three pointers, and after a small amount of
43 /// work to identify overlapping fragments of variables we mostly only use
44 /// DebugVariables as identities of variables. It's much more compile-time
45 /// efficient to use an ID number instead, which this class provides.
46 class DebugVariableMap {
47   DenseMap<DebugVariable, unsigned> VarToIdx;
48   SmallVector<VarAndLoc> IdxToVar;
49 
50 public:
51   DebugVariableID getDVID(const DebugVariable &Var) const {
52     auto It = VarToIdx.find(Var);
53     assert(It != VarToIdx.end());
54     return It->second;
55   }
56 
57   DebugVariableID insertDVID(DebugVariable &Var, const DILocation *Loc) {
58     unsigned Size = VarToIdx.size();
59     auto ItPair = VarToIdx.insert({Var, Size});
60     if (ItPair.second) {
61       IdxToVar.push_back({Var, Loc});
62       return Size;
63     }
64 
65     return ItPair.first->second;
66   }
67 
68   const VarAndLoc &lookupDVID(DebugVariableID ID) const { return IdxToVar[ID]; }
69 
70   void clear() {
71     VarToIdx.clear();
72     IdxToVar.clear();
73   }
74 };
75 
76 /// Handle-class for a particular "location". This value-type uniquely
77 /// symbolises a register or stack location, allowing manipulation of locations
78 /// without concern for where that location is. Practically, this allows us to
79 /// treat the state of the machine at a particular point as an array of values,
80 /// rather than a map of values.
81 class LocIdx {
82   unsigned Location;
83 
84   // Default constructor is private, initializing to an illegal location number.
85   // Use only for "not an entry" elements in IndexedMaps.
86   LocIdx() : Location(UINT_MAX) {}
87 
88 public:
89 #define NUM_LOC_BITS 24
90   LocIdx(unsigned L) : Location(L) {
91     assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
92   }
93 
94   static LocIdx MakeIllegalLoc() { return LocIdx(); }
95   static LocIdx MakeTombstoneLoc() {
96     LocIdx L = LocIdx();
97     --L.Location;
98     return L;
99   }
100 
101   bool isIllegal() const { return Location == UINT_MAX; }
102 
103   uint64_t asU64() const { return Location; }
104 
105   bool operator==(unsigned L) const { return Location == L; }
106 
107   bool operator==(const LocIdx &L) const { return Location == L.Location; }
108 
109   bool operator!=(unsigned L) const { return !(*this == L); }
110 
111   bool operator!=(const LocIdx &L) const { return !(*this == L); }
112 
113   bool operator<(const LocIdx &Other) const {
114     return Location < Other.Location;
115   }
116 };
117 
118 // The location at which a spilled value resides. It consists of a register and
119 // an offset.
120 struct SpillLoc {
121   unsigned SpillBase;
122   StackOffset SpillOffset;
123   bool operator==(const SpillLoc &Other) const {
124     return std::make_pair(SpillBase, SpillOffset) ==
125            std::make_pair(Other.SpillBase, Other.SpillOffset);
126   }
127   bool operator<(const SpillLoc &Other) const {
128     return std::make_tuple(SpillBase, SpillOffset.getFixed(),
129                            SpillOffset.getScalable()) <
130            std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
131                            Other.SpillOffset.getScalable());
132   }
133 };
134 
135 /// Unique identifier for a value defined by an instruction, as a value type.
136 /// Casts back and forth to a uint64_t. Probably replacable with something less
137 /// bit-constrained. Each value identifies the instruction and machine location
138 /// where the value is defined, although there may be no corresponding machine
139 /// operand for it (ex: regmasks clobbering values). The instructions are
140 /// one-based, and definitions that are PHIs have instruction number zero.
141 ///
142 /// The obvious limits of a 1M block function or 1M instruction blocks are
143 /// problematic; but by that point we should probably have bailed out of
144 /// trying to analyse the function.
145 class ValueIDNum {
146   union {
147     struct {
148       uint64_t BlockNo : 20; /// The block where the def happens.
149       uint64_t InstNo : 20;  /// The Instruction where the def happens.
150                              /// One based, is distance from start of block.
151       uint64_t LocNo
152           : NUM_LOC_BITS; /// The machine location where the def happens.
153     } s;
154     uint64_t Value;
155   } u;
156 
157   static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?");
158 
159 public:
160   // Default-initialize to EmptyValue. This is necessary to make IndexedMaps
161   // of values to work.
162   ValueIDNum() { u.Value = EmptyValue.asU64(); }
163 
164   ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) {
165     u.s = {Block, Inst, Loc};
166   }
167 
168   ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) {
169     u.s = {Block, Inst, Loc.asU64()};
170   }
171 
172   uint64_t getBlock() const { return u.s.BlockNo; }
173   uint64_t getInst() const { return u.s.InstNo; }
174   uint64_t getLoc() const { return u.s.LocNo; }
175   bool isPHI() const { return u.s.InstNo == 0; }
176 
177   uint64_t asU64() const { return u.Value; }
178 
179   static ValueIDNum fromU64(uint64_t v) {
180     ValueIDNum Val;
181     Val.u.Value = v;
182     return Val;
183   }
184 
185   bool operator<(const ValueIDNum &Other) const {
186     return asU64() < Other.asU64();
187   }
188 
189   bool operator==(const ValueIDNum &Other) const {
190     return u.Value == Other.u.Value;
191   }
192 
193   bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
194 
195   std::string asString(const std::string &mlocname) const {
196     return Twine("Value{bb: ")
197         .concat(Twine(u.s.BlockNo)
198                     .concat(Twine(", inst: ")
199                                 .concat((u.s.InstNo ? Twine(u.s.InstNo)
200                                                     : Twine("live-in"))
201                                             .concat(Twine(", loc: ").concat(
202                                                 Twine(mlocname)))
203                                             .concat(Twine("}")))))
204         .str();
205   }
206 
207   static ValueIDNum EmptyValue;
208   static ValueIDNum TombstoneValue;
209 };
210 
211 } // End namespace LiveDebugValues
212 
213 namespace llvm {
214 using namespace LiveDebugValues;
215 
216 template <> struct DenseMapInfo<LocIdx> {
217   static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
218   static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }
219 
220   static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); }
221 
222   static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; }
223 };
224 
225 template <> struct DenseMapInfo<ValueIDNum> {
226   static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; }
227   static inline ValueIDNum getTombstoneKey() {
228     return ValueIDNum::TombstoneValue;
229   }
230 
231   static unsigned getHashValue(const ValueIDNum &Val) {
232     return hash_value(Val.asU64());
233   }
234 
235   static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) {
236     return A == B;
237   }
238 };
239 
240 } // end namespace llvm
241 
242 namespace LiveDebugValues {
243 using namespace llvm;
244 
245 /// Type for a table of values in a block.
246 using ValueTable = SmallVector<ValueIDNum, 0>;
247 
248 /// A collection of ValueTables, one per BB in a function, with convenient
249 /// accessor methods.
250 struct FuncValueTable {
251   FuncValueTable(int NumBBs, int NumLocs) {
252     Storage.reserve(NumBBs);
253     for (int i = 0; i != NumBBs; ++i)
254       Storage.push_back(
255           std::make_unique<ValueTable>(NumLocs, ValueIDNum::EmptyValue));
256   }
257 
258   /// Returns the ValueTable associated with MBB.
