xref: /llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp (revision cb714e74cc0efd5bfdb3e5e80978239425bd83d4)
1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/BinaryFormat/Dwarf.h"
88 #include "llvm/CodeGen/LexicalScopes.h"
89 #include "llvm/CodeGen/MachineBasicBlock.h"
90 #include "llvm/CodeGen/MachineDominators.h"
91 #include "llvm/CodeGen/MachineFrameInfo.h"
92 #include "llvm/CodeGen/MachineFunction.h"
93 #include "llvm/CodeGen/MachineInstr.h"
94 #include "llvm/CodeGen/MachineInstrBuilder.h"
95 #include "llvm/CodeGen/MachineInstrBundle.h"
96 #include "llvm/CodeGen/MachineMemOperand.h"
97 #include "llvm/CodeGen/MachineOperand.h"
98 #include "llvm/CodeGen/PseudoSourceValue.h"
99 #include "llvm/CodeGen/TargetFrameLowering.h"
100 #include "llvm/CodeGen/TargetInstrInfo.h"
101 #include "llvm/CodeGen/TargetLowering.h"
102 #include "llvm/CodeGen/TargetPassConfig.h"
103 #include "llvm/CodeGen/TargetRegisterInfo.h"
104 #include "llvm/CodeGen/TargetSubtargetInfo.h"
105 #include "llvm/Config/llvm-config.h"
106 #include "llvm/IR/DebugInfoMetadata.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/MC/MCRegisterInfo.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/GenericIteratedDominanceFrontier.h"
114 #include "llvm/Support/TypeSize.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <climits>
121 #include <cstdint>
122 #include <functional>
123 #include <queue>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127 
128 #include "InstrRefBasedImpl.h"
129 #include "LiveDebugValues.h"
130 #include <optional>
131 
132 using namespace llvm;
133 using namespace LiveDebugValues;
134 
135 // SSAUpdaterImple sets DEBUG_TYPE, change it.
136 #undef DEBUG_TYPE
137 #define DEBUG_TYPE "livedebugvalues"
138 
139 // Act more like the VarLoc implementation, by propagating some locations too
140 // far and ignoring some transfers.
141 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
142                                    cl::desc("Act like old LiveDebugValues did"),
143                                    cl::init(false));
144 
145 // Limit for the maximum number of stack slots we should track, past which we
146 // will ignore any spills. InstrRefBasedLDV gathers detailed information on all
147 // stack slots which leads to high memory consumption, and in some scenarios
148 // (such as asan with very many locals) the working set of the function can be
149 // very large, causing many spills. In these scenarios, it is very unlikely that
150 // the developer has hundreds of variables live at the same time that they're
151 // carefully thinking about -- instead, they probably autogenerated the code.
152 // When this happens, gracefully stop tracking excess spill slots, rather than
153 // consuming all the developer's memory.
154 static cl::opt<unsigned>
155     StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
156                          cl::desc("livedebugvalues-stack-ws-limit"),
157                          cl::init(250));
158 
159 DbgOpID DbgOpID::UndefID = DbgOpID(0xffffffff);
160 
161 /// Tracker for converting machine value locations and variable values into
162 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
163 /// specifying block live-in locations and transfers within blocks.
164 ///
165 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
166 /// and must be initialized with the set of variable values that are live-in to
167 /// the block. The caller then repeatedly calls process(). TransferTracker picks
168 /// out variable locations for the live-in variable values (if there _is_ a
169 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
170 /// stepped through, transfers of values between machine locations are
171 /// identified and if profitable, a DBG_VALUE created.
172 ///
173 /// This is where debug use-before-defs would be resolved: a variable with an
174 /// unavailable value could materialize in the middle of a block, when the
175 /// value becomes available. Or, we could detect clobbers and re-specify the
176 /// variable in a backup location. (XXX these are unimplemented).
177 class TransferTracker {
178 public:
179   const TargetInstrInfo *TII;
180   const TargetLowering *TLI;
181   /// This machine location tracker is assumed to always contain the up-to-date
182   /// value mapping for all machine locations. TransferTracker only reads
183   /// information from it. (XXX make it const?)
184   MLocTracker *MTracker;
185   MachineFunction &MF;
186   const DebugVariableMap &DVMap;
187   bool ShouldEmitDebugEntryValues;
188 
189   /// Record of all changes in variable locations at a block position. Awkwardly
190   /// we allow inserting either before or after the point: MBB != nullptr
191   /// indicates it's before, otherwise after.
192   struct Transfer {
193     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
194     MachineBasicBlock *MBB; /// non-null if we should insert after.
195     /// Vector of DBG_VALUEs to insert. Store with their DebugVariableID so that
196     /// they can be sorted into a stable order for emission at a later time.
197     SmallVector<std::pair<DebugVariableID, MachineInstr *>, 4> Insts;
198   };
199 
200   /// Stores the resolved operands (machine locations and constants) and
201   /// qualifying meta-information needed to construct a concrete DBG_VALUE-like
202   /// instruction.
203   struct ResolvedDbgValue {
204     SmallVector<ResolvedDbgOp> Ops;
205     DbgValueProperties Properties;
206 
207     ResolvedDbgValue(SmallVectorImpl<ResolvedDbgOp> &Ops,
208                      DbgValueProperties Properties)
209         : Ops(Ops.begin(), Ops.end()), Properties(Properties) {}
210 
211     /// Returns all the LocIdx values used in this struct, in the order in which
212     /// they appear as operands in the debug value; may contain duplicates.
213     auto loc_indices() const {
214       return map_range(
215           make_filter_range(
216               Ops, [](const ResolvedDbgOp &Op) { return !Op.IsConst; }),
217           [](const ResolvedDbgOp &Op) { return Op.Loc; });
218     }
219   };
220 
221   /// Collection of transfers (DBG_VALUEs) to be inserted.
222   SmallVector<Transfer, 32> Transfers;
223 
224   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
225   /// between TransferTrackers view of variable locations and MLocTrackers. For
226   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
227   /// does not.
228   SmallVector<ValueIDNum, 32> VarLocs;
229 
230   /// Map from LocIdxes to which DebugVariables are based that location.
231   /// Mantained while stepping through the block. Not accurate if
232   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
233   DenseMap<LocIdx, SmallSet<DebugVariableID, 4>> ActiveMLocs;
234 
235   /// Map from DebugVariable to it's current location and qualifying meta
236   /// information. To be used in conjunction with ActiveMLocs to construct
237   /// enough information for the DBG_VALUEs for a particular LocIdx.
238   DenseMap<DebugVariableID, ResolvedDbgValue> ActiveVLocs;
239 
240   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
241   SmallVector<std::pair<DebugVariableID, MachineInstr *>, 4> PendingDbgValues;
242 
243   /// Record of a use-before-def: created when a value that's live-in to the
244   /// current block isn't available in any machine location, but it will be
245   /// defined in this block.
246   struct UseBeforeDef {
247     /// Value of this variable, def'd in block.
248     SmallVector<DbgOp> Values;
249     /// Identity of this variable.
250     DebugVariableID VarID;
251     /// Additional variable properties.
252     DbgValueProperties Properties;
253     UseBeforeDef(ArrayRef<DbgOp> Values, DebugVariableID VarID,
254                  const DbgValueProperties &Properties)
255         : Values(Values), VarID(VarID), Properties(Properties) {}
256   };
257 
258   /// Map from instruction index (within the block) to the set of UseBeforeDefs
259   /// that become defined at that instruction.
260   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
261 
262   /// The set of variables that are in UseBeforeDefs and can become a location
263   /// once the relevant value is defined. An element being erased from this
264   /// collection prevents the use-before-def materializing.
265   DenseSet<DebugVariableID> UseBeforeDefVariables;
266 
267   const TargetRegisterInfo &TRI;
268   const BitVector &CalleeSavedRegs;
269 
270   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
271                   MachineFunction &MF, const DebugVariableMap &DVMap,
272                   const TargetRegisterInfo &TRI,
273                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
274       : TII(TII), MTracker(MTracker), MF(MF), DVMap(DVMap), TRI(TRI),
275         CalleeSavedRegs(CalleeSavedRegs) {
276     TLI = MF.getSubtarget().getTargetLowering();
277     auto &TM = TPC.getTM<TargetMachine>();
278     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
279   }
280 
281   bool isCalleeSaved(LocIdx L) const {
282     unsigned Reg = MTracker->LocIdxToLocID[L];
283     if (Reg >= MTracker->NumRegs)
284       return false;
285     for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
286       if (CalleeSavedRegs.test((*RAI).id()))
287         return true;
288     return false;
289   };
290 
291   // An estimate of the expected lifespan of values at a machine location, with
292   // a greater value corresponding to a longer expected lifespan, i.e. spill
293   // slots generally live longer than callee-saved registers which generally
294   // live longer than non-callee-saved registers. The minimum value of 0
295   // corresponds to an illegal location that cannot have a "lifespan" at all.
296   enum class LocationQuality : unsigned char {
297     Illegal = 0,
298     Register,
299     CalleeSavedRegister,
300     SpillSlot,
301     Best = SpillSlot
302   };
303 
304   class LocationAndQuality {
305     unsigned Location : 24;
306     unsigned Quality : 8;
307 
308   public:
309     LocationAndQuality() : Location(0), Quality(0) {}
310     LocationAndQuality(LocIdx L, LocationQuality Q)
311         : Location(L.asU64()), Quality(static_cast<unsigned>(Q)) {}
312     LocIdx getLoc() const {
313       if (!Quality)
314         return LocIdx::MakeIllegalLoc();
315       return LocIdx(Location);
316     }
317     LocationQuality getQuality() const { return LocationQuality(Quality); }
318     bool isIllegal() const { return !Quality; }
319     bool isBest() const { return getQuality() == LocationQuality::Best; }
320   };
321 
322   using ValueLocPair = std::pair<ValueIDNum, LocationAndQuality>;
323 
324   static inline bool ValueToLocSort(const ValueLocPair &A,
325                                     const ValueLocPair &B) {
326     return A.first < B.first;
327   };
328 
329   // Returns the LocationQuality for the location L iff the quality of L is
330   // is strictly greater than the provided minimum quality.
331   std::optional<LocationQuality>
332   getLocQualityIfBetter(LocIdx L, LocationQuality Min) const {
333     if (L.isIllegal())
334       return std::nullopt;
335     if (Min >= LocationQuality::SpillSlot)
336       return std::nullopt;
337     if (MTracker->isSpill(L))
338       return LocationQuality::SpillSlot;
339     if (Min >= LocationQuality::CalleeSavedRegister)
340       return std::nullopt;
341     if (isCalleeSaved(L))
342       return LocationQuality::CalleeSavedRegister;
343     if (Min >= LocationQuality::Register)
344       return std::nullopt;
345     return LocationQuality::Register;
346   }
347 
348   /// For a variable \p Var with the live-in value \p Value, attempts to resolve
349   /// the DbgValue to a concrete DBG_VALUE, emitting that value and loading the
350   /// tracking information to track Var throughout the block.
351   /// \p ValueToLoc is a map containing the best known location for every
352   ///    ValueIDNum that Value may use.
353   /// \p MBB is the basic block that we are loading the live-in value for.
354   /// \p DbgOpStore is the map containing the DbgOpID->DbgOp mapping needed to
355   ///    determine the values used by Value.
356   void loadVarInloc(MachineBasicBlock &MBB, DbgOpIDMap &DbgOpStore,
357                     const SmallVectorImpl<ValueLocPair> &ValueToLoc,
358                     DebugVariableID VarID, DbgValue Value) {
359     SmallVector<DbgOp> DbgOps;
360     SmallVector<ResolvedDbgOp> ResolvedDbgOps;
361     bool IsValueValid = true;
362     unsigned LastUseBeforeDef = 0;
363 
364     // If every value used by the incoming DbgValue is available at block
365     // entry, ResolvedDbgOps will contain the machine locations/constants for
366     // those values and will be used to emit a debug location.
367     // If one or more values are not yet available, but will all be defined in
368     // this block, then LastUseBeforeDef will track the instruction index in
369     // this BB at which the last of those values is defined, DbgOps will
370     // contain the values that we will emit when we reach that instruction.
371     // If one or more values are undef or not available throughout this block,
372     // and we can't recover as an entry value, we set IsValueValid=false and
373     // skip this variable.
374     for (DbgOpID ID : Value.getDbgOpIDs()) {
375       DbgOp Op = DbgOpStore.find(ID);
376       DbgOps.push_back(Op);
377       if (ID.isUndef()) {
378         IsValueValid = false;
379         break;
380       }
381       if (ID.isConst()) {
382         ResolvedDbgOps.push_back(Op.MO);
383         continue;
384       }
385 
386       // Search for the desired ValueIDNum, to examine the best location found
387       // for it. Use an empty ValueLocPair to search for an entry in ValueToLoc.
388       const ValueIDNum &Num = Op.ID;
389       ValueLocPair Probe(Num, LocationAndQuality());
390       auto ValuesPreferredLoc = std::lower_bound(
391           ValueToLoc.begin(), ValueToLoc.end(), Probe, ValueToLocSort);
392 
393       // There must be a legitimate entry found for Num.
394       assert(ValuesPreferredLoc != ValueToLoc.end() &&
395              ValuesPreferredLoc->first == Num);
396 
397       if (ValuesPreferredLoc->second.isIllegal()) {
398         // If it's a def that occurs in this block, register it as a
399         // use-before-def to be resolved as we step through the block.
400         // Continue processing values so that we add any other UseBeforeDef
401         // entries needed for later.
402         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) {
403           LastUseBeforeDef = std::max(LastUseBeforeDef,
404                                       static_cast<unsigned>(Num.getInst()));
405           continue;
406         }
407         recoverAsEntryValue(VarID, Value.Properties, Num);
408         IsValueValid = false;
409         break;
410       }
411 
412       // Defer modifying ActiveVLocs until after we've confirmed we have a
413       // live range.
414       LocIdx M = ValuesPreferredLoc->second.getLoc();
415       ResolvedDbgOps.push_back(M);
416     }
417 
418     // If we cannot produce a valid value for the LiveIn value within this
419     // block, skip this variable.
420     if (!IsValueValid)
421       return;
422 
423     // Add UseBeforeDef entry for the last value to be defined in this block.
424     if (LastUseBeforeDef) {
425       addUseBeforeDef(VarID, Value.Properties, DbgOps, LastUseBeforeDef);
426       return;
427     }
428 
429     // The LiveIn value is available at block entry, begin tracking and record
430     // the transfer.
431     for (const ResolvedDbgOp &Op : ResolvedDbgOps)
432       if (!Op.IsConst)
433         ActiveMLocs[Op.Loc].insert(VarID);
434     auto NewValue = ResolvedDbgValue{ResolvedDbgOps, Value.Properties};
435     auto Result = ActiveVLocs.insert(std::make_pair(VarID, NewValue));
436     if (!Result.second)
437       Result.first->second = NewValue;
438     auto &[Var, DILoc] = DVMap.lookupDVID(VarID);
439     PendingDbgValues.push_back(
440         std::make_pair(VarID, &*MTracker->emitLoc(ResolvedDbgOps, Var, DILoc,
441                                                   Value.Properties)));
442   }
443 
444   /// Load object with live-in variable values. \p mlocs contains the live-in
445   /// values in each machine location, while \p vlocs the live-in variable
446   /// values. This method picks variable locations for the live-in variables,
447   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
448   /// object fields to track variable locations as we step through the block.
449   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
450   void
451   loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs, DbgOpIDMap &DbgOpStore,
452              const SmallVectorImpl<std::pair<DebugVariableID, DbgValue>> &VLocs,
453              unsigned NumLocs) {
454     ActiveMLocs.clear();
455     ActiveVLocs.clear();
456     VarLocs.clear();
457     VarLocs.reserve(NumLocs);
458     UseBeforeDefs.clear();
459     UseBeforeDefVariables.clear();
460 
461     // Mapping of the preferred locations for each value. Collected into this
462     // vector then sorted for easy searching.
463     SmallVector<ValueLocPair, 16> ValueToLoc;
464 
465     // Initialized the preferred-location map with illegal locations, to be
466     // filled in later.
467     for (const auto &VLoc : VLocs)
468       if (VLoc.second.Kind == DbgValue::Def)
469         for (DbgOpID OpID : VLoc.second.getDbgOpIDs())
470           if (!OpID.ID.IsConst)
471             ValueToLoc.push_back(
472                 {DbgOpStore.find(OpID).ID, LocationAndQuality()});
473 
474     llvm::sort(ValueToLoc, ValueToLocSort);
475     ActiveMLocs.reserve(VLocs.size());
476     ActiveVLocs.reserve(VLocs.size());
477 
478     // Produce a map of value numbers to the current machine locs they live
479     // in. When emulating VarLocBasedImpl, there should only be one
480     // location; when not, we get to pick.
481     for (auto Location : MTracker->locations()) {
482       LocIdx Idx = Location.Idx;
483       ValueIDNum &VNum = MLocs[Idx.asU64()];
484       if (VNum == ValueIDNum::EmptyValue)
485         continue;
486       VarLocs.push_back(VNum);
487 
488       // Is there a variable that wants a location for this value? If not, skip.
489       ValueLocPair Probe(VNum, LocationAndQuality());
490       auto VIt = std::lower_bound(ValueToLoc.begin(), ValueToLoc.end(), Probe,
491                                   ValueToLocSort);
492       if (VIt == ValueToLoc.end() || VIt->first != VNum)
493         continue;
494 
495       auto &Previous = VIt->second;
496       // If this is the first location with that value, pick it. Otherwise,
497       // consider whether it's a "longer term" location.
498       std::optional<LocationQuality> ReplacementQuality =
499           getLocQualityIfBetter(Idx, Previous.getQuality());
500       if (ReplacementQuality)
501         Previous = LocationAndQuality(Idx, *ReplacementQuality);
502     }
503 
504     // Now map variables to their picked LocIdxes.
505     for (const auto &Var : VLocs) {
506       loadVarInloc(MBB, DbgOpStore, ValueToLoc, Var.first, Var.second);
507     }
508     flushDbgValues(MBB.begin(), &MBB);
509   }
510 
511   /// Record that \p Var has value \p ID, a value that becomes available
512   /// later in the function.
513   void addUseBeforeDef(DebugVariableID VarID,
514                        const DbgValueProperties &Properties,
515                        const SmallVectorImpl<DbgOp> &DbgOps, unsigned Inst) {
516     UseBeforeDefs[Inst].emplace_back(DbgOps, VarID, Properties);
517     UseBeforeDefVariables.insert(VarID);
518   }
519 
520   /// After the instruction at index \p Inst and position \p pos has been
521   /// processed, check whether it defines a variable value in a use-before-def.
522   /// If so, and the variable value hasn't changed since the start of the
523   /// block, create a DBG_VALUE.
524   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
525     auto MIt = UseBeforeDefs.find(Inst);
526     if (MIt == UseBeforeDefs.end())
527       return;
528 
529     // Map of values to the locations that store them for every value used by
530     // the variables that may have become available.
531     SmallDenseMap<ValueIDNum, LocationAndQuality> ValueToLoc;
532 
533     // Populate ValueToLoc with illegal default mappings for every value used by
534     // any UseBeforeDef variables for this instruction.
535     for (auto &Use : MIt->second) {
536       if (!UseBeforeDefVariables.count(Use.VarID))
537         continue;
538 
539       for (DbgOp &Op : Use.Values) {
540         assert(!Op.isUndef() && "UseBeforeDef erroneously created for a "
541                                 "DbgValue with undef values.");
542         if (Op.IsConst)
543           continue;
544 
545         ValueToLoc.insert({Op.ID, LocationAndQuality()});
546       }
547     }
548 
549     // Exit early if we have no DbgValues to produce.
550     if (ValueToLoc.empty())
551       return;
552 
553     // Determine the best location for each desired value.
554     for (auto Location : MTracker->locations()) {
555       LocIdx Idx = Location.Idx;
556       ValueIDNum &LocValueID = Location.Value;
557 
558       // Is there a variable that wants a location for this value? If not, skip.
