1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/CodeGenPrepare.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/CodeGenTypes/MachineValueType.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/Argument.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfo.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/GlobalVariable.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/IntrinsicsAArch64.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/MDBuilder.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/ProfDataUtils.h" 72 #include "llvm/IR/Statepoint.h" 73 #include "llvm/IR/Type.h" 74 #include "llvm/IR/Use.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/IR/ValueHandle.h" 78 #include "llvm/IR/ValueMap.h" 79 #include "llvm/InitializePasses.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/BlockFrequency.h" 82 #include "llvm/Support/BranchProbability.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/CommandLine.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Target/TargetMachine.h" 91 #include "llvm/Target/TargetOptions.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 96 #include "llvm/Transforms/Utils/SizeOpts.h" 97 #include <algorithm> 98 #include <cassert> 99 #include <cstdint> 100 #include <iterator> 101 #include <limits> 102 #include <memory> 103 #include <optional> 104 #include <utility> 105 #include <vector> 106 107 using namespace llvm; 108 using namespace llvm::PatternMatch; 109 110 #define DEBUG_TYPE "codegenprepare" 111 112 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 113 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 114 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 115 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 116 "sunken Cmps"); 117 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 118 "of sunken Casts"); 119 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 120 "computations were sunk"); 121 STATISTIC(NumMemoryInstsPhiCreated, 122 "Number of phis created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumMemoryInstsSelectCreated, 125 "Number of select created when address " 126 "computations were sunk to memory instructions"); 127 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 128 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 129 STATISTIC(NumAndsAdded, 130 "Number of and mask instructions added to form ext loads"); 131 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 132 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 133 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 134 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 135 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 136 137 static cl::opt<bool> DisableBranchOpts( 138 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable branch optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> 142 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 143 cl::desc("Disable GC optimizations in CodeGenPrepare")); 144 145 static cl::opt<bool> 146 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, 147 cl::init(false), 148 cl::desc("Disable select to branch conversion.")); 149 150 static cl::opt<bool> 151 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), 152 cl::desc("Address sinking in CGP using GEPs.")); 153 154 static cl::opt<bool> 155 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), 156 cl::desc("Enable sinkinig and/cmp into branches.")); 157 158 static cl::opt<bool> DisableStoreExtract( 159 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> StressStoreExtract( 163 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 164 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 165 166 static cl::opt<bool> DisableExtLdPromotion( 167 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 169 "CodeGenPrepare")); 170 171 static cl::opt<bool> StressExtLdPromotion( 172 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 173 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 174 "optimization in CodeGenPrepare")); 175 176 static cl::opt<bool> DisablePreheaderProtect( 177 "disable-preheader-prot", cl::Hidden, cl::init(false), 178 cl::desc("Disable protection against removing loop preheaders")); 179 180 static cl::opt<bool> ProfileGuidedSectionPrefix( 181 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 182 cl::desc("Use profile info to add section prefix for hot/cold functions")); 183 184 static cl::opt<bool> ProfileUnknownInSpecialSection( 185 "profile-unknown-in-special-section", cl::Hidden, 186 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 187 "profile, we cannot tell the function is cold for sure because " 188 "it may be a function newly added without ever being sampled. " 189 "With the flag enabled, compiler can put such profile unknown " 190 "functions into a special section, so runtime system can choose " 191 "to handle it in a different way than .text section, to save " 192 "RAM for example. ")); 193 194 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 195 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 196 cl::desc("Use the basic-block-sections profile to determine the text " 197 "section prefix for hot functions. Functions with " 198 "basic-block-sections profile will be placed in `.text.hot` " 199 "regardless of their FDO profile info. Other functions won't be " 200 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 201 "profiles.")); 202 203 static cl::opt<uint64_t> FreqRatioToSkipMerge( 204 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 205 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 206 "(frequency of destination block) is greater than this ratio")); 207 208 static cl::opt<bool> ForceSplitStore( 209 "force-split-store", cl::Hidden, cl::init(false), 210 cl::desc("Force store splitting no matter what the target query says.")); 211 212 static cl::opt<bool> EnableTypePromotionMerge( 213 "cgp-type-promotion-merge", cl::Hidden, 214 cl::desc("Enable merging of redundant sexts when one is dominating" 215 " the other."), 216 cl::init(true)); 217 218 static cl::opt<bool> DisableComplexAddrModes( 219 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 220 cl::desc("Disables combining addressing modes with different parts " 221 "in optimizeMemoryInst.")); 222 223 static cl::opt<bool> 224 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 225 cl::desc("Allow creation of Phis in Address sinking.")); 226 227 static cl::opt<bool> AddrSinkNewSelects( 228 "addr-sink-new-select", cl::Hidden, cl::init(true), 229 cl::desc("Allow creation of selects in Address sinking.")); 230 231 static cl::opt<bool> AddrSinkCombineBaseReg( 232 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 233 cl::desc("Allow combining of BaseReg field in Address sinking.")); 234 235 static cl::opt<bool> AddrSinkCombineBaseGV( 236 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 237 cl::desc("Allow combining of BaseGV field in Address sinking.")); 238 239 static cl::opt<bool> AddrSinkCombineBaseOffs( 240 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 241 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 242 243 static cl::opt<bool> AddrSinkCombineScaledReg( 244 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 245 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 246 247 static cl::opt<bool> 248 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 249 cl::init(true), 250 cl::desc("Enable splitting large offset of GEP.")); 251 252 static cl::opt<bool> EnableICMP_EQToICMP_ST( 253 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 254 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 255 256 static cl::opt<bool> 257 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 258 cl::desc("Enable BFI update verification for " 259 "CodeGenPrepare.")); 260 261 static cl::opt<bool> 262 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), 263 cl::desc("Enable converting phi types in CodeGenPrepare")); 264 265 static cl::opt<unsigned> 266 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, 267 cl::desc("Least BB number of huge function.")); 268 269 static cl::opt<unsigned> 270 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), 271 cl::Hidden, 272 cl::desc("Max number of address users to look at")); 273 274 static cl::opt<bool> 275 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false), 276 cl::desc("Disable elimination of dead PHI nodes.")); 277 278 namespace { 279 280 enum ExtType { 281 ZeroExtension, // Zero extension has been seen. 282 SignExtension, // Sign extension has been seen. 283 BothExtension // This extension type is used if we saw sext after 284 // ZeroExtension had been set, or if we saw zext after 285 // SignExtension had been set. It makes the type 286 // information of a promoted instruction invalid. 287 }; 288 289 enum ModifyDT { 290 NotModifyDT, // Not Modify any DT. 291 ModifyBBDT, // Modify the Basic Block Dominator Tree. 292 ModifyInstDT // Modify the Instruction Dominator in a Basic Block, 293 // This usually means we move/delete/insert instruction 294 // in a Basic Block. So we should re-iterate instructions 295 // in such Basic Block. 296 }; 297 298 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 299 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 300 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 301 using SExts = SmallVector<Instruction *, 16>; 302 using ValueToSExts = MapVector<Value *, SExts>; 303 304 class TypePromotionTransaction; 305 306 class CodeGenPrepare { 307 friend class CodeGenPrepareLegacyPass; 308 const TargetMachine *TM = nullptr; 309 const TargetSubtargetInfo *SubtargetInfo = nullptr; 310 const TargetLowering *TLI = nullptr; 311 const TargetRegisterInfo *TRI = nullptr; 312 const TargetTransformInfo *TTI = nullptr; 313 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 314 const TargetLibraryInfo *TLInfo = nullptr; 315 LoopInfo *LI = nullptr; 316 std::unique_ptr<BlockFrequencyInfo> BFI; 317 std::unique_ptr<BranchProbabilityInfo> BPI; 318 ProfileSummaryInfo *PSI = nullptr; 319 320 /// As we scan instructions optimizing them, this is the next instruction 321 /// to optimize. Transforms that can invalidate this should update it. 322 BasicBlock::iterator CurInstIterator; 323 324 /// Keeps track of non-local addresses that have been sunk into a block. 325 /// This allows us to avoid inserting duplicate code for blocks with 326 /// multiple load/stores of the same address. The usage of WeakTrackingVH 327 /// enables SunkAddrs to be treated as a cache whose entries can be 328 /// invalidated if a sunken address computation has been erased. 329 ValueMap<Value *, WeakTrackingVH> SunkAddrs; 330 331 /// Keeps track of all instructions inserted for the current function. 332 SetOfInstrs InsertedInsts; 333 334 /// Keeps track of the type of the related instruction before their 335 /// promotion for the current function. 336 InstrToOrigTy PromotedInsts; 337 338 /// Keep track of instructions removed during promotion. 339 SetOfInstrs RemovedInsts; 340 341 /// Keep track of sext chains based on their initial value. 342 DenseMap<Value *, Instruction *> SeenChainsForSExt; 343 344 /// Keep track of GEPs accessing the same data structures such as structs or 345 /// arrays that are candidates to be split later because of their large 346 /// size. 347 MapVector<AssertingVH<Value>, 348 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 349 LargeOffsetGEPMap; 350 351 /// Keep track of new GEP base after splitting the GEPs having large offset. 352 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 353 354 /// Map serial numbers to Large offset GEPs. 355 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 356 357 /// Keep track of SExt promoted. 358 ValueToSExts ValToSExtendedUses; 359 360 /// True if the function has the OptSize attribute. 361 bool OptSize; 362 363 /// DataLayout for the Function being processed. 364 const DataLayout *DL = nullptr; 365 366 /// Building the dominator tree can be expensive, so we only build it 367 /// lazily and update it when required. 368 std::unique_ptr<DominatorTree> DT; 369 370 public: 371 CodeGenPrepare(){}; 372 CodeGenPrepare(const TargetMachine *TM) : TM(TM){}; 373 /// If encounter huge function, we need to limit the build time. 374 bool IsHugeFunc = false; 375 376 /// FreshBBs is like worklist, it collected the updated BBs which need 377 /// to be optimized again. 378 /// Note: Consider building time in this pass, when a BB updated, we need 379 /// to insert such BB into FreshBBs for huge function. 380 SmallSet<BasicBlock *, 32> FreshBBs; 381 382 void releaseMemory() { 383 // Clear per function information. 384 InsertedInsts.clear(); 385 PromotedInsts.clear(); 386 FreshBBs.clear(); 387 BPI.reset(); 388 BFI.reset(); 389 } 390 391 bool run(Function &F, FunctionAnalysisManager &AM); 392 393 private: 394 template <typename F> 395 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 396 // Substituting can cause recursive simplifications, which can invalidate 397 // our iterator. Use a WeakTrackingVH to hold onto it in case this 398 // happens. 399 Value *CurValue = &*CurInstIterator; 400 WeakTrackingVH IterHandle(CurValue); 401 402 f(); 403 404 // If the iterator instruction was recursively deleted, start over at the 405 // start of the block. 406 if (IterHandle != CurValue) { 407 CurInstIterator = BB->begin(); 408 SunkAddrs.clear(); 409 } 410 } 411 412 // Get the DominatorTree, building if necessary. 413 DominatorTree &getDT(Function &F) { 414 if (!DT) 415 DT = std::make_unique<DominatorTree>(F); 416 return *DT; 417 } 418 419 void removeAllAssertingVHReferences(Value *V); 420 bool eliminateAssumptions(Function &F); 421 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); 422 bool eliminateMostlyEmptyBlocks(Function &F); 423 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 424 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 425 void eliminateMostlyEmptyBlock(BasicBlock *BB); 426 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 427 bool isPreheader); 428 bool makeBitReverse(Instruction &I); 429 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); 430 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); 431 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, 432 unsigned AddrSpace); 433 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 434 bool optimizeInlineAsmInst(CallInst *CS); 435 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); 436 bool optimizeExt(Instruction *&I); 437 bool optimizeExtUses(Instruction *I); 438 bool optimizeLoadExt(LoadInst *Load); 439 bool optimizeShiftInst(BinaryOperator *BO); 440 bool optimizeFunnelShift(IntrinsicInst *Fsh); 441 bool optimizeSelectInst(SelectInst *SI); 442 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 443 bool optimizeSwitchType(SwitchInst *SI); 444 bool optimizeSwitchPhiConstants(SwitchInst *SI); 445 bool optimizeSwitchInst(SwitchInst *SI); 446 bool optimizeExtractElementInst(Instruction *Inst); 447 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); 448 bool fixupDbgValue(Instruction *I); 449 bool fixupDbgVariableRecord(DbgVariableRecord &I); 450 bool fixupDbgVariableRecordsOnInst(Instruction &I); 451 bool placeDbgValues(Function &F); 452 bool placePseudoProbes(Function &F); 453 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 454 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 455 bool tryToPromoteExts(TypePromotionTransaction &TPT, 456 const SmallVectorImpl<Instruction *> &Exts, 457 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 458 unsigned CreatedInstsCost = 0); 459 bool mergeSExts(Function &F); 460 bool splitLargeGEPOffsets(); 461 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 462 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 463 bool optimizePhiTypes(Function &F); 464 bool performAddressTypePromotion( 465 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 466 bool HasPromoted, TypePromotionTransaction &TPT, 467 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 468 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); 469 bool simplifyOffsetableRelocate(GCStatepointInst &I); 470 471 bool tryToSinkFreeOperands(Instruction *I); 472 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, 473 CmpInst *Cmp, Intrinsic::ID IID); 474 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); 475 bool optimizeURem(Instruction *Rem); 476 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 477 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 478 void verifyBFIUpdates(Function &F); 479 bool _run(Function &F); 480 }; 481 482 class CodeGenPrepareLegacyPass : public FunctionPass { 483 public: 484 static char ID; // Pass identification, replacement for typeid 485 486 CodeGenPrepareLegacyPass() : FunctionPass(ID) { 487 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry()); 488 } 489 490 bool runOnFunction(Function &F) override; 491 492 StringRef getPassName() const override { return "CodeGen Prepare"; } 493 494 void getAnalysisUsage(AnalysisUsage &AU) const override { 495 // FIXME: When we can selectively preserve passes, preserve the domtree. 496 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 497 AU.addRequired<TargetLibraryInfoWrapperPass>(); 498 AU.addRequired<TargetPassConfig>(); 499 AU.addRequired<TargetTransformInfoWrapperPass>(); 500 AU.addRequired<LoopInfoWrapperPass>(); 501 AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 502 } 503 }; 504 505 } // end anonymous namespace 506 507 char CodeGenPrepareLegacyPass::ID = 0; 508 509 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) { 510 if (skipFunction(F)) 511 return false; 512 auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 513 CodeGenPrepare CGP(TM); 514 CGP.DL = &F.getDataLayout(); 515 CGP.SubtargetInfo = TM->getSubtargetImpl(F); 516 CGP.TLI = CGP.SubtargetInfo->getTargetLowering(); 517 CGP.TRI = CGP.SubtargetInfo->getRegisterInfo(); 518 CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 519 CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 520 CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 521 CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI)); 522 CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI)); 523 CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 524 auto BBSPRWP = 525 getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 526 CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr; 527 528 return CGP._run(F); 529 } 530 531 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE, 532 "Optimize for code generation", false, false) 533 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass) 534 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 535 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 536 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 537 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 538 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 539 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE, 540 "Optimize for code generation", false, false) 541 542 FunctionPass *llvm::createCodeGenPrepareLegacyPass() { 543 return new CodeGenPrepareLegacyPass(); 544 } 545 546 PreservedAnalyses CodeGenPreparePass::run(Function &F, 547 FunctionAnalysisManager &AM) { 548 CodeGenPrepare CGP(TM); 549 550 bool Changed = CGP.run(F, AM); 551 if (!Changed) 552 return PreservedAnalyses::all(); 553 554 PreservedAnalyses PA; 555 PA.preserve<TargetLibraryAnalysis>(); 556 PA.preserve<TargetIRAnalysis>(); 557 PA.preserve<LoopAnalysis>(); 558 return PA; 559 } 560 561 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) { 562 DL = &F.getDataLayout(); 563 SubtargetInfo = TM->getSubtargetImpl(F); 564 TLI = SubtargetInfo->getTargetLowering(); 565 TRI = SubtargetInfo->getRegisterInfo(); 566 TLInfo = &AM.getResult<TargetLibraryAnalysis>(F); 567 TTI = &AM.getResult<TargetIRAnalysis>(F); 568 LI = &AM.getResult<LoopAnalysis>(F); 569 BPI.reset(new BranchProbabilityInfo(F, *LI)); 570 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 571 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 572 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 573 BBSectionsProfileReader = 574 AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F); 575 return _run(F); 576 } 577 578 bool CodeGenPrepare::_run(Function &F) { 579 bool EverMadeChange = false; 580 581 OptSize = F.hasOptSize(); 582 // Use the basic-block-sections profile to promote hot functions to .text.hot 583 // if requested. 584 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 585 BBSectionsProfileReader->isFunctionHot(F.getName())) { 586 F.setSectionPrefix("hot"); 587 } else if (ProfileGuidedSectionPrefix) { 588 // The hot attribute overwrites profile count based hotness while profile 589 // counts based hotness overwrite the cold attribute. 590 // This is a conservative behabvior. 591 if (F.hasFnAttribute(Attribute::Hot) || 592 PSI->isFunctionHotInCallGraph(&F, *BFI)) 593 F.setSectionPrefix("hot"); 594 // If PSI shows this function is not hot, we will placed the function 595 // into unlikely section if (1) PSI shows this is a cold function, or 596 // (2) the function has a attribute of cold. 597 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 598 F.hasFnAttribute(Attribute::Cold)) 599 F.setSectionPrefix("unlikely"); 600 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 601 PSI->isFunctionHotnessUnknown(F)) 602 F.setSectionPrefix("unknown"); 603 } 604 605 /// This optimization identifies DIV instructions that can be 606 /// profitably bypassed and carried out with a shorter, faster divide. 607 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 608 const DenseMap<unsigned int, unsigned int> &BypassWidths = 609 TLI->getBypassSlowDivWidths(); 610 BasicBlock *BB = &*F.begin(); 611 while (BB != nullptr) { 612 // bypassSlowDivision may create new BBs, but we don't want to reapply the 613 // optimization to those blocks. 614 BasicBlock *Next = BB->getNextNode(); 615 // F.hasOptSize is already checked in the outer if statement. 616 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 617 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 618 BB = Next; 619 } 620 } 621 622 // Get rid of @llvm.assume builtins before attempting to eliminate empty 623 // blocks, since there might be blocks that only contain @llvm.assume calls 624 // (plus arguments that we can get rid of). 625 EverMadeChange |= eliminateAssumptions(F); 626 627 // Eliminate blocks that contain only PHI nodes and an 628 // unconditional branch. 629 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 630 631 ModifyDT ModifiedDT = ModifyDT::NotModifyDT; 632 if (!DisableBranchOpts) 633 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 634 635 // Split some critical edges where one of the sources is an indirect branch, 636 // to help generate sane code for PHIs involving such edges. 637 EverMadeChange |= 638 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 639 640 // If we are optimzing huge function, we need to consider the build time. 641 // Because the basic algorithm's complex is near O(N!). 642 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; 643 644 // Transformations above may invalidate dominator tree and/or loop info. 645 DT.reset(); 646 LI->releaseMemory(); 647 LI->analyze(getDT(F)); 648 649 bool MadeChange = true; 650 bool FuncIterated = false; 651 while (MadeChange) { 652 MadeChange = false; 653 654 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 655 if (FuncIterated && !FreshBBs.contains(&BB)) 656 continue; 657 658 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; 659 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); 660 661 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) 662 DT.reset(); 663 664 MadeChange |= Changed; 665 if (IsHugeFunc) { 666 // If the BB is updated, it may still has chance to be optimized. 667 // This usually happen at sink optimization. 668 // For example: 669 // 670 // bb0: 671 // %and = and i32 %a, 4 672 // %cmp = icmp eq i32 %and, 0 673 // 674 // If the %cmp sink to other BB, the %and will has chance to sink. 675 if (Changed) 676 FreshBBs.insert(&BB); 677 else if (FuncIterated) 678 FreshBBs.erase(&BB); 679 } else { 680 // For small/normal functions, we restart BB iteration if the dominator 681 // tree of the Function was changed. 682 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) 683 break; 684 } 685 } 686 // We have iterated all the BB in the (only work for huge) function. 687 FuncIterated = IsHugeFunc; 688 689 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 690 MadeChange |= mergeSExts(F); 691 if (!LargeOffsetGEPMap.empty()) 692 MadeChange |= splitLargeGEPOffsets(); 693 MadeChange |= optimizePhiTypes(F); 694 695 if (MadeChange) 696 eliminateFallThrough(F, DT.get()); 697 698 #ifndef NDEBUG 699 if (MadeChange && VerifyLoopInfo) 700 LI->verify(getDT(F)); 701 #endif 702 703 // Really free removed instructions during promotion. 704 for (Instruction *I : RemovedInsts) 705 I->deleteValue(); 706 707 EverMadeChange |= MadeChange; 708 SeenChainsForSExt.clear(); 709 ValToSExtendedUses.clear(); 710 RemovedInsts.clear(); 711 LargeOffsetGEPMap.clear(); 712 LargeOffsetGEPID.clear(); 713 } 714 715 NewGEPBases.clear(); 716 SunkAddrs.clear(); 717 718 if (!DisableBranchOpts) { 719 MadeChange = false; 720 // Use a set vector to get deterministic iteration order. The order the 721 // blocks are removed may affect whether or not PHI nodes in successors 722 // are removed. 723 SmallSetVector<BasicBlock *, 8> WorkList; 724 for (BasicBlock &BB : F) { 725 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 726 MadeChange |= ConstantFoldTerminator(&BB, true); 727 if (!MadeChange) 728 continue; 729 730 for (BasicBlock *Succ : Successors) 731 if (pred_empty(Succ)) 732 WorkList.insert(Succ); 733 } 734 735 // Delete the dead blocks and any of their dead successors. 736 MadeChange |= !WorkList.empty(); 737 while (!WorkList.empty()) { 738 BasicBlock *BB = WorkList.pop_back_val(); 739 SmallVector<BasicBlock *, 2> Successors(successors(BB)); 740 741 DeleteDeadBlock(BB); 742 743 for (BasicBlock *Succ : Successors) 744 if (pred_empty(Succ)) 745 WorkList.insert(Succ); 746 } 747 748 // Merge pairs of basic blocks with unconditional branches, connected by 749 // a single edge. 750 if (EverMadeChange || MadeChange) 751 MadeChange |= eliminateFallThrough(F); 752 753 EverMadeChange |= MadeChange; 754 } 755 756 if (!DisableGCOpts) { 757 SmallVector<GCStatepointInst *, 2> Statepoints; 758 for (BasicBlock &BB : F) 759 for (Instruction &I : BB) 760 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 761 Statepoints.push_back(SP); 762 for (auto &I : Statepoints) 763 EverMadeChange |= simplifyOffsetableRelocate(*I); 764 } 765 766 // Do this last to clean up use-before-def scenarios introduced by other 767 // preparatory transforms. 768 EverMadeChange |= placeDbgValues(F); 769 EverMadeChange |= placePseudoProbes(F); 770 771 #ifndef NDEBUG 772 if (VerifyBFIUpdates) 773 verifyBFIUpdates(F); 774 #endif 775 776 return EverMadeChange; 777 } 778 779 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 780 bool MadeChange = false; 781 for (BasicBlock &BB : F) { 782 CurInstIterator = BB.begin(); 783 while (CurInstIterator != BB.end()) { 784 Instruction *I = &*(CurInstIterator++); 785 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 786 MadeChange = true; 787 Value *Operand = Assume->getOperand(0); 788 Assume->eraseFromParent(); 789 790 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 791 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 792 }); 793 } 794 } 795 } 796 return MadeChange; 797 } 798 799 /// An instruction is about to be deleted, so remove all references to it in our 800 /// GEP-tracking data strcutures. 801 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 802 LargeOffsetGEPMap.erase(V); 803 NewGEPBases.erase(V); 804 805 auto GEP = dyn_cast<GetElementPtrInst>(V); 806 if (!GEP) 807 return; 808 809 LargeOffsetGEPID.erase(GEP); 810 811 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 812 if (VecI == LargeOffsetGEPMap.end()) 813 return; 814 815 auto &GEPVector = VecI->second; 816 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 817 818 if (GEPVector.empty()) 819 LargeOffsetGEPMap.erase(VecI); 820 } 821 822 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 823 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 824 DominatorTree NewDT(F); 825 LoopInfo NewLI(NewDT); 826 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 827 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 828 NewBFI.verifyMatch(*BFI); 829 } 830 831 /// Merge basic blocks which are connected by a single edge, where one of the 832 /// basic blocks has a single successor pointing to the other basic block, 833 /// which has a single predecessor. 834 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { 835 bool Changed = false; 836 // Scan all of the blocks in the function, except for the entry block. 837 // Use a temporary array to avoid iterator being invalidated when 838 // deleting blocks. 839 SmallVector<WeakTrackingVH, 16> Blocks; 840 for (auto &Block : llvm::drop_begin(F)) 841 Blocks.push_back(&Block); 842 843 SmallSet<WeakTrackingVH, 16> Preds; 844 for (auto &Block : Blocks) { 845 auto *BB = cast_or_null<BasicBlock>(Block); 846 if (!BB) 847 continue; 848 // If the destination block has a single pred, then this is a trivial 849 // edge, just collapse it. 850 BasicBlock *SinglePred = BB->getSinglePredecessor(); 851 852 // Don't merge if BB's address is taken. 853 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) 854 continue; 855 856 // Make an effort to skip unreachable blocks. 857 if (DT && !DT->isReachableFromEntry(BB)) 858 continue; 859 860 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 861 if (Term && !Term->isConditional()) { 862 Changed = true; 863 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 864 865 // Merge BB into SinglePred and delete it. 866 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, 867 /* MemDep */ nullptr, 868 /* PredecessorWithTwoSuccessors */ false, DT); 869 Preds.insert(SinglePred); 870 871 if (IsHugeFunc) { 872 // Update FreshBBs to optimize the merged BB. 873 FreshBBs.insert(SinglePred); 874 FreshBBs.erase(BB); 875 } 876 } 877 } 878 879 // (Repeatedly) merging blocks into their predecessors can create redundant 880 // debug intrinsics. 881 for (const auto &Pred : Preds) 882 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 883 RemoveRedundantDbgInstrs(BB); 884 885 return Changed; 886 } 887 888 /// Find a destination block from BB if BB is mergeable empty block. 889 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 890 // If this block doesn't end with an uncond branch, ignore it. 891 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 892 if (!BI || !BI->isUnconditional()) 893 return nullptr; 894 895 // If the instruction before the branch (skipping debug info) isn't a phi 896 // node, then other stuff is happening here. 897 BasicBlock::iterator BBI = BI->getIterator(); 898 if (BBI != BB->begin()) { 899 --BBI; 900 while (isa<DbgInfoIntrinsic>(BBI)) { 901 if (BBI == BB->begin()) 902 break; 903 --BBI; 904 } 905 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 906 return nullptr; 907 } 908 909 // Do not break infinite loops. 910 BasicBlock *DestBB = BI->getSuccessor(0); 911 if (DestBB == BB) 912 return nullptr; 913 914 if (!canMergeBlocks(BB, DestBB)) 915 DestBB = nullptr; 916 917 return DestBB; 918 } 919 920 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 921 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 922 /// edges in ways that are non-optimal for isel. Start by eliminating these 923 /// blocks so we can split them the way we want them. 924 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 925 SmallPtrSet<BasicBlock *, 16> Preheaders; 926 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 927 while (!LoopList.empty()) { 928 Loop *L = LoopList.pop_back_val(); 929 llvm::append_range(LoopList, *L); 930 if (BasicBlock *Preheader = L->getLoopPreheader()) 931 Preheaders.insert(Preheader); 932 } 933 934 bool MadeChange = false; 935 // Copy blocks into a temporary array to avoid iterator invalidation issues 936 // as we remove them. 937 // Note that this intentionally skips the entry block. 938 SmallVector<WeakTrackingVH, 16> Blocks; 939 for (auto &Block : llvm::drop_begin(F)) { 940 // Delete phi nodes that could block deleting other empty blocks. 941 if (!DisableDeletePHIs) 942 MadeChange |= DeleteDeadPHIs(&Block, TLInfo); 943 Blocks.push_back(&Block); 944 } 945 946 for (auto &Block : Blocks) { 947 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 948 if (!BB) 949 continue; 950 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 951 if (!DestBB || 952 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 953 continue; 954 955 eliminateMostlyEmptyBlock(BB); 956 MadeChange = true; 957 } 958 return MadeChange; 959 } 960 961 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 962 BasicBlock *DestBB, 963 bool isPreheader) { 964 // Do not delete loop preheaders if doing so would create a critical edge. 965 // Loop preheaders can be good locations to spill registers. If the 966 // preheader is deleted and we create a critical edge, registers may be 967 // spilled in the loop body instead. 968 if (!DisablePreheaderProtect && isPreheader && 969 !(BB->getSinglePredecessor() && 970 BB->getSinglePredecessor()->getSingleSuccessor())) 971 return false; 972 973 // Skip merging if the block's successor is also a successor to any callbr 974 // that leads to this block. 975 // FIXME: Is this really needed? Is this a correctness issue? 976 for (BasicBlock *Pred : predecessors(BB)) { 977 if (isa<CallBrInst>(Pred->getTerminator()) && 978 llvm::is_contained(successors(Pred), DestBB)) 979 return false; 980 } 981 982 // Try to skip merging if the unique predecessor of BB is terminated by a 983 // switch or indirect branch instruction, and BB is used as an incoming block 984 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 985 // add COPY instructions in the predecessor of BB instead of BB (if it is not 986 // merged). Note that the critical edge created by merging such blocks wont be 987 // split in MachineSink because the jump table is not analyzable. By keeping 988 // such empty block (BB), ISel will place COPY instructions in BB, not in the 989 // predecessor of BB. 990 BasicBlock *Pred = BB->getUniquePredecessor(); 991 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || 992 isa<IndirectBrInst>(Pred->getTerminator()))) 993 return true; 994 995 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 996 return true; 997 998 // We use a simple cost heuristic which determine skipping merging is 999 // profitable if the cost of skipping merging is less than the cost of 1000 // merging : Cost(skipping merging) < Cost(merging BB), where the 1001 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 1002 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 1003 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 1004 // Freq(Pred) / Freq(BB) > 2. 1005 // Note that if there are multiple empty blocks sharing the same incoming 1006 // value for the PHIs in the DestBB, we consider them together. In such 1007 // case, Cost(merging BB) will be the sum of their frequencies. 1008 1009 if (!isa<PHINode>(DestBB->begin())) 1010 return true; 1011 1012 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 1013 1014 // Find all other incoming blocks from which incoming values of all PHIs in 1015 // DestBB are the same as the ones from BB. 1016 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 1017 if (DestBBPred == BB) 1018 continue; 1019 1020 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 1021 return DestPN.getIncomingValueForBlock(BB) == 1022 DestPN.getIncomingValueForBlock(DestBBPred); 1023 })) 1024 SameIncomingValueBBs.insert(DestBBPred); 1025 } 1026 1027 // See if all BB's incoming values are same as the value from Pred. In this 1028 // case, no reason to skip merging because COPYs are expected to be place in 1029 // Pred already. 1030 if (SameIncomingValueBBs.count(Pred)) 1031 return true; 1032 1033 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 1034 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 1035 1036 for (auto *SameValueBB : SameIncomingValueBBs) 1037 if (SameValueBB->getUniquePredecessor() == Pred && 1038 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 1039 BBFreq += BFI->getBlockFreq(SameValueBB); 1040 1041 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge); 1042 return !Limit || PredFreq <= *Limit; 1043 } 1044 1045 /// Return true if we can merge BB into DestBB if there is a single 1046 /// unconditional branch between them, and BB contains no other non-phi 1047 /// instructions. 1048 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 1049 const BasicBlock *DestBB) const { 1050 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 1051 // the successor. If there are more complex condition (e.g. preheaders), 1052 // don't mess around with them. 1053 for (const PHINode &PN : BB->phis()) { 1054 for (const User *U : PN.users()) { 1055 const Instruction *UI = cast<Instruction>(U); 1056 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 1057 return false; 1058 // If User is inside DestBB block and it is a PHINode then check 1059 // incoming value. If incoming value is not from BB then this is 1060 // a complex condition (e.g. preheaders) we want to avoid here. 1061 if (UI->getParent() == DestBB) { 1062 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 1063 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 1064 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 1065 if (Insn && Insn->getParent() == BB && 1066 Insn->getParent() != UPN->getIncomingBlock(I)) 1067 return false; 1068 } 1069 } 1070 } 1071 } 1072 1073 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 1074 // and DestBB may have conflicting incoming values for the block. If so, we 1075 // can't merge the block. 1076 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 1077 if (!DestBBPN) 1078 return true; // no conflict. 1079 1080 // Collect the preds of BB. 1081 SmallPtrSet<const BasicBlock *, 16> BBPreds; 1082 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1083 // It is faster to get preds from a PHI than with pred_iterator. 1084 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1085 BBPreds.insert(BBPN->getIncomingBlock(i)); 1086 } else { 1087 BBPreds.insert(pred_begin(BB), pred_end(BB)); 1088 } 1089 1090 // Walk the preds of DestBB. 1091 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 1092 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 1093 if (BBPreds.count(Pred)) { // Common predecessor? 1094 for (const PHINode &PN : DestBB->phis()) { 1095 const Value *V1 = PN.getIncomingValueForBlock(Pred); 1096 const Value *V2 = PN.getIncomingValueForBlock(BB); 1097 1098 // If V2 is a phi node in BB, look up what the mapped value will be. 1099 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 1100 if (V2PN->getParent() == BB) 1101 V2 = V2PN->getIncomingValueForBlock(Pred); 1102 1103 // If there is a conflict, bail out. 1104 if (V1 != V2) 1105 return false; 1106 } 1107 } 1108 } 1109 1110 return true; 1111 } 1112 1113 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. 1114 static void replaceAllUsesWith(Value *Old, Value *New, 1115 SmallSet<BasicBlock *, 32> &FreshBBs, 1116 bool IsHuge) { 1117 auto *OldI = dyn_cast<Instruction>(Old); 1118 if (OldI) { 1119 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); 1120 UI != E; ++UI) { 1121 Instruction *User = cast<Instruction>(*UI); 1122 if (IsHuge) 1123 FreshBBs.insert(User->getParent()); 1124 } 1125 } 1126 Old->replaceAllUsesWith(New); 1127 } 1128 1129 /// Eliminate a basic block that has only phi's and an unconditional branch in 1130 /// it. 1131 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 1132 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1133 BasicBlock *DestBB = BI->getSuccessor(0); 1134 1135 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 1136 << *BB << *DestBB); 1137 1138 // If the destination block has a single pred, then this is a trivial edge, 1139 // just collapse it. 1140 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 1141 if (SinglePred != DestBB) { 1142 assert(SinglePred == BB && 1143 "Single predecessor not the same as predecessor"); 1144 // Merge DestBB into SinglePred/BB and delete it. 1145 MergeBlockIntoPredecessor(DestBB); 1146 // Note: BB(=SinglePred) will not be deleted on this path. 1147 // DestBB(=its single successor) is the one that was deleted. 1148 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 1149 1150 if (IsHugeFunc) { 1151 // Update FreshBBs to optimize the merged BB. 1152 FreshBBs.insert(SinglePred); 1153 FreshBBs.erase(DestBB); 1154 } 1155 return; 1156 } 1157 } 1158 1159 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 1160 // to handle the new incoming edges it is about to have. 1161 for (PHINode &PN : DestBB->phis()) { 1162 // Remove the incoming value for BB, and remember it. 1163 Value *InVal = PN.removeIncomingValue(BB, false); 1164 1165 // Two options: either the InVal is a phi node defined in BB or it is some 1166 // value that dominates BB. 1167 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 1168 if (InValPhi && InValPhi->getParent() == BB) { 1169 // Add all of the input values of the input PHI as inputs of this phi. 1170 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 1171 PN.addIncoming(InValPhi->getIncomingValue(i), 1172 InValPhi->getIncomingBlock(i)); 1173 } else { 1174 // Otherwise, add one instance of the dominating value for each edge that 1175 // we will be adding. 