259   ValueTable &operator[](const MachineBasicBlock &MBB) const {
260     return (*this)[MBB.getNumber()];
261   }
262 
263   /// Returns the ValueTable associated with the MachineBasicBlock whose number
264   /// is MBBNum.
265   ValueTable &operator[](int MBBNum) const {
266     auto &TablePtr = Storage[MBBNum];
267     assert(TablePtr && "Trying to access a deleted table");
268     return *TablePtr;
269   }
270 
271   /// Returns the ValueTable associated with the entry MachineBasicBlock.
272   ValueTable &tableForEntryMBB() const { return (*this)[0]; }
273 
274   /// Returns true if the ValueTable associated with MBB has not been freed.
275   bool hasTableFor(MachineBasicBlock &MBB) const {
276     return Storage[MBB.getNumber()] != nullptr;
277   }
278 
279   /// Frees the memory of the ValueTable associated with MBB.
280   void ejectTableForBlock(const MachineBasicBlock &MBB) {
281     Storage[MBB.getNumber()].reset();
282   }
283 
284 private:
285   /// ValueTables are stored as unique_ptrs to allow for deallocation during
286   /// LDV; this was measured to have a significant impact on compiler memory
287   /// usage.
288   SmallVector<std::unique_ptr<ValueTable>, 0> Storage;
289 };
290 
291 /// Thin wrapper around an integer -- designed to give more type safety to
292 /// spill location numbers.
293 class SpillLocationNo {
294 public:
295   explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
296   unsigned SpillNo;
297   unsigned id() const { return SpillNo; }
298 
299   bool operator<(const SpillLocationNo &Other) const {
300     return SpillNo < Other.SpillNo;
301   }
302 
303   bool operator==(const SpillLocationNo &Other) const {
304     return SpillNo == Other.SpillNo;
305   }
306   bool operator!=(const SpillLocationNo &Other) const {
307     return !(*this == Other);
308   }
309 };
310 
311 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
312 /// the value, and Boolean of whether or not it's indirect.
313 class DbgValueProperties {
314 public:
315   DbgValueProperties(const DIExpression *DIExpr, bool Indirect, bool IsVariadic)
316       : DIExpr(DIExpr), Indirect(Indirect), IsVariadic(IsVariadic) {}
317 
318   /// Extract properties from an existing DBG_VALUE instruction.
319   DbgValueProperties(const MachineInstr &MI) {
320     assert(MI.isDebugValue());
321     assert(MI.getDebugExpression()->getNumLocationOperands() == 0 ||
322            MI.isDebugValueList() || MI.isUndefDebugValue());
323     IsVariadic = MI.isDebugValueList();
324     DIExpr = MI.getDebugExpression();
325     Indirect = MI.isDebugOffsetImm();
326   }
327 
328   bool isJoinable(const DbgValueProperties &Other) const {
329     return DIExpression::isEqualExpression(DIExpr, Indirect, Other.DIExpr,
330                                            Other.Indirect);
331   }
332 
333   bool operator==(const DbgValueProperties &Other) const {
334     return std::tie(DIExpr, Indirect, IsVariadic) ==
335            std::tie(Other.DIExpr, Other.Indirect, Other.IsVariadic);
336   }
337 
338   bool operator!=(const DbgValueProperties &Other) const {
339     return !(*this == Other);
340   }
341 
342   unsigned getLocationOpCount() const {
343     return IsVariadic ? DIExpr->getNumLocationOperands() : 1;
344   }
345 
346   const DIExpression *DIExpr;
347   bool Indirect;
348   bool IsVariadic;
349 };
350 
351 /// TODO: Might pack better if we changed this to a Struct of Arrays, since
352 /// MachineOperand is width 32, making this struct width 33. We could also
353 /// potentially avoid storing the whole MachineOperand (sizeof=32), instead
354 /// choosing to store just the contents portion (sizeof=8) and a Kind enum,
355 /// since we already know it is some type of immediate value.
356 /// Stores a single debug operand, which can either be a MachineOperand for
357 /// directly storing immediate values, or a ValueIDNum representing some value
358 /// computed at some point in the program. IsConst is used as a discriminator.
359 struct DbgOp {
360   union {
361     ValueIDNum ID;
362     MachineOperand MO;
363   };
364   bool IsConst;
365 
366   DbgOp() : ID(ValueIDNum::EmptyValue), IsConst(false) {}
367   DbgOp(ValueIDNum ID) : ID(ID), IsConst(false) {}
368   DbgOp(MachineOperand MO) : MO(MO), IsConst(true) {}
369 
370   bool isUndef() const { return !IsConst && ID == ValueIDNum::EmptyValue; }
371 
372 #ifndef NDEBUG
373   void dump(const MLocTracker *MTrack) const;
374 #endif
375 };
376 
377 /// A DbgOp whose ID (if any) has resolved to an actual location, LocIdx. Used
378 /// when working with concrete debug values, i.e. when joining MLocs and VLocs
379 /// in the TransferTracker or emitting DBG_VALUE/DBG_VALUE_LIST instructions in
380 /// the MLocTracker.
381 struct ResolvedDbgOp {
382   union {
383     LocIdx Loc;
384     MachineOperand MO;
385   };
386   bool IsConst;
387 
388   ResolvedDbgOp(LocIdx Loc) : Loc(Loc), IsConst(false) {}
389   ResolvedDbgOp(MachineOperand MO) : MO(MO), IsConst(true) {}
390 
391   bool operator==(const ResolvedDbgOp &Other) const {
392     if (IsConst != Other.IsConst)
393       return false;
394     if (IsConst)
395       return MO.isIdenticalTo(Other.MO);
396     return Loc == Other.Loc;
397   }
398 
399 #ifndef NDEBUG
400   void dump(const MLocTracker *MTrack) const;
401 #endif
402 };
403 
404 /// An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp. This is used
405 /// in place of actual DbgOps inside of a DbgValue to reduce its size, as
406 /// DbgValue is very frequently used and passed around, and the actual DbgOp is
407 /// over 8x larger than this class, due to storing a MachineOperand. This ID
408 /// should be equal for all equal DbgOps, and also encodes whether the mapped
409 /// DbgOp is a constant, meaning that for simple equality or const-ness checks
410 /// it is not necessary to lookup this ID.
411 struct DbgOpID {
412   struct IsConstIndexPair {
413     uint32_t IsConst : 1;
414     uint32_t Index : 31;
415   };
416 
417   union {
418     struct IsConstIndexPair ID;
419     uint32_t RawID;
420   };
421 
422   DbgOpID() : RawID(UndefID.RawID) {
423     static_assert(sizeof(DbgOpID) == 4, "DbgOpID should fit within 4 bytes.");
424   }
425   DbgOpID(uint32_t RawID) : RawID(RawID) {}
426   DbgOpID(bool IsConst, uint32_t Index) : ID({IsConst, Index}) {}
427 
428   static DbgOpID UndefID;
429 
430   bool operator==(const DbgOpID &Other) const { return RawID == Other.RawID; }
431   bool operator!=(const DbgOpID &Other) const { return !(*this == Other); }
432 
433   uint32_t asU32() const { return RawID; }
434 
435   bool isUndef() const { return *this == UndefID; }
436   bool isConst() const { return ID.IsConst && !isUndef(); }
437   uint32_t getIndex() const { return ID.Index; }
438 
439 #ifndef NDEBUG
440   void dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const;
441 #endif
442 };
443 
444 /// Class storing the complete set of values that are observed by DbgValues
445 /// within the current function. Allows 2-way lookup, with `find` returning the
446 /// Op for a given ID and `insert` returning the ID for a given Op (creating one
447 /// if none exists).