559       auto VIt = ValueToLoc.find(LocValueID);
560       if (VIt == ValueToLoc.end())
561         continue;
562 
563       auto &Previous = VIt->second;
564       // If this is the first location with that value, pick it. Otherwise,
565       // consider whether it's a "longer term" location.
566       std::optional<LocationQuality> ReplacementQuality =
567           getLocQualityIfBetter(Idx, Previous.getQuality());
568       if (ReplacementQuality)
569         Previous = LocationAndQuality(Idx, *ReplacementQuality);
570     }
571 
572     // Using the map of values to locations, produce a final set of values for
573     // this variable.
574     for (auto &Use : MIt->second) {
575       if (!UseBeforeDefVariables.count(Use.VarID))
576         continue;
577 
578       SmallVector<ResolvedDbgOp> DbgOps;
579 
580       for (DbgOp &Op : Use.Values) {
581         if (Op.IsConst) {
582           DbgOps.push_back(Op.MO);
583           continue;
584         }
585         LocIdx NewLoc = ValueToLoc.find(Op.ID)->second.getLoc();
586         if (NewLoc.isIllegal())
587           break;
588         DbgOps.push_back(NewLoc);
589       }
590 
591       // If at least one value used by this debug value is no longer available,
592       // i.e. one of the values was killed before we finished defining all of
593       // the values used by this variable, discard.
594       if (DbgOps.size() != Use.Values.size())
595         continue;
596 
597       // Otherwise, we're good to go.
598       auto &[Var, DILoc] = DVMap.lookupDVID(Use.VarID);
599       PendingDbgValues.push_back(std::make_pair(
600           Use.VarID, MTracker->emitLoc(DbgOps, Var, DILoc, Use.Properties)));
601     }
602     flushDbgValues(pos, nullptr);
603   }
604 
605   /// Helper to move created DBG_VALUEs into Transfers collection.
606   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
607     if (PendingDbgValues.size() == 0)
608       return;
609 
610     // Pick out the instruction start position.
611     MachineBasicBlock::instr_iterator BundleStart;
612     if (MBB && Pos == MBB->begin())
613       BundleStart = MBB->instr_begin();
614     else
615       BundleStart = getBundleStart(Pos->getIterator());
616 
617     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
618     PendingDbgValues.clear();
619   }
620 
621   bool isEntryValueVariable(const DebugVariable &Var,
622                             const DIExpression *Expr) const {
623     if (!Var.getVariable()->isParameter())
624       return false;
625 
626     if (Var.getInlinedAt())
627       return false;
628 
629     if (Expr->getNumElements() > 0 && !Expr->isDeref())
630       return false;
631 
632     return true;
633   }
634 
635   bool isEntryValueValue(const ValueIDNum &Val) const {
636     // Must be in entry block (block number zero), and be a PHI / live-in value.
637     if (Val.getBlock() || !Val.isPHI())
638       return false;
639 
640     // Entry values must enter in a register.
641     if (MTracker->isSpill(Val.getLoc()))
642       return false;
643 
644     Register SP = TLI->getStackPointerRegisterToSaveRestore();
645     Register FP = TRI.getFrameRegister(MF);
646     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
647     return Reg != SP && Reg != FP;
648   }
649 
650   bool recoverAsEntryValue(DebugVariableID VarID,
651                            const DbgValueProperties &Prop,
652                            const ValueIDNum &Num) {
653     // Is this variable location a candidate to be an entry value. First,
654     // should we be trying this at all?
655     if (!ShouldEmitDebugEntryValues)
656       return false;
657 
658     const DIExpression *DIExpr = Prop.DIExpr;
659 
660     // We don't currently emit entry values for DBG_VALUE_LISTs.
661     if (Prop.IsVariadic) {
662       // If this debug value can be converted to be non-variadic, then do so;
663       // otherwise give up.
664       auto NonVariadicExpression =
665           DIExpression::convertToNonVariadicExpression(DIExpr);
666       if (!NonVariadicExpression)
667         return false;
668       DIExpr = *NonVariadicExpression;
669     }
670 
671     auto &[Var, DILoc] = DVMap.lookupDVID(VarID);
672 
673     // Is the variable appropriate for entry values (i.e., is a parameter).
674     if (!isEntryValueVariable(Var, DIExpr))
675       return false;
676 
677     // Is the value assigned to this variable still the entry value?
678     if (!isEntryValueValue(Num))
679       return false;
680 
681     // Emit a variable location using an entry value expression.
682     DIExpression *NewExpr =
683         DIExpression::prepend(DIExpr, DIExpression::EntryValue);
684     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
685     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
686     PendingDbgValues.push_back(std::make_pair(
687         VarID, &*emitMOLoc(MO, Var, {NewExpr, Prop.Indirect, false})));
688     return true;
689   }
690 
691   /// Change a variable value after encountering a DBG_VALUE inside a block.
692   void redefVar(const MachineInstr &MI) {
693     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
694                       MI.getDebugLoc()->getInlinedAt());
695     DbgValueProperties Properties(MI);
696     DebugVariableID VarID = DVMap.getDVID(Var);
697 
698     // Ignore non-register locations, we don't transfer those.
699     if (MI.isUndefDebugValue() ||
700         all_of(MI.debug_operands(),
701                [](const MachineOperand &MO) { return !MO.isReg(); })) {
702       auto It = ActiveVLocs.find(VarID);
703       if (It != ActiveVLocs.end()) {
704         for (LocIdx Loc : It->second.loc_indices())
705           ActiveMLocs[Loc].erase(VarID);
706         ActiveVLocs.erase(It);
707       }
708       // Any use-before-defs no longer apply.
709       UseBeforeDefVariables.erase(VarID);
710       return;
711     }
712 
713     SmallVector<ResolvedDbgOp> NewLocs;
714     for (const MachineOperand &MO : MI.debug_operands()) {
715       if (MO.isReg()) {
716         // Any undef regs have already been filtered out above.
717         Register Reg = MO.getReg();
718         LocIdx NewLoc = MTracker->getRegMLoc(Reg);
719         NewLocs.push_back(NewLoc);
720       } else {
721         NewLocs.push_back(MO);
722       }
723     }
724 
725     redefVar(MI, Properties, NewLocs);
726   }
727 
728   /// Handle a change in variable location within a block. Terminate the
729   /// variables current location, and record the value it now refers to, so
730   /// that we can detect location transfers later on.
731   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
732                 SmallVectorImpl<ResolvedDbgOp> &NewLocs) {
733     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
734                       MI.getDebugLoc()->getInlinedAt());
735     DebugVariableID VarID = DVMap.getDVID(Var);
736     // Any use-before-defs no longer apply.
737     UseBeforeDefVariables.erase(VarID);
738 
739     // Erase any previous location.
740     auto It = ActiveVLocs.find(VarID);
741     if (It != ActiveVLocs.end()) {
742       for (LocIdx Loc : It->second.loc_indices())
743         ActiveMLocs[Loc].erase(VarID);
744     }
745 
746     // If there _is_ no new location, all we had to do was erase.
747     if (NewLocs.empty()) {
748       if (It != ActiveVLocs.end())
749         ActiveVLocs.erase(It);
750       return;
751     }
752 
753     SmallVector<std::pair<LocIdx, DebugVariableID>> LostMLocs;
754     for (ResolvedDbgOp &Op : NewLocs) {
755       if (Op.IsConst)
756         continue;
757 
758       LocIdx NewLoc = Op.Loc;
759 
760       // Check whether our local copy of values-by-location in #VarLocs is out
761       // of date. Wipe old tracking data for the location if it's been clobbered
762       // in the meantime.
763       if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
764         for (const auto &P : ActiveMLocs[NewLoc]) {
765           auto LostVLocIt = ActiveVLocs.find(P);
766           if (LostVLocIt != ActiveVLocs.end()) {
767             for (LocIdx Loc : LostVLocIt->second.loc_indices()) {
768               // Every active variable mapping for NewLoc will be cleared, no
769               // need to track individual variables.
770               if (Loc == NewLoc)
771                 continue;
772               LostMLocs.emplace_back(Loc, P);
773             }
774           }
775           ActiveVLocs.erase(P);
776         }
777         for (const auto &LostMLoc : LostMLocs)
778           ActiveMLocs[LostMLoc.first].erase(LostMLoc.second);
779         LostMLocs.clear();
780         It = ActiveVLocs.find(VarID);
781         ActiveMLocs[NewLoc.asU64()].clear();
782         VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
783       }
784 
785       ActiveMLocs[NewLoc].insert(VarID);
786     }
787 
788     if (It == ActiveVLocs.end()) {
789       ActiveVLocs.insert(
790           std::make_pair(VarID, ResolvedDbgValue(NewLocs, Properties)));
791     } else {
792       It->second.Ops.assign(NewLocs);
793       It->second.Properties = Properties;
794     }
795   }
796 
797   /// Account for a location \p mloc being clobbered. Examine the variable
798   /// locations that will be terminated: and try to recover them by using
799   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
800   /// explicitly terminate a location if it can't be recovered.
801   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
802                    bool MakeUndef = true) {
803     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
804     if (ActiveMLocIt == ActiveMLocs.end())
805       return;
806 
807     // What was the old variable value?
808     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
809     clobberMloc(MLoc, OldValue, Pos, MakeUndef);
810   }
811   /// Overload that takes an explicit value \p OldValue for when the value in
812   /// \p MLoc has changed and the TransferTracker's locations have not been
813   /// updated yet.
814   void clobberMloc(LocIdx MLoc, ValueIDNum OldValue,
815                    MachineBasicBlock::iterator Pos, bool MakeUndef = true) {
816     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
817     if (ActiveMLocIt == ActiveMLocs.end())
818       return;
819 
820     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
821 
822     // Examine the remaining variable locations: if we can find the same value
823     // again, we can recover the location.
824     std::optional<LocIdx> NewLoc;
825     for (auto Loc : MTracker->locations())
826       if (Loc.Value == OldValue)
827         NewLoc = Loc.Idx;
828 
829     // If there is no location, and we weren't asked to make the variable
830     // explicitly undef, then stop here.
831     if (!NewLoc && !MakeUndef) {
832       // Try and recover a few more locations with entry values.
833       for (DebugVariableID VarID : ActiveMLocIt->second) {
834         auto &Prop = ActiveVLocs.find(VarID)->second.Properties;
835         recoverAsEntryValue(VarID, Prop, OldValue);
836       }
837       flushDbgValues(Pos, nullptr);
838       return;
839     }
840 
841     // Examine all the variables based on this location.
842     DenseSet<DebugVariableID> NewMLocs;
843     // If no new location has been found, every variable that depends on this
844     // MLoc is dead, so end their existing MLoc->Var mappings as well.
845     SmallVector<std::pair<LocIdx, DebugVariableID>> LostMLocs;
846     for (DebugVariableID VarID : ActiveMLocIt->second) {
847       auto ActiveVLocIt = ActiveVLocs.find(VarID);
848       // Re-state the variable location: if there's no replacement then NewLoc
849       // is std::nullopt and a $noreg DBG_VALUE will be created. Otherwise, a
850       // DBG_VALUE identifying the alternative location will be emitted.
851       const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
852 
853       // Produce the new list of debug ops - an empty list if no new location
854       // was found, or the existing list with the substitution MLoc -> NewLoc
855       // otherwise.
856       SmallVector<ResolvedDbgOp> DbgOps;
857       if (NewLoc) {
858         ResolvedDbgOp OldOp(MLoc);
859         ResolvedDbgOp NewOp(*NewLoc);
860         // Insert illegal ops to overwrite afterwards.
861         DbgOps.insert(DbgOps.begin(), ActiveVLocIt->second.Ops.size(),
862                       ResolvedDbgOp(LocIdx::MakeIllegalLoc()));
863         replace_copy(ActiveVLocIt->second.Ops, DbgOps.begin(), OldOp, NewOp);
864       }
865 
866       auto &[Var, DILoc] = DVMap.lookupDVID(VarID);
867       PendingDbgValues.push_back(std::make_pair(
868           VarID, &*MTracker->emitLoc(DbgOps, Var, DILoc, Properties)));
869 
870       // Update machine locations <=> variable locations maps. Defer updating
871       // ActiveMLocs to avoid invalidating the ActiveMLocIt iterator.
872       if (!NewLoc) {
873         for (LocIdx Loc : ActiveVLocIt->second.loc_indices()) {
874           if (Loc != MLoc)
875             LostMLocs.emplace_back(Loc, VarID);
876         }
877         ActiveVLocs.erase(ActiveVLocIt);
878       } else {
879         ActiveVLocIt->second.Ops = DbgOps;
880         NewMLocs.insert(VarID);
881       }
882     }
883 
884     // Remove variables from ActiveMLocs if they no longer use any other MLocs
885     // due to being killed by this clobber.
886     for (auto &LocVarIt : LostMLocs) {
887       auto LostMLocIt = ActiveMLocs.find(LocVarIt.first);
888       assert(LostMLocIt != ActiveMLocs.end() &&
889              "Variable was using this MLoc, but ActiveMLocs[MLoc] has no "
890              "entries?");
891       LostMLocIt->second.erase(LocVarIt.second);
892     }
893 
894     // We lazily track what locations have which values; if we've found a new
895     // location for the clobbered value, remember it.
896     if (NewLoc)
897       VarLocs[NewLoc->asU64()] = OldValue;
898 
899     flushDbgValues(Pos, nullptr);
900 
901     // Commit ActiveMLoc changes.
902     ActiveMLocIt->second.clear();
903     if (!NewMLocs.empty())
904       for (DebugVariableID VarID : NewMLocs)
905         ActiveMLocs[*NewLoc].insert(VarID);
906   }
907 
908   /// Transfer variables based on \p Src to be based on \p Dst. This handles
909   /// both register copies as well as spills and restores. Creates DBG_VALUEs
910   /// describing the movement.
911   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
912     // Does Src still contain the value num we expect? If not, it's been
913     // clobbered in the meantime, and our variable locations are stale.
914     if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
915       return;
916 
917     // assert(ActiveMLocs[Dst].size() == 0);
918     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
919 
920     // Move set of active variables from one location to another.
921     auto MovingVars = ActiveMLocs[Src];
922     ActiveMLocs[Dst].insert(MovingVars.begin(), MovingVars.end());
923     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
924 
925     // For each variable based on Src; create a location at Dst.
926     ResolvedDbgOp SrcOp(Src);
927     ResolvedDbgOp DstOp(Dst);
928     for (DebugVariableID VarID : MovingVars) {
929       auto ActiveVLocIt = ActiveVLocs.find(VarID);
930       assert(ActiveVLocIt != ActiveVLocs.end());
931 
932       // Update all instances of Src in the variable's tracked values to Dst.
933       std::replace(ActiveVLocIt->second.Ops.begin(),
934                    ActiveVLocIt->second.Ops.end(), SrcOp, DstOp);
935 
936       auto &[Var, DILoc] = DVMap.lookupDVID(VarID);
937       MachineInstr *MI = MTracker->emitLoc(ActiveVLocIt->second.Ops, Var, DILoc,
938                                            ActiveVLocIt->second.Properties);
939       PendingDbgValues.push_back(std::make_pair(VarID, MI));
940     }
941     ActiveMLocs[Src].clear();
942     flushDbgValues(Pos, nullptr);
943 
944     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
945     // about the old location.
946     if (EmulateOldLDV)
947       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
948   }
949 
950   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
951                                 const DebugVariable &Var,
952                                 const DbgValueProperties &Properties) {
953     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
954                                   Var.getVariable()->getScope(),
955                                   const_cast<DILocation *>(Var.getInlinedAt()));
956     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
957     MIB.add(MO);
958     if (Properties.Indirect)
959       MIB.addImm(0);
960     else
961       MIB.addReg(0);
962     MIB.addMetadata(Var.getVariable());
963     MIB.addMetadata(Properties.DIExpr);
964     return MIB;
965   }
966 };
967 
968 //===----------------------------------------------------------------------===//
969 //            Implementation
970 //===----------------------------------------------------------------------===//
971 
972 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
973 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
974 
975 #ifndef NDEBUG
976 void ResolvedDbgOp::dump(const MLocTracker *MTrack) const {
977   if (IsConst) {
978     dbgs() << MO;
979   } else {
980     dbgs() << MTrack->LocIdxToName(Loc);
981   }
982 }
983 void DbgOp::dump(const MLocTracker *MTrack) const {
984   if (IsConst) {
985     dbgs() << MO;
986   } else if (!isUndef()) {
987     dbgs() << MTrack->IDAsString(ID);
988   }
989 }
990 void DbgOpID::dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const {
991   if (!OpStore) {
992     dbgs() << "ID(" << asU32() << ")";
993   } else {
994     OpStore->find(*this).dump(MTrack);
995   }
996 }
997 void DbgValue::dump(const MLocTracker *MTrack,
998                     const DbgOpIDMap *OpStore) const {
999   if (Kind == NoVal) {
1000     dbgs() << "NoVal(" << BlockNo << ")";
1001   } else if (Kind == VPHI || Kind == Def) {
1002     if (Kind == VPHI)
1003       dbgs() << "VPHI(" << BlockNo << ",";
1004     else
1005       dbgs() << "Def(";
1006     for (unsigned Idx = 0; Idx < getDbgOpIDs().size(); ++Idx) {
1007       getDbgOpID(Idx).dump(MTrack, OpStore);
1008       if (Idx != 0)
1009         dbgs() << ",";
1010     }
1011     dbgs() << ")";
1012   }
1013   if (Properties.Indirect)
1014     dbgs() << " indir";
1015   if (Properties.DIExpr)
1016     dbgs() << " " << *Properties.DIExpr;
1017 }
1018 #endif
1019 
1020 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
1021                          const TargetRegisterInfo &TRI,
1022                          const TargetLowering &TLI)
1023     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
1024       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
1025   NumRegs = TRI.getNumRegs();
1026   reset();
1027   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
1028   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
1029 
1030   // Always track SP. This avoids the implicit clobbering caused by regmasks
1031   // from affectings its values. (LiveDebugValues disbelieves calls and
1032   // regmasks that claim to clobber SP).
1033   Register SP = TLI.getStackPointerRegisterToSaveRestore();
1034   if (SP) {
1035     unsigned ID = getLocID(SP);
1036     (void)lookupOrTrackRegister(ID);
1037 
1038     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
1039       SPAliases.insert(*RAI);
1040   }
1041 
1042   // Build some common stack positions -- full registers being spilt to the
1043   // stack.
1044   StackSlotIdxes.insert({{8, 0}, 0});
1045   StackSlotIdxes.insert({{16, 0}, 1});
1046   StackSlotIdxes.insert({{32, 0}, 2});
1047   StackSlotIdxes.insert({{64, 0}, 3});
1048   StackSlotIdxes.insert({{128, 0}, 4});
1049   StackSlotIdxes.insert({{256, 0}, 5});
1050   StackSlotIdxes.insert({{512, 0}, 6});
1051 
1052   // Traverse all the subregister idxes, and ensure there's an index for them.
1053   // Duplicates are no problem: we're interested in their position in the
1054   // stack slot, we don't want to type the slot.
1055   for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
1056     unsigned Size = TRI.getSubRegIdxSize(I);
1057     unsigned Offs = TRI.getSubRegIdxOffset(I);
1058     unsigned Idx = StackSlotIdxes.size();
1059 
1060     // Some subregs have -1, -2 and so forth fed into their fields, to mean
1061     // special backend things. Ignore those.
1062     if (Size > 60000 || Offs > 60000)
1063       continue;
1064 
1065     StackSlotIdxes.insert({{Size, Offs}, Idx});
1066   }
1067 
1068   // There may also be strange register class sizes (think x86 fp80s).
1069   for (const TargetRegisterClass *RC : TRI.regclasses()) {
1070     unsigned Size = TRI.getRegSizeInBits(*RC);
1071 
1072     // We might see special reserved values as sizes, and classes for other
1073     // stuff the machine tries to model. If it's more than 512 bits, then it
1074     // is very unlikely to be a register than can be spilt.