1176 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1177 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1178 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1179 } else { 1180 for (BasicBlock *Pred : predecessors(BB)) 1181 PN.addIncoming(InVal, Pred); 1182 } 1183 } 1184 } 1185 1186 // The PHIs are now updated, change everything that refers to BB to use 1187 // DestBB and remove BB. 1188 BB->replaceAllUsesWith(DestBB); 1189 BB->eraseFromParent(); 1190 ++NumBlocksElim; 1191 1192 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1193 } 1194 1195 // Computes a map of base pointer relocation instructions to corresponding 1196 // derived pointer relocation instructions given a vector of all relocate calls 1197 static void computeBaseDerivedRelocateMap( 1198 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1199 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> 1200 &RelocateInstMap) { 1201 // Collect information in two maps: one primarily for locating the base object 1202 // while filling the second map; the second map is the final structure holding 1203 // a mapping between Base and corresponding Derived relocate calls 1204 MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1205 for (auto *ThisRelocate : AllRelocateCalls) { 1206 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1207 ThisRelocate->getDerivedPtrIndex()); 1208 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1209 } 1210 for (auto &Item : RelocateIdxMap) { 1211 std::pair<unsigned, unsigned> Key = Item.first; 1212 if (Key.first == Key.second) 1213 // Base relocation: nothing to insert 1214 continue; 1215 1216 GCRelocateInst *I = Item.second; 1217 auto BaseKey = std::make_pair(Key.first, Key.first); 1218 1219 // We're iterating over RelocateIdxMap so we cannot modify it. 1220 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1221 if (MaybeBase == RelocateIdxMap.end()) 1222 // TODO: We might want to insert a new base object relocate and gep off 1223 // that, if there are enough derived object relocates. 1224 continue; 1225 1226 RelocateInstMap[MaybeBase->second].push_back(I); 1227 } 1228 } 1229 1230 // Accepts a GEP and extracts the operands into a vector provided they're all 1231 // small integer constants 1232 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1233 SmallVectorImpl<Value *> &OffsetV) { 1234 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1235 // Only accept small constant integer operands 1236 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1237 if (!Op || Op->getZExtValue() > 20) 1238 return false; 1239 } 1240 1241 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1242 OffsetV.push_back(GEP->getOperand(i)); 1243 return true; 1244 } 1245 1246 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1247 // replace, computes a replacement, and affects it. 1248 static bool 1249 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1250 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1251 bool MadeChange = false; 1252 // We must ensure the relocation of derived pointer is defined after 1253 // relocation of base pointer. If we find a relocation corresponding to base 1254 // defined earlier than relocation of base then we move relocation of base 1255 // right before found relocation. We consider only relocation in the same 1256 // basic block as relocation of base. Relocations from other basic block will 1257 // be skipped by optimization and we do not care about them. 1258 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1259 &*R != RelocatedBase; ++R) 1260 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1261 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1262 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1263 RelocatedBase->moveBefore(RI); 1264 MadeChange = true; 1265 break; 1266 } 1267 1268 for (GCRelocateInst *ToReplace : Targets) { 1269 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1270 "Not relocating a derived object of the original base object"); 1271 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1272 // A duplicate relocate call. TODO: coalesce duplicates. 1273 continue; 1274 } 1275 1276 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1277 // Base and derived relocates are in different basic blocks. 1278 // In this case transform is only valid when base dominates derived 1279 // relocate. However it would be too expensive to check dominance 1280 // for each such relocate, so we skip the whole transformation. 1281 continue; 1282 } 1283 1284 Value *Base = ToReplace->getBasePtr(); 1285 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1286 if (!Derived || Derived->getPointerOperand() != Base) 1287 continue; 1288 1289 SmallVector<Value *, 2> OffsetV; 1290 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1291 continue; 1292 1293 // Create a Builder and replace the target callsite with a gep 1294 assert(RelocatedBase->getNextNode() && 1295 "Should always have one since it's not a terminator"); 1296 1297 // Insert after RelocatedBase 1298 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1299 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1300 1301 // If gc_relocate does not match the actual type, cast it to the right type. 1302 // In theory, there must be a bitcast after gc_relocate if the type does not 1303 // match, and we should reuse it to get the derived pointer. But it could be 1304 // cases like this: 1305 // bb1: 1306 // ... 1307 // %g1 = call coldcc i8 addrspace(1)* 1308 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1309 // 1310 // bb2: 1311 // ... 1312 // %g2 = call coldcc i8 addrspace(1)* 1313 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1314 // 1315 // merge: 1316 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1317 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1318 // 1319 // In this case, we can not find the bitcast any more. So we insert a new 1320 // bitcast no matter there is already one or not. In this way, we can handle 1321 // all cases, and the extra bitcast should be optimized away in later 1322 // passes. 1323 Value *ActualRelocatedBase = RelocatedBase; 1324 if (RelocatedBase->getType() != Base->getType()) { 1325 ActualRelocatedBase = 1326 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1327 } 1328 Value *Replacement = 1329 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, 1330 ArrayRef(OffsetV)); 1331 Replacement->takeName(ToReplace); 1332 // If the newly generated derived pointer's type does not match the original 1333 // derived pointer's type, cast the new derived pointer to match it. Same 1334 // reasoning as above. 1335 Value *ActualReplacement = Replacement; 1336 if (Replacement->getType() != ToReplace->getType()) { 1337 ActualReplacement = 1338 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1339 } 1340 ToReplace->replaceAllUsesWith(ActualReplacement); 1341 ToReplace->eraseFromParent(); 1342 1343 MadeChange = true; 1344 } 1345 return MadeChange; 1346 } 1347 1348 // Turns this: 1349 // 1350 // %base = ... 1351 // %ptr = gep %base + 15 1352 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1353 // %base' = relocate(%tok, i32 4, i32 4) 1354 // %ptr' = relocate(%tok, i32 4, i32 5) 1355 // %val = load %ptr' 1356 // 1357 // into this: 1358 // 1359 // %base = ... 1360 // %ptr = gep %base + 15 1361 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1362 // %base' = gc.relocate(%tok, i32 4, i32 4) 1363 // %ptr' = gep %base' + 15 1364 // %val = load %ptr' 1365 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1366 bool MadeChange = false; 1367 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1368 for (auto *U : I.users()) 1369 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1370 // Collect all the relocate calls associated with a statepoint 1371 AllRelocateCalls.push_back(Relocate); 1372 1373 // We need at least one base pointer relocation + one derived pointer 1374 // relocation to mangle 1375 if (AllRelocateCalls.size() < 2) 1376 return false; 1377 1378 // RelocateInstMap is a mapping from the base relocate instruction to the 1379 // corresponding derived relocate instructions 1380 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap; 1381 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1382 if (RelocateInstMap.empty()) 1383 return false; 1384 1385 for (auto &Item : RelocateInstMap) 1386 // Item.first is the RelocatedBase to offset against 1387 // Item.second is the vector of Targets to replace 1388 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1389 return MadeChange; 1390 } 1391 1392 /// Sink the specified cast instruction into its user blocks. 1393 static bool SinkCast(CastInst *CI) { 1394 BasicBlock *DefBB = CI->getParent(); 1395 1396 /// InsertedCasts - Only insert a cast in each block once. 1397 DenseMap<BasicBlock *, CastInst *> InsertedCasts; 1398 1399 bool MadeChange = false; 1400 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1401 UI != E;) { 1402 Use &TheUse = UI.getUse(); 1403 Instruction *User = cast<Instruction>(*UI); 1404 1405 // Figure out which BB this cast is used in. For PHI's this is the 1406 // appropriate predecessor block. 1407 BasicBlock *UserBB = User->getParent(); 1408 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1409 UserBB = PN->getIncomingBlock(TheUse); 1410 } 1411 1412 // Preincrement use iterator so we don't invalidate it. 1413 ++UI; 1414 1415 // The first insertion point of a block containing an EH pad is after the 1416 // pad. If the pad is the user, we cannot sink the cast past the pad. 1417 if (User->isEHPad()) 1418 continue; 1419 1420 // If the block selected to receive the cast is an EH pad that does not 1421 // allow non-PHI instructions before the terminator, we can't sink the 1422 // cast. 1423 if (UserBB->getTerminator()->isEHPad()) 1424 continue; 1425 1426 // If this user is in the same block as the cast, don't change the cast. 1427 if (UserBB == DefBB) 1428 continue; 1429 1430 // If we have already inserted a cast into this block, use it. 1431 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1432 1433 if (!InsertedCast) { 1434 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1435 assert(InsertPt != UserBB->end()); 1436 InsertedCast = cast<CastInst>(CI->clone()); 1437 InsertedCast->insertBefore(*UserBB, InsertPt); 1438 } 1439 1440 // Replace a use of the cast with a use of the new cast. 1441 TheUse = InsertedCast; 1442 MadeChange = true; 1443 ++NumCastUses; 1444 } 1445 1446 // If we removed all uses, nuke the cast. 1447 if (CI->use_empty()) { 1448 salvageDebugInfo(*CI); 1449 CI->eraseFromParent(); 1450 MadeChange = true; 1451 } 1452 1453 return MadeChange; 1454 } 1455 1456 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1457 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1458 /// reduce the number of virtual registers that must be created and coalesced. 1459 /// 1460 /// Return true if any changes are made. 1461 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1462 const DataLayout &DL) { 1463 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1464 // than sinking only nop casts, but is helpful on some platforms. 1465 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1466 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1467 ASC->getDestAddressSpace())) 1468 return false; 1469 } 1470 1471 // If this is a noop copy, 1472 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1473 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1474 1475 // This is an fp<->int conversion? 1476 if (SrcVT.isInteger() != DstVT.isInteger()) 1477 return false; 1478 1479 // If this is an extension, it will be a zero or sign extension, which 1480 // isn't a noop. 1481 if (SrcVT.bitsLT(DstVT)) 1482 return false; 1483 1484 // If these values will be promoted, find out what they will be promoted 1485 // to. This helps us consider truncates on PPC as noop copies when they 1486 // are. 1487 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1488 TargetLowering::TypePromoteInteger) 1489 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1490 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1491 TargetLowering::TypePromoteInteger) 1492 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1493 1494 // If, after promotion, these are the same types, this is a noop copy. 1495 if (SrcVT != DstVT) 1496 return false; 1497 1498 return SinkCast(CI); 1499 } 1500 1501 // Match a simple increment by constant operation. Note that if a sub is 1502 // matched, the step is negated (as if the step had been canonicalized to 1503 // an add, even though we leave the instruction alone.) 1504 static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, 1505 Constant *&Step) { 1506 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1507 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1508 m_Instruction(LHS), m_Constant(Step))))) 1509 return true; 1510 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1511 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1512 m_Instruction(LHS), m_Constant(Step))))) { 1513 Step = ConstantExpr::getNeg(Step); 1514 return true; 1515 } 1516 return false; 1517 } 1518 1519 /// If given \p PN is an inductive variable with value IVInc coming from the 1520 /// backedge, and on each iteration it gets increased by Step, return pair 1521 /// <IVInc, Step>. Otherwise, return std::nullopt. 1522 static std::optional<std::pair<Instruction *, Constant *>> 1523 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1524 const Loop *L = LI->getLoopFor(PN->getParent()); 1525 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1526 return std::nullopt; 1527 auto *IVInc = 1528 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1529 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1530 return std::nullopt; 1531 Instruction *LHS = nullptr; 1532 Constant *Step = nullptr; 1533 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1534 return std::make_pair(IVInc, Step); 1535 return std::nullopt; 1536 } 1537 1538 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1539 auto *I = dyn_cast<Instruction>(V); 1540 if (!I) 1541 return false; 1542 Instruction *LHS = nullptr; 1543 Constant *Step = nullptr; 1544 if (!matchIncrement(I, LHS, Step)) 1545 return false; 1546 if (auto *PN = dyn_cast<PHINode>(LHS)) 1547 if (auto IVInc = getIVIncrement(PN, LI)) 1548 return IVInc->first == I; 1549 return false; 1550 } 1551 1552 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1553 Value *Arg0, Value *Arg1, 1554 CmpInst *Cmp, 1555 Intrinsic::ID IID) { 1556 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1557 if (!isIVIncrement(BO, LI)) 1558 return false; 1559 const Loop *L = LI->getLoopFor(BO->getParent()); 1560 assert(L && "L should not be null after isIVIncrement()"); 1561 // Do not risk on moving increment into a child loop. 1562 if (LI->getLoopFor(Cmp->getParent()) != L) 1563 return false; 1564 1565 // Finally, we need to ensure that the insert point will dominate all 1566 // existing uses of the increment. 1567 1568 auto &DT = getDT(*BO->getParent()->getParent()); 1569 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1570 // If we're moving up the dom tree, all uses are trivially dominated. 1571 // (This is the common case for code produced by LSR.) 1572 return true; 1573 1574 // Otherwise, special case the single use in the phi recurrence. 1575 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1576 }; 1577 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1578 // We used to use a dominator tree here to allow multi-block optimization. 1579 // But that was problematic because: 1580 // 1. It could cause a perf regression by hoisting the math op into the 1581 // critical path. 1582 // 2. It could cause a perf regression by creating a value that was live 1583 // across multiple blocks and increasing register pressure. 1584 // 3. Use of a dominator tree could cause large compile-time regression. 1585 // This is because we recompute the DT on every change in the main CGP 1586 // run-loop. The recomputing is probably unnecessary in many cases, so if 1587 // that was fixed, using a DT here would be ok. 1588 // 1589 // There is one important particular case we still want to handle: if BO is 1590 // the IV increment. Important properties that make it profitable: 1591 // - We can speculate IV increment anywhere in the loop (as long as the 1592 // indvar Phi is its only user); 1593 // - Upon computing Cmp, we effectively compute something equivalent to the 1594 // IV increment (despite it loops differently in the IR). So moving it up 1595 // to the cmp point does not really increase register pressure. 1596 return false; 1597 } 1598 1599 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1600 if (BO->getOpcode() == Instruction::Add && 1601 IID == Intrinsic::usub_with_overflow) { 1602 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1603 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1604 } 1605 1606 // Insert at the first instruction of the pair. 1607 Instruction *InsertPt = nullptr; 1608 for (Instruction &Iter : *Cmp->getParent()) { 1609 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1610 // the overflow intrinsic are defined. 1611 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1612 InsertPt = &Iter; 1613 break; 1614 } 1615 } 1616 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1617 1618 IRBuilder<> Builder(InsertPt); 1619 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1620 if (BO->getOpcode() != Instruction::Xor) { 1621 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1622 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); 1623 } else 1624 assert(BO->hasOneUse() && 1625 "Patterns with XOr should use the BO only in the compare"); 1626 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1627 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); 1628 Cmp->eraseFromParent(); 1629 BO->eraseFromParent(); 1630 return true; 1631 } 1632 1633 /// Match special-case patterns that check for unsigned add overflow. 1634 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1635 BinaryOperator *&Add) { 1636 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1637 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1638 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1639 1640 // We are not expecting non-canonical/degenerate code. Just bail out. 1641 if (isa<Constant>(A)) 1642 return false; 1643 1644 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1645 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1646 B = ConstantInt::get(B->getType(), 1); 1647 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1648 B = Constant::getAllOnesValue(B->getType()); 1649 else 1650 return false; 1651 1652 // Check the users of the variable operand of the compare looking for an add 1653 // with the adjusted constant. 1654 for (User *U : A->users()) { 1655 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1656 Add = cast<BinaryOperator>(U); 1657 return true; 1658 } 1659 } 1660 return false; 1661 } 1662 1663 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1664 /// intrinsic. Return true if any changes were made. 1665 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1666 ModifyDT &ModifiedDT) { 1667 bool EdgeCase = false; 1668 Value *A, *B; 1669 BinaryOperator *Add; 1670 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1671 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1672 return false; 1673 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1674 A = Add->getOperand(0); 1675 B = Add->getOperand(1); 1676 EdgeCase = true; 1677 } 1678 1679 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1680 TLI->getValueType(*DL, Add->getType()), 1681 Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) 1682 return false; 1683 1684 // We don't want to move around uses of condition values this late, so we 1685 // check if it is legal to create the call to the intrinsic in the basic 1686 // block containing the icmp. 1687 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1688 return false; 1689 1690 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1691 Intrinsic::uadd_with_overflow)) 1692 return false; 1693 1694 // Reset callers - do not crash by iterating over a dead instruction. 1695 ModifiedDT = ModifyDT::ModifyInstDT; 1696 return true; 1697 } 1698 1699 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1700 ModifyDT &ModifiedDT) { 1701 // We are not expecting non-canonical/degenerate code. Just bail out. 1702 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1703 if (isa<Constant>(A) && isa<Constant>(B)) 1704 return false; 1705 1706 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1707 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1708 if (Pred == ICmpInst::ICMP_UGT) { 1709 std::swap(A, B); 1710 Pred = ICmpInst::ICMP_ULT; 1711 } 1712 // Convert special-case: (A == 0) is the same as (A u< 1). 1713 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1714 B = ConstantInt::get(B->getType(), 1); 1715 Pred = ICmpInst::ICMP_ULT; 1716 } 1717 // Convert special-case: (A != 0) is the same as (0 u< A). 1718 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1719 std::swap(A, B); 1720 Pred = ICmpInst::ICMP_ULT; 1721 } 1722 if (Pred != ICmpInst::ICMP_ULT) 1723 return false; 1724 1725 // Walk the users of a variable operand of a compare looking for a subtract or 1726 // add with that same operand. Also match the 2nd operand of the compare to 1727 // the add/sub, but that may be a negated constant operand of an add. 1728 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1729 BinaryOperator *Sub = nullptr; 1730 for (User *U : CmpVariableOperand->users()) { 1731 // A - B, A u< B --> usubo(A, B) 1732 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1733 Sub = cast<BinaryOperator>(U); 1734 break; 1735 } 1736 1737 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1738 const APInt *CmpC, *AddC; 1739 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1740 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1741 Sub = cast<BinaryOperator>(U); 1742 break; 1743 } 1744 } 1745 if (!Sub) 1746 return false; 1747 1748 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1749 TLI->getValueType(*DL, Sub->getType()), 1750 Sub->hasNUsesOrMore(1))) 1751 return false; 1752 1753 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1754 Cmp, Intrinsic::usub_with_overflow)) 1755 return false; 1756 1757 // Reset callers - do not crash by iterating over a dead instruction. 1758 ModifiedDT = ModifyDT::ModifyInstDT; 1759 return true; 1760 } 1761 1762 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1763 /// registers that must be created and coalesced. This is a clear win except on 1764 /// targets with multiple condition code registers (PowerPC), where it might 1765 /// lose; some adjustment may be wanted there. 1766 /// 1767 /// Return true if any changes are made. 1768 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1769 if (TLI.hasMultipleConditionRegisters()) 1770 return false; 1771 1772 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1773 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1774 return false; 1775 1776 // Only insert a cmp in each block once. 1777 DenseMap<BasicBlock *, CmpInst *> InsertedCmps; 1778 1779 bool MadeChange = false; 1780 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1781 UI != E;) { 1782 Use &TheUse = UI.getUse(); 1783 Instruction *User = cast<Instruction>(*UI); 1784 1785 // Preincrement use iterator so we don't invalidate it. 1786 ++UI; 1787 1788 // Don't bother for PHI nodes. 1789 if (isa<PHINode>(User)) 1790 continue; 1791 1792 // Figure out which BB this cmp is used in. 1793 BasicBlock *UserBB = User->getParent(); 1794 BasicBlock *DefBB = Cmp->getParent(); 1795 1796 // If this user is in the same block as the cmp, don't change the cmp. 1797 if (UserBB == DefBB) 1798 continue; 1799 1800 // If we have already inserted a cmp into this block, use it. 1801 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1802 1803 if (!InsertedCmp) { 1804 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1805 assert(InsertPt != UserBB->end()); 1806 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1807 Cmp->getOperand(0), Cmp->getOperand(1), ""); 1808 InsertedCmp->insertBefore(*UserBB, InsertPt); 1809 // Propagate the debug info. 1810 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1811 } 1812 1813 // Replace a use of the cmp with a use of the new cmp. 1814 TheUse = InsertedCmp; 1815 MadeChange = true; 1816 ++NumCmpUses; 1817 } 1818 1819 // If we removed all uses, nuke the cmp. 1820 if (Cmp->use_empty()) { 1821 Cmp->eraseFromParent(); 1822 MadeChange = true; 1823 } 1824 1825 return MadeChange; 1826 } 1827 1828 /// For pattern like: 1829 /// 1830 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1831 /// ... 1832 /// DomBB: 1833 /// ... 1834 /// br DomCond, TrueBB, CmpBB 1835 /// CmpBB: (with DomBB being the single predecessor) 1836 /// ... 1837 /// Cmp = icmp eq CmpOp0, CmpOp1 1838 /// ... 1839 /// 1840 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1841 /// different from lowering of icmp eq (PowerPC). This function try to convert 1842 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1843 /// After that, DomCond and Cmp can use the same comparison so reduce one 1844 /// comparison. 1845 /// 1846 /// Return true if any changes are made. 1847 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1848 const TargetLowering &TLI) { 1849 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1850 return false; 1851 1852 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1853 if (Pred != ICmpInst::ICMP_EQ) 1854 return false; 1855 1856 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1857 // icmp slt/sgt would introduce more redundant LLVM IR. 1858 for (User *U : Cmp->users()) { 1859 if (isa<BranchInst>(U)) 1860 continue; 1861 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1862 continue; 1863 return false; 1864 } 1865 1866 // This is a cheap/incomplete check for dominance - just match a single 1867 // predecessor with a conditional branch. 1868 BasicBlock *CmpBB = Cmp->getParent(); 1869 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1870 if (!DomBB) 1871 return false; 1872 1873 // We want to ensure that the only way control gets to the comparison of 1874 // interest is that a less/greater than comparison on the same operands is 1875 // false. 1876 Value *DomCond; 1877 BasicBlock *TrueBB, *FalseBB; 1878 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1879 return false; 1880 if (CmpBB != FalseBB) 1881 return false; 1882 1883 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1884 ICmpInst::Predicate DomPred; 1885 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1886 return false; 1887 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1888 return false; 1889 1890 // Convert the equality comparison to the opposite of the dominating 1891 // comparison and swap the direction for all branch/select users. 1892 // We have conceptually converted: 1893 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1894 // to 1895 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1896 // And similarly for branches. 1897 for (User *U : Cmp->users()) { 1898 if (auto *BI = dyn_cast<BranchInst>(U)) { 1899 assert(BI->isConditional() && "Must be conditional"); 1900 BI->swapSuccessors(); 1901 continue; 1902 } 1903 if (auto *SI = dyn_cast<SelectInst>(U)) { 1904 // Swap operands 1905 SI->swapValues(); 1906 SI->swapProfMetadata(); 1907 continue; 1908 } 1909 llvm_unreachable("Must be a branch or a select"); 1910 } 1911 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1912 return true; 1913 } 1914 1915 /// Many architectures use the same instruction for both subtract and cmp. Try 1916 /// to swap cmp operands to match subtract operations to allow for CSE. 1917 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { 1918 Value *Op0 = Cmp->getOperand(0); 1919 Value *Op1 = Cmp->getOperand(1); 1920 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) || 1921 isa<Constant>(Op1) || Op0 == Op1) 1922 return false; 1923 1924 // If a subtract already has the same operands as a compare, swapping would be 1925 // bad. If a subtract has the same operands as a compare but in reverse order, 1926 // then swapping is good. 1927 int GoodToSwap = 0; 1928 unsigned NumInspected = 0; 1929 for (const User *U : Op0->users()) { 1930 // Avoid walking many users. 1931 if (++NumInspected > 128) 1932 return false; 1933 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 1934 GoodToSwap++; 1935 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 1936 GoodToSwap--; 1937 } 1938 1939 if (GoodToSwap > 0) { 1940 Cmp->swapOperands(); 1941 return true; 1942 } 1943 return false; 1944 } 1945 1946 static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI, 1947 const DataLayout &DL) { 1948 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp); 1949 if (!FCmp) 1950 return false; 1951 1952 // Don't fold if the target offers free fabs and the predicate is legal. 1953 EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType()); 1954 if (TLI.isFAbsFree(VT) && 1955 TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()), 1956 VT.getSimpleVT())) 1957 return false; 1958 1959 // Reverse the canonicalization if it is a FP class test 1960 auto ShouldReverseTransform = [](FPClassTest ClassTest) { 1961 return ClassTest == fcInf || ClassTest == (fcInf | fcNan); 1962 }; 1963 auto [ClassVal, ClassTest] = 1964 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), 1965 FCmp->getOperand(0), FCmp->getOperand(1)); 1966 if (!ClassVal) 1967 return false; 1968 1969 if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest)) 1970 return false; 1971 1972 IRBuilder<> Builder(Cmp); 1973 Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest); 1974 Cmp->replaceAllUsesWith(IsFPClass); 1975 RecursivelyDeleteTriviallyDeadInstructions(Cmp); 1976 return true; 1977 } 1978 1979 static bool isRemOfLoopIncrementWithLoopInvariant(Instruction *Rem, 1980 const LoopInfo *LI, 1981 Value *&RemAmtOut, 1982 PHINode *&LoopIncrPNOut) { 1983 Value *Incr, *RemAmt; 1984 // NB: If RemAmt is a power of 2 it *should* have been transformed by now. 1985 if (!match(Rem, m_URem(m_Value(Incr), m_Value(RemAmt)))) 1986 return false; 1987 1988 // Find out loop increment PHI. 1989 auto *PN = dyn_cast<PHINode>(Incr); 1990 if (!PN) 1991 return false; 1992 1993 // This isn't strictly necessary, what we really need is one increment and any 1994 // amount of initial values all being the same. 1995 if (PN->getNumIncomingValues() != 2) 1996 return false; 1997 1998 // Only trivially analyzable loops. 1999 Loop *L = LI->getLoopFor(PN->getParent()); 2000 if (!L || !L->getLoopPreheader() || !L->getLoopLatch()) 2001 return false; 2002 2003 // Req that the remainder is in the loop 2004 if (!L->contains(Rem)) 2005 return false; 2006 2007 // Only works if the remainder amount is a loop invaraint 2008 if (!L->isLoopInvariant(RemAmt)) 2009 return false; 2010 2011 // Is the PHI a loop increment? 2012 auto LoopIncrInfo = getIVIncrement(PN, LI); 2013 if (!LoopIncrInfo) 2014 return false; 2015 2016 // We need remainder_amount % increment_amount to be zero. Increment of one 2017 // satisfies that without any special logic and is overwhelmingly the common 2018 // case. 2019 if (!match(LoopIncrInfo->second, m_One())) 2020 return false; 2021 2022 // Need the increment to not overflow. 2023 if (!match(LoopIncrInfo->first, m_c_NUWAdd(m_Specific(PN), m_Value()))) 2024 return false; 2025 2026 // Set output variables. 2027 RemAmtOut = RemAmt; 2028 LoopIncrPNOut = PN; 2029 2030 return true; 2031 } 2032 2033 // Try to transform: 2034 // 2035 // for(i = Start; i < End; ++i) 2036 // Rem = (i nuw+ IncrLoopInvariant) u% RemAmtLoopInvariant; 2037 // 2038 // -> 2039 // 2040 // Rem = (Start nuw+ IncrLoopInvariant) % RemAmtLoopInvariant; 2041 // for(i = Start; i < End; ++i, ++rem) 2042 // Rem = rem == RemAmtLoopInvariant ? 0 : Rem; 2043 // 2044 // Currently only implemented for `IncrLoopInvariant` being zero. 2045 static bool foldURemOfLoopIncrement(Instruction *Rem, const DataLayout *DL, 2046 const LoopInfo *LI, 2047 SmallSet<BasicBlock *, 32> &FreshBBs, 2048 bool IsHuge) { 2049 Value *RemAmt; 2050 PHINode *LoopIncrPN; 2051 if (!isRemOfLoopIncrementWithLoopInvariant(Rem, LI, RemAmt, LoopIncrPN)) 2052 return false; 2053 2054 // Only non-constant remainder as the extra IV is probably not profitable 2055 // in that case. 2056 // 2057 // Potential TODO(1): `urem` of a const ends up as `mul` + `shift` + `add`. If 2058 // we can rule out register pressure and ensure this `urem` is executed each 2059 // iteration, its probably profitable to handle the const case as well. 2060 // 2061 // Potential TODO(2): Should we have a check for how "nested" this remainder 2062 // operation is? The new code runs every iteration so if the remainder is 2063 // guarded behind unlikely conditions this might not be worth it. 2064 if (match(RemAmt, m_ImmConstant())) 2065 return false; 2066 2067 Loop *L = LI->getLoopFor(LoopIncrPN->getParent()); 2068 Value *Start = LoopIncrPN->getIncomingValueForBlock(L->getLoopPreheader()); 2069 // If we can't fully optimize out the `rem`, skip this transform. 2070 Start = simplifyURemInst(Start, RemAmt, *DL); 2071 if (!Start) 2072 return false; 2073 2074 // Create new remainder with induction variable. 2075 Type *Ty = Rem->getType(); 2076 IRBuilder<> Builder(Rem->getContext()); 2077 2078 Builder.SetInsertPoint(LoopIncrPN); 2079 PHINode *NewRem = Builder.CreatePHI(Ty, 2); 2080 2081 Builder.SetInsertPoint(cast<Instruction>( 2082 LoopIncrPN->getIncomingValueForBlock(L->getLoopLatch()))); 2083 // `(add (urem x, y), 1)` is always nuw. 2084 Value *RemAdd = Builder.CreateNUWAdd(NewRem, ConstantInt::get(Ty, 1)); 2085 Value *RemCmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, RemAdd, RemAmt); 2086 Value *RemSel = 2087 Builder.CreateSelect(RemCmp, Constant::getNullValue(Ty), RemAdd); 2088 2089 NewRem->addIncoming(Start, L->getLoopPreheader()); 2090 NewRem->addIncoming(RemSel, L->getLoopLatch()); 2091 2092 // Insert all touched BBs. 2093 FreshBBs.insert(LoopIncrPN->getParent()); 2094 FreshBBs.insert(L->getLoopLatch()); 2095 FreshBBs.insert(Rem->getParent()); 2096 2097 replaceAllUsesWith(Rem, NewRem, FreshBBs, IsHuge); 2098 Rem->eraseFromParent(); 2099 return true; 2100 } 2101 2102 bool CodeGenPrepare::optimizeURem(Instruction *Rem) { 2103 if (foldURemOfLoopIncrement(Rem, DL, LI, FreshBBs, IsHugeFunc)) 2104 return true; 2105 return false; 2106 } 2107 2108 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { 2109 if (sinkCmpExpression(Cmp, *TLI)) 2110 return true; 2111 2112 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 2113 return true; 2114 2115 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 2116 return true; 2117 2118 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 2119 return true; 2120 2121 if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) 2122 return true; 2123 2124 if (foldFCmpToFPClassTest(Cmp, *TLI, *DL)) 2125 return true; 2126 2127 return false; 2128 } 2129 2130 /// Duplicate and sink the given 'and' instruction into user blocks where it is 2131 /// used in a compare to allow isel to generate better code for targets where 2132 /// this operation can be combined. 2133 /// 2134 /// Return true if any changes are made. 2135 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, 2136 SetOfInstrs &InsertedInsts) { 2137 // Double-check that we're not trying to optimize an instruction that was 2138 // already optimized by some other part of this pass. 2139 assert(!InsertedInsts.count(AndI) && 2140 "Attempting to optimize already optimized and instruction"); 2141 (void)InsertedInsts; 2142 2143 // Nothing to do for single use in same basic block. 2144 if (AndI->hasOneUse() && 2145 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 2146 return false; 2147 2148 // Try to avoid cases where sinking/duplicating is likely to increase register 2149 // pressure. 2150 if (!isa<ConstantInt>(AndI->getOperand(0)) && 2151 !isa<ConstantInt>(AndI->getOperand(1)) && 2152 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 2153 return false; 2154 2155 for (auto *U : AndI->users()) { 2156 Instruction *User = cast<Instruction>(U); 2157 2158 // Only sink 'and' feeding icmp with 0. 2159 if (!isa<ICmpInst>(User)) 2160 return false; 2161 2162 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 2163 if (!CmpC || !CmpC->isZero()) 2164 return false; 2165 } 2166 2167 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 2168 return false; 2169 2170 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 2171 LLVM_DEBUG(AndI->getParent()->dump()); 2172 2173 // Push the 'and' into the same block as the icmp 0. There should only be 2174 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 2175 // others, so we don't need to keep track of which BBs we insert into. 2176 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 2177 UI != E;) { 2178 Use &TheUse = UI.getUse(); 2179 Instruction *User = cast<Instruction>(*UI); 2180 2181 // Preincrement use iterator so we don't invalidate it. 2182 ++UI; 2183 2184 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 2185 2186 // Keep the 'and' in the same place if the use is already in the same block. 2187 Instruction *InsertPt = 2188 User->getParent() == AndI->getParent() ? AndI : User; 2189 Instruction *InsertedAnd = BinaryOperator::Create( 2190 Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "", 2191 InsertPt->getIterator()); 2192 // Propagate the debug info. 2193 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 2194 2195 // Replace a use of the 'and' with a use of the new 'and'. 2196 TheUse = InsertedAnd; 2197 ++NumAndUses; 2198 LLVM_DEBUG(User->getParent()->dump()); 2199 } 2200 2201 // We removed all uses, nuke the and. 2202 AndI->eraseFromParent(); 2203 return true; 2204 } 2205 2206 /// Check if the candidates could be combined with a shift instruction, which 2207 /// includes: 2208 /// 1. Truncate instruction 2209 /// 2. And instruction and the imm is a mask of the low bits: 2210 /// imm & (imm+1) == 0 2211 static bool isExtractBitsCandidateUse(Instruction *User) { 2212 if (!isa<TruncInst>(User)) { 2213 if (User->getOpcode() != Instruction::And || 2214 !isa<ConstantInt>(User->getOperand(1))) 2215 return false; 2216 2217 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 2218 2219 if ((Cimm & (Cimm + 1)).getBoolValue()) 2220 return false; 2221 } 2222 return true; 2223 } 2224 2225 /// Sink both shift and truncate instruction to the use of truncate's BB. 2226 static bool 2227 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 2228 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 2229 const TargetLowering &TLI, const DataLayout &DL) { 2230 BasicBlock *UserBB = User->getParent(); 2231 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 2232 auto *TruncI = cast<TruncInst>(User); 2233 bool MadeChange = false; 2234 2235 for (Value::user_iterator TruncUI = TruncI->user_begin(), 2236 TruncE = TruncI->user_end(); 2237 TruncUI != TruncE;) { 2238 2239 Use &TruncTheUse = TruncUI.getUse(); 2240 Instruction *TruncUser = cast<Instruction>(*TruncUI); 2241 // Preincrement use iterator so we don't invalidate it. 2242 2243 ++TruncUI; 2244 2245 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 2246 if (!ISDOpcode) 2247 continue; 2248 2249 // If the use is actually a legal node, there will not be an 2250 // implicit truncate. 2251 // FIXME: always querying the result type is just an 2252 // approximation; some nodes' legality is determined by the 2253 // operand or other means. There's no good way to find out though. 2254 if (TLI.isOperationLegalOrCustom( 2255 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 2256 continue; 2257 2258 // Don't bother for PHI nodes. 2259 if (isa<PHINode>(TruncUser)) 2260 continue; 2261 2262 BasicBlock *TruncUserBB = TruncUser->getParent(); 2263 2264 if (UserBB == TruncUserBB) 2265 continue; 2266 2267 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 2268 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 2269 2270 if (!InsertedShift && !InsertedTrunc) { 2271 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 2272 assert(InsertPt != TruncUserBB->end()); 2273 // Sink the shift 2274 if (ShiftI->getOpcode() == Instruction::AShr) 2275 InsertedShift = 2276 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2277 else 2278 InsertedShift = 2279 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2280 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2281 InsertedShift->insertBefore(*TruncUserBB, InsertPt); 2282 2283 // Sink the trunc 2284 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 2285 TruncInsertPt++; 2286 // It will go ahead of any debug-info. 2287 TruncInsertPt.setHeadBit(true); 2288 assert(TruncInsertPt != TruncUserBB->end()); 2289 2290 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 2291 TruncI->getType(), ""); 2292 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt); 2293 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 2294 2295 MadeChange = true; 2296 2297 TruncTheUse = InsertedTrunc; 2298 } 2299 } 2300 return MadeChange; 2301 } 2302 2303 /// Sink the shift *right* instruction into user blocks if the uses could 2304 /// potentially be combined with this shift instruction and generate BitExtract 2305 /// instruction. It will only be applied if the architecture supports BitExtract 2306 /// instruction. Here is an example: 2307 /// BB1: 2308 /// %x.extract.shift = lshr i64 %arg1, 32 2309 /// BB2: 2310 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 2311 /// ==> 2312 /// 2313 /// BB2: 2314 /// %x.extract.shift.1 = lshr i64 %arg1, 32 2315 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 2316 /// 2317 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 2318 /// instruction. 2319 /// Return true if any changes are made. 2320 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 2321 const TargetLowering &TLI, 2322 const DataLayout &DL) { 2323 BasicBlock *DefBB = ShiftI->getParent(); 2324 2325 /// Only insert instructions in each block once. 2326 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 2327 2328 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 2329 2330 bool MadeChange = false; 2331 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 2332 UI != E;) { 2333 Use &TheUse = UI.getUse(); 2334 Instruction *User = cast<Instruction>(*UI); 2335 // Preincrement use iterator so we don't invalidate it. 2336 ++UI; 2337 2338 // Don't bother for PHI nodes. 