448 class DbgOpIDMap {
449 
450   SmallVector<ValueIDNum, 0> ValueOps;
451   SmallVector<MachineOperand, 0> ConstOps;
452 
453   DenseMap<ValueIDNum, DbgOpID> ValueOpToID;
454   DenseMap<MachineOperand, DbgOpID> ConstOpToID;
455 
456 public:
457   /// If \p Op does not already exist in this map, it is inserted and the
458   /// corresponding DbgOpID is returned. If Op already exists in this map, then
459   /// no change is made and the existing ID for Op is returned.
460   /// Calling this with the undef DbgOp will always return DbgOpID::UndefID.
461   DbgOpID insert(DbgOp Op) {
462     if (Op.isUndef())
463       return DbgOpID::UndefID;
464     if (Op.IsConst)
465       return insertConstOp(Op.MO);
466     return insertValueOp(Op.ID);
467   }
468   /// Returns the DbgOp associated with \p ID. Should only be used for IDs
469   /// returned from calling `insert` from this map or DbgOpID::UndefID.
470   DbgOp find(DbgOpID ID) const {
471     if (ID == DbgOpID::UndefID)
472       return DbgOp();
473     if (ID.isConst())
474       return DbgOp(ConstOps[ID.getIndex()]);
475     return DbgOp(ValueOps[ID.getIndex()]);
476   }
477 
478   void clear() {
479     ValueOps.clear();
480     ConstOps.clear();
481     ValueOpToID.clear();
482     ConstOpToID.clear();
483   }
484 
485 private:
486   DbgOpID insertConstOp(MachineOperand &MO) {
487     auto [It, Inserted] = ConstOpToID.try_emplace(MO, true, ConstOps.size());
488     if (Inserted)
489       ConstOps.push_back(MO);
490     return It->second;
491   }
492   DbgOpID insertValueOp(ValueIDNum VID) {
493     auto [It, Inserted] = ValueOpToID.try_emplace(VID, false, ValueOps.size());
494     if (Inserted)
495       ValueOps.push_back(VID);
496     return It->second;
497   }
498 };
499 
500 // We set the maximum number of operands that we will handle to keep DbgValue
501 // within a reasonable size (64 bytes), as we store and pass a lot of them
502 // around.
503 #define MAX_DBG_OPS 8
504 
505 /// Class recording the (high level) _value_ of a variable. Identifies the value
506 /// of the variable as a list of ValueIDNums and constant MachineOperands, or as
507 /// an empty list for undef debug values or VPHI values which we have not found
508 /// valid locations for.
509 /// This class also stores meta-information about how the value is qualified.
510 /// Used to reason about variable values when performing the second
511 /// (DebugVariable specific) dataflow analysis.
512 class DbgValue {
513 private:
514   /// If Kind is Def or VPHI, the set of IDs corresponding to the DbgOps that
515   /// are used. VPHIs set every ID to EmptyID when we have not found a valid
516   /// machine-value for every operand, and sets them to the corresponding
517   /// machine-values when we have found all of them.
518   DbgOpID DbgOps[MAX_DBG_OPS];
519   unsigned OpCount;
520 
521 public:
522   /// For a NoVal or VPHI DbgValue, which block it was generated in.
523   int BlockNo;
524 
525   /// Qualifiers for the ValueIDNum above.
526   DbgValueProperties Properties;
527 
528   typedef enum {
529     Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
530     Def,   // This value is defined by some combination of constants,
531            // instructions, or PHI values.
532     VPHI,  // Incoming values to BlockNo differ, those values must be joined by
533            // a PHI in this block.
534     NoVal, // Empty DbgValue indicating an unknown value. Used as initializer,
535            // before dominating blocks values are propagated in.
536   } KindT;
537   /// Discriminator for whether this is a constant or an in-program value.
538   KindT Kind;
539 
540   DbgValue(ArrayRef<DbgOpID> DbgOps, const DbgValueProperties &Prop)
541       : OpCount(DbgOps.size()), BlockNo(0), Properties(Prop), Kind(Def) {
542     static_assert(sizeof(DbgValue) <= 64,
543                   "DbgValue should fit within 64 bytes.");
544     assert(DbgOps.size() == Prop.getLocationOpCount());
545     if (DbgOps.size() > MAX_DBG_OPS ||
546         any_of(DbgOps, [](DbgOpID ID) { return ID.isUndef(); })) {
547       Kind = Undef;
548       OpCount = 0;
549 #define DEBUG_TYPE "LiveDebugValues"
550       if (DbgOps.size() > MAX_DBG_OPS) {
551         LLVM_DEBUG(dbgs() << "Found DbgValue with more than maximum allowed "
552                              "operands.\n");
553       }
554 #undef DEBUG_TYPE
555     } else {
556       for (unsigned Idx = 0; Idx < DbgOps.size(); ++Idx)
557         this->DbgOps[Idx] = DbgOps[Idx];
558     }
559   }
560 
561   DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
562       : OpCount(0), BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
563     assert(Kind == NoVal || Kind == VPHI);
564   }
565 
566   DbgValue(const DbgValueProperties &Prop, KindT Kind)
567       : OpCount(0), BlockNo(0), Properties(Prop), Kind(Kind) {
568     assert(Kind == Undef &&
569            "Empty DbgValue constructor must pass in Undef kind");
570   }
571 
572 #ifndef NDEBUG
573   void dump(const MLocTracker *MTrack = nullptr,
574             const DbgOpIDMap *OpStore = nullptr) const;
575 #endif
576 
577   bool operator==(const DbgValue &Other) const {
578     if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
579       return false;
580     else if (Kind == Def && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
581       return false;
582     else if (Kind == NoVal && BlockNo != Other.BlockNo)
583       return false;
584     else if (Kind == VPHI && BlockNo != Other.BlockNo)
585       return false;
586     else if (Kind == VPHI && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
587       return false;
588 
589     return true;
590   }
591 
592   bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
593 
594   // Returns an array of all the machine values used to calculate this variable
595   // value, or an empty list for an Undef or unjoined VPHI.
596   ArrayRef<DbgOpID> getDbgOpIDs() const { return {DbgOps, OpCount}; }
597 
598   // Returns either DbgOps[Index] if this DbgValue has Debug Operands, or
599   // the ID for ValueIDNum::EmptyValue otherwise (i.e. if this is an Undef,
600   // NoVal, or an unjoined VPHI).
601   DbgOpID getDbgOpID(unsigned Index) const {
602     if (!OpCount)
603       return DbgOpID::UndefID;
604     assert(Index < OpCount);
605     return DbgOps[Index];
606   }
607   // Replaces this DbgValue's existing DbgOpIDs (if any) with the contents of
608   // \p NewIDs. The number of DbgOpIDs passed must be equal to the number of
609   // arguments expected by this DbgValue's properties (the return value of
610   // `getLocationOpCount()`).
611   void setDbgOpIDs(ArrayRef<DbgOpID> NewIDs) {
612     // We can go from no ops to some ops, but not from some ops to no ops.
613     assert(NewIDs.size() == getLocationOpCount() &&
614            "Incorrect number of Debug Operands for this DbgValue.");
615     OpCount = NewIDs.size();
616     for (unsigned Idx = 0; Idx < NewIDs.size(); ++Idx)
617       DbgOps[Idx] = NewIDs[Idx];
618   }
619 
620   // The number of debug operands expected by this DbgValue's expression.