1075     if (Size > 512)
1076       continue;
1077 
1078     unsigned Idx = StackSlotIdxes.size();
1079     StackSlotIdxes.insert({{Size, 0}, Idx});
1080   }
1081 
1082   for (auto &Idx : StackSlotIdxes)
1083     StackIdxesToPos[Idx.second] = Idx.first;
1084 
1085   NumSlotIdxes = StackSlotIdxes.size();
1086 }
1087 
1088 LocIdx MLocTracker::trackRegister(unsigned ID) {
1089   assert(ID != 0);
1090   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
1091   LocIdxToIDNum.grow(NewIdx);
1092   LocIdxToLocID.grow(NewIdx);
1093 
1094   // Default: it's an mphi.
1095   ValueIDNum ValNum = {CurBB, 0, NewIdx};
1096   // Was this reg ever touched by a regmask?
1097   for (const auto &MaskPair : reverse(Masks)) {
1098     if (MaskPair.first->clobbersPhysReg(ID)) {
1099       // There was an earlier def we skipped.
1100       ValNum = {CurBB, MaskPair.second, NewIdx};
1101       break;
1102     }
1103   }
1104 
1105   LocIdxToIDNum[NewIdx] = ValNum;
1106   LocIdxToLocID[NewIdx] = ID;
1107   return NewIdx;
1108 }
1109 
1110 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
1111                                unsigned InstID) {
1112   // Def any register we track have that isn't preserved. The regmask
1113   // terminates the liveness of a register, meaning its value can't be
1114   // relied upon -- we represent this by giving it a new value.
1115   for (auto Location : locations()) {
1116     unsigned ID = LocIdxToLocID[Location.Idx];
1117     // Don't clobber SP, even if the mask says it's clobbered.
1118     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
1119       defReg(ID, CurBB, InstID);
1120   }
1121   Masks.push_back(std::make_pair(MO, InstID));
1122 }
1123 
1124 std::optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
1125   SpillLocationNo SpillID(SpillLocs.idFor(L));
1126 
1127   if (SpillID.id() == 0) {
1128     // If there is no location, and we have reached the limit of how many stack
1129     // slots to track, then don't track this one.
1130     if (SpillLocs.size() >= StackWorkingSetLimit)
1131       return std::nullopt;
1132 
1133     // Spill location is untracked: create record for this one, and all
1134     // subregister slots too.
1135     SpillID = SpillLocationNo(SpillLocs.insert(L));
1136     for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
1137       unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
1138       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
1139       LocIdxToIDNum.grow(Idx);
1140       LocIdxToLocID.grow(Idx);
1141       LocIDToLocIdx.push_back(Idx);
1142       LocIdxToLocID[Idx] = L;
1143       // Initialize to PHI value; corresponds to the location's live-in value
1144       // during transfer function construction.
1145       LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
1146     }
1147   }
1148   return SpillID;
1149 }
1150 
1151 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
1152   unsigned ID = LocIdxToLocID[Idx];
1153   if (ID >= NumRegs) {
1154     StackSlotPos Pos = locIDToSpillIdx(ID);
1155     ID -= NumRegs;
1156     unsigned Slot = ID / NumSlotIdxes;
1157     return Twine("slot ")
1158         .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
1159         .concat(Twine(" offs ").concat(Twine(Pos.second))))))
1160         .str();
1161   } else {
1162     return TRI.getRegAsmName(ID).str();
1163   }
1164 }
1165 
1166 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
1167   std::string DefName = LocIdxToName(Num.getLoc());
1168   return Num.asString(DefName);
1169 }
1170 
1171 #ifndef NDEBUG
1172 LLVM_DUMP_METHOD void MLocTracker::dump() {
1173   for (auto Location : locations()) {
1174     std::string MLocName = LocIdxToName(Location.Value.getLoc());
1175     std::string DefName = Location.Value.asString(MLocName);
1176     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
1177   }
1178 }
1179 
1180 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
1181   for (auto Location : locations()) {
1182     std::string foo = LocIdxToName(Location.Idx);
1183     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
1184   }
1185 }
1186 #endif
1187 
1188 MachineInstrBuilder
1189 MLocTracker::emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
1190                      const DebugVariable &Var, const DILocation *DILoc,
1191                      const DbgValueProperties &Properties) {
1192   DebugLoc DL = DebugLoc(DILoc);
1193 
1194   const MCInstrDesc &Desc = Properties.IsVariadic
1195                                 ? TII.get(TargetOpcode::DBG_VALUE_LIST)
1196                                 : TII.get(TargetOpcode::DBG_VALUE);
1197 
1198 #ifdef EXPENSIVE_CHECKS
1199   assert(all_of(DbgOps,
1200                 [](const ResolvedDbgOp &Op) {
1201                   return Op.IsConst || !Op.Loc.isIllegal();
1202                 }) &&
1203          "Did not expect illegal ops in DbgOps.");
1204   assert((DbgOps.size() == 0 ||
1205           DbgOps.size() == Properties.getLocationOpCount()) &&
1206          "Expected to have either one DbgOp per MI LocationOp, or none.");
1207 #endif
1208 
1209   auto GetRegOp = [](unsigned Reg) -> MachineOperand {
1210     return MachineOperand::CreateReg(
1211         /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
1212         /* isKill */ false, /* isDead */ false,
1213         /* isUndef */ false, /* isEarlyClobber */ false,
1214         /* SubReg */ 0, /* isDebug */ true);
1215   };
1216 
1217   SmallVector<MachineOperand> MOs;
1218 
1219   auto EmitUndef = [&]() {
1220     MOs.clear();
1221     MOs.assign(Properties.getLocationOpCount(), GetRegOp(0));
1222     return BuildMI(MF, DL, Desc, false, MOs, Var.getVariable(),
1223                    Properties.DIExpr);
1224   };
1225 
1226   // Don't bother passing any real operands to BuildMI if any of them would be
1227   // $noreg.
1228   if (DbgOps.empty())
1229     return EmitUndef();
1230 
1231   bool Indirect = Properties.Indirect;
1232 
1233   const DIExpression *Expr = Properties.DIExpr;
1234 
1235   assert(DbgOps.size() == Properties.getLocationOpCount());
1236 
1237   // If all locations are valid, accumulate them into our list of
1238   // MachineOperands. For any spilled locations, either update the indirectness
1239   // register or apply the appropriate transformations in the DIExpression.
1240   for (size_t Idx = 0; Idx < Properties.getLocationOpCount(); ++Idx) {
1241     const ResolvedDbgOp &Op = DbgOps[Idx];
1242 
1243     if (Op.IsConst) {
1244       MOs.push_back(Op.MO);
1245       continue;
1246     }
1247 
1248     LocIdx MLoc = Op.Loc;
1249     unsigned LocID = LocIdxToLocID[MLoc];
1250     if (LocID >= NumRegs) {
1251       SpillLocationNo SpillID = locIDToSpill(LocID);
1252       StackSlotPos StackIdx = locIDToSpillIdx(LocID);
1253       unsigned short Offset = StackIdx.second;
1254 
1255       // TODO: support variables that are located in spill slots, with non-zero
1256       // offsets from the start of the spill slot. It would require some more
1257       // complex DIExpression calculations. This doesn't seem to be produced by
1258       // LLVM right now, so don't try and support it.
1259       // Accept no-subregister slots and subregisters where the offset is zero.
1260       // The consumer should already have type information to work out how large
1261       // the variable is.
1262       if (Offset == 0) {
1263         const SpillLoc &Spill = SpillLocs[SpillID.id()];
1264         unsigned Base = Spill.SpillBase;
1265 
1266         // There are several ways we can dereference things, and several inputs
1267         // to consider:
1268         // * NRVO variables will appear with IsIndirect set, but should have
1269         //   nothing else in their DIExpressions,
1270         // * Variables with DW_OP_stack_value in their expr already need an
1271         //   explicit dereference of the stack location,
1272         // * Values that don't match the variable size need DW_OP_deref_size,
1273         // * Everything else can just become a simple location expression.
1274 
1275         // We need to use deref_size whenever there's a mismatch between the
1276         // size of value and the size of variable portion being read.
1277         // Additionally, we should use it whenever dealing with stack_value
1278         // fragments, to avoid the consumer having to determine the deref size
1279         // from DW_OP_piece.
1280         bool UseDerefSize = false;
1281         unsigned ValueSizeInBits = getLocSizeInBits(MLoc);
1282         unsigned DerefSizeInBytes = ValueSizeInBits / 8;
1283         if (auto Fragment = Var.getFragment()) {
1284           unsigned VariableSizeInBits = Fragment->SizeInBits;
1285           if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex())
1286             UseDerefSize = true;
1287         } else if (auto Size = Var.getVariable()->getSizeInBits()) {
1288           if (*Size != ValueSizeInBits) {
1289             UseDerefSize = true;
1290           }
1291         }
1292 
1293         // https://github.com/llvm/llvm-project/issues/64093
1294         // in particular #issuecomment-2531264124. We use variable locations
1295         // such as DBG_VALUE $xmm0 as shorthand to refer to "the low lane of
1296         // $xmm0", and this is reflected in how DWARF is interpreted too.
1297         // However InstrRefBasedLDV tries to be smart and interprets such a
1298         // DBG_VALUE as a 128-bit reference. We then issue a DW_OP_deref_size
1299         // of 128 bits to the stack, which isn't permitted by DWARF (it's
1300         // larger than a pointer).
1301         //
1302         // Solve this for now by not using DW_OP_deref_size if it would be
1303         // illegal. Instead we'll use DW_OP_deref, and the consumer will load
1304         // the variable type from the stack, which should be correct.
1305         //
1306         // There's still a risk of imprecision when LLVM decides to use
1307         // smaller or larger value types than the source-variable type, which
1308         // manifests as too-little or too-much memory being read from the stack.
1309         // However we can't solve that without putting more type information in
1310         // debug-info.
1311         if (ValueSizeInBits > MF.getTarget().getPointerSizeInBits(0))
1312           UseDerefSize = false;
1313 
1314         SmallVector<uint64_t, 5> OffsetOps;
1315         TRI.getOffsetOpcodes(Spill.SpillOffset, OffsetOps);
1316         bool StackValue = false;
1317 
1318         if (Properties.Indirect) {
1319           // This is something like an NRVO variable, where the pointer has been
1320           // spilt to the stack. It should end up being a memory location, with
1321           // the pointer to the variable loaded off the stack with a deref:
1322           assert(!Expr->isImplicit());
1323           OffsetOps.push_back(dwarf::DW_OP_deref);
1324         } else if (UseDerefSize && Expr->isSingleLocationExpression()) {
1325           // TODO: Figure out how to handle deref size issues for variadic
1326           // values.
1327           // We're loading a value off the stack that's not the same size as the
1328           // variable. Add / subtract stack offset, explicitly deref with a
1329           // size, and add DW_OP_stack_value if not already present.
1330           OffsetOps.push_back(dwarf::DW_OP_deref_size);
1331           OffsetOps.push_back(DerefSizeInBytes);
1332           StackValue = true;
1333         } else if (Expr->isComplex() || Properties.IsVariadic) {
1334           // A variable with no size ambiguity, but with extra elements in it's
1335           // expression. Manually dereference the stack location.
1336           OffsetOps.push_back(dwarf::DW_OP_deref);
1337         } else {
1338           // A plain value that has been spilt to the stack, with no further
1339           // context. Request a location expression, marking the DBG_VALUE as
1340           // IsIndirect.
1341           Indirect = true;
1342         }
1343 
1344         Expr = DIExpression::appendOpsToArg(Expr, OffsetOps, Idx, StackValue);
1345         MOs.push_back(GetRegOp(Base));
1346       } else {
1347         // This is a stack location with a weird subregister offset: emit an
1348         // undef DBG_VALUE instead.
1349         return EmitUndef();
1350       }
1351     } else {
1352       // Non-empty, non-stack slot, must be a plain register.
1353       MOs.push_back(GetRegOp(LocID));
1354     }
1355   }
1356 
1357   return BuildMI(MF, DL, Desc, Indirect, MOs, Var.getVariable(), Expr);
1358 }
1359 
1360 /// Default construct and initialize the pass.
1361 InstrRefBasedLDV::InstrRefBasedLDV() = default;
1362 
1363 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
1364   unsigned Reg = MTracker->LocIdxToLocID[L];
1365   return isCalleeSavedReg(Reg);
1366 }
1367 bool InstrRefBasedLDV::isCalleeSavedReg(Register R) const {
1368   for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI)
1369     if (CalleeSavedRegs.test((*RAI).id()))
1370       return true;
1371   return false;
1372 }
1373 
1374 //===----------------------------------------------------------------------===//
1375 //            Debug Range Extension Implementation
1376 //===----------------------------------------------------------------------===//
1377 
1378 #ifndef NDEBUG
1379 // Something to restore in the future.
1380 // void InstrRefBasedLDV::printVarLocInMBB(..)
1381 #endif
1382 
1383 std::optional<SpillLocationNo>
1384 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1385   assert(MI.hasOneMemOperand() &&
1386          "Spill instruction does not have exactly one memory operand?");
1387   auto MMOI = MI.memoperands_begin();
1388   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1389   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1390          "Inconsistent memory operand in spill instruction");
1391   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1392   const MachineBasicBlock *MBB = MI.getParent();
1393   Register Reg;
1394   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1395   return MTracker->getOrTrackSpillLoc({Reg, Offset});
1396 }
1397 
1398 std::optional<LocIdx>
1399 InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
1400   std::optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
1401   if (!SpillLoc)
1402     return std::nullopt;
1403 
1404   // Where in the stack slot is this value defined -- i.e., what size of value
1405   // is this? An important question, because it could be loaded into a register
1406   // from the stack at some point. Happily the memory operand will tell us
1407   // the size written to the stack.
1408   auto *MemOperand = *MI.memoperands_begin();
1409   LocationSize SizeInBits = MemOperand->getSizeInBits();
1410   assert(SizeInBits.hasValue() && "Expected to find a valid size!");
1411 
1412   // Find that position in the stack indexes we're tracking.
1413   auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits.getValue(), 0});
1414   if (IdxIt == MTracker->StackSlotIdxes.end())
1415     // That index is not tracked. This is suprising, and unlikely to ever
1416     // occur, but the safe action is to indicate the variable is optimised out.
1417     return std::nullopt;
1418 
1419   unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
1420   return MTracker->getSpillMLoc(SpillID);
1421 }
1422 
1423 /// End all previous ranges related to @MI and start a new range from @MI
1424 /// if it is a DBG_VALUE instr.
1425 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1426   if (!MI.isDebugValue())
1427     return false;
1428 
1429   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
1430          "Expected inlined-at fields to agree");
1431 
1432   // If there are no instructions in this lexical scope, do no location tracking
1433   // at all, this variable shouldn't get a legitimate location range.
1434   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1435   if (Scope == nullptr)
1436     return true; // handled it; by doing nothing
1437 
1438   // MLocTracker needs to know that this register is read, even if it's only
1439   // read by a debug inst.
1440   for (const MachineOperand &MO : MI.debug_operands())
1441     if (MO.isReg() && MO.getReg() != 0)
1442       (void)MTracker->readReg(MO.getReg());
1443 
1444   // If we're preparing for the second analysis (variables), the machine value
1445   // locations are already solved, and we report this DBG_VALUE and the value
1446   // it refers to to VLocTracker.
1447   if (VTracker) {
1448     SmallVector<DbgOpID> DebugOps;
1449     // Feed defVar the new variable location, or if this is a DBG_VALUE $noreg,
1450     // feed defVar None.
1451     if (!MI.isUndefDebugValue()) {
1452       for (const MachineOperand &MO : MI.debug_operands()) {
1453         // There should be no undef registers here, as we've screened for undef
1454         // debug values.
1455         if (MO.isReg()) {
1456           DebugOps.push_back(DbgOpStore.insert(MTracker->readReg(MO.getReg())));
1457         } else if (MO.isImm() || MO.isFPImm() || MO.isCImm()) {
1458           DebugOps.push_back(DbgOpStore.insert(MO));
1459         } else {
1460           llvm_unreachable("Unexpected debug operand type.");
1461         }
1462       }
1463     }
1464     VTracker->defVar(MI, DbgValueProperties(MI), DebugOps);
1465   }
1466 
1467   // If performing final tracking of transfers, report this variable definition
1468   // to the TransferTracker too.
1469   if (TTracker)
1470     TTracker->redefVar(MI);
1471   return true;
1472 }
1473 
1474 std::optional<ValueIDNum> InstrRefBasedLDV::getValueForInstrRef(
1475     unsigned InstNo, unsigned OpNo, MachineInstr &MI,
1476     const FuncValueTable *MLiveOuts, const FuncValueTable *MLiveIns) {
1477   // Various optimizations may have happened to the value during codegen,
1478   // recorded in the value substitution table. Apply any substitutions to
1479   // the instruction / operand number in this DBG_INSTR_REF, and collect
1480   // any subregister extractions performed during optimization.
1481   const MachineFunction &MF = *MI.getParent()->getParent();
1482 
1483   // Create dummy substitution with Src set, for lookup.
1484   auto SoughtSub =
1485       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1486 
1487   SmallVector<unsigned, 4> SeenSubregs;
1488   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1489   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1490          LowerBoundIt->Src == SoughtSub.Src) {
1491     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1492     SoughtSub.Src = LowerBoundIt->Dest;
1493     if (unsigned Subreg = LowerBoundIt->Subreg)
1494       SeenSubregs.push_back(Subreg);
1495     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1496   }
1497 
1498   // Default machine value number is <None> -- if no instruction defines
1499   // the corresponding value, it must have been optimized out.
1500   std::optional<ValueIDNum> NewID;
1501 
1502   // Try to lookup the instruction number, and find the machine value number
1503   // that it defines. It could be an instruction, or a PHI.
1504   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1505   auto PHIIt = llvm::lower_bound(DebugPHINumToValue, InstNo);
1506   if (InstrIt != DebugInstrNumToInstr.end()) {
1507     const MachineInstr &TargetInstr = *InstrIt->second.first;
1508     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1509 
1510     // Pick out the designated operand. It might be a memory reference, if
1511     // a register def was folded into a stack store.
1512     if (OpNo == MachineFunction::DebugOperandMemNumber &&
1513         TargetInstr.hasOneMemOperand()) {
1514       std::optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1515       if (L)
1516         NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1517     } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1518       // Permit the debug-info to be completely wrong: identifying a nonexistant
1519       // operand, or one that is not a register definition, means something
1520       // unexpected happened during optimisation. Broken debug-info, however,
1521       // shouldn't crash the compiler -- instead leave the variable value as
1522       // None, which will make it appear "optimised out".
1523       if (OpNo < TargetInstr.getNumOperands()) {
1524         const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1525 
1526         if (MO.isReg() && MO.isDef() && MO.getReg()) {
1527           unsigned LocID = MTracker->getLocID(MO.getReg());
1528           LocIdx L = MTracker->LocIDToLocIdx[LocID];
1529           NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1530         }
1531       }
1532 
1533       if (!NewID) {
1534         LLVM_DEBUG(
1535             { dbgs() << "Seen instruction reference to illegal operand\n"; });
1536       }
1537     }
1538     // else: NewID is left as None.
1539   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1540     // It's actually a PHI value. Which value it is might not be obvious, use
1541     // the resolver helper to find out.
1542     assert(MLiveOuts && MLiveIns);
1543     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), *MLiveOuts, *MLiveIns,
1544                            MI, InstNo);
1545   }
1546 
1547   // Apply any subregister extractions, in reverse. We might have seen code
1548   // like this:
1549   //    CALL64 @foo, implicit-def $rax
1550   //    %0:gr64 = COPY $rax
1551   //    %1:gr32 = COPY %0.sub_32bit
1552   //    %2:gr16 = COPY %1.sub_16bit
1553   //    %3:gr8  = COPY %2.sub_8bit
1554   // In which case each copy would have been recorded as a substitution with
1555   // a subregister qualifier. Apply those qualifiers now.
1556   if (NewID && !SeenSubregs.empty()) {
1557     unsigned Offset = 0;
1558     unsigned Size = 0;
1559 
1560     // Look at each subregister that we passed through, and progressively
1561     // narrow in, accumulating any offsets that occur. Substitutions should
1562     // only ever be the same or narrower width than what they read from;
1563     // iterate in reverse order so that we go from wide to small.
