1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H 10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H 11 12 #include "llvm/ADT/DenseMap.h" 13 #include "llvm/ADT/IndexedMap.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/UniqueVector.h" 17 #include "llvm/CodeGen/LexicalScopes.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/TargetRegisterInfo.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include <optional> 23 24 #include "LiveDebugValues.h" 25 26 class TransferTracker; 27 28 // Forward dec of unit test class, so that we can peer into the LDV object. 29 class InstrRefLDVTest; 30 31 namespace LiveDebugValues { 32 33 class MLocTracker; 34 class DbgOpIDMap; 35 36 using namespace llvm; 37 38 using DebugVariableID = unsigned; 39 using VarAndLoc = std::pair<DebugVariable, const DILocation *>; 40 41 /// Mapping from DebugVariable to/from a unique identifying number. Each 42 /// DebugVariable consists of three pointers, and after a small amount of 43 /// work to identify overlapping fragments of variables we mostly only use 44 /// DebugVariables as identities of variables. It's much more compile-time 45 /// efficient to use an ID number instead, which this class provides. 46 class DebugVariableMap { 47 DenseMap<DebugVariable, unsigned> VarToIdx; 48 SmallVector<VarAndLoc> IdxToVar; 49 50 public: 51 DebugVariableID getDVID(const DebugVariable &Var) const { 52 auto It = VarToIdx.find(Var); 53 assert(It != VarToIdx.end()); 54 return It->second; 55 } 56 57 DebugVariableID insertDVID(DebugVariable &Var, const DILocation *Loc) { 58 unsigned Size = VarToIdx.size(); 59 auto ItPair = VarToIdx.insert({Var, Size}); 60 if (ItPair.second) { 61 IdxToVar.push_back({Var, Loc}); 62 return Size; 63 } 64 65 return ItPair.first->second; 66 } 67 68 const VarAndLoc &lookupDVID(DebugVariableID ID) const { return IdxToVar[ID]; } 69 70 void clear() { 71 VarToIdx.clear(); 72 IdxToVar.clear(); 73 } 74 }; 75 76 /// Handle-class for a particular "location". This value-type uniquely 77 /// symbolises a register or stack location, allowing manipulation of locations 78 /// without concern for where that location is. Practically, this allows us to 79 /// treat the state of the machine at a particular point as an array of values, 80 /// rather than a map of values. 81 class LocIdx { 82 unsigned Location; 83 84 // Default constructor is private, initializing to an illegal location number. 85 // Use only for "not an entry" elements in IndexedMaps. 86 LocIdx() : Location(UINT_MAX) {} 87 88 public: 89 #define NUM_LOC_BITS 24 90 LocIdx(unsigned L) : Location(L) { 91 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); 92 } 93 94 static LocIdx MakeIllegalLoc() { return LocIdx(); } 95 static LocIdx MakeTombstoneLoc() { 96 LocIdx L = LocIdx(); 97 --L.Location; 98 return L; 99 } 100 101 bool isIllegal() const { return Location == UINT_MAX; } 102 103 uint64_t asU64() const { return Location; } 104 105 bool operator==(unsigned L) const { return Location == L; } 106 107 bool operator==(const LocIdx &L) const { return Location == L.Location; } 108 109 bool operator!=(unsigned L) const { return !(*this == L); } 110 111 bool operator!=(const LocIdx &L) const { return !(*this == L); } 112 113 bool operator<(const LocIdx &Other) const { 114 return Location < Other.Location; 115 } 116 }; 117 118 // The location at which a spilled value resides. It consists of a register and 119 // an offset. 120 struct SpillLoc { 121 unsigned SpillBase; 122 StackOffset SpillOffset; 123 bool operator==(const SpillLoc &Other) const { 124 return std::make_pair(SpillBase, SpillOffset) == 125 std::make_pair(Other.SpillBase, Other.SpillOffset); 126 } 127 bool operator<(const SpillLoc &Other) const { 128 return std::make_tuple(SpillBase, SpillOffset.getFixed(), 129 SpillOffset.getScalable()) < 130 std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(), 131 Other.SpillOffset.getScalable()); 132 } 133 }; 134 135 /// Unique identifier for a value defined by an instruction, as a value type. 136 /// Casts back and forth to a uint64_t. Probably replacable with something less 137 /// bit-constrained. Each value identifies the instruction and machine location 138 /// where the value is defined, although there may be no corresponding machine 139 /// operand for it (ex: regmasks clobbering values). The instructions are 140 /// one-based, and definitions that are PHIs have instruction number zero. 141 /// 142 /// The obvious limits of a 1M block function or 1M instruction blocks are 143 /// problematic; but by that point we should probably have bailed out of 144 /// trying to analyse the function. 145 class ValueIDNum { 146 union { 147 struct { 148 uint64_t BlockNo : 20; /// The block where the def happens. 149 uint64_t InstNo : 20; /// The Instruction where the def happens. 150 /// One based, is distance from start of block. 151 uint64_t LocNo 152 : NUM_LOC_BITS; /// The machine location where the def happens. 153 } s; 154 uint64_t Value; 155 } u; 156 157 static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?"); 158 159 public: 160 // Default-initialize to EmptyValue. This is necessary to make IndexedMaps 161 // of values to work. 162 ValueIDNum() { u.Value = EmptyValue.asU64(); } 163 164 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) { 165 u.s = {Block, Inst, Loc}; 166 } 167 168 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) { 169 u.s = {Block, Inst, Loc.asU64()}; 170 } 171 172 uint64_t getBlock() const { return u.s.BlockNo; } 173 uint64_t getInst() const { return u.s.InstNo; } 174 uint64_t getLoc() const { return u.s.LocNo; } 175 bool isPHI() const { return u.s.InstNo == 0; } 176 177 uint64_t asU64() const { return u.Value; } 178 179 static ValueIDNum fromU64(uint64_t v) { 180 ValueIDNum Val; 181 Val.u.Value = v; 182 return Val; 183 } 184 185 bool operator<(const ValueIDNum &Other) const { 186 return asU64() < Other.asU64(); 187 } 188 189 bool operator==(const ValueIDNum &Other) const { 190 return u.Value == Other.u.Value; 191 } 192 193 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } 194 195 std::string asString(const std::string &mlocname) const { 196 return Twine("Value{bb: ") 197 .concat(Twine(u.s.BlockNo) 198 .concat(Twine(", inst: ") 199 .concat((u.s.InstNo ? Twine(u.s.InstNo) 200 : Twine("live-in")) 201 .concat(Twine(", loc: ").concat( 202 Twine(mlocname))) 203 .concat(Twine("}"))))) 204 .str(); 205 } 206 207 static ValueIDNum EmptyValue; 208 static ValueIDNum TombstoneValue; 209 }; 210 211 } // End namespace LiveDebugValues 212 213 namespace llvm { 214 using namespace LiveDebugValues; 215 216 template <> struct DenseMapInfo<LocIdx> { 217 static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); } 218 static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); } 219 220 static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); } 221 222 static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; } 223 }; 224 225 template <> struct DenseMapInfo<ValueIDNum> { 226 static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; } 227 static inline ValueIDNum getTombstoneKey() { 228 return ValueIDNum::TombstoneValue; 229 } 230 231 static unsigned getHashValue(const ValueIDNum &Val) { 232 return hash_value(Val.asU64()); 233 } 234 235 static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) { 236 return A == B; 237 } 238 }; 239 240 } // end namespace llvm 241 242 namespace LiveDebugValues { 243 using namespace llvm; 244 245 /// Type for a table of values in a block. 