621   // getDbgOpIDs() should return an array of this length, unless this is an
622   // Undef or an unjoined VPHI.
623   unsigned getLocationOpCount() const {
624     return Properties.getLocationOpCount();
625   }
626 
627   // Returns true if this or Other are unjoined PHIs, which do not have defined
628   // Loc Ops, or if the `n`th Loc Op for this has a different constness to the
629   // `n`th Loc Op for Other.
630   bool hasJoinableLocOps(const DbgValue &Other) const {
631     if (isUnjoinedPHI() || Other.isUnjoinedPHI())
632       return true;
633     for (unsigned Idx = 0; Idx < getLocationOpCount(); ++Idx) {
634       if (getDbgOpID(Idx).isConst() != Other.getDbgOpID(Idx).isConst())
635         return false;
636     }
637     return true;
638   }
639 
640   bool isUnjoinedPHI() const { return Kind == VPHI && OpCount == 0; }
641 
642   bool hasIdenticalValidLocOps(const DbgValue &Other) const {
643     if (!OpCount)
644       return false;
645     return equal(getDbgOpIDs(), Other.getDbgOpIDs());
646   }
647 };
648 
649 class LocIdxToIndexFunctor {
650 public:
651   using argument_type = LocIdx;
652   unsigned operator()(const LocIdx &L) const { return L.asU64(); }
653 };
654 
655 /// Tracker for what values are in machine locations. Listens to the Things
656 /// being Done by various instructions, and maintains a table of what machine
657 /// locations have what values (as defined by a ValueIDNum).
658 ///
659 /// There are potentially a much larger number of machine locations on the
660 /// target machine than the actual working-set size of the function. On x86 for
661 /// example, we're extremely unlikely to want to track values through control
662 /// or debug registers. To avoid doing so, MLocTracker has several layers of
663 /// indirection going on, described below, to avoid unnecessarily tracking
664 /// any location.
665 ///
666 /// Here's a sort of diagram of the indexes, read from the bottom up:
667 ///
668 ///           Size on stack   Offset on stack
669 ///                 \              /
670 ///          Stack Idx (Where in slot is this?)
671 ///                         /
672 ///                        /
673 /// Slot Num (%stack.0)   /
674 /// FrameIdx => SpillNum /
675 ///              \      /
676 ///           SpillID (int)   Register number (int)
677 ///                      \       /
678 ///                      LocationID => LocIdx
679 ///                                |
680 ///                       LocIdx => ValueIDNum
681 ///
682 /// The aim here is that the LocIdx => ValueIDNum vector is just an array of
683 /// values in numbered locations, so that later analyses can ignore whether the
684 /// location is a register or otherwise. To map a register / spill location to
685 /// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
686 /// build a LocationID for a stack slot, you need to combine identifiers for
687 /// which stack slot it is and where within that slot is being described.
688 ///
689 /// Register mask operands cause trouble by technically defining every register;
690 /// various hacks are used to avoid tracking registers that are never read and
691 /// only written by regmasks.
692 class MLocTracker {
693 public:
694   MachineFunction &MF;
695   const TargetInstrInfo &TII;
696   const TargetRegisterInfo &TRI;
697   const TargetLowering &TLI;
698 
699   /// IndexedMap type, mapping from LocIdx to ValueIDNum.
700   using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
701 
702   /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
703   /// packed, entries only exist for locations that are being tracked.
704   LocToValueType LocIdxToIDNum;
705 
706   /// "Map" of machine location IDs (i.e., raw register or spill number) to the
707   /// LocIdx key / number for that location. There are always at least as many
708   /// as the number of registers on the target -- if the value in the register
709   /// is not being tracked, then the LocIdx value will be zero. New entries are
710   /// appended if a new spill slot begins being tracked.
711   /// This, and the corresponding reverse map persist for the analysis of the
712   /// whole function, and is necessarying for decoding various vectors of
713   /// values.
714   std::vector<LocIdx> LocIDToLocIdx;
715 
716   /// Inverse map of LocIDToLocIdx.
717   IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
718 
719   /// When clobbering register masks, we chose to not believe the machine model
720   /// and don't clobber SP. Do the same for SP aliases, and for efficiency,
721   /// keep a set of them here.
722   SmallSet<Register, 8> SPAliases;
723 
724   /// Unique-ification of spill. Used to number them -- their LocID number is
725   /// the index in SpillLocs minus one plus NumRegs.
726   UniqueVector<SpillLoc> SpillLocs;
727 
728   // If we discover a new machine location, assign it an mphi with this
729   // block number.
730   unsigned CurBB = -1;
731 
732   /// Cached local copy of the number of registers the target has.
733   unsigned NumRegs;
734 
735   /// Number of slot indexes the target has -- distinct segments of a stack
736   /// slot that can take on the value of a subregister, when a super-register
737   /// is written to the stack.
738   unsigned NumSlotIdxes;
739 
740   /// Collection of register mask operands that have been observed. Second part
741   /// of pair indicates the instruction that they happened in. Used to
742   /// reconstruct where defs happened if we start tracking a location later
743   /// on.
744   SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
745 
746   /// Pair for describing a position within a stack slot -- first the size in
747   /// bits, then the offset.
748   typedef std::pair<unsigned short, unsigned short> StackSlotPos;
749 
750   /// Map from a size/offset pair describing a position in a stack slot, to a
751   /// numeric identifier for that position. Allows easier identification of
752   /// individual positions.
753   DenseMap<StackSlotPos, unsigned> StackSlotIdxes;
754 
755   /// Inverse of StackSlotIdxes.
756   DenseMap<unsigned, StackSlotPos> StackIdxesToPos;
757 
758   /// Iterator for locations and the values they contain. Dereferencing
759   /// produces a struct/pair containing the LocIdx key for this location,
760   /// and a reference to the value currently stored. Simplifies the process
761   /// of seeking a particular location.
762   class MLocIterator {
763     LocToValueType &ValueMap;
764     LocIdx Idx;
765 
766   public:
767     class value_type {
768     public:
769       value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
770       const LocIdx Idx;  /// Read-only index of this location.
771       ValueIDNum &Value; /// Reference to the stored value at this location.
772     };
773 
774     MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
775         : ValueMap(ValueMap), Idx(Idx) {}
776 
777     bool operator==(const MLocIterator &Other) const {
778       assert(&ValueMap == &Other.ValueMap);
779       return Idx == Other.Idx;
780     }
781 
782     bool operator!=(const MLocIterator &Other) const {
783       return !(*this == Other);
784     }
785 
786     void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
787 
788     value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
789   };
790 
791   MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
792               const TargetRegisterInfo &TRI, const TargetLowering &TLI);
793 
794   /// Produce location ID number for a Register. Provides some small amount of
795   /// type safety.
796   /// \param Reg The register we're looking up.
797   unsigned getLocID(Register Reg) { return Reg.id(); }
798 
799   /// Produce location ID number for a spill position.
800   /// \param Spill The number of the spill we're fetching the location for.
801   /// \param SpillSubReg Subregister within the spill we're addressing.
802   unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) {
803     unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg);
804     unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg);
805     return getLocID(Spill, {Size, Offs});
806   }
807 
808   /// Produce location ID number for a spill position.
809   /// \param Spill The number of the spill we're fetching the location for.
810   /// \apram SpillIdx size/offset within the spill slot to be addressed.
