1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/CodeGenPrepare.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/CodeGenTypes/MachineValueType.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/Argument.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfo.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/GlobalVariable.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/IntrinsicsAArch64.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/MDBuilder.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/ProfDataUtils.h" 72 #include "llvm/IR/Statepoint.h" 73 #include "llvm/IR/Type.h" 74 #include "llvm/IR/Use.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/IR/ValueHandle.h" 78 #include "llvm/IR/ValueMap.h" 79 #include "llvm/InitializePasses.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/BlockFrequency.h" 82 #include "llvm/Support/BranchProbability.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/CommandLine.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Target/TargetMachine.h" 90 #include "llvm/Target/TargetOptions.h" 91 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 92 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 95 #include "llvm/Transforms/Utils/SizeOpts.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <iterator> 100 #include <limits> 101 #include <memory> 102 #include <optional> 103 #include <utility> 104 #include <vector> 105 106 using namespace llvm; 107 using namespace llvm::PatternMatch; 108 109 #define DEBUG_TYPE "codegenprepare" 110 111 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 112 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 113 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 114 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 115 "sunken Cmps"); 116 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 117 "of sunken Casts"); 118 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 119 "computations were sunk"); 120 STATISTIC(NumMemoryInstsPhiCreated, 121 "Number of phis created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumMemoryInstsSelectCreated, 124 "Number of select created when address " 125 "computations were sunk to memory instructions"); 126 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 127 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 128 STATISTIC(NumAndsAdded, 129 "Number of and mask instructions added to form ext loads"); 130 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 131 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 132 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 133 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 134 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 135 136 static cl::opt<bool> DisableBranchOpts( 137 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 138 cl::desc("Disable branch optimizations in CodeGenPrepare")); 139 140 static cl::opt<bool> 141 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 142 cl::desc("Disable GC optimizations in CodeGenPrepare")); 143 144 static cl::opt<bool> 145 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, 146 cl::init(false), 147 cl::desc("Disable select to branch conversion.")); 148 149 static cl::opt<bool> 150 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), 151 cl::desc("Address sinking in CGP using GEPs.")); 152 153 static cl::opt<bool> 154 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), 155 cl::desc("Enable sinking and/cmp into branches.")); 156 157 static cl::opt<bool> DisableStoreExtract( 158 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> StressStoreExtract( 162 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 163 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 164 165 static cl::opt<bool> DisableExtLdPromotion( 166 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 167 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 168 "CodeGenPrepare")); 169 170 static cl::opt<bool> StressExtLdPromotion( 171 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 172 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 173 "optimization in CodeGenPrepare")); 174 175 static cl::opt<bool> DisablePreheaderProtect( 176 "disable-preheader-prot", cl::Hidden, cl::init(false), 177 cl::desc("Disable protection against removing loop preheaders")); 178 179 static cl::opt<bool> ProfileGuidedSectionPrefix( 180 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 181 cl::desc("Use profile info to add section prefix for hot/cold functions")); 182 183 static cl::opt<bool> ProfileUnknownInSpecialSection( 184 "profile-unknown-in-special-section", cl::Hidden, 185 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 186 "profile, we cannot tell the function is cold for sure because " 187 "it may be a function newly added without ever being sampled. " 188 "With the flag enabled, compiler can put such profile unknown " 189 "functions into a special section, so runtime system can choose " 190 "to handle it in a different way than .text section, to save " 191 "RAM for example. ")); 192 193 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 194 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 195 cl::desc("Use the basic-block-sections profile to determine the text " 196 "section prefix for hot functions. Functions with " 197 "basic-block-sections profile will be placed in `.text.hot` " 198 "regardless of their FDO profile info. Other functions won't be " 199 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 200 "profiles.")); 201 202 static cl::opt<uint64_t> FreqRatioToSkipMerge( 203 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 204 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 205 "(frequency of destination block) is greater than this ratio")); 206 207 static cl::opt<bool> ForceSplitStore( 208 "force-split-store", cl::Hidden, cl::init(false), 209 cl::desc("Force store splitting no matter what the target query says.")); 210 211 static cl::opt<bool> EnableTypePromotionMerge( 212 "cgp-type-promotion-merge", cl::Hidden, 213 cl::desc("Enable merging of redundant sexts when one is dominating" 214 " the other."), 215 cl::init(true)); 216 217 static cl::opt<bool> DisableComplexAddrModes( 218 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 219 cl::desc("Disables combining addressing modes with different parts " 220 "in optimizeMemoryInst.")); 221 222 static cl::opt<bool> 223 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 224 cl::desc("Allow creation of Phis in Address sinking.")); 225 226 static cl::opt<bool> AddrSinkNewSelects( 227 "addr-sink-new-select", cl::Hidden, cl::init(true), 228 cl::desc("Allow creation of selects in Address sinking.")); 229 230 static cl::opt<bool> AddrSinkCombineBaseReg( 231 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 232 cl::desc("Allow combining of BaseReg field in Address sinking.")); 233 234 static cl::opt<bool> AddrSinkCombineBaseGV( 235 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 236 cl::desc("Allow combining of BaseGV field in Address sinking.")); 237 238 static cl::opt<bool> AddrSinkCombineBaseOffs( 239 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 240 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 241 242 static cl::opt<bool> AddrSinkCombineScaledReg( 243 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 244 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 245 246 static cl::opt<bool> 247 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 248 cl::init(true), 249 cl::desc("Enable splitting large offset of GEP.")); 250 251 static cl::opt<bool> EnableICMP_EQToICMP_ST( 252 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 253 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 254 255 static cl::opt<bool> 256 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 257 cl::desc("Enable BFI update verification for " 258 "CodeGenPrepare.")); 259 260 static cl::opt<bool> 261 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), 262 cl::desc("Enable converting phi types in CodeGenPrepare")); 263 264 static cl::opt<unsigned> 265 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, 266 cl::desc("Least BB number of huge function.")); 267 268 static cl::opt<unsigned> 269 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), 270 cl::Hidden, 271 cl::desc("Max number of address users to look at")); 272 273 static cl::opt<bool> 274 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false), 275 cl::desc("Disable elimination of dead PHI nodes.")); 276 277 namespace { 278 279 enum ExtType { 280 ZeroExtension, // Zero extension has been seen. 281 SignExtension, // Sign extension has been seen. 282 BothExtension // This extension type is used if we saw sext after 283 // ZeroExtension had been set, or if we saw zext after 284 // SignExtension had been set. It makes the type 285 // information of a promoted instruction invalid. 286 }; 287 288 enum ModifyDT { 289 NotModifyDT, // Not Modify any DT. 290 ModifyBBDT, // Modify the Basic Block Dominator Tree. 291 ModifyInstDT // Modify the Instruction Dominator in a Basic Block, 292 // This usually means we move/delete/insert instruction 293 // in a Basic Block. So we should re-iterate instructions 294 // in such Basic Block. 295 }; 296 297 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 298 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 299 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 300 using SExts = SmallVector<Instruction *, 16>; 301 using ValueToSExts = MapVector<Value *, SExts>; 302 303 class TypePromotionTransaction; 304 305 class CodeGenPrepare { 306 friend class CodeGenPrepareLegacyPass; 307 const TargetMachine *TM = nullptr; 308 const TargetSubtargetInfo *SubtargetInfo = nullptr; 309 const TargetLowering *TLI = nullptr; 310 const TargetRegisterInfo *TRI = nullptr; 311 const TargetTransformInfo *TTI = nullptr; 312 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 313 const TargetLibraryInfo *TLInfo = nullptr; 314 LoopInfo *LI = nullptr; 315 std::unique_ptr<BlockFrequencyInfo> BFI; 316 std::unique_ptr<BranchProbabilityInfo> BPI; 317 ProfileSummaryInfo *PSI = nullptr; 318 319 /// As we scan instructions optimizing them, this is the next instruction 320 /// to optimize. Transforms that can invalidate this should update it. 321 BasicBlock::iterator CurInstIterator; 322 323 /// Keeps track of non-local addresses that have been sunk into a block. 324 /// This allows us to avoid inserting duplicate code for blocks with 325 /// multiple load/stores of the same address. The usage of WeakTrackingVH 326 /// enables SunkAddrs to be treated as a cache whose entries can be 327 /// invalidated if a sunken address computation has been erased. 328 ValueMap<Value *, WeakTrackingVH> SunkAddrs; 329 330 /// Keeps track of all instructions inserted for the current function. 331 SetOfInstrs InsertedInsts; 332 333 /// Keeps track of the type of the related instruction before their 334 /// promotion for the current function. 335 InstrToOrigTy PromotedInsts; 336 337 /// Keep track of instructions removed during promotion. 338 SetOfInstrs RemovedInsts; 339 340 /// Keep track of sext chains based on their initial value. 341 DenseMap<Value *, Instruction *> SeenChainsForSExt; 342 343 /// Keep track of GEPs accessing the same data structures such as structs or 344 /// arrays that are candidates to be split later because of their large 345 /// size. 346 MapVector<AssertingVH<Value>, 347 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 348 LargeOffsetGEPMap; 349 350 /// Keep track of new GEP base after splitting the GEPs having large offset. 351 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 352 353 /// Map serial numbers to Large offset GEPs. 354 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 355 356 /// Keep track of SExt promoted. 357 ValueToSExts ValToSExtendedUses; 358 359 /// True if the function has the OptSize attribute. 360 bool OptSize; 361 362 /// DataLayout for the Function being processed. 363 const DataLayout *DL = nullptr; 364 365 /// Building the dominator tree can be expensive, so we only build it 366 /// lazily and update it when required. 367 std::unique_ptr<DominatorTree> DT; 368 369 public: 370 CodeGenPrepare(){}; 371 CodeGenPrepare(const TargetMachine *TM) : TM(TM){}; 372 /// If encounter huge function, we need to limit the build time. 373 bool IsHugeFunc = false; 374 375 /// FreshBBs is like worklist, it collected the updated BBs which need 376 /// to be optimized again. 377 /// Note: Consider building time in this pass, when a BB updated, we need 378 /// to insert such BB into FreshBBs for huge function. 379 SmallSet<BasicBlock *, 32> FreshBBs; 380 381 void releaseMemory() { 382 // Clear per function information. 383 InsertedInsts.clear(); 384 PromotedInsts.clear(); 385 FreshBBs.clear(); 386 BPI.reset(); 387 BFI.reset(); 388 } 389 390 bool run(Function &F, FunctionAnalysisManager &AM); 391 392 private: 393 template <typename F> 394 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 395 // Substituting can cause recursive simplifications, which can invalidate 396 // our iterator. Use a WeakTrackingVH to hold onto it in case this 397 // happens. 398 Value *CurValue = &*CurInstIterator; 399 WeakTrackingVH IterHandle(CurValue); 400 401 f(); 402 403 // If the iterator instruction was recursively deleted, start over at the 404 // start of the block. 405 if (IterHandle != CurValue) { 406 CurInstIterator = BB->begin(); 407 SunkAddrs.clear(); 408 } 409 } 410 411 // Get the DominatorTree, building if necessary. 