1564     for (unsigned Subreg : reverse(SeenSubregs)) {
1565       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1566       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1567       Offset += ThisOffset;
1568       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1569     }
1570 
1571     // If that worked, look for an appropriate subregister with the register
1572     // where the define happens. Don't look at values that were defined during
1573     // a stack write: we can't currently express register locations within
1574     // spills.
1575     LocIdx L = NewID->getLoc();
1576     if (NewID && !MTracker->isSpill(L)) {
1577       // Find the register class for the register where this def happened.
1578       // FIXME: no index for this?
1579       Register Reg = MTracker->LocIdxToLocID[L];
1580       const TargetRegisterClass *TRC = nullptr;
1581       for (const auto *TRCI : TRI->regclasses())
1582         if (TRCI->contains(Reg))
1583           TRC = TRCI;
1584       assert(TRC && "Couldn't find target register class?");
1585 
1586       // If the register we have isn't the right size or in the right place,
1587       // Try to find a subregister inside it.
1588       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1589       if (Size != MainRegSize || Offset) {
1590         // Enumerate all subregisters, searching.
1591         Register NewReg = 0;
1592         for (MCPhysReg SR : TRI->subregs(Reg)) {
1593           unsigned Subreg = TRI->getSubRegIndex(Reg, SR);
1594           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1595           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1596           if (SubregSize == Size && SubregOffset == Offset) {
1597             NewReg = SR;
1598             break;
1599           }
1600         }
1601 
1602         // If we didn't find anything: there's no way to express our value.
1603         if (!NewReg) {
1604           NewID = std::nullopt;
1605         } else {
1606           // Re-state the value as being defined within the subregister
1607           // that we found.
1608           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1609           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1610         }
1611       }
1612     } else {
1613       // If we can't handle subregisters, unset the new value.
1614       NewID = std::nullopt;
1615     }
1616   }
1617 
1618   return NewID;
1619 }
1620 
1621 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1622                                              const FuncValueTable *MLiveOuts,
1623                                              const FuncValueTable *MLiveIns) {
1624   if (!MI.isDebugRef())
1625     return false;
1626 
1627   // Only handle this instruction when we are building the variable value
1628   // transfer function.
1629   if (!VTracker && !TTracker)
1630     return false;
1631 
1632   const DILocalVariable *Var = MI.getDebugVariable();
1633   const DIExpression *Expr = MI.getDebugExpression();
1634   const DILocation *DebugLoc = MI.getDebugLoc();
1635   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1636   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1637          "Expected inlined-at fields to agree");
1638 
1639   DebugVariable V(Var, Expr, InlinedAt);
1640 
1641   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1642   if (Scope == nullptr)
1643     return true; // Handled by doing nothing. This variable is never in scope.
1644 
1645   SmallVector<DbgOpID> DbgOpIDs;
1646   for (const MachineOperand &MO : MI.debug_operands()) {
1647     if (!MO.isDbgInstrRef()) {
1648       assert(!MO.isReg() && "DBG_INSTR_REF should not contain registers");
1649       DbgOpID ConstOpID = DbgOpStore.insert(DbgOp(MO));
1650       DbgOpIDs.push_back(ConstOpID);
1651       continue;
1652     }
1653 
1654     unsigned InstNo = MO.getInstrRefInstrIndex();
1655     unsigned OpNo = MO.getInstrRefOpIndex();
1656 
1657     // Default machine value number is <None> -- if no instruction defines
1658     // the corresponding value, it must have been optimized out.
1659     std::optional<ValueIDNum> NewID =
1660         getValueForInstrRef(InstNo, OpNo, MI, MLiveOuts, MLiveIns);
1661     // We have a value number or std::nullopt. If the latter, then kill the
1662     // entire debug value.
1663     if (NewID) {
1664       DbgOpIDs.push_back(DbgOpStore.insert(*NewID));
1665     } else {
1666       DbgOpIDs.clear();
1667       break;
1668     }
1669   }
1670 
1671   // We have a DbgOpID for every value or for none. Tell the variable value
1672   // tracker about it. The rest of this LiveDebugValues implementation acts
1673   // exactly the same for DBG_INSTR_REFs as DBG_VALUEs (just, the former can
1674   // refer to values that aren't immediately available).
1675   DbgValueProperties Properties(Expr, false, true);
1676   if (VTracker)
1677     VTracker->defVar(MI, Properties, DbgOpIDs);
1678 
1679   // If we're on the final pass through the function, decompose this INSTR_REF
1680   // into a plain DBG_VALUE.
1681   if (!TTracker)
1682     return true;
1683 
1684   // Fetch the concrete DbgOps now, as we will need them later.
1685   SmallVector<DbgOp> DbgOps;
1686   for (DbgOpID OpID : DbgOpIDs) {
1687     DbgOps.push_back(DbgOpStore.find(OpID));
1688   }
1689 
1690   // Pick a location for the machine value number, if such a location exists.
1691   // (This information could be stored in TransferTracker to make it faster).
1692   SmallDenseMap<ValueIDNum, TransferTracker::LocationAndQuality> FoundLocs;
1693   SmallVector<ValueIDNum> ValuesToFind;
1694   // Initialized the preferred-location map with illegal locations, to be
1695   // filled in later.
1696   for (const DbgOp &Op : DbgOps) {
1697     if (!Op.IsConst)
1698       if (FoundLocs.insert({Op.ID, TransferTracker::LocationAndQuality()})
1699               .second)
1700         ValuesToFind.push_back(Op.ID);
1701   }
1702 
1703   for (auto Location : MTracker->locations()) {
1704     LocIdx CurL = Location.Idx;
1705     ValueIDNum ID = MTracker->readMLoc(CurL);
1706     auto ValueToFindIt = find(ValuesToFind, ID);
1707     if (ValueToFindIt == ValuesToFind.end())
1708       continue;
1709     auto &Previous = FoundLocs.find(ID)->second;
1710     // If this is the first location with that value, pick it. Otherwise,
1711     // consider whether it's a "longer term" location.
1712     std::optional<TransferTracker::LocationQuality> ReplacementQuality =
1713         TTracker->getLocQualityIfBetter(CurL, Previous.getQuality());
1714     if (ReplacementQuality) {
1715       Previous = TransferTracker::LocationAndQuality(CurL, *ReplacementQuality);
1716       if (Previous.isBest()) {
1717         ValuesToFind.erase(ValueToFindIt);
1718         if (ValuesToFind.empty())
1719           break;
1720       }
1721     }
1722   }
1723 
1724   SmallVector<ResolvedDbgOp> NewLocs;
1725   for (const DbgOp &DbgOp : DbgOps) {
1726     if (DbgOp.IsConst) {
1727       NewLocs.push_back(DbgOp.MO);
1728       continue;
1729     }
1730     LocIdx FoundLoc = FoundLocs.find(DbgOp.ID)->second.getLoc();
1731     if (FoundLoc.isIllegal()) {
1732       NewLocs.clear();
1733       break;
1734     }
1735     NewLocs.push_back(FoundLoc);
1736   }
1737   // Tell transfer tracker that the variable value has changed.
1738   TTracker->redefVar(MI, Properties, NewLocs);
1739 
1740   // If there were values with no location, but all such values are defined in
1741   // later instructions in this block, this is a block-local use-before-def.
1742   if (!DbgOps.empty() && NewLocs.empty()) {
1743     bool IsValidUseBeforeDef = true;
1744     uint64_t LastUseBeforeDef = 0;
1745     for (auto ValueLoc : FoundLocs) {
1746       ValueIDNum NewID = ValueLoc.first;
1747       LocIdx FoundLoc = ValueLoc.second.getLoc();
1748       if (!FoundLoc.isIllegal())
1749         continue;
1750       // If we have an value with no location that is not defined in this block,
1751       // then it has no location in this block, leaving this value undefined.
1752       if (NewID.getBlock() != CurBB || NewID.getInst() <= CurInst) {
1753         IsValidUseBeforeDef = false;
1754         break;
1755       }
1756       LastUseBeforeDef = std::max(LastUseBeforeDef, NewID.getInst());
1757     }
1758     if (IsValidUseBeforeDef) {
1759       DebugVariableID VID = DVMap.insertDVID(V, MI.getDebugLoc().get());
1760       TTracker->addUseBeforeDef(VID, {MI.getDebugExpression(), false, true},
1761                                 DbgOps, LastUseBeforeDef);
1762     }
1763   }
1764 
1765   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1766   // This DBG_VALUE is potentially a $noreg / undefined location, if
1767   // FoundLoc is illegal.
1768   // (XXX -- could morph the DBG_INSTR_REF in the future).
1769   MachineInstr *DbgMI =
1770       MTracker->emitLoc(NewLocs, V, MI.getDebugLoc().get(), Properties);
1771   DebugVariableID ID = DVMap.getDVID(V);
1772 
1773   TTracker->PendingDbgValues.push_back(std::make_pair(ID, DbgMI));
1774   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1775   return true;
1776 }
1777 
1778 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1779   if (!MI.isDebugPHI())
1780     return false;
1781 
1782   // Analyse these only when solving the machine value location problem.
1783   if (VTracker || TTracker)
1784     return true;
1785 
1786   // First operand is the value location, either a stack slot or register.
1787   // Second is the debug instruction number of the original PHI.
1788   const MachineOperand &MO = MI.getOperand(0);
1789   unsigned InstrNum = MI.getOperand(1).getImm();
1790 
1791   auto EmitBadPHI = [this, &MI, InstrNum]() -> bool {
1792     // Helper lambda to do any accounting when we fail to find a location for
1793     // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a
1794     // dead stack slot, for example.
1795     // Record a DebugPHIRecord with an empty value + location.
1796     DebugPHINumToValue.push_back(
1797         {InstrNum, MI.getParent(), std::nullopt, std::nullopt});
1798     return true;
1799   };
1800 
1801   if (MO.isReg() && MO.getReg()) {
1802     // The value is whatever's currently in the register. Read and record it,
1803     // to be analysed later.
1804     Register Reg = MO.getReg();
1805     ValueIDNum Num = MTracker->readReg(Reg);
1806     auto PHIRec = DebugPHIRecord(
1807         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1808     DebugPHINumToValue.push_back(PHIRec);
1809 
1810     // Ensure this register is tracked.
1811     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1812       MTracker->lookupOrTrackRegister(*RAI);
1813   } else if (MO.isFI()) {
1814     // The value is whatever's in this stack slot.
1815     unsigned FI = MO.getIndex();
1816 
1817     // If the stack slot is dead, then this was optimized away.
1818     // FIXME: stack slot colouring should account for slots that get merged.
1819     if (MFI->isDeadObjectIndex(FI))
1820       return EmitBadPHI();
1821 
1822     // Identify this spill slot, ensure it's tracked.
1823     Register Base;
1824     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1825     SpillLoc SL = {Base, Offs};
1826     std::optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
1827 
1828     // We might be able to find a value, but have chosen not to, to avoid
1829     // tracking too much stack information.
1830     if (!SpillNo)
1831       return EmitBadPHI();
1832 
1833     // Any stack location DBG_PHI should have an associate bit-size.
1834     assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?");
1835     unsigned slotBitSize = MI.getOperand(2).getImm();
1836 
1837     unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0});
1838     LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
1839     ValueIDNum Result = MTracker->readMLoc(SpillLoc);
1840 
1841     // Record this DBG_PHI for later analysis.
1842     auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc});
1843     DebugPHINumToValue.push_back(DbgPHI);
1844   } else {
1845     // Else: if the operand is neither a legal register or a stack slot, then
1846     // we're being fed illegal debug-info. Record an empty PHI, so that any
1847     // debug users trying to read this number will be put off trying to
1848     // interpret the value.
1849     LLVM_DEBUG(
1850         { dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; });
1851     return EmitBadPHI();
1852   }
1853 
1854   return true;
1855 }
1856 
1857 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1858   // Meta Instructions do not affect the debug liveness of any register they
1859   // define.
1860   if (MI.isImplicitDef()) {
1861     // Except when there's an implicit def, and the location it's defining has
1862     // no value number. The whole point of an implicit def is to announce that
1863     // the register is live, without be specific about it's value. So define
1864     // a value if there isn't one already.
1865     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1866     // Has a legitimate value -> ignore the implicit def.
1867     if (Num.getLoc() != 0)
1868       return;
1869     // Otherwise, def it here.
1870   } else if (MI.isMetaInstruction())
1871     return;
1872 
1873   // We always ignore SP defines on call instructions, they don't actually
1874   // change the value of the stack pointer... except for win32's _chkstk. This
1875   // is rare: filter quickly for the common case (no stack adjustments, not a
1876   // call, etc). If it is a call that modifies SP, recognise the SP register
1877   // defs.
1878   bool CallChangesSP = false;
1879   if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
1880       !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
1881     CallChangesSP = true;
1882 
1883   // Test whether we should ignore a def of this register due to it being part
1884   // of the stack pointer.
1885   auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
1886     if (CallChangesSP)
1887       return false;
1888     return MI.isCall() && MTracker->SPAliases.count(R);
1889   };
1890 
1891   // Find the regs killed by MI, and find regmasks of preserved regs.
1892   // Max out the number of statically allocated elements in `DeadRegs`, as this
1893   // prevents fallback to std::set::count() operations.
1894   SmallSet<uint32_t, 32> DeadRegs;
1895   SmallVector<const uint32_t *, 4> RegMasks;
1896   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1897   for (const MachineOperand &MO : MI.operands()) {
1898     // Determine whether the operand is a register def.
1899     if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() &&
1900         !IgnoreSPAlias(MO.getReg())) {
1901       // Remove ranges of all aliased registers.
1902       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1903         // FIXME: Can we break out of this loop early if no insertion occurs?
1904         DeadRegs.insert((*RAI).id());
1905     } else if (MO.isRegMask()) {
1906       RegMasks.push_back(MO.getRegMask());
1907       RegMaskPtrs.push_back(&MO);
1908     }
1909   }
1910 
1911   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1912   for (uint32_t DeadReg : DeadRegs)
1913     MTracker->defReg(DeadReg, CurBB, CurInst);
1914 
1915   for (const auto *MO : RegMaskPtrs)
1916     MTracker->writeRegMask(MO, CurBB, CurInst);
1917 
1918   // If this instruction writes to a spill slot, def that slot.
1919   if (hasFoldedStackStore(MI)) {
1920     if (std::optional<SpillLocationNo> SpillNo =
1921             extractSpillBaseRegAndOffset(MI)) {
1922       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1923         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1924         LocIdx L = MTracker->getSpillMLoc(SpillID);
1925         MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1926       }
1927     }
1928   }
1929 
1930   if (!TTracker)
1931     return;
1932 
1933   // When committing variable values to locations: tell transfer tracker that
1934   // we've clobbered things. It may be able to recover the variable from a
1935   // different location.
1936 
1937   // Inform TTracker about any direct clobbers.
1938   for (uint32_t DeadReg : DeadRegs) {
1939     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1940     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1941   }
1942 
1943   // Look for any clobbers performed by a register mask. Only test locations
1944   // that are actually being tracked.
1945   if (!RegMaskPtrs.empty()) {
1946     for (auto L : MTracker->locations()) {
1947       // Stack locations can't be clobbered by regmasks.
1948       if (MTracker->isSpill(L.Idx))
1949         continue;
1950 
1951       Register Reg = MTracker->LocIdxToLocID[L.Idx];
1952       if (IgnoreSPAlias(Reg))
1953         continue;
1954 
1955       for (const auto *MO : RegMaskPtrs)
1956         if (MO->clobbersPhysReg(Reg))
1957           TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1958     }
1959   }
1960 
1961   // Tell TTracker about any folded stack store.
1962   if (hasFoldedStackStore(MI)) {
1963     if (std::optional<SpillLocationNo> SpillNo =
1964             extractSpillBaseRegAndOffset(MI)) {
1965       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1966         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1967         LocIdx L = MTracker->getSpillMLoc(SpillID);
1968         TTracker->clobberMloc(L, MI.getIterator(), true);
1969       }
1970     }
1971   }
1972 }
1973 
1974 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1975   // In all circumstances, re-def all aliases. It's definitely a new value now.
1976   for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1977     MTracker->defReg(*RAI, CurBB, CurInst);
1978 
1979   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1980   MTracker->setReg(DstRegNum, SrcValue);
1981 
1982   // Copy subregisters from one location to another.
1983   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1984     unsigned SrcSubReg = SRI.getSubReg();
1985     unsigned SubRegIdx = SRI.getSubRegIndex();
1986     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1987     if (!DstSubReg)
1988       continue;
1989 
1990     // Do copy. There are two matching subregisters, the source value should
1991     // have been def'd when the super-reg was, the latter might not be tracked
1992     // yet.
1993     // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1994     // mphi values if it wasn't tracked.
1995     LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1996     LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1997     (void)SrcL;
1998     (void)DstL;
1999     ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
2000 
2001     MTracker->setReg(DstSubReg, CpyValue);
2002   }
2003 }
2004 
2005 std::optional<SpillLocationNo>
2006 InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
2007                                      MachineFunction *MF) {
2008   // TODO: Handle multiple stores folded into one.
2009   if (!MI.hasOneMemOperand())
2010     return std::nullopt;
2011 
2012   // Reject any memory operand that's aliased -- we can't guarantee its value.
2013   auto MMOI = MI.memoperands_begin();
2014   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
2015   if (PVal->isAliased(MFI))
2016     return std::nullopt;
2017 
2018   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
2019     return std::nullopt; // This is not a spill instruction, since no valid size
2020                          // was returned from either function.
2021 
2022   return extractSpillBaseRegAndOffset(MI);
2023 }
2024 
2025 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
2026                                        MachineFunction *MF, unsigned &Reg) {
2027   if (!isSpillInstruction(MI, MF))
2028     return false;
2029 
2030   int FI;
2031   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
2032   return Reg != 0;
2033 }
2034 
2035 std::optional<SpillLocationNo>
2036 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
2037                                        MachineFunction *MF, unsigned &Reg) {
2038   if (!MI.hasOneMemOperand())
2039     return std::nullopt;
2040 
2041   // FIXME: Handle folded restore instructions with more than one memory
2042   // operand.
2043   if (MI.getRestoreSize(TII)) {
2044     Reg = MI.getOperand(0).getReg();
2045     return extractSpillBaseRegAndOffset(MI);
2046   }
2047   return std::nullopt;
2048 }
2049 
2050 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
2051   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
2052   // limitations under the new model. Therefore, when comparing them, compare
2053   // versions that don't attempt spills or restores at all.
2054   if (EmulateOldLDV)
2055     return false;
2056 
2057   // Strictly limit ourselves to plain loads and stores, not all instructions
2058   // that can access the stack.
2059   int DummyFI = -1;
2060   if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
2061       !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
2062     return false;
2063 
2064   MachineFunction *MF = MI.getMF();
2065   unsigned Reg;
2066 
2067   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
2068 
2069   // Strictly limit ourselves to plain loads and stores, not all instructions
2070   // that can access the stack.
2071   int FIDummy;
2072   if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
2073       !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
2074     return false;
2075 
2076   // First, if there are any DBG_VALUEs pointing at a spill slot that is
2077   // written to, terminate that variable location. The value in memory
2078   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
2079   if (std::optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
2080     // Un-set this location and clobber, so that earlier locations don't
2081     // continue past this store.
2082     for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
2083       unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
2084       std::optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
2085       if (!MLoc)
2086         continue;
2087 
2088       // We need to over-write the stack slot with something (here, a def at
2089       // this instruction) to ensure no values are preserved in this stack slot
2090       // after the spill. It also prevents TTracker from trying to recover the
2091       // location and re-installing it in the same place.
2092       ValueIDNum Def(CurBB, CurInst, *MLoc);
2093       MTracker->setMLoc(*MLoc, Def);
2094       if (TTracker)
2095         TTracker->clobberMloc(*MLoc, MI.getIterator());
2096     }
2097   }
2098 
2099   // Try to recognise spill and restore instructions that may transfer a value.
2100   if (isLocationSpill(MI, MF, Reg)) {
2101     // isLocationSpill returning true should guarantee we can extract a
2102     // location.
2103     SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
2104 
2105     auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
2106       auto ReadValue = MTracker->readReg(SrcReg);
2107       LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
2108       MTracker->setMLoc(DstLoc, ReadValue);
2109 
2110       if (TTracker) {
2111         LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
2112         TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
2113       }
2114     };
2115 
2116     // Then, transfer subreg bits.