2339 if (isa<PHINode>(User)) 2340 continue; 2341 2342 if (!isExtractBitsCandidateUse(User)) 2343 continue; 2344 2345 BasicBlock *UserBB = User->getParent(); 2346 2347 if (UserBB == DefBB) { 2348 // If the shift and truncate instruction are in the same BB. The use of 2349 // the truncate(TruncUse) may still introduce another truncate if not 2350 // legal. In this case, we would like to sink both shift and truncate 2351 // instruction to the BB of TruncUse. 2352 // for example: 2353 // BB1: 2354 // i64 shift.result = lshr i64 opnd, imm 2355 // trunc.result = trunc shift.result to i16 2356 // 2357 // BB2: 2358 // ----> We will have an implicit truncate here if the architecture does 2359 // not have i16 compare. 2360 // cmp i16 trunc.result, opnd2 2361 // 2362 if (isa<TruncInst>(User) && 2363 shiftIsLegal 2364 // If the type of the truncate is legal, no truncate will be 2365 // introduced in other basic blocks. 2366 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 2367 MadeChange = 2368 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 2369 2370 continue; 2371 } 2372 // If we have already inserted a shift into this block, use it. 2373 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 2374 2375 if (!InsertedShift) { 2376 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2377 assert(InsertPt != UserBB->end()); 2378 2379 if (ShiftI->getOpcode() == Instruction::AShr) 2380 InsertedShift = 2381 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2382 else 2383 InsertedShift = 2384 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2385 InsertedShift->insertBefore(*UserBB, InsertPt); 2386 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2387 2388 MadeChange = true; 2389 } 2390 2391 // Replace a use of the shift with a use of the new shift. 2392 TheUse = InsertedShift; 2393 } 2394 2395 // If we removed all uses, or there are none, nuke the shift. 2396 if (ShiftI->use_empty()) { 2397 salvageDebugInfo(*ShiftI); 2398 ShiftI->eraseFromParent(); 2399 MadeChange = true; 2400 } 2401 2402 return MadeChange; 2403 } 2404 2405 /// If counting leading or trailing zeros is an expensive operation and a zero 2406 /// input is defined, add a check for zero to avoid calling the intrinsic. 2407 /// 2408 /// We want to transform: 2409 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2410 /// 2411 /// into: 2412 /// entry: 2413 /// %cmpz = icmp eq i64 %A, 0 2414 /// br i1 %cmpz, label %cond.end, label %cond.false 2415 /// cond.false: 2416 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2417 /// br label %cond.end 2418 /// cond.end: 2419 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2420 /// 2421 /// If the transform is performed, return true and set ModifiedDT to true. 2422 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2423 LoopInfo &LI, 2424 const TargetLowering *TLI, 2425 const DataLayout *DL, ModifyDT &ModifiedDT, 2426 SmallSet<BasicBlock *, 32> &FreshBBs, 2427 bool IsHugeFunc) { 2428 // If a zero input is undefined, it doesn't make sense to despeculate that. 2429 if (match(CountZeros->getOperand(1), m_One())) 2430 return false; 2431 2432 // If it's cheap to speculate, there's nothing to do. 2433 Type *Ty = CountZeros->getType(); 2434 auto IntrinsicID = CountZeros->getIntrinsicID(); 2435 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || 2436 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) 2437 return false; 2438 2439 // Only handle legal scalar cases. Anything else requires too much work. 2440 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2441 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2442 return false; 2443 2444 // Bail if the value is never zero. 2445 Use &Op = CountZeros->getOperandUse(0); 2446 if (isKnownNonZero(Op, *DL)) 2447 return false; 2448 2449 // The intrinsic will be sunk behind a compare against zero and branch. 2450 BasicBlock *StartBlock = CountZeros->getParent(); 2451 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2452 if (IsHugeFunc) 2453 FreshBBs.insert(CallBlock); 2454 2455 // Create another block after the count zero intrinsic. A PHI will be added 2456 // in this block to select the result of the intrinsic or the bit-width 2457 // constant if the input to the intrinsic is zero. 2458 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros)); 2459 // Any debug-info after CountZeros should not be included. 2460 SplitPt.setHeadBit(true); 2461 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2462 if (IsHugeFunc) 2463 FreshBBs.insert(EndBlock); 2464 2465 // Update the LoopInfo. The new blocks are in the same loop as the start 2466 // block. 2467 if (Loop *L = LI.getLoopFor(StartBlock)) { 2468 L->addBasicBlockToLoop(CallBlock, LI); 2469 L->addBasicBlockToLoop(EndBlock, LI); 2470 } 2471 2472 // Set up a builder to create a compare, conditional branch, and PHI. 2473 IRBuilder<> Builder(CountZeros->getContext()); 2474 Builder.SetInsertPoint(StartBlock->getTerminator()); 2475 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2476 2477 // Replace the unconditional branch that was created by the first split with 2478 // a compare against zero and a conditional branch. 2479 Value *Zero = Constant::getNullValue(Ty); 2480 // Avoid introducing branch on poison. This also replaces the ctz operand. 2481 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2482 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2483 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2484 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2485 StartBlock->getTerminator()->eraseFromParent(); 2486 2487 // Create a PHI in the end block to select either the output of the intrinsic 2488 // or the bit width of the operand. 2489 Builder.SetInsertPoint(EndBlock, EndBlock->begin()); 2490 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2491 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); 2492 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2493 PN->addIncoming(BitWidth, StartBlock); 2494 PN->addIncoming(CountZeros, CallBlock); 2495 2496 // We are explicitly handling the zero case, so we can set the intrinsic's 2497 // undefined zero argument to 'true'. This will also prevent reprocessing the 2498 // intrinsic; we only despeculate when a zero input is defined. 2499 CountZeros->setArgOperand(1, Builder.getTrue()); 2500 ModifiedDT = ModifyDT::ModifyBBDT; 2501 return true; 2502 } 2503 2504 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { 2505 BasicBlock *BB = CI->getParent(); 2506 2507 // Lower inline assembly if we can. 2508 // If we found an inline asm expession, and if the target knows how to 2509 // lower it to normal LLVM code, do so now. 2510 if (CI->isInlineAsm()) { 2511 if (TLI->ExpandInlineAsm(CI)) { 2512 // Avoid invalidating the iterator. 2513 CurInstIterator = BB->begin(); 2514 // Avoid processing instructions out of order, which could cause 2515 // reuse before a value is defined. 2516 SunkAddrs.clear(); 2517 return true; 2518 } 2519 // Sink address computing for memory operands into the block. 2520 if (optimizeInlineAsmInst(CI)) 2521 return true; 2522 } 2523 2524 // Align the pointer arguments to this call if the target thinks it's a good 2525 // idea 2526 unsigned MinSize; 2527 Align PrefAlign; 2528 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2529 for (auto &Arg : CI->args()) { 2530 // We want to align both objects whose address is used directly and 2531 // objects whose address is used in casts and GEPs, though it only makes 2532 // sense for GEPs if the offset is a multiple of the desired alignment and 2533 // if size - offset meets the size threshold. 2534 if (!Arg->getType()->isPointerTy()) 2535 continue; 2536 APInt Offset(DL->getIndexSizeInBits( 2537 cast<PointerType>(Arg->getType())->getAddressSpace()), 2538 0); 2539 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2540 uint64_t Offset2 = Offset.getLimitedValue(); 2541 if (!isAligned(PrefAlign, Offset2)) 2542 continue; 2543 AllocaInst *AI; 2544 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2545 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2546 AI->setAlignment(PrefAlign); 2547 // Global variables can only be aligned if they are defined in this 2548 // object (i.e. they are uniquely initialized in this object), and 2549 // over-aligning global variables that have an explicit section is 2550 // forbidden. 2551 GlobalVariable *GV; 2552 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2553 GV->getPointerAlignment(*DL) < PrefAlign && 2554 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) 2555 GV->setAlignment(PrefAlign); 2556 } 2557 } 2558 // If this is a memcpy (or similar) then we may be able to improve the 2559 // alignment. 2560 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2561 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2562 MaybeAlign MIDestAlign = MI->getDestAlign(); 2563 if (!MIDestAlign || DestAlign > *MIDestAlign) 2564 MI->setDestAlignment(DestAlign); 2565 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2566 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2567 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2568 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2569 MTI->setSourceAlignment(SrcAlign); 2570 } 2571 } 2572 2573 // If we have a cold call site, try to sink addressing computation into the 2574 // cold block. This interacts with our handling for loads and stores to 2575 // ensure that we can fold all uses of a potential addressing computation 2576 // into their uses. TODO: generalize this to work over profiling data 2577 if (CI->hasFnAttr(Attribute::Cold) && !OptSize && 2578 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2579 for (auto &Arg : CI->args()) { 2580 if (!Arg->getType()->isPointerTy()) 2581 continue; 2582 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2583 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) 2584 return true; 2585 } 2586 2587 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2588 if (II) { 2589 switch (II->getIntrinsicID()) { 2590 default: 2591 break; 2592 case Intrinsic::assume: 2593 llvm_unreachable("llvm.assume should have been removed already"); 2594 case Intrinsic::allow_runtime_check: 2595 case Intrinsic::allow_ubsan_check: 2596 case Intrinsic::experimental_widenable_condition: { 2597 // Give up on future widening opportunities so that we can fold away dead 2598 // paths and merge blocks before going into block-local instruction 2599 // selection. 2600 if (II->use_empty()) { 2601 II->eraseFromParent(); 2602 return true; 2603 } 2604 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2605 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2606 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2607 }); 2608 return true; 2609 } 2610 case Intrinsic::objectsize: 2611 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2612 case Intrinsic::is_constant: 2613 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2614 case Intrinsic::aarch64_stlxr: 2615 case Intrinsic::aarch64_stxr: { 2616 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2617 if (!ExtVal || !ExtVal->hasOneUse() || 2618 ExtVal->getParent() == CI->getParent()) 2619 return false; 2620 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2621 ExtVal->moveBefore(CI); 2622 // Mark this instruction as "inserted by CGP", so that other 2623 // optimizations don't touch it. 2624 InsertedInsts.insert(ExtVal); 2625 return true; 2626 } 2627 2628 case Intrinsic::launder_invariant_group: 2629 case Intrinsic::strip_invariant_group: { 2630 Value *ArgVal = II->getArgOperand(0); 2631 auto it = LargeOffsetGEPMap.find(II); 2632 if (it != LargeOffsetGEPMap.end()) { 2633 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2634 // Make sure not to have to deal with iterator invalidation 2635 // after possibly adding ArgVal to LargeOffsetGEPMap. 2636 auto GEPs = std::move(it->second); 2637 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2638 LargeOffsetGEPMap.erase(II); 2639 } 2640 2641 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); 2642 II->eraseFromParent(); 2643 return true; 2644 } 2645 case Intrinsic::cttz: 2646 case Intrinsic::ctlz: 2647 // If counting zeros is expensive, try to avoid it. 2648 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs, 2649 IsHugeFunc); 2650 case Intrinsic::fshl: 2651 case Intrinsic::fshr: 2652 return optimizeFunnelShift(II); 2653 case Intrinsic::dbg_assign: 2654 case Intrinsic::dbg_value: 2655 return fixupDbgValue(II); 2656 case Intrinsic::masked_gather: 2657 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2658 case Intrinsic::masked_scatter: 2659 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2660 } 2661 2662 SmallVector<Value *, 2> PtrOps; 2663 Type *AccessTy; 2664 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2665 while (!PtrOps.empty()) { 2666 Value *PtrVal = PtrOps.pop_back_val(); 2667 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2668 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2669 return true; 2670 } 2671 } 2672 2673 // From here on out we're working with named functions. 2674 if (!CI->getCalledFunction()) 2675 return false; 2676 2677 // Lower all default uses of _chk calls. This is very similar 2678 // to what InstCombineCalls does, but here we are only lowering calls 2679 // to fortified library functions (e.g. __memcpy_chk) that have the default 2680 // "don't know" as the objectsize. Anything else should be left alone. 2681 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2682 IRBuilder<> Builder(CI); 2683 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2684 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); 2685 CI->eraseFromParent(); 2686 return true; 2687 } 2688 2689 return false; 2690 } 2691 2692 static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo, 2693 const CallInst *CI) { 2694 assert(CI && CI->use_empty()); 2695 2696 if (const auto *II = dyn_cast<IntrinsicInst>(CI)) 2697 switch (II->getIntrinsicID()) { 2698 case Intrinsic::memset: 2699 case Intrinsic::memcpy: 2700 case Intrinsic::memmove: 2701 return true; 2702 default: 2703 return false; 2704 } 2705 2706 LibFunc LF; 2707 Function *Callee = CI->getCalledFunction(); 2708 if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF)) 2709 switch (LF) { 2710 case LibFunc_strcpy: 2711 case LibFunc_strncpy: 2712 case LibFunc_strcat: 2713 case LibFunc_strncat: 2714 return true; 2715 default: 2716 return false; 2717 } 2718 2719 return false; 2720 } 2721 2722 /// Look for opportunities to duplicate return instructions to the predecessor 2723 /// to enable tail call optimizations. The case it is currently looking for is 2724 /// the following one. Known intrinsics or library function that may be tail 2725 /// called are taken into account as well. 2726 /// @code 2727 /// bb0: 2728 /// %tmp0 = tail call i32 @f0() 2729 /// br label %return 2730 /// bb1: 2731 /// %tmp1 = tail call i32 @f1() 2732 /// br label %return 2733 /// bb2: 2734 /// %tmp2 = tail call i32 @f2() 2735 /// br label %return 2736 /// return: 2737 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2738 /// ret i32 %retval 2739 /// @endcode 2740 /// 2741 /// => 2742 /// 2743 /// @code 2744 /// bb0: 2745 /// %tmp0 = tail call i32 @f0() 2746 /// ret i32 %tmp0 2747 /// bb1: 2748 /// %tmp1 = tail call i32 @f1() 2749 /// ret i32 %tmp1 2750 /// bb2: 2751 /// %tmp2 = tail call i32 @f2() 2752 /// ret i32 %tmp2 2753 /// @endcode 2754 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, 2755 ModifyDT &ModifiedDT) { 2756 if (!BB->getTerminator()) 2757 return false; 2758 2759 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2760 if (!RetI) 2761 return false; 2762 2763 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop"); 2764 2765 PHINode *PN = nullptr; 2766 ExtractValueInst *EVI = nullptr; 2767 BitCastInst *BCI = nullptr; 2768 Value *V = RetI->getReturnValue(); 2769 if (V) { 2770 BCI = dyn_cast<BitCastInst>(V); 2771 if (BCI) 2772 V = BCI->getOperand(0); 2773 2774 EVI = dyn_cast<ExtractValueInst>(V); 2775 if (EVI) { 2776 V = EVI->getOperand(0); 2777 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2778 return false; 2779 } 2780 2781 PN = dyn_cast<PHINode>(V); 2782 } 2783 2784 if (PN && PN->getParent() != BB) 2785 return false; 2786 2787 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2788 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2789 if (BC && BC->hasOneUse()) 2790 Inst = BC->user_back(); 2791 2792 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2793 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2794 return false; 2795 }; 2796 2797 // Make sure there are no instructions between the first instruction 2798 // and return. 2799 const Instruction *BI = BB->getFirstNonPHI(); 2800 // Skip over debug and the bitcast. 2801 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2802 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2803 BI = BI->getNextNode(); 2804 if (BI != RetI) 2805 return false; 2806 2807 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2808 /// call. 2809 const Function *F = BB->getParent(); 2810 SmallVector<BasicBlock *, 4> TailCallBBs; 2811 if (PN) { 2812 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2813 // Look through bitcasts. 2814 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2815 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2816 BasicBlock *PredBB = PN->getIncomingBlock(I); 2817 // Make sure the phi value is indeed produced by the tail call. 2818 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2819 TLI->mayBeEmittedAsTailCall(CI) && 2820 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2821 TailCallBBs.push_back(PredBB); 2822 } else { 2823 // Consider the cases in which the phi value is indirectly produced by 2824 // the tail call, for example when encountering memset(), memmove(), 2825 // strcpy(), whose return value may have been optimized out. In such 2826 // cases, the value needs to be the first function argument. 2827 // 2828 // bb0: 2829 // tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1) 2830 // br label %return 2831 // return: 2832 // %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ] 2833 if (PredBB && PredBB->getSingleSuccessor() == BB) 2834 CI = dyn_cast_or_null<CallInst>( 2835 PredBB->getTerminator()->getPrevNonDebugInstruction(true)); 2836 2837 if (CI && CI->use_empty() && 2838 isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2839 IncomingVal == CI->getArgOperand(0) && 2840 TLI->mayBeEmittedAsTailCall(CI) && 2841 attributesPermitTailCall(F, CI, RetI, *TLI)) 2842 TailCallBBs.push_back(PredBB); 2843 } 2844 } 2845 } else { 2846 SmallPtrSet<BasicBlock *, 4> VisitedBBs; 2847 for (BasicBlock *Pred : predecessors(BB)) { 2848 if (!VisitedBBs.insert(Pred).second) 2849 continue; 2850 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2851 CallInst *CI = dyn_cast<CallInst>(I); 2852 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2853 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2854 // Either we return void or the return value must be the first 2855 // argument of a known intrinsic or library function. 2856 if (!V || isa<UndefValue>(V) || 2857 (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2858 V == CI->getArgOperand(0))) { 2859 TailCallBBs.push_back(Pred); 2860 } 2861 } 2862 } 2863 } 2864 } 2865 2866 bool Changed = false; 2867 for (auto const &TailCallBB : TailCallBBs) { 2868 // Make sure the call instruction is followed by an unconditional branch to 2869 // the return block. 2870 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2871 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2872 continue; 2873 2874 // Duplicate the return into TailCallBB. 2875 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2876 assert(!VerifyBFIUpdates || 2877 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2878 BFI->setBlockFreq(BB, 2879 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB))); 2880 ModifiedDT = ModifyDT::ModifyBBDT; 2881 Changed = true; 2882 ++NumRetsDup; 2883 } 2884 2885 // If we eliminated all predecessors of the block, delete the block now. 2886 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2887 BB->eraseFromParent(); 2888 2889 return Changed; 2890 } 2891 2892 //===----------------------------------------------------------------------===// 2893 // Memory Optimization 2894 //===----------------------------------------------------------------------===// 2895 2896 namespace { 2897 2898 /// This is an extended version of TargetLowering::AddrMode 2899 /// which holds actual Value*'s for register values. 2900 struct ExtAddrMode : public TargetLowering::AddrMode { 2901 Value *BaseReg = nullptr; 2902 Value *ScaledReg = nullptr; 2903 Value *OriginalValue = nullptr; 2904 bool InBounds = true; 2905 2906 enum FieldName { 2907 NoField = 0x00, 2908 BaseRegField = 0x01, 2909 BaseGVField = 0x02, 2910 BaseOffsField = 0x04, 2911 ScaledRegField = 0x08, 2912 ScaleField = 0x10, 2913 MultipleFields = 0xff 2914 }; 2915 2916 ExtAddrMode() = default; 2917 2918 void print(raw_ostream &OS) const; 2919 void dump() const; 2920 2921 FieldName compare(const ExtAddrMode &other) { 2922 // First check that the types are the same on each field, as differing types 2923 // is something we can't cope with later on. 2924 if (BaseReg && other.BaseReg && 2925 BaseReg->getType() != other.BaseReg->getType()) 2926 return MultipleFields; 2927 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) 2928 return MultipleFields; 2929 if (ScaledReg && other.ScaledReg && 2930 ScaledReg->getType() != other.ScaledReg->getType()) 2931 return MultipleFields; 2932 2933 // Conservatively reject 'inbounds' mismatches. 2934 if (InBounds != other.InBounds) 2935 return MultipleFields; 2936 2937 // Check each field to see if it differs. 2938 unsigned Result = NoField; 2939 if (BaseReg != other.BaseReg) 2940 Result |= BaseRegField; 2941 if (BaseGV != other.BaseGV) 2942 Result |= BaseGVField; 2943 if (BaseOffs != other.BaseOffs) 2944 Result |= BaseOffsField; 2945 if (ScaledReg != other.ScaledReg) 2946 Result |= ScaledRegField; 2947 // Don't count 0 as being a different scale, because that actually means 2948 // unscaled (which will already be counted by having no ScaledReg). 2949 if (Scale && other.Scale && Scale != other.Scale) 2950 Result |= ScaleField; 2951 2952 if (llvm::popcount(Result) > 1) 2953 return MultipleFields; 2954 else 2955 return static_cast<FieldName>(Result); 2956 } 2957 2958 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2959 // with no offset. 2960 bool isTrivial() { 2961 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2962 // trivial if at most one of these terms is nonzero, except that BaseGV and 2963 // BaseReg both being zero actually means a null pointer value, which we 2964 // consider to be 'non-zero' here. 2965 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2966 } 2967 2968 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2969 switch (Field) { 2970 default: 2971 return nullptr; 2972 case BaseRegField: 2973 return BaseReg; 2974 case BaseGVField: 2975 return BaseGV; 2976 case ScaledRegField: 2977 return ScaledReg; 2978 case BaseOffsField: 2979 return ConstantInt::get(IntPtrTy, BaseOffs); 2980 } 2981 } 2982 2983 void SetCombinedField(FieldName Field, Value *V, 2984 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2985 switch (Field) { 2986 default: 2987 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2988 break; 2989 case ExtAddrMode::BaseRegField: 2990 BaseReg = V; 2991 break; 2992 case ExtAddrMode::BaseGVField: 2993 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2994 // in the BaseReg field. 2995 assert(BaseReg == nullptr); 2996 BaseReg = V; 2997 BaseGV = nullptr; 2998 break; 2999 case ExtAddrMode::ScaledRegField: 3000 ScaledReg = V; 3001 // If we have a mix of scaled and unscaled addrmodes then we want scale 3002 // to be the scale and not zero. 3003 if (!Scale) 3004 for (const ExtAddrMode &AM : AddrModes) 3005 if (AM.Scale) { 3006 Scale = AM.Scale; 3007 break; 3008 } 3009 break; 3010 case ExtAddrMode::BaseOffsField: 3011 // The offset is no longer a constant, so it goes in ScaledReg with a 3012 // scale of 1. 3013 assert(ScaledReg == nullptr); 3014 ScaledReg = V; 3015 Scale = 1; 3016 BaseOffs = 0; 3017 break; 3018 } 3019 } 3020 }; 3021 3022 #ifndef NDEBUG 3023 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 3024 AM.print(OS); 3025 return OS; 3026 } 3027 #endif 3028 3029 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3030 void ExtAddrMode::print(raw_ostream &OS) const { 3031 bool NeedPlus = false; 3032 OS << "["; 3033 if (InBounds) 3034 OS << "inbounds "; 3035 if (BaseGV) { 3036 OS << "GV:"; 3037 BaseGV->printAsOperand(OS, /*PrintType=*/false); 3038 NeedPlus = true; 3039 } 3040 3041 if (BaseOffs) { 3042 OS << (NeedPlus ? " + " : "") << BaseOffs; 3043 NeedPlus = true; 3044 } 3045 3046 if (BaseReg) { 3047 OS << (NeedPlus ? " + " : "") << "Base:"; 3048 BaseReg->printAsOperand(OS, /*PrintType=*/false); 3049 NeedPlus = true; 3050 } 3051 if (Scale) { 3052 OS << (NeedPlus ? " + " : "") << Scale << "*"; 3053 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 3054 } 3055 3056 OS << ']'; 3057 } 3058 3059 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 3060 print(dbgs()); 3061 dbgs() << '\n'; 3062 } 3063 #endif 3064 3065 } // end anonymous namespace 3066 3067 namespace { 3068 3069 /// This class provides transaction based operation on the IR. 3070 /// Every change made through this class is recorded in the internal state and 3071 /// can be undone (rollback) until commit is called. 3072 /// CGP does not check if instructions could be speculatively executed when 3073 /// moved. Preserving the original location would pessimize the debugging 3074 /// experience, as well as negatively impact the quality of sample PGO. 3075 class TypePromotionTransaction { 3076 /// This represents the common interface of the individual transaction. 3077 /// Each class implements the logic for doing one specific modification on 3078 /// the IR via the TypePromotionTransaction. 3079 class TypePromotionAction { 3080 protected: 3081 /// The Instruction modified. 3082 Instruction *Inst; 3083 3084 public: 3085 /// Constructor of the action. 3086 /// The constructor performs the related action on the IR. 3087 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 3088 3089 virtual ~TypePromotionAction() = default; 3090 3091 /// Undo the modification done by this action. 3092 /// When this method is called, the IR must be in the same state as it was 3093 /// before this action was applied. 3094 /// \pre Undoing the action works if and only if the IR is in the exact same 3095 /// state as it was directly after this action was applied. 3096 virtual void undo() = 0; 3097 3098 /// Advocate every change made by this action. 3099 /// When the results on the IR of the action are to be kept, it is important 3100 /// to call this function, otherwise hidden information may be kept forever. 3101 virtual void commit() { 3102 // Nothing to be done, this action is not doing anything. 3103 } 3104 }; 3105 3106 /// Utility to remember the position of an instruction. 3107 class InsertionHandler { 3108 /// Position of an instruction. 3109 /// Either an instruction: 3110 /// - Is the first in a basic block: BB is used. 3111 /// - Has a previous instruction: PrevInst is used. 3112 union { 3113 Instruction *PrevInst; 3114 BasicBlock *BB; 3115 } Point; 3116 std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt; 3117 3118 /// Remember whether or not the instruction had a previous instruction. 3119 bool HasPrevInstruction; 3120 3121 public: 3122 /// Record the position of \p Inst. 3123 InsertionHandler(Instruction *Inst) { 3124 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin())); 3125 BasicBlock *BB = Inst->getParent(); 3126 3127 // Record where we would have to re-insert the instruction in the sequence 3128 // of DbgRecords, if we ended up reinserting. 3129 if (BB->IsNewDbgInfoFormat) 3130 BeforeDbgRecord = Inst->getDbgReinsertionPosition(); 3131 3132 if (HasPrevInstruction) { 3133 Point.PrevInst = &*std::prev(Inst->getIterator()); 3134 } else { 3135 Point.BB = BB; 3136 } 3137 } 3138 3139 /// Insert \p Inst at the recorded position. 3140 void insert(Instruction *Inst) { 3141 if (HasPrevInstruction) { 3142 if (Inst->getParent()) 3143 Inst->removeFromParent(); 3144 Inst->insertAfter(&*Point.PrevInst); 3145 } else { 3146 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt(); 3147 if (Inst->getParent()) 3148 Inst->moveBefore(*Point.BB, Position); 3149 else 3150 Inst->insertBefore(*Point.BB, Position); 3151 } 3152 3153 Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord); 3154 } 3155 }; 3156 3157 /// Move an instruction before another. 3158 class InstructionMoveBefore : public TypePromotionAction { 3159 /// Original position of the instruction. 3160 InsertionHandler Position; 3161 3162 public: 3163 /// Move \p Inst before \p Before. 3164 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 3165 : TypePromotionAction(Inst), Position(Inst) { 3166 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 3167 << "\n"); 3168 Inst->moveBefore(Before); 3169 } 3170 3171 /// Move the instruction back to its original position. 3172 void undo() override { 3173 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 3174 Position.insert(Inst); 3175 } 3176 }; 3177 3178 /// Set the operand of an instruction with a new value. 3179 class OperandSetter : public TypePromotionAction { 3180 /// Original operand of the instruction. 3181 Value *Origin; 3182 3183 /// Index of the modified instruction. 3184 unsigned Idx; 3185 3186 public: 3187 /// Set \p Idx operand of \p Inst with \p NewVal. 3188 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 3189 : TypePromotionAction(Inst), Idx(Idx) { 3190 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 3191 << "for:" << *Inst << "\n" 3192 << "with:" << *NewVal << "\n"); 3193 Origin = Inst->getOperand(Idx); 3194 Inst->setOperand(Idx, NewVal); 3195 } 3196 3197 /// Restore the original value of the instruction. 3198 void undo() override { 3199 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 3200 << "for: " << *Inst << "\n" 3201 << "with: " << *Origin << "\n"); 3202 Inst->setOperand(Idx, Origin); 3203 } 3204 }; 3205 3206 /// Hide the operands of an instruction. 3207 /// Do as if this instruction was not using any of its operands. 3208 class OperandsHider : public TypePromotionAction { 3209 /// The list of original operands. 3210 SmallVector<Value *, 4> OriginalValues; 3211 3212 public: 3213 /// Remove \p Inst from the uses of the operands of \p Inst. 3214 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 3215 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 3216 unsigned NumOpnds = Inst->getNumOperands(); 3217 OriginalValues.reserve(NumOpnds); 3218 for (unsigned It = 0; It < NumOpnds; ++It) { 3219 // Save the current operand. 3220 Value *Val = Inst->getOperand(It); 3221 OriginalValues.push_back(Val); 3222 // Set a dummy one. 3223 // We could use OperandSetter here, but that would imply an overhead 3224 // that we are not willing to pay. 3225 Inst->setOperand(It, UndefValue::get(Val->getType())); 3226 } 3227 } 3228 3229 /// Restore the original list of uses. 3230 void undo() override { 3231 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 3232 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 3233 Inst->setOperand(It, OriginalValues[It]); 3234 } 3235 }; 3236 3237 /// Build a truncate instruction. 3238 class TruncBuilder : public TypePromotionAction { 3239 Value *Val; 3240 3241 public: 3242 /// Build a truncate instruction of \p Opnd producing a \p Ty 3243 /// result. 3244 /// trunc Opnd to Ty. 3245 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 3246 IRBuilder<> Builder(Opnd); 3247 Builder.SetCurrentDebugLocation(DebugLoc()); 3248 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 3249 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 3250 } 3251 3252 /// Get the built value. 3253 Value *getBuiltValue() { return Val; } 3254 3255 /// Remove the built instruction. 3256 void undo() override { 3257 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 3258 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3259 IVal->eraseFromParent(); 3260 } 3261 }; 3262 3263 /// Build a sign extension instruction. 3264 class SExtBuilder : public TypePromotionAction { 3265 Value *Val; 3266 3267 public: 3268 /// Build a sign extension instruction of \p Opnd producing a \p Ty 3269 /// result. 3270 /// sext Opnd to Ty. 3271 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3272 : TypePromotionAction(InsertPt) { 3273 IRBuilder<> Builder(InsertPt); 3274 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 3275 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 3276 } 3277 3278 /// Get the built value. 3279 Value *getBuiltValue() { return Val; } 3280 3281 /// Remove the built instruction. 3282 void undo() override { 3283 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 3284 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3285 IVal->eraseFromParent(); 3286 } 3287 }; 3288 3289 /// Build a zero extension instruction. 3290 class ZExtBuilder : public TypePromotionAction { 3291 Value *Val; 3292 3293 public: 3294 /// Build a zero extension instruction of \p Opnd producing a \p Ty 3295 /// result. 3296 /// zext Opnd to Ty. 3297 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3298 : TypePromotionAction(InsertPt) { 3299 IRBuilder<> Builder(InsertPt); 3300 Builder.SetCurrentDebugLocation(DebugLoc()); 3301 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 3302 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 3303 } 3304 3305 /// Get the built value. 3306 Value *getBuiltValue() { return Val; } 3307 3308 /// Remove the built instruction. 3309 void undo() override { 3310 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 3311 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3312 IVal->eraseFromParent(); 3313 } 3314 }; 3315 3316 /// Mutate an instruction to another type. 3317 class TypeMutator : public TypePromotionAction { 3318 /// Record the original type. 3319 Type *OrigTy; 3320 3321 public: 3322 /// Mutate the type of \p Inst into \p NewTy. 3323 TypeMutator(Instruction *Inst, Type *NewTy) 3324 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 3325 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 3326 << "\n"); 3327 Inst->mutateType(NewTy); 3328 } 3329 3330 /// Mutate the instruction back to its original type. 3331 void undo() override { 3332 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 3333 << "\n"); 3334 Inst->mutateType(OrigTy); 3335 } 3336 }; 3337 3338 /// Replace the uses of an instruction by another instruction. 3339 class UsesReplacer : public TypePromotionAction { 3340 /// Helper structure to keep track of the replaced uses. 3341 struct InstructionAndIdx { 3342 /// The instruction using the instruction. 3343 Instruction *Inst; 3344 3345 /// The index where this instruction is used for Inst. 3346 unsigned Idx; 3347 3348 InstructionAndIdx(Instruction *Inst, unsigned Idx) 3349 : Inst(Inst), Idx(Idx) {} 3350 }; 3351 3352 /// Keep track of the original uses (pair Instruction, Index). 3353 SmallVector<InstructionAndIdx, 4> OriginalUses; 3354 /// Keep track of the debug users. 3355 SmallVector<DbgValueInst *, 1> DbgValues; 3356 /// And non-instruction debug-users too. 3357 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 3358 3359 /// Keep track of the new value so that we can undo it by replacing 3360 /// instances of the new value with the original value. 3361 Value *New; 3362 3363 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3364 3365 public: 3366 /// Replace all the use of \p Inst by \p New. 3367 UsesReplacer(Instruction *Inst, Value *New) 3368 : TypePromotionAction(Inst), New(New) { 3369 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3370 << "\n"); 3371 // Record the original uses. 3372 for (Use &U : Inst->uses()) { 3373 Instruction *UserI = cast<Instruction>(U.getUser()); 3374 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3375 } 3376 // Record the debug uses separately. They are not in the instruction's 3377 // use list, but they are replaced by RAUW. 3378 findDbgValues(DbgValues, Inst, &DbgVariableRecords); 3379 3380 // Now, we can replace the uses. 3381 Inst->replaceAllUsesWith(New); 3382 } 3383 3384 /// Reassign the original uses of Inst to Inst. 3385 void undo() override { 3386 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3387 for (InstructionAndIdx &Use : OriginalUses) 3388 Use.Inst->setOperand(Use.Idx, Inst); 3389 // RAUW has replaced all original uses with references to the new value, 3390 // including the debug uses. Since we are undoing the replacements, 3391 // the original debug uses must also be reinstated to maintain the 3392 // correctness and utility of debug value instructions. 3393 for (auto *DVI : DbgValues) 3394 DVI->replaceVariableLocationOp(New, Inst); 3395 // Similar story with DbgVariableRecords, the non-instruction 3396 // representation of dbg.values. 3397 for (DbgVariableRecord *DVR : DbgVariableRecords) 3398 DVR->replaceVariableLocationOp(New, Inst); 3399 } 3400 }; 3401 3402 /// Remove an instruction from the IR. 3403 class InstructionRemover : public TypePromotionAction { 3404 /// Original position of the instruction. 3405 InsertionHandler Inserter; 3406 3407 /// Helper structure to hide all the link to the instruction. In other 3408 /// words, this helps to do as if the instruction was removed. 3409 OperandsHider Hider; 3410 3411 /// Keep track of the uses replaced, if any. 3412 UsesReplacer *Replacer = nullptr; 3413 3414 /// Keep track of instructions removed. 3415 SetOfInstrs &RemovedInsts; 3416 3417 public: 3418 /// Remove all reference of \p Inst and optionally replace all its 3419 /// uses with New. 3420 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3421 /// \pre If !Inst->use_empty(), then New != nullptr 3422 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3423 Value *New = nullptr) 3424 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3425 RemovedInsts(RemovedInsts) { 3426 if (New) 3427 Replacer = new UsesReplacer(Inst, New); 3428 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3429 RemovedInsts.insert(Inst); 3430 /// The instructions removed here will be freed after completing 3431 /// optimizeBlock() for all blocks as we need to keep track of the 3432 /// removed instructions during promotion. 3433 Inst->removeFromParent(); 3434 } 3435 3436 ~InstructionRemover() override { delete Replacer; } 3437 3438 InstructionRemover &operator=(const InstructionRemover &other) = delete; 3439 InstructionRemover(const InstructionRemover &other) = delete; 3440 3441 /// Resurrect the instruction and reassign it to the proper uses if 3442 /// new value was provided when build this action. 3443 void undo() override { 3444 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3445 Inserter.insert(Inst); 3446 if (Replacer) 3447 Replacer->undo(); 3448 Hider.undo(); 3449 RemovedInsts.erase(Inst); 3450 } 3451 }; 3452 3453 public: 3454 /// Restoration point. 3455 /// The restoration point is a pointer to an action instead of an iterator 3456 /// because the iterator may be invalidated but not the pointer. 3457 using ConstRestorationPt = const TypePromotionAction *; 3458 3459 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3460 : RemovedInsts(RemovedInsts) {} 3461 3462 /// Advocate every changes made in that transaction. Return true if any change 3463 /// happen. 3464 bool commit(); 3465 3466 /// Undo all the changes made after the given point. 3467 void rollback(ConstRestorationPt Point); 3468 3469 /// Get the current restoration point. 3470 ConstRestorationPt getRestorationPoint() const; 3471 3472 /// \name API for IR modification with state keeping to support rollback. 3473 /// @{ 3474 /// Same as Instruction::setOperand. 3475 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3476 3477 /// Same as Instruction::eraseFromParent. 3478 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3479 3480 /// Same as Value::replaceAllUsesWith. 3481 void replaceAllUsesWith(Instruction *Inst, Value *New); 3482 3483 /// Same as Value::mutateType. 3484 void mutateType(Instruction *Inst, Type *NewTy); 3485 3486 /// Same as IRBuilder::createTrunc. 3487 Value *createTrunc(Instruction *Opnd, Type *Ty); 3488 3489 /// Same as IRBuilder::createSExt. 3490 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3491 3492 /// Same as IRBuilder::createZExt. 