811   unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) {
812     unsigned SlotNo = Spill.id() - 1;
813     SlotNo *= NumSlotIdxes;
814     assert(StackSlotIdxes.contains(Idx));
815     SlotNo += StackSlotIdxes[Idx];
816     SlotNo += NumRegs;
817     return SlotNo;
818   }
819 
820   /// Given a spill number, and a slot within the spill, calculate the ID number
821   /// for that location.
822   unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) {
823     unsigned SlotNo = Spill.id() - 1;
824     SlotNo *= NumSlotIdxes;
825     SlotNo += Idx;
826     SlotNo += NumRegs;
827     return SlotNo;
828   }
829 
830   /// Return the spill number that a location ID corresponds to.
831   SpillLocationNo locIDToSpill(unsigned ID) const {
832     assert(ID >= NumRegs);
833     ID -= NumRegs;
834     // Truncate away the index part, leaving only the spill number.
835     ID /= NumSlotIdxes;
836     return SpillLocationNo(ID + 1); // The UniqueVector is one-based.
837   }
838 
839   /// Returns the spill-slot size/offs that a location ID corresponds to.
840   StackSlotPos locIDToSpillIdx(unsigned ID) const {
841     assert(ID >= NumRegs);
842     ID -= NumRegs;
843     unsigned Idx = ID % NumSlotIdxes;
844     return StackIdxesToPos.find(Idx)->second;
845   }
846 
847   unsigned getNumLocs() const { return LocIdxToIDNum.size(); }
848 
849   /// Reset all locations to contain a PHI value at the designated block. Used
850   /// sometimes for actual PHI values, othertimes to indicate the block entry
851   /// value (before any more information is known).
852   void setMPhis(unsigned NewCurBB) {
853     CurBB = NewCurBB;
854     for (auto Location : locations())
855       Location.Value = {CurBB, 0, Location.Idx};
856   }
857 
858   /// Load values for each location from array of ValueIDNums. Take current
859   /// bbnum just in case we read a value from a hitherto untouched register.
860   void loadFromArray(ValueTable &Locs, unsigned NewCurBB) {
861     CurBB = NewCurBB;
862     // Iterate over all tracked locations, and load each locations live-in
863     // value into our local index.
864     for (auto Location : locations())
865       Location.Value = Locs[Location.Idx.asU64()];
866   }
867 
868   /// Wipe any un-necessary location records after traversing a block.
869   void reset() {
870     // We could reset all the location values too; however either loadFromArray
871     // or setMPhis should be called before this object is re-used. Just
872     // clear Masks, they're definitely not needed.
873     Masks.clear();
874   }
875 
876   /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
877   /// the information in this pass uninterpretable.
878   void clear() {
879     reset();
880     LocIDToLocIdx.clear();
881     LocIdxToLocID.clear();
882     LocIdxToIDNum.clear();
883     // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
884     // 0
885     SpillLocs = decltype(SpillLocs)();
886     StackSlotIdxes.clear();
887     StackIdxesToPos.clear();
888 
889     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
890   }
891 
892   /// Set a locaiton to a certain value.
893   void setMLoc(LocIdx L, ValueIDNum Num) {
894     assert(L.asU64() < LocIdxToIDNum.size());
895     LocIdxToIDNum[L] = Num;
896   }
897 
898   /// Read the value of a particular location
899   ValueIDNum readMLoc(LocIdx L) {
900     assert(L.asU64() < LocIdxToIDNum.size());
901     return LocIdxToIDNum[L];
902   }
903 
904   /// Create a LocIdx for an untracked register ID. Initialize it to either an
905   /// mphi value representing a live-in, or a recent register mask clobber.
906   LocIdx trackRegister(unsigned ID);
907 
908   LocIdx lookupOrTrackRegister(unsigned ID) {
909     LocIdx &Index = LocIDToLocIdx[ID];
910     if (Index.isIllegal())
911       Index = trackRegister(ID);
912     return Index;
913   }
914 
915   /// Is register R currently tracked by MLocTracker?
916   bool isRegisterTracked(Register R) {
917     LocIdx &Index = LocIDToLocIdx[R];
918     return !Index.isIllegal();
919   }
920 
921   /// Record a definition of the specified register at the given block / inst.
922   /// This doesn't take a ValueIDNum, because the definition and its location
923   /// are synonymous.
924   void defReg(Register R, unsigned BB, unsigned Inst) {
925     unsigned ID = getLocID(R);
926     LocIdx Idx = lookupOrTrackRegister(ID);
927     ValueIDNum ValueID = {BB, Inst, Idx};
928     LocIdxToIDNum[Idx] = ValueID;
929   }
930 
931   /// Set a register to a value number. To be used if the value number is
932   /// known in advance.
933   void setReg(Register R, ValueIDNum ValueID) {
934     unsigned ID = getLocID(R);
935     LocIdx Idx = lookupOrTrackRegister(ID);
936     LocIdxToIDNum[Idx] = ValueID;
937   }
938 
939   ValueIDNum readReg(Register R) {
940     unsigned ID = getLocID(R);
941     LocIdx Idx = lookupOrTrackRegister(ID);
942     return LocIdxToIDNum[Idx];
943   }
944 
945   /// Reset a register value to zero / empty. Needed to replicate the
946   /// VarLoc implementation where a copy to/from a register effectively
947   /// clears the contents of the source register. (Values can only have one
948   ///  machine location in VarLocBasedImpl).
949   void wipeRegister(Register R) {
950     unsigned ID = getLocID(R);
951     LocIdx Idx = LocIDToLocIdx[ID];
952     LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
953   }
954 
955   /// Determine the LocIdx of an existing register.
956   LocIdx getRegMLoc(Register R) {
957     unsigned ID = getLocID(R);
958     assert(ID < LocIDToLocIdx.size());
959     assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinel for IndexedMap.
960     return LocIDToLocIdx[ID];
961   }
962 
963   /// Record a RegMask operand being executed. Defs any register we currently
964   /// track, stores a pointer to the mask in case we have to account for it
965   /// later.
966   void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
967 
968   /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
969   /// Returns std::nullopt when in scenarios where a spill slot could be
970   /// tracked, but we would likely run into resource limitations.
971   std::optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L);
972 
973   // Get LocIdx of a spill ID.
974   LocIdx getSpillMLoc(unsigned SpillID) {
975     assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinel for IndexedMap.
976     return LocIDToLocIdx[SpillID];
977   }
978 
979   /// Return true if Idx is a spill machine location.
980   bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
981 
982   /// How large is this location (aka, how wide is a value defined there?).
983   unsigned getLocSizeInBits(LocIdx L) const {
984     unsigned ID = LocIdxToLocID[L];
985     if (!isSpill(L)) {
986       return TRI.getRegSizeInBits(Register(ID), MF.getRegInfo());
987     } else {
988       // The slot location on the stack is uninteresting, we care about the
989       // position of the value within the slot (which comes with a size).
990       StackSlotPos Pos = locIDToSpillIdx(ID);
991       return Pos.first;
992     }
993   }
994 
995   MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }
996 
997   MLocIterator end() {
998     return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
999   }
1000 
1001   /// Return a range over all locations currently tracked.
1002   iterator_range<MLocIterator> locations() {
1003     return llvm::make_range(begin(), end());
1004   }
1005 
1006   std::string LocIdxToName(LocIdx Idx) const;
1007 
1008   std::string IDAsString(const ValueIDNum &Num) const;
1009 
1010 #ifndef NDEBUG
1011   LLVM_DUMP_METHOD void dump();
1012 
1013   LLVM_DUMP_METHOD void dump_mloc_map();
1014 #endif
1015 
1016   /// Create a DBG_VALUE based on debug operands \p DbgOps. Qualify it with the
1017   /// information in \pProperties, for variable Var. Don't insert it anywhere,
1018   /// just return the builder for it.