2117     for (MCPhysReg SR : TRI->subregs(Reg)) {
2118       // Ensure this reg is tracked,
2119       (void)MTracker->lookupOrTrackRegister(SR);
2120       unsigned SubregIdx = TRI->getSubRegIndex(Reg, SR);
2121       unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
2122       DoTransfer(SR, SpillID);
2123     }
2124 
2125     // Directly lookup size of main source reg, and transfer.
2126     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
2127     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
2128     DoTransfer(Reg, SpillID);
2129   } else {
2130     std::optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
2131     if (!Loc)
2132       return false;
2133 
2134     // Assumption: we're reading from the base of the stack slot, not some
2135     // offset into it. It seems very unlikely LLVM would ever generate
2136     // restores where this wasn't true. This then becomes a question of what
2137     // subregisters in the destination register line up with positions in the
2138     // stack slot.
2139 
2140     // Def all registers that alias the destination.
2141     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2142       MTracker->defReg(*RAI, CurBB, CurInst);
2143 
2144     // Now find subregisters within the destination register, and load values
2145     // from stack slot positions.
2146     auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
2147       LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
2148       auto ReadValue = MTracker->readMLoc(SrcIdx);
2149       MTracker->setReg(DestReg, ReadValue);
2150     };
2151 
2152     for (MCPhysReg SR : TRI->subregs(Reg)) {
2153       unsigned Subreg = TRI->getSubRegIndex(Reg, SR);
2154       unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
2155       DoTransfer(SR, SpillID);
2156     }
2157 
2158     // Directly look up this registers slot idx by size, and transfer.
2159     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
2160     unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
2161     DoTransfer(Reg, SpillID);
2162   }
2163   return true;
2164 }
2165 
2166 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
2167   auto DestSrc = TII->isCopyLikeInstr(MI);
2168   if (!DestSrc)
2169     return false;
2170 
2171   const MachineOperand *DestRegOp = DestSrc->Destination;
2172   const MachineOperand *SrcRegOp = DestSrc->Source;
2173 
2174   Register SrcReg = SrcRegOp->getReg();
2175   Register DestReg = DestRegOp->getReg();
2176 
2177   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
2178   if (SrcReg == DestReg)
2179     return true;
2180 
2181   // For emulating VarLocBasedImpl:
2182   // We want to recognize instructions where destination register is callee
2183   // saved register. If register that could be clobbered by the call is
2184   // included, there would be a great chance that it is going to be clobbered
2185   // soon. It is more likely that previous register, which is callee saved, is
2186   // going to stay unclobbered longer, even if it is killed.
2187   //
2188   // For InstrRefBasedImpl, we can track multiple locations per value, so
2189   // ignore this condition.
2190   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
2191     return false;
2192 
2193   // InstrRefBasedImpl only followed killing copies.
2194   if (EmulateOldLDV && !SrcRegOp->isKill())
2195     return false;
2196 
2197   // Before we update MTracker, remember which values were present in each of
2198   // the locations about to be overwritten, so that we can recover any
2199   // potentially clobbered variables.
2200   DenseMap<LocIdx, ValueIDNum> ClobberedLocs;
2201   if (TTracker) {
2202     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
2203       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
2204       auto MLocIt = TTracker->ActiveMLocs.find(ClobberedLoc);
2205       // If ActiveMLocs isn't tracking this location or there are no variables
2206       // using it, don't bother remembering.
2207       if (MLocIt == TTracker->ActiveMLocs.end() || MLocIt->second.empty())
2208         continue;
2209       ValueIDNum Value = MTracker->readReg(*RAI);
2210       ClobberedLocs[ClobberedLoc] = Value;
2211     }
2212   }
2213 
2214   // Copy MTracker info, including subregs if available.
2215   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
2216 
2217   // The copy might have clobbered variables based on the destination register.
2218   // Tell TTracker about it, passing the old ValueIDNum to search for
2219   // alternative locations (or else terminating those variables).
2220   if (TTracker) {
2221     for (auto LocVal : ClobberedLocs) {
2222       TTracker->clobberMloc(LocVal.first, LocVal.second, MI.getIterator(), false);
2223     }
2224   }
2225 
2226   // Only produce a transfer of DBG_VALUE within a block where old LDV
2227   // would have. We might make use of the additional value tracking in some
2228   // other way, later.
2229   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
2230     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
2231                             MTracker->getRegMLoc(DestReg), MI.getIterator());
2232 
2233   // VarLocBasedImpl would quit tracking the old location after copying.
2234   if (EmulateOldLDV && SrcReg != DestReg)
2235     MTracker->defReg(SrcReg, CurBB, CurInst);
2236 
2237   return true;
2238 }
2239 
2240 /// Accumulate a mapping between each DILocalVariable fragment and other
2241 /// fragments of that DILocalVariable which overlap. This reduces work during
2242 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
2243 /// known-to-overlap fragments are present".
2244 /// \param MI A previously unprocessed debug instruction to analyze for
2245 ///           fragment usage.
2246 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
2247   assert(MI.isDebugValueLike());
2248   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
2249                       MI.getDebugLoc()->getInlinedAt());
2250   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
2251 
2252   // If this is the first sighting of this variable, then we are guaranteed
2253   // there are currently no overlapping fragments either. Initialize the set
2254   // of seen fragments, record no overlaps for the current one, and return.
2255   auto [SeenIt, Inserted] = SeenFragments.try_emplace(MIVar.getVariable());
2256   if (Inserted) {
2257     SeenIt->second.insert(ThisFragment);
2258 
2259     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2260     return;
2261   }
2262 
2263   // If this particular Variable/Fragment pair already exists in the overlap
2264   // map, it has already been accounted for.
2265   auto IsInOLapMap =
2266       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2267   if (!IsInOLapMap.second)
2268     return;
2269 
2270   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
2271   auto &AllSeenFragments = SeenIt->second;
2272 
2273   // Otherwise, examine all other seen fragments for this variable, with "this"
2274   // fragment being a previously unseen fragment. Record any pair of
2275   // overlapping fragments.
2276   for (const auto &ASeenFragment : AllSeenFragments) {
2277     // Does this previously seen fragment overlap?
2278     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
2279       // Yes: Mark the current fragment as being overlapped.
2280       ThisFragmentsOverlaps.push_back(ASeenFragment);
2281       // Mark the previously seen fragment as being overlapped by the current
2282       // one.
2283       auto ASeenFragmentsOverlaps =
2284           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
2285       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
2286              "Previously seen var fragment has no vector of overlaps");
2287       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2288     }
2289   }
2290 
2291   AllSeenFragments.insert(ThisFragment);
2292 }
2293 
2294 void InstrRefBasedLDV::process(MachineInstr &MI,
2295                                const FuncValueTable *MLiveOuts,
2296                                const FuncValueTable *MLiveIns) {
2297   // Try to interpret an MI as a debug or transfer instruction. Only if it's
2298   // none of these should we interpret it's register defs as new value
2299   // definitions.
2300   if (transferDebugValue(MI))
2301     return;
2302   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
2303     return;
2304   if (transferDebugPHI(MI))
2305     return;
2306   if (transferRegisterCopy(MI))
2307     return;
2308   if (transferSpillOrRestoreInst(MI))
2309     return;
2310   transferRegisterDef(MI);
2311 }
2312 
2313 void InstrRefBasedLDV::produceMLocTransferFunction(
2314     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
2315     unsigned MaxNumBlocks) {
2316   // Because we try to optimize around register mask operands by ignoring regs
2317   // that aren't currently tracked, we set up something ugly for later: RegMask
2318   // operands that are seen earlier than the first use of a register, still need
2319   // to clobber that register in the transfer function. But this information
2320   // isn't actively recorded. Instead, we track each RegMask used in each block,
2321   // and accumulated the clobbered but untracked registers in each block into
2322   // the following bitvector. Later, if new values are tracked, we can add
2323   // appropriate clobbers.
2324   SmallVector<BitVector, 32> BlockMasks;
2325   BlockMasks.resize(MaxNumBlocks);
2326 
2327   // Reserve one bit per register for the masks described above.
2328   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
2329   for (auto &BV : BlockMasks)
2330     BV.resize(TRI->getNumRegs(), true);
2331 
2332   // Step through all instructions and inhale the transfer function.
2333   for (auto &MBB : MF) {
2334     // Object fields that are read by trackers to know where we are in the
2335     // function.
2336     CurBB = MBB.getNumber();
2337     CurInst = 1;
2338 
2339     // Set all machine locations to a PHI value. For transfer function
2340     // production only, this signifies the live-in value to the block.
2341     MTracker->reset();
2342     MTracker->setMPhis(CurBB);
2343 
2344     // Step through each instruction in this block.
2345     for (auto &MI : MBB) {
2346       // Pass in an empty unique_ptr for the value tables when accumulating the
2347       // machine transfer function.
2348       process(MI, nullptr, nullptr);
2349 
2350       // Also accumulate fragment map.
2351       if (MI.isDebugValueLike())
2352         accumulateFragmentMap(MI);
2353 
2354       // Create a map from the instruction number (if present) to the
2355       // MachineInstr and its position.
2356       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
2357         auto InstrAndPos = std::make_pair(&MI, CurInst);
2358         auto InsertResult =
2359             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
2360 
2361         // There should never be duplicate instruction numbers.
2362         assert(InsertResult.second);
2363         (void)InsertResult;
2364       }
2365 
2366       ++CurInst;
2367     }
2368 
2369     // Produce the transfer function, a map of machine location to new value. If
2370     // any machine location has the live-in phi value from the start of the
2371     // block, it's live-through and doesn't need recording in the transfer
2372     // function.
2373     for (auto Location : MTracker->locations()) {
2374       LocIdx Idx = Location.Idx;
2375       ValueIDNum &P = Location.Value;
2376       if (P.isPHI() && P.getLoc() == Idx.asU64())
2377         continue;
2378 
2379       // Insert-or-update.
2380       auto &TransferMap = MLocTransfer[CurBB];
2381       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
2382       if (!Result.second)
2383         Result.first->second = P;
2384     }
2385 
2386     // Accumulate any bitmask operands into the clobbered reg mask for this
2387     // block.
2388     for (auto &P : MTracker->Masks) {
2389       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
2390     }
2391   }
2392 
2393   // Compute a bitvector of all the registers that are tracked in this block.
2394   BitVector UsedRegs(TRI->getNumRegs());
2395   for (auto Location : MTracker->locations()) {
2396     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
2397     // Ignore stack slots, and aliases of the stack pointer.
2398     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
2399       continue;
2400     UsedRegs.set(ID);
2401   }
2402 
2403   // Check that any regmask-clobber of a register that gets tracked, is not
2404   // live-through in the transfer function. It needs to be clobbered at the
2405   // very least.
2406   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
2407     BitVector &BV = BlockMasks[I];
2408     BV.flip();
2409     BV &= UsedRegs;
2410     // This produces all the bits that we clobber, but also use. Check that
2411     // they're all clobbered or at least set in the designated transfer
2412     // elem.
2413     for (unsigned Bit : BV.set_bits()) {
2414       unsigned ID = MTracker->getLocID(Bit);
2415       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
2416       auto &TransferMap = MLocTransfer[I];
2417 
2418       // Install a value representing the fact that this location is effectively
2419       // written to in this block. As there's no reserved value, instead use
2420       // a value number that is never generated. Pick the value number for the
2421       // first instruction in the block, def'ing this location, which we know
2422       // this block never used anyway.
2423       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
2424       auto Result =
2425         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
2426       if (!Result.second) {
2427         ValueIDNum &ValueID = Result.first->second;
2428         if (ValueID.getBlock() == I && ValueID.isPHI())
2429           // It was left as live-through. Set it to clobbered.
2430           ValueID = NotGeneratedNum;
2431       }
2432     }
2433   }
2434 }
2435 
2436 bool InstrRefBasedLDV::mlocJoin(
2437     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2438     FuncValueTable &OutLocs, ValueTable &InLocs) {
2439   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2440   bool Changed = false;
2441 
2442   // Handle value-propagation when control flow merges on entry to a block. For
2443   // any location without a PHI already placed, the location has the same value
2444   // as its predecessors. If a PHI is placed, test to see whether it's now a
2445   // redundant PHI that we can eliminate.
2446 
2447   SmallVector<const MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2448 
2449   // Visit predecessors in RPOT order.
2450   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2451     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2452   };
2453   llvm::sort(BlockOrders, Cmp);
2454 
2455   // Skip entry block.
2456   if (BlockOrders.size() == 0) {
2457     // FIXME: We don't use assert here to prevent instr-ref-unreachable.mir
2458     // failing.
2459     LLVM_DEBUG(if (!MBB.isEntryBlock()) dbgs()
2460                << "Found not reachable block " << MBB.getFullName()
2461                << " from entry which may lead out of "
2462                   "bound access to VarLocs\n");
2463     return false;
2464   }
2465 
2466   // Step through all machine locations, look at each predecessor and test
2467   // whether we can eliminate redundant PHIs.
2468   for (auto Location : MTracker->locations()) {
2469     LocIdx Idx = Location.Idx;
2470 
2471     // Pick out the first predecessors live-out value for this location. It's
2472     // guaranteed to not be a backedge, as we order by RPO.
2473     ValueIDNum FirstVal = OutLocs[*BlockOrders[0]][Idx.asU64()];
2474 
2475     // If we've already eliminated a PHI here, do no further checking, just
2476     // propagate the first live-in value into this block.
2477     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
2478       if (InLocs[Idx.asU64()] != FirstVal) {
2479         InLocs[Idx.asU64()] = FirstVal;
2480         Changed |= true;
2481       }
2482       continue;
2483     }
2484 
2485     // We're now examining a PHI to see whether it's un-necessary. Loop around
2486     // the other live-in values and test whether they're all the same.
2487     bool Disagree = false;
2488     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2489       const MachineBasicBlock *PredMBB = BlockOrders[I];
2490       const ValueIDNum &PredLiveOut = OutLocs[*PredMBB][Idx.asU64()];
2491 
2492       // Incoming values agree, continue trying to eliminate this PHI.
2493       if (FirstVal == PredLiveOut)
2494         continue;
2495 
2496       // We can also accept a PHI value that feeds back into itself.
2497       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
2498         continue;
2499 
2500       // Live-out of a predecessor disagrees with the first predecessor.
2501       Disagree = true;
2502     }
2503 
2504     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
2505     if (!Disagree) {
2506       InLocs[Idx.asU64()] = FirstVal;
2507       Changed |= true;
2508     }
2509   }
2510 
2511   // TODO: Reimplement NumInserted and NumRemoved.
2512   return Changed;
2513 }
2514 
2515 void InstrRefBasedLDV::findStackIndexInterference(
2516     SmallVectorImpl<unsigned> &Slots) {
2517   // We could spend a bit of time finding the exact, minimal, set of stack
2518   // indexes that interfere with each other, much like reg units. Or, we can
2519   // rely on the fact that:
2520   //  * The smallest / lowest index will interfere with everything at zero
2521   //    offset, which will be the largest set of registers,
2522   //  * Most indexes with non-zero offset will end up being interference units
2523   //    anyway.
2524   // So just pick those out and return them.
2525 
2526   // We can rely on a single-byte stack index existing already, because we
2527   // initialize them in MLocTracker.
2528   auto It = MTracker->StackSlotIdxes.find({8, 0});
2529   assert(It != MTracker->StackSlotIdxes.end());
2530   Slots.push_back(It->second);
2531 
2532   // Find anything that has a non-zero offset and add that too.
2533   for (auto &Pair : MTracker->StackSlotIdxes) {
2534     // Is offset zero? If so, ignore.
2535     if (!Pair.first.second)
2536       continue;
2537     Slots.push_back(Pair.second);
2538   }
2539 }
2540 
2541 void InstrRefBasedLDV::placeMLocPHIs(
2542     MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2543     FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2544   SmallVector<unsigned, 4> StackUnits;
2545   findStackIndexInterference(StackUnits);
2546 
2547   // To avoid repeatedly running the PHI placement algorithm, leverage the
2548   // fact that a def of register MUST also def its register units. Find the
2549   // units for registers, place PHIs for them, and then replicate them for
2550   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
2551   // arguments) don't lead to register units being tracked, just place PHIs for
2552   // those registers directly. Stack slots have their own form of "unit",
2553   // store them to one side.
2554   SmallSet<Register, 32> RegUnitsToPHIUp;
2555   SmallSet<LocIdx, 32> NormalLocsToPHI;
2556   SmallSet<SpillLocationNo, 32> StackSlots;
2557   for (auto Location : MTracker->locations()) {
2558     LocIdx L = Location.Idx;
2559     if (MTracker->isSpill(L)) {
2560       StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
2561       continue;
2562     }
2563 
2564     Register R = MTracker->LocIdxToLocID[L];
2565     SmallSet<Register, 8> FoundRegUnits;
2566     bool AnyIllegal = false;
2567     for (MCRegUnit Unit : TRI->regunits(R.asMCReg())) {
2568       for (MCRegUnitRootIterator URoot(Unit, TRI); URoot.isValid(); ++URoot) {
2569         if (!MTracker->isRegisterTracked(*URoot)) {
2570           // Not all roots were loaded into the tracking map: this register
2571           // isn't actually def'd anywhere, we only read from it. Generate PHIs
2572           // for this reg, but don't iterate units.
2573           AnyIllegal = true;
2574         } else {
2575           FoundRegUnits.insert(*URoot);
2576         }
2577       }
2578     }
2579 
2580     if (AnyIllegal) {
2581       NormalLocsToPHI.insert(L);
2582       continue;
2583     }
2584 
2585     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
2586   }
2587 
2588   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
2589   // collection.
2590   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2591   auto CollectPHIsForLoc = [&](LocIdx L) {
2592     // Collect the set of defs.
2593     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2594     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2595       MachineBasicBlock *MBB = OrderToBB[I];
2596       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
2597       if (TransferFunc.contains(L))
2598         DefBlocks.insert(MBB);
2599     }
2600 
2601     // The entry block defs the location too: it's the live-in / argument value.
2602     // Only insert if there are other defs though; everything is trivially live
2603     // through otherwise.
2604     if (!DefBlocks.empty())
2605       DefBlocks.insert(&*MF.begin());
2606 
2607     // Ask the SSA construction algorithm where we should put PHIs. Clear
2608     // anything that might have been hanging around from earlier.
2609     PHIBlocks.clear();
2610     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
2611   };
2612 
2613   auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
2614     for (const MachineBasicBlock *MBB : PHIBlocks)
2615       MInLocs[*MBB][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
2616   };
2617 
2618   // For locations with no reg units, just place PHIs.
2619   for (LocIdx L : NormalLocsToPHI) {
2620     CollectPHIsForLoc(L);
2621     // Install those PHI values into the live-in value array.
2622     InstallPHIsAtLoc(L);
2623   }
2624 
2625   // For stack slots, calculate PHIs for the equivalent of the units, then
2626   // install for each index.
2627   for (SpillLocationNo Slot : StackSlots) {
2628     for (unsigned Idx : StackUnits) {
2629       unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2630       LocIdx L = MTracker->getSpillMLoc(SpillID);
2631       CollectPHIsForLoc(L);
2632       InstallPHIsAtLoc(L);
2633 
2634       // Find anything that aliases this stack index, install PHIs for it too.
2635       unsigned Size, Offset;
2636       std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2637       for (auto &Pair : MTracker->StackSlotIdxes) {
2638         unsigned ThisSize, ThisOffset;
2639         std::tie(ThisSize, ThisOffset) = Pair.first;
2640         if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2641           continue;
2642 
2643         unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2644         LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2645         InstallPHIsAtLoc(ThisL);
2646       }
2647     }
2648   }
2649 
2650   // For reg units, place PHIs, and then place them for any aliasing registers.
2651   for (Register R : RegUnitsToPHIUp) {
2652     LocIdx L = MTracker->lookupOrTrackRegister(R);
2653     CollectPHIsForLoc(L);
2654 
2655     // Install those PHI values into the live-in value array.
2656     InstallPHIsAtLoc(L);
2657 
2658     // Now find aliases and install PHIs for those.