3493 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3494 3495 private: 3496 /// The ordered list of actions made so far. 3497 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3498 3499 using CommitPt = 3500 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3501 3502 SetOfInstrs &RemovedInsts; 3503 }; 3504 3505 } // end anonymous namespace 3506 3507 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3508 Value *NewVal) { 3509 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3510 Inst, Idx, NewVal)); 3511 } 3512 3513 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3514 Value *NewVal) { 3515 Actions.push_back( 3516 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3517 Inst, RemovedInsts, NewVal)); 3518 } 3519 3520 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3521 Value *New) { 3522 Actions.push_back( 3523 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3524 } 3525 3526 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3527 Actions.push_back( 3528 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3529 } 3530 3531 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { 3532 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3533 Value *Val = Ptr->getBuiltValue(); 3534 Actions.push_back(std::move(Ptr)); 3535 return Val; 3536 } 3537 3538 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, 3539 Type *Ty) { 3540 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3541 Value *Val = Ptr->getBuiltValue(); 3542 Actions.push_back(std::move(Ptr)); 3543 return Val; 3544 } 3545 3546 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, 3547 Type *Ty) { 3548 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3549 Value *Val = Ptr->getBuiltValue(); 3550 Actions.push_back(std::move(Ptr)); 3551 return Val; 3552 } 3553 3554 TypePromotionTransaction::ConstRestorationPt 3555 TypePromotionTransaction::getRestorationPoint() const { 3556 return !Actions.empty() ? Actions.back().get() : nullptr; 3557 } 3558 3559 bool TypePromotionTransaction::commit() { 3560 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3561 Action->commit(); 3562 bool Modified = !Actions.empty(); 3563 Actions.clear(); 3564 return Modified; 3565 } 3566 3567 void TypePromotionTransaction::rollback( 3568 TypePromotionTransaction::ConstRestorationPt Point) { 3569 while (!Actions.empty() && Point != Actions.back().get()) { 3570 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3571 Curr->undo(); 3572 } 3573 } 3574 3575 namespace { 3576 3577 /// A helper class for matching addressing modes. 3578 /// 3579 /// This encapsulates the logic for matching the target-legal addressing modes. 3580 class AddressingModeMatcher { 3581 SmallVectorImpl<Instruction *> &AddrModeInsts; 3582 const TargetLowering &TLI; 3583 const TargetRegisterInfo &TRI; 3584 const DataLayout &DL; 3585 const LoopInfo &LI; 3586 const std::function<const DominatorTree &()> getDTFn; 3587 3588 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3589 /// the memory instruction that we're computing this address for. 3590 Type *AccessTy; 3591 unsigned AddrSpace; 3592 Instruction *MemoryInst; 3593 3594 /// This is the addressing mode that we're building up. This is 3595 /// part of the return value of this addressing mode matching stuff. 3596 ExtAddrMode &AddrMode; 3597 3598 /// The instructions inserted by other CodeGenPrepare optimizations. 3599 const SetOfInstrs &InsertedInsts; 3600 3601 /// A map from the instructions to their type before promotion. 3602 InstrToOrigTy &PromotedInsts; 3603 3604 /// The ongoing transaction where every action should be registered. 3605 TypePromotionTransaction &TPT; 3606 3607 // A GEP which has too large offset to be folded into the addressing mode. 3608 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3609 3610 /// This is set to true when we should not do profitability checks. 3611 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3612 bool IgnoreProfitability; 3613 3614 /// True if we are optimizing for size. 3615 bool OptSize = false; 3616 3617 ProfileSummaryInfo *PSI; 3618 BlockFrequencyInfo *BFI; 3619 3620 AddressingModeMatcher( 3621 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3622 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3623 const std::function<const DominatorTree &()> getDTFn, Type *AT, 3624 unsigned AS, Instruction *MI, ExtAddrMode &AM, 3625 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3626 TypePromotionTransaction &TPT, 3627 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3628 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3629 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3630 DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn), 3631 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3632 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3633 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3634 IgnoreProfitability = false; 3635 } 3636 3637 public: 3638 /// Find the maximal addressing mode that a load/store of V can fold, 3639 /// give an access type of AccessTy. This returns a list of involved 3640 /// instructions in AddrModeInsts. 3641 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3642 /// optimizations. 3643 /// \p PromotedInsts maps the instructions to their type before promotion. 3644 /// \p The ongoing transaction where every action should be registered. 3645 static ExtAddrMode 3646 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3647 SmallVectorImpl<Instruction *> &AddrModeInsts, 3648 const TargetLowering &TLI, const LoopInfo &LI, 3649 const std::function<const DominatorTree &()> getDTFn, 3650 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3651 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3652 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3653 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3654 ExtAddrMode Result; 3655 3656 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, 3657 AccessTy, AS, MemoryInst, Result, 3658 InsertedInsts, PromotedInsts, TPT, 3659 LargeOffsetGEP, OptSize, PSI, BFI) 3660 .matchAddr(V, 0); 3661 (void)Success; 3662 assert(Success && "Couldn't select *anything*?"); 3663 return Result; 3664 } 3665 3666 private: 3667 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3668 bool matchAddr(Value *Addr, unsigned Depth); 3669 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3670 bool *MovedAway = nullptr); 3671 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3672 ExtAddrMode &AMBefore, 3673 ExtAddrMode &AMAfter); 3674 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3675 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3676 Value *PromotedOperand) const; 3677 }; 3678 3679 class PhiNodeSet; 3680 3681 /// An iterator for PhiNodeSet. 3682 class PhiNodeSetIterator { 3683 PhiNodeSet *const Set; 3684 size_t CurrentIndex = 0; 3685 3686 public: 3687 /// The constructor. Start should point to either a valid element, or be equal 3688 /// to the size of the underlying SmallVector of the PhiNodeSet. 3689 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); 3690 PHINode *operator*() const; 3691 PhiNodeSetIterator &operator++(); 3692 bool operator==(const PhiNodeSetIterator &RHS) const; 3693 bool operator!=(const PhiNodeSetIterator &RHS) const; 3694 }; 3695 3696 /// Keeps a set of PHINodes. 3697 /// 3698 /// This is a minimal set implementation for a specific use case: 3699 /// It is very fast when there are very few elements, but also provides good 3700 /// performance when there are many. It is similar to SmallPtrSet, but also 3701 /// provides iteration by insertion order, which is deterministic and stable 3702 /// across runs. It is also similar to SmallSetVector, but provides removing 3703 /// elements in O(1) time. This is achieved by not actually removing the element 3704 /// from the underlying vector, so comes at the cost of using more memory, but 3705 /// that is fine, since PhiNodeSets are used as short lived objects. 3706 class PhiNodeSet { 3707 friend class PhiNodeSetIterator; 3708 3709 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3710 using iterator = PhiNodeSetIterator; 3711 3712 /// Keeps the elements in the order of their insertion in the underlying 3713 /// vector. To achieve constant time removal, it never deletes any element. 3714 SmallVector<PHINode *, 32> NodeList; 3715 3716 /// Keeps the elements in the underlying set implementation. This (and not the 3717 /// NodeList defined above) is the source of truth on whether an element 3718 /// is actually in the collection. 3719 MapType NodeMap; 3720 3721 /// Points to the first valid (not deleted) element when the set is not empty 3722 /// and the value is not zero. Equals to the size of the underlying vector 3723 /// when the set is empty. When the value is 0, as in the beginning, the 3724 /// first element may or may not be valid. 3725 size_t FirstValidElement = 0; 3726 3727 public: 3728 /// Inserts a new element to the collection. 3729 /// \returns true if the element is actually added, i.e. was not in the 3730 /// collection before the operation. 3731 bool insert(PHINode *Ptr) { 3732 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3733 NodeList.push_back(Ptr); 3734 return true; 3735 } 3736 return false; 3737 } 3738 3739 /// Removes the element from the collection. 3740 /// \returns whether the element is actually removed, i.e. was in the 3741 /// collection before the operation. 3742 bool erase(PHINode *Ptr) { 3743 if (NodeMap.erase(Ptr)) { 3744 SkipRemovedElements(FirstValidElement); 3745 return true; 3746 } 3747 return false; 3748 } 3749 3750 /// Removes all elements and clears the collection. 3751 void clear() { 3752 NodeMap.clear(); 3753 NodeList.clear(); 3754 FirstValidElement = 0; 3755 } 3756 3757 /// \returns an iterator that will iterate the elements in the order of 3758 /// insertion. 3759 iterator begin() { 3760 if (FirstValidElement == 0) 3761 SkipRemovedElements(FirstValidElement); 3762 return PhiNodeSetIterator(this, FirstValidElement); 3763 } 3764 3765 /// \returns an iterator that points to the end of the collection. 3766 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3767 3768 /// Returns the number of elements in the collection. 3769 size_t size() const { return NodeMap.size(); } 3770 3771 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3772 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } 3773 3774 private: 3775 /// Updates the CurrentIndex so that it will point to a valid element. 3776 /// 3777 /// If the element of NodeList at CurrentIndex is valid, it does not 3778 /// change it. If there are no more valid elements, it updates CurrentIndex 3779 /// to point to the end of the NodeList. 3780 void SkipRemovedElements(size_t &CurrentIndex) { 3781 while (CurrentIndex < NodeList.size()) { 3782 auto it = NodeMap.find(NodeList[CurrentIndex]); 3783 // If the element has been deleted and added again later, NodeMap will 3784 // point to a different index, so CurrentIndex will still be invalid. 3785 if (it != NodeMap.end() && it->second == CurrentIndex) 3786 break; 3787 ++CurrentIndex; 3788 } 3789 } 3790 }; 3791 3792 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3793 : Set(Set), CurrentIndex(Start) {} 3794 3795 PHINode *PhiNodeSetIterator::operator*() const { 3796 assert(CurrentIndex < Set->NodeList.size() && 3797 "PhiNodeSet access out of range"); 3798 return Set->NodeList[CurrentIndex]; 3799 } 3800 3801 PhiNodeSetIterator &PhiNodeSetIterator::operator++() { 3802 assert(CurrentIndex < Set->NodeList.size() && 3803 "PhiNodeSet access out of range"); 3804 ++CurrentIndex; 3805 Set->SkipRemovedElements(CurrentIndex); 3806 return *this; 3807 } 3808 3809 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3810 return CurrentIndex == RHS.CurrentIndex; 3811 } 3812 3813 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3814 return !((*this) == RHS); 3815 } 3816 3817 /// Keep track of simplification of Phi nodes. 3818 /// Accept the set of all phi nodes and erase phi node from this set 3819 /// if it is simplified. 3820 class SimplificationTracker { 3821 DenseMap<Value *, Value *> Storage; 3822 const SimplifyQuery &SQ; 3823 // Tracks newly created Phi nodes. The elements are iterated by insertion 3824 // order. 3825 PhiNodeSet AllPhiNodes; 3826 // Tracks newly created Select nodes. 3827 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3828 3829 public: 3830 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} 3831 3832 Value *Get(Value *V) { 3833 do { 3834 auto SV = Storage.find(V); 3835 if (SV == Storage.end()) 3836 return V; 3837 V = SV->second; 3838 } while (true); 3839 } 3840 3841 Value *Simplify(Value *Val) { 3842 SmallVector<Value *, 32> WorkList; 3843 SmallPtrSet<Value *, 32> Visited; 3844 WorkList.push_back(Val); 3845 while (!WorkList.empty()) { 3846 auto *P = WorkList.pop_back_val(); 3847 if (!Visited.insert(P).second) 3848 continue; 3849 if (auto *PI = dyn_cast<Instruction>(P)) 3850 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 3851 for (auto *U : PI->users()) 3852 WorkList.push_back(cast<Value>(U)); 3853 Put(PI, V); 3854 PI->replaceAllUsesWith(V); 3855 if (auto *PHI = dyn_cast<PHINode>(PI)) 3856 AllPhiNodes.erase(PHI); 3857 if (auto *Select = dyn_cast<SelectInst>(PI)) 3858 AllSelectNodes.erase(Select); 3859 PI->eraseFromParent(); 3860 } 3861 } 3862 return Get(Val); 3863 } 3864 3865 void Put(Value *From, Value *To) { Storage.insert({From, To}); } 3866 3867 void ReplacePhi(PHINode *From, PHINode *To) { 3868 Value *OldReplacement = Get(From); 3869 while (OldReplacement != From) { 3870 From = To; 3871 To = dyn_cast<PHINode>(OldReplacement); 3872 OldReplacement = Get(From); 3873 } 3874 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3875 Put(From, To); 3876 From->replaceAllUsesWith(To); 3877 AllPhiNodes.erase(From); 3878 From->eraseFromParent(); 3879 } 3880 3881 PhiNodeSet &newPhiNodes() { return AllPhiNodes; } 3882 3883 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3884 3885 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3886 3887 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3888 3889 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3890 3891 void destroyNewNodes(Type *CommonType) { 3892 // For safe erasing, replace the uses with dummy value first. 3893 auto *Dummy = PoisonValue::get(CommonType); 3894 for (auto *I : AllPhiNodes) { 3895 I->replaceAllUsesWith(Dummy); 3896 I->eraseFromParent(); 3897 } 3898 AllPhiNodes.clear(); 3899 for (auto *I : AllSelectNodes) { 3900 I->replaceAllUsesWith(Dummy); 3901 I->eraseFromParent(); 3902 } 3903 AllSelectNodes.clear(); 3904 } 3905 }; 3906 3907 /// A helper class for combining addressing modes. 3908 class AddressingModeCombiner { 3909 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3910 typedef std::pair<PHINode *, PHINode *> PHIPair; 3911 3912 private: 3913 /// The addressing modes we've collected. 3914 SmallVector<ExtAddrMode, 16> AddrModes; 3915 3916 /// The field in which the AddrModes differ, when we have more than one. 3917 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3918 3919 /// Are the AddrModes that we have all just equal to their original values? 3920 bool AllAddrModesTrivial = true; 3921 3922 /// Common Type for all different fields in addressing modes. 3923 Type *CommonType = nullptr; 3924 3925 /// SimplifyQuery for simplifyInstruction utility. 3926 const SimplifyQuery &SQ; 3927 3928 /// Original Address. 3929 Value *Original; 3930 3931 /// Common value among addresses 3932 Value *CommonValue = nullptr; 3933 3934 public: 3935 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3936 : SQ(_SQ), Original(OriginalValue) {} 3937 3938 ~AddressingModeCombiner() { eraseCommonValueIfDead(); } 3939 3940 /// Get the combined AddrMode 3941 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } 3942 3943 /// Add a new AddrMode if it's compatible with the AddrModes we already 3944 /// have. 3945 /// \return True iff we succeeded in doing so. 3946 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3947 // Take note of if we have any non-trivial AddrModes, as we need to detect 3948 // when all AddrModes are trivial as then we would introduce a phi or select 3949 // which just duplicates what's already there. 3950 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3951 3952 // If this is the first addrmode then everything is fine. 3953 if (AddrModes.empty()) { 3954 AddrModes.emplace_back(NewAddrMode); 3955 return true; 3956 } 3957 3958 // Figure out how different this is from the other address modes, which we 3959 // can do just by comparing against the first one given that we only care 3960 // about the cumulative difference. 3961 ExtAddrMode::FieldName ThisDifferentField = 3962 AddrModes[0].compare(NewAddrMode); 3963 if (DifferentField == ExtAddrMode::NoField) 3964 DifferentField = ThisDifferentField; 3965 else if (DifferentField != ThisDifferentField) 3966 DifferentField = ExtAddrMode::MultipleFields; 3967 3968 // If NewAddrMode differs in more than one dimension we cannot handle it. 3969 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3970 3971 // If Scale Field is different then we reject. 3972 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3973 3974 // We also must reject the case when base offset is different and 3975 // scale reg is not null, we cannot handle this case due to merge of 3976 // different offsets will be used as ScaleReg. 3977 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3978 !NewAddrMode.ScaledReg); 3979 3980 // We also must reject the case when GV is different and BaseReg installed 3981 // due to we want to use base reg as a merge of GV values. 3982 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3983 !NewAddrMode.HasBaseReg); 3984 3985 // Even if NewAddMode is the same we still need to collect it due to 3986 // original value is different. And later we will need all original values 3987 // as anchors during finding the common Phi node. 3988 if (CanHandle) 3989 AddrModes.emplace_back(NewAddrMode); 3990 else 3991 AddrModes.clear(); 3992 3993 return CanHandle; 3994 } 3995 3996 /// Combine the addressing modes we've collected into a single 3997 /// addressing mode. 3998 /// \return True iff we successfully combined them or we only had one so 3999 /// didn't need to combine them anyway. 4000 bool combineAddrModes() { 4001 // If we have no AddrModes then they can't be combined. 4002 if (AddrModes.size() == 0) 4003 return false; 4004 4005 // A single AddrMode can trivially be combined. 4006 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 4007 return true; 4008 4009 // If the AddrModes we collected are all just equal to the value they are 4010 // derived from then combining them wouldn't do anything useful. 4011 if (AllAddrModesTrivial) 4012 return false; 4013 4014 if (!addrModeCombiningAllowed()) 4015 return false; 4016 4017 // Build a map between <original value, basic block where we saw it> to 4018 // value of base register. 4019 // Bail out if there is no common type. 4020 FoldAddrToValueMapping Map; 4021 if (!initializeMap(Map)) 4022 return false; 4023 4024 CommonValue = findCommon(Map); 4025 if (CommonValue) 4026 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 4027 return CommonValue != nullptr; 4028 } 4029 4030 private: 4031 /// `CommonValue` may be a placeholder inserted by us. 4032 /// If the placeholder is not used, we should remove this dead instruction. 4033 void eraseCommonValueIfDead() { 4034 if (CommonValue && CommonValue->getNumUses() == 0) 4035 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) 4036 CommonInst->eraseFromParent(); 4037 } 4038 4039 /// Initialize Map with anchor values. For address seen 4040 /// we set the value of different field saw in this address. 4041 /// At the same time we find a common type for different field we will 4042 /// use to create new Phi/Select nodes. Keep it in CommonType field. 4043 /// Return false if there is no common type found. 4044 bool initializeMap(FoldAddrToValueMapping &Map) { 4045 // Keep track of keys where the value is null. We will need to replace it 4046 // with constant null when we know the common type. 4047 SmallVector<Value *, 2> NullValue; 4048 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 4049 for (auto &AM : AddrModes) { 4050 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 4051 if (DV) { 4052 auto *Type = DV->getType(); 4053 if (CommonType && CommonType != Type) 4054 return false; 4055 CommonType = Type; 4056 Map[AM.OriginalValue] = DV; 4057 } else { 4058 NullValue.push_back(AM.OriginalValue); 4059 } 4060 } 4061 assert(CommonType && "At least one non-null value must be!"); 4062 for (auto *V : NullValue) 4063 Map[V] = Constant::getNullValue(CommonType); 4064 return true; 4065 } 4066 4067 /// We have mapping between value A and other value B where B was a field in 4068 /// addressing mode represented by A. Also we have an original value C 4069 /// representing an address we start with. Traversing from C through phi and 4070 /// selects we ended up with A's in a map. This utility function tries to find 4071 /// a value V which is a field in addressing mode C and traversing through phi 4072 /// nodes and selects we will end up in corresponded values B in a map. 4073 /// The utility will create a new Phi/Selects if needed. 4074 // The simple example looks as follows: 4075 // BB1: 4076 // p1 = b1 + 40 4077 // br cond BB2, BB3 4078 // BB2: 4079 // p2 = b2 + 40 4080 // br BB3 4081 // BB3: 4082 // p = phi [p1, BB1], [p2, BB2] 4083 // v = load p 4084 // Map is 4085 // p1 -> b1 4086 // p2 -> b2 4087 // Request is 4088 // p -> ? 4089 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 4090 Value *findCommon(FoldAddrToValueMapping &Map) { 4091 // Tracks the simplification of newly created phi nodes. The reason we use 4092 // this mapping is because we will add new created Phi nodes in AddrToBase. 4093 // Simplification of Phi nodes is recursive, so some Phi node may 4094 // be simplified after we added it to AddrToBase. In reality this 4095 // simplification is possible only if original phi/selects were not 4096 // simplified yet. 4097 // Using this mapping we can find the current value in AddrToBase. 4098 SimplificationTracker ST(SQ); 4099 4100 // First step, DFS to create PHI nodes for all intermediate blocks. 4101 // Also fill traverse order for the second step. 4102 SmallVector<Value *, 32> TraverseOrder; 4103 InsertPlaceholders(Map, TraverseOrder, ST); 4104 4105 // Second Step, fill new nodes by merged values and simplify if possible. 4106 FillPlaceholders(Map, TraverseOrder, ST); 4107 4108 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 4109 ST.destroyNewNodes(CommonType); 4110 return nullptr; 4111 } 4112 4113 // Now we'd like to match New Phi nodes to existed ones. 4114 unsigned PhiNotMatchedCount = 0; 4115 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 4116 ST.destroyNewNodes(CommonType); 4117 return nullptr; 4118 } 4119 4120 auto *Result = ST.Get(Map.find(Original)->second); 4121 if (Result) { 4122 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 4123 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 4124 } 4125 return Result; 4126 } 4127 4128 /// Try to match PHI node to Candidate. 4129 /// Matcher tracks the matched Phi nodes. 4130 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 4131 SmallSetVector<PHIPair, 8> &Matcher, 4132 PhiNodeSet &PhiNodesToMatch) { 4133 SmallVector<PHIPair, 8> WorkList; 4134 Matcher.insert({PHI, Candidate}); 4135 SmallSet<PHINode *, 8> MatchedPHIs; 4136 MatchedPHIs.insert(PHI); 4137 WorkList.push_back({PHI, Candidate}); 4138 SmallSet<PHIPair, 8> Visited; 4139 while (!WorkList.empty()) { 4140 auto Item = WorkList.pop_back_val(); 4141 if (!Visited.insert(Item).second) 4142 continue; 4143 // We iterate over all incoming values to Phi to compare them. 4144 // If values are different and both of them Phi and the first one is a 4145 // Phi we added (subject to match) and both of them is in the same basic 4146 // block then we can match our pair if values match. So we state that 4147 // these values match and add it to work list to verify that. 4148 for (auto *B : Item.first->blocks()) { 4149 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 4150 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 4151 if (FirstValue == SecondValue) 4152 continue; 4153 4154 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 4155 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 4156 4157 // One of them is not Phi or 4158 // The first one is not Phi node from the set we'd like to match or 4159 // Phi nodes from different basic blocks then 4160 // we will not be able to match. 4161 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 4162 FirstPhi->getParent() != SecondPhi->getParent()) 4163 return false; 4164 4165 // If we already matched them then continue. 4166 if (Matcher.count({FirstPhi, SecondPhi})) 4167 continue; 4168 // So the values are different and does not match. So we need them to 4169 // match. (But we register no more than one match per PHI node, so that 4170 // we won't later try to replace them twice.) 4171 if (MatchedPHIs.insert(FirstPhi).second) 4172 Matcher.insert({FirstPhi, SecondPhi}); 4173 // But me must check it. 4174 WorkList.push_back({FirstPhi, SecondPhi}); 4175 } 4176 } 4177 return true; 4178 } 4179 4180 /// For the given set of PHI nodes (in the SimplificationTracker) try 4181 /// to find their equivalents. 4182 /// Returns false if this matching fails and creation of new Phi is disabled. 4183 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 4184 unsigned &PhiNotMatchedCount) { 4185 // Matched and PhiNodesToMatch iterate their elements in a deterministic 4186 // order, so the replacements (ReplacePhi) are also done in a deterministic 4187 // order. 4188 SmallSetVector<PHIPair, 8> Matched; 4189 SmallPtrSet<PHINode *, 8> WillNotMatch; 4190 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 4191 while (PhiNodesToMatch.size()) { 4192 PHINode *PHI = *PhiNodesToMatch.begin(); 4193 4194 // Add us, if no Phi nodes in the basic block we do not match. 4195 WillNotMatch.clear(); 4196 WillNotMatch.insert(PHI); 4197 4198 // Traverse all Phis until we found equivalent or fail to do that. 4199 bool IsMatched = false; 4200 for (auto &P : PHI->getParent()->phis()) { 4201 // Skip new Phi nodes. 4202 if (PhiNodesToMatch.count(&P)) 4203 continue; 4204 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 4205 break; 4206 // If it does not match, collect all Phi nodes from matcher. 4207 // if we end up with no match, them all these Phi nodes will not match 4208 // later. 4209 for (auto M : Matched) 4210 WillNotMatch.insert(M.first); 4211 Matched.clear(); 4212 } 4213 if (IsMatched) { 4214 // Replace all matched values and erase them. 4215 for (auto MV : Matched) 4216 ST.ReplacePhi(MV.first, MV.second); 4217 Matched.clear(); 4218 continue; 4219 } 4220 // If we are not allowed to create new nodes then bail out. 4221 if (!AllowNewPhiNodes) 4222 return false; 4223 // Just remove all seen values in matcher. They will not match anything. 4224 PhiNotMatchedCount += WillNotMatch.size(); 4225 for (auto *P : WillNotMatch) 4226 PhiNodesToMatch.erase(P); 4227 } 4228 return true; 4229 } 4230 /// Fill the placeholders with values from predecessors and simplify them. 4231 void FillPlaceholders(FoldAddrToValueMapping &Map, 4232 SmallVectorImpl<Value *> &TraverseOrder, 4233 SimplificationTracker &ST) { 4234 while (!TraverseOrder.empty()) { 4235 Value *Current = TraverseOrder.pop_back_val(); 4236 assert(Map.contains(Current) && "No node to fill!!!"); 4237 Value *V = Map[Current]; 4238 4239 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 4240 // CurrentValue also must be Select. 4241 auto *CurrentSelect = cast<SelectInst>(Current); 4242 auto *TrueValue = CurrentSelect->getTrueValue(); 4243 assert(Map.contains(TrueValue) && "No True Value!"); 4244 Select->setTrueValue(ST.Get(Map[TrueValue])); 4245 auto *FalseValue = CurrentSelect->getFalseValue(); 4246 assert(Map.contains(FalseValue) && "No False Value!"); 4247 Select->setFalseValue(ST.Get(Map[FalseValue])); 4248 } else { 4249 // Must be a Phi node then. 4250 auto *PHI = cast<PHINode>(V); 4251 // Fill the Phi node with values from predecessors. 4252 for (auto *B : predecessors(PHI->getParent())) { 4253 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 4254 assert(Map.contains(PV) && "No predecessor Value!"); 4255 PHI->addIncoming(ST.Get(Map[PV]), B); 4256 } 4257 } 4258 Map[Current] = ST.Simplify(V); 4259 } 4260 } 4261 4262 /// Starting from original value recursively iterates over def-use chain up to 4263 /// known ending values represented in a map. For each traversed phi/select 4264 /// inserts a placeholder Phi or Select. 4265 /// Reports all new created Phi/Select nodes by adding them to set. 4266 /// Also reports and order in what values have been traversed. 4267 void InsertPlaceholders(FoldAddrToValueMapping &Map, 4268 SmallVectorImpl<Value *> &TraverseOrder, 4269 SimplificationTracker &ST) { 4270 SmallVector<Value *, 32> Worklist; 4271 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 4272 "Address must be a Phi or Select node"); 4273 auto *Dummy = PoisonValue::get(CommonType); 4274 Worklist.push_back(Original); 4275 while (!Worklist.empty()) { 4276 Value *Current = Worklist.pop_back_val(); 4277 // if it is already visited or it is an ending value then skip it. 4278 if (Map.contains(Current)) 4279 continue; 4280 TraverseOrder.push_back(Current); 4281 4282 // CurrentValue must be a Phi node or select. All others must be covered 4283 // by anchors. 4284 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 4285 // Is it OK to get metadata from OrigSelect?! 4286 // Create a Select placeholder with dummy value. 4287 SelectInst *Select = 4288 SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy, 4289 CurrentSelect->getName(), 4290 CurrentSelect->getIterator(), CurrentSelect); 4291 Map[Current] = Select; 4292 ST.insertNewSelect(Select); 4293 // We are interested in True and False values. 4294 Worklist.push_back(CurrentSelect->getTrueValue()); 4295 Worklist.push_back(CurrentSelect->getFalseValue()); 4296 } else { 4297 // It must be a Phi node then. 4298 PHINode *CurrentPhi = cast<PHINode>(Current); 4299 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 4300 PHINode *PHI = 4301 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator()); 4302 Map[Current] = PHI; 4303 ST.insertNewPhi(PHI); 4304 append_range(Worklist, CurrentPhi->incoming_values()); 4305 } 4306 } 4307 } 4308 4309 bool addrModeCombiningAllowed() { 4310 if (DisableComplexAddrModes) 4311 return false; 4312 switch (DifferentField) { 4313 default: 4314 return false; 4315 case ExtAddrMode::BaseRegField: 4316 return AddrSinkCombineBaseReg; 4317 case ExtAddrMode::BaseGVField: 4318 return AddrSinkCombineBaseGV; 4319 case ExtAddrMode::BaseOffsField: 4320 return AddrSinkCombineBaseOffs; 4321 case ExtAddrMode::ScaledRegField: 4322 return AddrSinkCombineScaledReg; 4323 } 4324 } 4325 }; 4326 } // end anonymous namespace 4327 4328 /// Try adding ScaleReg*Scale to the current addressing mode. 4329 /// Return true and update AddrMode if this addr mode is legal for the target, 4330 /// false if not. 4331 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 4332 unsigned Depth) { 4333 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 4334 // mode. Just process that directly. 4335 if (Scale == 1) 4336 return matchAddr(ScaleReg, Depth); 4337 4338 // If the scale is 0, it takes nothing to add this. 4339 if (Scale == 0) 4340 return true; 4341 4342 // If we already have a scale of this value, we can add to it, otherwise, we 4343 // need an available scale field. 4344 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 4345 return false; 4346 4347 ExtAddrMode TestAddrMode = AddrMode; 4348 4349 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 4350 // [A+B + A*7] -> [B+A*8]. 4351 TestAddrMode.Scale += Scale; 4352 TestAddrMode.ScaledReg = ScaleReg; 4353 4354 // If the new address isn't legal, bail out. 4355 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 4356 return false; 4357 4358 // It was legal, so commit it. 4359 AddrMode = TestAddrMode; 4360 4361 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 4362 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 4363 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 4364 // go any further: we can reuse it and cannot eliminate it. 4365 ConstantInt *CI = nullptr; 4366 Value *AddLHS = nullptr; 4367 if (isa<Instruction>(ScaleReg) && // not a constant expr. 4368 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 4369 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 4370 TestAddrMode.InBounds = false; 4371 TestAddrMode.ScaledReg = AddLHS; 4372 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 4373 4374 // If this addressing mode is legal, commit it and remember that we folded 4375 // this instruction. 4376 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 4377 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 4378 AddrMode = TestAddrMode; 4379 return true; 4380 } 4381 // Restore status quo. 4382 TestAddrMode = AddrMode; 4383 } 4384 4385 // If this is an add recurrence with a constant step, return the increment 4386 // instruction and the canonicalized step. 4387 auto GetConstantStep = 4388 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { 4389 auto *PN = dyn_cast<PHINode>(V); 4390 if (!PN) 4391 return std::nullopt; 4392 auto IVInc = getIVIncrement(PN, &LI); 4393 if (!IVInc) 4394 return std::nullopt; 4395 // TODO: The result of the intrinsics above is two-complement. However when 4396 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 4397 // If it has nuw or nsw flags, we need to make sure that these flags are 4398 // inferrable at the point of memory instruction. Otherwise we are replacing 4399 // well-defined two-complement computation with poison. Currently, to avoid 4400 // potentially complex analysis needed to prove this, we reject such cases. 4401 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 4402 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 4403 return std::nullopt; 4404 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 4405 return std::make_pair(IVInc->first, ConstantStep->getValue()); 4406 return std::nullopt; 4407 }; 4408 4409 // Try to account for the following special case: 4410 // 1. ScaleReg is an inductive variable; 4411 // 2. We use it with non-zero offset; 4412 // 3. IV's increment is available at the point of memory instruction. 4413 // 4414 // In this case, we may reuse the IV increment instead of the IV Phi to 4415 // achieve the following advantages: 4416 // 1. If IV step matches the offset, we will have no need in the offset; 4417 // 2. Even if they don't match, we will reduce the overlap of living IV 4418 // and IV increment, that will potentially lead to better register 4419 // assignment. 4420 if (AddrMode.BaseOffs) { 4421 if (auto IVStep = GetConstantStep(ScaleReg)) { 4422 Instruction *IVInc = IVStep->first; 4423 // The following assert is important to ensure a lack of infinite loops. 4424 // This transforms is (intentionally) the inverse of the one just above. 4425 // If they don't agree on the definition of an increment, we'd alternate 4426 // back and forth indefinitely. 4427 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 4428 APInt Step = IVStep->second; 4429 APInt Offset = Step * AddrMode.Scale; 4430 if (Offset.isSignedIntN(64)) { 4431 TestAddrMode.InBounds = false; 4432 TestAddrMode.ScaledReg = IVInc; 4433 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 4434 // If this addressing mode is legal, commit it.. 4435 // (Note that we defer the (expensive) domtree base legality check 4436 // to the very last possible point.) 4437 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 4438 getDTFn().dominates(IVInc, MemoryInst)) { 4439 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 4440 AddrMode = TestAddrMode; 4441 return true; 4442 } 4443 // Restore status quo. 4444 TestAddrMode = AddrMode; 4445 } 4446 } 4447 } 4448 4449 // Otherwise, just return what we have. 4450 return true; 4451 } 4452 4453 /// This is a little filter, which returns true if an addressing computation 4454 /// involving I might be folded into a load/store accessing it. 4455 /// This doesn't need to be perfect, but needs to accept at least 4456 /// the set of instructions that MatchOperationAddr can. 4457 static bool MightBeFoldableInst(Instruction *I) { 4458 switch (I->getOpcode()) { 4459 case Instruction::BitCast: 4460 case Instruction::AddrSpaceCast: 4461 // Don't touch identity bitcasts. 4462 if (I->getType() == I->getOperand(0)->getType()) 4463 return false; 4464 return I->getType()->isIntOrPtrTy(); 4465 case Instruction::PtrToInt: 4466 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4467 return true; 4468 case Instruction::IntToPtr: 4469 // We know the input is intptr_t, so this is foldable. 4470 return true; 4471 case Instruction::Add: 4472 return true; 4473 case Instruction::Mul: 4474 case Instruction::Shl: 4475 // Can only handle X*C and X << C. 4476 return isa<ConstantInt>(I->getOperand(1)); 4477 case Instruction::GetElementPtr: 4478 return true; 4479 default: 4480 return false; 4481 } 4482 } 4483 4484 /// Check whether or not \p Val is a legal instruction for \p TLI. 4485 /// \note \p Val is assumed to be the product of some type promotion. 4486 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4487 /// to be legal, as the non-promoted value would have had the same state. 4488 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4489 const DataLayout &DL, Value *Val) { 4490 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4491 if (!PromotedInst) 4492 return false; 4493 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4494 // If the ISDOpcode is undefined, it was undefined before the promotion. 4495 if (!ISDOpcode) 4496 return true; 4497 // Otherwise, check if the promoted instruction is legal or not. 4498 return TLI.isOperationLegalOrCustom( 4499 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4500 } 4501 4502 namespace { 4503 4504 /// Hepler class to perform type promotion. 4505 class TypePromotionHelper { 4506 /// Utility function to add a promoted instruction \p ExtOpnd to 4507 /// \p PromotedInsts and record the type of extension we have seen. 4508 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4509 Instruction *ExtOpnd, bool IsSExt) { 4510 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4511 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4512 if (It != PromotedInsts.end()) { 4513 // If the new extension is same as original, the information in 4514 // PromotedInsts[ExtOpnd] is still correct. 4515 if (It->second.getInt() == ExtTy) 4516 return; 4517 4518 // Now the new extension is different from old extension, we make 4519 // the type information invalid by setting extension type to 4520 // BothExtension. 4521 ExtTy = BothExtension; 4522 } 4523 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4524 } 4525 4526 /// Utility function to query the original type of instruction \p Opnd 4527 /// with a matched extension type. If the extension doesn't match, we 4528 /// cannot use the information we had on the original type. 4529 /// BothExtension doesn't match any extension type. 4530 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4531 Instruction *Opnd, bool IsSExt) { 4532 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4533 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4534 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4535 return It->second.getPointer(); 4536 return nullptr; 4537 } 4538 4539 /// Utility function to check whether or not a sign or zero extension 4540 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4541 /// either using the operands of \p Inst or promoting \p Inst. 4542 /// The type of the extension is defined by \p IsSExt. 4543 /// In other words, check if: 4544 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4545 /// #1 Promotion applies: 4546 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4547 /// #2 Operand reuses: 4548 /// ext opnd1 to ConsideredExtType. 4549 /// \p PromotedInsts maps the instructions to their type before promotion. 4550 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4551 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4552 4553 /// Utility function to determine if \p OpIdx should be promoted when 4554 /// promoting \p Inst. 4555 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4556 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4557 } 4558 4559 /// Utility function to promote the operand of \p Ext when this 4560 /// operand is a promotable trunc or sext or zext. 4561 /// \p PromotedInsts maps the instructions to their type before promotion. 4562 /// \p CreatedInstsCost[out] contains the cost of all instructions 4563 /// created to promote the operand of Ext. 4564 /// Newly added extensions are inserted in \p Exts. 4565 /// Newly added truncates are inserted in \p Truncs. 4566 /// Should never be called directly. 4567 /// \return The promoted value which is used instead of Ext. 4568 static Value *promoteOperandForTruncAndAnyExt( 4569 Instruction *Ext, TypePromotionTransaction &TPT, 4570 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4571 SmallVectorImpl<Instruction *> *Exts, 4572 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4573 4574 /// Utility function to promote the operand of \p Ext when this 4575 /// operand is promotable and is not a supported trunc or sext. 4576 /// \p PromotedInsts maps the instructions to their type before promotion. 4577 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4578 /// created to promote the operand of Ext. 4579 /// Newly added extensions are inserted in \p Exts. 4580 /// Newly added truncates are inserted in \p Truncs. 4581 /// Should never be called directly. 4582 /// \return The promoted value which is used instead of Ext. 4583 static Value *promoteOperandForOther(Instruction *Ext, 4584 TypePromotionTransaction &TPT, 4585 InstrToOrigTy &PromotedInsts, 4586 unsigned &CreatedInstsCost, 4587 SmallVectorImpl<Instruction *> *Exts, 4588 SmallVectorImpl<Instruction *> *Truncs, 4589 const TargetLowering &TLI, bool IsSExt); 4590 4591 /// \see promoteOperandForOther. 4592 static Value *signExtendOperandForOther( 4593 Instruction *Ext, TypePromotionTransaction &TPT, 4594 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4595 SmallVectorImpl<Instruction *> *Exts, 4596 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4597 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4598 Exts, Truncs, TLI, true); 4599 } 4600 4601 /// \see promoteOperandForOther. 4602 static Value *zeroExtendOperandForOther( 4603 Instruction *Ext, TypePromotionTransaction &TPT, 4604 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4605 SmallVectorImpl<Instruction *> *Exts, 4606 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4607 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4608 Exts, Truncs, TLI, false); 4609 } 4610 4611 public: 4612 /// Type for the utility function that promotes the operand of Ext. 4613 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4614 InstrToOrigTy &PromotedInsts, 4615 unsigned &CreatedInstsCost, 4616 SmallVectorImpl<Instruction *> *Exts, 4617 SmallVectorImpl<Instruction *> *Truncs, 4618 const TargetLowering &TLI); 4619 4620 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4621 /// action to promote the operand of \p Ext instead of using Ext. 4622 /// \return NULL if no promotable action is possible with the current 4623 /// sign extension. 