412 DominatorTree &getDT(Function &F) { 413 if (!DT) 414 DT = std::make_unique<DominatorTree>(F); 415 return *DT; 416 } 417 418 void removeAllAssertingVHReferences(Value *V); 419 bool eliminateAssumptions(Function &F); 420 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); 421 bool eliminateMostlyEmptyBlocks(Function &F); 422 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 423 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 424 void eliminateMostlyEmptyBlock(BasicBlock *BB); 425 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 426 bool isPreheader); 427 bool makeBitReverse(Instruction &I); 428 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); 429 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); 430 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, 431 unsigned AddrSpace); 432 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 433 bool optimizeInlineAsmInst(CallInst *CS); 434 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); 435 bool optimizeExt(Instruction *&I); 436 bool optimizeExtUses(Instruction *I); 437 bool optimizeLoadExt(LoadInst *Load); 438 bool optimizeShiftInst(BinaryOperator *BO); 439 bool optimizeFunnelShift(IntrinsicInst *Fsh); 440 bool optimizeSelectInst(SelectInst *SI); 441 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 442 bool optimizeSwitchType(SwitchInst *SI); 443 bool optimizeSwitchPhiConstants(SwitchInst *SI); 444 bool optimizeSwitchInst(SwitchInst *SI); 445 bool optimizeExtractElementInst(Instruction *Inst); 446 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); 447 bool fixupDbgValue(Instruction *I); 448 bool fixupDbgVariableRecord(DbgVariableRecord &I); 449 bool fixupDbgVariableRecordsOnInst(Instruction &I); 450 bool placeDbgValues(Function &F); 451 bool placePseudoProbes(Function &F); 452 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 453 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 454 bool tryToPromoteExts(TypePromotionTransaction &TPT, 455 const SmallVectorImpl<Instruction *> &Exts, 456 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 457 unsigned CreatedInstsCost = 0); 458 bool mergeSExts(Function &F); 459 bool splitLargeGEPOffsets(); 460 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 461 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 462 bool optimizePhiTypes(Function &F); 463 bool performAddressTypePromotion( 464 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 465 bool HasPromoted, TypePromotionTransaction &TPT, 466 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 467 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); 468 bool simplifyOffsetableRelocate(GCStatepointInst &I); 469 470 bool tryToSinkFreeOperands(Instruction *I); 471 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, 472 CmpInst *Cmp, Intrinsic::ID IID); 473 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); 474 bool optimizeURem(Instruction *Rem); 475 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 476 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 477 void verifyBFIUpdates(Function &F); 478 bool _run(Function &F); 479 }; 480 481 class CodeGenPrepareLegacyPass : public FunctionPass { 482 public: 483 static char ID; // Pass identification, replacement for typeid 484 485 CodeGenPrepareLegacyPass() : FunctionPass(ID) { 486 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry()); 487 } 488 489 bool runOnFunction(Function &F) override; 490 491 StringRef getPassName() const override { return "CodeGen Prepare"; } 492 493 void getAnalysisUsage(AnalysisUsage &AU) const override { 494 // FIXME: When we can selectively preserve passes, preserve the domtree. 495 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 496 AU.addRequired<TargetLibraryInfoWrapperPass>(); 497 AU.addRequired<TargetPassConfig>(); 498 AU.addRequired<TargetTransformInfoWrapperPass>(); 499 AU.addRequired<LoopInfoWrapperPass>(); 500 AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 501 } 502 }; 503 504 } // end anonymous namespace 505 506 char CodeGenPrepareLegacyPass::ID = 0; 507 508 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) { 509 if (skipFunction(F)) 510 return false; 511 auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 512 CodeGenPrepare CGP(TM); 513 CGP.DL = &F.getDataLayout(); 514 CGP.SubtargetInfo = TM->getSubtargetImpl(F); 515 CGP.TLI = CGP.SubtargetInfo->getTargetLowering(); 516 CGP.TRI = CGP.SubtargetInfo->getRegisterInfo(); 517 CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 518 CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 519 CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 520 CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI)); 521 CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI)); 522 CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 523 auto BBSPRWP = 524 getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 525 CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr; 526 527 return CGP._run(F); 528 } 529 530 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE, 531 "Optimize for code generation", false, false) 532 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass) 533 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 534 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 535 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 536 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 537 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 538 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE, 539 "Optimize for code generation", false, false) 540 541 FunctionPass *llvm::createCodeGenPrepareLegacyPass() { 542 return new CodeGenPrepareLegacyPass(); 543 } 544 545 PreservedAnalyses CodeGenPreparePass::run(Function &F, 546 FunctionAnalysisManager &AM) { 547 CodeGenPrepare CGP(TM); 548 549 bool Changed = CGP.run(F, AM); 550 if (!Changed) 551 return PreservedAnalyses::all(); 552 553 PreservedAnalyses PA; 554 PA.preserve<TargetLibraryAnalysis>(); 555 PA.preserve<TargetIRAnalysis>(); 556 PA.preserve<LoopAnalysis>(); 557 return PA; 558 } 559 560 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) { 561 DL = &F.getDataLayout(); 562 SubtargetInfo = TM->getSubtargetImpl(F); 563 TLI = SubtargetInfo->getTargetLowering(); 564 TRI = SubtargetInfo->getRegisterInfo(); 565 TLInfo = &AM.getResult<TargetLibraryAnalysis>(F); 566 TTI = &AM.getResult<TargetIRAnalysis>(F); 567 LI = &AM.getResult<LoopAnalysis>(F); 568 BPI.reset(new BranchProbabilityInfo(F, *LI)); 569 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 570 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 571 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 572 BBSectionsProfileReader = 573 AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F); 574 return _run(F); 575 } 576 577 bool CodeGenPrepare::_run(Function &F) { 578 bool EverMadeChange = false; 579 580 OptSize = F.hasOptSize(); 581 // Use the basic-block-sections profile to promote hot functions to .text.hot 582 // if requested. 583 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 584 BBSectionsProfileReader->isFunctionHot(F.getName())) { 585 F.setSectionPrefix("hot"); 586 } else if (ProfileGuidedSectionPrefix) { 587 // The hot attribute overwrites profile count based hotness while profile 588 // counts based hotness overwrite the cold attribute. 589 // This is a conservative behabvior. 590 if (F.hasFnAttribute(Attribute::Hot) || 591 PSI->isFunctionHotInCallGraph(&F, *BFI)) 592 F.setSectionPrefix("hot"); 593 // If PSI shows this function is not hot, we will placed the function 594 // into unlikely section if (1) PSI shows this is a cold function, or 595 // (2) the function has a attribute of cold. 596 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 597 F.hasFnAttribute(Attribute::Cold)) 598 F.setSectionPrefix("unlikely"); 599 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 600 PSI->isFunctionHotnessUnknown(F)) 601 F.setSectionPrefix("unknown"); 602 } 603 604 /// This optimization identifies DIV instructions that can be 605 /// profitably bypassed and carried out with a shorter, faster divide. 606 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 607 const DenseMap<unsigned int, unsigned int> &BypassWidths = 608 TLI->getBypassSlowDivWidths(); 609 BasicBlock *BB = &*F.begin(); 610 while (BB != nullptr) { 611 // bypassSlowDivision may create new BBs, but we don't want to reapply the 612 // optimization to those blocks. 613 BasicBlock *Next = BB->getNextNode(); 614 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 615 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 616 BB = Next; 617 } 618 } 619 620 // Get rid of @llvm.assume builtins before attempting to eliminate empty 621 // blocks, since there might be blocks that only contain @llvm.assume calls 622 // (plus arguments that we can get rid of). 623 EverMadeChange |= eliminateAssumptions(F); 624 625 // Eliminate blocks that contain only PHI nodes and an 626 // unconditional branch. 627 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 628 629 ModifyDT ModifiedDT = ModifyDT::NotModifyDT; 630 if (!DisableBranchOpts) 631 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 632 633 // Split some critical edges where one of the sources is an indirect branch, 634 // to help generate sane code for PHIs involving such edges. 635 EverMadeChange |= 636 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 637 638 // If we are optimzing huge function, we need to consider the build time. 639 // Because the basic algorithm's complex is near O(N!). 640 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; 641 642 // Transformations above may invalidate dominator tree and/or loop info. 643 DT.reset(); 644 LI->releaseMemory(); 645 LI->analyze(getDT(F)); 646 647 bool MadeChange = true; 648 bool FuncIterated = false; 649 while (MadeChange) { 650 MadeChange = false; 651 652 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 653 if (FuncIterated && !FreshBBs.contains(&BB)) 654 continue; 655 656 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; 657 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); 658 659 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) 660 DT.reset(); 661 662 MadeChange |= Changed; 663 if (IsHugeFunc) { 664 // If the BB is updated, it may still has chance to be optimized. 665 // This usually happen at sink optimization. 666 // For example: 667 // 668 // bb0: 669 // %and = and i32 %a, 4 670 // %cmp = icmp eq i32 %and, 0 671 // 672 // If the %cmp sink to other BB, the %and will has chance to sink. 673 if (Changed) 674 FreshBBs.insert(&BB); 675 else if (FuncIterated) 676 FreshBBs.erase(&BB); 677 } else { 678 // For small/normal functions, we restart BB iteration if the dominator 679 // tree of the Function was changed. 680 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) 681 break; 682 } 683 } 684 // We have iterated all the BB in the (only work for huge) function. 685 FuncIterated = IsHugeFunc; 686 687 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 688 MadeChange |= mergeSExts(F); 689 if (!LargeOffsetGEPMap.empty()) 690 MadeChange |= splitLargeGEPOffsets(); 691 MadeChange |= optimizePhiTypes(F); 692 693 if (MadeChange) 694 eliminateFallThrough(F, DT.get()); 695 696 #ifndef NDEBUG 697 if (MadeChange && VerifyLoopInfo) 698 LI->verify(getDT(F)); 699 #endif 700 701 // Really free removed instructions during promotion. 702 for (Instruction *I : RemovedInsts) 703 I->deleteValue(); 704 705 EverMadeChange |= MadeChange; 706 SeenChainsForSExt.clear(); 707 ValToSExtendedUses.clear(); 708 RemovedInsts.clear(); 709 LargeOffsetGEPMap.clear(); 710 LargeOffsetGEPID.clear(); 711 } 712 713 NewGEPBases.clear(); 714 SunkAddrs.clear(); 715 716 if (!DisableBranchOpts) { 717 MadeChange = false; 718 // Use a set vector to get deterministic iteration order. The order the 719 // blocks are removed may affect whether or not PHI nodes in successors 720 // are removed. 721 SmallSetVector<BasicBlock *, 8> WorkList; 722 for (BasicBlock &BB : F) { 723 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 724 MadeChange |= ConstantFoldTerminator(&BB, true); 725 if (!MadeChange) 726 continue; 727 728 for (BasicBlock *Succ : Successors) 729 if (pred_empty(Succ)) 730 WorkList.insert(Succ); 731 } 732 733 // Delete the dead blocks and any of their dead successors. 734 MadeChange |= !WorkList.empty(); 735 while (!WorkList.empty()) { 736 BasicBlock *BB = WorkList.pop_back_val(); 737 SmallVector<BasicBlock *, 2> Successors(successors(BB)); 738 739 DeleteDeadBlock(BB); 740 741 for (BasicBlock *Succ : Successors) 742 if (pred_empty(Succ)) 743 WorkList.insert(Succ); 744 } 745 746 // Merge pairs of basic blocks with unconditional branches, connected by 747 // a single edge. 748 if (EverMadeChange || MadeChange) 749 MadeChange |= eliminateFallThrough(F); 750 751 EverMadeChange |= MadeChange; 752 } 753 754 if (!DisableGCOpts) { 755 SmallVector<GCStatepointInst *, 2> Statepoints; 756 for (BasicBlock &BB : F) 757 for (Instruction &I : BB) 758 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 759 Statepoints.push_back(SP); 760 for (auto &I : Statepoints) 761 EverMadeChange |= simplifyOffsetableRelocate(*I); 762 } 763 764 // Do this last to clean up use-before-def scenarios introduced by other 765 // preparatory transforms. 766 EverMadeChange |= placeDbgValues(F); 767 EverMadeChange |= placePseudoProbes(F); 768 769 #ifndef NDEBUG 770 if (VerifyBFIUpdates) 771 verifyBFIUpdates(F); 772 #endif 773 774 return EverMadeChange; 775 } 776 777 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 778 bool MadeChange = false; 779 for (BasicBlock &BB : F) { 780 CurInstIterator = BB.begin(); 781 while (CurInstIterator != BB.end()) { 782 Instruction *I = &*(CurInstIterator++); 783 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 784 MadeChange = true; 785 Value *Operand = Assume->getOperand(0); 786 Assume->eraseFromParent(); 787 788 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 789 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 790 }); 791 } 792 } 793 } 794 return MadeChange; 795 } 796 797 /// An instruction is about to be deleted, so remove all references to it in our 798 /// GEP-tracking data strcutures. 799 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 800 LargeOffsetGEPMap.erase(V); 801 NewGEPBases.erase(V); 802 803 auto GEP = dyn_cast<GetElementPtrInst>(V); 804 if (!GEP) 805 return; 806 807 LargeOffsetGEPID.erase(GEP); 808 809 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 810 if (VecI == LargeOffsetGEPMap.end()) 811 return; 812 813 auto &GEPVector = VecI->second; 814 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 815 816 if (GEPVector.empty()) 817 LargeOffsetGEPMap.erase(VecI); 818 } 819 820 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 821 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 822 DominatorTree NewDT(F); 823 LoopInfo NewLI(NewDT); 824 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 825 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 826 NewBFI.verifyMatch(*BFI); 827 } 828 829 /// Merge basic blocks which are connected by a single edge, where one of the 830 /// basic blocks has a single successor pointing to the other basic block, 831 /// which has a single predecessor. 832 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { 833 bool Changed = false; 834 // Scan all of the blocks in the function, except for the entry block. 835 // Use a temporary array to avoid iterator being invalidated when 836 // deleting blocks. 837 SmallVector<WeakTrackingVH, 16> Blocks; 838 for (auto &Block : llvm::drop_begin(F)) 839 Blocks.push_back(&Block); 840 841 SmallSet<WeakTrackingVH, 16> Preds; 842 for (auto &Block : Blocks) { 843 auto *BB = cast_or_null<BasicBlock>(Block); 844 if (!BB) 845 continue; 846 // If the destination block has a single pred, then this is a trivial 847 // edge, just collapse it. 848 BasicBlock *SinglePred = BB->getSinglePredecessor(); 849 850 // Don't merge if BB's address is taken. 851 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) 852 continue; 853 854 // Make an effort to skip unreachable blocks. 