246 using ValueTable = SmallVector<ValueIDNum, 0>; 247 248 /// A collection of ValueTables, one per BB in a function, with convenient 249 /// accessor methods. 250 struct FuncValueTable { 251 FuncValueTable(int NumBBs, int NumLocs) { 252 Storage.reserve(NumBBs); 253 for (int i = 0; i != NumBBs; ++i) 254 Storage.push_back( 255 std::make_unique<ValueTable>(NumLocs, ValueIDNum::EmptyValue)); 256 } 257 258 /// Returns the ValueTable associated with MBB. 259 ValueTable &operator[](const MachineBasicBlock &MBB) const { 260 return (*this)[MBB.getNumber()]; 261 } 262 263 /// Returns the ValueTable associated with the MachineBasicBlock whose number 264 /// is MBBNum. 265 ValueTable &operator[](int MBBNum) const { 266 auto &TablePtr = Storage[MBBNum]; 267 assert(TablePtr && "Trying to access a deleted table"); 268 return *TablePtr; 269 } 270 271 /// Returns the ValueTable associated with the entry MachineBasicBlock. 272 ValueTable &tableForEntryMBB() const { return (*this)[0]; } 273 274 /// Returns true if the ValueTable associated with MBB has not been freed. 275 bool hasTableFor(MachineBasicBlock &MBB) const { 276 return Storage[MBB.getNumber()] != nullptr; 277 } 278 279 /// Frees the memory of the ValueTable associated with MBB. 280 void ejectTableForBlock(const MachineBasicBlock &MBB) { 281 Storage[MBB.getNumber()].reset(); 282 } 283 284 private: 285 /// ValueTables are stored as unique_ptrs to allow for deallocation during 286 /// LDV; this was measured to have a significant impact on compiler memory 287 /// usage. 288 SmallVector<std::unique_ptr<ValueTable>, 0> Storage; 289 }; 290 291 /// Thin wrapper around an integer -- designed to give more type safety to 292 /// spill location numbers. 293 class SpillLocationNo { 294 public: 295 explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {} 296 unsigned SpillNo; 297 unsigned id() const { return SpillNo; } 298 299 bool operator<(const SpillLocationNo &Other) const { 300 return SpillNo < Other.SpillNo; 301 } 302 303 bool operator==(const SpillLocationNo &Other) const { 304 return SpillNo == Other.SpillNo; 305 } 306 bool operator!=(const SpillLocationNo &Other) const { 307 return !(*this == Other); 308 } 309 }; 310 311 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify 312 /// the value, and Boolean of whether or not it's indirect. 313 class DbgValueProperties { 314 public: 315 DbgValueProperties(const DIExpression *DIExpr, bool Indirect, bool IsVariadic) 316 : DIExpr(DIExpr), Indirect(Indirect), IsVariadic(IsVariadic) {} 317 318 /// Extract properties from an existing DBG_VALUE instruction. 319 DbgValueProperties(const MachineInstr &MI) { 320 assert(MI.isDebugValue()); 321 assert(MI.getDebugExpression()->getNumLocationOperands() == 0 || 322 MI.isDebugValueList() || MI.isUndefDebugValue()); 323 IsVariadic = MI.isDebugValueList(); 324 DIExpr = MI.getDebugExpression(); 325 Indirect = MI.isDebugOffsetImm(); 326 } 327 328 bool isJoinable(const DbgValueProperties &Other) const { 329 return DIExpression::isEqualExpression(DIExpr, Indirect, Other.DIExpr, 330 Other.Indirect); 331 } 332 333 bool operator==(const DbgValueProperties &Other) const { 334 return std::tie(DIExpr, Indirect, IsVariadic) == 335 std::tie(Other.DIExpr, Other.Indirect, Other.IsVariadic); 336 } 337 338 bool operator!=(const DbgValueProperties &Other) const { 339 return !(*this == Other); 340 } 341 342 unsigned getLocationOpCount() const { 343 return IsVariadic ? DIExpr->getNumLocationOperands() : 1; 344 } 345 346 const DIExpression *DIExpr; 347 bool Indirect; 348 bool IsVariadic; 349 }; 350 351 /// TODO: Might pack better if we changed this to a Struct of Arrays, since 352 /// MachineOperand is width 32, making this struct width 33. We could also 353 /// potentially avoid storing the whole MachineOperand (sizeof=32), instead 354 /// choosing to store just the contents portion (sizeof=8) and a Kind enum, 355 /// since we already know it is some type of immediate value. 356 /// Stores a single debug operand, which can either be a MachineOperand for 357 /// directly storing immediate values, or a ValueIDNum representing some value 358 /// computed at some point in the program. IsConst is used as a discriminator. 359 struct DbgOp { 360 union { 361 ValueIDNum ID; 362 MachineOperand MO; 363 }; 364 bool IsConst; 365 366 DbgOp() : ID(ValueIDNum::EmptyValue), IsConst(false) {} 367 DbgOp(ValueIDNum ID) : ID(ID), IsConst(false) {} 368 DbgOp(MachineOperand MO) : MO(MO), IsConst(true) {} 369 370 bool isUndef() const { return !IsConst && ID == ValueIDNum::EmptyValue; } 371 372 #ifndef NDEBUG 373 void dump(const MLocTracker *MTrack) const; 374 #endif 375 }; 376 377 /// A DbgOp whose ID (if any) has resolved to an actual location, LocIdx. Used 378 /// when working with concrete debug values, i.e. when joining MLocs and VLocs 379 /// in the TransferTracker or emitting DBG_VALUE/DBG_VALUE_LIST instructions in 380 /// the MLocTracker. 381 struct ResolvedDbgOp { 382 union { 383 LocIdx Loc; 384 MachineOperand MO; 385 }; 386 bool IsConst; 387 388 ResolvedDbgOp(LocIdx Loc) : Loc(Loc), IsConst(false) {} 389 ResolvedDbgOp(MachineOperand MO) : MO(MO), IsConst(true) {} 390 391 bool operator==(const ResolvedDbgOp &Other) const { 392 if (IsConst != Other.IsConst) 393 return false; 394 if (IsConst) 395 return MO.isIdenticalTo(Other.MO); 396 return Loc == Other.Loc; 397 } 398 399 #ifndef NDEBUG 400 void dump(const MLocTracker *MTrack) const; 401 #endif 402 }; 403 404 /// An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp. This is used 405 /// in place of actual DbgOps inside of a DbgValue to reduce its size, as 406 /// DbgValue is very frequently used and passed around, and the actual DbgOp is 407 /// over 8x larger than this class, due to storing a MachineOperand. This ID 408 /// should be equal for all equal DbgOps, and also encodes whether the mapped 409 /// DbgOp is a constant, meaning that for simple equality or const-ness checks 410 /// it is not necessary to lookup this ID. 411 struct DbgOpID { 412 struct IsConstIndexPair { 413 uint32_t IsConst : 1; 414 uint32_t Index : 31; 415 }; 416 417 union { 418 struct IsConstIndexPair ID; 419 uint32_t RawID; 420 }; 421 422 DbgOpID() : RawID(UndefID.RawID) { 423 static_assert(sizeof(DbgOpID) == 4, "DbgOpID should fit within 4 bytes."); 424 } 425 DbgOpID(uint32_t RawID) : RawID(RawID) {} 426 DbgOpID(bool IsConst, uint32_t Index) : ID({IsConst, Index}) {} 427 428 static DbgOpID UndefID; 429 430 bool operator==(const DbgOpID &Other) const { return RawID == Other.RawID; } 431 bool operator!=(const DbgOpID &Other) const { return !(*this == Other); } 432 433 uint32_t asU32() const { return RawID; } 434 435 bool isUndef() const { return *this == UndefID; } 436 bool isConst() const { return ID.IsConst && !isUndef(); } 437 uint32_t getIndex() const { return ID.Index; } 438 439 #ifndef NDEBUG 440 void dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const; 441 #endif 442 }; 443 444 /// Class storing the complete set of values that are observed by DbgValues 445 /// within the current function. Allows 2-way lookup, with `find` returning the 446 /// Op for a given ID and `insert` returning the ID for a given Op (creating one 447 /// if none exists). 448 class DbgOpIDMap { 449 450 SmallVector<ValueIDNum, 0> ValueOps; 451 SmallVector<MachineOperand, 0> ConstOps; 452 453 DenseMap<ValueIDNum, DbgOpID> ValueOpToID; 454 DenseMap<MachineOperand, DbgOpID> ConstOpToID; 455 456 public: 457 /// If \p Op does not already exist in this map, it is inserted and the 458 /// corresponding DbgOpID is returned. If Op already exists in this map, then 459 /// no change is made and the existing ID for Op is returned. 