4624 /// \p InsertedInsts keeps track of all the instructions inserted by the 4625 /// other CodeGenPrepare optimizations. This information is important 4626 /// because we do not want to promote these instructions as CodeGenPrepare 4627 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4628 /// \p PromotedInsts maps the instructions to their type before promotion. 4629 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4630 const TargetLowering &TLI, 4631 const InstrToOrigTy &PromotedInsts); 4632 }; 4633 4634 } // end anonymous namespace 4635 4636 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4637 Type *ConsideredExtType, 4638 const InstrToOrigTy &PromotedInsts, 4639 bool IsSExt) { 4640 // The promotion helper does not know how to deal with vector types yet. 4641 // To be able to fix that, we would need to fix the places where we 4642 // statically extend, e.g., constants and such. 4643 if (Inst->getType()->isVectorTy()) 4644 return false; 4645 4646 // We can always get through zext. 4647 if (isa<ZExtInst>(Inst)) 4648 return true; 4649 4650 // sext(sext) is ok too. 4651 if (IsSExt && isa<SExtInst>(Inst)) 4652 return true; 4653 4654 // We can get through binary operator, if it is legal. In other words, the 4655 // binary operator must have a nuw or nsw flag. 4656 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4657 if (isa<OverflowingBinaryOperator>(BinOp) && 4658 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4659 (IsSExt && BinOp->hasNoSignedWrap()))) 4660 return true; 4661 4662 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4663 if ((Inst->getOpcode() == Instruction::And || 4664 Inst->getOpcode() == Instruction::Or)) 4665 return true; 4666 4667 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4668 if (Inst->getOpcode() == Instruction::Xor) { 4669 // Make sure it is not a NOT. 4670 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4671 if (!Cst->getValue().isAllOnes()) 4672 return true; 4673 } 4674 4675 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4676 // It may change a poisoned value into a regular value, like 4677 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4678 // poisoned value regular value 4679 // It should be OK since undef covers valid value. 4680 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4681 return true; 4682 4683 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4684 // It may change a poisoned value into a regular value, like 4685 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4686 // poisoned value regular value 4687 // It should be OK since undef covers valid value. 4688 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4689 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4690 if (ExtInst->hasOneUse()) { 4691 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4692 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4693 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4694 if (Cst && 4695 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4696 return true; 4697 } 4698 } 4699 } 4700 4701 // Check if we can do the following simplification. 4702 // ext(trunc(opnd)) --> ext(opnd) 4703 if (!isa<TruncInst>(Inst)) 4704 return false; 4705 4706 Value *OpndVal = Inst->getOperand(0); 4707 // Check if we can use this operand in the extension. 4708 // If the type is larger than the result type of the extension, we cannot. 4709 if (!OpndVal->getType()->isIntegerTy() || 4710 OpndVal->getType()->getIntegerBitWidth() > 4711 ConsideredExtType->getIntegerBitWidth()) 4712 return false; 4713 4714 // If the operand of the truncate is not an instruction, we will not have 4715 // any information on the dropped bits. 4716 // (Actually we could for constant but it is not worth the extra logic). 4717 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4718 if (!Opnd) 4719 return false; 4720 4721 // Check if the source of the type is narrow enough. 4722 // I.e., check that trunc just drops extended bits of the same kind of 4723 // the extension. 4724 // #1 get the type of the operand and check the kind of the extended bits. 4725 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4726 if (OpndType) 4727 ; 4728 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4729 OpndType = Opnd->getOperand(0)->getType(); 4730 else 4731 return false; 4732 4733 // #2 check that the truncate just drops extended bits. 4734 return Inst->getType()->getIntegerBitWidth() >= 4735 OpndType->getIntegerBitWidth(); 4736 } 4737 4738 TypePromotionHelper::Action TypePromotionHelper::getAction( 4739 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4740 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4741 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4742 "Unexpected instruction type"); 4743 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4744 Type *ExtTy = Ext->getType(); 4745 bool IsSExt = isa<SExtInst>(Ext); 4746 // If the operand of the extension is not an instruction, we cannot 4747 // get through. 4748 // If it, check we can get through. 4749 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4750 return nullptr; 4751 4752 // Do not promote if the operand has been added by codegenprepare. 4753 // Otherwise, it means we are undoing an optimization that is likely to be 4754 // redone, thus causing potential infinite loop. 4755 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4756 return nullptr; 4757 4758 // SExt or Trunc instructions. 4759 // Return the related handler. 4760 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4761 isa<ZExtInst>(ExtOpnd)) 4762 return promoteOperandForTruncAndAnyExt; 4763 4764 // Regular instruction. 4765 // Abort early if we will have to insert non-free instructions. 4766 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4767 return nullptr; 4768 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4769 } 4770 4771 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4772 Instruction *SExt, TypePromotionTransaction &TPT, 4773 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4774 SmallVectorImpl<Instruction *> *Exts, 4775 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4776 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4777 // get through it and this method should not be called. 4778 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4779 Value *ExtVal = SExt; 4780 bool HasMergedNonFreeExt = false; 4781 if (isa<ZExtInst>(SExtOpnd)) { 4782 // Replace s|zext(zext(opnd)) 4783 // => zext(opnd). 4784 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4785 Value *ZExt = 4786 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4787 TPT.replaceAllUsesWith(SExt, ZExt); 4788 TPT.eraseInstruction(SExt); 4789 ExtVal = ZExt; 4790 } else { 4791 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4792 // => z|sext(opnd). 4793 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4794 } 4795 CreatedInstsCost = 0; 4796 4797 // Remove dead code. 4798 if (SExtOpnd->use_empty()) 4799 TPT.eraseInstruction(SExtOpnd); 4800 4801 // Check if the extension is still needed. 4802 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4803 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4804 if (ExtInst) { 4805 if (Exts) 4806 Exts->push_back(ExtInst); 4807 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4808 } 4809 return ExtVal; 4810 } 4811 4812 // At this point we have: ext ty opnd to ty. 4813 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4814 Value *NextVal = ExtInst->getOperand(0); 4815 TPT.eraseInstruction(ExtInst, NextVal); 4816 return NextVal; 4817 } 4818 4819 Value *TypePromotionHelper::promoteOperandForOther( 4820 Instruction *Ext, TypePromotionTransaction &TPT, 4821 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4822 SmallVectorImpl<Instruction *> *Exts, 4823 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4824 bool IsSExt) { 4825 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4826 // get through it and this method should not be called. 4827 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4828 CreatedInstsCost = 0; 4829 if (!ExtOpnd->hasOneUse()) { 4830 // ExtOpnd will be promoted. 4831 // All its uses, but Ext, will need to use a truncated value of the 4832 // promoted version. 4833 // Create the truncate now. 4834 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4835 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4836 // Insert it just after the definition. 4837 ITrunc->moveAfter(ExtOpnd); 4838 if (Truncs) 4839 Truncs->push_back(ITrunc); 4840 } 4841 4842 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4843 // Restore the operand of Ext (which has been replaced by the previous call 4844 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4845 TPT.setOperand(Ext, 0, ExtOpnd); 4846 } 4847 4848 // Get through the Instruction: 4849 // 1. Update its type. 4850 // 2. Replace the uses of Ext by Inst. 4851 // 3. Extend each operand that needs to be extended. 4852 4853 // Remember the original type of the instruction before promotion. 4854 // This is useful to know that the high bits are sign extended bits. 4855 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4856 // Step #1. 4857 TPT.mutateType(ExtOpnd, Ext->getType()); 4858 // Step #2. 4859 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4860 // Step #3. 4861 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4862 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4863 ++OpIdx) { 4864 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4865 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4866 !shouldExtOperand(ExtOpnd, OpIdx)) { 4867 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4868 continue; 4869 } 4870 // Check if we can statically extend the operand. 4871 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4872 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4873 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4874 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4875 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4876 : Cst->getValue().zext(BitWidth); 4877 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4878 continue; 4879 } 4880 // UndefValue are typed, so we have to statically sign extend them. 4881 if (isa<UndefValue>(Opnd)) { 4882 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4883 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4884 continue; 4885 } 4886 4887 // Otherwise we have to explicitly sign extend the operand. 4888 Value *ValForExtOpnd = IsSExt 4889 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType()) 4890 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType()); 4891 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4892 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd); 4893 if (!InstForExtOpnd) 4894 continue; 4895 4896 if (Exts) 4897 Exts->push_back(InstForExtOpnd); 4898 4899 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd); 4900 } 4901 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4902 TPT.eraseInstruction(Ext); 4903 return ExtOpnd; 4904 } 4905 4906 /// Check whether or not promoting an instruction to a wider type is profitable. 4907 /// \p NewCost gives the cost of extension instructions created by the 4908 /// promotion. 4909 /// \p OldCost gives the cost of extension instructions before the promotion 4910 /// plus the number of instructions that have been 4911 /// matched in the addressing mode the promotion. 4912 /// \p PromotedOperand is the value that has been promoted. 4913 /// \return True if the promotion is profitable, false otherwise. 4914 bool AddressingModeMatcher::isPromotionProfitable( 4915 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4916 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4917 << '\n'); 4918 // The cost of the new extensions is greater than the cost of the 4919 // old extension plus what we folded. 4920 // This is not profitable. 4921 if (NewCost > OldCost) 4922 return false; 4923 if (NewCost < OldCost) 4924 return true; 4925 // The promotion is neutral but it may help folding the sign extension in 4926 // loads for instance. 4927 // Check that we did not create an illegal instruction. 4928 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4929 } 4930 4931 /// Given an instruction or constant expr, see if we can fold the operation 4932 /// into the addressing mode. If so, update the addressing mode and return 4933 /// true, otherwise return false without modifying AddrMode. 4934 /// If \p MovedAway is not NULL, it contains the information of whether or 4935 /// not AddrInst has to be folded into the addressing mode on success. 4936 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4937 /// because it has been moved away. 4938 /// Thus AddrInst must not be added in the matched instructions. 4939 /// This state can happen when AddrInst is a sext, since it may be moved away. 4940 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4941 /// not be referenced anymore. 4942 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4943 unsigned Depth, 4944 bool *MovedAway) { 4945 // Avoid exponential behavior on extremely deep expression trees. 4946 if (Depth >= 5) 4947 return false; 4948 4949 // By default, all matched instructions stay in place. 4950 if (MovedAway) 4951 *MovedAway = false; 4952 4953 switch (Opcode) { 4954 case Instruction::PtrToInt: 4955 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4956 return matchAddr(AddrInst->getOperand(0), Depth); 4957 case Instruction::IntToPtr: { 4958 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4959 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4960 // This inttoptr is a no-op if the integer type is pointer sized. 4961 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4962 return matchAddr(AddrInst->getOperand(0), Depth); 4963 return false; 4964 } 4965 case Instruction::BitCast: 4966 // BitCast is always a noop, and we can handle it as long as it is 4967 // int->int or pointer->pointer (we don't want int<->fp or something). 4968 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4969 // Don't touch identity bitcasts. These were probably put here by LSR, 4970 // and we don't want to mess around with them. Assume it knows what it 4971 // is doing. 4972 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4973 return matchAddr(AddrInst->getOperand(0), Depth); 4974 return false; 4975 case Instruction::AddrSpaceCast: { 4976 unsigned SrcAS = 4977 AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4978 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4979 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4980 return matchAddr(AddrInst->getOperand(0), Depth); 4981 return false; 4982 } 4983 case Instruction::Add: { 4984 // Check to see if we can merge in one operand, then the other. If so, we 4985 // win. 4986 ExtAddrMode BackupAddrMode = AddrMode; 4987 unsigned OldSize = AddrModeInsts.size(); 4988 // Start a transaction at this point. 4989 // The LHS may match but not the RHS. 4990 // Therefore, we need a higher level restoration point to undo partially 4991 // matched operation. 4992 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4993 TPT.getRestorationPoint(); 4994 4995 // Try to match an integer constant second to increase its chance of ending 4996 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. 4997 int First = 0, Second = 1; 4998 if (isa<ConstantInt>(AddrInst->getOperand(First)) 4999 && !isa<ConstantInt>(AddrInst->getOperand(Second))) 5000 std::swap(First, Second); 5001 AddrMode.InBounds = false; 5002 if (matchAddr(AddrInst->getOperand(First), Depth + 1) && 5003 matchAddr(AddrInst->getOperand(Second), Depth + 1)) 5004 return true; 5005 5006 // Restore the old addr mode info. 5007 AddrMode = BackupAddrMode; 5008 AddrModeInsts.resize(OldSize); 5009 TPT.rollback(LastKnownGood); 5010 5011 // Otherwise this was over-aggressive. Try merging operands in the opposite 5012 // order. 5013 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && 5014 matchAddr(AddrInst->getOperand(First), Depth + 1)) 5015 return true; 5016 5017 // Otherwise we definitely can't merge the ADD in. 5018 AddrMode = BackupAddrMode; 5019 AddrModeInsts.resize(OldSize); 5020 TPT.rollback(LastKnownGood); 5021 break; 5022 } 5023 // case Instruction::Or: 5024 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 5025 // break; 5026 case Instruction::Mul: 5027 case Instruction::Shl: { 5028 // Can only handle X*C and X << C. 5029 AddrMode.InBounds = false; 5030 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 5031 if (!RHS || RHS->getBitWidth() > 64) 5032 return false; 5033 int64_t Scale = Opcode == Instruction::Shl 5034 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 5035 : RHS->getSExtValue(); 5036 5037 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 5038 } 5039 case Instruction::GetElementPtr: { 5040 // Scan the GEP. We check it if it contains constant offsets and at most 5041 // one variable offset. 5042 int VariableOperand = -1; 5043 unsigned VariableScale = 0; 5044 5045 int64_t ConstantOffset = 0; 5046 gep_type_iterator GTI = gep_type_begin(AddrInst); 5047 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 5048 if (StructType *STy = GTI.getStructTypeOrNull()) { 5049 const StructLayout *SL = DL.getStructLayout(STy); 5050 unsigned Idx = 5051 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 5052 ConstantOffset += SL->getElementOffset(Idx); 5053 } else { 5054 TypeSize TS = GTI.getSequentialElementStride(DL); 5055 if (TS.isNonZero()) { 5056 // The optimisations below currently only work for fixed offsets. 5057 if (TS.isScalable()) 5058 return false; 5059 int64_t TypeSize = TS.getFixedValue(); 5060 if (ConstantInt *CI = 5061 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 5062 const APInt &CVal = CI->getValue(); 5063 if (CVal.getSignificantBits() <= 64) { 5064 ConstantOffset += CVal.getSExtValue() * TypeSize; 5065 continue; 5066 } 5067 } 5068 // We only allow one variable index at the moment. 5069 if (VariableOperand != -1) 5070 return false; 5071 5072 // Remember the variable index. 5073 VariableOperand = i; 5074 VariableScale = TypeSize; 5075 } 5076 } 5077 } 5078 5079 // A common case is for the GEP to only do a constant offset. In this case, 5080 // just add it to the disp field and check validity. 5081 if (VariableOperand == -1) { 5082 AddrMode.BaseOffs += ConstantOffset; 5083 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { 5084 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 5085 AddrMode.InBounds = false; 5086 return true; 5087 } 5088 AddrMode.BaseOffs -= ConstantOffset; 5089 5090 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 5091 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 5092 ConstantOffset > 0) { 5093 // Record GEPs with non-zero offsets as candidates for splitting in 5094 // the event that the offset cannot fit into the r+i addressing mode. 5095 // Simple and common case that only one GEP is used in calculating the 5096 // address for the memory access. 5097 Value *Base = AddrInst->getOperand(0); 5098 auto *BaseI = dyn_cast<Instruction>(Base); 5099 auto *GEP = cast<GetElementPtrInst>(AddrInst); 5100 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 5101 (BaseI && !isa<CastInst>(BaseI) && 5102 !isa<GetElementPtrInst>(BaseI))) { 5103 // Make sure the parent block allows inserting non-PHI instructions 5104 // before the terminator. 5105 BasicBlock *Parent = BaseI ? BaseI->getParent() 5106 : &GEP->getFunction()->getEntryBlock(); 5107 if (!Parent->getTerminator()->isEHPad()) 5108 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 5109 } 5110 } 5111 5112 return false; 5113 } 5114 5115 // Save the valid addressing mode in case we can't match. 5116 ExtAddrMode BackupAddrMode = AddrMode; 5117 unsigned OldSize = AddrModeInsts.size(); 5118 5119 // See if the scale and offset amount is valid for this target. 5120 AddrMode.BaseOffs += ConstantOffset; 5121 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 5122 AddrMode.InBounds = false; 5123 5124 // Match the base operand of the GEP. 5125 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { 5126 // If it couldn't be matched, just stuff the value in a register. 5127 if (AddrMode.HasBaseReg) { 5128 AddrMode = BackupAddrMode; 5129 AddrModeInsts.resize(OldSize); 5130 return false; 5131 } 5132 AddrMode.HasBaseReg = true; 5133 AddrMode.BaseReg = AddrInst->getOperand(0); 5134 } 5135 5136 // Match the remaining variable portion of the GEP. 5137 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 5138 Depth)) { 5139 // If it couldn't be matched, try stuffing the base into a register 5140 // instead of matching it, and retrying the match of the scale. 5141 AddrMode = BackupAddrMode; 5142 AddrModeInsts.resize(OldSize); 5143 if (AddrMode.HasBaseReg) 5144 return false; 5145 AddrMode.HasBaseReg = true; 5146 AddrMode.BaseReg = AddrInst->getOperand(0); 5147 AddrMode.BaseOffs += ConstantOffset; 5148 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 5149 VariableScale, Depth)) { 5150 // If even that didn't work, bail. 5151 AddrMode = BackupAddrMode; 5152 AddrModeInsts.resize(OldSize); 5153 return false; 5154 } 5155 } 5156 5157 return true; 5158 } 5159 case Instruction::SExt: 5160 case Instruction::ZExt: { 5161 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 5162 if (!Ext) 5163 return false; 5164 5165 // Try to move this ext out of the way of the addressing mode. 5166 // Ask for a method for doing so. 5167 TypePromotionHelper::Action TPH = 5168 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 5169 if (!TPH) 5170 return false; 5171 5172 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5173 TPT.getRestorationPoint(); 5174 unsigned CreatedInstsCost = 0; 5175 unsigned ExtCost = !TLI.isExtFree(Ext); 5176 Value *PromotedOperand = 5177 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 5178 // SExt has been moved away. 5179 // Thus either it will be rematched later in the recursive calls or it is 5180 // gone. Anyway, we must not fold it into the addressing mode at this point. 5181 // E.g., 5182 // op = add opnd, 1 5183 // idx = ext op 5184 // addr = gep base, idx 5185 // is now: 5186 // promotedOpnd = ext opnd <- no match here 5187 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 5188 // addr = gep base, op <- match 5189 if (MovedAway) 5190 *MovedAway = true; 5191 5192 assert(PromotedOperand && 5193 "TypePromotionHelper should have filtered out those cases"); 5194 5195 ExtAddrMode BackupAddrMode = AddrMode; 5196 unsigned OldSize = AddrModeInsts.size(); 5197 5198 if (!matchAddr(PromotedOperand, Depth) || 5199 // The total of the new cost is equal to the cost of the created 5200 // instructions. 5201 // The total of the old cost is equal to the cost of the extension plus 5202 // what we have saved in the addressing mode. 5203 !isPromotionProfitable(CreatedInstsCost, 5204 ExtCost + (AddrModeInsts.size() - OldSize), 5205 PromotedOperand)) { 5206 AddrMode = BackupAddrMode; 5207 AddrModeInsts.resize(OldSize); 5208 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 5209 TPT.rollback(LastKnownGood); 5210 return false; 5211 } 5212 return true; 5213 } 5214 case Instruction::Call: 5215 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) { 5216 if (II->getIntrinsicID() == Intrinsic::threadlocal_address) { 5217 GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0)); 5218 if (TLI.addressingModeSupportsTLS(GV)) 5219 return matchAddr(AddrInst->getOperand(0), Depth); 5220 } 5221 } 5222 break; 5223 } 5224 return false; 5225 } 5226 5227 /// If we can, try to add the value of 'Addr' into the current addressing mode. 5228 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 5229 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 5230 /// for the target. 5231 /// 5232 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 5233 // Start a transaction at this point that we will rollback if the matching 5234 // fails. 5235 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5236 TPT.getRestorationPoint(); 5237 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 5238 if (CI->getValue().isSignedIntN(64)) { 5239 // Fold in immediates if legal for the target. 5240 AddrMode.BaseOffs += CI->getSExtValue(); 5241 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5242 return true; 5243 AddrMode.BaseOffs -= CI->getSExtValue(); 5244 } 5245 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 5246 // If this is a global variable, try to fold it into the addressing mode. 5247 if (!AddrMode.BaseGV) { 5248 AddrMode.BaseGV = GV; 5249 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5250 return true; 5251 AddrMode.BaseGV = nullptr; 5252 } 5253 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 5254 ExtAddrMode BackupAddrMode = AddrMode; 5255 unsigned OldSize = AddrModeInsts.size(); 5256 5257 // Check to see if it is possible to fold this operation. 5258 bool MovedAway = false; 5259 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 5260 // This instruction may have been moved away. If so, there is nothing 5261 // to check here. 5262 if (MovedAway) 5263 return true; 5264 // Okay, it's possible to fold this. Check to see if it is actually 5265 // *profitable* to do so. We use a simple cost model to avoid increasing 5266 // register pressure too much. 5267 if (I->hasOneUse() || 5268 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 5269 AddrModeInsts.push_back(I); 5270 return true; 5271 } 5272 5273 // It isn't profitable to do this, roll back. 5274 AddrMode = BackupAddrMode; 5275 AddrModeInsts.resize(OldSize); 5276 TPT.rollback(LastKnownGood); 5277 } 5278 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 5279 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 5280 return true; 5281 TPT.rollback(LastKnownGood); 5282 } else if (isa<ConstantPointerNull>(Addr)) { 5283 // Null pointer gets folded without affecting the addressing mode. 5284 return true; 5285 } 5286 5287 // Worse case, the target should support [reg] addressing modes. :) 5288 if (!AddrMode.HasBaseReg) { 5289 AddrMode.HasBaseReg = true; 5290 AddrMode.BaseReg = Addr; 5291 // Still check for legality in case the target supports [imm] but not [i+r]. 5292 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5293 return true; 5294 AddrMode.HasBaseReg = false; 5295 AddrMode.BaseReg = nullptr; 5296 } 5297 5298 // If the base register is already taken, see if we can do [r+r]. 5299 if (AddrMode.Scale == 0) { 5300 AddrMode.Scale = 1; 5301 AddrMode.ScaledReg = Addr; 5302 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5303 return true; 5304 AddrMode.Scale = 0; 5305 AddrMode.ScaledReg = nullptr; 5306 } 5307 // Couldn't match. 5308 TPT.rollback(LastKnownGood); 5309 return false; 5310 } 5311 5312 /// Check to see if all uses of OpVal by the specified inline asm call are due 5313 /// to memory operands. If so, return true, otherwise return false. 5314 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 5315 const TargetLowering &TLI, 5316 const TargetRegisterInfo &TRI) { 5317 const Function *F = CI->getFunction(); 5318 TargetLowering::AsmOperandInfoVector TargetConstraints = 5319 TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI); 5320 5321 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5322 // Compute the constraint code and ConstraintType to use. 5323 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5324 5325 // If this asm operand is our Value*, and if it isn't an indirect memory 5326 // operand, we can't fold it! TODO: Also handle C_Address? 5327 if (OpInfo.CallOperandVal == OpVal && 5328 (OpInfo.ConstraintType != TargetLowering::C_Memory || 5329 !OpInfo.isIndirect)) 5330 return false; 5331 } 5332 5333 return true; 5334 } 5335 5336 /// Recursively walk all the uses of I until we find a memory use. 5337 /// If we find an obviously non-foldable instruction, return true. 5338 /// Add accessed addresses and types to MemoryUses. 5339 static bool FindAllMemoryUses( 5340 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5341 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 5342 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 5343 BlockFrequencyInfo *BFI, unsigned &SeenInsts) { 5344 // If we already considered this instruction, we're done. 5345 if (!ConsideredInsts.insert(I).second) 5346 return false; 5347 5348 // If this is an obviously unfoldable instruction, bail out. 5349 if (!MightBeFoldableInst(I)) 5350 return true; 5351 5352 // Loop over all the uses, recursively processing them. 5353 for (Use &U : I->uses()) { 5354 // Conservatively return true if we're seeing a large number or a deep chain 5355 // of users. This avoids excessive compilation times in pathological cases. 5356 if (SeenInsts++ >= MaxAddressUsersToScan) 5357 return true; 5358 5359 Instruction *UserI = cast<Instruction>(U.getUser()); 5360 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 5361 MemoryUses.push_back({&U, LI->getType()}); 5362 continue; 5363 } 5364 5365 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 5366 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 5367 return true; // Storing addr, not into addr. 5368 MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); 5369 continue; 5370 } 5371 5372 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 5373 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 5374 return true; // Storing addr, not into addr. 5375 MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); 5376 continue; 5377 } 5378 5379 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 5380 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 5381 return true; // Storing addr, not into addr. 5382 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); 5383 continue; 5384 } 5385 5386 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 5387 if (CI->hasFnAttr(Attribute::Cold)) { 5388 // If this is a cold call, we can sink the addressing calculation into 5389 // the cold path. See optimizeCallInst 5390 bool OptForSize = 5391 OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 5392 if (!OptForSize) 5393 continue; 5394 } 5395 5396 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 5397 if (!IA) 5398 return true; 5399 5400 // If this is a memory operand, we're cool, otherwise bail out. 5401 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 5402 return true; 5403 continue; 5404 } 5405 5406 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5407 PSI, BFI, SeenInsts)) 5408 return true; 5409 } 5410 5411 return false; 5412 } 5413 5414 static bool FindAllMemoryUses( 5415 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5416 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, 5417 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 5418 unsigned SeenInsts = 0; 5419 SmallPtrSet<Instruction *, 16> ConsideredInsts; 5420 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5421 PSI, BFI, SeenInsts); 5422 } 5423 5424 5425 /// Return true if Val is already known to be live at the use site that we're 5426 /// folding it into. If so, there is no cost to include it in the addressing 5427 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 5428 /// instruction already. 5429 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, 5430 Value *KnownLive1, 5431 Value *KnownLive2) { 5432 // If Val is either of the known-live values, we know it is live! 5433 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 5434 return true; 5435 5436 // All values other than instructions and arguments (e.g. constants) are live. 5437 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) 5438 return true; 5439 5440 // If Val is a constant sized alloca in the entry block, it is live, this is 5441 // true because it is just a reference to the stack/frame pointer, which is 5442 // live for the whole function. 5443 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 5444 if (AI->isStaticAlloca()) 5445 return true; 5446 5447 // Check to see if this value is already used in the memory instruction's 5448 // block. If so, it's already live into the block at the very least, so we 5449 // can reasonably fold it. 5450 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 5451 } 5452 5453 /// It is possible for the addressing mode of the machine to fold the specified 5454 /// instruction into a load or store that ultimately uses it. 5455 /// However, the specified instruction has multiple uses. 5456 /// Given this, it may actually increase register pressure to fold it 5457 /// into the load. For example, consider this code: 5458 /// 5459 /// X = ... 5460 /// Y = X+1 5461 /// use(Y) -> nonload/store 5462 /// Z = Y+1 5463 /// load Z 5464 /// 5465 /// In this case, Y has multiple uses, and can be folded into the load of Z 5466 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 5467 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 5468 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 5469 /// number of computations either. 5470 /// 5471 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 5472 /// X was live across 'load Z' for other reasons, we actually *would* want to 5473 /// fold the addressing mode in the Z case. This would make Y die earlier. 5474 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( 5475 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { 5476 if (IgnoreProfitability) 5477 return true; 5478 5479 // AMBefore is the addressing mode before this instruction was folded into it, 5480 // and AMAfter is the addressing mode after the instruction was folded. Get 5481 // the set of registers referenced by AMAfter and subtract out those 5482 // referenced by AMBefore: this is the set of values which folding in this 5483 // address extends the lifetime of. 5484 // 5485 // Note that there are only two potential values being referenced here, 5486 // BaseReg and ScaleReg (global addresses are always available, as are any 5487 // folded immediates). 5488 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5489 5490 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5491 // lifetime wasn't extended by adding this instruction. 5492 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5493 BaseReg = nullptr; 5494 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5495 ScaledReg = nullptr; 5496 5497 // If folding this instruction (and it's subexprs) didn't extend any live 5498 // ranges, we're ok with it. 5499 if (!BaseReg && !ScaledReg) 5500 return true; 5501 5502 // If all uses of this instruction can have the address mode sunk into them, 5503 // we can remove the addressing mode and effectively trade one live register 5504 // for another (at worst.) In this context, folding an addressing mode into 5505 // the use is just a particularly nice way of sinking it. 5506 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; 5507 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) 5508 return false; // Has a non-memory, non-foldable use! 5509 5510 // Now that we know that all uses of this instruction are part of a chain of 5511 // computation involving only operations that could theoretically be folded 5512 // into a memory use, loop over each of these memory operation uses and see 5513 // if they could *actually* fold the instruction. The assumption is that 5514 // addressing modes are cheap and that duplicating the computation involved 5515 // many times is worthwhile, even on a fastpath. For sinking candidates 5516 // (i.e. cold call sites), this serves as a way to prevent excessive code 5517 // growth since most architectures have some reasonable small and fast way to 5518 // compute an effective address. (i.e LEA on x86) 5519 SmallVector<Instruction *, 32> MatchedAddrModeInsts; 5520 for (const std::pair<Use *, Type *> &Pair : MemoryUses) { 5521 Value *Address = Pair.first->get(); 5522 Instruction *UserI = cast<Instruction>(Pair.first->getUser()); 5523 Type *AddressAccessTy = Pair.second; 5524 unsigned AS = Address->getType()->getPointerAddressSpace(); 5525 5526 // Do a match against the root of this address, ignoring profitability. This 5527 // will tell us if the addressing mode for the memory operation will 5528 // *actually* cover the shared instruction. 5529 ExtAddrMode Result; 5530 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5531 0); 5532 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5533 TPT.getRestorationPoint(); 5534 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5535 AddressAccessTy, AS, UserI, Result, 5536 InsertedInsts, PromotedInsts, TPT, 5537 LargeOffsetGEP, OptSize, PSI, BFI); 5538 Matcher.IgnoreProfitability = true; 5539 bool Success = Matcher.matchAddr(Address, 0); 5540 (void)Success; 5541 assert(Success && "Couldn't select *anything*?"); 5542 5543 // The match was to check the profitability, the changes made are not 5544 // part of the original matcher. Therefore, they should be dropped 5545 // otherwise the original matcher will not present the right state. 5546 TPT.rollback(LastKnownGood); 5547 5548 // If the match didn't cover I, then it won't be shared by it. 5549 if (!is_contained(MatchedAddrModeInsts, I)) 5550 return false; 5551 5552 MatchedAddrModeInsts.clear(); 5553 } 5554 5555 return true; 5556 } 5557 5558 /// Return true if the specified values are defined in a 5559 /// different basic block than BB. 5560 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5561 if (Instruction *I = dyn_cast<Instruction>(V)) 5562 return I->getParent() != BB; 5563 return false; 5564 } 5565 5566 /// Sink addressing mode computation immediate before MemoryInst if doing so 5567 /// can be done without increasing register pressure. The need for the 5568 /// register pressure constraint means this can end up being an all or nothing 5569 /// decision for all uses of the same addressing computation. 5570 /// 5571 /// Load and Store Instructions often have addressing modes that can do 5572 /// significant amounts of computation. As such, instruction selection will try 5573 /// to get the load or store to do as much computation as possible for the 5574 /// program. The problem is that isel can only see within a single block. As 5575 /// such, we sink as much legal addressing mode work into the block as possible. 5576 /// 5577 /// This method is used to optimize both load/store and inline asms with memory 5578 /// operands. It's also used to sink addressing computations feeding into cold 5579 /// call sites into their (cold) basic block. 5580 /// 5581 /// The motivation for handling sinking into cold blocks is that doing so can 5582 /// both enable other address mode sinking (by satisfying the register pressure 5583 /// constraint above), and reduce register pressure globally (by removing the 5584 /// addressing mode computation from the fast path entirely.). 5585 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5586 Type *AccessTy, unsigned AddrSpace) { 5587 Value *Repl = Addr; 5588 5589 // Try to collapse single-value PHI nodes. This is necessary to undo 5590 // unprofitable PRE transformations. 5591 SmallVector<Value *, 8> worklist; 5592 SmallPtrSet<Value *, 16> Visited; 5593 worklist.push_back(Addr); 5594 5595 // Use a worklist to iteratively look through PHI and select nodes, and 5596 // ensure that the addressing mode obtained from the non-PHI/select roots of 5597 // the graph are compatible. 5598 bool PhiOrSelectSeen = false; 5599 SmallVector<Instruction *, 16> AddrModeInsts; 5600 const SimplifyQuery SQ(*DL, TLInfo); 5601 AddressingModeCombiner AddrModes(SQ, Addr); 5602 TypePromotionTransaction TPT(RemovedInsts); 5603 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5604 TPT.getRestorationPoint(); 5605 while (!worklist.empty()) { 5606 Value *V = worklist.pop_back_val(); 5607 5608 // We allow traversing cyclic Phi nodes. 5609 // In case of success after this loop we ensure that traversing through 5610 // Phi nodes ends up with all cases to compute address of the form 5611 // BaseGV + Base + Scale * Index + Offset 5612 // where Scale and Offset are constans and BaseGV, Base and Index 5613 // are exactly the same Values in all cases. 5614 // It means that BaseGV, Scale and Offset dominate our memory instruction 5615 // and have the same value as they had in address computation represented 5616 // as Phi. So we can safely sink address computation to memory instruction. 5617 if (!Visited.insert(V).second) 5618 continue; 5619 5620 // For a PHI node, push all of its incoming values. 5621 if (PHINode *P = dyn_cast<PHINode>(V)) { 5622 append_range(worklist, P->incoming_values()); 5623 PhiOrSelectSeen = true; 5624 continue; 5625 } 5626 // Similar for select. 5627 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5628 worklist.push_back(SI->getFalseValue()); 5629 worklist.push_back(SI->getTrueValue()); 5630 PhiOrSelectSeen = true; 5631 continue; 5632 } 5633 5634 // For non-PHIs, determine the addressing mode being computed. Note that 5635 // the result may differ depending on what other uses our candidate 5636 // addressing instructions might have. 5637 AddrModeInsts.clear(); 5638 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5639 0); 5640 // Defer the query (and possible computation of) the dom tree to point of 5641 // actual use. It's expected that most address matches don't actually need 5642 // the domtree. 5643 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5644 Function *F = MemoryInst->getParent()->getParent(); 5645 return this->getDT(*F); 5646 }; 5647 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5648 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5649 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5650 BFI.get()); 5651 5652 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5653 if (GEP && !NewGEPBases.count(GEP)) { 5654 // If splitting the underlying data structure can reduce the offset of a 5655 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5656 // previously split data structures. 