1019   MachineInstrBuilder emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
1020                               const DebugVariable &Var, const DILocation *DILoc,
1021                               const DbgValueProperties &Properties);
1022 };
1023 
1024 /// Types for recording sets of variable fragments that overlap. For a given
1025 /// local variable, we record all other fragments of that variable that could
1026 /// overlap it, to reduce search time.
1027 using FragmentOfVar =
1028     std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
1029 using OverlapMap =
1030     DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
1031 
1032 /// Collection of DBG_VALUEs observed when traversing a block. Records each
1033 /// variable and the value the DBG_VALUE refers to. Requires the machine value
1034 /// location dataflow algorithm to have run already, so that values can be
1035 /// identified.
1036 class VLocTracker {
1037 public:
1038   /// Ref to function-wide map of DebugVariable <=> ID-numbers.
1039   DebugVariableMap &DVMap;
1040   /// Map DebugVariable to the latest Value it's defined to have.
1041   /// Needs to be a MapVector because we determine order-in-the-input-MIR from
1042   /// the order in this container. (FIXME: likely no longer true as the ordering
1043   /// is now provided by DebugVariableMap).
1044   /// We only retain the last DbgValue in each block for each variable, to
1045   /// determine the blocks live-out variable value. The Vars container forms the
1046   /// transfer function for this block, as part of the dataflow analysis. The
1047   /// movement of values between locations inside of a block is handled at a
1048   /// much later stage, in the TransferTracker class.
1049   SmallMapVector<DebugVariableID, DbgValue, 8> Vars;
1050   SmallDenseMap<DebugVariableID, const DILocation *, 8> Scopes;
1051   MachineBasicBlock *MBB = nullptr;
1052   const OverlapMap &OverlappingFragments;
1053   DbgValueProperties EmptyProperties;
1054 
1055 public:
1056   VLocTracker(DebugVariableMap &DVMap, const OverlapMap &O,
1057               const DIExpression *EmptyExpr)
1058       : DVMap(DVMap), OverlappingFragments(O),
1059         EmptyProperties(EmptyExpr, false, false) {}
1060 
1061   void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
1062               const SmallVectorImpl<DbgOpID> &DebugOps) {
1063     assert(MI.isDebugValueLike());
1064     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1065                       MI.getDebugLoc()->getInlinedAt());
1066     // Either insert or fetch an ID number for this variable.
1067     DebugVariableID VarID = DVMap.insertDVID(Var, MI.getDebugLoc().get());
1068     DbgValue Rec = (DebugOps.size() > 0)
1069                        ? DbgValue(DebugOps, Properties)
1070                        : DbgValue(Properties, DbgValue::Undef);
1071 
1072     // Attempt insertion; overwrite if it's already mapped.
1073     Vars.insert_or_assign(VarID, Rec);
1074     Scopes[VarID] = MI.getDebugLoc().get();
1075 
1076     considerOverlaps(Var, MI.getDebugLoc().get());
1077   }
1078 
1079   void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) {
1080     auto Overlaps = OverlappingFragments.find(
1081         {Var.getVariable(), Var.getFragmentOrDefault()});
1082     if (Overlaps == OverlappingFragments.end())
1083       return;
1084 
1085     // Otherwise: terminate any overlapped variable locations.
1086     for (auto FragmentInfo : Overlaps->second) {
1087       // The "empty" fragment is stored as DebugVariable::DefaultFragment, so
1088       // that it overlaps with everything, however its cannonical representation
1089       // in a DebugVariable is as "None".
1090       std::optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo;
1091       if (DebugVariable::isDefaultFragment(FragmentInfo))
1092         OptFragmentInfo = std::nullopt;
1093 
1094       DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo,
1095                                Var.getInlinedAt());
1096       // Produce an ID number for this overlapping fragment of a variable.
1097       DebugVariableID OverlappedID = DVMap.insertDVID(Overlapped, Loc);
1098       DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef);
1099 
1100       // Attempt insertion; overwrite if it's already mapped.
1101       Vars.insert_or_assign(OverlappedID, Rec);
1102       Scopes[OverlappedID] = Loc;
1103     }
1104   }
1105 
1106   void clear() {
1107     Vars.clear();
1108     Scopes.clear();
1109   }
1110 };
1111 
1112 // XXX XXX docs
1113 class InstrRefBasedLDV : public LDVImpl {
1114 public:
1115   friend class ::InstrRefLDVTest;
1116 
1117   using FragmentInfo = DIExpression::FragmentInfo;
1118   using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>;
1119 
1120   // Helper while building OverlapMap, a map of all fragments seen for a given
1121   // DILocalVariable.
1122   using VarToFragments =
1123       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
1124 
1125   /// Machine location/value transfer function, a mapping of which locations
1126   /// are assigned which new values.
1127   using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>;
1128 
1129   /// Live in/out structure for the variable values: a per-block map of
1130   /// variables to their values.
1131   using LiveIdxT = SmallDenseMap<const MachineBasicBlock *, DbgValue *, 16>;
1132 
1133   using VarAndLoc = std::pair<DebugVariableID, DbgValue>;
1134 
1135   /// Type for a live-in value: the predecessor block, and its value.
1136   using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
1137 
1138   /// Vector (per block) of a collection (inner smallvector) of live-ins.
1139   /// Used as the result type for the variable value dataflow problem.
1140   using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
1141 
1142   /// Mapping from lexical scopes to a DILocation in that scope.
1143   using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>;
1144 
1145   /// Mapping from lexical scopes to variables in that scope.
1146   using ScopeToVarsT =
1147       DenseMap<const LexicalScope *, SmallSet<DebugVariableID, 4>>;
1148 
1149   /// Mapping from lexical scopes to blocks where variables in that scope are
1150   /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's
1151   /// just a block where an assignment happens.
1152   using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>;
1153 
1154 private:
1155   MachineDominatorTree *DomTree;
1156   const TargetRegisterInfo *TRI;
1157   const MachineRegisterInfo *MRI;
1158   const TargetInstrInfo *TII;
1159   const TargetFrameLowering *TFI;
1160   const MachineFrameInfo *MFI;
1161   BitVector CalleeSavedRegs;
1162   LexicalScopes LS;
1163   TargetPassConfig *TPC;
1164 
1165   // An empty DIExpression. Used default / placeholder DbgValueProperties
1166   // objects, as we can't have null expressions.
1167   const DIExpression *EmptyExpr;
1168 
1169   /// Object to track machine locations as we step through a block. Could
1170   /// probably be a field rather than a pointer, as it's always used.
1171   MLocTracker *MTracker = nullptr;
1172 
1173   /// Number of the current block LiveDebugValues is stepping through.
1174   unsigned CurBB = -1;
1175 
1176   /// Number of the current instruction LiveDebugValues is evaluating.
1177   unsigned CurInst;
1178 
1179   /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
1180   /// steps through a block. Reads the values at each location from the
1181   /// MLocTracker object.
1182   VLocTracker *VTracker = nullptr;
1183 
1184   /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
1185   /// between locations during stepping, creates new DBG_VALUEs when values move
1186   /// location.
1187   TransferTracker *TTracker = nullptr;
1188 
1189   /// Blocks which are artificial, i.e. blocks which exclusively contain
1190   /// instructions without DebugLocs, or with line 0 locations.