460 /// Calling this with the undef DbgOp will always return DbgOpID::UndefID. 461 DbgOpID insert(DbgOp Op) { 462 if (Op.isUndef()) 463 return DbgOpID::UndefID; 464 if (Op.IsConst) 465 return insertConstOp(Op.MO); 466 return insertValueOp(Op.ID); 467 } 468 /// Returns the DbgOp associated with \p ID. Should only be used for IDs 469 /// returned from calling `insert` from this map or DbgOpID::UndefID. 470 DbgOp find(DbgOpID ID) const { 471 if (ID == DbgOpID::UndefID) 472 return DbgOp(); 473 if (ID.isConst()) 474 return DbgOp(ConstOps[ID.getIndex()]); 475 return DbgOp(ValueOps[ID.getIndex()]); 476 } 477 478 void clear() { 479 ValueOps.clear(); 480 ConstOps.clear(); 481 ValueOpToID.clear(); 482 ConstOpToID.clear(); 483 } 484 485 private: 486 DbgOpID insertConstOp(MachineOperand &MO) { 487 auto [It, Inserted] = ConstOpToID.try_emplace(MO, true, ConstOps.size()); 488 if (Inserted) 489 ConstOps.push_back(MO); 490 return It->second; 491 } 492 DbgOpID insertValueOp(ValueIDNum VID) { 493 auto [It, Inserted] = ValueOpToID.try_emplace(VID, false, ValueOps.size()); 494 if (Inserted) 495 ValueOps.push_back(VID); 496 return It->second; 497 } 498 }; 499 500 // We set the maximum number of operands that we will handle to keep DbgValue 501 // within a reasonable size (64 bytes), as we store and pass a lot of them 502 // around. 503 #define MAX_DBG_OPS 8 504 505 /// Class recording the (high level) _value_ of a variable. Identifies the value 506 /// of the variable as a list of ValueIDNums and constant MachineOperands, or as 507 /// an empty list for undef debug values or VPHI values which we have not found 508 /// valid locations for. 509 /// This class also stores meta-information about how the value is qualified. 510 /// Used to reason about variable values when performing the second 511 /// (DebugVariable specific) dataflow analysis. 512 class DbgValue { 513 private: 514 /// If Kind is Def or VPHI, the set of IDs corresponding to the DbgOps that 515 /// are used. VPHIs set every ID to EmptyID when we have not found a valid 516 /// machine-value for every operand, and sets them to the corresponding 517 /// machine-values when we have found all of them. 518 DbgOpID DbgOps[MAX_DBG_OPS]; 519 unsigned OpCount; 520 521 public: 522 /// For a NoVal or VPHI DbgValue, which block it was generated in. 523 int BlockNo; 524 525 /// Qualifiers for the ValueIDNum above. 526 DbgValueProperties Properties; 527 528 typedef enum { 529 Undef, // Represents a DBG_VALUE $noreg in the transfer function only. 530 Def, // This value is defined by some combination of constants, 531 // instructions, or PHI values. 532 VPHI, // Incoming values to BlockNo differ, those values must be joined by 533 // a PHI in this block. 534 NoVal, // Empty DbgValue indicating an unknown value. Used as initializer, 535 // before dominating blocks values are propagated in. 536 } KindT; 537 /// Discriminator for whether this is a constant or an in-program value. 538 KindT Kind; 539 540 DbgValue(ArrayRef<DbgOpID> DbgOps, const DbgValueProperties &Prop) 541 : OpCount(DbgOps.size()), BlockNo(0), Properties(Prop), Kind(Def) { 542 static_assert(sizeof(DbgValue) <= 64, 543 "DbgValue should fit within 64 bytes."); 544 assert(DbgOps.size() == Prop.getLocationOpCount()); 545 if (DbgOps.size() > MAX_DBG_OPS || 546 any_of(DbgOps, [](DbgOpID ID) { return ID.isUndef(); })) { 547 Kind = Undef; 548 OpCount = 0; 549 #define DEBUG_TYPE "LiveDebugValues" 550 if (DbgOps.size() > MAX_DBG_OPS) { 551 LLVM_DEBUG(dbgs() << "Found DbgValue with more than maximum allowed " 552 "operands.\n"); 553 } 554 #undef DEBUG_TYPE 555 } else { 556 for (unsigned Idx = 0; Idx < DbgOps.size(); ++Idx) 557 this->DbgOps[Idx] = DbgOps[Idx]; 558 } 559 } 560 561 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) 562 : OpCount(0), BlockNo(BlockNo), Properties(Prop), Kind(Kind) { 563 assert(Kind == NoVal || Kind == VPHI); 564 } 565 566 DbgValue(const DbgValueProperties &Prop, KindT Kind) 567 : OpCount(0), BlockNo(0), Properties(Prop), Kind(Kind) { 568 assert(Kind == Undef && 569 "Empty DbgValue constructor must pass in Undef kind"); 570 } 571 572 #ifndef NDEBUG 573 void dump(const MLocTracker *MTrack = nullptr, 574 const DbgOpIDMap *OpStore = nullptr) const; 575 #endif 576 577 bool operator==(const DbgValue &Other) const { 578 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) 579 return false; 580 else if (Kind == Def && !equal(getDbgOpIDs(), Other.getDbgOpIDs())) 581 return false; 582 else if (Kind == NoVal && BlockNo != Other.BlockNo) 583 return false; 584 else if (Kind == VPHI && BlockNo != Other.BlockNo) 585 return false; 586 else if (Kind == VPHI && !equal(getDbgOpIDs(), Other.getDbgOpIDs())) 587 return false; 588 589 return true; 590 } 591 592 bool operator!=(const DbgValue &Other) const { return !(*this == Other); } 593 594 // Returns an array of all the machine values used to calculate this variable 595 // value, or an empty list for an Undef or unjoined VPHI. 596 ArrayRef<DbgOpID> getDbgOpIDs() const { return {DbgOps, OpCount}; } 597 598 // Returns either DbgOps[Index] if this DbgValue has Debug Operands, or 599 // the ID for ValueIDNum::EmptyValue otherwise (i.e. if this is an Undef, 600 // NoVal, or an unjoined VPHI). 601 DbgOpID getDbgOpID(unsigned Index) const { 602 if (!OpCount) 603 return DbgOpID::UndefID; 604 assert(Index < OpCount); 605 return DbgOps[Index]; 606 } 607 // Replaces this DbgValue's existing DbgOpIDs (if any) with the contents of 608 // \p NewIDs. The number of DbgOpIDs passed must be equal to the number of 609 // arguments expected by this DbgValue's properties (the return value of 610 // `getLocationOpCount()`). 611 void setDbgOpIDs(ArrayRef<DbgOpID> NewIDs) { 612 // We can go from no ops to some ops, but not from some ops to no ops. 613 assert(NewIDs.size() == getLocationOpCount() && 614 "Incorrect number of Debug Operands for this DbgValue."); 615 OpCount = NewIDs.size(); 616 for (unsigned Idx = 0; Idx < NewIDs.size(); ++Idx) 617 DbgOps[Idx] = NewIDs[Idx]; 618 } 619 620 // The number of debug operands expected by this DbgValue's expression. 621 // getDbgOpIDs() should return an array of this length, unless this is an 622 // Undef or an unjoined VPHI. 623 unsigned getLocationOpCount() const { 624 return Properties.getLocationOpCount(); 625 } 626 627 // Returns true if this or Other are unjoined PHIs, which do not have defined 628 // Loc Ops, or if the `n`th Loc Op for this has a different constness to the 629 // `n`th Loc Op for Other. 630 bool hasJoinableLocOps(const DbgValue &Other) const { 631 if (isUnjoinedPHI() || Other.isUnjoinedPHI()) 632 return true; 633 for (unsigned Idx = 0; Idx < getLocationOpCount(); ++Idx) { 634 if (getDbgOpID(Idx).isConst() != Other.getDbgOpID(Idx).isConst()) 635 return false; 636 } 637 return true; 638 } 639 640 bool isUnjoinedPHI() const { return Kind == VPHI && OpCount == 0; } 641 642 bool hasIdenticalValidLocOps(const DbgValue &Other) const { 643 if (!OpCount) 644 return false; 645 return equal(getDbgOpIDs(), Other.getDbgOpIDs()); 646 } 647 }; 648 649 class LocIdxToIndexFunctor { 650 public: 651 using argument_type = LocIdx; 652 unsigned operator()(const LocIdx &L) const { return L.asU64(); } 653 }; 654 655 /// Tracker for what values are in machine locations. Listens to the Things 656 /// being Done by various instructions, and maintains a table of what machine 657 /// locations have what values (as defined by a ValueIDNum). 