5657 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5658 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5659 } 5660 5661 NewAddrMode.OriginalValue = V; 5662 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5663 break; 5664 } 5665 5666 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5667 // or we have multiple but either couldn't combine them or combining them 5668 // wouldn't do anything useful, bail out now. 5669 if (!AddrModes.combineAddrModes()) { 5670 TPT.rollback(LastKnownGood); 5671 return false; 5672 } 5673 bool Modified = TPT.commit(); 5674 5675 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5676 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5677 5678 // If all the instructions matched are already in this BB, don't do anything. 5679 // If we saw a Phi node then it is not local definitely, and if we saw a 5680 // select then we want to push the address calculation past it even if it's 5681 // already in this BB. 5682 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5683 return IsNonLocalValue(V, MemoryInst->getParent()); 5684 })) { 5685 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5686 << "\n"); 5687 return Modified; 5688 } 5689 5690 // Insert this computation right after this user. Since our caller is 5691 // scanning from the top of the BB to the bottom, reuse of the expr are 5692 // guaranteed to happen later. 5693 IRBuilder<> Builder(MemoryInst); 5694 5695 // Now that we determined the addressing expression we want to use and know 5696 // that we have to sink it into this block. Check to see if we have already 5697 // done this for some other load/store instr in this block. If so, reuse 5698 // the computation. Before attempting reuse, check if the address is valid 5699 // as it may have been erased. 5700 5701 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5702 5703 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5704 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5705 if (SunkAddr) { 5706 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5707 << " for " << *MemoryInst << "\n"); 5708 if (SunkAddr->getType() != Addr->getType()) { 5709 if (SunkAddr->getType()->getPointerAddressSpace() != 5710 Addr->getType()->getPointerAddressSpace() && 5711 !DL->isNonIntegralPointerType(Addr->getType())) { 5712 // There are two reasons the address spaces might not match: a no-op 5713 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5714 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5715 // TODO: allow bitcast between different address space pointers with the 5716 // same size. 5717 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5718 SunkAddr = 5719 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5720 } else 5721 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5722 } 5723 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5724 SubtargetInfo->addrSinkUsingGEPs())) { 5725 // By default, we use the GEP-based method when AA is used later. This 5726 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5727 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5728 << " for " << *MemoryInst << "\n"); 5729 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5730 5731 // First, find the pointer. 5732 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5733 ResultPtr = AddrMode.BaseReg; 5734 AddrMode.BaseReg = nullptr; 5735 } 5736 5737 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5738 // We can't add more than one pointer together, nor can we scale a 5739 // pointer (both of which seem meaningless). 5740 if (ResultPtr || AddrMode.Scale != 1) 5741 return Modified; 5742 5743 ResultPtr = AddrMode.ScaledReg; 5744 AddrMode.Scale = 0; 5745 } 5746 5747 // It is only safe to sign extend the BaseReg if we know that the math 5748 // required to create it did not overflow before we extend it. Since 5749 // the original IR value was tossed in favor of a constant back when 5750 // the AddrMode was created we need to bail out gracefully if widths 5751 // do not match instead of extending it. 5752 // 5753 // (See below for code to add the scale.) 5754 if (AddrMode.Scale) { 5755 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5756 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5757 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5758 return Modified; 5759 } 5760 5761 GlobalValue *BaseGV = AddrMode.BaseGV; 5762 if (BaseGV != nullptr) { 5763 if (ResultPtr) 5764 return Modified; 5765 5766 if (BaseGV->isThreadLocal()) { 5767 ResultPtr = Builder.CreateThreadLocalAddress(BaseGV); 5768 } else { 5769 ResultPtr = BaseGV; 5770 } 5771 } 5772 5773 // If the real base value actually came from an inttoptr, then the matcher 5774 // will look through it and provide only the integer value. In that case, 5775 // use it here. 5776 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5777 if (!ResultPtr && AddrMode.BaseReg) { 5778 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5779 "sunkaddr"); 5780 AddrMode.BaseReg = nullptr; 5781 } else if (!ResultPtr && AddrMode.Scale == 1) { 5782 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5783 "sunkaddr"); 5784 AddrMode.Scale = 0; 5785 } 5786 } 5787 5788 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && 5789 !AddrMode.BaseOffs) { 5790 SunkAddr = Constant::getNullValue(Addr->getType()); 5791 } else if (!ResultPtr) { 5792 return Modified; 5793 } else { 5794 Type *I8PtrTy = 5795 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace()); 5796 5797 // Start with the base register. Do this first so that subsequent address 5798 // matching finds it last, which will prevent it from trying to match it 5799 // as the scaled value in case it happens to be a mul. That would be 5800 // problematic if we've sunk a different mul for the scale, because then 5801 // we'd end up sinking both muls. 5802 if (AddrMode.BaseReg) { 5803 Value *V = AddrMode.BaseReg; 5804 if (V->getType() != IntPtrTy) 5805 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5806 5807 ResultIndex = V; 5808 } 5809 5810 // Add the scale value. 5811 if (AddrMode.Scale) { 5812 Value *V = AddrMode.ScaledReg; 5813 if (V->getType() == IntPtrTy) { 5814 // done. 5815 } else { 5816 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5817 cast<IntegerType>(V->getType())->getBitWidth() && 5818 "We can't transform if ScaledReg is too narrow"); 5819 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5820 } 5821 5822 if (AddrMode.Scale != 1) 5823 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5824 "sunkaddr"); 5825 if (ResultIndex) 5826 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5827 else 5828 ResultIndex = V; 5829 } 5830 5831 // Add in the Base Offset if present. 5832 if (AddrMode.BaseOffs) { 5833 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5834 if (ResultIndex) { 5835 // We need to add this separately from the scale above to help with 5836 // SDAG consecutive load/store merging. 5837 if (ResultPtr->getType() != I8PtrTy) 5838 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5839 ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5840 AddrMode.InBounds); 5841 } 5842 5843 ResultIndex = V; 5844 } 5845 5846 if (!ResultIndex) { 5847 SunkAddr = ResultPtr; 5848 } else { 5849 if (ResultPtr->getType() != I8PtrTy) 5850 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5851 SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5852 AddrMode.InBounds); 5853 } 5854 5855 if (SunkAddr->getType() != Addr->getType()) { 5856 if (SunkAddr->getType()->getPointerAddressSpace() != 5857 Addr->getType()->getPointerAddressSpace() && 5858 !DL->isNonIntegralPointerType(Addr->getType())) { 5859 // There are two reasons the address spaces might not match: a no-op 5860 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5861 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5862 // TODO: allow bitcast between different address space pointers with 5863 // the same size. 5864 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5865 SunkAddr = 5866 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5867 } else 5868 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5869 } 5870 } 5871 } else { 5872 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5873 // non-integral pointers, so in that case bail out now. 5874 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5875 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5876 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5877 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5878 if (DL->isNonIntegralPointerType(Addr->getType()) || 5879 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5880 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5881 (AddrMode.BaseGV && 5882 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5883 return Modified; 5884 5885 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5886 << " for " << *MemoryInst << "\n"); 5887 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5888 Value *Result = nullptr; 5889 5890 // Start with the base register. Do this first so that subsequent address 5891 // matching finds it last, which will prevent it from trying to match it 5892 // as the scaled value in case it happens to be a mul. That would be 5893 // problematic if we've sunk a different mul for the scale, because then 5894 // we'd end up sinking both muls. 5895 if (AddrMode.BaseReg) { 5896 Value *V = AddrMode.BaseReg; 5897 if (V->getType()->isPointerTy()) 5898 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5899 if (V->getType() != IntPtrTy) 5900 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5901 Result = V; 5902 } 5903 5904 // Add the scale value. 5905 if (AddrMode.Scale) { 5906 Value *V = AddrMode.ScaledReg; 5907 if (V->getType() == IntPtrTy) { 5908 // done. 5909 } else if (V->getType()->isPointerTy()) { 5910 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5911 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5912 cast<IntegerType>(V->getType())->getBitWidth()) { 5913 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5914 } else { 5915 // It is only safe to sign extend the BaseReg if we know that the math 5916 // required to create it did not overflow before we extend it. Since 5917 // the original IR value was tossed in favor of a constant back when 5918 // the AddrMode was created we need to bail out gracefully if widths 5919 // do not match instead of extending it. 5920 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5921 if (I && (Result != AddrMode.BaseReg)) 5922 I->eraseFromParent(); 5923 return Modified; 5924 } 5925 if (AddrMode.Scale != 1) 5926 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5927 "sunkaddr"); 5928 if (Result) 5929 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5930 else 5931 Result = V; 5932 } 5933 5934 // Add in the BaseGV if present. 5935 GlobalValue *BaseGV = AddrMode.BaseGV; 5936 if (BaseGV != nullptr) { 5937 Value *BaseGVPtr; 5938 if (BaseGV->isThreadLocal()) { 5939 BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV); 5940 } else { 5941 BaseGVPtr = BaseGV; 5942 } 5943 Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr"); 5944 if (Result) 5945 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5946 else 5947 Result = V; 5948 } 5949 5950 // Add in the Base Offset if present. 5951 if (AddrMode.BaseOffs) { 5952 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5953 if (Result) 5954 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5955 else 5956 Result = V; 5957 } 5958 5959 if (!Result) 5960 SunkAddr = Constant::getNullValue(Addr->getType()); 5961 else 5962 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5963 } 5964 5965 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5966 // Store the newly computed address into the cache. In the case we reused a 5967 // value, this should be idempotent. 5968 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5969 5970 // If we have no uses, recursively delete the value and all dead instructions 5971 // using it. 5972 if (Repl->use_empty()) { 5973 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5974 RecursivelyDeleteTriviallyDeadInstructions( 5975 Repl, TLInfo, nullptr, 5976 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5977 }); 5978 } 5979 ++NumMemoryInsts; 5980 return true; 5981 } 5982 5983 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5984 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5985 /// only handle a 2 operand GEP in the same basic block or a splat constant 5986 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5987 /// index. 5988 /// 5989 /// If the existing GEP has a vector base pointer that is splat, we can look 5990 /// through the splat to find the scalar pointer. If we can't find a scalar 5991 /// pointer there's nothing we can do. 5992 /// 5993 /// If we have a GEP with more than 2 indices where the middle indices are all 5994 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5995 /// 5996 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5997 /// followed by a GEP with an all zeroes vector index. This will enable 5998 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5999 /// zero index. 6000 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 6001 Value *Ptr) { 6002 Value *NewAddr; 6003 6004 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 6005 // Don't optimize GEPs that don't have indices. 6006 if (!GEP->hasIndices()) 6007 return false; 6008 6009 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 6010 // FIXME: We should support this by sinking the GEP. 6011 if (MemoryInst->getParent() != GEP->getParent()) 6012 return false; 6013 6014 SmallVector<Value *, 2> Ops(GEP->operands()); 6015 6016 bool RewriteGEP = false; 6017 6018 if (Ops[0]->getType()->isVectorTy()) { 6019 Ops[0] = getSplatValue(Ops[0]); 6020 if (!Ops[0]) 6021 return false; 6022 RewriteGEP = true; 6023 } 6024 6025 unsigned FinalIndex = Ops.size() - 1; 6026 6027 // Ensure all but the last index is 0. 6028 // FIXME: This isn't strictly required. All that's required is that they are 6029 // all scalars or splats. 6030 for (unsigned i = 1; i < FinalIndex; ++i) { 6031 auto *C = dyn_cast<Constant>(Ops[i]); 6032 if (!C) 6033 return false; 6034 if (isa<VectorType>(C->getType())) 6035 C = C->getSplatValue(); 6036 auto *CI = dyn_cast_or_null<ConstantInt>(C); 6037 if (!CI || !CI->isZero()) 6038 return false; 6039 // Scalarize the index if needed. 6040 Ops[i] = CI; 6041 } 6042 6043 // Try to scalarize the final index. 6044 if (Ops[FinalIndex]->getType()->isVectorTy()) { 6045 if (Value *V = getSplatValue(Ops[FinalIndex])) { 6046 auto *C = dyn_cast<ConstantInt>(V); 6047 // Don't scalarize all zeros vector. 6048 if (!C || !C->isZero()) { 6049 Ops[FinalIndex] = V; 6050 RewriteGEP = true; 6051 } 6052 } 6053 } 6054 6055 // If we made any changes or the we have extra operands, we need to generate 6056 // new instructions. 6057 if (!RewriteGEP && Ops.size() == 2) 6058 return false; 6059 6060 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 6061 6062 IRBuilder<> Builder(MemoryInst); 6063 6064 Type *SourceTy = GEP->getSourceElementType(); 6065 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 6066 6067 // If the final index isn't a vector, emit a scalar GEP containing all ops 6068 // and a vector GEP with all zeroes final index. 6069 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 6070 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); 6071 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 6072 auto *SecondTy = GetElementPtrInst::getIndexedType( 6073 SourceTy, ArrayRef(Ops).drop_front()); 6074 NewAddr = 6075 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 6076 } else { 6077 Value *Base = Ops[0]; 6078 Value *Index = Ops[FinalIndex]; 6079 6080 // Create a scalar GEP if there are more than 2 operands. 6081 if (Ops.size() != 2) { 6082 // Replace the last index with 0. 6083 Ops[FinalIndex] = 6084 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType()); 6085 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); 6086 SourceTy = GetElementPtrInst::getIndexedType( 6087 SourceTy, ArrayRef(Ops).drop_front()); 6088 } 6089 6090 // Now create the GEP with scalar pointer and vector index. 6091 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 6092 } 6093 } else if (!isa<Constant>(Ptr)) { 6094 // Not a GEP, maybe its a splat and we can create a GEP to enable 6095 // SelectionDAGBuilder to use it as a uniform base. 6096 Value *V = getSplatValue(Ptr); 6097 if (!V) 6098 return false; 6099 6100 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 6101 6102 IRBuilder<> Builder(MemoryInst); 6103 6104 // Emit a vector GEP with a scalar pointer and all 0s vector index. 6105 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 6106 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 6107 Type *ScalarTy; 6108 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 6109 Intrinsic::masked_gather) { 6110 ScalarTy = MemoryInst->getType()->getScalarType(); 6111 } else { 6112 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 6113 Intrinsic::masked_scatter); 6114 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 6115 } 6116 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 6117 } else { 6118 // Constant, SelectionDAGBuilder knows to check if its a splat. 6119 return false; 6120 } 6121 6122 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 6123 6124 // If we have no uses, recursively delete the value and all dead instructions 6125 // using it. 6126 if (Ptr->use_empty()) 6127 RecursivelyDeleteTriviallyDeadInstructions( 6128 Ptr, TLInfo, nullptr, 6129 [&](Value *V) { removeAllAssertingVHReferences(V); }); 6130 6131 return true; 6132 } 6133 6134 /// If there are any memory operands, use OptimizeMemoryInst to sink their 6135 /// address computing into the block when possible / profitable. 6136 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 6137 bool MadeChange = false; 6138 6139 const TargetRegisterInfo *TRI = 6140 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 6141 TargetLowering::AsmOperandInfoVector TargetConstraints = 6142 TLI->ParseConstraints(*DL, TRI, *CS); 6143 unsigned ArgNo = 0; 6144 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 6145 // Compute the constraint code and ConstraintType to use. 6146 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6147 6148 // TODO: Also handle C_Address? 6149 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6150 OpInfo.isIndirect) { 6151 Value *OpVal = CS->getArgOperand(ArgNo++); 6152 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 6153 } else if (OpInfo.Type == InlineAsm::isInput) 6154 ArgNo++; 6155 } 6156 6157 return MadeChange; 6158 } 6159 6160 /// Check if all the uses of \p Val are equivalent (or free) zero or 6161 /// sign extensions. 6162 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 6163 assert(!Val->use_empty() && "Input must have at least one use"); 6164 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 6165 bool IsSExt = isa<SExtInst>(FirstUser); 6166 Type *ExtTy = FirstUser->getType(); 6167 for (const User *U : Val->users()) { 6168 const Instruction *UI = cast<Instruction>(U); 6169 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 6170 return false; 6171 Type *CurTy = UI->getType(); 6172 // Same input and output types: Same instruction after CSE. 6173 if (CurTy == ExtTy) 6174 continue; 6175 6176 // If IsSExt is true, we are in this situation: 6177 // a = Val 6178 // b = sext ty1 a to ty2 6179 // c = sext ty1 a to ty3 6180 // Assuming ty2 is shorter than ty3, this could be turned into: 6181 // a = Val 6182 // b = sext ty1 a to ty2 6183 // c = sext ty2 b to ty3 6184 // However, the last sext is not free. 6185 if (IsSExt) 6186 return false; 6187 6188 // This is a ZExt, maybe this is free to extend from one type to another. 6189 // In that case, we would not account for a different use. 6190 Type *NarrowTy; 6191 Type *LargeTy; 6192 if (ExtTy->getScalarType()->getIntegerBitWidth() > 6193 CurTy->getScalarType()->getIntegerBitWidth()) { 6194 NarrowTy = CurTy; 6195 LargeTy = ExtTy; 6196 } else { 6197 NarrowTy = ExtTy; 6198 LargeTy = CurTy; 6199 } 6200 6201 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 6202 return false; 6203 } 6204 // All uses are the same or can be derived from one another for free. 6205 return true; 6206 } 6207 6208 /// Try to speculatively promote extensions in \p Exts and continue 6209 /// promoting through newly promoted operands recursively as far as doing so is 6210 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 6211 /// When some promotion happened, \p TPT contains the proper state to revert 6212 /// them. 6213 /// 6214 /// \return true if some promotion happened, false otherwise. 6215 bool CodeGenPrepare::tryToPromoteExts( 6216 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 6217 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 6218 unsigned CreatedInstsCost) { 6219 bool Promoted = false; 6220 6221 // Iterate over all the extensions to try to promote them. 6222 for (auto *I : Exts) { 6223 // Early check if we directly have ext(load). 6224 if (isa<LoadInst>(I->getOperand(0))) { 6225 ProfitablyMovedExts.push_back(I); 6226 continue; 6227 } 6228 6229 // Check whether or not we want to do any promotion. The reason we have 6230 // this check inside the for loop is to catch the case where an extension 6231 // is directly fed by a load because in such case the extension can be moved 6232 // up without any promotion on its operands. 6233 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 6234 return false; 6235 6236 // Get the action to perform the promotion. 6237 TypePromotionHelper::Action TPH = 6238 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 6239 // Check if we can promote. 6240 if (!TPH) { 6241 // Save the current extension as we cannot move up through its operand. 6242 ProfitablyMovedExts.push_back(I); 6243 continue; 6244 } 6245 6246 // Save the current state. 6247 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6248 TPT.getRestorationPoint(); 6249 SmallVector<Instruction *, 4> NewExts; 6250 unsigned NewCreatedInstsCost = 0; 6251 unsigned ExtCost = !TLI->isExtFree(I); 6252 // Promote. 6253 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 6254 &NewExts, nullptr, *TLI); 6255 assert(PromotedVal && 6256 "TypePromotionHelper should have filtered out those cases"); 6257 6258 // We would be able to merge only one extension in a load. 6259 // Therefore, if we have more than 1 new extension we heuristically 6260 // cut this search path, because it means we degrade the code quality. 6261 // With exactly 2, the transformation is neutral, because we will merge 6262 // one extension but leave one. However, we optimistically keep going, 6263 // because the new extension may be removed too. Also avoid replacing a 6264 // single free extension with multiple extensions, as this increases the 6265 // number of IR instructions while not providing any savings. 6266 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 6267 // FIXME: It would be possible to propagate a negative value instead of 6268 // conservatively ceiling it to 0. 6269 TotalCreatedInstsCost = 6270 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 6271 if (!StressExtLdPromotion && 6272 (TotalCreatedInstsCost > 1 || 6273 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) || 6274 (ExtCost == 0 && NewExts.size() > 1))) { 6275 // This promotion is not profitable, rollback to the previous state, and 6276 // save the current extension in ProfitablyMovedExts as the latest 6277 // speculative promotion turned out to be unprofitable. 6278 TPT.rollback(LastKnownGood); 6279 ProfitablyMovedExts.push_back(I); 6280 continue; 6281 } 6282 // Continue promoting NewExts as far as doing so is profitable. 6283 SmallVector<Instruction *, 2> NewlyMovedExts; 6284 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 6285 bool NewPromoted = false; 6286 for (auto *ExtInst : NewlyMovedExts) { 6287 Instruction *MovedExt = cast<Instruction>(ExtInst); 6288 Value *ExtOperand = MovedExt->getOperand(0); 6289 // If we have reached to a load, we need this extra profitability check 6290 // as it could potentially be merged into an ext(load). 6291 if (isa<LoadInst>(ExtOperand) && 6292 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 6293 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 6294 continue; 6295 6296 ProfitablyMovedExts.push_back(MovedExt); 6297 NewPromoted = true; 6298 } 6299 6300 // If none of speculative promotions for NewExts is profitable, rollback 6301 // and save the current extension (I) as the last profitable extension. 6302 if (!NewPromoted) { 6303 TPT.rollback(LastKnownGood); 6304 ProfitablyMovedExts.push_back(I); 6305 continue; 6306 } 6307 // The promotion is profitable. 6308 Promoted = true; 6309 } 6310 return Promoted; 6311 } 6312 6313 /// Merging redundant sexts when one is dominating the other. 6314 bool CodeGenPrepare::mergeSExts(Function &F) { 6315 bool Changed = false; 6316 for (auto &Entry : ValToSExtendedUses) { 6317 SExts &Insts = Entry.second; 6318 SExts CurPts; 6319 for (Instruction *Inst : Insts) { 6320 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 6321 Inst->getOperand(0) != Entry.first) 6322 continue; 6323 bool inserted = false; 6324 for (auto &Pt : CurPts) { 6325 if (getDT(F).dominates(Inst, Pt)) { 6326 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); 6327 RemovedInsts.insert(Pt); 6328 Pt->removeFromParent(); 6329 Pt = Inst; 6330 inserted = true; 6331 Changed = true; 6332 break; 6333 } 6334 if (!getDT(F).dominates(Pt, Inst)) 6335 // Give up if we need to merge in a common dominator as the 6336 // experiments show it is not profitable. 6337 continue; 6338 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); 6339 RemovedInsts.insert(Inst); 6340 Inst->removeFromParent(); 6341 inserted = true; 6342 Changed = true; 6343 break; 6344 } 6345 if (!inserted) 6346 CurPts.push_back(Inst); 6347 } 6348 } 6349 return Changed; 6350 } 6351 6352 // Splitting large data structures so that the GEPs accessing them can have 6353 // smaller offsets so that they can be sunk to the same blocks as their users. 6354 // For example, a large struct starting from %base is split into two parts 6355 // where the second part starts from %new_base. 6356 // 6357 // Before: 6358 // BB0: 6359 // %base = 6360 // 6361 // BB1: 6362 // %gep0 = gep %base, off0 6363 // %gep1 = gep %base, off1 6364 // %gep2 = gep %base, off2 6365 // 6366 // BB2: 6367 // %load1 = load %gep0 6368 // %load2 = load %gep1 6369 // %load3 = load %gep2 6370 // 6371 // After: 6372 // BB0: 6373 // %base = 6374 // %new_base = gep %base, off0 6375 // 6376 // BB1: 6377 // %new_gep0 = %new_base 6378 // %new_gep1 = gep %new_base, off1 - off0 6379 // %new_gep2 = gep %new_base, off2 - off0 6380 // 6381 // BB2: 6382 // %load1 = load i32, i32* %new_gep0 6383 // %load2 = load i32, i32* %new_gep1 6384 // %load3 = load i32, i32* %new_gep2 6385 // 6386 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 6387 // their offsets are smaller enough to fit into the addressing mode. 6388 bool CodeGenPrepare::splitLargeGEPOffsets() { 6389 bool Changed = false; 6390 for (auto &Entry : LargeOffsetGEPMap) { 6391 Value *OldBase = Entry.first; 6392 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 6393 &LargeOffsetGEPs = Entry.second; 6394 auto compareGEPOffset = 6395 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 6396 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 6397 if (LHS.first == RHS.first) 6398 return false; 6399 if (LHS.second != RHS.second) 6400 return LHS.second < RHS.second; 6401 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 6402 }; 6403 // Sorting all the GEPs of the same data structures based on the offsets. 6404 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 6405 LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end()); 6406 // Skip if all the GEPs have the same offsets. 6407 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 6408 continue; 6409 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 6410 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 6411 Value *NewBaseGEP = nullptr; 6412 6413 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase, 6414 GetElementPtrInst *GEP) { 6415 LLVMContext &Ctx = GEP->getContext(); 6416 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6417 Type *I8PtrTy = 6418 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace()); 6419 6420 BasicBlock::iterator NewBaseInsertPt; 6421 BasicBlock *NewBaseInsertBB; 6422 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 6423 // If the base of the struct is an instruction, the new base will be 6424 // inserted close to it. 6425 NewBaseInsertBB = BaseI->getParent(); 6426 if (isa<PHINode>(BaseI)) 6427 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6428 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 6429 NewBaseInsertBB = 6430 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI); 6431 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6432 } else 6433 NewBaseInsertPt = std::next(BaseI->getIterator()); 6434 } else { 6435 // If the current base is an argument or global value, the new base 6436 // will be inserted to the entry block. 6437 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 6438 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6439 } 6440 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 6441 // Create a new base. 6442 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset); 6443 NewBaseGEP = OldBase; 6444 if (NewBaseGEP->getType() != I8PtrTy) 6445 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 6446 NewBaseGEP = 6447 NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep"); 6448 NewGEPBases.insert(NewBaseGEP); 6449 return; 6450 }; 6451 6452 // Check whether all the offsets can be encoded with prefered common base. 6453 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset( 6454 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) { 6455 BaseOffset = PreferBase; 6456 // Create a new base if the offset of the BaseGEP can be decoded with one 6457 // instruction. 6458 createNewBase(BaseOffset, OldBase, BaseGEP); 6459 } 6460 6461 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 6462 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 6463 GetElementPtrInst *GEP = LargeOffsetGEP->first; 6464 int64_t Offset = LargeOffsetGEP->second; 6465 if (Offset != BaseOffset) { 6466 TargetLowering::AddrMode AddrMode; 6467 AddrMode.HasBaseReg = true; 6468 AddrMode.BaseOffs = Offset - BaseOffset; 6469 // The result type of the GEP might not be the type of the memory 6470 // access. 6471 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 6472 GEP->getResultElementType(), 6473 GEP->getAddressSpace())) { 6474 // We need to create a new base if the offset to the current base is 6475 // too large to fit into the addressing mode. So, a very large struct 6476 // may be split into several parts. 6477 BaseGEP = GEP; 6478 BaseOffset = Offset; 6479 NewBaseGEP = nullptr; 6480 } 6481 } 6482 6483 // Generate a new GEP to replace the current one. 6484 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6485 6486 if (!NewBaseGEP) { 6487 // Create a new base if we don't have one yet. Find the insertion 6488 // pointer for the new base first. 6489 createNewBase(BaseOffset, OldBase, GEP); 6490 } 6491 6492 IRBuilder<> Builder(GEP); 6493 Value *NewGEP = NewBaseGEP; 6494 if (Offset != BaseOffset) { 6495 // Calculate the new offset for the new GEP. 6496 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset); 6497 NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index); 6498 } 6499 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); 6500 LargeOffsetGEPID.erase(GEP); 6501 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6502 GEP->eraseFromParent(); 6503 Changed = true; 6504 } 6505 } 6506 return Changed; 6507 } 6508 6509 bool CodeGenPrepare::optimizePhiType( 6510 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6511 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6512 // We are looking for a collection on interconnected phi nodes that together 6513 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6514 // are of the same type. Convert the whole set of nodes to the type of the 6515 // bitcast. 6516 Type *PhiTy = I->getType(); 6517 Type *ConvertTy = nullptr; 6518 if (Visited.count(I) || 6519 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6520 return false; 6521 6522 SmallVector<Instruction *, 4> Worklist; 6523 Worklist.push_back(cast<Instruction>(I)); 6524 SmallPtrSet<PHINode *, 4> PhiNodes; 6525 SmallPtrSet<ConstantData *, 4> Constants; 6526 PhiNodes.insert(I); 6527 Visited.insert(I); 6528 SmallPtrSet<Instruction *, 4> Defs; 6529 SmallPtrSet<Instruction *, 4> Uses; 6530 // This works by adding extra bitcasts between load/stores and removing 6531 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6532 // we can get in the situation where we remove a bitcast in one iteration 6533 // just to add it again in the next. We need to ensure that at least one 6534 // bitcast we remove are anchored to something that will not change back. 6535 bool AnyAnchored = false; 6536 6537 while (!Worklist.empty()) { 6538 Instruction *II = Worklist.pop_back_val(); 6539 6540 if (auto *Phi = dyn_cast<PHINode>(II)) { 6541 // Handle Defs, which might also be PHI's 6542 for (Value *V : Phi->incoming_values()) { 6543 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6544 if (!PhiNodes.count(OpPhi)) { 6545 if (!Visited.insert(OpPhi).second) 6546 return false; 6547 PhiNodes.insert(OpPhi); 6548 Worklist.push_back(OpPhi); 6549 } 6550 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6551 if (!OpLoad->isSimple()) 6552 return false; 6553 if (Defs.insert(OpLoad).second) 6554 Worklist.push_back(OpLoad); 6555 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6556 if (Defs.insert(OpEx).second) 6557 Worklist.push_back(OpEx); 6558 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6559 if (!ConvertTy) 6560 ConvertTy = OpBC->getOperand(0)->getType(); 6561 if (OpBC->getOperand(0)->getType() != ConvertTy) 6562 return false; 6563 if (Defs.insert(OpBC).second) { 6564 Worklist.push_back(OpBC); 6565 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6566 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6567 } 6568 } else if (auto *OpC = dyn_cast<ConstantData>(V)) 6569 Constants.insert(OpC); 6570 else 6571 return false; 6572 } 6573 } 6574 6575 // Handle uses which might also be phi's 6576 for (User *V : II->users()) { 6577 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6578 if (!PhiNodes.count(OpPhi)) { 6579 if (Visited.count(OpPhi)) 6580 return false; 6581 PhiNodes.insert(OpPhi); 6582 Visited.insert(OpPhi); 6583 Worklist.push_back(OpPhi); 6584 } 6585 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6586 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6587 return false; 6588 Uses.insert(OpStore); 6589 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6590 if (!ConvertTy) 6591 ConvertTy = OpBC->getType(); 6592 if (OpBC->getType() != ConvertTy) 6593 return false; 6594 Uses.insert(OpBC); 6595 AnyAnchored |= 6596 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6597 } else { 6598 return false; 6599 } 6600 } 6601 } 6602 6603 if (!ConvertTy || !AnyAnchored || 6604 !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6605 return false; 6606 6607 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6608 << *ConvertTy << "\n"); 6609 6610 // Create all the new phi nodes of the new type, and bitcast any loads to the 6611 // correct type. 6612 ValueToValueMap ValMap; 6613 for (ConstantData *C : Constants) 6614 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy); 6615 for (Instruction *D : Defs) { 6616 if (isa<BitCastInst>(D)) { 6617 ValMap[D] = D->getOperand(0); 6618 DeletedInstrs.insert(D); 6619 } else { 6620 BasicBlock::iterator insertPt = std::next(D->getIterator()); 6621 ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt); 6622 } 6623 } 6624 for (PHINode *Phi : PhiNodes) 6625 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6626 Phi->getName() + ".tc", Phi->getIterator()); 6627 // Pipe together all the PhiNodes. 6628 for (PHINode *Phi : PhiNodes) { 6629 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6630 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6631 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6632 Phi->getIncomingBlock(i)); 6633 Visited.insert(NewPhi); 6634 } 6635 // And finally pipe up the stores and bitcasts 6636 for (Instruction *U : Uses) { 6637 if (isa<BitCastInst>(U)) { 6638 DeletedInstrs.insert(U); 6639 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); 6640 } else { 6641 U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", 6642 U->getIterator())); 6643 } 6644 } 6645 6646 // Save the removed phis to be deleted later. 6647 for (PHINode *Phi : PhiNodes) 6648 DeletedInstrs.insert(Phi); 6649 return true; 6650 } 6651 6652 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6653 if (!OptimizePhiTypes) 6654 return false; 6655 6656 bool Changed = false; 6657 SmallPtrSet<PHINode *, 4> Visited; 6658 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6659 6660 // Attempt to optimize all the phis in the functions to the correct type. 6661 for (auto &BB : F) 6662 for (auto &Phi : BB.phis()) 6663 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6664 6665 // Remove any old phi's that have been converted. 6666 for (auto *I : DeletedInstrs) { 6667 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); 6668 I->eraseFromParent(); 6669 } 6670 6671 return Changed; 6672 } 6673 6674 /// Return true, if an ext(load) can be formed from an extension in 6675 /// \p MovedExts. 6676 bool CodeGenPrepare::canFormExtLd( 6677 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6678 Instruction *&Inst, bool HasPromoted) { 6679 for (auto *MovedExtInst : MovedExts) { 6680 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6681 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6682 Inst = MovedExtInst; 6683 break; 6684 } 6685 } 6686 if (!LI) 6687 return false; 6688 6689 // If they're already in the same block, there's nothing to do. 6690 // Make the cheap checks first if we did not promote. 6691 // If we promoted, we need to check if it is indeed profitable. 6692 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6693 return false; 6694 6695 return TLI->isExtLoad(LI, Inst, *DL); 6696 } 6697 6698 /// Move a zext or sext fed by a load into the same basic block as the load, 6699 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6700 /// extend into the load. 6701 /// 6702 /// E.g., 6703 /// \code 6704 /// %ld = load i32* %addr 6705 /// %add = add nuw i32 %ld, 4 6706 /// %zext = zext i32 %add to i64 6707 // \endcode 6708 /// => 6709 /// \code 6710 /// %ld = load i32* %addr 6711 /// %zext = zext i32 %ld to i64 6712 /// %add = add nuw i64 %zext, 4 6713 /// \encode 6714 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6715 /// allow us to match zext(load i32*) to i64. 6716 /// 6717 /// Also, try to promote the computations used to obtain a sign extended 6718 /// value used into memory accesses. 6719 /// E.g., 6720 /// \code 6721 /// a = add nsw i32 b, 3 6722 /// d = sext i32 a to i64 6723 /// e = getelementptr ..., i64 d 6724 /// \endcode 6725 /// => 6726 /// \code 6727 /// f = sext i32 b to i64 6728 /// a = add nsw i64 f, 3 6729 /// e = getelementptr ..., i64 a 6730 /// \endcode 6731 /// 6732 /// \p Inst[in/out] the extension may be modified during the process if some 6733 /// promotions apply. 6734 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6735 bool AllowPromotionWithoutCommonHeader = false; 6736 /// See if it is an interesting sext operations for the address type 6737 /// promotion before trying to promote it, e.g., the ones with the right 6738 /// type and used in memory accesses. 6739 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6740 *Inst, AllowPromotionWithoutCommonHeader); 6741 TypePromotionTransaction TPT(RemovedInsts); 6742 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6743 TPT.getRestorationPoint(); 6744 SmallVector<Instruction *, 1> Exts; 6745 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6746 Exts.push_back(Inst); 6747 6748 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6749 6750 // Look for a load being extended. 6751 LoadInst *LI = nullptr; 6752 Instruction *ExtFedByLoad; 6753 6754 // Try to promote a chain of computation if it allows to form an extended 6755 // load. 6756 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6757 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6758 TPT.commit(); 6759 // Move the extend into the same block as the load. 6760 ExtFedByLoad->moveAfter(LI); 6761 ++NumExtsMoved; 6762 Inst = ExtFedByLoad; 6763 return true; 6764 } 6765 6766 // Continue promoting SExts if known as considerable depending on targets. 6767 if (ATPConsiderable && 6768 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6769 HasPromoted, TPT, SpeculativelyMovedExts)) 6770 return true; 6771 6772 TPT.rollback(LastKnownGood); 6773 return false; 6774 } 6775 6776 // Perform address type promotion if doing so is profitable. 6777 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6778 // instructions that sign extended the same initial value. However, if 6779 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6780 // extension is just profitable. 