1191   SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks;
1192 
1193   // Mapping of blocks to and from their RPOT order.
1194   SmallVector<MachineBasicBlock *> OrderToBB;
1195   DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder;
1196   DenseMap<unsigned, unsigned> BBNumToRPO;
1197 
1198   /// Pair of MachineInstr, and its 1-based offset into the containing block.
1199   using InstAndNum = std::pair<const MachineInstr *, unsigned>;
1200   /// Map from debug instruction number to the MachineInstr labelled with that
1201   /// number, and its location within the function. Used to transform
1202   /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
1203   std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
1204 
1205   /// Record of where we observed a DBG_PHI instruction.
1206   class DebugPHIRecord {
1207   public:
1208     /// Instruction number of this DBG_PHI.
1209     uint64_t InstrNum;
1210     /// Block where DBG_PHI occurred.
1211     MachineBasicBlock *MBB;
1212     /// The value number read by the DBG_PHI -- or std::nullopt if it didn't
1213     /// refer to a value.
1214     std::optional<ValueIDNum> ValueRead;
1215     /// Register/Stack location the DBG_PHI reads -- or std::nullopt if it
1216     /// referred to something unexpected.
1217     std::optional<LocIdx> ReadLoc;
1218 
1219     operator unsigned() const { return InstrNum; }
1220   };
1221 
1222   /// Map from instruction numbers defined by DBG_PHIs to a record of what that
1223   /// DBG_PHI read and where. Populated and edited during the machine value
1224   /// location problem -- we use LLVMs SSA Updater to fix changes by
1225   /// optimizations that destroy PHI instructions.
1226   SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
1227 
1228   // Map of overlapping variable fragments.
1229   OverlapMap OverlapFragments;
1230   VarToFragments SeenFragments;
1231 
1232   /// Mapping of DBG_INSTR_REF instructions to their values, for those
1233   /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve
1234   /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches
1235   /// the result.
1236   DenseMap<std::pair<MachineInstr *, unsigned>, std::optional<ValueIDNum>>
1237       SeenDbgPHIs;
1238 
1239   DbgOpIDMap DbgOpStore;
1240 
1241   /// Mapping between DebugVariables and unique ID numbers. This is a more
1242   /// efficient way to represent the identity of a variable, versus a plain
1243   /// DebugVariable.
1244   DebugVariableMap DVMap;
1245 
1246   /// True if we need to examine call instructions for stack clobbers. We
1247   /// normally assume that they don't clobber SP, but stack probes on Windows
1248   /// do.
1249   bool AdjustsStackInCalls = false;
1250 
1251   /// If AdjustsStackInCalls is true, this holds the name of the target's stack
1252   /// probe function, which is the function we expect will alter the stack
1253   /// pointer.
1254   StringRef StackProbeSymbolName;
1255 
1256   /// Tests whether this instruction is a spill to a stack slot.
1257   std::optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI,
1258                                                     MachineFunction *MF);
1259 
1260   /// Decide if @MI is a spill instruction and return true if it is. We use 2
1261   /// criteria to make this decision:
1262   /// - Is this instruction a store to a spill slot?
1263   /// - Is there a register operand that is both used and killed?
1264   /// TODO: Store optimization can fold spills into other stores (including
1265   /// other spills). We do not handle this yet (more than one memory operand).
1266   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1267                        unsigned &Reg);
1268 
1269   /// If a given instruction is identified as a spill, return the spill slot
1270   /// and set \p Reg to the spilled register.
1271   std::optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI,
1272                                                       MachineFunction *MF,
1273                                                       unsigned &Reg);
1274 
1275   /// Given a spill instruction, extract the spill slot information, ensure it's
1276   /// tracked, and return the spill number.
1277   std::optional<SpillLocationNo>
1278   extractSpillBaseRegAndOffset(const MachineInstr &MI);
1279 
1280   /// For an instruction reference given by \p InstNo and \p OpNo in instruction
1281   /// \p MI returns the Value pointed to by that instruction reference if any
1282   /// exists, otherwise returns std::nullopt.
1283   std::optional<ValueIDNum> getValueForInstrRef(unsigned InstNo, unsigned OpNo,
1284                                                 MachineInstr &MI,
1285                                                 const FuncValueTable *MLiveOuts,
1286                                                 const FuncValueTable *MLiveIns);
1287 
1288   /// Observe a single instruction while stepping through a block.
1289   void process(MachineInstr &MI, const FuncValueTable *MLiveOuts,
1290                const FuncValueTable *MLiveIns);
1291 
1292   /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
1293   /// \returns true if MI was recognized and processed.
1294   bool transferDebugValue(const MachineInstr &MI);
1295 
1296   /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
1297   /// \returns true if MI was recognized and processed.
1298   bool transferDebugInstrRef(MachineInstr &MI, const FuncValueTable *MLiveOuts,
1299                              const FuncValueTable *MLiveIns);
1300 
1301   /// Stores value-information about where this PHI occurred, and what
1302   /// instruction number is associated with it.
1303   /// \returns true if MI was recognized and processed.
1304   bool transferDebugPHI(MachineInstr &MI);
1305 
1306   /// Examines whether \p MI is copy instruction, and notifies trackers.
1307   /// \returns true if MI was recognized and processed.
1308   bool transferRegisterCopy(MachineInstr &MI);
1309 
1310   /// Examines whether \p MI is stack spill or restore  instruction, and
1311   /// notifies trackers. \returns true if MI was recognized and processed.
1312   bool transferSpillOrRestoreInst(MachineInstr &MI);
1313 
1314   /// Examines \p MI for any registers that it defines, and notifies trackers.
1315   void transferRegisterDef(MachineInstr &MI);
1316 
1317   /// Copy one location to the other, accounting for movement of subregisters
1318   /// too.
1319   void performCopy(Register Src, Register Dst);
1320 
1321   void accumulateFragmentMap(MachineInstr &MI);
1322 
1323   /// Determine the machine value number referred to by (potentially several)
1324   /// DBG_PHI instructions. Block duplication and tail folding can duplicate
1325   /// DBG_PHIs, shifting the position where values in registers merge, and
1326   /// forming another mini-ssa problem to solve.
1327   /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
1328   /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
1329   /// \returns The machine value number at position Here, or std::nullopt.
1330   std::optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
1331                                            const FuncValueTable &MLiveOuts,
1332                                            const FuncValueTable &MLiveIns,
1333                                            MachineInstr &Here,
1334                                            uint64_t InstrNum);
1335 
1336   std::optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF,
1337                                                const FuncValueTable &MLiveOuts,
1338                                                const FuncValueTable &MLiveIns,
1339                                                MachineInstr &Here,
1340                                                uint64_t InstrNum);
1341 
1342   /// Step through the function, recording register definitions and movements
1343   /// in an MLocTracker. Convert the observations into a per-block transfer
1344   /// function in \p MLocTransfer, suitable for using with the machine value
1345   /// location dataflow problem.
1346   void
1347   produceMLocTransferFunction(MachineFunction &MF,
1348                               SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1349                               unsigned MaxNumBlocks);
1350 
1351   /// Solve the machine value location dataflow problem. Takes as input the
1352   /// transfer functions in \p MLocTransfer. Writes the output live-in and
1353   /// live-out arrays to the (initialized to zero) multidimensional arrays in
1354   /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
1355   /// number, the inner by LocIdx.