855 if (DT && !DT->isReachableFromEntry(BB)) 856 continue; 857 858 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 859 if (Term && !Term->isConditional()) { 860 Changed = true; 861 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 862 863 // Merge BB into SinglePred and delete it. 864 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, 865 /* MemDep */ nullptr, 866 /* PredecessorWithTwoSuccessors */ false, DT); 867 Preds.insert(SinglePred); 868 869 if (IsHugeFunc) { 870 // Update FreshBBs to optimize the merged BB. 871 FreshBBs.insert(SinglePred); 872 FreshBBs.erase(BB); 873 } 874 } 875 } 876 877 // (Repeatedly) merging blocks into their predecessors can create redundant 878 // debug intrinsics. 879 for (const auto &Pred : Preds) 880 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 881 RemoveRedundantDbgInstrs(BB); 882 883 return Changed; 884 } 885 886 /// Find a destination block from BB if BB is mergeable empty block. 887 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 888 // If this block doesn't end with an uncond branch, ignore it. 889 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 890 if (!BI || !BI->isUnconditional()) 891 return nullptr; 892 893 // If the instruction before the branch (skipping debug info) isn't a phi 894 // node, then other stuff is happening here. 895 BasicBlock::iterator BBI = BI->getIterator(); 896 if (BBI != BB->begin()) { 897 --BBI; 898 while (isa<DbgInfoIntrinsic>(BBI)) { 899 if (BBI == BB->begin()) 900 break; 901 --BBI; 902 } 903 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 904 return nullptr; 905 } 906 907 // Do not break infinite loops. 908 BasicBlock *DestBB = BI->getSuccessor(0); 909 if (DestBB == BB) 910 return nullptr; 911 912 if (!canMergeBlocks(BB, DestBB)) 913 DestBB = nullptr; 914 915 return DestBB; 916 } 917 918 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 919 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 920 /// edges in ways that are non-optimal for isel. Start by eliminating these 921 /// blocks so we can split them the way we want them. 922 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 923 SmallPtrSet<BasicBlock *, 16> Preheaders; 924 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 925 while (!LoopList.empty()) { 926 Loop *L = LoopList.pop_back_val(); 927 llvm::append_range(LoopList, *L); 928 if (BasicBlock *Preheader = L->getLoopPreheader()) 929 Preheaders.insert(Preheader); 930 } 931 932 bool MadeChange = false; 933 // Copy blocks into a temporary array to avoid iterator invalidation issues 934 // as we remove them. 935 // Note that this intentionally skips the entry block. 936 SmallVector<WeakTrackingVH, 16> Blocks; 937 for (auto &Block : llvm::drop_begin(F)) { 938 // Delete phi nodes that could block deleting other empty blocks. 939 if (!DisableDeletePHIs) 940 MadeChange |= DeleteDeadPHIs(&Block, TLInfo); 941 Blocks.push_back(&Block); 942 } 943 944 for (auto &Block : Blocks) { 945 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 946 if (!BB) 947 continue; 948 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 949 if (!DestBB || 950 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 951 continue; 952 953 eliminateMostlyEmptyBlock(BB); 954 MadeChange = true; 955 } 956 return MadeChange; 957 } 958 959 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 960 BasicBlock *DestBB, 961 bool isPreheader) { 962 // Do not delete loop preheaders if doing so would create a critical edge. 963 // Loop preheaders can be good locations to spill registers. If the 964 // preheader is deleted and we create a critical edge, registers may be 965 // spilled in the loop body instead. 966 if (!DisablePreheaderProtect && isPreheader && 967 !(BB->getSinglePredecessor() && 968 BB->getSinglePredecessor()->getSingleSuccessor())) 969 return false; 970 971 // Skip merging if the block's successor is also a successor to any callbr 972 // that leads to this block. 973 // FIXME: Is this really needed? Is this a correctness issue? 974 for (BasicBlock *Pred : predecessors(BB)) { 975 if (isa<CallBrInst>(Pred->getTerminator()) && 976 llvm::is_contained(successors(Pred), DestBB)) 977 return false; 978 } 979 980 // Try to skip merging if the unique predecessor of BB is terminated by a 981 // switch or indirect branch instruction, and BB is used as an incoming block 982 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 983 // add COPY instructions in the predecessor of BB instead of BB (if it is not 984 // merged). Note that the critical edge created by merging such blocks wont be 985 // split in MachineSink because the jump table is not analyzable. By keeping 986 // such empty block (BB), ISel will place COPY instructions in BB, not in the 987 // predecessor of BB. 988 BasicBlock *Pred = BB->getUniquePredecessor(); 989 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || 990 isa<IndirectBrInst>(Pred->getTerminator()))) 991 return true; 992 993 if (BB->getTerminator() != &*BB->getFirstNonPHIOrDbg()) 994 return true; 995 996 // We use a simple cost heuristic which determine skipping merging is 997 // profitable if the cost of skipping merging is less than the cost of 998 // merging : Cost(skipping merging) < Cost(merging BB), where the 999 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 1000 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 1001 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 1002 // Freq(Pred) / Freq(BB) > 2. 1003 // Note that if there are multiple empty blocks sharing the same incoming 1004 // value for the PHIs in the DestBB, we consider them together. In such 1005 // case, Cost(merging BB) will be the sum of their frequencies. 1006 1007 if (!isa<PHINode>(DestBB->begin())) 1008 return true; 1009 1010 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 1011 1012 // Find all other incoming blocks from which incoming values of all PHIs in 1013 // DestBB are the same as the ones from BB. 1014 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 1015 if (DestBBPred == BB) 1016 continue; 1017 1018 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 1019 return DestPN.getIncomingValueForBlock(BB) == 1020 DestPN.getIncomingValueForBlock(DestBBPred); 1021 })) 1022 SameIncomingValueBBs.insert(DestBBPred); 1023 } 1024 1025 // See if all BB's incoming values are same as the value from Pred. In this 1026 // case, no reason to skip merging because COPYs are expected to be place in 1027 // Pred already. 1028 if (SameIncomingValueBBs.count(Pred)) 1029 return true; 1030 1031 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 1032 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 1033 1034 for (auto *SameValueBB : SameIncomingValueBBs) 1035 if (SameValueBB->getUniquePredecessor() == Pred && 1036 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 1037 BBFreq += BFI->getBlockFreq(SameValueBB); 1038 1039 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge); 1040 return !Limit || PredFreq <= *Limit; 1041 } 1042 1043 /// Return true if we can merge BB into DestBB if there is a single 1044 /// unconditional branch between them, and BB contains no other non-phi 1045 /// instructions. 1046 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 1047 const BasicBlock *DestBB) const { 1048 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 1049 // the successor. If there are more complex condition (e.g. preheaders), 1050 // don't mess around with them. 1051 for (const PHINode &PN : BB->phis()) { 1052 for (const User *U : PN.users()) { 1053 const Instruction *UI = cast<Instruction>(U); 1054 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 1055 return false; 1056 // If User is inside DestBB block and it is a PHINode then check 1057 // incoming value. If incoming value is not from BB then this is 1058 // a complex condition (e.g. preheaders) we want to avoid here. 1059 if (UI->getParent() == DestBB) { 1060 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 1061 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 1062 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 1063 if (Insn && Insn->getParent() == BB && 1064 Insn->getParent() != UPN->getIncomingBlock(I)) 1065 return false; 1066 } 1067 } 1068 } 1069 } 1070 1071 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 1072 // and DestBB may have conflicting incoming values for the block. If so, we 1073 // can't merge the block. 1074 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 1075 if (!DestBBPN) 1076 return true; // no conflict. 1077 1078 // Collect the preds of BB. 1079 SmallPtrSet<const BasicBlock *, 16> BBPreds; 1080 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1081 // It is faster to get preds from a PHI than with pred_iterator. 1082 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1083 BBPreds.insert(BBPN->getIncomingBlock(i)); 1084 } else { 1085 BBPreds.insert(pred_begin(BB), pred_end(BB)); 1086 } 1087 1088 // Walk the preds of DestBB. 1089 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 1090 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 1091 if (BBPreds.count(Pred)) { // Common predecessor? 1092 for (const PHINode &PN : DestBB->phis()) { 1093 const Value *V1 = PN.getIncomingValueForBlock(Pred); 1094 const Value *V2 = PN.getIncomingValueForBlock(BB); 1095 1096 // If V2 is a phi node in BB, look up what the mapped value will be. 1097 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 1098 if (V2PN->getParent() == BB) 1099 V2 = V2PN->getIncomingValueForBlock(Pred); 1100 1101 // If there is a conflict, bail out. 1102 if (V1 != V2) 1103 return false; 1104 } 1105 } 1106 } 1107 1108 return true; 1109 } 1110 1111 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. 1112 static void replaceAllUsesWith(Value *Old, Value *New, 1113 SmallSet<BasicBlock *, 32> &FreshBBs, 1114 bool IsHuge) { 1115 auto *OldI = dyn_cast<Instruction>(Old); 1116 if (OldI) { 1117 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); 1118 UI != E; ++UI) { 1119 Instruction *User = cast<Instruction>(*UI); 1120 if (IsHuge) 1121 FreshBBs.insert(User->getParent()); 1122 } 1123 } 1124 Old->replaceAllUsesWith(New); 1125 } 1126 1127 /// Eliminate a basic block that has only phi's and an unconditional branch in 1128 /// it. 1129 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 1130 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1131 BasicBlock *DestBB = BI->getSuccessor(0); 1132 1133 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 1134 << *BB << *DestBB); 1135 1136 // If the destination block has a single pred, then this is a trivial edge, 1137 // just collapse it. 1138 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 1139 if (SinglePred != DestBB) { 1140 assert(SinglePred == BB && 1141 "Single predecessor not the same as predecessor"); 1142 // Merge DestBB into SinglePred/BB and delete it. 1143 MergeBlockIntoPredecessor(DestBB); 1144 // Note: BB(=SinglePred) will not be deleted on this path. 1145 // DestBB(=its single successor) is the one that was deleted. 1146 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 1147 1148 if (IsHugeFunc) { 1149 // Update FreshBBs to optimize the merged BB. 1150 FreshBBs.insert(SinglePred); 1151 FreshBBs.erase(DestBB); 1152 } 1153 return; 1154 } 1155 } 1156 1157 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 1158 // to handle the new incoming edges it is about to have. 1159 for (PHINode &PN : DestBB->phis()) { 1160 // Remove the incoming value for BB, and remember it. 1161 Value *InVal = PN.removeIncomingValue(BB, false); 1162 1163 // Two options: either the InVal is a phi node defined in BB or it is some 1164 // value that dominates BB. 1165 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 1166 if (InValPhi && InValPhi->getParent() == BB) { 1167 // Add all of the input values of the input PHI as inputs of this phi. 1168 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 1169 PN.addIncoming(InValPhi->getIncomingValue(i), 1170 InValPhi->getIncomingBlock(i)); 1171 } else { 1172 // Otherwise, add one instance of the dominating value for each edge that 1173 // we will be adding. 1174 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1175 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1176 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1177 } else { 1178 for (BasicBlock *Pred : predecessors(BB)) 1179 PN.addIncoming(InVal, Pred); 1180 } 1181 } 1182 } 1183 1184 // Preserve loop Metadata. 1185 if (BI->hasMetadata(LLVMContext::MD_loop)) { 1186 for (auto *Pred : predecessors(BB)) 1187 Pred->getTerminator()->copyMetadata(*BI, LLVMContext::MD_loop); 1188 } 1189 1190 // The PHIs are now updated, change everything that refers to BB to use 1191 // DestBB and remove BB. 1192 BB->replaceAllUsesWith(DestBB); 1193 BB->eraseFromParent(); 1194 ++NumBlocksElim; 1195 1196 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1197 } 1198 1199 // Computes a map of base pointer relocation instructions to corresponding 1200 // derived pointer relocation instructions given a vector of all relocate calls 1201 static void computeBaseDerivedRelocateMap( 1202 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1203 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> 1204 &RelocateInstMap) { 1205 // Collect information in two maps: one primarily for locating the base object 1206 // while filling the second map; the second map is the final structure holding 1207 // a mapping between Base and corresponding Derived relocate calls 1208 MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1209 for (auto *ThisRelocate : AllRelocateCalls) { 1210 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1211 ThisRelocate->getDerivedPtrIndex()); 1212 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1213 } 1214 for (auto &Item : RelocateIdxMap) { 1215 std::pair<unsigned, unsigned> Key = Item.first; 1216 if (Key.first == Key.second) 1217 // Base relocation: nothing to insert 1218 continue; 1219 1220 GCRelocateInst *I = Item.second; 1221 auto BaseKey = std::make_pair(Key.first, Key.first); 1222 1223 // We're iterating over RelocateIdxMap so we cannot modify it. 1224 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1225 if (MaybeBase == RelocateIdxMap.end()) 1226 // TODO: We might want to insert a new base object relocate and gep off 1227 // that, if there are enough derived object relocates. 