658 /// 659 /// There are potentially a much larger number of machine locations on the 660 /// target machine than the actual working-set size of the function. On x86 for 661 /// example, we're extremely unlikely to want to track values through control 662 /// or debug registers. To avoid doing so, MLocTracker has several layers of 663 /// indirection going on, described below, to avoid unnecessarily tracking 664 /// any location. 665 /// 666 /// Here's a sort of diagram of the indexes, read from the bottom up: 667 /// 668 /// Size on stack Offset on stack 669 /// \ / 670 /// Stack Idx (Where in slot is this?) 671 /// / 672 /// / 673 /// Slot Num (%stack.0) / 674 /// FrameIdx => SpillNum / 675 /// \ / 676 /// SpillID (int) Register number (int) 677 /// \ / 678 /// LocationID => LocIdx 679 /// | 680 /// LocIdx => ValueIDNum 681 /// 682 /// The aim here is that the LocIdx => ValueIDNum vector is just an array of 683 /// values in numbered locations, so that later analyses can ignore whether the 684 /// location is a register or otherwise. To map a register / spill location to 685 /// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to 686 /// build a LocationID for a stack slot, you need to combine identifiers for 687 /// which stack slot it is and where within that slot is being described. 688 /// 689 /// Register mask operands cause trouble by technically defining every register; 690 /// various hacks are used to avoid tracking registers that are never read and 691 /// only written by regmasks. 692 class MLocTracker { 693 public: 694 MachineFunction &MF; 695 const TargetInstrInfo &TII; 696 const TargetRegisterInfo &TRI; 697 const TargetLowering &TLI; 698 699 /// IndexedMap type, mapping from LocIdx to ValueIDNum. 700 using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>; 701 702 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly 703 /// packed, entries only exist for locations that are being tracked. 704 LocToValueType LocIdxToIDNum; 705 706 /// "Map" of machine location IDs (i.e., raw register or spill number) to the 707 /// LocIdx key / number for that location. There are always at least as many 708 /// as the number of registers on the target -- if the value in the register 709 /// is not being tracked, then the LocIdx value will be zero. New entries are 710 /// appended if a new spill slot begins being tracked. 711 /// This, and the corresponding reverse map persist for the analysis of the 712 /// whole function, and is necessarying for decoding various vectors of 713 /// values. 714 std::vector<LocIdx> LocIDToLocIdx; 715 716 /// Inverse map of LocIDToLocIdx. 717 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; 718 719 /// When clobbering register masks, we chose to not believe the machine model 720 /// and don't clobber SP. Do the same for SP aliases, and for efficiency, 721 /// keep a set of them here. 722 SmallSet<Register, 8> SPAliases; 723 724 /// Unique-ification of spill. Used to number them -- their LocID number is 725 /// the index in SpillLocs minus one plus NumRegs. 726 UniqueVector<SpillLoc> SpillLocs; 727 728 // If we discover a new machine location, assign it an mphi with this 729 // block number. 730 unsigned CurBB = -1; 731 732 /// Cached local copy of the number of registers the target has. 733 unsigned NumRegs; 734 735 /// Number of slot indexes the target has -- distinct segments of a stack 736 /// slot that can take on the value of a subregister, when a super-register 737 /// is written to the stack. 738 unsigned NumSlotIdxes; 739 740 /// Collection of register mask operands that have been observed. Second part 741 /// of pair indicates the instruction that they happened in. Used to 742 /// reconstruct where defs happened if we start tracking a location later 743 /// on. 744 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; 745 746 /// Pair for describing a position within a stack slot -- first the size in 747 /// bits, then the offset. 748 typedef std::pair<unsigned short, unsigned short> StackSlotPos; 749 750 /// Map from a size/offset pair describing a position in a stack slot, to a 751 /// numeric identifier for that position. Allows easier identification of 752 /// individual positions. 753 DenseMap<StackSlotPos, unsigned> StackSlotIdxes; 754 755 /// Inverse of StackSlotIdxes. 756 DenseMap<unsigned, StackSlotPos> StackIdxesToPos; 757 758 /// Iterator for locations and the values they contain. Dereferencing 759 /// produces a struct/pair containing the LocIdx key for this location, 760 /// and a reference to the value currently stored. Simplifies the process 761 /// of seeking a particular location. 762 class MLocIterator { 763 LocToValueType &ValueMap; 764 LocIdx Idx; 765 766 public: 767 class value_type { 768 public: 769 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {} 770 const LocIdx Idx; /// Read-only index of this location. 771 ValueIDNum &Value; /// Reference to the stored value at this location. 772 }; 773 774 MLocIterator(LocToValueType &ValueMap, LocIdx Idx) 775 : ValueMap(ValueMap), Idx(Idx) {} 776 777 bool operator==(const MLocIterator &Other) const { 778 assert(&ValueMap == &Other.ValueMap); 779 return Idx == Other.Idx; 780 } 781 782 bool operator!=(const MLocIterator &Other) const { 783 return !(*this == Other); 784 } 785 786 void operator++() { Idx = LocIdx(Idx.asU64() + 1); } 787 788 value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); } 789 }; 790 791 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 792 const TargetRegisterInfo &TRI, const TargetLowering &TLI); 793 794 /// Produce location ID number for a Register. Provides some small amount of 795 /// type safety. 796 /// \param Reg The register we're looking up. 797 unsigned getLocID(Register Reg) { return Reg.id(); } 798 799 /// Produce location ID number for a spill position. 800 /// \param Spill The number of the spill we're fetching the location for. 801 /// \param SpillSubReg Subregister within the spill we're addressing. 802 unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) { 803 unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg); 804 unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg); 805 return getLocID(Spill, {Size, Offs}); 806 } 807 808 /// Produce location ID number for a spill position. 809 /// \param Spill The number of the spill we're fetching the location for. 810 /// \apram SpillIdx size/offset within the spill slot to be addressed. 811 unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) { 812 unsigned SlotNo = Spill.id() - 1; 813 SlotNo *= NumSlotIdxes; 814 assert(StackSlotIdxes.contains(Idx)); 815 SlotNo += StackSlotIdxes[Idx]; 816 SlotNo += NumRegs; 817 return SlotNo; 818 } 819 820 /// Given a spill number, and a slot within the spill, calculate the ID number 821 /// for that location. 822 unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) { 823 unsigned SlotNo = Spill.id() - 1; 824 SlotNo *= NumSlotIdxes; 825 SlotNo += Idx; 826 SlotNo += NumRegs; 827 return SlotNo; 828 } 829 830 /// Return the spill number that a location ID corresponds to. 831 SpillLocationNo locIDToSpill(unsigned ID) const { 832 assert(ID >= NumRegs); 833 ID -= NumRegs; 834 // Truncate away the index part, leaving only the spill number. 835 ID /= NumSlotIdxes; 836 return SpillLocationNo(ID + 1); // The UniqueVector is one-based. 