2659     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2660       // Super-registers that are "above" the largest register read/written by
2661       // the function will alias, but will not be tracked.
2662       if (!MTracker->isRegisterTracked(*RAI))
2663         continue;
2664 
2665       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2666       InstallPHIsAtLoc(AliasLoc);
2667     }
2668   }
2669 }
2670 
2671 void InstrRefBasedLDV::buildMLocValueMap(
2672     MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs,
2673     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2674   std::priority_queue<unsigned int, std::vector<unsigned int>,
2675                       std::greater<unsigned int>>
2676       Worklist, Pending;
2677 
2678   // We track what is on the current and pending worklist to avoid inserting
2679   // the same thing twice. We could avoid this with a custom priority queue,
2680   // but this is probably not worth it.
2681   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2682 
2683   // Initialize worklist with every block to be visited. Also produce list of
2684   // all blocks.
2685   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2686   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2687     Worklist.push(I);
2688     OnWorklist.insert(OrderToBB[I]);
2689     AllBlocks.insert(OrderToBB[I]);
2690   }
2691 
2692   // Initialize entry block to PHIs. These represent arguments.
2693   for (auto Location : MTracker->locations())
2694     MInLocs.tableForEntryMBB()[Location.Idx.asU64()] =
2695         ValueIDNum(0, 0, Location.Idx);
2696 
2697   MTracker->reset();
2698 
2699   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2700   // any machine-location that isn't live-through a block to be def'd in that
2701   // block.
2702   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2703 
2704   // Propagate values to eliminate redundant PHIs. At the same time, this
2705   // produces the table of Block x Location => Value for the entry to each
2706   // block.
2707   // The kind of PHIs we can eliminate are, for example, where one path in a
2708   // conditional spills and restores a register, and the register still has
2709   // the same value once control flow joins, unbeknowns to the PHI placement
2710   // code. Propagating values allows us to identify such un-necessary PHIs and
2711   // remove them.
2712   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2713   while (!Worklist.empty() || !Pending.empty()) {
2714     // Vector for storing the evaluated block transfer function.
2715     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2716 
2717     while (!Worklist.empty()) {
2718       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2719       CurBB = MBB->getNumber();
2720       Worklist.pop();
2721 
2722       // Join the values in all predecessor blocks.
2723       bool InLocsChanged;
2724       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[*MBB]);
2725       InLocsChanged |= Visited.insert(MBB).second;
2726 
2727       // Don't examine transfer function if we've visited this loc at least
2728       // once, and inlocs haven't changed.
2729       if (!InLocsChanged)
2730         continue;
2731 
2732       // Load the current set of live-ins into MLocTracker.
2733       MTracker->loadFromArray(MInLocs[*MBB], CurBB);
2734 
2735       // Each element of the transfer function can be a new def, or a read of
2736       // a live-in value. Evaluate each element, and store to "ToRemap".
2737       ToRemap.clear();
2738       for (auto &P : MLocTransfer[CurBB]) {
2739         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2740           // This is a movement of whatever was live in. Read it.
2741           ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2742           ToRemap.push_back(std::make_pair(P.first, NewID));
2743         } else {
2744           // It's a def. Just set it.
2745           assert(P.second.getBlock() == CurBB);
2746           ToRemap.push_back(std::make_pair(P.first, P.second));
2747         }
2748       }
2749 
2750       // Commit the transfer function changes into mloc tracker, which
2751       // transforms the contents of the MLocTracker into the live-outs.
2752       for (auto &P : ToRemap)
2753         MTracker->setMLoc(P.first, P.second);
2754 
2755       // Now copy out-locs from mloc tracker into out-loc vector, checking
2756       // whether changes have occurred. These changes can have come from both
2757       // the transfer function, and mlocJoin.
2758       bool OLChanged = false;
2759       for (auto Location : MTracker->locations()) {
2760         OLChanged |= MOutLocs[*MBB][Location.Idx.asU64()] != Location.Value;
2761         MOutLocs[*MBB][Location.Idx.asU64()] = Location.Value;
2762       }
2763 
2764       MTracker->reset();
2765 
2766       // No need to examine successors again if out-locs didn't change.
2767       if (!OLChanged)
2768         continue;
2769 
2770       // All successors should be visited: put any back-edges on the pending
2771       // list for the next pass-through, and any other successors to be
2772       // visited this pass, if they're not going to be already.
2773       for (auto *s : MBB->successors()) {
2774         // Does branching to this successor represent a back-edge?
2775         if (BBToOrder[s] > BBToOrder[MBB]) {
2776           // No: visit it during this dataflow iteration.
2777           if (OnWorklist.insert(s).second)
2778             Worklist.push(BBToOrder[s]);
2779         } else {
2780           // Yes: visit it on the next iteration.
2781           if (OnPending.insert(s).second)
2782             Pending.push(BBToOrder[s]);
2783         }
2784       }
2785     }
2786 
2787     Worklist.swap(Pending);
2788     std::swap(OnPending, OnWorklist);
2789     OnPending.clear();
2790     // At this point, pending must be empty, since it was just the empty
2791     // worklist
2792     assert(Pending.empty() && "Pending should be empty");
2793   }
2794 
2795   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2796   // redundant PHIs.
2797 }
2798 
2799 void InstrRefBasedLDV::BlockPHIPlacement(
2800     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2801     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2802     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2803   // Apply IDF calculator to the designated set of location defs, storing
2804   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2805   // InstrRefBasedLDV object.
2806   IDFCalculatorBase<MachineBasicBlock, false> IDF(*DomTree);
2807 
2808   IDF.setLiveInBlocks(AllBlocks);
2809   IDF.setDefiningBlocks(DefBlocks);
2810   IDF.calculate(PHIBlocks);
2811 }
2812 
2813 bool InstrRefBasedLDV::pickVPHILoc(
2814     SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
2815     const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
2816     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2817 
2818   // No predecessors means no PHIs.
2819   if (BlockOrders.empty())
2820     return false;
2821 
2822   // All the location operands that do not already agree need to be joined,
2823   // track the indices of each such location operand here.
2824   SmallDenseSet<unsigned> LocOpsToJoin;
2825 
2826   auto FirstValueIt = LiveOuts.find(BlockOrders[0]);
2827   if (FirstValueIt == LiveOuts.end())
2828     return false;
2829   const DbgValue &FirstValue = *FirstValueIt->second;
2830 
2831   for (const auto p : BlockOrders) {
2832     auto OutValIt = LiveOuts.find(p);
2833     if (OutValIt == LiveOuts.end())
2834       // If we have a predecessor not in scope, we'll never find a PHI position.
2835       return false;
2836     const DbgValue &OutVal = *OutValIt->second;
2837 
2838     // No-values cannot have locations we can join on.
2839     if (OutVal.Kind == DbgValue::NoVal)
2840       return false;
2841 
2842     // For unjoined VPHIs where we don't know the location, we definitely
2843     // can't find a join loc unless the VPHI is a backedge.
2844     if (OutVal.isUnjoinedPHI() && OutVal.BlockNo != MBB.getNumber())
2845       return false;
2846 
2847     if (!FirstValue.Properties.isJoinable(OutVal.Properties))
2848       return false;
2849 
2850     for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
2851       // An unjoined PHI has no defined locations, and so a shared location must
2852       // be found for every operand.
2853       if (OutVal.isUnjoinedPHI()) {
2854         LocOpsToJoin.insert(Idx);
2855         continue;
2856       }
2857       DbgOpID FirstValOp = FirstValue.getDbgOpID(Idx);
2858       DbgOpID OutValOp = OutVal.getDbgOpID(Idx);
2859       if (FirstValOp != OutValOp) {
2860         // We can never join constant ops - the ops must either both be equal
2861         // constant ops or non-const ops.
2862         if (FirstValOp.isConst() || OutValOp.isConst())
2863           return false;
2864         else
2865           LocOpsToJoin.insert(Idx);
2866       }
2867     }
2868   }
2869 
2870   SmallVector<DbgOpID> NewDbgOps;
2871 
2872   for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
2873     // If this op doesn't need to be joined because the values agree, use that
2874     // already-agreed value.
2875     if (!LocOpsToJoin.contains(Idx)) {
2876       NewDbgOps.push_back(FirstValue.getDbgOpID(Idx));
2877       continue;
2878     }
2879 
2880     std::optional<ValueIDNum> JoinedOpLoc =
2881         pickOperandPHILoc(Idx, MBB, LiveOuts, MOutLocs, BlockOrders);
2882 
2883     if (!JoinedOpLoc)
2884       return false;
2885 
2886     NewDbgOps.push_back(DbgOpStore.insert(*JoinedOpLoc));
2887   }
2888 
2889   OutValues.append(NewDbgOps);
2890   return true;
2891 }
2892 
2893 std::optional<ValueIDNum> InstrRefBasedLDV::pickOperandPHILoc(
2894     unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
2895     FuncValueTable &MOutLocs,
2896     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2897 
2898   // Collect a set of locations from predecessor where its live-out value can
2899   // be found.
2900   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2901   unsigned NumLocs = MTracker->getNumLocs();
2902 
2903   for (const auto p : BlockOrders) {
2904     auto OutValIt = LiveOuts.find(p);
2905     assert(OutValIt != LiveOuts.end());
2906     const DbgValue &OutVal = *OutValIt->second;
2907     DbgOpID OutValOpID = OutVal.getDbgOpID(DbgOpIdx);
2908     DbgOp OutValOp = DbgOpStore.find(OutValOpID);
2909     assert(!OutValOp.IsConst);
2910 
2911     // Create new empty vector of locations.
2912     Locs.resize(Locs.size() + 1);
2913 
2914     // If the live-in value is a def, find the locations where that value is
2915     // present. Do the same for VPHIs where we know the VPHI value.
2916     if (OutVal.Kind == DbgValue::Def ||
2917         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2918          !OutValOp.isUndef())) {
2919       ValueIDNum ValToLookFor = OutValOp.ID;
2920       // Search the live-outs of the predecessor for the specified value.
2921       for (unsigned int I = 0; I < NumLocs; ++I) {
2922         if (MOutLocs[*p][I] == ValToLookFor)
2923           Locs.back().push_back(LocIdx(I));
2924       }
2925     } else {
2926       assert(OutVal.Kind == DbgValue::VPHI);
2927       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2928       // a value that's live-through the whole loop. (It has to be a backedge,
2929       // because a block can't dominate itself). We can accept as a PHI location
2930       // any location where the other predecessors agree, _and_ the machine
2931       // locations feed back into themselves. Therefore, add all self-looping
2932       // machine-value PHI locations.
2933       for (unsigned int I = 0; I < NumLocs; ++I) {
2934         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2935         if (MOutLocs[*p][I] == MPHI)
2936           Locs.back().push_back(LocIdx(I));
2937       }
2938     }
2939   }
2940   // We should have found locations for all predecessors, or returned.
2941   assert(Locs.size() == BlockOrders.size());
2942 
2943   // Starting with the first set of locations, take the intersection with
2944   // subsequent sets.
2945   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2946   for (unsigned int I = 1; I < Locs.size(); ++I) {
2947     auto &LocVec = Locs[I];
2948     SmallVector<LocIdx, 4> NewCandidates;
2949     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2950                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2951     CandidateLocs = std::move(NewCandidates);
2952   }
2953   if (CandidateLocs.empty())
2954     return std::nullopt;
2955 
2956   // We now have a set of LocIdxes that contain the right output value in
2957   // each of the predecessors. Pick the lowest; if there's a register loc,
2958   // that'll be it.
2959   LocIdx L = *CandidateLocs.begin();
2960 
2961   // Return a PHI-value-number for the found location.
2962   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2963   return PHIVal;
2964 }
2965 
2966 bool InstrRefBasedLDV::vlocJoin(
2967     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2968     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2969     DbgValue &LiveIn) {
2970   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2971   bool Changed = false;
2972 
2973   // Order predecessors by RPOT order, for exploring them in that order.
2974   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2975 
2976   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2977     return BBToOrder[A] < BBToOrder[B];
2978   };
2979 
2980   llvm::sort(BlockOrders, Cmp);
2981 
2982   unsigned CurBlockRPONum = BBToOrder[&MBB];
2983 
2984   // Collect all the incoming DbgValues for this variable, from predecessor
2985   // live-out values.
2986   SmallVector<InValueT, 8> Values;
2987   bool Bail = false;
2988   int BackEdgesStart = 0;
2989   for (auto *p : BlockOrders) {
2990     // If the predecessor isn't in scope / to be explored, we'll never be
2991     // able to join any locations.
2992     if (!BlocksToExplore.contains(p)) {
2993       Bail = true;
2994       break;
2995     }
2996 
2997     // All Live-outs will have been initialized.
2998     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2999 
3000     // Keep track of where back-edges begin in the Values vector. Relies on
3001     // BlockOrders being sorted by RPO.
3002     unsigned ThisBBRPONum = BBToOrder[p];
3003     if (ThisBBRPONum < CurBlockRPONum)
3004       ++BackEdgesStart;
3005 
3006     Values.push_back(std::make_pair(p, &OutLoc));
3007   }
3008 
3009   // If there were no values, or one of the predecessors couldn't have a
3010   // value, then give up immediately. It's not safe to produce a live-in
3011   // value. Leave as whatever it was before.
3012   if (Bail || Values.size() == 0)
3013     return false;
3014 
3015   // All (non-entry) blocks have at least one non-backedge predecessor.
3016   // Pick the variable value from the first of these, to compare against
3017   // all others.
3018   const DbgValue &FirstVal = *Values[0].second;
3019 
3020   // If the old live-in value is not a PHI then either a) no PHI is needed
3021   // here, or b) we eliminated the PHI that was here. If so, we can just
3022   // propagate in the first parent's incoming value.
3023   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
3024     Changed = LiveIn != FirstVal;
3025     if (Changed)
3026       LiveIn = FirstVal;
3027     return Changed;
3028   }
3029 
3030   // Scan for variable values that can never be resolved: if they have
3031   // different DIExpressions, different indirectness, or are mixed constants /
3032   // non-constants.
3033   for (const auto &V : Values) {
3034     if (!V.second->Properties.isJoinable(FirstVal.Properties))
3035       return false;
3036     if (V.second->Kind == DbgValue::NoVal)
3037       return false;
3038     if (!V.second->hasJoinableLocOps(FirstVal))
3039       return false;
3040   }
3041 
3042   // Try to eliminate this PHI. Do the incoming values all agree?
3043   bool Disagree = false;
3044   for (auto &V : Values) {
3045     if (*V.second == FirstVal)
3046       continue; // No disagreement.
3047 
3048     // If both values are not equal but have equal non-empty IDs then they refer
3049     // to the same value from different sources (e.g. one is VPHI and the other
3050     // is Def), which does not cause disagreement.
3051     if (V.second->hasIdenticalValidLocOps(FirstVal))
3052       continue;
3053 
3054     // Eliminate if a backedge feeds a VPHI back into itself.
3055     if (V.second->Kind == DbgValue::VPHI &&
3056         V.second->BlockNo == MBB.getNumber() &&
3057         // Is this a backedge?
3058         std::distance(Values.begin(), &V) >= BackEdgesStart)
3059       continue;
3060 
3061     Disagree = true;
3062   }
3063 
3064   // No disagreement -> live-through value.
3065   if (!Disagree) {
3066     Changed = LiveIn != FirstVal;
3067     if (Changed)
3068       LiveIn = FirstVal;
3069     return Changed;
3070   } else {
3071     // Otherwise use a VPHI.
3072     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
3073     Changed = LiveIn != VPHI;
3074     if (Changed)
3075       LiveIn = VPHI;
3076     return Changed;
3077   }
3078 }
3079 
3080 void InstrRefBasedLDV::getBlocksForScope(
3081     const DILocation *DILoc,
3082     SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
3083     const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
3084   // Get the set of "normal" in-lexical-scope blocks.
3085   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
3086 
3087   // VarLoc LiveDebugValues tracks variable locations that are defined in
3088   // blocks not in scope. This is something we could legitimately ignore, but
3089   // lets allow it for now for the sake of coverage.
3090   BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
3091 
3092   // Storage for artificial blocks we intend to add to BlocksToExplore.
3093   DenseSet<const MachineBasicBlock *> ToAdd;
3094 
3095   // To avoid needlessly dropping large volumes of variable locations, propagate
3096   // variables through aritifical blocks, i.e. those that don't have any
3097   // instructions in scope at all. To accurately replicate VarLoc
3098   // LiveDebugValues, this means exploring all artificial successors too.
3099   // Perform a depth-first-search to enumerate those blocks.
3100   for (const auto *MBB : BlocksToExplore) {
3101     // Depth-first-search state: each node is a block and which successor
3102     // we're currently exploring.
3103     SmallVector<std::pair<const MachineBasicBlock *,
3104                           MachineBasicBlock::const_succ_iterator>,
3105                 8>
3106         DFS;
3107 
3108     // Find any artificial successors not already tracked.
3109     for (auto *succ : MBB->successors()) {
3110       if (BlocksToExplore.count(succ))
3111         continue;
3112       if (!ArtificialBlocks.count(succ))
3113         continue;
3114       ToAdd.insert(succ);
3115       DFS.push_back({succ, succ->succ_begin()});
3116     }
3117 
3118     // Search all those blocks, depth first.
3119     while (!DFS.empty()) {
3120       const MachineBasicBlock *CurBB = DFS.back().first;
3121       MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
3122       // Walk back if we've explored this blocks successors to the end.
3123       if (CurSucc == CurBB->succ_end()) {
3124         DFS.pop_back();
3125         continue;
3126       }
3127 
3128       // If the current successor is artificial and unexplored, descend into
3129       // it.
3130       if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
3131         ToAdd.insert(*CurSucc);
3132         DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
3133         continue;
3134       }
3135 
3136       ++CurSucc;
3137     }
3138   };
3139 
3140   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
3141 }
3142 
3143 void InstrRefBasedLDV::buildVLocValueMap(
3144     const DILocation *DILoc,
3145     const SmallSet<DebugVariableID, 4> &VarsWeCareAbout,
3146     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
3147     FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
3148     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
3149   // This method is much like buildMLocValueMap: but focuses on a single
3150   // LexicalScope at a time. Pick out a set of blocks and variables that are
3151   // to have their value assignments solved, then run our dataflow algorithm
3152   // until a fixedpoint is reached.
3153   std::priority_queue<unsigned int, std::vector<unsigned int>,
3154                       std::greater<unsigned int>>
3155       Worklist, Pending;
3156   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
3157 
3158   // The set of blocks we'll be examining.
3159   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3160 
3161   // The order in which to examine them (RPO).
3162   SmallVector<MachineBasicBlock *, 16> BlockOrders;
3163   SmallVector<unsigned, 32> BlockOrderNums;
3164 
3165   getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
3166 
3167   // Single block scope: not interesting! No propagation at all. Note that
3168   // this could probably go above ArtificialBlocks without damage, but
3169   // that then produces output differences from original-live-debug-values,
3170   // which propagates from a single block into many artificial ones.
3171   if (BlocksToExplore.size() == 1)
3172     return;
3173 
3174   // Convert a const set to a non-const set. LexicalScopes
3175   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
3176   // (Neither of them mutate anything).
3177   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
3178   for (const auto *MBB : BlocksToExplore)
3179     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
3180 
3181   // Picks out relevants blocks RPO order and sort them. Sort their
3182   // order-numbers and map back to MBB pointers later, to avoid repeated
3183   // DenseMap queries during comparisons.
3184   for (const auto *MBB : BlocksToExplore)
3185     BlockOrderNums.push_back(BBToOrder[MBB]);
3186 
3187   llvm::sort(BlockOrderNums);
3188   for (unsigned int I : BlockOrderNums)
3189     BlockOrders.push_back(OrderToBB[I]);
3190   BlockOrderNums.clear();
3191   unsigned NumBlocks = BlockOrders.size();
3192 
3193   // Allocate some vectors for storing the live ins and live outs. Large.
3194   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
3195   LiveIns.reserve(NumBlocks);
3196   LiveOuts.reserve(NumBlocks);
3197 
3198   // Initialize all values to start as NoVals. This signifies "it's live
3199   // through, but we don't know what it is".