1356   void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs,
1357                          FuncValueTable &MOutLocs,
1358                          SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1359 
1360   /// Examine the stack indexes (i.e. offsets within the stack) to find the
1361   /// basic units of interference -- like reg units, but for the stack.
1362   void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots);
1363 
1364   /// Install PHI values into the live-in array for each block, according to
1365   /// the IDF of each register.
1366   void placeMLocPHIs(MachineFunction &MF,
1367                      SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1368                      FuncValueTable &MInLocs,
1369                      SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1370 
1371   /// Propagate variable values to blocks in the common case where there's
1372   /// only one value assigned to the variable. This function has better
1373   /// performance as it doesn't have to find the dominance frontier between
1374   /// different assignments.
1375   void placePHIsForSingleVarDefinition(
1376       const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
1377       MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
1378       DebugVariableID Var, LiveInsT &Output);
1379 
1380   /// Calculate the iterated-dominance-frontier for a set of defs, using the
1381   /// existing LLVM facilities for this. Works for a single "value" or
1382   /// machine/variable location.
1383   /// \p AllBlocks Set of blocks where we might consume the value.
1384   /// \p DefBlocks Set of blocks where the value/location is defined.
1385   /// \p PHIBlocks Output set of blocks where PHIs must be placed.
1386   void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1387                          const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
1388                          SmallVectorImpl<MachineBasicBlock *> &PHIBlocks);
1389 
1390   /// Perform a control flow join (lattice value meet) of the values in machine
1391   /// locations at \p MBB. Follows the algorithm described in the file-comment,
1392   /// reading live-outs of predecessors from \p OutLocs, the current live ins
1393   /// from \p InLocs, and assigning the newly computed live ins back into
1394   /// \p InLocs. \returns two bools -- the first indicates whether a change
1395   /// was made, the second whether a lattice downgrade occurred. If the latter
1396   /// is true, revisiting this block is necessary.
1397   bool mlocJoin(MachineBasicBlock &MBB,
1398                 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1399                 FuncValueTable &OutLocs, ValueTable &InLocs);
1400 
1401   /// Produce a set of blocks that are in the current lexical scope. This means
1402   /// those blocks that contain instructions "in" the scope, blocks where
1403   /// assignments to variables in scope occur, and artificial blocks that are
1404   /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for
1405   /// more commentry on what "in scope" means.
1406   /// \p DILoc A location in the scope that we're fetching blocks for.
1407   /// \p Output Set to put in-scope-blocks into.
1408   /// \p AssignBlocks Blocks known to contain assignments of variables in scope.
1409   void
1410   getBlocksForScope(const DILocation *DILoc,
1411                     SmallPtrSetImpl<const MachineBasicBlock *> &Output,
1412                     const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks);
1413 
1414   /// Solve the variable value dataflow problem, for a single lexical scope.
1415   /// Uses the algorithm from the file comment to resolve control flow joins
1416   /// using PHI placement and value propagation. Reads the locations of machine
1417   /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
1418   /// and reads the variable values transfer function from \p AllTheVlocs.
1419   /// Live-in and Live-out variable values are stored locally, with the live-ins
1420   /// permanently stored to \p Output once a fixedpoint is reached.
1421   /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1422   /// that we should be tracking.
1423   /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
1424   /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
1425   /// locations through.
1426   void buildVLocValueMap(const DILocation *DILoc,
1427                          const SmallSet<DebugVariableID, 4> &VarsWeCareAbout,
1428                          SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
1429                          LiveInsT &Output, FuncValueTable &MOutLocs,
1430                          FuncValueTable &MInLocs,
1431                          SmallVectorImpl<VLocTracker> &AllTheVLocs);
1432 
1433   /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
1434   /// live-in values coming from predecessors live-outs, and replaces any PHIs
1435   /// already present in this blocks live-ins with a live-through value if the
1436   /// PHI isn't needed.
1437   /// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
1438   /// \returns true if any live-ins change value, either from value propagation
1439   ///          or PHI elimination.
1440   bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
1441                 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
1442                 DbgValue &LiveIn);
1443 
1444   /// For the given block and live-outs feeding into it, try to find
1445   /// machine locations for each debug operand where all the values feeding
1446   /// into that operand join together.
1447   /// \returns true if a joined location was found for every value that needed
1448   ///          to be joined.
1449   bool
1450   pickVPHILoc(SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
1451               const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
1452               const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
1453 
1454   std::optional<ValueIDNum> pickOperandPHILoc(
1455       unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
1456       FuncValueTable &MOutLocs,
1457       const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
1458 
1459   /// Take collections of DBG_VALUE instructions stored in TTracker, and
1460   /// install them into their output blocks.
1461   bool emitTransfers();
1462 
1463   /// Boilerplate computation of some initial sets, artifical blocks and
1464   /// RPOT block ordering.
1465   void initialSetup(MachineFunction &MF);
1466 
1467   /// Produce a map of the last lexical scope that uses a block, using the
1468   /// scopes DFSOut number. Mapping is block-number to DFSOut.
1469   /// \p EjectionMap Pre-allocated vector in which to install the built ma.
1470   /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations.
1471   /// \p AssignBlocks Map of blocks where assignments happen for a scope.
1472   void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap,
1473                                  const ScopeToDILocT &ScopeToDILocation,
1474                                  ScopeToAssignBlocksT &AssignBlocks);
1475 
1476   /// When determining per-block variable values and emitting to DBG_VALUEs,
1477   /// this function explores by lexical scope depth. Doing so means that per
1478   /// block information can be fully computed before exploration finishes,
1479   /// allowing us to emit it and free data structures earlier than otherwise.
1480   /// It's also good for locality.
1481   bool depthFirstVLocAndEmit(unsigned MaxNumBlocks,
1482                              const ScopeToDILocT &ScopeToDILocation,
1483                              const ScopeToVarsT &ScopeToVars,
1484                              ScopeToAssignBlocksT &ScopeToBlocks,
1485                              LiveInsT &Output, FuncValueTable &MOutLocs,
1486                              FuncValueTable &MInLocs,
1487                              SmallVectorImpl<VLocTracker> &AllTheVLocs,
1488                              MachineFunction &MF, const TargetPassConfig &TPC);
1489 
1490   bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
1491                     TargetPassConfig *TPC, unsigned InputBBLimit,
1492                     unsigned InputDbgValLimit) override;
1493 
1494 public:
1495   /// Default construct and initialize the pass.
1496   InstrRefBasedLDV();
1497 
1498   LLVM_DUMP_METHOD
1499   void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
1500 
1501   bool isCalleeSaved(LocIdx L) const;
1502   bool isCalleeSavedReg(Register R) const;
1503 
1504   bool hasFoldedStackStore(const MachineInstr &MI) {
1505     // Instruction must have a memory operand that's a stack slot, and isn't
1506     // aliased, meaning it's a spill from regalloc instead of a variable.
1507     // If it's aliased, we can't guarantee its value.
1508     if (!MI.hasOneMemOperand())
1509       return false;
1510     auto *MemOperand = *MI.memoperands_begin();
1511     return MemOperand->isStore() &&
1512            MemOperand->getPseudoValue() &&
1513            MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
1514            && !MemOperand->getPseudoValue()->isAliased(MFI);
1515   }
1516 
1517   std::optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI);
1518 
1519   // Utility for unit testing, don't use directly.
1520   DebugVariableMap &getDVMap() {
1521     return DVMap;
1522   }
1523 };
1524 
1525 } // namespace LiveDebugValues
1526 
1527 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */
1528