837 } 838 839 /// Returns the spill-slot size/offs that a location ID corresponds to. 840 StackSlotPos locIDToSpillIdx(unsigned ID) const { 841 assert(ID >= NumRegs); 842 ID -= NumRegs; 843 unsigned Idx = ID % NumSlotIdxes; 844 return StackIdxesToPos.find(Idx)->second; 845 } 846 847 unsigned getNumLocs() const { return LocIdxToIDNum.size(); } 848 849 /// Reset all locations to contain a PHI value at the designated block. Used 850 /// sometimes for actual PHI values, othertimes to indicate the block entry 851 /// value (before any more information is known). 852 void setMPhis(unsigned NewCurBB) { 853 CurBB = NewCurBB; 854 for (auto Location : locations()) 855 Location.Value = {CurBB, 0, Location.Idx}; 856 } 857 858 /// Load values for each location from array of ValueIDNums. Take current 859 /// bbnum just in case we read a value from a hitherto untouched register. 860 void loadFromArray(ValueTable &Locs, unsigned NewCurBB) { 861 CurBB = NewCurBB; 862 // Iterate over all tracked locations, and load each locations live-in 863 // value into our local index. 864 for (auto Location : locations()) 865 Location.Value = Locs[Location.Idx.asU64()]; 866 } 867 868 /// Wipe any un-necessary location records after traversing a block. 869 void reset() { 870 // We could reset all the location values too; however either loadFromArray 871 // or setMPhis should be called before this object is re-used. Just 872 // clear Masks, they're definitely not needed. 873 Masks.clear(); 874 } 875 876 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of 877 /// the information in this pass uninterpretable. 878 void clear() { 879 reset(); 880 LocIDToLocIdx.clear(); 881 LocIdxToLocID.clear(); 882 LocIdxToIDNum.clear(); 883 // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 884 // 0 885 SpillLocs = decltype(SpillLocs)(); 886 StackSlotIdxes.clear(); 887 StackIdxesToPos.clear(); 888 889 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 890 } 891 892 /// Set a locaiton to a certain value. 893 void setMLoc(LocIdx L, ValueIDNum Num) { 894 assert(L.asU64() < LocIdxToIDNum.size()); 895 LocIdxToIDNum[L] = Num; 896 } 897 898 /// Read the value of a particular location 899 ValueIDNum readMLoc(LocIdx L) { 900 assert(L.asU64() < LocIdxToIDNum.size()); 901 return LocIdxToIDNum[L]; 902 } 903 904 /// Create a LocIdx for an untracked register ID. Initialize it to either an 905 /// mphi value representing a live-in, or a recent register mask clobber. 906 LocIdx trackRegister(unsigned ID); 907 908 LocIdx lookupOrTrackRegister(unsigned ID) { 909 LocIdx &Index = LocIDToLocIdx[ID]; 910 if (Index.isIllegal()) 911 Index = trackRegister(ID); 912 return Index; 913 } 914 915 /// Is register R currently tracked by MLocTracker? 916 bool isRegisterTracked(Register R) { 917 LocIdx &Index = LocIDToLocIdx[R]; 918 return !Index.isIllegal(); 919 } 920 921 /// Record a definition of the specified register at the given block / inst. 922 /// This doesn't take a ValueIDNum, because the definition and its location 923 /// are synonymous. 924 void defReg(Register R, unsigned BB, unsigned Inst) { 925 unsigned ID = getLocID(R); 926 LocIdx Idx = lookupOrTrackRegister(ID); 927 ValueIDNum ValueID = {BB, Inst, Idx}; 928 LocIdxToIDNum[Idx] = ValueID; 929 } 930 931 /// Set a register to a value number. To be used if the value number is 932 /// known in advance. 933 void setReg(Register R, ValueIDNum ValueID) { 934 unsigned ID = getLocID(R); 935 LocIdx Idx = lookupOrTrackRegister(ID); 936 LocIdxToIDNum[Idx] = ValueID; 937 } 938 939 ValueIDNum readReg(Register R) { 940 unsigned ID = getLocID(R); 941 LocIdx Idx = lookupOrTrackRegister(ID); 942 return LocIdxToIDNum[Idx]; 943 } 944 945 /// Reset a register value to zero / empty. Needed to replicate the 946 /// VarLoc implementation where a copy to/from a register effectively 947 /// clears the contents of the source register. (Values can only have one 948 /// machine location in VarLocBasedImpl). 949 void wipeRegister(Register R) { 950 unsigned ID = getLocID(R); 951 LocIdx Idx = LocIDToLocIdx[ID]; 952 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; 953 } 954 955 /// Determine the LocIdx of an existing register. 956 LocIdx getRegMLoc(Register R) { 957 unsigned ID = getLocID(R); 958 assert(ID < LocIDToLocIdx.size()); 959 assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinel for IndexedMap. 960 return LocIDToLocIdx[ID]; 961 } 962 963 /// Record a RegMask operand being executed. Defs any register we currently 964 /// track, stores a pointer to the mask in case we have to account for it 965 /// later. 966 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID); 967 968 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. 969 /// Returns std::nullopt when in scenarios where a spill slot could be 970 /// tracked, but we would likely run into resource limitations. 971 std::optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L); 972 973 // Get LocIdx of a spill ID. 974 LocIdx getSpillMLoc(unsigned SpillID) { 975 assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinel for IndexedMap. 976 return LocIDToLocIdx[SpillID]; 977 } 978 979 /// Return true if Idx is a spill machine location. 980 bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; } 981 982 /// How large is this location (aka, how wide is a value defined there?). 983 unsigned getLocSizeInBits(LocIdx L) const { 984 unsigned ID = LocIdxToLocID[L]; 985 if (!isSpill(L)) { 986 return TRI.getRegSizeInBits(Register(ID), MF.getRegInfo()); 987 } else { 988 // The slot location on the stack is uninteresting, we care about the 989 // position of the value within the slot (which comes with a size). 990 StackSlotPos Pos = locIDToSpillIdx(ID); 991 return Pos.first; 992 } 993 } 994 995 MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); } 996 997 MLocIterator end() { 998 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); 999 } 1000 1001 /// Return a range over all locations currently tracked. 1002 iterator_range<MLocIterator> locations() { 1003 return llvm::make_range(begin(), end()); 1004 } 1005 1006 std::string LocIdxToName(LocIdx Idx) const; 1007 1008 std::string IDAsString(const ValueIDNum &Num) const; 1009 1010 #ifndef NDEBUG 1011 LLVM_DUMP_METHOD void dump(); 1012 1013 LLVM_DUMP_METHOD void dump_mloc_map(); 1014 #endif 1015 1016 /// Create a DBG_VALUE based on debug operands \p DbgOps. Qualify it with the 1017 /// information in \pProperties, for variable Var. Don't insert it anywhere, 1018 /// just return the builder for it. 1019 MachineInstrBuilder emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps, 1020 const DebugVariable &Var, const DILocation *DILoc, 1021 const DbgValueProperties &Properties); 1022 }; 1023 1024 /// Types for recording sets of variable fragments that overlap. For a given 1025 /// local variable, we record all other fragments of that variable that could 1026 /// overlap it, to reduce search time. 1027 using FragmentOfVar = 1028 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 1029 using OverlapMap = 1030 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 1031 1032 /// Collection of DBG_VALUEs observed when traversing a block. Records each 1033 /// variable and the value the DBG_VALUE refers to. Requires the machine value 1034 /// location dataflow algorithm to have run already, so that values can be 1035 /// identified. 1036 class VLocTracker { 1037 public: 1038 /// Ref to function-wide map of DebugVariable <=> ID-numbers. 