6781 bool CodeGenPrepare::performAddressTypePromotion( 6782 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6783 bool HasPromoted, TypePromotionTransaction &TPT, 6784 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6785 bool Promoted = false; 6786 SmallPtrSet<Instruction *, 1> UnhandledExts; 6787 bool AllSeenFirst = true; 6788 for (auto *I : SpeculativelyMovedExts) { 6789 Value *HeadOfChain = I->getOperand(0); 6790 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6791 SeenChainsForSExt.find(HeadOfChain); 6792 // If there is an unhandled SExt which has the same header, try to promote 6793 // it as well. 6794 if (AlreadySeen != SeenChainsForSExt.end()) { 6795 if (AlreadySeen->second != nullptr) 6796 UnhandledExts.insert(AlreadySeen->second); 6797 AllSeenFirst = false; 6798 } 6799 } 6800 6801 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6802 SpeculativelyMovedExts.size() == 1)) { 6803 TPT.commit(); 6804 if (HasPromoted) 6805 Promoted = true; 6806 for (auto *I : SpeculativelyMovedExts) { 6807 Value *HeadOfChain = I->getOperand(0); 6808 SeenChainsForSExt[HeadOfChain] = nullptr; 6809 ValToSExtendedUses[HeadOfChain].push_back(I); 6810 } 6811 // Update Inst as promotion happen. 6812 Inst = SpeculativelyMovedExts.pop_back_val(); 6813 } else { 6814 // This is the first chain visited from the header, keep the current chain 6815 // as unhandled. Defer to promote this until we encounter another SExt 6816 // chain derived from the same header. 6817 for (auto *I : SpeculativelyMovedExts) { 6818 Value *HeadOfChain = I->getOperand(0); 6819 SeenChainsForSExt[HeadOfChain] = Inst; 6820 } 6821 return false; 6822 } 6823 6824 if (!AllSeenFirst && !UnhandledExts.empty()) 6825 for (auto *VisitedSExt : UnhandledExts) { 6826 if (RemovedInsts.count(VisitedSExt)) 6827 continue; 6828 TypePromotionTransaction TPT(RemovedInsts); 6829 SmallVector<Instruction *, 1> Exts; 6830 SmallVector<Instruction *, 2> Chains; 6831 Exts.push_back(VisitedSExt); 6832 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6833 TPT.commit(); 6834 if (HasPromoted) 6835 Promoted = true; 6836 for (auto *I : Chains) { 6837 Value *HeadOfChain = I->getOperand(0); 6838 // Mark this as handled. 6839 SeenChainsForSExt[HeadOfChain] = nullptr; 6840 ValToSExtendedUses[HeadOfChain].push_back(I); 6841 } 6842 } 6843 return Promoted; 6844 } 6845 6846 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6847 BasicBlock *DefBB = I->getParent(); 6848 6849 // If the result of a {s|z}ext and its source are both live out, rewrite all 6850 // other uses of the source with result of extension. 6851 Value *Src = I->getOperand(0); 6852 if (Src->hasOneUse()) 6853 return false; 6854 6855 // Only do this xform if truncating is free. 6856 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6857 return false; 6858 6859 // Only safe to perform the optimization if the source is also defined in 6860 // this block. 6861 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6862 return false; 6863 6864 bool DefIsLiveOut = false; 6865 for (User *U : I->users()) { 6866 Instruction *UI = cast<Instruction>(U); 6867 6868 // Figure out which BB this ext is used in. 6869 BasicBlock *UserBB = UI->getParent(); 6870 if (UserBB == DefBB) 6871 continue; 6872 DefIsLiveOut = true; 6873 break; 6874 } 6875 if (!DefIsLiveOut) 6876 return false; 6877 6878 // Make sure none of the uses are PHI nodes. 6879 for (User *U : Src->users()) { 6880 Instruction *UI = cast<Instruction>(U); 6881 BasicBlock *UserBB = UI->getParent(); 6882 if (UserBB == DefBB) 6883 continue; 6884 // Be conservative. We don't want this xform to end up introducing 6885 // reloads just before load / store instructions. 6886 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6887 return false; 6888 } 6889 6890 // InsertedTruncs - Only insert one trunc in each block once. 6891 DenseMap<BasicBlock *, Instruction *> InsertedTruncs; 6892 6893 bool MadeChange = false; 6894 for (Use &U : Src->uses()) { 6895 Instruction *User = cast<Instruction>(U.getUser()); 6896 6897 // Figure out which BB this ext is used in. 6898 BasicBlock *UserBB = User->getParent(); 6899 if (UserBB == DefBB) 6900 continue; 6901 6902 // Both src and def are live in this block. Rewrite the use. 6903 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6904 6905 if (!InsertedTrunc) { 6906 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6907 assert(InsertPt != UserBB->end()); 6908 InsertedTrunc = new TruncInst(I, Src->getType(), ""); 6909 InsertedTrunc->insertBefore(*UserBB, InsertPt); 6910 InsertedInsts.insert(InsertedTrunc); 6911 } 6912 6913 // Replace a use of the {s|z}ext source with a use of the result. 6914 U = InsertedTrunc; 6915 ++NumExtUses; 6916 MadeChange = true; 6917 } 6918 6919 return MadeChange; 6920 } 6921 6922 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6923 // just after the load if the target can fold this into one extload instruction, 6924 // with the hope of eliminating some of the other later "and" instructions using 6925 // the loaded value. "and"s that are made trivially redundant by the insertion 6926 // of the new "and" are removed by this function, while others (e.g. those whose 6927 // path from the load goes through a phi) are left for isel to potentially 6928 // remove. 6929 // 6930 // For example: 6931 // 6932 // b0: 6933 // x = load i32 6934 // ... 6935 // b1: 6936 // y = and x, 0xff 6937 // z = use y 6938 // 6939 // becomes: 6940 // 6941 // b0: 6942 // x = load i32 6943 // x' = and x, 0xff 6944 // ... 6945 // b1: 6946 // z = use x' 6947 // 6948 // whereas: 6949 // 6950 // b0: 6951 // x1 = load i32 6952 // ... 6953 // b1: 6954 // x2 = load i32 6955 // ... 6956 // b2: 6957 // x = phi x1, x2 6958 // y = and x, 0xff 6959 // 6960 // becomes (after a call to optimizeLoadExt for each load): 6961 // 6962 // b0: 6963 // x1 = load i32 6964 // x1' = and x1, 0xff 6965 // ... 6966 // b1: 6967 // x2 = load i32 6968 // x2' = and x2, 0xff 6969 // ... 6970 // b2: 6971 // x = phi x1', x2' 6972 // y = and x, 0xff 6973 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6974 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6975 return false; 6976 6977 // Skip loads we've already transformed. 6978 if (Load->hasOneUse() && 6979 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6980 return false; 6981 6982 // Look at all uses of Load, looking through phis, to determine how many bits 6983 // of the loaded value are needed. 6984 SmallVector<Instruction *, 8> WorkList; 6985 SmallPtrSet<Instruction *, 16> Visited; 6986 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6987 for (auto *U : Load->users()) 6988 WorkList.push_back(cast<Instruction>(U)); 6989 6990 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6991 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6992 // If the BitWidth is 0, do not try to optimize the type 6993 if (BitWidth == 0) 6994 return false; 6995 6996 APInt DemandBits(BitWidth, 0); 6997 APInt WidestAndBits(BitWidth, 0); 6998 6999 while (!WorkList.empty()) { 7000 Instruction *I = WorkList.pop_back_val(); 7001 7002 // Break use-def graph loops. 7003 if (!Visited.insert(I).second) 7004 continue; 7005 7006 // For a PHI node, push all of its users. 7007 if (auto *Phi = dyn_cast<PHINode>(I)) { 7008 for (auto *U : Phi->users()) 7009 WorkList.push_back(cast<Instruction>(U)); 7010 continue; 7011 } 7012 7013 switch (I->getOpcode()) { 7014 case Instruction::And: { 7015 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 7016 if (!AndC) 7017 return false; 7018 APInt AndBits = AndC->getValue(); 7019 DemandBits |= AndBits; 7020 // Keep track of the widest and mask we see. 7021 if (AndBits.ugt(WidestAndBits)) 7022 WidestAndBits = AndBits; 7023 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 7024 AndsToMaybeRemove.push_back(I); 7025 break; 7026 } 7027 7028 case Instruction::Shl: { 7029 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 7030 if (!ShlC) 7031 return false; 7032 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 7033 DemandBits.setLowBits(BitWidth - ShiftAmt); 7034 break; 7035 } 7036 7037 case Instruction::Trunc: { 7038 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 7039 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 7040 DemandBits.setLowBits(TruncBitWidth); 7041 break; 7042 } 7043 7044 default: 7045 return false; 7046 } 7047 } 7048 7049 uint32_t ActiveBits = DemandBits.getActiveBits(); 7050 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 7051 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 7052 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 7053 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 7054 // followed by an AND. 7055 // TODO: Look into removing this restriction by fixing backends to either 7056 // return false for isLoadExtLegal for i1 or have them select this pattern to 7057 // a single instruction. 7058 // 7059 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 7060 // mask, since these are the only ands that will be removed by isel. 7061 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 7062 WidestAndBits != DemandBits) 7063 return false; 7064 7065 LLVMContext &Ctx = Load->getType()->getContext(); 7066 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 7067 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 7068 7069 // Reject cases that won't be matched as extloads. 7070 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 7071 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 7072 return false; 7073 7074 IRBuilder<> Builder(Load->getNextNonDebugInstruction()); 7075 auto *NewAnd = cast<Instruction>( 7076 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 7077 // Mark this instruction as "inserted by CGP", so that other 7078 // optimizations don't touch it. 7079 InsertedInsts.insert(NewAnd); 7080 7081 // Replace all uses of load with new and (except for the use of load in the 7082 // new and itself). 7083 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); 7084 NewAnd->setOperand(0, Load); 7085 7086 // Remove any and instructions that are now redundant. 7087 for (auto *And : AndsToMaybeRemove) 7088 // Check that the and mask is the same as the one we decided to put on the 7089 // new and. 7090 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 7091 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); 7092 if (&*CurInstIterator == And) 7093 CurInstIterator = std::next(And->getIterator()); 7094 And->eraseFromParent(); 7095 ++NumAndUses; 7096 } 7097 7098 ++NumAndsAdded; 7099 return true; 7100 } 7101 7102 /// Check if V (an operand of a select instruction) is an expensive instruction 7103 /// that is only used once. 7104 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 7105 auto *I = dyn_cast<Instruction>(V); 7106 // If it's safe to speculatively execute, then it should not have side 7107 // effects; therefore, it's safe to sink and possibly *not* execute. 7108 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 7109 TTI->isExpensiveToSpeculativelyExecute(I); 7110 } 7111 7112 /// Returns true if a SelectInst should be turned into an explicit branch. 7113 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 7114 const TargetLowering *TLI, 7115 SelectInst *SI) { 7116 // If even a predictable select is cheap, then a branch can't be cheaper. 7117 if (!TLI->isPredictableSelectExpensive()) 7118 return false; 7119 7120 // FIXME: This should use the same heuristics as IfConversion to determine 7121 // whether a select is better represented as a branch. 7122 7123 // If metadata tells us that the select condition is obviously predictable, 7124 // then we want to replace the select with a branch. 7125 uint64_t TrueWeight, FalseWeight; 7126 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { 7127 uint64_t Max = std::max(TrueWeight, FalseWeight); 7128 uint64_t Sum = TrueWeight + FalseWeight; 7129 if (Sum != 0) { 7130 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 7131 if (Probability > TTI->getPredictableBranchThreshold()) 7132 return true; 7133 } 7134 } 7135 7136 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 7137 7138 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 7139 // comparison condition. If the compare has more than one use, there's 7140 // probably another cmov or setcc around, so it's not worth emitting a branch. 7141 if (!Cmp || !Cmp->hasOneUse()) 7142 return false; 7143 7144 // If either operand of the select is expensive and only needed on one side 7145 // of the select, we should form a branch. 7146 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 7147 sinkSelectOperand(TTI, SI->getFalseValue())) 7148 return true; 7149 7150 return false; 7151 } 7152 7153 /// If \p isTrue is true, return the true value of \p SI, otherwise return 7154 /// false value of \p SI. If the true/false value of \p SI is defined by any 7155 /// select instructions in \p Selects, look through the defining select 7156 /// instruction until the true/false value is not defined in \p Selects. 7157 static Value * 7158 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 7159 const SmallPtrSet<const Instruction *, 2> &Selects) { 7160 Value *V = nullptr; 7161 7162 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 7163 DefSI = dyn_cast<SelectInst>(V)) { 7164 assert(DefSI->getCondition() == SI->getCondition() && 7165 "The condition of DefSI does not match with SI"); 7166 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 7167 } 7168 7169 assert(V && "Failed to get select true/false value"); 7170 return V; 7171 } 7172 7173 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 7174 assert(Shift->isShift() && "Expected a shift"); 7175 7176 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 7177 // general vector shifts, and (3) the shift amount is a select-of-splatted 7178 // values, hoist the shifts before the select: 7179 // shift Op0, (select Cond, TVal, FVal) --> 7180 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 7181 // 7182 // This is inverting a generic IR transform when we know that the cost of a 7183 // general vector shift is more than the cost of 2 shift-by-scalars. 7184 // We can't do this effectively in SDAG because we may not be able to 7185 // determine if the select operands are splats from within a basic block. 7186 Type *Ty = Shift->getType(); 7187 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 7188 return false; 7189 Value *Cond, *TVal, *FVal; 7190 if (!match(Shift->getOperand(1), 7191 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7192 return false; 7193 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7194 return false; 7195 7196 IRBuilder<> Builder(Shift); 7197 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 7198 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 7199 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 7200 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7201 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); 7202 Shift->eraseFromParent(); 7203 return true; 7204 } 7205 7206 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 7207 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 7208 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 7209 "Expected a funnel shift"); 7210 7211 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 7212 // than general vector shifts, and (3) the shift amount is select-of-splatted 7213 // values, hoist the funnel shifts before the select: 7214 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 7215 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 7216 // 7217 // This is inverting a generic IR transform when we know that the cost of a 7218 // general vector shift is more than the cost of 2 shift-by-scalars. 7219 // We can't do this effectively in SDAG because we may not be able to 7220 // determine if the select operands are splats from within a basic block. 7221 Type *Ty = Fsh->getType(); 7222 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 7223 return false; 7224 Value *Cond, *TVal, *FVal; 7225 if (!match(Fsh->getOperand(2), 7226 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7227 return false; 7228 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7229 return false; 7230 7231 IRBuilder<> Builder(Fsh); 7232 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 7233 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); 7234 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); 7235 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7236 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); 7237 Fsh->eraseFromParent(); 7238 return true; 7239 } 7240 7241 /// If we have a SelectInst that will likely profit from branch prediction, 7242 /// turn it into a branch. 7243 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 7244 if (DisableSelectToBranch) 7245 return false; 7246 7247 // If the SelectOptimize pass is enabled, selects have already been optimized. 7248 if (!getCGPassBuilderOption().DisableSelectOptimize) 7249 return false; 7250 7251 // Find all consecutive select instructions that share the same condition. 7252 SmallVector<SelectInst *, 2> ASI; 7253 ASI.push_back(SI); 7254 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 7255 It != SI->getParent()->end(); ++It) { 7256 SelectInst *I = dyn_cast<SelectInst>(&*It); 7257 if (I && SI->getCondition() == I->getCondition()) { 7258 ASI.push_back(I); 7259 } else { 7260 break; 7261 } 7262 } 7263 7264 SelectInst *LastSI = ASI.back(); 7265 // Increment the current iterator to skip all the rest of select instructions 7266 // because they will be either "not lowered" or "all lowered" to branch. 7267 CurInstIterator = std::next(LastSI->getIterator()); 7268 // Examine debug-info attached to the consecutive select instructions. They 7269 // won't be individually optimised by optimizeInst, so we need to perform 7270 // DbgVariableRecord maintenence here instead. 7271 for (SelectInst *SI : ArrayRef(ASI).drop_front()) 7272 fixupDbgVariableRecordsOnInst(*SI); 7273 7274 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 7275 7276 // Can we convert the 'select' to CF ? 7277 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 7278 return false; 7279 7280 TargetLowering::SelectSupportKind SelectKind; 7281 if (SI->getType()->isVectorTy()) 7282 SelectKind = TargetLowering::ScalarCondVectorVal; 7283 else 7284 SelectKind = TargetLowering::ScalarValSelect; 7285 7286 if (TLI->isSelectSupported(SelectKind) && 7287 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 7288 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 7289 return false; 7290 7291 // The DominatorTree needs to be rebuilt by any consumers after this 7292 // transformation. We simply reset here rather than setting the ModifiedDT 7293 // flag to avoid restarting the function walk in runOnFunction for each 7294 // select optimized. 7295 DT.reset(); 7296 7297 // Transform a sequence like this: 7298 // start: 7299 // %cmp = cmp uge i32 %a, %b 7300 // %sel = select i1 %cmp, i32 %c, i32 %d 7301 // 7302 // Into: 7303 // start: 7304 // %cmp = cmp uge i32 %a, %b 7305 // %cmp.frozen = freeze %cmp 7306 // br i1 %cmp.frozen, label %select.true, label %select.false 7307 // select.true: 7308 // br label %select.end 7309 // select.false: 7310 // br label %select.end 7311 // select.end: 7312 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 7313 // 7314 // %cmp should be frozen, otherwise it may introduce undefined behavior. 7315 // In addition, we may sink instructions that produce %c or %d from 7316 // the entry block into the destination(s) of the new branch. 7317 // If the true or false blocks do not contain a sunken instruction, that 7318 // block and its branch may be optimized away. In that case, one side of the 7319 // first branch will point directly to select.end, and the corresponding PHI 7320 // predecessor block will be the start block. 7321 7322 // Collect values that go on the true side and the values that go on the false 7323 // side. 7324 SmallVector<Instruction *> TrueInstrs, FalseInstrs; 7325 for (SelectInst *SI : ASI) { 7326 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) 7327 TrueInstrs.push_back(cast<Instruction>(V)); 7328 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) 7329 FalseInstrs.push_back(cast<Instruction>(V)); 7330 } 7331 7332 // Split the select block, according to how many (if any) values go on each 7333 // side. 7334 BasicBlock *StartBlock = SI->getParent(); 7335 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI)); 7336 // We should split before any debug-info. 7337 SplitPt.setHeadBit(true); 7338 7339 IRBuilder<> IB(SI); 7340 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 7341 7342 BasicBlock *TrueBlock = nullptr; 7343 BasicBlock *FalseBlock = nullptr; 7344 BasicBlock *EndBlock = nullptr; 7345 BranchInst *TrueBranch = nullptr; 7346 BranchInst *FalseBranch = nullptr; 7347 if (TrueInstrs.size() == 0) { 7348 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse( 7349 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7350 FalseBlock = FalseBranch->getParent(); 7351 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0)); 7352 } else if (FalseInstrs.size() == 0) { 7353 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen( 7354 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7355 TrueBlock = TrueBranch->getParent(); 7356 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7357 } else { 7358 Instruction *ThenTerm = nullptr; 7359 Instruction *ElseTerm = nullptr; 7360 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm, 7361 nullptr, nullptr, LI); 7362 TrueBranch = cast<BranchInst>(ThenTerm); 7363 FalseBranch = cast<BranchInst>(ElseTerm); 7364 TrueBlock = TrueBranch->getParent(); 7365 FalseBlock = FalseBranch->getParent(); 7366 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7367 } 7368 7369 EndBlock->setName("select.end"); 7370 if (TrueBlock) 7371 TrueBlock->setName("select.true.sink"); 7372 if (FalseBlock) 7373 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" 7374 : "select.false.sink"); 7375 7376 if (IsHugeFunc) { 7377 if (TrueBlock) 7378 FreshBBs.insert(TrueBlock); 7379 if (FalseBlock) 7380 FreshBBs.insert(FalseBlock); 7381 FreshBBs.insert(EndBlock); 7382 } 7383 7384 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); 7385 7386 static const unsigned MD[] = { 7387 LLVMContext::MD_prof, LLVMContext::MD_unpredictable, 7388 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; 7389 StartBlock->getTerminator()->copyMetadata(*SI, MD); 7390 7391 // Sink expensive instructions into the conditional blocks to avoid executing 7392 // them speculatively. 7393 for (Instruction *I : TrueInstrs) 7394 I->moveBefore(TrueBranch); 7395 for (Instruction *I : FalseInstrs) 7396 I->moveBefore(FalseBranch); 7397 7398 // If we did not create a new block for one of the 'true' or 'false' paths 7399 // of the condition, it means that side of the branch goes to the end block 7400 // directly and the path originates from the start block from the point of 7401 // view of the new PHI. 7402 if (TrueBlock == nullptr) 7403 TrueBlock = StartBlock; 7404 else if (FalseBlock == nullptr) 7405 FalseBlock = StartBlock; 7406 7407 SmallPtrSet<const Instruction *, 2> INS; 7408 INS.insert(ASI.begin(), ASI.end()); 7409 // Use reverse iterator because later select may use the value of the 7410 // earlier select, and we need to propagate value through earlier select 7411 // to get the PHI operand. 7412 for (SelectInst *SI : llvm::reverse(ASI)) { 7413 // The select itself is replaced with a PHI Node. 7414 PHINode *PN = PHINode::Create(SI->getType(), 2, ""); 7415 PN->insertBefore(EndBlock->begin()); 7416 PN->takeName(SI); 7417 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 7418 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 7419 PN->setDebugLoc(SI->getDebugLoc()); 7420 7421 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); 7422 SI->eraseFromParent(); 7423 INS.erase(SI); 7424 ++NumSelectsExpanded; 7425 } 7426 7427 // Instruct OptimizeBlock to skip to the next block. 7428 CurInstIterator = StartBlock->end(); 7429 return true; 7430 } 7431 7432 /// Some targets only accept certain types for splat inputs. For example a VDUP 7433 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 7434 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 7435 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 7436 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 7437 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 7438 m_Undef(), m_ZeroMask()))) 7439 return false; 7440 Type *NewType = TLI->shouldConvertSplatType(SVI); 7441 if (!NewType) 7442 return false; 7443 7444 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 7445 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 7446 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 7447 "Expected a type of the same size!"); 7448 auto *NewVecType = 7449 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 7450 7451 // Create a bitcast (shuffle (insert (bitcast(..)))) 7452 IRBuilder<> Builder(SVI->getContext()); 7453 Builder.SetInsertPoint(SVI); 7454 Value *BC1 = Builder.CreateBitCast( 7455 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 7456 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 7457 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 7458 7459 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); 7460 RecursivelyDeleteTriviallyDeadInstructions( 7461 SVI, TLInfo, nullptr, 7462 [&](Value *V) { removeAllAssertingVHReferences(V); }); 7463 7464 // Also hoist the bitcast up to its operand if it they are not in the same 7465 // block. 7466 if (auto *BCI = dyn_cast<Instruction>(BC1)) 7467 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 7468 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 7469 !Op->isTerminator() && !Op->isEHPad()) 7470 BCI->moveAfter(Op); 7471 7472 return true; 7473 } 7474 7475 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 7476 // If the operands of I can be folded into a target instruction together with 7477 // I, duplicate and sink them. 7478 SmallVector<Use *, 4> OpsToSink; 7479 if (!TLI->shouldSinkOperands(I, OpsToSink)) 7480 return false; 7481 7482 // OpsToSink can contain multiple uses in a use chain (e.g. 7483 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 7484 // uses must come first, so we process the ops in reverse order so as to not 7485 // create invalid IR. 7486 BasicBlock *TargetBB = I->getParent(); 7487 bool Changed = false; 7488 SmallVector<Use *, 4> ToReplace; 7489 Instruction *InsertPoint = I; 7490 DenseMap<const Instruction *, unsigned long> InstOrdering; 7491 unsigned long InstNumber = 0; 7492 for (const auto &I : *TargetBB) 7493 InstOrdering[&I] = InstNumber++; 7494 7495 for (Use *U : reverse(OpsToSink)) { 7496 auto *UI = cast<Instruction>(U->get()); 7497 if (isa<PHINode>(UI)) 7498 continue; 7499 if (UI->getParent() == TargetBB) { 7500 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 7501 InsertPoint = UI; 7502 continue; 7503 } 7504 ToReplace.push_back(U); 7505 } 7506 7507 SetVector<Instruction *> MaybeDead; 7508 DenseMap<Instruction *, Instruction *> NewInstructions; 7509 for (Use *U : ToReplace) { 7510 auto *UI = cast<Instruction>(U->get()); 7511 Instruction *NI = UI->clone(); 7512 7513 if (IsHugeFunc) { 7514 // Now we clone an instruction, its operands' defs may sink to this BB 7515 // now. So we put the operands defs' BBs into FreshBBs to do optimization. 7516 for (Value *Op : NI->operands()) 7517 if (auto *OpDef = dyn_cast<Instruction>(Op)) 7518 FreshBBs.insert(OpDef->getParent()); 7519 } 7520 7521 NewInstructions[UI] = NI; 7522 MaybeDead.insert(UI); 7523 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 7524 NI->insertBefore(InsertPoint); 7525 InsertPoint = NI; 7526 InsertedInsts.insert(NI); 7527 7528 // Update the use for the new instruction, making sure that we update the 7529 // sunk instruction uses, if it is part of a chain that has already been 7530 // sunk. 7531 Instruction *OldI = cast<Instruction>(U->getUser()); 7532 if (NewInstructions.count(OldI)) 7533 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 7534 else 7535 U->set(NI); 7536 Changed = true; 7537 } 7538 7539 // Remove instructions that are dead after sinking. 7540 for (auto *I : MaybeDead) { 7541 if (!I->hasNUsesOrMore(1)) { 7542 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7543 I->eraseFromParent(); 7544 } 7545 } 7546 7547 return Changed; 7548 } 7549 7550 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7551 Value *Cond = SI->getCondition(); 7552 Type *OldType = Cond->getType(); 7553 LLVMContext &Context = Cond->getContext(); 7554 EVT OldVT = TLI->getValueType(*DL, OldType); 7555 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7556 unsigned RegWidth = RegType.getSizeInBits(); 7557 7558 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7559 return false; 7560 7561 // If the register width is greater than the type width, expand the condition 7562 // of the switch instruction and each case constant to the width of the 7563 // register. By widening the type of the switch condition, subsequent 7564 // comparisons (for case comparisons) will not need to be extended to the 7565 // preferred register width, so we will potentially eliminate N-1 extends, 7566 // where N is the number of cases in the switch. 7567 auto *NewType = Type::getIntNTy(Context, RegWidth); 7568 7569 // Extend the switch condition and case constants using the target preferred 7570 // extend unless the switch condition is a function argument with an extend 7571 // attribute. In that case, we can avoid an unnecessary mask/extension by 7572 // matching the argument extension instead. 7573 Instruction::CastOps ExtType = Instruction::ZExt; 7574 // Some targets prefer SExt over ZExt. 7575 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7576 ExtType = Instruction::SExt; 7577 7578 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7579 if (Arg->hasSExtAttr()) 7580 ExtType = Instruction::SExt; 7581 if (Arg->hasZExtAttr()) 7582 ExtType = Instruction::ZExt; 7583 } 7584 7585 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7586 ExtInst->insertBefore(SI); 7587 ExtInst->setDebugLoc(SI->getDebugLoc()); 7588 SI->setCondition(ExtInst); 7589 for (auto Case : SI->cases()) { 7590 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7591 APInt WideConst = (ExtType == Instruction::ZExt) 7592 ? NarrowConst.zext(RegWidth) 7593 : NarrowConst.sext(RegWidth); 7594 Case.setValue(ConstantInt::get(Context, WideConst)); 7595 } 7596 7597 return true; 7598 } 7599 7600 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7601 // The SCCP optimization tends to produce code like this: 7602 // switch(x) { case 42: phi(42, ...) } 7603 // Materializing the constant for the phi-argument needs instructions; So we 7604 // change the code to: 7605 // switch(x) { case 42: phi(x, ...) } 7606 7607 Value *Condition = SI->getCondition(); 7608 // Avoid endless loop in degenerate case. 7609 if (isa<ConstantInt>(*Condition)) 7610 return false; 7611 7612 bool Changed = false; 7613 BasicBlock *SwitchBB = SI->getParent(); 7614 Type *ConditionType = Condition->getType(); 7615 7616 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7617 ConstantInt *CaseValue = Case.getCaseValue(); 7618 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7619 // Set to true if we previously checked that `CaseBB` is only reached by 7620 // a single case from this switch. 7621 bool CheckedForSinglePred = false; 7622 for (PHINode &PHI : CaseBB->phis()) { 7623 Type *PHIType = PHI.getType(); 7624 // If ZExt is free then we can also catch patterns like this: 7625 // switch((i32)x) { case 42: phi((i64)42, ...); } 7626 // and replace `(i64)42` with `zext i32 %x to i64`. 7627 bool TryZExt = 7628 PHIType->isIntegerTy() && 7629 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7630 TLI->isZExtFree(ConditionType, PHIType); 7631 if (PHIType == ConditionType || TryZExt) { 7632 // Set to true to skip this case because of multiple preds. 7633 bool SkipCase = false; 7634 Value *Replacement = nullptr; 7635 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7636 Value *PHIValue = PHI.getIncomingValue(I); 7637 if (PHIValue != CaseValue) { 7638 if (!TryZExt) 7639 continue; 7640 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7641 if (!PHIValueInt || 7642 PHIValueInt->getValue() != 7643 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7644 continue; 7645 } 7646 if (PHI.getIncomingBlock(I) != SwitchBB) 7647 continue; 7648 // We cannot optimize if there are multiple case labels jumping to 7649 // this block. This check may get expensive when there are many 7650 // case labels so we test for it last. 7651 if (!CheckedForSinglePred) { 7652 CheckedForSinglePred = true; 7653 if (SI->findCaseDest(CaseBB) == nullptr) { 7654 SkipCase = true; 7655 break; 7656 } 7657 } 7658 7659 if (Replacement == nullptr) { 7660 if (PHIValue == CaseValue) { 7661 Replacement = Condition; 7662 } else { 7663 IRBuilder<> Builder(SI); 7664 Replacement = Builder.CreateZExt(Condition, PHIType); 7665 } 7666 } 7667 PHI.setIncomingValue(I, Replacement); 7668 Changed = true; 7669 } 7670 if (SkipCase) 7671 break; 7672 } 7673 } 7674 } 7675 return Changed; 7676 } 7677 7678 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7679 bool Changed = optimizeSwitchType(SI); 7680 Changed |= optimizeSwitchPhiConstants(SI); 7681 return Changed; 7682 } 7683 7684 namespace { 7685 7686 /// Helper class to promote a scalar operation to a vector one. 7687 /// This class is used to move downward extractelement transition. 7688 /// E.g., 7689 /// a = vector_op <2 x i32> 7690 /// b = extractelement <2 x i32> a, i32 0 7691 /// c = scalar_op b 7692 /// store c 7693 /// 7694 /// => 7695 /// a = vector_op <2 x i32> 7696 /// c = vector_op a (equivalent to scalar_op on the related lane) 7697 /// * d = extractelement <2 x i32> c, i32 0 7698 /// * store d 7699 /// Assuming both extractelement and store can be combine, we get rid of the 7700 /// transition. 7701 class VectorPromoteHelper { 7702 /// DataLayout associated with the current module. 7703 const DataLayout &DL; 7704 7705 /// Used to perform some checks on the legality of vector operations. 7706 const TargetLowering &TLI; 7707 7708 /// Used to estimated the cost of the promoted chain. 7709 const TargetTransformInfo &TTI; 7710 7711 /// The transition being moved downwards. 7712 Instruction *Transition; 7713 7714 /// The sequence of instructions to be promoted. 7715 SmallVector<Instruction *, 4> InstsToBePromoted; 7716 7717 /// Cost of combining a store and an extract. 7718 unsigned StoreExtractCombineCost; 7719 7720 /// Instruction that will be combined with the transition. 7721 Instruction *CombineInst = nullptr; 7722 7723 /// The instruction that represents the current end of the transition. 7724 /// Since we are faking the promotion until we reach the end of the chain 7725 /// of computation, we need a way to get the current end of the transition. 7726 Instruction *getEndOfTransition() const { 7727 if (InstsToBePromoted.empty()) 7728 return Transition; 7729 return InstsToBePromoted.back(); 7730 } 7731 7732 /// Return the index of the original value in the transition. 7733 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7734 /// c, is at index 0. 7735 unsigned getTransitionOriginalValueIdx() const { 7736 assert(isa<ExtractElementInst>(Transition) && 7737 "Other kind of transitions are not supported yet"); 7738 return 0; 7739 } 7740 7741 /// Return the index of the index in the transition. 7742 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7743 /// is at index 1. 7744 unsigned getTransitionIdx() const { 7745 assert(isa<ExtractElementInst>(Transition) && 7746 "Other kind of transitions are not supported yet"); 7747 return 1; 7748 } 7749 7750 /// Get the type of the transition. 7751 /// This is the type of the original value. 7752 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7753 /// transition is <2 x i32>. 7754 Type *getTransitionType() const { 7755 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7756 } 7757 7758 /// Promote \p ToBePromoted by moving \p Def downward through. 7759 /// I.e., we have the following sequence: 7760 /// Def = Transition <ty1> a to <ty2> 7761 /// b = ToBePromoted <ty2> Def, ... 7762 /// => 7763 /// b = ToBePromoted <ty1> a, ... 7764 /// Def = Transition <ty1> ToBePromoted to <ty2> 7765 void promoteImpl(Instruction *ToBePromoted); 7766 7767 /// Check whether or not it is profitable to promote all the 7768 /// instructions enqueued to be promoted. 7769 bool isProfitableToPromote() { 7770 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7771 unsigned Index = isa<ConstantInt>(ValIdx) 7772 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7773 : -1; 7774 Type *PromotedType = getTransitionType(); 7775 7776 StoreInst *ST = cast<StoreInst>(CombineInst); 7777 unsigned AS = ST->getPointerAddressSpace(); 7778 // Check if this store is supported. 7779 if (!TLI.allowsMisalignedMemoryAccesses( 7780 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7781 ST->getAlign())) { 7782 // If this is not supported, there is no way we can combine 7783 // the extract with the store. 7784 return false; 7785 } 7786 7787 // The scalar chain of computation has to pay for the transition 7788 // scalar to vector. 7789 // The vector chain has to account for the combining cost. 7790 enum TargetTransformInfo::TargetCostKind CostKind = 7791 TargetTransformInfo::TCK_RecipThroughput; 7792 InstructionCost ScalarCost = 7793 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); 7794 InstructionCost VectorCost = StoreExtractCombineCost; 7795 for (const auto &Inst : InstsToBePromoted) { 7796 // Compute the cost. 7797 // By construction, all instructions being promoted are arithmetic ones. 7798 // Moreover, one argument is a constant that can be viewed as a splat 7799 // constant. 7800 Value *Arg0 = Inst->getOperand(0); 7801 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7802 isa<ConstantFP>(Arg0); 7803 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; 7804 if (IsArg0Constant) 7805 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7806 else 7807 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7808 7809 ScalarCost += TTI.getArithmeticInstrCost( 7810 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); 7811 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7812 CostKind, Arg0Info, Arg1Info); 7813 } 7814 LLVM_DEBUG( 7815 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7816 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7817 return ScalarCost > VectorCost; 7818 } 7819 7820 /// Generate a constant vector with \p Val with the same 7821 /// number of elements as the transition. 7822 /// \p UseSplat defines whether or not \p Val should be replicated 7823 /// across the whole vector. 7824 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7825 /// otherwise we generate a vector with as many undef as possible: 7826 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7827 /// used at the index of the extract. 7828 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7829 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7830 if (!UseSplat) { 7831 // If we cannot determine where the constant must be, we have to 7832 // use a splat constant. 7833 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7834 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7835 ExtractIdx = CstVal->getSExtValue(); 7836 else 7837 UseSplat = true; 7838 } 7839 7840 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7841 if (UseSplat) 7842 return ConstantVector::getSplat(EC, Val); 7843 7844 if (!EC.isScalable()) { 7845 SmallVector<Constant *, 4> ConstVec; 7846 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7847 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7848 if (Idx == ExtractIdx) 7849 ConstVec.push_back(Val); 7850 else 7851 ConstVec.push_back(UndefVal); 7852 } 7853 return ConstantVector::get(ConstVec); 7854 } else 7855 llvm_unreachable( 7856 "Generate scalable vector for non-splat is unimplemented"); 7857 } 7858 7859 /// Check if promoting to a vector type an operand at \p OperandIdx 7860 /// in \p Use can trigger undefined behavior. 7861 static bool canCauseUndefinedBehavior(const Instruction *Use, 7862 unsigned OperandIdx) { 7863 // This is not safe to introduce undef when the operand is on 7864 // the right hand side of a division-like instruction. 7865 if (OperandIdx != 1) 7866 return false; 7867 switch (Use->getOpcode()) { 7868 default: 7869 return false; 7870 case Instruction::SDiv: 7871 case Instruction::UDiv: 7872 case Instruction::SRem: 7873 case Instruction::URem: 7874 return true; 7875 case Instruction::FDiv: 7876 case Instruction::FRem: 7877 return !Use->hasNoNaNs(); 7878 } 7879 llvm_unreachable(nullptr); 7880 } 7881 7882 public: 7883 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7884 const TargetTransformInfo &TTI, Instruction *Transition, 7885 unsigned CombineCost) 7886 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7887 StoreExtractCombineCost(CombineCost) { 7888 assert(Transition && "Do not know how to promote null"); 7889 } 7890 7891 /// Check if we can promote \p ToBePromoted to \p Type. 7892 bool canPromote(const Instruction *ToBePromoted) const { 7893 // We could support CastInst too. 7894 return isa<BinaryOperator>(ToBePromoted); 7895 } 7896 7897 /// Check if it is profitable to promote \p ToBePromoted 7898 /// by moving downward the transition through. 7899 bool shouldPromote(const Instruction *ToBePromoted) const { 7900 // Promote only if all the operands can be statically expanded. 7901 // Indeed, we do not want to introduce any new kind of transitions. 7902 for (const Use &U : ToBePromoted->operands()) { 7903 const Value *Val = U.get(); 7904 if (Val == getEndOfTransition()) { 7905 // If the use is a division and the transition is on the rhs, 7906 // we cannot promote the operation, otherwise we may create a 7907 // division by zero. 7908 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7909 return false; 7910 continue; 7911 } 7912 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7913 !isa<ConstantFP>(Val)) 7914 return false; 7915 } 7916 // Check that the resulting operation is legal. 7917 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7918 if (!ISDOpcode) 7919 return false; 7920 return StressStoreExtract || 7921 TLI.isOperationLegalOrCustom( 7922 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7923 } 7924 7925 /// Check whether or not \p Use can be combined 7926 /// with the transition. 