3200   DbgValueProperties EmptyProperties(EmptyExpr, false, false);
3201   for (unsigned int I = 0; I < NumBlocks; ++I) {
3202     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
3203     LiveIns.push_back(EmptyDbgValue);
3204     LiveOuts.push_back(EmptyDbgValue);
3205   }
3206 
3207   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
3208   // vlocJoin.
3209   LiveIdxT LiveOutIdx, LiveInIdx;
3210   LiveOutIdx.reserve(NumBlocks);
3211   LiveInIdx.reserve(NumBlocks);
3212   for (unsigned I = 0; I < NumBlocks; ++I) {
3213     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
3214     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
3215   }
3216 
3217   // Loop over each variable and place PHIs for it, then propagate values
3218   // between blocks. This keeps the locality of working on one lexical scope at
3219   // at time, but avoids re-processing variable values because some other
3220   // variable has been assigned.
3221   for (DebugVariableID VarID : VarsWeCareAbout) {
3222     // Re-initialize live-ins and live-outs, to clear the remains of previous
3223     // variables live-ins / live-outs.
3224     for (unsigned int I = 0; I < NumBlocks; ++I) {
3225       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
3226       LiveIns[I] = EmptyDbgValue;
3227       LiveOuts[I] = EmptyDbgValue;
3228     }
3229 
3230     // Place PHIs for variable values, using the LLVM IDF calculator.
3231     // Collect the set of blocks where variables are def'd.
3232     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
3233     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
3234       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
3235       if (TransferFunc.contains(VarID))
3236         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
3237     }
3238 
3239     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
3240 
3241     // Request the set of PHIs we should insert for this variable. If there's
3242     // only one value definition, things are very simple.
3243     if (DefBlocks.size() == 1) {
3244       placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
3245                                       AllTheVLocs, VarID, Output);
3246       continue;
3247     }
3248 
3249     // Otherwise: we need to place PHIs through SSA and propagate values.
3250     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
3251 
3252     // Insert PHIs into the per-block live-in tables for this variable.
3253     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
3254       unsigned BlockNo = PHIMBB->getNumber();
3255       DbgValue *LiveIn = LiveInIdx[PHIMBB];
3256       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
3257     }
3258 
3259     for (auto *MBB : BlockOrders) {
3260       Worklist.push(BBToOrder[MBB]);
3261       OnWorklist.insert(MBB);
3262     }
3263 
3264     // Iterate over all the blocks we selected, propagating the variables value.
3265     // This loop does two things:
3266     //  * Eliminates un-necessary VPHIs in vlocJoin,
3267     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
3268     //    stores the result to the blocks live-outs.
3269     // Always evaluate the transfer function on the first iteration, and when
3270     // the live-ins change thereafter.
3271     bool FirstTrip = true;
3272     while (!Worklist.empty() || !Pending.empty()) {
3273       while (!Worklist.empty()) {
3274         auto *MBB = OrderToBB[Worklist.top()];
3275         CurBB = MBB->getNumber();
3276         Worklist.pop();
3277 
3278         auto LiveInsIt = LiveInIdx.find(MBB);
3279         assert(LiveInsIt != LiveInIdx.end());
3280         DbgValue *LiveIn = LiveInsIt->second;
3281 
3282         // Join values from predecessors. Updates LiveInIdx, and writes output
3283         // into JoinedInLocs.
3284         bool InLocsChanged =
3285             vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
3286 
3287         SmallVector<const MachineBasicBlock *, 8> Preds(MBB->predecessors());
3288 
3289         // If this block's live-in value is a VPHI, try to pick a machine-value
3290         // for it. This makes the machine-value available and propagated
3291         // through all blocks by the time value propagation finishes. We can't
3292         // do this any earlier as it needs to read the block live-outs.
3293         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
3294           // There's a small possibility that on a preceeding path, a VPHI is
3295           // eliminated and transitions from VPHI-with-location to
3296           // live-through-value. As a result, the selected location of any VPHI
3297           // might change, so we need to re-compute it on each iteration.
3298           SmallVector<DbgOpID> JoinedOps;
3299 
3300           if (pickVPHILoc(JoinedOps, *MBB, LiveOutIdx, MOutLocs, Preds)) {
3301             bool NewLocPicked = !equal(LiveIn->getDbgOpIDs(), JoinedOps);
3302             InLocsChanged |= NewLocPicked;
3303             if (NewLocPicked)
3304               LiveIn->setDbgOpIDs(JoinedOps);
3305           }
3306         }
3307 
3308         if (!InLocsChanged && !FirstTrip)
3309           continue;
3310 
3311         DbgValue *LiveOut = LiveOutIdx[MBB];
3312         bool OLChanged = false;
3313 
3314         // Do transfer function.
3315         auto &VTracker = AllTheVLocs[MBB->getNumber()];
3316         auto TransferIt = VTracker.Vars.find(VarID);
3317         if (TransferIt != VTracker.Vars.end()) {
3318           // Erase on empty transfer (DBG_VALUE $noreg).
3319           if (TransferIt->second.Kind == DbgValue::Undef) {
3320             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
3321             if (*LiveOut != NewVal) {
3322               *LiveOut = NewVal;
3323               OLChanged = true;
3324             }
3325           } else {
3326             // Insert new variable value; or overwrite.
3327             if (*LiveOut != TransferIt->second) {
3328               *LiveOut = TransferIt->second;
3329               OLChanged = true;
3330             }
3331           }
3332         } else {
3333           // Just copy live-ins to live-outs, for anything not transferred.
3334           if (*LiveOut != *LiveIn) {
3335             *LiveOut = *LiveIn;
3336             OLChanged = true;
3337           }
3338         }
3339 
3340         // If no live-out value changed, there's no need to explore further.
3341         if (!OLChanged)
3342           continue;
3343 
3344         // We should visit all successors. Ensure we'll visit any non-backedge
3345         // successors during this dataflow iteration; book backedge successors
3346         // to be visited next time around.
3347         for (auto *s : MBB->successors()) {
3348           // Ignore out of scope / not-to-be-explored successors.
3349           if (!LiveInIdx.contains(s))
3350             continue;
3351 
3352           if (BBToOrder[s] > BBToOrder[MBB]) {
3353             if (OnWorklist.insert(s).second)
3354               Worklist.push(BBToOrder[s]);
3355           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
3356             Pending.push(BBToOrder[s]);
3357           }
3358         }
3359       }
3360       Worklist.swap(Pending);
3361       std::swap(OnWorklist, OnPending);
3362       OnPending.clear();
3363       assert(Pending.empty());
3364       FirstTrip = false;
3365     }
3366 
3367     // Save live-ins to output vector. Ignore any that are still marked as being
3368     // VPHIs with no location -- those are variables that we know the value of,
3369     // but are not actually available in the register file.
3370     for (auto *MBB : BlockOrders) {
3371       DbgValue *BlockLiveIn = LiveInIdx[MBB];
3372       if (BlockLiveIn->Kind == DbgValue::NoVal)
3373         continue;
3374       if (BlockLiveIn->isUnjoinedPHI())
3375         continue;
3376       if (BlockLiveIn->Kind == DbgValue::VPHI)
3377         BlockLiveIn->Kind = DbgValue::Def;
3378       [[maybe_unused]] auto &[Var, DILoc] = DVMap.lookupDVID(VarID);
3379       assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
3380                  Var.getFragment() &&
3381              "Fragment info missing during value prop");
3382       Output[MBB->getNumber()].push_back(std::make_pair(VarID, *BlockLiveIn));
3383     }
3384   } // Per-variable loop.
3385 
3386   BlockOrders.clear();
3387   BlocksToExplore.clear();
3388 }
3389 
3390 void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
3391     const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
3392     MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
3393     DebugVariableID VarID, LiveInsT &Output) {
3394   // If there is a single definition of the variable, then working out it's
3395   // value everywhere is very simple: it's every block dominated by the
3396   // definition. At the dominance frontier, the usual algorithm would:
3397   //  * Place PHIs,
3398   //  * Propagate values into them,
3399   //  * Find there's no incoming variable value from the other incoming branches
3400   //    of the dominance frontier,
3401   //  * Specify there's no variable value in blocks past the frontier.
3402   // This is a common case, hence it's worth special-casing it.
3403 
3404   // Pick out the variables value from the block transfer function.
3405   VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
3406   auto ValueIt = VLocs.Vars.find(VarID);
3407   const DbgValue &Value = ValueIt->second;
3408 
3409   // If it's an explicit assignment of "undef", that means there is no location
3410   // anyway, anywhere.
3411   if (Value.Kind == DbgValue::Undef)
3412     return;
3413 
3414   // Assign the variable value to entry to each dominated block that's in scope.
3415   // Skip the definition block -- it's assigned the variable value in the middle
3416   // of the block somewhere.
3417   for (auto *ScopeBlock : InScopeBlocks) {
3418     if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
3419       continue;
3420 
3421     Output[ScopeBlock->getNumber()].push_back({VarID, Value});
3422   }
3423 
3424   // All blocks that aren't dominated have no live-in value, thus no variable
3425   // value will be given to them.
3426 }
3427 
3428 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3429 void InstrRefBasedLDV::dump_mloc_transfer(
3430     const MLocTransferMap &mloc_transfer) const {
3431   for (const auto &P : mloc_transfer) {
3432     std::string foo = MTracker->LocIdxToName(P.first);
3433     std::string bar = MTracker->IDAsString(P.second);
3434     dbgs() << "Loc " << foo << " --> " << bar << "\n";
3435   }
3436 }
3437 #endif
3438 
3439 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
3440   // Build some useful data structures.
3441 
3442   LLVMContext &Context = MF.getFunction().getContext();
3443   EmptyExpr = DIExpression::get(Context, {});
3444 
3445   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
3446     if (const DebugLoc &DL = MI.getDebugLoc())
3447       return DL.getLine() != 0;
3448     return false;
3449   };
3450 
3451   // Collect a set of all the artificial blocks. Collect the size too, ilist
3452   // size calls are O(n).
3453   unsigned int Size = 0;
3454   for (auto &MBB : MF) {
3455     ++Size;
3456     if (none_of(MBB.instrs(), hasNonArtificialLocation))
3457       ArtificialBlocks.insert(&MBB);
3458   }
3459 
3460   // Compute mappings of block <=> RPO order.
3461   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
3462   unsigned int RPONumber = 0;
3463   OrderToBB.reserve(Size);
3464   BBToOrder.reserve(Size);
3465   BBNumToRPO.reserve(Size);
3466   auto processMBB = [&](MachineBasicBlock *MBB) {
3467     OrderToBB.push_back(MBB);
3468     BBToOrder[MBB] = RPONumber;
3469     BBNumToRPO[MBB->getNumber()] = RPONumber;
3470     ++RPONumber;
3471   };
3472   for (MachineBasicBlock *MBB : RPOT)
3473     processMBB(MBB);
3474   for (MachineBasicBlock &MBB : MF)
3475     if (!BBToOrder.contains(&MBB))
3476       processMBB(&MBB);
3477 
3478   // Order value substitutions by their "source" operand pair, for quick lookup.
3479   llvm::sort(MF.DebugValueSubstitutions);
3480 
3481 #ifdef EXPENSIVE_CHECKS
3482   // As an expensive check, test whether there are any duplicate substitution
3483   // sources in the collection.
3484   if (MF.DebugValueSubstitutions.size() > 2) {
3485     for (auto It = MF.DebugValueSubstitutions.begin();
3486          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
3487       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
3488                                               "substitution seen");
3489     }
3490   }
3491 #endif
3492 }
3493 
3494 // Produce an "ejection map" for blocks, i.e., what's the highest-numbered
3495 // lexical scope it's used in. When exploring in DFS order and we pass that
3496 // scope, the block can be processed and any tracking information freed.
3497 void InstrRefBasedLDV::makeDepthFirstEjectionMap(
3498     SmallVectorImpl<unsigned> &EjectionMap,
3499     const ScopeToDILocT &ScopeToDILocation,
3500     ScopeToAssignBlocksT &ScopeToAssignBlocks) {
3501   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3502   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3503   auto *TopScope = LS.getCurrentFunctionScope();
3504 
3505   // Unlike lexical scope explorers, we explore in reverse order, to find the
3506   // "last" lexical scope used for each block early.
3507   WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
3508 
3509   while (!WorkStack.empty()) {
3510     auto &ScopePosition = WorkStack.back();
3511     LexicalScope *WS = ScopePosition.first;
3512     ssize_t ChildNum = ScopePosition.second--;
3513 
3514     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3515     if (ChildNum >= 0) {
3516       // If ChildNum is positive, there are remaining children to explore.
3517       // Push the child and its children-count onto the stack.
3518       auto &ChildScope = Children[ChildNum];
3519       WorkStack.push_back(
3520           std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
3521     } else {
3522       WorkStack.pop_back();
3523 
3524       // We've explored all children and any later blocks: examine all blocks
3525       // in our scope. If they haven't yet had an ejection number set, then
3526       // this scope will be the last to use that block.
3527       auto DILocationIt = ScopeToDILocation.find(WS);
3528       if (DILocationIt != ScopeToDILocation.end()) {
3529         getBlocksForScope(DILocationIt->second, BlocksToExplore,
3530                           ScopeToAssignBlocks.find(WS)->second);
3531         for (const auto *MBB : BlocksToExplore) {
3532           unsigned BBNum = MBB->getNumber();
3533           if (EjectionMap[BBNum] == 0)
3534             EjectionMap[BBNum] = WS->getDFSOut();
3535         }
3536 
3537         BlocksToExplore.clear();
3538       }
3539     }
3540   }
3541 }
3542 
3543 bool InstrRefBasedLDV::depthFirstVLocAndEmit(
3544     unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
3545     const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
3546     LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
3547     SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
3548     const TargetPassConfig &TPC) {
3549   TTracker =
3550       new TransferTracker(TII, MTracker, MF, DVMap, *TRI, CalleeSavedRegs, TPC);
3551   unsigned NumLocs = MTracker->getNumLocs();
3552   VTracker = nullptr;
3553 
3554   // No scopes? No variable locations.
3555   if (!LS.getCurrentFunctionScope())
3556     return false;
3557 
3558   // Build map from block number to the last scope that uses the block.
3559   SmallVector<unsigned, 16> EjectionMap;
3560   EjectionMap.resize(MaxNumBlocks, 0);
3561   makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
3562                             ScopeToAssignBlocks);
3563 
3564   // Helper lambda for ejecting a block -- if nothing is going to use the block,
3565   // we can translate the variable location information into DBG_VALUEs and then
3566   // free all of InstrRefBasedLDV's data structures.
3567   auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
3568     unsigned BBNum = MBB.getNumber();
3569     AllTheVLocs[BBNum].clear();
3570 
3571     // Prime the transfer-tracker, and then step through all the block
3572     // instructions, installing transfers.
3573     MTracker->reset();
3574     MTracker->loadFromArray(MInLocs[MBB], BBNum);
3575     TTracker->loadInlocs(MBB, MInLocs[MBB], DbgOpStore, Output[BBNum], NumLocs);
3576 
3577     CurBB = BBNum;
3578     CurInst = 1;
3579     for (auto &MI : MBB) {
3580       process(MI, &MOutLocs, &MInLocs);
3581       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3582       ++CurInst;
3583     }
3584 
3585     // Free machine-location tables for this block.
3586     MInLocs.ejectTableForBlock(MBB);
3587     MOutLocs.ejectTableForBlock(MBB);
3588     // We don't need live-in variable values for this block either.
3589     Output[BBNum].clear();
3590     AllTheVLocs[BBNum].clear();
3591   };
3592 
3593   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3594   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3595   WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
3596   unsigned HighestDFSIn = 0;
3597 
3598   // Proceed to explore in depth first order.
3599   while (!WorkStack.empty()) {
3600     auto &ScopePosition = WorkStack.back();
3601     LexicalScope *WS = ScopePosition.first;
3602     ssize_t ChildNum = ScopePosition.second++;
3603 
3604     // We obesrve scopes with children twice here, once descending in, once
3605     // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
3606     // we don't process a scope twice. Additionally, ignore scopes that don't
3607     // have a DILocation -- by proxy, this means we never tracked any variable
3608     // assignments in that scope.
3609     auto DILocIt = ScopeToDILocation.find(WS);
3610     if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
3611       const DILocation *DILoc = DILocIt->second;
3612       auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
3613       auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
3614 
3615       buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
3616                         MInLocs, AllTheVLocs);
3617     }
3618 
3619     HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
3620 
3621     // Descend into any scope nests.
3622     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3623     if (ChildNum < (ssize_t)Children.size()) {
3624       // There are children to explore -- push onto stack and continue.
3625       auto &ChildScope = Children[ChildNum];
3626       WorkStack.push_back(std::make_pair(ChildScope, 0));
3627     } else {
3628       WorkStack.pop_back();
3629 
3630       // We've explored a leaf, or have explored all the children of a scope.
3631       // Try to eject any blocks where this is the last scope it's relevant to.
3632       auto DILocationIt = ScopeToDILocation.find(WS);
3633       if (DILocationIt == ScopeToDILocation.end())
3634         continue;
3635 
3636       getBlocksForScope(DILocationIt->second, BlocksToExplore,
3637                         ScopeToAssignBlocks.find(WS)->second);
3638       for (const auto *MBB : BlocksToExplore)
3639         if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
3640           EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
3641 
3642       BlocksToExplore.clear();
3643     }
3644   }
3645 
3646   // Some artificial blocks may not have been ejected, meaning they're not
3647   // connected to an actual legitimate scope. This can technically happen
3648   // with things like the entry block. In theory, we shouldn't need to do
3649   // anything for such out-of-scope blocks, but for the sake of being similar
3650   // to VarLocBasedLDV, eject these too.
3651   for (auto *MBB : ArtificialBlocks)
3652     if (MInLocs.hasTableFor(*MBB))
3653       EjectBlock(*MBB);
3654 
3655   return emitTransfers();
3656 }
3657 
3658 bool InstrRefBasedLDV::emitTransfers() {
3659   // Go through all the transfers recorded in the TransferTracker -- this is
3660   // both the live-ins to a block, and any movements of values that happen
3661   // in the middle.
3662   for (auto &P : TTracker->Transfers) {
3663     // We have to insert DBG_VALUEs in a consistent order, otherwise they
3664     // appear in DWARF in different orders. Use the order that they appear
3665     // when walking through each block / each instruction, stored in
3666     // DVMap.
3667     llvm::sort(P.Insts, llvm::less_first());
3668 
3669     // Insert either before or after the designated point...
3670     if (P.MBB) {
3671       MachineBasicBlock &MBB = *P.MBB;
3672       for (const auto &Pair : P.Insts)
3673         MBB.insert(P.Pos, Pair.second);
3674     } else {
3675       // Terminators, like tail calls, can clobber things. Don't try and place
3676       // transfers after them.
3677       if (P.Pos->isTerminator())
3678         continue;
3679 
3680       MachineBasicBlock &MBB = *P.Pos->getParent();
3681       for (const auto &Pair : P.Insts)
3682         MBB.insertAfterBundle(P.Pos, Pair.second);
3683     }
3684   }
3685 
3686   return TTracker->Transfers.size() != 0;
3687 }
3688 
3689 /// Calculate the liveness information for the given machine function and
3690 /// extend ranges across basic blocks.
3691 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3692                                     MachineDominatorTree *DomTree,
3693                                     TargetPassConfig *TPC,
3694                                     unsigned InputBBLimit,
3695                                     unsigned InputDbgValLimit) {
3696   // No subprogram means this function contains no debuginfo.