1039 DebugVariableMap &DVMap; 1040 /// Map DebugVariable to the latest Value it's defined to have. 1041 /// Needs to be a MapVector because we determine order-in-the-input-MIR from 1042 /// the order in this container. (FIXME: likely no longer true as the ordering 1043 /// is now provided by DebugVariableMap). 1044 /// We only retain the last DbgValue in each block for each variable, to 1045 /// determine the blocks live-out variable value. The Vars container forms the 1046 /// transfer function for this block, as part of the dataflow analysis. The 1047 /// movement of values between locations inside of a block is handled at a 1048 /// much later stage, in the TransferTracker class. 1049 SmallMapVector<DebugVariableID, DbgValue, 8> Vars; 1050 SmallDenseMap<DebugVariableID, const DILocation *, 8> Scopes; 1051 MachineBasicBlock *MBB = nullptr; 1052 const OverlapMap &OverlappingFragments; 1053 DbgValueProperties EmptyProperties; 1054 1055 public: 1056 VLocTracker(DebugVariableMap &DVMap, const OverlapMap &O, 1057 const DIExpression *EmptyExpr) 1058 : DVMap(DVMap), OverlappingFragments(O), 1059 EmptyProperties(EmptyExpr, false, false) {} 1060 1061 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, 1062 const SmallVectorImpl<DbgOpID> &DebugOps) { 1063 assert(MI.isDebugValueLike()); 1064 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 1065 MI.getDebugLoc()->getInlinedAt()); 1066 // Either insert or fetch an ID number for this variable. 1067 DebugVariableID VarID = DVMap.insertDVID(Var, MI.getDebugLoc().get()); 1068 DbgValue Rec = (DebugOps.size() > 0) 1069 ? DbgValue(DebugOps, Properties) 1070 : DbgValue(Properties, DbgValue::Undef); 1071 1072 // Attempt insertion; overwrite if it's already mapped. 1073 Vars.insert_or_assign(VarID, Rec); 1074 Scopes[VarID] = MI.getDebugLoc().get(); 1075 1076 considerOverlaps(Var, MI.getDebugLoc().get()); 1077 } 1078 1079 void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) { 1080 auto Overlaps = OverlappingFragments.find( 1081 {Var.getVariable(), Var.getFragmentOrDefault()}); 1082 if (Overlaps == OverlappingFragments.end()) 1083 return; 1084 1085 // Otherwise: terminate any overlapped variable locations. 1086 for (auto FragmentInfo : Overlaps->second) { 1087 // The "empty" fragment is stored as DebugVariable::DefaultFragment, so 1088 // that it overlaps with everything, however its cannonical representation 1089 // in a DebugVariable is as "None". 1090 std::optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo; 1091 if (DebugVariable::isDefaultFragment(FragmentInfo)) 1092 OptFragmentInfo = std::nullopt; 1093 1094 DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo, 1095 Var.getInlinedAt()); 1096 // Produce an ID number for this overlapping fragment of a variable. 1097 DebugVariableID OverlappedID = DVMap.insertDVID(Overlapped, Loc); 1098 DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef); 1099 1100 // Attempt insertion; overwrite if it's already mapped. 1101 Vars.insert_or_assign(OverlappedID, Rec); 1102 Scopes[OverlappedID] = Loc; 1103 } 1104 } 1105 1106 void clear() { 1107 Vars.clear(); 1108 Scopes.clear(); 1109 } 1110 }; 1111 1112 // XXX XXX docs 1113 class InstrRefBasedLDV : public LDVImpl { 1114 public: 1115 friend class ::InstrRefLDVTest; 1116 1117 using FragmentInfo = DIExpression::FragmentInfo; 1118 using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>; 1119 1120 // Helper while building OverlapMap, a map of all fragments seen for a given 1121 // DILocalVariable. 1122 using VarToFragments = 1123 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 1124 1125 /// Machine location/value transfer function, a mapping of which locations 1126 /// are assigned which new values. 1127 using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>; 1128 1129 /// Live in/out structure for the variable values: a per-block map of 1130 /// variables to their values. 1131 using LiveIdxT = SmallDenseMap<const MachineBasicBlock *, DbgValue *, 16>; 1132 1133 using VarAndLoc = std::pair<DebugVariableID, DbgValue>; 1134 1135 /// Type for a live-in value: the predecessor block, and its value. 1136 using InValueT = std::pair<MachineBasicBlock *, DbgValue *>; 1137 1138 /// Vector (per block) of a collection (inner smallvector) of live-ins. 1139 /// Used as the result type for the variable value dataflow problem. 1140 using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>; 1141 1142 /// Mapping from lexical scopes to a DILocation in that scope. 1143 using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>; 1144 1145 /// Mapping from lexical scopes to variables in that scope. 1146 using ScopeToVarsT = 1147 DenseMap<const LexicalScope *, SmallSet<DebugVariableID, 4>>; 1148 1149 /// Mapping from lexical scopes to blocks where variables in that scope are 1150 /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's 1151 /// just a block where an assignment happens. 1152 using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>; 1153 1154 private: 1155 MachineDominatorTree *DomTree; 1156 const TargetRegisterInfo *TRI; 1157 const MachineRegisterInfo *MRI; 1158 const TargetInstrInfo *TII; 1159 const TargetFrameLowering *TFI; 1160 const MachineFrameInfo *MFI; 1161 BitVector CalleeSavedRegs; 1162 LexicalScopes LS; 1163 TargetPassConfig *TPC; 1164 1165 // An empty DIExpression. Used default / placeholder DbgValueProperties 1166 // objects, as we can't have null expressions. 1167 const DIExpression *EmptyExpr; 1168 1169 /// Object to track machine locations as we step through a block. Could 1170 /// probably be a field rather than a pointer, as it's always used. 1171 MLocTracker *MTracker = nullptr; 1172 1173 /// Number of the current block LiveDebugValues is stepping through. 1174 unsigned CurBB = -1; 1175 1176 /// Number of the current instruction LiveDebugValues is evaluating. 1177 unsigned CurInst; 1178 1179 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl 1180 /// steps through a block. Reads the values at each location from the 1181 /// MLocTracker object. 1182 VLocTracker *VTracker = nullptr; 1183 1184 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values 1185 /// between locations during stepping, creates new DBG_VALUEs when values move 1186 /// location. 1187 TransferTracker *TTracker = nullptr; 1188 1189 /// Blocks which are artificial, i.e. blocks which exclusively contain 1190 /// instructions without DebugLocs, or with line 0 locations. 1191 SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks; 1192 1193 // Mapping of blocks to and from their RPOT order. 1194 SmallVector<MachineBasicBlock *> OrderToBB; 1195 DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder; 1196 DenseMap<unsigned, unsigned> BBNumToRPO; 1197 1198 /// Pair of MachineInstr, and its 1-based offset into the containing block. 1199 using InstAndNum = std::pair<const MachineInstr *, unsigned>; 1200 /// Map from debug instruction number to the MachineInstr labelled with that 1201 /// number, and its location within the function. Used to transform 1202 /// instruction numbers in DBG_INSTR_REFs into machine value numbers. 1203 std::map<uint64_t, InstAndNum> DebugInstrNumToInstr; 1204 1205 /// Record of where we observed a DBG_PHI instruction. 1206 class DebugPHIRecord { 1207 public: 1208 /// Instruction number of this DBG_PHI. 1209 uint64_t InstrNum; 1210 /// Block where DBG_PHI occurred. 1211 MachineBasicBlock *MBB; 1212 /// The value number read by the DBG_PHI -- or std::nullopt if it didn't 1213 /// refer to a value. 1214 std::optional<ValueIDNum> ValueRead; 1215 /// Register/Stack location the DBG_PHI reads -- or std::nullopt if it 1216 /// referred to something unexpected. 