7927 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7928 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7929 7930 /// Record \p ToBePromoted as part of the chain to be promoted. 7931 void enqueueForPromotion(Instruction *ToBePromoted) { 7932 InstsToBePromoted.push_back(ToBePromoted); 7933 } 7934 7935 /// Set the instruction that will be combined with the transition. 7936 void recordCombineInstruction(Instruction *ToBeCombined) { 7937 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7938 CombineInst = ToBeCombined; 7939 } 7940 7941 /// Promote all the instructions enqueued for promotion if it is 7942 /// is profitable. 7943 /// \return True if the promotion happened, false otherwise. 7944 bool promote() { 7945 // Check if there is something to promote. 7946 // Right now, if we do not have anything to combine with, 7947 // we assume the promotion is not profitable. 7948 if (InstsToBePromoted.empty() || !CombineInst) 7949 return false; 7950 7951 // Check cost. 7952 if (!StressStoreExtract && !isProfitableToPromote()) 7953 return false; 7954 7955 // Promote. 7956 for (auto &ToBePromoted : InstsToBePromoted) 7957 promoteImpl(ToBePromoted); 7958 InstsToBePromoted.clear(); 7959 return true; 7960 } 7961 }; 7962 7963 } // end anonymous namespace 7964 7965 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7966 // At this point, we know that all the operands of ToBePromoted but Def 7967 // can be statically promoted. 7968 // For Def, we need to use its parameter in ToBePromoted: 7969 // b = ToBePromoted ty1 a 7970 // Def = Transition ty1 b to ty2 7971 // Move the transition down. 7972 // 1. Replace all uses of the promoted operation by the transition. 7973 // = ... b => = ... Def. 7974 assert(ToBePromoted->getType() == Transition->getType() && 7975 "The type of the result of the transition does not match " 7976 "the final type"); 7977 ToBePromoted->replaceAllUsesWith(Transition); 7978 // 2. Update the type of the uses. 7979 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7980 Type *TransitionTy = getTransitionType(); 7981 ToBePromoted->mutateType(TransitionTy); 7982 // 3. Update all the operands of the promoted operation with promoted 7983 // operands. 7984 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7985 for (Use &U : ToBePromoted->operands()) { 7986 Value *Val = U.get(); 7987 Value *NewVal = nullptr; 7988 if (Val == Transition) 7989 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7990 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7991 isa<ConstantFP>(Val)) { 7992 // Use a splat constant if it is not safe to use undef. 7993 NewVal = getConstantVector( 7994 cast<Constant>(Val), 7995 isa<UndefValue>(Val) || 7996 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7997 } else 7998 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7999 "this?"); 8000 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 8001 } 8002 Transition->moveAfter(ToBePromoted); 8003 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 8004 } 8005 8006 /// Some targets can do store(extractelement) with one instruction. 8007 /// Try to push the extractelement towards the stores when the target 8008 /// has this feature and this is profitable. 8009 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 8010 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 8011 if (DisableStoreExtract || 8012 (!StressStoreExtract && 8013 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 8014 Inst->getOperand(1), CombineCost))) 8015 return false; 8016 8017 // At this point we know that Inst is a vector to scalar transition. 8018 // Try to move it down the def-use chain, until: 8019 // - We can combine the transition with its single use 8020 // => we got rid of the transition. 8021 // - We escape the current basic block 8022 // => we would need to check that we are moving it at a cheaper place and 8023 // we do not do that for now. 8024 BasicBlock *Parent = Inst->getParent(); 8025 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 8026 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 8027 // If the transition has more than one use, assume this is not going to be 8028 // beneficial. 8029 while (Inst->hasOneUse()) { 8030 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 8031 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 8032 8033 if (ToBePromoted->getParent() != Parent) { 8034 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 8035 << ToBePromoted->getParent()->getName() 8036 << ") than the transition (" << Parent->getName() 8037 << ").\n"); 8038 return false; 8039 } 8040 8041 if (VPH.canCombine(ToBePromoted)) { 8042 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 8043 << "will be combined with: " << *ToBePromoted << '\n'); 8044 VPH.recordCombineInstruction(ToBePromoted); 8045 bool Changed = VPH.promote(); 8046 NumStoreExtractExposed += Changed; 8047 return Changed; 8048 } 8049 8050 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 8051 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 8052 return false; 8053 8054 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 8055 8056 VPH.enqueueForPromotion(ToBePromoted); 8057 Inst = ToBePromoted; 8058 } 8059 return false; 8060 } 8061 8062 /// For the instruction sequence of store below, F and I values 8063 /// are bundled together as an i64 value before being stored into memory. 8064 /// Sometimes it is more efficient to generate separate stores for F and I, 8065 /// which can remove the bitwise instructions or sink them to colder places. 8066 /// 8067 /// (store (or (zext (bitcast F to i32) to i64), 8068 /// (shl (zext I to i64), 32)), addr) --> 8069 /// (store F, addr) and (store I, addr+4) 8070 /// 8071 /// Similarly, splitting for other merged store can also be beneficial, like: 8072 /// For pair of {i32, i32}, i64 store --> two i32 stores. 8073 /// For pair of {i32, i16}, i64 store --> two i32 stores. 8074 /// For pair of {i16, i16}, i32 store --> two i16 stores. 8075 /// For pair of {i16, i8}, i32 store --> two i16 stores. 8076 /// For pair of {i8, i8}, i16 store --> two i8 stores. 8077 /// 8078 /// We allow each target to determine specifically which kind of splitting is 8079 /// supported. 8080 /// 8081 /// The store patterns are commonly seen from the simple code snippet below 8082 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 8083 /// void goo(const std::pair<int, float> &); 8084 /// hoo() { 8085 /// ... 8086 /// goo(std::make_pair(tmp, ftmp)); 8087 /// ... 8088 /// } 8089 /// 8090 /// Although we already have similar splitting in DAG Combine, we duplicate 8091 /// it in CodeGenPrepare to catch the case in which pattern is across 8092 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 8093 /// during code expansion. 8094 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 8095 const TargetLowering &TLI) { 8096 // Handle simple but common cases only. 8097 Type *StoreType = SI.getValueOperand()->getType(); 8098 8099 // The code below assumes shifting a value by <number of bits>, 8100 // whereas scalable vectors would have to be shifted by 8101 // <2log(vscale) + number of bits> in order to store the 8102 // low/high parts. Bailing out for now. 8103 if (StoreType->isScalableTy()) 8104 return false; 8105 8106 if (!DL.typeSizeEqualsStoreSize(StoreType) || 8107 DL.getTypeSizeInBits(StoreType) == 0) 8108 return false; 8109 8110 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 8111 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 8112 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 8113 return false; 8114 8115 // Don't split the store if it is volatile. 8116 if (SI.isVolatile()) 8117 return false; 8118 8119 // Match the following patterns: 8120 // (store (or (zext LValue to i64), 8121 // (shl (zext HValue to i64), 32)), HalfValBitSize) 8122 // or 8123 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 8124 // (zext LValue to i64), 8125 // Expect both operands of OR and the first operand of SHL have only 8126 // one use. 8127 Value *LValue, *HValue; 8128 if (!match(SI.getValueOperand(), 8129 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 8130 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 8131 m_SpecificInt(HalfValBitSize)))))) 8132 return false; 8133 8134 // Check LValue and HValue are int with size less or equal than 32. 8135 if (!LValue->getType()->isIntegerTy() || 8136 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 8137 !HValue->getType()->isIntegerTy() || 8138 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 8139 return false; 8140 8141 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 8142 // as the input of target query. 8143 auto *LBC = dyn_cast<BitCastInst>(LValue); 8144 auto *HBC = dyn_cast<BitCastInst>(HValue); 8145 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 8146 : EVT::getEVT(LValue->getType()); 8147 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 8148 : EVT::getEVT(HValue->getType()); 8149 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 8150 return false; 8151 8152 // Start to split store. 8153 IRBuilder<> Builder(SI.getContext()); 8154 Builder.SetInsertPoint(&SI); 8155 8156 // If LValue/HValue is a bitcast in another BB, create a new one in current 8157 // BB so it may be merged with the splitted stores by dag combiner. 8158 if (LBC && LBC->getParent() != SI.getParent()) 8159 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 8160 if (HBC && HBC->getParent() != SI.getParent()) 8161 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 8162 8163 bool IsLE = SI.getDataLayout().isLittleEndian(); 8164 auto CreateSplitStore = [&](Value *V, bool Upper) { 8165 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 8166 Value *Addr = SI.getPointerOperand(); 8167 Align Alignment = SI.getAlign(); 8168 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 8169 if (IsOffsetStore) { 8170 Addr = Builder.CreateGEP( 8171 SplitStoreType, Addr, 8172 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 8173 8174 // When splitting the store in half, naturally one half will retain the 8175 // alignment of the original wider store, regardless of whether it was 8176 // over-aligned or not, while the other will require adjustment. 8177 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 8178 } 8179 Builder.CreateAlignedStore(V, Addr, Alignment); 8180 }; 8181 8182 CreateSplitStore(LValue, false); 8183 CreateSplitStore(HValue, true); 8184 8185 // Delete the old store. 8186 SI.eraseFromParent(); 8187 return true; 8188 } 8189 8190 // Return true if the GEP has two operands, the first operand is of a sequential 8191 // type, and the second operand is a constant. 8192 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 8193 gep_type_iterator I = gep_type_begin(*GEP); 8194 return GEP->getNumOperands() == 2 && I.isSequential() && 8195 isa<ConstantInt>(GEP->getOperand(1)); 8196 } 8197 8198 // Try unmerging GEPs to reduce liveness interference (register pressure) across 8199 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 8200 // reducing liveness interference across those edges benefits global register 8201 // allocation. Currently handles only certain cases. 8202 // 8203 // For example, unmerge %GEPI and %UGEPI as below. 8204 // 8205 // ---------- BEFORE ---------- 8206 // SrcBlock: 8207 // ... 8208 // %GEPIOp = ... 8209 // ... 8210 // %GEPI = gep %GEPIOp, Idx 8211 // ... 8212 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 8213 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 8214 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 8215 // %UGEPI) 8216 // 8217 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 8218 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 8219 // ... 8220 // 8221 // DstBi: 8222 // ... 8223 // %UGEPI = gep %GEPIOp, UIdx 8224 // ... 8225 // --------------------------- 8226 // 8227 // ---------- AFTER ---------- 8228 // SrcBlock: 8229 // ... (same as above) 8230 // (* %GEPI is still alive on the indirectbr edges) 8231 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 8232 // unmerging) 8233 // ... 8234 // 8235 // DstBi: 8236 // ... 8237 // %UGEPI = gep %GEPI, (UIdx-Idx) 8238 // ... 8239 // --------------------------- 8240 // 8241 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 8242 // no longer alive on them. 8243 // 8244 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 8245 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 8246 // not to disable further simplications and optimizations as a result of GEP 8247 // merging. 8248 // 8249 // Note this unmerging may increase the length of the data flow critical path 8250 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 8251 // between the register pressure and the length of data-flow critical 8252 // path. Restricting this to the uncommon IndirectBr case would minimize the 8253 // impact of potentially longer critical path, if any, and the impact on compile 8254 // time. 8255 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 8256 const TargetTransformInfo *TTI) { 8257 BasicBlock *SrcBlock = GEPI->getParent(); 8258 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 8259 // (non-IndirectBr) cases exit early here. 8260 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 8261 return false; 8262 // Check that GEPI is a simple gep with a single constant index. 8263 if (!GEPSequentialConstIndexed(GEPI)) 8264 return false; 8265 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 8266 // Check that GEPI is a cheap one. 8267 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 8268 TargetTransformInfo::TCK_SizeAndLatency) > 8269 TargetTransformInfo::TCC_Basic) 8270 return false; 8271 Value *GEPIOp = GEPI->getOperand(0); 8272 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 8273 if (!isa<Instruction>(GEPIOp)) 8274 return false; 8275 auto *GEPIOpI = cast<Instruction>(GEPIOp); 8276 if (GEPIOpI->getParent() != SrcBlock) 8277 return false; 8278 // Check that GEP is used outside the block, meaning it's alive on the 8279 // IndirectBr edge(s). 8280 if (llvm::none_of(GEPI->users(), [&](User *Usr) { 8281 if (auto *I = dyn_cast<Instruction>(Usr)) { 8282 if (I->getParent() != SrcBlock) { 8283 return true; 8284 } 8285 } 8286 return false; 8287 })) 8288 return false; 8289 // The second elements of the GEP chains to be unmerged. 8290 std::vector<GetElementPtrInst *> UGEPIs; 8291 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 8292 // on IndirectBr edges. 8293 for (User *Usr : GEPIOp->users()) { 8294 if (Usr == GEPI) 8295 continue; 8296 // Check if Usr is an Instruction. If not, give up. 8297 if (!isa<Instruction>(Usr)) 8298 return false; 8299 auto *UI = cast<Instruction>(Usr); 8300 // Check if Usr in the same block as GEPIOp, which is fine, skip. 8301 if (UI->getParent() == SrcBlock) 8302 continue; 8303 // Check if Usr is a GEP. If not, give up. 8304 if (!isa<GetElementPtrInst>(Usr)) 8305 return false; 8306 auto *UGEPI = cast<GetElementPtrInst>(Usr); 8307 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 8308 // the pointer operand to it. If so, record it in the vector. If not, give 8309 // up. 8310 if (!GEPSequentialConstIndexed(UGEPI)) 8311 return false; 8312 if (UGEPI->getOperand(0) != GEPIOp) 8313 return false; 8314 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType()) 8315 return false; 8316 if (GEPIIdx->getType() != 8317 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 8318 return false; 8319 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8320 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 8321 TargetTransformInfo::TCK_SizeAndLatency) > 8322 TargetTransformInfo::TCC_Basic) 8323 return false; 8324 UGEPIs.push_back(UGEPI); 8325 } 8326 if (UGEPIs.size() == 0) 8327 return false; 8328 // Check the materializing cost of (Uidx-Idx). 8329 for (GetElementPtrInst *UGEPI : UGEPIs) { 8330 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8331 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 8332 InstructionCost ImmCost = TTI->getIntImmCost( 8333 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 8334 if (ImmCost > TargetTransformInfo::TCC_Basic) 8335 return false; 8336 } 8337 // Now unmerge between GEPI and UGEPIs. 8338 for (GetElementPtrInst *UGEPI : UGEPIs) { 8339 UGEPI->setOperand(0, GEPI); 8340 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8341 Constant *NewUGEPIIdx = ConstantInt::get( 8342 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); 8343 UGEPI->setOperand(1, NewUGEPIIdx); 8344 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 8345 // inbounds to avoid UB. 8346 if (!GEPI->isInBounds()) { 8347 UGEPI->setIsInBounds(false); 8348 } 8349 } 8350 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 8351 // alive on IndirectBr edges). 8352 assert(llvm::none_of(GEPIOp->users(), 8353 [&](User *Usr) { 8354 return cast<Instruction>(Usr)->getParent() != SrcBlock; 8355 }) && 8356 "GEPIOp is used outside SrcBlock"); 8357 return true; 8358 } 8359 8360 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, 8361 SmallSet<BasicBlock *, 32> &FreshBBs, 8362 bool IsHugeFunc) { 8363 // Try and convert 8364 // %c = icmp ult %x, 8 8365 // br %c, bla, blb 8366 // %tc = lshr %x, 3 8367 // to 8368 // %tc = lshr %x, 3 8369 // %c = icmp eq %tc, 0 8370 // br %c, bla, blb 8371 // Creating the cmp to zero can be better for the backend, especially if the 8372 // lshr produces flags that can be used automatically. 8373 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 8374 return false; 8375 8376 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 8377 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 8378 return false; 8379 8380 Value *X = Cmp->getOperand(0); 8381 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 8382 8383 for (auto *U : X->users()) { 8384 Instruction *UI = dyn_cast<Instruction>(U); 8385 // A quick dominance check 8386 if (!UI || 8387 (UI->getParent() != Branch->getParent() && 8388 UI->getParent() != Branch->getSuccessor(0) && 8389 UI->getParent() != Branch->getSuccessor(1)) || 8390 (UI->getParent() != Branch->getParent() && 8391 !UI->getParent()->getSinglePredecessor())) 8392 continue; 8393 8394 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 8395 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 8396 IRBuilder<> Builder(Branch); 8397 if (UI->getParent() != Branch->getParent()) 8398 UI->moveBefore(Branch); 8399 UI->dropPoisonGeneratingFlags(); 8400 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 8401 ConstantInt::get(UI->getType(), 0)); 8402 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8403 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8404 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8405 return true; 8406 } 8407 if (Cmp->isEquality() && 8408 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 8409 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 8410 IRBuilder<> Builder(Branch); 8411 if (UI->getParent() != Branch->getParent()) 8412 UI->moveBefore(Branch); 8413 UI->dropPoisonGeneratingFlags(); 8414 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 8415 ConstantInt::get(UI->getType(), 0)); 8416 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8417 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8418 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8419 return true; 8420 } 8421 } 8422 return false; 8423 } 8424 8425 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { 8426 bool AnyChange = false; 8427 AnyChange = fixupDbgVariableRecordsOnInst(*I); 8428 8429 // Bail out if we inserted the instruction to prevent optimizations from 8430 // stepping on each other's toes. 8431 if (InsertedInsts.count(I)) 8432 return AnyChange; 8433 8434 // TODO: Move into the switch on opcode below here. 8435 if (PHINode *P = dyn_cast<PHINode>(I)) { 8436 // It is possible for very late stage optimizations (such as SimplifyCFG) 8437 // to introduce PHI nodes too late to be cleaned up. If we detect such a 8438 // trivial PHI, go ahead and zap it here. 8439 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 8440 LargeOffsetGEPMap.erase(P); 8441 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); 8442 P->eraseFromParent(); 8443 ++NumPHIsElim; 8444 return true; 8445 } 8446 return AnyChange; 8447 } 8448 8449 if (CastInst *CI = dyn_cast<CastInst>(I)) { 8450 // If the source of the cast is a constant, then this should have 8451 // already been constant folded. The only reason NOT to constant fold 8452 // it is if something (e.g. LSR) was careful to place the constant 8453 // evaluation in a block other than then one that uses it (e.g. to hoist 8454 // the address of globals out of a loop). If this is the case, we don't 8455 // want to forward-subst the cast. 8456 if (isa<Constant>(CI->getOperand(0))) 8457 return AnyChange; 8458 8459 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 8460 return true; 8461 8462 if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) || 8463 isa<TruncInst>(I)) && 8464 TLI->optimizeExtendOrTruncateConversion( 8465 I, LI->getLoopFor(I->getParent()), *TTI)) 8466 return true; 8467 8468 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 8469 /// Sink a zext or sext into its user blocks if the target type doesn't 8470 /// fit in one register 8471 if (TLI->getTypeAction(CI->getContext(), 8472 TLI->getValueType(*DL, CI->getType())) == 8473 TargetLowering::TypeExpandInteger) { 8474 return SinkCast(CI); 8475 } else { 8476 if (TLI->optimizeExtendOrTruncateConversion( 8477 I, LI->getLoopFor(I->getParent()), *TTI)) 8478 return true; 8479 8480 bool MadeChange = optimizeExt(I); 8481 return MadeChange | optimizeExtUses(I); 8482 } 8483 } 8484 return AnyChange; 8485 } 8486 8487 if (auto *Cmp = dyn_cast<CmpInst>(I)) 8488 if (optimizeCmp(Cmp, ModifiedDT)) 8489 return true; 8490 8491 if (match(I, m_URem(m_Value(), m_Value()))) 8492 if (optimizeURem(I)) 8493 return true; 8494 8495 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8496 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8497 bool Modified = optimizeLoadExt(LI); 8498 unsigned AS = LI->getPointerAddressSpace(); 8499 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 8500 return Modified; 8501 } 8502 8503 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 8504 if (splitMergedValStore(*SI, *DL, *TLI)) 8505 return true; 8506 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8507 unsigned AS = SI->getPointerAddressSpace(); 8508 return optimizeMemoryInst(I, SI->getOperand(1), 8509 SI->getOperand(0)->getType(), AS); 8510 } 8511 8512 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 8513 unsigned AS = RMW->getPointerAddressSpace(); 8514 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); 8515 } 8516 8517 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 8518 unsigned AS = CmpX->getPointerAddressSpace(); 8519 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 8520 CmpX->getCompareOperand()->getType(), AS); 8521 } 8522 8523 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 8524 8525 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 8526 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 8527 return true; 8528 8529 // TODO: Move this into the switch on opcode - it handles shifts already. 8530 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 8531 BinOp->getOpcode() == Instruction::LShr)) { 8532 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 8533 if (CI && TLI->hasExtractBitsInsn()) 8534 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 8535 return true; 8536 } 8537 8538 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 8539 if (GEPI->hasAllZeroIndices()) { 8540 /// The GEP operand must be a pointer, so must its result -> BitCast 8541 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 8542 GEPI->getName(), GEPI->getIterator()); 8543 NC->setDebugLoc(GEPI->getDebugLoc()); 8544 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); 8545 RecursivelyDeleteTriviallyDeadInstructions( 8546 GEPI, TLInfo, nullptr, 8547 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8548 ++NumGEPsElim; 8549 optimizeInst(NC, ModifiedDT); 8550 return true; 8551 } 8552 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8553 return true; 8554 } 8555 } 8556 8557 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8558 // freeze(icmp a, const)) -> icmp (freeze a), const 8559 // This helps generate efficient conditional jumps. 8560 Instruction *CmpI = nullptr; 8561 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8562 CmpI = II; 8563 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8564 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8565 8566 if (CmpI && CmpI->hasOneUse()) { 8567 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8568 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8569 isa<ConstantPointerNull>(Op0); 8570 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8571 isa<ConstantPointerNull>(Op1); 8572 if (Const0 || Const1) { 8573 if (!Const0 || !Const1) { 8574 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator()); 8575 F->takeName(FI); 8576 CmpI->setOperand(Const0 ? 1 : 0, F); 8577 } 8578 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); 8579 FI->eraseFromParent(); 8580 return true; 8581 } 8582 } 8583 return AnyChange; 8584 } 8585 8586 if (tryToSinkFreeOperands(I)) 8587 return true; 8588 8589 switch (I->getOpcode()) { 8590 case Instruction::Shl: 8591 case Instruction::LShr: 8592 case Instruction::AShr: 8593 return optimizeShiftInst(cast<BinaryOperator>(I)); 8594 case Instruction::Call: 8595 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8596 case Instruction::Select: 8597 return optimizeSelectInst(cast<SelectInst>(I)); 8598 case Instruction::ShuffleVector: 8599 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8600 case Instruction::Switch: 8601 return optimizeSwitchInst(cast<SwitchInst>(I)); 8602 case Instruction::ExtractElement: 8603 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8604 case Instruction::Br: 8605 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); 8606 } 8607 8608 return AnyChange; 8609 } 8610 8611 /// Given an OR instruction, check to see if this is a bitreverse 8612 /// idiom. If so, insert the new intrinsic and return true. 8613 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8614 if (!I.getType()->isIntegerTy() || 8615 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8616 TLI->getValueType(*DL, I.getType(), true))) 8617 return false; 8618 8619 SmallVector<Instruction *, 4> Insts; 8620 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8621 return false; 8622 Instruction *LastInst = Insts.back(); 8623 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); 8624 RecursivelyDeleteTriviallyDeadInstructions( 8625 &I, TLInfo, nullptr, 8626 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8627 return true; 8628 } 8629 8630 // In this pass we look for GEP and cast instructions that are used 8631 // across basic blocks and rewrite them to improve basic-block-at-a-time 8632 // selection. 8633 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { 8634 SunkAddrs.clear(); 8635 bool MadeChange = false; 8636 8637 do { 8638 CurInstIterator = BB.begin(); 8639 ModifiedDT = ModifyDT::NotModifyDT; 8640 while (CurInstIterator != BB.end()) { 8641 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8642 if (ModifiedDT != ModifyDT::NotModifyDT) { 8643 // For huge function we tend to quickly go though the inner optmization 8644 // opportunities in the BB. So we go back to the BB head to re-optimize 8645 // each instruction instead of go back to the function head. 8646 if (IsHugeFunc) { 8647 DT.reset(); 8648 getDT(*BB.getParent()); 8649 break; 8650 } else { 8651 return true; 8652 } 8653 } 8654 } 8655 } while (ModifiedDT == ModifyDT::ModifyInstDT); 8656 8657 bool MadeBitReverse = true; 8658 while (MadeBitReverse) { 8659 MadeBitReverse = false; 8660 for (auto &I : reverse(BB)) { 8661 if (makeBitReverse(I)) { 8662 MadeBitReverse = MadeChange = true; 8663 break; 8664 } 8665 } 8666 } 8667 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8668 8669 return MadeChange; 8670 } 8671 8672 // Some CGP optimizations may move or alter what's computed in a block. Check 8673 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8674 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8675 assert(isa<DbgValueInst>(I)); 8676 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8677 8678 // Does this dbg.value refer to a sunk address calculation? 8679 bool AnyChange = false; 8680 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8681 DVI.location_ops().end()); 8682 for (Value *Location : LocationOps) { 8683 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8684 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8685 if (SunkAddr) { 8686 // Point dbg.value at locally computed address, which should give the best 8687 // opportunity to be accurately lowered. This update may change the type 8688 // of pointer being referred to; however this makes no difference to 8689 // debugging information, and we can't generate bitcasts that may affect 8690 // codegen. 8691 DVI.replaceVariableLocationOp(Location, SunkAddr); 8692 AnyChange = true; 8693 } 8694 } 8695 return AnyChange; 8696 } 8697 8698 bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) { 8699 bool AnyChange = false; 8700 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 8701 AnyChange |= fixupDbgVariableRecord(DVR); 8702 return AnyChange; 8703 } 8704 8705 // FIXME: should updating debug-info really cause the "changed" flag to fire, 8706 // which can cause a function to be reprocessed? 8707 bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) { 8708 if (DVR.Type != DbgVariableRecord::LocationType::Value && 8709 DVR.Type != DbgVariableRecord::LocationType::Assign) 8710 return false; 8711 8712 // Does this DbgVariableRecord refer to a sunk address calculation? 8713 bool AnyChange = false; 8714 SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(), 8715 DVR.location_ops().end()); 8716 for (Value *Location : LocationOps) { 8717 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8718 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8719 if (SunkAddr) { 8720 // Point dbg.value at locally computed address, which should give the best 8721 // opportunity to be accurately lowered. This update may change the type 8722 // of pointer being referred to; however this makes no difference to 8723 // debugging information, and we can't generate bitcasts that may affect 8724 // codegen. 8725 DVR.replaceVariableLocationOp(Location, SunkAddr); 8726 AnyChange = true; 8727 } 8728 } 8729 return AnyChange; 8730 } 8731 8732 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) { 8733 DVI->removeFromParent(); 8734 if (isa<PHINode>(VI)) 8735 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8736 else 8737 DVI->insertAfter(VI); 8738 } 8739 8740 static void DbgInserterHelper(DbgVariableRecord *DVR, Instruction *VI) { 8741 DVR->removeFromParent(); 8742 BasicBlock *VIBB = VI->getParent(); 8743 if (isa<PHINode>(VI)) 8744 VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt()); 8745 else 8746 VIBB->insertDbgRecordAfter(DVR, VI); 8747 } 8748 8749 // A llvm.dbg.value may be using a value before its definition, due to 8750 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8751 // them by moving the dbg.value to immediately after the value definition. 8752 // FIXME: Ideally this should never be necessary, and this has the potential 8753 // to re-order dbg.value intrinsics. 8754 bool CodeGenPrepare::placeDbgValues(Function &F) { 8755 bool MadeChange = false; 8756 DominatorTree DT(F); 8757 8758 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) { 8759 SmallVector<Instruction *, 4> VIs; 8760 for (Value *V : DbgItem->location_ops()) 8761 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8762 VIs.push_back(VI); 8763 8764 // This item may depend on multiple instructions, complicating any 8765 // potential sink. This block takes the defensive approach, opting to 8766 // "undef" the item if it has more than one instruction and any of them do 8767 // not dominate iem. 8768 for (Instruction *VI : VIs) { 8769 if (VI->isTerminator()) 8770 continue; 8771 8772 // If VI is a phi in a block with an EHPad terminator, we can't insert 8773 // after it. 8774 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8775 continue; 8776 8777 // If the defining instruction dominates the dbg.value, we do not need 8778 // to move the dbg.value. 8779 if (DT.dominates(VI, Position)) 8780 continue; 8781 8782 // If we depend on multiple instructions and any of them doesn't 8783 // dominate this DVI, we probably can't salvage it: moving it to 8784 // after any of the instructions could cause us to lose the others. 8785 if (VIs.size() > 1) { 8786 LLVM_DEBUG( 8787 dbgs() 8788 << "Unable to find valid location for Debug Value, undefing:\n" 8789 << *DbgItem); 8790 DbgItem->setKillLocation(); 8791 break; 8792 } 8793 8794 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8795 << *DbgItem << ' ' << *VI); 8796 DbgInserterHelper(DbgItem, VI); 8797 MadeChange = true; 8798 ++NumDbgValueMoved; 8799 } 8800 }; 8801 8802 for (BasicBlock &BB : F) { 8803 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8804 // Process dbg.value intrinsics. 8805 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8806 if (DVI) { 8807 DbgProcessor(DVI, DVI); 8808 continue; 8809 } 8810 8811 // If this isn't a dbg.value, process any attached DbgVariableRecord 8812 // records attached to this instruction. 8813 for (DbgVariableRecord &DVR : llvm::make_early_inc_range( 8814 filterDbgVars(Insn.getDbgRecordRange()))) { 8815 if (DVR.Type != DbgVariableRecord::LocationType::Value) 8816 continue; 8817 DbgProcessor(&DVR, &Insn); 8818 } 8819 } 8820 } 8821 8822 return MadeChange; 8823 } 8824 8825 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8826 // probes can be chained dependencies of other regular DAG nodes and block DAG 8827 // combine optimizations. 8828 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8829 bool MadeChange = false; 8830 for (auto &Block : F) { 8831 // Move the rest probes to the beginning of the block. 8832 auto FirstInst = Block.getFirstInsertionPt(); 8833 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8834 ++FirstInst; 8835 BasicBlock::iterator I(FirstInst); 8836 I++; 8837 while (I != Block.end()) { 8838 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8839 II->moveBefore(&*FirstInst); 8840 MadeChange = true; 8841 } 8842 } 8843 } 8844 return MadeChange; 8845 } 8846 8847 /// Scale down both weights to fit into uint32_t. 8848 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8849 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8850 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8851 NewTrue = NewTrue / Scale; 8852 NewFalse = NewFalse / Scale; 8853 } 8854 8855 /// Some targets prefer to split a conditional branch like: 8856 /// \code 8857 /// %0 = icmp ne i32 %a, 0 8858 /// %1 = icmp ne i32 %b, 0 8859 /// %or.cond = or i1 %0, %1 8860 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8861 /// \endcode 8862 /// into multiple branch instructions like: 8863 /// \code 8864 /// bb1: 8865 /// %0 = icmp ne i32 %a, 0 8866 /// br i1 %0, label %TrueBB, label %bb2 8867 /// bb2: 8868 /// %1 = icmp ne i32 %b, 0 8869 /// br i1 %1, label %TrueBB, label %FalseBB 8870 /// \endcode 8871 /// This usually allows instruction selection to do even further optimizations 8872 /// and combine the compare with the branch instruction. Currently this is 8873 /// applied for targets which have "cheap" jump instructions. 8874 /// 8875 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8876 /// 8877 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { 8878 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8879 return false; 8880 8881 bool MadeChange = false; 8882 for (auto &BB : F) { 8883 // Does this BB end with the following? 8884 // %cond1 = icmp|fcmp|binary instruction ... 8885 // %cond2 = icmp|fcmp|binary instruction ... 8886 // %cond.or = or|and i1 %cond1, cond2 8887 // br i1 %cond.or label %dest1, label %dest2" 8888 Instruction *LogicOp; 8889 BasicBlock *TBB, *FBB; 8890 if (!match(BB.getTerminator(), 8891 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8892 continue; 8893 8894 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8895 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8896 continue; 8897 8898 // The merging of mostly empty BB can cause a degenerate branch. 8899 if (TBB == FBB) 8900 continue; 8901 8902 unsigned Opc; 8903 Value *Cond1, *Cond2; 8904 if (match(LogicOp, 8905 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8906 Opc = Instruction::And; 8907 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8908 m_OneUse(m_Value(Cond2))))) 8909 Opc = Instruction::Or; 8910 else 8911 continue; 8912 8913 auto IsGoodCond = [](Value *Cond) { 8914 return match( 8915 Cond, 8916 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8917 m_LogicalOr(m_Value(), m_Value())))); 8918 }; 8919 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8920 continue; 8921 8922 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8923 8924 // Create a new BB. 8925 auto *TmpBB = 8926 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8927 BB.getParent(), BB.getNextNode()); 8928 if (IsHugeFunc) 8929 FreshBBs.insert(TmpBB); 8930 8931 // Update original basic block by using the first condition directly by the 8932 // branch instruction and removing the no longer needed and/or instruction. 8933 Br1->setCondition(Cond1); 8934 LogicOp->eraseFromParent(); 8935 8936 // Depending on the condition we have to either replace the true or the 8937 // false successor of the original branch instruction. 8938 if (Opc == Instruction::And) 8939 Br1->setSuccessor(0, TmpBB); 8940 else 8941 Br1->setSuccessor(1, TmpBB); 8942 8943 // Fill in the new basic block. 8944 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8945 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8946 I->removeFromParent(); 8947 I->insertBefore(Br2); 8948 } 8949 8950 // Update PHI nodes in both successors. The original BB needs to be 8951 // replaced in one successor's PHI nodes, because the branch comes now from 8952 // the newly generated BB (NewBB). In the other successor we need to add one 8953 // incoming edge to the PHI nodes, because both branch instructions target 8954 // now the same successor. Depending on the original branch condition 8955 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8956 // we perform the correct update for the PHI nodes. 8957 // This doesn't change the successor order of the just created branch 8958 // instruction (or any other instruction). 8959 if (Opc == Instruction::Or) 8960 std::swap(TBB, FBB); 8961 8962 // Replace the old BB with the new BB. 8963 TBB->replacePhiUsesWith(&BB, TmpBB); 8964 8965 // Add another incoming edge from the new BB. 8966 for (PHINode &PN : FBB->phis()) { 8967 auto *Val = PN.getIncomingValueForBlock(&BB); 8968 PN.addIncoming(Val, TmpBB); 8969 } 8970 8971 // Update the branch weights (from SelectionDAGBuilder:: 8972 // FindMergedConditions). 8973 if (Opc == Instruction::Or) { 8974 // Codegen X | Y as: 8975 // BB1: 8976 // jmp_if_X TBB 8977 // jmp TmpBB 8978 // TmpBB: 8979 // jmp_if_Y TBB 8980 // jmp FBB 8981 // 8982 8983 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8984 // The requirement is that 8985 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8986 // = TrueProb for original BB. 8987 // Assuming the original weights are A and B, one choice is to set BB1's 8988 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8989 // assumes that 8990 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8991 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8992 // TmpBB, but the math is more complicated. 8993 uint64_t TrueWeight, FalseWeight; 8994 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8995 uint64_t NewTrueWeight = TrueWeight; 8996 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8997 scaleWeights(NewTrueWeight, NewFalseWeight); 8998 Br1->setMetadata(LLVMContext::MD_prof, 8999 MDBuilder(Br1->getContext()) 9000 .createBranchWeights(TrueWeight, FalseWeight, 9001 hasBranchWeightOrigin(*Br1))); 9002 9003 NewTrueWeight = TrueWeight; 9004 NewFalseWeight = 2 * FalseWeight; 9005 scaleWeights(NewTrueWeight, NewFalseWeight); 9006 Br2->setMetadata(LLVMContext::MD_prof, 9007 MDBuilder(Br2->getContext()) 9008 .createBranchWeights(TrueWeight, FalseWeight)); 9009 } 9010 } else { 9011 // Codegen X & Y as: 9012 // BB1: 9013 // jmp_if_X TmpBB 9014 // jmp FBB 9015 // TmpBB: 9016 // jmp_if_Y TBB 9017 // jmp FBB 9018 // 9019 // This requires creation of TmpBB after CurBB. 9020 9021 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 9022 // The requirement is that 9023 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 9024 // = FalseProb for original BB. 9025 // Assuming the original weights are A and B, one choice is to set BB1's 9026 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 9027 // assumes that 9028 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 9029 uint64_t TrueWeight, FalseWeight; 9030 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 9031 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 9032 uint64_t NewFalseWeight = FalseWeight; 9033 scaleWeights(NewTrueWeight, NewFalseWeight); 9034 Br1->setMetadata(LLVMContext::MD_prof, 9035 MDBuilder(Br1->getContext()) 9036 .createBranchWeights(TrueWeight, FalseWeight)); 9037 9038 NewTrueWeight = 2 * TrueWeight; 9039 NewFalseWeight = FalseWeight; 9040 scaleWeights(NewTrueWeight, NewFalseWeight); 9041 Br2->setMetadata(LLVMContext::MD_prof, 9042 MDBuilder(Br2->getContext()) 9043 .createBranchWeights(TrueWeight, FalseWeight)); 9044 } 9045 } 9046 9047 ModifiedDT = ModifyDT::ModifyBBDT; 9048 MadeChange = true; 9049 9050 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 9051 TmpBB->dump()); 9052 } 9053 return MadeChange; 9054 } 9055