1228 continue; 1229 1230 RelocateInstMap[MaybeBase->second].push_back(I); 1231 } 1232 } 1233 1234 // Accepts a GEP and extracts the operands into a vector provided they're all 1235 // small integer constants 1236 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1237 SmallVectorImpl<Value *> &OffsetV) { 1238 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1239 // Only accept small constant integer operands 1240 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1241 if (!Op || Op->getZExtValue() > 20) 1242 return false; 1243 } 1244 1245 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1246 OffsetV.push_back(GEP->getOperand(i)); 1247 return true; 1248 } 1249 1250 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1251 // replace, computes a replacement, and affects it. 1252 static bool 1253 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1254 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1255 bool MadeChange = false; 1256 // We must ensure the relocation of derived pointer is defined after 1257 // relocation of base pointer. If we find a relocation corresponding to base 1258 // defined earlier than relocation of base then we move relocation of base 1259 // right before found relocation. We consider only relocation in the same 1260 // basic block as relocation of base. Relocations from other basic block will 1261 // be skipped by optimization and we do not care about them. 1262 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1263 &*R != RelocatedBase; ++R) 1264 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1265 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1266 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1267 RelocatedBase->moveBefore(RI->getIterator()); 1268 MadeChange = true; 1269 break; 1270 } 1271 1272 for (GCRelocateInst *ToReplace : Targets) { 1273 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1274 "Not relocating a derived object of the original base object"); 1275 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1276 // A duplicate relocate call. TODO: coalesce duplicates. 1277 continue; 1278 } 1279 1280 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1281 // Base and derived relocates are in different basic blocks. 1282 // In this case transform is only valid when base dominates derived 1283 // relocate. However it would be too expensive to check dominance 1284 // for each such relocate, so we skip the whole transformation. 1285 continue; 1286 } 1287 1288 Value *Base = ToReplace->getBasePtr(); 1289 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1290 if (!Derived || Derived->getPointerOperand() != Base) 1291 continue; 1292 1293 SmallVector<Value *, 2> OffsetV; 1294 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1295 continue; 1296 1297 // Create a Builder and replace the target callsite with a gep 1298 assert(RelocatedBase->getNextNode() && 1299 "Should always have one since it's not a terminator"); 1300 1301 // Insert after RelocatedBase 1302 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1303 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1304 1305 // If gc_relocate does not match the actual type, cast it to the right type. 1306 // In theory, there must be a bitcast after gc_relocate if the type does not 1307 // match, and we should reuse it to get the derived pointer. But it could be 1308 // cases like this: 1309 // bb1: 1310 // ... 1311 // %g1 = call coldcc i8 addrspace(1)* 1312 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1313 // 1314 // bb2: 1315 // ... 1316 // %g2 = call coldcc i8 addrspace(1)* 1317 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1318 // 1319 // merge: 1320 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1321 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1322 // 1323 // In this case, we can not find the bitcast any more. So we insert a new 1324 // bitcast no matter there is already one or not. In this way, we can handle 1325 // all cases, and the extra bitcast should be optimized away in later 1326 // passes. 1327 Value *ActualRelocatedBase = RelocatedBase; 1328 if (RelocatedBase->getType() != Base->getType()) { 1329 ActualRelocatedBase = 1330 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1331 } 1332 Value *Replacement = 1333 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, 1334 ArrayRef(OffsetV)); 1335 Replacement->takeName(ToReplace); 1336 // If the newly generated derived pointer's type does not match the original 1337 // derived pointer's type, cast the new derived pointer to match it. Same 1338 // reasoning as above. 1339 Value *ActualReplacement = Replacement; 1340 if (Replacement->getType() != ToReplace->getType()) { 1341 ActualReplacement = 1342 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1343 } 1344 ToReplace->replaceAllUsesWith(ActualReplacement); 1345 ToReplace->eraseFromParent(); 1346 1347 MadeChange = true; 1348 } 1349 return MadeChange; 1350 } 1351 1352 // Turns this: 1353 // 1354 // %base = ... 1355 // %ptr = gep %base + 15 1356 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1357 // %base' = relocate(%tok, i32 4, i32 4) 1358 // %ptr' = relocate(%tok, i32 4, i32 5) 1359 // %val = load %ptr' 1360 // 1361 // into this: 1362 // 1363 // %base = ... 1364 // %ptr = gep %base + 15 1365 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1366 // %base' = gc.relocate(%tok, i32 4, i32 4) 1367 // %ptr' = gep %base' + 15 1368 // %val = load %ptr' 1369 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1370 bool MadeChange = false; 1371 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1372 for (auto *U : I.users()) 1373 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1374 // Collect all the relocate calls associated with a statepoint 1375 AllRelocateCalls.push_back(Relocate); 1376 1377 // We need at least one base pointer relocation + one derived pointer 1378 // relocation to mangle 1379 if (AllRelocateCalls.size() < 2) 1380 return false; 1381 1382 // RelocateInstMap is a mapping from the base relocate instruction to the 1383 // corresponding derived relocate instructions 1384 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap; 1385 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1386 if (RelocateInstMap.empty()) 1387 return false; 1388 1389 for (auto &Item : RelocateInstMap) 1390 // Item.first is the RelocatedBase to offset against 1391 // Item.second is the vector of Targets to replace 1392 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1393 return MadeChange; 1394 } 1395 1396 /// Sink the specified cast instruction into its user blocks. 1397 static bool SinkCast(CastInst *CI) { 1398 BasicBlock *DefBB = CI->getParent(); 1399 1400 /// InsertedCasts - Only insert a cast in each block once. 1401 DenseMap<BasicBlock *, CastInst *> InsertedCasts; 1402 1403 bool MadeChange = false; 1404 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1405 UI != E;) { 1406 Use &TheUse = UI.getUse(); 1407 Instruction *User = cast<Instruction>(*UI); 1408 1409 // Figure out which BB this cast is used in. For PHI's this is the 1410 // appropriate predecessor block. 1411 BasicBlock *UserBB = User->getParent(); 1412 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1413 UserBB = PN->getIncomingBlock(TheUse); 1414 } 1415 1416 // Preincrement use iterator so we don't invalidate it. 1417 ++UI; 1418 1419 // The first insertion point of a block containing an EH pad is after the 1420 // pad. If the pad is the user, we cannot sink the cast past the pad. 1421 if (User->isEHPad()) 1422 continue; 1423 1424 // If the block selected to receive the cast is an EH pad that does not 1425 // allow non-PHI instructions before the terminator, we can't sink the 1426 // cast. 1427 if (UserBB->getTerminator()->isEHPad()) 1428 continue; 1429 1430 // If this user is in the same block as the cast, don't change the cast. 1431 if (UserBB == DefBB) 1432 continue; 1433 1434 // If we have already inserted a cast into this block, use it. 1435 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1436 1437 if (!InsertedCast) { 1438 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1439 assert(InsertPt != UserBB->end()); 1440 InsertedCast = cast<CastInst>(CI->clone()); 1441 InsertedCast->insertBefore(*UserBB, InsertPt); 1442 } 1443 1444 // Replace a use of the cast with a use of the new cast. 1445 TheUse = InsertedCast; 1446 MadeChange = true; 1447 ++NumCastUses; 1448 } 1449 1450 // If we removed all uses, nuke the cast. 1451 if (CI->use_empty()) { 1452 salvageDebugInfo(*CI); 1453 CI->eraseFromParent(); 1454 MadeChange = true; 1455 } 1456 1457 return MadeChange; 1458 } 1459 1460 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1461 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1462 /// reduce the number of virtual registers that must be created and coalesced. 1463 /// 1464 /// Return true if any changes are made. 1465 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1466 const DataLayout &DL) { 1467 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1468 // than sinking only nop casts, but is helpful on some platforms. 1469 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1470 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1471 ASC->getDestAddressSpace())) 1472 return false; 1473 } 1474 1475 // If this is a noop copy, 1476 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1477 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1478 1479 // This is an fp<->int conversion? 1480 if (SrcVT.isInteger() != DstVT.isInteger()) 1481 return false; 1482 1483 // If this is an extension, it will be a zero or sign extension, which 1484 // isn't a noop. 1485 if (SrcVT.bitsLT(DstVT)) 1486 return false; 1487 1488 // If these values will be promoted, find out what they will be promoted 1489 // to. This helps us consider truncates on PPC as noop copies when they 1490 // are. 1491 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1492 TargetLowering::TypePromoteInteger) 1493 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1494 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1495 TargetLowering::TypePromoteInteger) 1496 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1497 1498 // If, after promotion, these are the same types, this is a noop copy. 1499 if (SrcVT != DstVT) 1500 return false; 1501 1502 return SinkCast(CI); 1503 } 1504 1505 // Match a simple increment by constant operation. Note that if a sub is 1506 // matched, the step is negated (as if the step had been canonicalized to 1507 // an add, even though we leave the instruction alone.) 1508 static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, 1509 Constant *&Step) { 1510 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1511 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1512 m_Instruction(LHS), m_Constant(Step))))) 1513 return true; 1514 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1515 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1516 m_Instruction(LHS), m_Constant(Step))))) { 1517 Step = ConstantExpr::getNeg(Step); 1518 return true; 1519 } 1520 return false; 1521 } 1522 1523 /// If given \p PN is an inductive variable with value IVInc coming from the 1524 /// backedge, and on each iteration it gets increased by Step, return pair 1525 /// <IVInc, Step>. Otherwise, return std::nullopt. 1526 static std::optional<std::pair<Instruction *, Constant *>> 1527 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1528 const Loop *L = LI->getLoopFor(PN->getParent()); 1529 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1530 return std::nullopt; 1531 auto *IVInc = 1532 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1533 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1534 return std::nullopt; 1535 Instruction *LHS = nullptr; 1536 Constant *Step = nullptr; 1537 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1538 return std::make_pair(IVInc, Step); 1539 return std::nullopt; 1540 } 1541 1542 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1543 auto *I = dyn_cast<Instruction>(V); 1544 if (!I) 1545 return false; 1546 Instruction *LHS = nullptr; 1547 Constant *Step = nullptr; 1548 if (!matchIncrement(I, LHS, Step)) 1549 return false; 1550 if (auto *PN = dyn_cast<PHINode>(LHS)) 1551 if (auto IVInc = getIVIncrement(PN, LI)) 1552 return IVInc->first == I; 1553 return false; 1554 } 1555 1556 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1557 Value *Arg0, Value *Arg1, 1558 CmpInst *Cmp, 1559 Intrinsic::ID IID) { 1560 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1561 if (!isIVIncrement(BO, LI)) 1562 return false; 1563 const Loop *L = LI->getLoopFor(BO->getParent()); 1564 assert(L && "L should not be null after isIVIncrement()"); 1565 // Do not risk on moving increment into a child loop. 1566 if (LI->getLoopFor(Cmp->getParent()) != L) 1567 return false; 1568 1569 // Finally, we need to ensure that the insert point will dominate all 1570 // existing uses of the increment. 1571 1572 auto &DT = getDT(*BO->getParent()->getParent()); 1573 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1574 // If we're moving up the dom tree, all uses are trivially dominated. 1575 // (This is the common case for code produced by LSR.) 1576 return true; 1577 1578 // Otherwise, special case the single use in the phi recurrence. 1579 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1580 }; 1581 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1582 // We used to use a dominator tree here to allow multi-block optimization. 1583 // But that was problematic because: 1584 // 1. It could cause a perf regression by hoisting the math op into the 1585 // critical path. 1586 // 2. It could cause a perf regression by creating a value that was live 1587 // across multiple blocks and increasing register pressure. 1588 // 3. Use of a dominator tree could cause large compile-time regression. 1589 // This is because we recompute the DT on every change in the main CGP 1590 // run-loop. The recomputing is probably unnecessary in many cases, so if 1591 // that was fixed, using a DT here would be ok. 1592 // 1593 // There is one important particular case we still want to handle: if BO is 1594 // the IV increment. Important properties that make it profitable: 1595 // - We can speculate IV increment anywhere in the loop (as long as the 1596 // indvar Phi is its only user); 1597 // - Upon computing Cmp, we effectively compute something equivalent to the 1598 // IV increment (despite it loops differently in the IR). So moving it up 1599 // to the cmp point does not really increase register pressure. 1600 return false; 1601 } 1602 1603 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1604 if (BO->getOpcode() == Instruction::Add && 1605 IID == Intrinsic::usub_with_overflow) { 1606 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1607 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1608 } 1609 1610 // Insert at the first instruction of the pair. 1611 Instruction *InsertPt = nullptr; 1612 for (Instruction &Iter : *Cmp->getParent()) { 1613 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1614 // the overflow intrinsic are defined. 