1217 std::optional<LocIdx> ReadLoc; 1218 1219 operator unsigned() const { return InstrNum; } 1220 }; 1221 1222 /// Map from instruction numbers defined by DBG_PHIs to a record of what that 1223 /// DBG_PHI read and where. Populated and edited during the machine value 1224 /// location problem -- we use LLVMs SSA Updater to fix changes by 1225 /// optimizations that destroy PHI instructions. 1226 SmallVector<DebugPHIRecord, 32> DebugPHINumToValue; 1227 1228 // Map of overlapping variable fragments. 1229 OverlapMap OverlapFragments; 1230 VarToFragments SeenFragments; 1231 1232 /// Mapping of DBG_INSTR_REF instructions to their values, for those 1233 /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve 1234 /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches 1235 /// the result. 1236 DenseMap<std::pair<MachineInstr *, unsigned>, std::optional<ValueIDNum>> 1237 SeenDbgPHIs; 1238 1239 DbgOpIDMap DbgOpStore; 1240 1241 /// Mapping between DebugVariables and unique ID numbers. This is a more 1242 /// efficient way to represent the identity of a variable, versus a plain 1243 /// DebugVariable. 1244 DebugVariableMap DVMap; 1245 1246 /// True if we need to examine call instructions for stack clobbers. We 1247 /// normally assume that they don't clobber SP, but stack probes on Windows 1248 /// do. 1249 bool AdjustsStackInCalls = false; 1250 1251 /// If AdjustsStackInCalls is true, this holds the name of the target's stack 1252 /// probe function, which is the function we expect will alter the stack 1253 /// pointer. 1254 StringRef StackProbeSymbolName; 1255 1256 /// Tests whether this instruction is a spill to a stack slot. 1257 std::optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI, 1258 MachineFunction *MF); 1259 1260 /// Decide if @MI is a spill instruction and return true if it is. We use 2 1261 /// criteria to make this decision: 1262 /// - Is this instruction a store to a spill slot? 1263 /// - Is there a register operand that is both used and killed? 1264 /// TODO: Store optimization can fold spills into other stores (including 1265 /// other spills). We do not handle this yet (more than one memory operand). 1266 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 1267 unsigned &Reg); 1268 1269 /// If a given instruction is identified as a spill, return the spill slot 1270 /// and set \p Reg to the spilled register. 1271 std::optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI, 1272 MachineFunction *MF, 1273 unsigned &Reg); 1274 1275 /// Given a spill instruction, extract the spill slot information, ensure it's 1276 /// tracked, and return the spill number. 1277 std::optional<SpillLocationNo> 1278 extractSpillBaseRegAndOffset(const MachineInstr &MI); 1279 1280 /// For an instruction reference given by \p InstNo and \p OpNo in instruction 1281 /// \p MI returns the Value pointed to by that instruction reference if any 1282 /// exists, otherwise returns std::nullopt. 1283 std::optional<ValueIDNum> getValueForInstrRef(unsigned InstNo, unsigned OpNo, 1284 MachineInstr &MI, 1285 const FuncValueTable *MLiveOuts, 1286 const FuncValueTable *MLiveIns); 1287 1288 /// Observe a single instruction while stepping through a block. 1289 void process(MachineInstr &MI, const FuncValueTable *MLiveOuts, 1290 const FuncValueTable *MLiveIns); 1291 1292 /// Examines whether \p MI is a DBG_VALUE and notifies trackers. 1293 /// \returns true if MI was recognized and processed. 1294 bool transferDebugValue(const MachineInstr &MI); 1295 1296 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. 1297 /// \returns true if MI was recognized and processed. 1298 bool transferDebugInstrRef(MachineInstr &MI, const FuncValueTable *MLiveOuts, 1299 const FuncValueTable *MLiveIns); 1300 1301 /// Stores value-information about where this PHI occurred, and what 1302 /// instruction number is associated with it. 1303 /// \returns true if MI was recognized and processed. 1304 bool transferDebugPHI(MachineInstr &MI); 1305 1306 /// Examines whether \p MI is copy instruction, and notifies trackers. 1307 /// \returns true if MI was recognized and processed. 1308 bool transferRegisterCopy(MachineInstr &MI); 1309 1310 /// Examines whether \p MI is stack spill or restore instruction, and 1311 /// notifies trackers. \returns true if MI was recognized and processed. 1312 bool transferSpillOrRestoreInst(MachineInstr &MI); 1313 1314 /// Examines \p MI for any registers that it defines, and notifies trackers. 1315 void transferRegisterDef(MachineInstr &MI); 1316 1317 /// Copy one location to the other, accounting for movement of subregisters 1318 /// too. 1319 void performCopy(Register Src, Register Dst); 1320 1321 void accumulateFragmentMap(MachineInstr &MI); 1322 1323 /// Determine the machine value number referred to by (potentially several) 1324 /// DBG_PHI instructions. Block duplication and tail folding can duplicate 1325 /// DBG_PHIs, shifting the position where values in registers merge, and 1326 /// forming another mini-ssa problem to solve. 1327 /// \p Here the position of a DBG_INSTR_REF seeking a machine value number 1328 /// \p InstrNum Debug instruction number defined by DBG_PHI instructions. 1329 /// \returns The machine value number at position Here, or std::nullopt. 1330 std::optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF, 1331 const FuncValueTable &MLiveOuts, 1332 const FuncValueTable &MLiveIns, 1333 MachineInstr &Here, 1334 uint64_t InstrNum); 1335 1336 std::optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF, 1337 const FuncValueTable &MLiveOuts, 1338 const FuncValueTable &MLiveIns, 1339 MachineInstr &Here, 1340 uint64_t InstrNum); 1341 1342 /// Step through the function, recording register definitions and movements 1343 /// in an MLocTracker. Convert the observations into a per-block transfer 1344 /// function in \p MLocTransfer, suitable for using with the machine value 1345 /// location dataflow problem. 1346 void 1347 produceMLocTransferFunction(MachineFunction &MF, 1348 SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1349 unsigned MaxNumBlocks); 1350 1351 /// Solve the machine value location dataflow problem. Takes as input the 1352 /// transfer functions in \p MLocTransfer. Writes the output live-in and 1353 /// live-out arrays to the (initialized to zero) multidimensional arrays in 1354 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block 1355 /// number, the inner by LocIdx. 1356 void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs, 1357 FuncValueTable &MOutLocs, 1358 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1359 1360 /// Examine the stack indexes (i.e. offsets within the stack) to find the 1361 /// basic units of interference -- like reg units, but for the stack. 1362 void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots); 1363 1364 /// Install PHI values into the live-in array for each block, according to 1365 /// the IDF of each register. 1366 void placeMLocPHIs(MachineFunction &MF, 1367 SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1368 FuncValueTable &MInLocs, 1369 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1370 1371 /// Propagate variable values to blocks in the common case where there's 1372 /// only one value assigned to the variable. This function has better 1373 /// performance as it doesn't have to find the dominance frontier between 1374 /// different assignments. 