3697   if (!MF.getFunction().getSubprogram())
3698     return false;
3699 
3700   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3701   this->TPC = TPC;
3702 
3703   this->DomTree = DomTree;
3704   TRI = MF.getSubtarget().getRegisterInfo();
3705   MRI = &MF.getRegInfo();
3706   TII = MF.getSubtarget().getInstrInfo();
3707   TFI = MF.getSubtarget().getFrameLowering();
3708   TFI->getCalleeSaves(MF, CalleeSavedRegs);
3709   MFI = &MF.getFrameInfo();
3710   LS.initialize(MF);
3711 
3712   const auto &STI = MF.getSubtarget();
3713   AdjustsStackInCalls = MFI->adjustsStack() &&
3714                         STI.getFrameLowering()->stackProbeFunctionModifiesSP();
3715   if (AdjustsStackInCalls)
3716     StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
3717 
3718   MTracker =
3719       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3720   VTracker = nullptr;
3721   TTracker = nullptr;
3722 
3723   SmallVector<MLocTransferMap, 32> MLocTransfer;
3724   SmallVector<VLocTracker, 8> vlocs;
3725   LiveInsT SavedLiveIns;
3726 
3727   int MaxNumBlocks = -1;
3728   for (auto &MBB : MF)
3729     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3730   assert(MaxNumBlocks >= 0);
3731   ++MaxNumBlocks;
3732 
3733   initialSetup(MF);
3734 
3735   MLocTransfer.resize(MaxNumBlocks);
3736   vlocs.resize(MaxNumBlocks, VLocTracker(DVMap, OverlapFragments, EmptyExpr));
3737   SavedLiveIns.resize(MaxNumBlocks);
3738 
3739   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3740 
3741   // Allocate and initialize two array-of-arrays for the live-in and live-out
3742   // machine values. The outer dimension is the block number; while the inner
3743   // dimension is a LocIdx from MLocTracker.
3744   unsigned NumLocs = MTracker->getNumLocs();
3745   FuncValueTable MOutLocs(MaxNumBlocks, NumLocs);
3746   FuncValueTable MInLocs(MaxNumBlocks, NumLocs);
3747 
3748   // Solve the machine value dataflow problem using the MLocTransfer function,
3749   // storing the computed live-ins / live-outs into the array-of-arrays. We use
3750   // both live-ins and live-outs for decision making in the variable value
3751   // dataflow problem.
3752   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
3753 
3754   // Patch up debug phi numbers, turning unknown block-live-in values into
3755   // either live-through machine values, or PHIs.
3756   for (auto &DBG_PHI : DebugPHINumToValue) {
3757     // Identify unresolved block-live-ins.
3758     if (!DBG_PHI.ValueRead)
3759       continue;
3760 
3761     ValueIDNum &Num = *DBG_PHI.ValueRead;
3762     if (!Num.isPHI())
3763       continue;
3764 
3765     unsigned BlockNo = Num.getBlock();
3766     LocIdx LocNo = Num.getLoc();
3767     ValueIDNum ResolvedValue = MInLocs[BlockNo][LocNo.asU64()];
3768     // If there is no resolved value for this live-in then it is not directly
3769     // reachable from the entry block -- model it as a PHI on entry to this
3770     // block, which means we leave the ValueIDNum unchanged.
3771     if (ResolvedValue != ValueIDNum::EmptyValue)
3772       Num = ResolvedValue;
3773   }
3774   // Later, we'll be looking up ranges of instruction numbers.
3775   llvm::sort(DebugPHINumToValue);
3776 
3777   // Walk back through each block / instruction, collecting DBG_VALUE
3778   // instructions and recording what machine value their operands refer to.
3779   for (MachineBasicBlock *MBB : OrderToBB) {
3780     CurBB = MBB->getNumber();
3781     VTracker = &vlocs[CurBB];
3782     VTracker->MBB = MBB;
3783     MTracker->loadFromArray(MInLocs[*MBB], CurBB);
3784     CurInst = 1;
3785     for (auto &MI : *MBB) {
3786       process(MI, &MOutLocs, &MInLocs);
3787       ++CurInst;
3788     }
3789     MTracker->reset();
3790   }
3791 
3792   // Map from one LexicalScope to all the variables in that scope.
3793   ScopeToVarsT ScopeToVars;
3794 
3795   // Map from One lexical scope to all blocks where assignments happen for
3796   // that scope.
3797   ScopeToAssignBlocksT ScopeToAssignBlocks;
3798 
3799   // Store map of DILocations that describes scopes.
3800   ScopeToDILocT ScopeToDILocation;
3801 
3802   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3803   // the order is unimportant, it just has to be stable.
3804   unsigned VarAssignCount = 0;
3805   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3806     auto *MBB = OrderToBB[I];
3807     auto *VTracker = &vlocs[MBB->getNumber()];
3808     // Collect each variable with a DBG_VALUE in this block.
3809     for (auto &idx : VTracker->Vars) {
3810       DebugVariableID VarID = idx.first;
3811       const DILocation *ScopeLoc = VTracker->Scopes[VarID];
3812       assert(ScopeLoc != nullptr);
3813       auto *Scope = LS.findLexicalScope(ScopeLoc);
3814 
3815       // No insts in scope -> shouldn't have been recorded.
3816       assert(Scope != nullptr);
3817 
3818       ScopeToVars[Scope].insert(VarID);
3819       ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
3820       ScopeToDILocation[Scope] = ScopeLoc;
3821       ++VarAssignCount;
3822     }
3823   }
3824 
3825   bool Changed = false;
3826 
3827   // If we have an extremely large number of variable assignments and blocks,
3828   // bail out at this point. We've burnt some time doing analysis already,
3829   // however we should cut our losses.
3830   if ((unsigned)MaxNumBlocks > InputBBLimit &&
3831       VarAssignCount > InputDbgValLimit) {
3832     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3833                       << " has " << MaxNumBlocks << " basic blocks and "
3834                       << VarAssignCount
3835                       << " variable assignments, exceeding limits.\n");
3836   } else {
3837     // Optionally, solve the variable value problem and emit to blocks by using
3838     // a lexical-scope-depth search. It should be functionally identical to
3839     // the "else" block of this condition.
3840     Changed = depthFirstVLocAndEmit(
3841         MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
3842         SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, *TPC);
3843   }
3844 
3845   delete MTracker;
3846   delete TTracker;
3847   MTracker = nullptr;
3848   VTracker = nullptr;
3849   TTracker = nullptr;
3850 
3851   ArtificialBlocks.clear();
3852   OrderToBB.clear();
3853   BBToOrder.clear();
3854   BBNumToRPO.clear();
3855   DebugInstrNumToInstr.clear();
3856   DebugPHINumToValue.clear();
3857   OverlapFragments.clear();
3858   SeenFragments.clear();
3859   SeenDbgPHIs.clear();
3860   DbgOpStore.clear();
3861   DVMap.clear();
3862 
3863   return Changed;
3864 }
3865 
3866 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3867   return new InstrRefBasedLDV();
3868 }
3869 
3870 namespace {
3871 class LDVSSABlock;
3872 class LDVSSAUpdater;
3873 
3874 // Pick a type to identify incoming block values as we construct SSA. We
3875 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3876 // expects to zero-initialize the type.
3877 typedef uint64_t BlockValueNum;
3878 
3879 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3880 /// this PHI is in, the value number it would have, and the expected incoming
3881 /// values from parent blocks.
3882 class LDVSSAPhi {
3883 public:
3884   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3885   LDVSSABlock *ParentBlock;
3886   BlockValueNum PHIValNum;
3887   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3888       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3889 
3890   LDVSSABlock *getParent() { return ParentBlock; }
3891 };
3892 
3893 /// Thin wrapper around a block predecessor iterator. Only difference from a
3894 /// normal block iterator is that it dereferences to an LDVSSABlock.
3895 class LDVSSABlockIterator {
3896 public:
3897   MachineBasicBlock::pred_iterator PredIt;
3898   LDVSSAUpdater &Updater;
3899 
3900   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3901                       LDVSSAUpdater &Updater)
3902       : PredIt(PredIt), Updater(Updater) {}
3903 
3904   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3905     return OtherIt.PredIt != PredIt;
3906   }
3907 
3908   LDVSSABlockIterator &operator++() {
3909     ++PredIt;
3910     return *this;
3911   }
3912 
3913   LDVSSABlock *operator*();
3914 };
3915 
3916 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3917 /// we need to track the PHI value(s) that we may have observed as necessary
3918 /// in this block.
3919 class LDVSSABlock {
3920 public:
3921   MachineBasicBlock &BB;
3922   LDVSSAUpdater &Updater;
3923   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3924   /// List of PHIs in this block. There should only ever be one.
3925   PHIListT PHIList;
3926 
3927   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3928       : BB(BB), Updater(Updater) {}
3929 
3930   LDVSSABlockIterator succ_begin() {
3931     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3932   }
3933 
3934   LDVSSABlockIterator succ_end() {
3935     return LDVSSABlockIterator(BB.succ_end(), Updater);
3936   }
3937 
3938   /// SSAUpdater has requested a PHI: create that within this block record.
3939   LDVSSAPhi *newPHI(BlockValueNum Value) {
3940     PHIList.emplace_back(Value, this);
3941     return &PHIList.back();
3942   }
3943 
3944   /// SSAUpdater wishes to know what PHIs already exist in this block.
3945   PHIListT &phis() { return PHIList; }
3946 };
3947 
3948 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3949 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3950 // SSAUpdaterTraits<LDVSSAUpdater>.
3951 class LDVSSAUpdater {
3952 public:
3953   /// Map of value numbers to PHI records.
3954   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3955   /// Map of which blocks generate Undef values -- blocks that are not
3956   /// dominated by any Def.
3957   DenseMap<MachineBasicBlock *, BlockValueNum> PoisonMap;
3958   /// Map of machine blocks to our own records of them.
3959   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3960   /// Machine location where any PHI must occur.
3961   LocIdx Loc;
3962   /// Table of live-in machine value numbers for blocks / locations.
3963   const FuncValueTable &MLiveIns;
3964 
3965   LDVSSAUpdater(LocIdx L, const FuncValueTable &MLiveIns)
3966       : Loc(L), MLiveIns(MLiveIns) {}
3967 
3968   void reset() {
3969     for (auto &Block : BlockMap)
3970       delete Block.second;
3971 
3972     PHIs.clear();
3973     PoisonMap.clear();
3974     BlockMap.clear();
3975   }
3976 
3977   ~LDVSSAUpdater() { reset(); }
3978 
3979   /// For a given MBB, create a wrapper block for it. Stores it in the
3980   /// LDVSSAUpdater block map.
3981   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3982     auto [It, Inserted] = BlockMap.try_emplace(BB);
3983     if (Inserted)
3984       It->second = new LDVSSABlock(*BB, *this);
3985     return It->second;
3986   }
3987 
3988   /// Find the live-in value number for the given block. Looks up the value at
3989   /// the PHI location on entry.
3990   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3991     return MLiveIns[LDVBB->BB][Loc.asU64()].asU64();
3992   }
3993 };
3994 
3995 LDVSSABlock *LDVSSABlockIterator::operator*() {
3996   return Updater.getSSALDVBlock(*PredIt);
3997 }
3998 
3999 #ifndef NDEBUG
4000 
4001 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
4002   out << "SSALDVPHI " << PHI.PHIValNum;
4003   return out;
4004 }
4005 
4006 #endif
4007 
4008 } // namespace
4009 
4010 namespace llvm {
4011 
4012 /// Template specialization to give SSAUpdater access to CFG and value
4013 /// information. SSAUpdater calls methods in these traits, passing in the
4014 /// LDVSSAUpdater object, to learn about blocks and the values they define.
4015 /// It also provides methods to create PHI nodes and track them.
4016 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
4017 public:
4018   using BlkT = LDVSSABlock;
4019   using ValT = BlockValueNum;
4020   using PhiT = LDVSSAPhi;
4021   using BlkSucc_iterator = LDVSSABlockIterator;
4022 
4023   // Methods to access block successors -- dereferencing to our wrapper class.
4024   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
4025   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
4026 
4027   /// Iterator for PHI operands.
4028   class PHI_iterator {
4029   private:
4030     LDVSSAPhi *PHI;
4031     unsigned Idx;
4032 
4033   public:
4034     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
4035         : PHI(P), Idx(0) {}
4036     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
4037         : PHI(P), Idx(PHI->IncomingValues.size()) {}
4038 
4039     PHI_iterator &operator++() {
4040       Idx++;
4041       return *this;
4042     }
4043     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
4044     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
4045 
4046     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
4047 
4048     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
4049   };
4050 
4051   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
4052 
4053   static inline PHI_iterator PHI_end(PhiT *PHI) {
4054     return PHI_iterator(PHI, true);
4055   }
4056 
4057   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
4058   /// vector.
4059   static void FindPredecessorBlocks(LDVSSABlock *BB,
4060                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
4061     for (MachineBasicBlock *Pred : BB->BB.predecessors())
4062       Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
4063   }
4064 
4065   /// GetPoisonVal - Normally creates an IMPLICIT_DEF instruction with a new
4066   /// register. For LiveDebugValues, represents a block identified as not having
4067   /// any DBG_PHI predecessors.
4068   static BlockValueNum GetPoisonVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
4069     // Create a value number for this block -- it needs to be unique and in the
4070     // "poison" collection, so that we know it's not real. Use a number
4071     // representing a PHI into this block.
4072     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
4073     Updater->PoisonMap[&BB->BB] = Num;
4074     return Num;
4075   }
4076 
4077   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
4078   /// SSAUpdater will populate it with information about incoming values. The
4079   /// value number of this PHI is whatever the  machine value number problem
4080   /// solution determined it to be. This includes non-phi values if SSAUpdater
4081   /// tries to create a PHI where the incoming values are identical.
4082   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
4083                                    LDVSSAUpdater *Updater) {
4084     BlockValueNum PHIValNum = Updater->getValue(BB);
4085     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
4086     Updater->PHIs[PHIValNum] = PHI;
4087     return PHIValNum;
4088   }
4089 
4090   /// AddPHIOperand - Add the specified value as an operand of the PHI for
4091   /// the specified predecessor block.
4092   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
4093     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
4094   }
4095 
4096   /// ValueIsPHI - Check if the instruction that defines the specified value
4097   /// is a PHI instruction.
4098   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
4099     return Updater->PHIs.lookup(Val);
4100   }
4101 
4102   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
4103   /// operands, i.e., it was just added.
4104   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
4105     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
4106     if (PHI && PHI->IncomingValues.size() == 0)
4107       return PHI;
4108     return nullptr;
4109   }
4110 
4111   /// GetPHIValue - For the specified PHI instruction, return the value
4112   /// that it defines.
4113   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
4114 };
4115 
4116 } // end namespace llvm
4117 
4118 std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(
4119     MachineFunction &MF, const FuncValueTable &MLiveOuts,
4120     const FuncValueTable &MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
4121   // This function will be called twice per DBG_INSTR_REF, and might end up
4122   // computing lots of SSA information: memoize it.
4123   auto SeenDbgPHIIt = SeenDbgPHIs.find(std::make_pair(&Here, InstrNum));
4124   if (SeenDbgPHIIt != SeenDbgPHIs.end())
4125     return SeenDbgPHIIt->second;
4126 
4127   std::optional<ValueIDNum> Result =
4128       resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
4129   SeenDbgPHIs.insert({std::make_pair(&Here, InstrNum), Result});
4130   return Result;
4131 }
4132 
4133 std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
4134     MachineFunction &MF, const FuncValueTable &MLiveOuts,
4135     const FuncValueTable &MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
4136   // Pick out records of DBG_PHI instructions that have been observed. If there
4137   // are none, then we cannot compute a value number.
4138   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
4139                                     DebugPHINumToValue.end(), InstrNum);
4140   auto LowerIt = RangePair.first;
4141   auto UpperIt = RangePair.second;
4142 
4143   // No DBG_PHI means there can be no location.
4144   if (LowerIt == UpperIt)
4145     return std::nullopt;
4146 
4147   // If any DBG_PHIs referred to a location we didn't understand, don't try to
4148   // compute a value. There might be scenarios where we could recover a value
4149   // for some range of DBG_INSTR_REFs, but at this point we can have high
4150   // confidence that we've seen a bug.
4151   auto DBGPHIRange = make_range(LowerIt, UpperIt);
4152   for (const DebugPHIRecord &DBG_PHI : DBGPHIRange)
4153     if (!DBG_PHI.ValueRead)
4154       return std::nullopt;
4155 
4156   // If there's only one DBG_PHI, then that is our value number.
4157   if (std::distance(LowerIt, UpperIt) == 1)
4158     return *LowerIt->ValueRead;
4159 
4160   // Pick out the location (physreg, slot) where any PHIs must occur. It's
4161   // technically possible for us to merge values in different registers in each
4162   // block, but highly unlikely that LLVM will generate such code after register
4163   // allocation.
4164   LocIdx Loc = *LowerIt->ReadLoc;
4165 
4166   // We have several DBG_PHIs, and a use position (the Here inst). All each
4167   // DBG_PHI does is identify a value at a program position. We can treat each
4168   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
4169   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
4170   // determine which Def is used at the Use, and any PHIs that happen along
4171   // the way.
4172   // Adapted LLVM SSA Updater:
4173   LDVSSAUpdater Updater(Loc, MLiveIns);
4174   // Map of which Def or PHI is the current value in each block.
4175   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
4176   // Set of PHIs that we have created along the way.
4177   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
4178 
4179   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
4180   // for the SSAUpdater.
4181   for (const auto &DBG_PHI : DBGPHIRange) {
4182     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4183     const ValueIDNum &Num = *DBG_PHI.ValueRead;
4184     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
4185   }
4186 
4187   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
4188   const auto &AvailIt = AvailableValues.find(HereBlock);
4189   if (AvailIt != AvailableValues.end()) {
4190     // Actually, we already know what the value is -- the Use is in the same
4191     // block as the Def.
4192     return ValueIDNum::fromU64(AvailIt->second);
4193   }
4194 
4195   // Otherwise, we must use the SSA Updater. It will identify the value number
4196   // that we are to use, and the PHIs that must happen along the way.
4197   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
4198   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
4199   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
4200 
4201   // We have the number for a PHI, or possibly live-through value, to be used
4202   // at this Use. There are a number of things we have to check about it though:
4203   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
4204   //    Use was not completely dominated by DBG_PHIs and we should abort.
4205   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
4206   //    we've left SSA form. Validate that the inputs to each PHI are the
4207   //    expected values.
4208   //  * Is a PHI we've created actually a merging of values, or are all the
4209   //    predecessor values the same, leading to a non-PHI machine value number?
4210   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
4211   //    the ValidatedValues collection below to sort this out.
4212   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
4213 
4214   // Define all the input DBG_PHI values in ValidatedValues.
4215   for (const auto &DBG_PHI : DBGPHIRange) {
4216     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4217     const ValueIDNum &Num = *DBG_PHI.ValueRead;
4218     ValidatedValues.insert(std::make_pair(Block, Num));
4219   }
4220 
4221   // Sort PHIs to validate into RPO-order.
4222   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
4223   for (auto &PHI : CreatedPHIs)
4224     SortedPHIs.push_back(PHI);
4225 
4226   llvm::sort(SortedPHIs, [&](LDVSSAPhi *A, LDVSSAPhi *B) {
4227     return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
4228   });
4229 
4230   for (auto &PHI : SortedPHIs) {
4231     ValueIDNum ThisBlockValueNum = MLiveIns[PHI->ParentBlock->BB][Loc.asU64()];
4232 
4233     // Are all these things actually defined?
4234     for (auto &PHIIt : PHI->IncomingValues) {
4235       // Any undef input means DBG_PHIs didn't dominate the use point.
4236       if (Updater.PoisonMap.contains(&PHIIt.first->BB))
4237         return std::nullopt;
4238 
4239       ValueIDNum ValueToCheck;
4240       const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB];
4241 
4242       auto VVal = ValidatedValues.find(PHIIt.first);
4243       if (VVal == ValidatedValues.end()) {
4244         // We cross a loop, and this is a backedge. LLVMs tail duplication
4245         // happens so late that DBG_PHI instructions should not be able to
4246         // migrate into loops -- meaning we can only be live-through this
4247         // loop.
4248         ValueToCheck = ThisBlockValueNum;
4249       } else {
4250         // Does the block have as a live-out, in the location we're examining,
4251         // the value that we expect? If not, it's been moved or clobbered.
4252         ValueToCheck = VVal->second;
4253       }
4254 
4255       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
4256         return std::nullopt;
4257     }
4258 
4259     // Record this value as validated.
4260     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
4261   }
4262 
4263   // All the PHIs are valid: we can return what the SSAUpdater said our value
4264   // number was.
4265   return Result;
4266 }
4267