1615 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1616 InsertPt = &Iter; 1617 break; 1618 } 1619 } 1620 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1621 1622 IRBuilder<> Builder(InsertPt); 1623 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1624 if (BO->getOpcode() != Instruction::Xor) { 1625 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1626 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); 1627 } else 1628 assert(BO->hasOneUse() && 1629 "Patterns with XOr should use the BO only in the compare"); 1630 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1631 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); 1632 Cmp->eraseFromParent(); 1633 BO->eraseFromParent(); 1634 return true; 1635 } 1636 1637 /// Match special-case patterns that check for unsigned add overflow. 1638 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1639 BinaryOperator *&Add) { 1640 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1641 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1642 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1643 1644 // We are not expecting non-canonical/degenerate code. Just bail out. 1645 if (isa<Constant>(A)) 1646 return false; 1647 1648 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1649 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1650 B = ConstantInt::get(B->getType(), 1); 1651 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1652 B = Constant::getAllOnesValue(B->getType()); 1653 else 1654 return false; 1655 1656 // Check the users of the variable operand of the compare looking for an add 1657 // with the adjusted constant. 1658 for (User *U : A->users()) { 1659 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1660 Add = cast<BinaryOperator>(U); 1661 return true; 1662 } 1663 } 1664 return false; 1665 } 1666 1667 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1668 /// intrinsic. Return true if any changes were made. 1669 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1670 ModifyDT &ModifiedDT) { 1671 bool EdgeCase = false; 1672 Value *A, *B; 1673 BinaryOperator *Add; 1674 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1675 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1676 return false; 1677 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1678 A = Add->getOperand(0); 1679 B = Add->getOperand(1); 1680 EdgeCase = true; 1681 } 1682 1683 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1684 TLI->getValueType(*DL, Add->getType()), 1685 Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) 1686 return false; 1687 1688 // We don't want to move around uses of condition values this late, so we 1689 // check if it is legal to create the call to the intrinsic in the basic 1690 // block containing the icmp. 1691 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1692 return false; 1693 1694 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1695 Intrinsic::uadd_with_overflow)) 1696 return false; 1697 1698 // Reset callers - do not crash by iterating over a dead instruction. 1699 ModifiedDT = ModifyDT::ModifyInstDT; 1700 return true; 1701 } 1702 1703 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1704 ModifyDT &ModifiedDT) { 1705 // We are not expecting non-canonical/degenerate code. Just bail out. 1706 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1707 if (isa<Constant>(A) && isa<Constant>(B)) 1708 return false; 1709 1710 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1711 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1712 if (Pred == ICmpInst::ICMP_UGT) { 1713 std::swap(A, B); 1714 Pred = ICmpInst::ICMP_ULT; 1715 } 1716 // Convert special-case: (A == 0) is the same as (A u< 1). 1717 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1718 B = ConstantInt::get(B->getType(), 1); 1719 Pred = ICmpInst::ICMP_ULT; 1720 } 1721 // Convert special-case: (A != 0) is the same as (0 u< A). 1722 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1723 std::swap(A, B); 1724 Pred = ICmpInst::ICMP_ULT; 1725 } 1726 if (Pred != ICmpInst::ICMP_ULT) 1727 return false; 1728 1729 // Walk the users of a variable operand of a compare looking for a subtract or 1730 // add with that same operand. Also match the 2nd operand of the compare to 1731 // the add/sub, but that may be a negated constant operand of an add. 1732 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1733 BinaryOperator *Sub = nullptr; 1734 for (User *U : CmpVariableOperand->users()) { 1735 // A - B, A u< B --> usubo(A, B) 1736 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1737 Sub = cast<BinaryOperator>(U); 1738 break; 1739 } 1740 1741 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1742 const APInt *CmpC, *AddC; 1743 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1744 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1745 Sub = cast<BinaryOperator>(U); 1746 break; 1747 } 1748 } 1749 if (!Sub) 1750 return false; 1751 1752 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1753 TLI->getValueType(*DL, Sub->getType()), 1754 Sub->hasNUsesOrMore(1))) 1755 return false; 1756 1757 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1758 Cmp, Intrinsic::usub_with_overflow)) 1759 return false; 1760 1761 // Reset callers - do not crash by iterating over a dead instruction. 1762 ModifiedDT = ModifyDT::ModifyInstDT; 1763 return true; 1764 } 1765 1766 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1767 /// registers that must be created and coalesced. This is a clear win except on 1768 /// targets with multiple condition code registers (PowerPC), where it might 1769 /// lose; some adjustment may be wanted there. 1770 /// 1771 /// Return true if any changes are made. 1772 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1773 if (TLI.hasMultipleConditionRegisters()) 1774 return false; 1775 1776 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1777 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1778 return false; 1779 1780 // Only insert a cmp in each block once. 1781 DenseMap<BasicBlock *, CmpInst *> InsertedCmps; 1782 1783 bool MadeChange = false; 1784 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1785 UI != E;) { 1786 Use &TheUse = UI.getUse(); 1787 Instruction *User = cast<Instruction>(*UI); 1788 1789 // Preincrement use iterator so we don't invalidate it. 1790 ++UI; 1791 1792 // Don't bother for PHI nodes. 1793 if (isa<PHINode>(User)) 1794 continue; 1795 1796 // Figure out which BB this cmp is used in. 1797 BasicBlock *UserBB = User->getParent(); 1798 BasicBlock *DefBB = Cmp->getParent(); 1799 1800 // If this user is in the same block as the cmp, don't change the cmp. 1801 if (UserBB == DefBB) 1802 continue; 1803 1804 // If we have already inserted a cmp into this block, use it. 1805 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1806 1807 if (!InsertedCmp) { 1808 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1809 assert(InsertPt != UserBB->end()); 1810 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1811 Cmp->getOperand(0), Cmp->getOperand(1), ""); 1812 InsertedCmp->insertBefore(*UserBB, InsertPt); 1813 // Propagate the debug info. 1814 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1815 } 1816 1817 // Replace a use of the cmp with a use of the new cmp. 1818 TheUse = InsertedCmp; 1819 MadeChange = true; 1820 ++NumCmpUses; 1821 } 1822 1823 // If we removed all uses, nuke the cmp. 1824 if (Cmp->use_empty()) { 1825 Cmp->eraseFromParent(); 1826 MadeChange = true; 1827 } 1828 1829 return MadeChange; 1830 } 1831 1832 /// For pattern like: 1833 /// 1834 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1835 /// ... 1836 /// DomBB: 1837 /// ... 1838 /// br DomCond, TrueBB, CmpBB 1839 /// CmpBB: (with DomBB being the single predecessor) 1840 /// ... 1841 /// Cmp = icmp eq CmpOp0, CmpOp1 1842 /// ... 1843 /// 1844 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1845 /// different from lowering of icmp eq (PowerPC). This function try to convert 1846 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1847 /// After that, DomCond and Cmp can use the same comparison so reduce one 1848 /// comparison. 1849 /// 1850 /// Return true if any changes are made. 1851 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1852 const TargetLowering &TLI) { 1853 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1854 return false; 1855 1856 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1857 if (Pred != ICmpInst::ICMP_EQ) 1858 return false; 1859 1860 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1861 // icmp slt/sgt would introduce more redundant LLVM IR. 1862 for (User *U : Cmp->users()) { 1863 if (isa<BranchInst>(U)) 1864 continue; 1865 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1866 continue; 1867 return false; 1868 } 1869 1870 // This is a cheap/incomplete check for dominance - just match a single 1871 // predecessor with a conditional branch. 1872 BasicBlock *CmpBB = Cmp->getParent(); 1873 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1874 if (!DomBB) 1875 return false; 1876 1877 // We want to ensure that the only way control gets to the comparison of 1878 // interest is that a less/greater than comparison on the same operands is 1879 // false. 1880 Value *DomCond; 1881 BasicBlock *TrueBB, *FalseBB; 1882 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1883 return false; 1884 if (CmpBB != FalseBB) 1885 return false; 1886 1887 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1888 CmpPredicate DomPred; 1889 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1890 return false; 1891 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1892 return false; 1893 1894 // Convert the equality comparison to the opposite of the dominating 1895 // comparison and swap the direction for all branch/select users. 1896 // We have conceptually converted: 1897 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1898 // to 1899 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1900 // And similarly for branches. 1901 for (User *U : Cmp->users()) { 1902 if (auto *BI = dyn_cast<BranchInst>(U)) { 1903 assert(BI->isConditional() && "Must be conditional"); 1904 BI->swapSuccessors(); 1905 continue; 1906 } 1907 if (auto *SI = dyn_cast<SelectInst>(U)) { 1908 // Swap operands 1909 SI->swapValues(); 1910 SI->swapProfMetadata(); 1911 continue; 1912 } 1913 llvm_unreachable("Must be a branch or a select"); 1914 } 1915 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1916 return true; 1917 } 1918 1919 /// Many architectures use the same instruction for both subtract and cmp. Try 1920 /// to swap cmp operands to match subtract operations to allow for CSE. 1921 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { 1922 Value *Op0 = Cmp->getOperand(0); 1923 Value *Op1 = Cmp->getOperand(1); 1924 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) || 1925 isa<Constant>(Op1) || Op0 == Op1) 1926 return false; 1927 1928 // If a subtract already has the same operands as a compare, swapping would be 1929 // bad. If a subtract has the same operands as a compare but in reverse order, 1930 // then swapping is good. 1931 int GoodToSwap = 0; 1932 unsigned NumInspected = 0; 1933 for (const User *U : Op0->users()) { 1934 // Avoid walking many users. 1935 if (++NumInspected > 128) 1936 return false; 1937 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 1938 GoodToSwap++; 1939 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 1940 GoodToSwap--; 1941 } 1942 1943 if (GoodToSwap > 0) { 1944 Cmp->swapOperands(); 1945 return true; 1946 } 1947 return false; 1948 } 1949 1950 static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI, 1951 const DataLayout &DL) { 1952 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp); 1953 if (!FCmp) 1954 return false; 1955 1956 // Don't fold if the target offers free fabs and the predicate is legal. 1957 EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType()); 1958 if (TLI.isFAbsFree(VT) && 1959 TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()), 1960 VT.getSimpleVT())) 1961 return false; 1962 1963 // Reverse the canonicalization if it is a FP class test 1964 auto ShouldReverseTransform = [](FPClassTest ClassTest) { 1965 return ClassTest == fcInf || ClassTest == (fcInf | fcNan); 1966 }; 1967 auto [ClassVal, ClassTest] = 1968 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), 1969 FCmp->getOperand(0), FCmp->getOperand(1)); 1970 if (!ClassVal) 1971 return false; 1972 1973 if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest)) 1974 return false; 1975 1976 IRBuilder<> Builder(Cmp); 1977 Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest); 1978 Cmp->replaceAllUsesWith(IsFPClass); 1979 RecursivelyDeleteTriviallyDeadInstructions(Cmp); 1980 return true; 1981 } 1982 1983 static bool isRemOfLoopIncrementWithLoopInvariant( 1984 Instruction *Rem, const LoopInfo *LI, Value *&RemAmtOut, Value *&AddInstOut, 1985 Value *&AddOffsetOut, PHINode *&LoopIncrPNOut) { 1986 Value *Incr, *RemAmt; 1987 // NB: If RemAmt is a power of 2 it *should* have been transformed by now. 1988 if (!match(Rem, m_URem(m_Value(Incr), m_Value(RemAmt)))) 1989 return false; 1990 1991 Value *AddInst, *AddOffset; 1992 // Find out loop increment PHI. 1993 auto *PN = dyn_cast<PHINode>(Incr); 1994 if (PN != nullptr) { 1995 AddInst = nullptr; 1996 AddOffset = nullptr; 1997 } else { 1998 // Search through a NUW add on top of the loop increment. 1999 Value *V0, *V1; 2000 if (!match(Incr, m_NUWAdd(m_Value(V0), m_Value(V1)))) 2001 return false; 2002 2003 AddInst = Incr; 2004 PN = dyn_cast<PHINode>(V0); 2005 if (PN != nullptr) { 2006 AddOffset = V1; 2007 } else { 2008 PN = dyn_cast<PHINode>(V1); 2009 AddOffset = V0; 2010 } 2011 } 2012 2013 if (!PN) 2014 return false; 2015 2016 // This isn't strictly necessary, what we really need is one increment and any 2017 // amount of initial values all being the same. 2018 if (PN->getNumIncomingValues() != 2) 2019 return false; 2020 2021 // Only trivially analyzable loops. 2022 Loop *L = LI->getLoopFor(PN->getParent()); 2023 if (!L || !L->getLoopPreheader() || !L->getLoopLatch()) 2024 return false; 2025 2026 // Req that the remainder is in the loop 2027 if (!L->contains(Rem)) 2028 return false; 2029 2030 // Only works if the remainder amount is a loop invaraint 2031 if (!L->isLoopInvariant(RemAmt)) 2032 return false; 2033 2034 // Is the PHI a loop increment? 2035 auto LoopIncrInfo = getIVIncrement(PN, LI); 2036 if (!LoopIncrInfo) 2037 return false; 2038 2039 // We need remainder_amount % increment_amount to be zero. Increment of one 2040 // satisfies that without any special logic and is overwhelmingly the common 2041 // case. 2042 if (!match(LoopIncrInfo->second, m_One())) 2043 return false; 2044 2045 // Need the increment to not overflow. 2046 if (!match(LoopIncrInfo->first, m_c_NUWAdd(m_Specific(PN), m_Value()))) 2047 return false; 2048 2049 // Set output variables. 