1375 void placePHIsForSingleVarDefinition( 1376 const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks, 1377 MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs, 1378 DebugVariableID Var, LiveInsT &Output); 1379 1380 /// Calculate the iterated-dominance-frontier for a set of defs, using the 1381 /// existing LLVM facilities for this. Works for a single "value" or 1382 /// machine/variable location. 1383 /// \p AllBlocks Set of blocks where we might consume the value. 1384 /// \p DefBlocks Set of blocks where the value/location is defined. 1385 /// \p PHIBlocks Output set of blocks where PHIs must be placed. 1386 void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1387 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 1388 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks); 1389 1390 /// Perform a control flow join (lattice value meet) of the values in machine 1391 /// locations at \p MBB. Follows the algorithm described in the file-comment, 1392 /// reading live-outs of predecessors from \p OutLocs, the current live ins 1393 /// from \p InLocs, and assigning the newly computed live ins back into 1394 /// \p InLocs. \returns two bools -- the first indicates whether a change 1395 /// was made, the second whether a lattice downgrade occurred. If the latter 1396 /// is true, revisiting this block is necessary. 1397 bool mlocJoin(MachineBasicBlock &MBB, 1398 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1399 FuncValueTable &OutLocs, ValueTable &InLocs); 1400 1401 /// Produce a set of blocks that are in the current lexical scope. This means 1402 /// those blocks that contain instructions "in" the scope, blocks where 1403 /// assignments to variables in scope occur, and artificial blocks that are 1404 /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for 1405 /// more commentry on what "in scope" means. 1406 /// \p DILoc A location in the scope that we're fetching blocks for. 1407 /// \p Output Set to put in-scope-blocks into. 1408 /// \p AssignBlocks Blocks known to contain assignments of variables in scope. 1409 void 1410 getBlocksForScope(const DILocation *DILoc, 1411 SmallPtrSetImpl<const MachineBasicBlock *> &Output, 1412 const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks); 1413 1414 /// Solve the variable value dataflow problem, for a single lexical scope. 1415 /// Uses the algorithm from the file comment to resolve control flow joins 1416 /// using PHI placement and value propagation. Reads the locations of machine 1417 /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap) 1418 /// and reads the variable values transfer function from \p AllTheVlocs. 1419 /// Live-in and Live-out variable values are stored locally, with the live-ins 1420 /// permanently stored to \p Output once a fixedpoint is reached. 1421 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope 1422 /// that we should be tracking. 1423 /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's 1424 /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks 1425 /// locations through. 1426 void buildVLocValueMap(const DILocation *DILoc, 1427 const SmallSet<DebugVariableID, 4> &VarsWeCareAbout, 1428 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, 1429 LiveInsT &Output, FuncValueTable &MOutLocs, 1430 FuncValueTable &MInLocs, 1431 SmallVectorImpl<VLocTracker> &AllTheVLocs); 1432 1433 /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the 1434 /// live-in values coming from predecessors live-outs, and replaces any PHIs 1435 /// already present in this blocks live-ins with a live-through value if the 1436 /// PHI isn't needed. 1437 /// \p LiveIn Old live-in value, overwritten with new one if live-in changes. 1438 /// \returns true if any live-ins change value, either from value propagation 1439 /// or PHI elimination. 1440 bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 1441 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 1442 DbgValue &LiveIn); 1443 1444 /// For the given block and live-outs feeding into it, try to find 1445 /// machine locations for each debug operand where all the values feeding 1446 /// into that operand join together. 1447 /// \returns true if a joined location was found for every value that needed 1448 /// to be joined. 1449 bool 1450 pickVPHILoc(SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB, 1451 const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs, 1452 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders); 1453 1454 std::optional<ValueIDNum> pickOperandPHILoc( 1455 unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts, 1456 FuncValueTable &MOutLocs, 1457 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders); 1458 1459 /// Take collections of DBG_VALUE instructions stored in TTracker, and 1460 /// install them into their output blocks. 1461 bool emitTransfers(); 1462 1463 /// Boilerplate computation of some initial sets, artifical blocks and 1464 /// RPOT block ordering. 1465 void initialSetup(MachineFunction &MF); 1466 1467 /// Produce a map of the last lexical scope that uses a block, using the 1468 /// scopes DFSOut number. Mapping is block-number to DFSOut. 1469 /// \p EjectionMap Pre-allocated vector in which to install the built ma. 1470 /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations. 1471 /// \p AssignBlocks Map of blocks where assignments happen for a scope. 1472 void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap, 1473 const ScopeToDILocT &ScopeToDILocation, 1474 ScopeToAssignBlocksT &AssignBlocks); 1475 1476 /// When determining per-block variable values and emitting to DBG_VALUEs, 1477 /// this function explores by lexical scope depth. Doing so means that per 1478 /// block information can be fully computed before exploration finishes, 1479 /// allowing us to emit it and free data structures earlier than otherwise. 1480 /// It's also good for locality. 1481 bool depthFirstVLocAndEmit(unsigned MaxNumBlocks, 1482 const ScopeToDILocT &ScopeToDILocation, 1483 const ScopeToVarsT &ScopeToVars, 1484 ScopeToAssignBlocksT &ScopeToBlocks, 1485 LiveInsT &Output, FuncValueTable &MOutLocs, 1486 FuncValueTable &MInLocs, 1487 SmallVectorImpl<VLocTracker> &AllTheVLocs, 1488 MachineFunction &MF, const TargetPassConfig &TPC); 1489 1490 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, 1491 TargetPassConfig *TPC, unsigned InputBBLimit, 1492 unsigned InputDbgValLimit) override; 1493 1494 public: 1495 /// Default construct and initialize the pass. 1496 InstrRefBasedLDV(); 1497 1498 LLVM_DUMP_METHOD 1499 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; 1500 1501 bool isCalleeSaved(LocIdx L) const; 1502 bool isCalleeSavedReg(Register R) const; 1503 1504 bool hasFoldedStackStore(const MachineInstr &MI) { 1505 // Instruction must have a memory operand that's a stack slot, and isn't 1506 // aliased, meaning it's a spill from regalloc instead of a variable. 1507 // If it's aliased, we can't guarantee its value. 1508 if (!MI.hasOneMemOperand()) 1509 return false; 1510 auto *MemOperand = *MI.memoperands_begin(); 1511 return MemOperand->isStore() && 1512 MemOperand->getPseudoValue() && 1513 MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack 1514 && !MemOperand->getPseudoValue()->isAliased(MFI); 1515 } 1516 1517 std::optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI); 1518 1519 // Utility for unit testing, don't use directly. 1520 DebugVariableMap &getDVMap() { 1521 return DVMap; 1522 } 1523 }; 1524 1525 } // namespace LiveDebugValues 1526 1527 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */ 1528