2050 RemAmtOut = RemAmt; 2051 LoopIncrPNOut = PN; 2052 AddInstOut = AddInst; 2053 AddOffsetOut = AddOffset; 2054 2055 return true; 2056 } 2057 2058 // Try to transform: 2059 // 2060 // for(i = Start; i < End; ++i) 2061 // Rem = (i nuw+ IncrLoopInvariant) u% RemAmtLoopInvariant; 2062 // 2063 // -> 2064 // 2065 // Rem = (Start nuw+ IncrLoopInvariant) % RemAmtLoopInvariant; 2066 // for(i = Start; i < End; ++i, ++rem) 2067 // Rem = rem == RemAmtLoopInvariant ? 0 : Rem; 2068 static bool foldURemOfLoopIncrement(Instruction *Rem, const DataLayout *DL, 2069 const LoopInfo *LI, 2070 SmallSet<BasicBlock *, 32> &FreshBBs, 2071 bool IsHuge) { 2072 Value *AddOffset, *RemAmt, *AddInst; 2073 PHINode *LoopIncrPN; 2074 if (!isRemOfLoopIncrementWithLoopInvariant(Rem, LI, RemAmt, AddInst, 2075 AddOffset, LoopIncrPN)) 2076 return false; 2077 2078 // Only non-constant remainder as the extra IV is probably not profitable 2079 // in that case. 2080 // 2081 // Potential TODO(1): `urem` of a const ends up as `mul` + `shift` + `add`. If 2082 // we can rule out register pressure and ensure this `urem` is executed each 2083 // iteration, its probably profitable to handle the const case as well. 2084 // 2085 // Potential TODO(2): Should we have a check for how "nested" this remainder 2086 // operation is? The new code runs every iteration so if the remainder is 2087 // guarded behind unlikely conditions this might not be worth it. 2088 if (match(RemAmt, m_ImmConstant())) 2089 return false; 2090 2091 Loop *L = LI->getLoopFor(LoopIncrPN->getParent()); 2092 Value *Start = LoopIncrPN->getIncomingValueForBlock(L->getLoopPreheader()); 2093 // If we have add create initial value for remainder. 2094 // The logic here is: 2095 // (urem (add nuw Start, IncrLoopInvariant), RemAmtLoopInvariant 2096 // 2097 // Only proceed if the expression simplifies (otherwise we can't fully 2098 // optimize out the urem). 2099 if (AddInst) { 2100 assert(AddOffset && "We found an add but missing values"); 2101 // Without dom-condition/assumption cache we aren't likely to get much out 2102 // of a context instruction. 2103 Start = simplifyAddInst(Start, AddOffset, 2104 match(AddInst, m_NSWAdd(m_Value(), m_Value())), 2105 /*IsNUW=*/true, *DL); 2106 if (!Start) 2107 return false; 2108 } 2109 2110 // If we can't fully optimize out the `rem`, skip this transform. 2111 Start = simplifyURemInst(Start, RemAmt, *DL); 2112 if (!Start) 2113 return false; 2114 2115 // Create new remainder with induction variable. 2116 Type *Ty = Rem->getType(); 2117 IRBuilder<> Builder(Rem->getContext()); 2118 2119 Builder.SetInsertPoint(LoopIncrPN); 2120 PHINode *NewRem = Builder.CreatePHI(Ty, 2); 2121 2122 Builder.SetInsertPoint(cast<Instruction>( 2123 LoopIncrPN->getIncomingValueForBlock(L->getLoopLatch()))); 2124 // `(add (urem x, y), 1)` is always nuw. 2125 Value *RemAdd = Builder.CreateNUWAdd(NewRem, ConstantInt::get(Ty, 1)); 2126 Value *RemCmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, RemAdd, RemAmt); 2127 Value *RemSel = 2128 Builder.CreateSelect(RemCmp, Constant::getNullValue(Ty), RemAdd); 2129 2130 NewRem->addIncoming(Start, L->getLoopPreheader()); 2131 NewRem->addIncoming(RemSel, L->getLoopLatch()); 2132 2133 // Insert all touched BBs. 2134 FreshBBs.insert(LoopIncrPN->getParent()); 2135 FreshBBs.insert(L->getLoopLatch()); 2136 FreshBBs.insert(Rem->getParent()); 2137 if (AddInst) 2138 FreshBBs.insert(cast<Instruction>(AddInst)->getParent()); 2139 replaceAllUsesWith(Rem, NewRem, FreshBBs, IsHuge); 2140 Rem->eraseFromParent(); 2141 if (AddInst && AddInst->use_empty()) 2142 cast<Instruction>(AddInst)->eraseFromParent(); 2143 return true; 2144 } 2145 2146 bool CodeGenPrepare::optimizeURem(Instruction *Rem) { 2147 if (foldURemOfLoopIncrement(Rem, DL, LI, FreshBBs, IsHugeFunc)) 2148 return true; 2149 return false; 2150 } 2151 2152 /// Some targets have better codegen for `ctpop(X) u< 2` than `ctpop(X) == 1`. 2153 /// This function converts `ctpop(X) ==/!= 1` into `ctpop(X) u</u> 2/1` if the 2154 /// result cannot be zero. 2155 static bool adjustIsPower2Test(CmpInst *Cmp, const TargetLowering &TLI, 2156 const TargetTransformInfo &TTI, 2157 const DataLayout &DL) { 2158 CmpPredicate Pred; 2159 if (!match(Cmp, m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(), m_One()))) 2160 return false; 2161 if (!ICmpInst::isEquality(Pred)) 2162 return false; 2163 auto *II = cast<IntrinsicInst>(Cmp->getOperand(0)); 2164 2165 if (isKnownNonZero(II, DL)) { 2166 if (Pred == ICmpInst::ICMP_EQ) { 2167 Cmp->setOperand(1, ConstantInt::get(II->getType(), 2)); 2168 Cmp->setPredicate(ICmpInst::ICMP_ULT); 2169 } else { 2170 Cmp->setPredicate(ICmpInst::ICMP_UGT); 2171 } 2172 return true; 2173 } 2174 return false; 2175 } 2176 2177 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { 2178 if (sinkCmpExpression(Cmp, *TLI)) 2179 return true; 2180 2181 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 2182 return true; 2183 2184 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 2185 return true; 2186 2187 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 2188 return true; 2189 2190 if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) 2191 return true; 2192 2193 if (foldFCmpToFPClassTest(Cmp, *TLI, *DL)) 2194 return true; 2195 2196 if (adjustIsPower2Test(Cmp, *TLI, *TTI, *DL)) 2197 return true; 2198 2199 return false; 2200 } 2201 2202 /// Duplicate and sink the given 'and' instruction into user blocks where it is 2203 /// used in a compare to allow isel to generate better code for targets where 2204 /// this operation can be combined. 2205 /// 2206 /// Return true if any changes are made. 2207 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, 2208 SetOfInstrs &InsertedInsts) { 2209 // Double-check that we're not trying to optimize an instruction that was 2210 // already optimized by some other part of this pass. 2211 assert(!InsertedInsts.count(AndI) && 2212 "Attempting to optimize already optimized and instruction"); 2213 (void)InsertedInsts; 2214 2215 // Nothing to do for single use in same basic block. 2216 if (AndI->hasOneUse() && 2217 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 2218 return false; 2219 2220 // Try to avoid cases where sinking/duplicating is likely to increase register 2221 // pressure. 2222 if (!isa<ConstantInt>(AndI->getOperand(0)) && 2223 !isa<ConstantInt>(AndI->getOperand(1)) && 2224 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 2225 return false; 2226 2227 for (auto *U : AndI->users()) { 2228 Instruction *User = cast<Instruction>(U); 2229 2230 // Only sink 'and' feeding icmp with 0. 2231 if (!isa<ICmpInst>(User)) 2232 return false; 2233 2234 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 2235 if (!CmpC || !CmpC->isZero()) 2236 return false; 2237 } 2238 2239 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 2240 return false; 2241 2242 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 2243 LLVM_DEBUG(AndI->getParent()->dump()); 2244 2245 // Push the 'and' into the same block as the icmp 0. There should only be 2246 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 2247 // others, so we don't need to keep track of which BBs we insert into. 2248 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 2249 UI != E;) { 2250 Use &TheUse = UI.getUse(); 2251 Instruction *User = cast<Instruction>(*UI); 2252 2253 // Preincrement use iterator so we don't invalidate it. 2254 ++UI; 2255 2256 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 2257 2258 // Keep the 'and' in the same place if the use is already in the same block. 2259 Instruction *InsertPt = 2260 User->getParent() == AndI->getParent() ? AndI : User; 2261 Instruction *InsertedAnd = BinaryOperator::Create( 2262 Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "", 2263 InsertPt->getIterator()); 2264 // Propagate the debug info. 2265 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 2266 2267 // Replace a use of the 'and' with a use of the new 'and'. 2268 TheUse = InsertedAnd; 2269 ++NumAndUses; 2270 LLVM_DEBUG(User->getParent()->dump()); 2271 } 2272 2273 // We removed all uses, nuke the and. 2274 AndI->eraseFromParent(); 2275 return true; 2276 } 2277 2278 /// Check if the candidates could be combined with a shift instruction, which 2279 /// includes: 2280 /// 1. Truncate instruction 2281 /// 2. And instruction and the imm is a mask of the low bits: 2282 /// imm & (imm+1) == 0 2283 static bool isExtractBitsCandidateUse(Instruction *User) { 2284 if (!isa<TruncInst>(User)) { 2285 if (User->getOpcode() != Instruction::And || 2286 !isa<ConstantInt>(User->getOperand(1))) 2287 return false; 2288 2289 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 2290 2291 if ((Cimm & (Cimm + 1)).getBoolValue()) 2292 return false; 2293 } 2294 return true; 2295 } 2296 2297 /// Sink both shift and truncate instruction to the use of truncate's BB. 2298 static bool 2299 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 2300 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 2301 const TargetLowering &TLI, const DataLayout &DL) { 2302 BasicBlock *UserBB = User->getParent(); 2303 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 2304 auto *TruncI = cast<TruncInst>(User); 2305 bool MadeChange = false; 2306 2307 for (Value::user_iterator TruncUI = TruncI->user_begin(), 2308 TruncE = TruncI->user_end(); 2309 TruncUI != TruncE;) { 2310 2311 Use &TruncTheUse = TruncUI.getUse(); 2312 Instruction *TruncUser = cast<Instruction>(*TruncUI); 2313 // Preincrement use iterator so we don't invalidate it. 2314 2315 ++TruncUI; 2316 2317 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 2318 if (!ISDOpcode) 2319 continue; 2320 2321 // If the use is actually a legal node, there will not be an 2322 // implicit truncate. 2323 // FIXME: always querying the result type is just an 2324 // approximation; some nodes' legality is determined by the 2325 // operand or other means. There's no good way to find out though. 2326 if (TLI.isOperationLegalOrCustom( 2327 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 2328 continue; 2329 2330 // Don't bother for PHI nodes. 2331 if (isa<PHINode>(TruncUser)) 2332 continue; 2333 2334 BasicBlock *TruncUserBB = TruncUser->getParent(); 2335 2336 if (UserBB == TruncUserBB) 2337 continue; 2338 2339 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 2340 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 2341 2342 if (!InsertedShift && !InsertedTrunc) { 2343 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 2344 assert(InsertPt != TruncUserBB->end()); 2345 // Sink the shift 2346 if (ShiftI->getOpcode() == Instruction::AShr) 2347 InsertedShift = 2348 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2349 else 2350 InsertedShift = 2351 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2352 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2353 InsertedShift->insertBefore(*TruncUserBB, InsertPt); 2354 2355 // Sink the trunc 2356 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 2357 TruncInsertPt++; 2358 // It will go ahead of any debug-info. 2359 TruncInsertPt.setHeadBit(true); 2360 assert(TruncInsertPt != TruncUserBB->end()); 2361 2362 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 2363 TruncI->getType(), ""); 2364 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt); 2365 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 2366 2367 MadeChange = true; 2368 2369 TruncTheUse = InsertedTrunc; 2370 } 2371 } 2372 return MadeChange; 2373 } 2374 2375 /// Sink the shift *right* instruction into user blocks if the uses could 2376 /// potentially be combined with this shift instruction and generate BitExtract 2377 /// instruction. It will only be applied if the architecture supports BitExtract 2378 /// instruction. Here is an example: 2379 /// BB1: 2380 /// %x.extract.shift = lshr i64 %arg1, 32 2381 /// BB2: 2382 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 2383 /// ==> 2384 /// 2385 /// BB2: 2386 /// %x.extract.shift.1 = lshr i64 %arg1, 32 2387 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 2388 /// 2389 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 2390 /// instruction. 2391 /// Return true if any changes are made. 2392 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 2393 const TargetLowering &TLI, 2394 const DataLayout &DL) { 2395 BasicBlock *DefBB = ShiftI->getParent(); 2396 2397 /// Only insert instructions in each block once. 2398 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 2399 2400 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 2401 2402 bool MadeChange = false; 2403 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 2404 UI != E;) { 2405 Use &TheUse = UI.getUse(); 2406 Instruction *User = cast<Instruction>(*UI); 2407 // Preincrement use iterator so we don't invalidate it. 2408 ++UI; 2409 2410 // Don't bother for PHI nodes. 2411 if (isa<PHINode>(User)) 2412 continue; 2413 2414 if (!isExtractBitsCandidateUse(User)) 2415 continue; 2416 2417 BasicBlock *UserBB = User->getParent(); 2418 2419 if (UserBB == DefBB) { 2420 // If the shift and truncate instruction are in the same BB. The use of 2421 // the truncate(TruncUse) may still introduce another truncate if not 2422 // legal. In this case, we would like to sink both shift and truncate 2423 // instruction to the BB of TruncUse. 2424 // for example: 2425 // BB1: 2426 // i64 shift.result = lshr i64 opnd, imm 2427 // trunc.result = trunc shift.result to i16 2428 // 2429 // BB2: 2430 // ----> We will have an implicit truncate here if the architecture does 2431 // not have i16 compare. 2432 // cmp i16 trunc.result, opnd2 2433 // 2434 if (isa<TruncInst>(User) && 2435 shiftIsLegal 2436 // If the type of the truncate is legal, no truncate will be 2437 // introduced in other basic blocks. 2438 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 2439 MadeChange = 2440 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 2441 2442 continue; 2443 } 2444 // If we have already inserted a shift into this block, use it. 2445 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 2446 2447 if (!InsertedShift) { 2448 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2449 assert(InsertPt != UserBB->end()); 2450 2451 if (ShiftI->getOpcode() == Instruction::AShr) 2452 InsertedShift = 2453 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2454 else 2455 InsertedShift = 2456 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2457 InsertedShift->insertBefore(*UserBB, InsertPt); 2458 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2459 2460 MadeChange = true; 2461 } 2462 2463 // Replace a use of the shift with a use of the new shift. 2464 TheUse = InsertedShift; 2465 } 2466 2467 // If we removed all uses, or there are none, nuke the shift. 2468 if (ShiftI->use_empty()) { 2469 salvageDebugInfo(*ShiftI); 2470 ShiftI->eraseFromParent(); 2471 MadeChange = true; 2472 } 2473 2474 return MadeChange; 2475 } 2476 2477 /// If counting leading or trailing zeros is an expensive operation and a zero 2478 /// input is defined, add a check for zero to avoid calling the intrinsic. 2479 /// 2480 /// We want to transform: 2481 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2482 /// 2483 /// into: 2484 /// entry: 2485 /// %cmpz = icmp eq i64 %A, 0 2486 /// br i1 %cmpz, label %cond.end, label %cond.false 2487 /// cond.false: 2488 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2489 /// br label %cond.end 2490 /// cond.end: 2491 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2492 /// 2493 /// If the transform is performed, return true and set ModifiedDT to true. 2494 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2495 LoopInfo &LI, 2496 const TargetLowering *TLI, 2497 const DataLayout *DL, ModifyDT &ModifiedDT, 2498 SmallSet<BasicBlock *, 32> &FreshBBs, 2499 bool IsHugeFunc) { 2500 // If a zero input is undefined, it doesn't make sense to despeculate that. 2501 if (match(CountZeros->getOperand(1), m_One())) 2502 return false; 2503 2504 // If it's cheap to speculate, there's nothing to do. 2505 Type *Ty = CountZeros->getType(); 2506 auto IntrinsicID = CountZeros->getIntrinsicID(); 2507 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || 2508 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) 2509 return false; 2510 2511 // Only handle legal scalar cases. Anything else requires too much work. 2512 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2513 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2514 return false; 2515 2516 // Bail if the value is never zero. 2517 Use &Op = CountZeros->getOperandUse(0); 2518 if (isKnownNonZero(Op, *DL)) 2519 return false; 2520 2521 // The intrinsic will be sunk behind a compare against zero and branch. 2522 BasicBlock *StartBlock = CountZeros->getParent(); 2523 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2524 if (IsHugeFunc) 2525 FreshBBs.insert(CallBlock); 2526 2527 // Create another block after the count zero intrinsic. A PHI will be added 2528 // in this block to select the result of the intrinsic or the bit-width 2529 // constant if the input to the intrinsic is zero. 2530 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros)); 2531 // Any debug-info after CountZeros should not be included. 2532 SplitPt.setHeadBit(true); 2533 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2534 if (IsHugeFunc) 2535 FreshBBs.insert(EndBlock); 2536 2537 // Update the LoopInfo. The new blocks are in the same loop as the start 2538 // block. 2539 if (Loop *L = LI.getLoopFor(StartBlock)) { 2540 L->addBasicBlockToLoop(CallBlock, LI); 2541 L->addBasicBlockToLoop(EndBlock, LI); 2542 } 2543 2544 // Set up a builder to create a compare, conditional branch, and PHI. 2545 IRBuilder<> Builder(CountZeros->getContext()); 2546 Builder.SetInsertPoint(StartBlock->getTerminator()); 2547 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2548 2549 // Replace the unconditional branch that was created by the first split with 2550 // a compare against zero and a conditional branch. 2551 Value *Zero = Constant::getNullValue(Ty); 2552 // Avoid introducing branch on poison. This also replaces the ctz operand. 2553 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2554 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2555 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2556 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2557 StartBlock->getTerminator()->eraseFromParent(); 2558 2559 // Create a PHI in the end block to select either the output of the intrinsic 2560 // or the bit width of the operand. 2561 Builder.SetInsertPoint(EndBlock, EndBlock->begin()); 2562 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2563 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); 2564 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2565 PN->addIncoming(BitWidth, StartBlock); 2566 PN->addIncoming(CountZeros, CallBlock); 2567 2568 // We are explicitly handling the zero case, so we can set the intrinsic's 2569 // undefined zero argument to 'true'. This will also prevent reprocessing the 2570 // intrinsic; we only despeculate when a zero input is defined. 2571 CountZeros->setArgOperand(1, Builder.getTrue()); 2572 ModifiedDT = ModifyDT::ModifyBBDT; 2573 return true; 2574 } 2575 2576 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { 2577 BasicBlock *BB = CI->getParent(); 2578 2579 // Lower inline assembly if we can. 2580 // If we found an inline asm expession, and if the target knows how to 2581 // lower it to normal LLVM code, do so now. 2582 if (CI->isInlineAsm()) { 2583 if (TLI->ExpandInlineAsm(CI)) { 2584 // Avoid invalidating the iterator. 2585 CurInstIterator = BB->begin(); 2586 // Avoid processing instructions out of order, which could cause 2587 // reuse before a value is defined. 2588 SunkAddrs.clear(); 2589 return true; 2590 } 2591 // Sink address computing for memory operands into the block. 2592 if (optimizeInlineAsmInst(CI)) 2593 return true; 2594 } 2595 2596 // Align the pointer arguments to this call if the target thinks it's a good 2597 // idea 2598 unsigned MinSize; 2599 Align PrefAlign; 2600 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2601 for (auto &Arg : CI->args()) { 2602 // We want to align both objects whose address is used directly and 2603 // objects whose address is used in casts and GEPs, though it only makes 2604 // sense for GEPs if the offset is a multiple of the desired alignment and 2605 // if size - offset meets the size threshold. 2606 if (!Arg->getType()->isPointerTy()) 2607 continue; 2608 APInt Offset(DL->getIndexSizeInBits( 2609 cast<PointerType>(Arg->getType())->getAddressSpace()), 2610 0); 2611 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2612 uint64_t Offset2 = Offset.getLimitedValue(); 2613 if (!isAligned(PrefAlign, Offset2)) 2614 continue; 2615 AllocaInst *AI; 2616 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2617 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2618 AI->setAlignment(PrefAlign); 2619 // Global variables can only be aligned if they are defined in this 2620 // object (i.e. they are uniquely initialized in this object), and 2621 // over-aligning global variables that have an explicit section is 2622 // forbidden. 2623 GlobalVariable *GV; 2624 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2625 GV->getPointerAlignment(*DL) < PrefAlign && 2626 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) 2627 GV->setAlignment(PrefAlign); 2628 } 2629 } 2630 // If this is a memcpy (or similar) then we may be able to improve the 2631 // alignment. 2632 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2633 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2634 MaybeAlign MIDestAlign = MI->getDestAlign(); 2635 if (!MIDestAlign || DestAlign > *MIDestAlign) 2636 MI->setDestAlignment(DestAlign); 2637 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2638 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2639 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2640 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2641 MTI->setSourceAlignment(SrcAlign); 2642 } 2643 } 2644 2645 // If we have a cold call site, try to sink addressing computation into the 2646 // cold block. This interacts with our handling for loads and stores to 2647 // ensure that we can fold all uses of a potential addressing computation 2648 // into their uses. TODO: generalize this to work over profiling data 2649 if (CI->hasFnAttr(Attribute::Cold) && 2650 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2651 for (auto &Arg : CI->args()) { 2652 if (!Arg->getType()->isPointerTy()) 2653 continue; 2654 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2655 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) 2656 return true; 2657 } 2658 2659 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2660 if (II) { 2661 switch (II->getIntrinsicID()) { 2662 default: 2663 break; 2664 case Intrinsic::assume: 2665 llvm_unreachable("llvm.assume should have been removed already"); 2666 case Intrinsic::allow_runtime_check: 2667 case Intrinsic::allow_ubsan_check: 2668 case Intrinsic::experimental_widenable_condition: { 2669 // Give up on future widening opportunities so that we can fold away dead 2670 // paths and merge blocks before going into block-local instruction 2671 // selection. 2672 if (II->use_empty()) { 2673 II->eraseFromParent(); 2674 return true; 2675 } 2676 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2677 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2678 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2679 }); 2680 return true; 2681 } 2682 case Intrinsic::objectsize: 2683 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2684 case Intrinsic::is_constant: 2685 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2686 case Intrinsic::aarch64_stlxr: 2687 case Intrinsic::aarch64_stxr: { 2688 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2689 if (!ExtVal || !ExtVal->hasOneUse() || 2690 ExtVal->getParent() == CI->getParent()) 2691 return false; 2692 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2693 ExtVal->moveBefore(CI->getIterator()); 2694 // Mark this instruction as "inserted by CGP", so that other 2695 // optimizations don't touch it. 2696 InsertedInsts.insert(ExtVal); 2697 return true; 2698 } 2699 2700 case Intrinsic::launder_invariant_group: 2701 case Intrinsic::strip_invariant_group: { 2702 Value *ArgVal = II->getArgOperand(0); 2703 auto it = LargeOffsetGEPMap.find(II); 2704 if (it != LargeOffsetGEPMap.end()) { 2705 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2706 // Make sure not to have to deal with iterator invalidation 2707 // after possibly adding ArgVal to LargeOffsetGEPMap. 2708 auto GEPs = std::move(it->second); 2709 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2710 LargeOffsetGEPMap.erase(II); 2711 } 2712 2713 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); 2714 II->eraseFromParent(); 2715 return true; 2716 } 2717 case Intrinsic::cttz: 2718 case Intrinsic::ctlz: 2719 // If counting zeros is expensive, try to avoid it. 2720 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs, 2721 IsHugeFunc); 2722 case Intrinsic::fshl: 2723 case Intrinsic::fshr: 2724 return optimizeFunnelShift(II); 2725 case Intrinsic::dbg_assign: 2726 case Intrinsic::dbg_value: 2727 return fixupDbgValue(II); 2728 case Intrinsic::masked_gather: 2729 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2730 case Intrinsic::masked_scatter: 2731 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2732 } 2733 2734 SmallVector<Value *, 2> PtrOps; 2735 Type *AccessTy; 2736 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2737 while (!PtrOps.empty()) { 2738 Value *PtrVal = PtrOps.pop_back_val(); 2739 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2740 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2741 return true; 2742 } 2743 } 2744 2745 // From here on out we're working with named functions. 2746 auto *Callee = CI->getCalledFunction(); 2747 if (!Callee) 2748 return false; 2749 2750 // Lower all default uses of _chk calls. This is very similar 2751 // to what InstCombineCalls does, but here we are only lowering calls 2752 // to fortified library functions (e.g. __memcpy_chk) that have the default 2753 // "don't know" as the objectsize. Anything else should be left alone. 2754 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2755 IRBuilder<> Builder(CI); 2756 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2757 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); 2758 CI->eraseFromParent(); 2759 return true; 2760 } 2761 2762 // SCCP may have propagated, among other things, C++ static variables across 2763 // calls. If this happens to be the case, we may want to undo it in order to 2764 // avoid redundant pointer computation of the constant, as the function method 2765 // returning the constant needs to be executed anyways. 2766 auto GetUniformReturnValue = [](const Function *F) -> GlobalVariable * { 2767 if (!F->getReturnType()->isPointerTy()) 2768 return nullptr; 2769 2770 GlobalVariable *UniformValue = nullptr; 2771 for (auto &BB : *F) { 2772 if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { 2773 if (auto *V = dyn_cast<GlobalVariable>(RI->getReturnValue())) { 2774 if (!UniformValue) 2775 UniformValue = V; 2776 else if (V != UniformValue) 2777 return nullptr; 2778 } else { 2779 return nullptr; 2780 } 2781 } 2782 } 2783 2784 return UniformValue; 2785 }; 2786 2787 if (Callee->hasExactDefinition()) { 2788 if (GlobalVariable *RV = GetUniformReturnValue(Callee)) { 2789 bool MadeChange = false; 2790 for (Use &U : make_early_inc_range(RV->uses())) { 2791 auto *I = dyn_cast<Instruction>(U.getUser()); 2792 if (!I || I->getParent() != CI->getParent()) { 2793 // Limit to the same basic block to avoid extending the call-site live 2794 // range, which otherwise could increase register pressure. 2795 continue; 2796 } 2797 if (CI->comesBefore(I)) { 2798 U.set(CI); 2799 MadeChange = true; 2800 } 2801 } 2802 2803 return MadeChange; 2804 } 2805 } 2806 2807 return false; 2808 } 2809 2810 static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo, 2811 const CallInst *CI) { 2812 assert(CI && CI->use_empty()); 2813 2814 if (const auto *II = dyn_cast<IntrinsicInst>(CI)) 2815 switch (II->getIntrinsicID()) { 2816 case Intrinsic::memset: 2817 case Intrinsic::memcpy: 2818 case Intrinsic::memmove: 2819 return true; 2820 default: 2821 return false; 2822 } 2823 2824 LibFunc LF; 2825 Function *Callee = CI->getCalledFunction(); 2826 if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF)) 2827 switch (LF) { 2828 case LibFunc_strcpy: 2829 case LibFunc_strncpy: 2830 case LibFunc_strcat: 2831 case LibFunc_strncat: 2832 return true; 2833 default: 2834 return false; 2835 } 2836 2837 return false; 2838 } 2839 2840 /// Look for opportunities to duplicate return instructions to the predecessor 2841 /// to enable tail call optimizations. The case it is currently looking for is 2842 /// the following one. Known intrinsics or library function that may be tail 2843 /// called are taken into account as well. 2844 /// @code 2845 /// bb0: 2846 /// %tmp0 = tail call i32 @f0() 2847 /// br label %return 2848 /// bb1: 2849 /// %tmp1 = tail call i32 @f1() 2850 /// br label %return 2851 /// bb2: 2852 /// %tmp2 = tail call i32 @f2() 2853 /// br label %return 2854 /// return: 2855 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2856 /// ret i32 %retval 2857 /// @endcode 2858 /// 2859 /// => 2860 /// 2861 /// @code 2862 /// bb0: 2863 /// %tmp0 = tail call i32 @f0() 2864 /// ret i32 %tmp0 2865 /// bb1: 2866 /// %tmp1 = tail call i32 @f1() 2867 /// ret i32 %tmp1 2868 /// bb2: 2869 /// %tmp2 = tail call i32 @f2() 2870 /// ret i32 %tmp2 2871 /// @endcode 2872 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, 2873 ModifyDT &ModifiedDT) { 2874 if (!BB->getTerminator()) 2875 return false; 2876 2877 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2878 if (!RetI) 2879 return false; 2880 2881 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop"); 2882 2883 PHINode *PN = nullptr; 2884 ExtractValueInst *EVI = nullptr; 2885 BitCastInst *BCI = nullptr; 2886 Value *V = RetI->getReturnValue(); 2887 if (V) { 2888 BCI = dyn_cast<BitCastInst>(V); 2889 if (BCI) 2890 V = BCI->getOperand(0); 2891 2892 EVI = dyn_cast<ExtractValueInst>(V); 2893 if (EVI) { 2894 V = EVI->getOperand(0); 2895 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2896 return false; 2897 } 2898 2899 PN = dyn_cast<PHINode>(V); 2900 } 2901 2902 if (PN && PN->getParent() != BB) 2903 return false; 2904 2905 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2906 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2907 if (BC && BC->hasOneUse()) 2908 Inst = BC->user_back(); 2909 2910 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2911 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2912 return false; 2913 }; 2914 2915 SmallVector<const IntrinsicInst *, 4> FakeUses; 2916 2917 auto isFakeUse = [&FakeUses](const Instruction *Inst) { 2918 if (auto *II = dyn_cast<IntrinsicInst>(Inst); 2919 II && II->getIntrinsicID() == Intrinsic::fake_use) { 2920 // Record the instruction so it can be preserved when the exit block is 2921 // removed. Do not preserve the fake use that uses the result of the 2922 // PHI instruction. 2923 // Do not copy fake uses that use the result of a PHI node. 2924 // FIXME: If we do want to copy the fake use into the return blocks, we 2925 // have to figure out which of the PHI node operands to use for each 2926 // copy. 2927 if (!isa<PHINode>(II->getOperand(0))) { 2928 FakeUses.push_back(II); 2929 } 2930 return true; 2931 } 2932 2933 return false; 2934 }; 2935 2936 // Make sure there are no instructions between the first instruction 2937 // and return. 2938 BasicBlock::const_iterator BI = BB->getFirstNonPHIIt(); 2939 // Skip over debug and the bitcast. 2940 while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI || 2941 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(&*BI) || 2942 isFakeUse(&*BI)) 2943 BI = std::next(BI); 2944 if (&*BI != RetI) 2945 return false; 2946 2947 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2948 /// call. 2949 const Function *F = BB->getParent(); 2950 SmallVector<BasicBlock *, 4> TailCallBBs; 2951 // Record the call instructions so we can insert any fake uses 2952 // that need to be preserved before them. 2953 SmallVector<CallInst *, 4> CallInsts; 2954 if (PN) { 2955 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2956 // Look through bitcasts. 2957 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2958 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2959 BasicBlock *PredBB = PN->getIncomingBlock(I); 2960 // Make sure the phi value is indeed produced by the tail call. 2961 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2962 TLI->mayBeEmittedAsTailCall(CI) && 2963 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2964 TailCallBBs.push_back(PredBB); 2965 CallInsts.push_back(CI); 2966 } else { 2967 // Consider the cases in which the phi value is indirectly produced by 2968 // the tail call, for example when encountering memset(), memmove(), 2969 // strcpy(), whose return value may have been optimized out. In such 2970 // cases, the value needs to be the first function argument. 2971 // 2972 // bb0: 2973 // tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1) 2974 // br label %return 2975 // return: 2976 // %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ] 2977 if (PredBB && PredBB->getSingleSuccessor() == BB) 2978 CI = dyn_cast_or_null<CallInst>( 2979 PredBB->getTerminator()->getPrevNonDebugInstruction(true)); 2980 2981 if (CI && CI->use_empty() && 2982 isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2983 IncomingVal == CI->getArgOperand(0) && 2984 TLI->mayBeEmittedAsTailCall(CI) && 2985 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2986 TailCallBBs.push_back(PredBB); 2987 CallInsts.push_back(CI); 2988 } 2989 } 2990 } 2991 } else { 2992 SmallPtrSet<BasicBlock *, 4> VisitedBBs; 2993 for (BasicBlock *Pred : predecessors(BB)) { 2994 if (!VisitedBBs.insert(Pred).second) 2995 continue; 2996 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2997 CallInst *CI = dyn_cast<CallInst>(I); 2998 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2999 attributesPermitTailCall(F, CI, RetI, *TLI)) { 3000 // Either we return void or the return value must be the first 3001 // argument of a known intrinsic or library function. 3002 if (!V || isa<UndefValue>(V) || 3003 (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 3004 V == CI->getArgOperand(0))) { 3005 TailCallBBs.push_back(Pred); 3006 CallInsts.push_back(CI); 3007 } 3008 } 3009 } 3010 } 3011 } 3012 3013 bool Changed = false; 3014 for (auto const &TailCallBB : TailCallBBs) { 3015 // Make sure the call instruction is followed by an unconditional branch to 3016 // the return block. 3017 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 3018 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 3019 continue; 3020 3021 // Duplicate the return into TailCallBB. 3022 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 3023 assert(!VerifyBFIUpdates || 3024 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 3025 BFI->setBlockFreq(BB, 3026 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB))); 3027 ModifiedDT = ModifyDT::ModifyBBDT; 3028 Changed = true; 3029 ++NumRetsDup; 3030 } 3031 3032 // If we eliminated all predecessors of the block, delete the block now. 3033 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) { 3034 // Copy the fake uses found in the original return block to all blocks 3035 // that contain tail calls. 3036 for (auto *CI : CallInsts) { 3037 for (auto const *FakeUse : FakeUses) { 3038 auto *ClonedInst = FakeUse->clone(); 3039 ClonedInst->insertBefore(CI->getIterator()); 3040 } 3041 } 3042 BB->eraseFromParent(); 3043 } 3044 3045 return Changed; 3046 } 3047 3048 //===----------------------------------------------------------------------===// 3049 // Memory Optimization 3050 //===----------------------------------------------------------------------===// 3051 3052 namespace { 3053 3054 /// This is an extended version of TargetLowering::AddrMode 3055 /// which holds actual Value*'s for register values. 3056 struct ExtAddrMode : public TargetLowering::AddrMode { 3057 Value *BaseReg = nullptr; 3058 Value *ScaledReg = nullptr; 3059 Value *OriginalValue = nullptr; 3060 bool InBounds = true; 3061 3062 enum FieldName { 3063 NoField = 0x00, 3064 BaseRegField = 0x01, 3065 BaseGVField = 0x02, 3066 BaseOffsField = 0x04, 3067 ScaledRegField = 0x08, 3068 ScaleField = 0x10, 3069 MultipleFields = 0xff 3070 }; 3071 3072 ExtAddrMode() = default; 3073 3074 void print(raw_ostream &OS) const; 3075 void dump() const; 3076 3077 FieldName compare(const ExtAddrMode &other) { 3078 // First check that the types are the same on each field, as differing types 3079 // is something we can't cope with later on. 3080 if (BaseReg && other.BaseReg && 3081 BaseReg->getType() != other.BaseReg->getType()) 3082 return MultipleFields; 3083 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) 3084 return MultipleFields; 3085 if (ScaledReg && other.ScaledReg && 3086 ScaledReg->getType() != other.ScaledReg->getType()) 3087 return MultipleFields; 3088 3089 // Conservatively reject 'inbounds' mismatches. 3090 if (InBounds != other.InBounds) 3091 return MultipleFields; 3092 3093 // Check each field to see if it differs. 3094 unsigned Result = NoField; 3095 if (BaseReg != other.BaseReg) 3096 Result |= BaseRegField; 3097 if (BaseGV != other.BaseGV) 3098 Result |= BaseGVField; 3099 if (BaseOffs != other.BaseOffs) 3100 Result |= BaseOffsField; 3101 if (ScaledReg != other.ScaledReg) 3102 Result |= ScaledRegField; 3103 // Don't count 0 as being a different scale, because that actually means 3104 // unscaled (which will already be counted by having no ScaledReg). 3105 if (Scale && other.Scale && Scale != other.Scale) 3106 Result |= ScaleField; 3107 3108 if (llvm::popcount(Result) > 1) 3109 return MultipleFields; 3110 else 3111 return static_cast<FieldName>(Result); 3112 } 3113 3114 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 3115 // with no offset. 3116 bool isTrivial() { 3117 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 3118 // trivial if at most one of these terms is nonzero, except that BaseGV and 3119 // BaseReg both being zero actually means a null pointer value, which we 3120 // consider to be 'non-zero' here. 3121 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 3122 } 3123 3124 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 3125 switch (Field) { 3126 default: 3127 return nullptr; 3128 case BaseRegField: 3129 return BaseReg; 3130 case BaseGVField: 3131 return BaseGV; 3132 case ScaledRegField: 3133 return ScaledReg; 3134 case BaseOffsField: 3135 return ConstantInt::get(IntPtrTy, BaseOffs); 3136 } 3137 } 3138 3139 void SetCombinedField(FieldName Field, Value *V, 3140 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 3141 switch (Field) { 3142 default: 3143 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 3144 break; 3145 case ExtAddrMode::BaseRegField: 3146 BaseReg = V; 3147 break; 3148 case ExtAddrMode::BaseGVField: 3149 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 3150 // in the BaseReg field. 3151 assert(BaseReg == nullptr); 3152 BaseReg = V; 3153 BaseGV = nullptr; 3154 break; 3155 case ExtAddrMode::ScaledRegField: 3156 ScaledReg = V; 3157 // If we have a mix of scaled and unscaled addrmodes then we want scale 3158 // to be the scale and not zero. 3159 if (!Scale) 3160 for (const ExtAddrMode &AM : AddrModes) 3161 if (AM.Scale) { 3162 Scale = AM.Scale; 3163 break; 3164 } 3165 break; 3166 case ExtAddrMode::BaseOffsField: 3167 // The offset is no longer a constant, so it goes in ScaledReg with a 3168 // scale of 1. 3169 assert(ScaledReg == nullptr); 3170 ScaledReg = V; 3171 Scale = 1; 3172 BaseOffs = 0; 3173 break; 3174 } 3175 } 3176 }; 3177 3178 #ifndef NDEBUG 3179 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 3180 AM.print(OS); 3181 return OS; 3182 } 3183 #endif 3184 3185 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3186 void ExtAddrMode::print(raw_ostream &OS) const { 3187 bool NeedPlus = false; 3188 OS << "["; 3189 if (InBounds) 3190 OS << "inbounds "; 3191 if (BaseGV) { 3192 OS << "GV:"; 3193 BaseGV->printAsOperand(OS, /*PrintType=*/false); 3194 NeedPlus = true; 3195 } 3196 3197 if (BaseOffs) { 3198 OS << (NeedPlus ? " + " : "") << BaseOffs; 3199 NeedPlus = true; 3200 } 3201 3202 if (BaseReg) { 3203 OS << (NeedPlus ? " + " : "") << "Base:"; 3204 BaseReg->printAsOperand(OS, /*PrintType=*/false); 3205 NeedPlus = true; 3206 } 3207 if (Scale) { 3208 OS << (NeedPlus ? " + " : "") << Scale << "*"; 3209 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 3210 } 3211 3212 OS << ']'; 3213 } 3214 3215 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 3216 print(dbgs()); 3217 dbgs() << '\n'; 3218 } 3219 #endif 3220 3221 } // end anonymous namespace 3222 3223 namespace { 3224 3225 /// This class provides transaction based operation on the IR. 3226 /// Every change made through this class is recorded in the internal state and 3227 /// can be undone (rollback) until commit is called. 3228 /// CGP does not check if instructions could be speculatively executed when 3229 /// moved. Preserving the original location would pessimize the debugging 3230 /// experience, as well as negatively impact the quality of sample PGO. 3231 class TypePromotionTransaction { 3232 /// This represents the common interface of the individual transaction. 3233 /// Each class implements the logic for doing one specific modification on 3234 /// the IR via the TypePromotionTransaction. 3235 class TypePromotionAction { 3236 protected: 3237 /// The Instruction modified. 3238 Instruction *Inst; 3239 3240 public: 3241 /// Constructor of the action. 3242 /// The constructor performs the related action on the IR. 3243 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 3244 3245 virtual ~TypePromotionAction() = default; 3246 3247 /// Undo the modification done by this action. 3248 /// When this method is called, the IR must be in the same state as it was 3249 /// before this action was applied. 3250 /// \pre Undoing the action works if and only if the IR is in the exact same 3251 /// state as it was directly after this action was applied. 3252 virtual void undo() = 0; 3253 3254 /// Advocate every change made by this action. 3255 /// When the results on the IR of the action are to be kept, it is important 3256 /// to call this function, otherwise hidden information may be kept forever. 3257 virtual void commit() { 3258 // Nothing to be done, this action is not doing anything. 3259 } 3260 }; 3261 3262 /// Utility to remember the position of an instruction. 3263 class InsertionHandler { 3264 /// Position of an instruction. 3265 /// Either an instruction: 3266 /// - Is the first in a basic block: BB is used. 3267 /// - Has a previous instruction: PrevInst is used. 3268 struct { 3269 BasicBlock::iterator PrevInst; 3270 BasicBlock *BB; 3271 } Point; 3272 std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt; 3273 3274 /// Remember whether or not the instruction had a previous instruction. 3275 bool HasPrevInstruction; 3276 3277 public: 3278 /// Record the position of \p Inst. 3279 InsertionHandler(Instruction *Inst) { 3280 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin())); 3281 BasicBlock *BB = Inst->getParent(); 3282 3283 // Record where we would have to re-insert the instruction in the sequence 3284 // of DbgRecords, if we ended up reinserting. 3285 if (BB->IsNewDbgInfoFormat) 3286 BeforeDbgRecord = Inst->getDbgReinsertionPosition(); 3287 3288 if (HasPrevInstruction) { 3289 Point.PrevInst = std::prev(Inst->getIterator()); 3290 } else { 3291 Point.BB = BB; 3292 } 3293 } 3294 3295 /// Insert \p Inst at the recorded position. 3296 void insert(Instruction *Inst) { 3297 if (HasPrevInstruction) { 3298 if (Inst->getParent()) 3299 Inst->removeFromParent(); 3300 Inst->insertAfter(Point.PrevInst); 3301 } else { 3302 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt(); 3303 if (Inst->getParent()) 3304 Inst->moveBefore(*Point.BB, Position); 3305 else 3306 Inst->insertBefore(*Point.BB, Position); 3307 } 3308 3309 Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord); 3310 } 3311 }; 3312 3313 /// Move an instruction before another. 3314 class InstructionMoveBefore : public TypePromotionAction { 3315 /// Original position of the instruction. 3316 InsertionHandler Position; 3317 3318 public: 3319 /// Move \p Inst before \p Before. 3320 InstructionMoveBefore(Instruction *Inst, BasicBlock::iterator Before) 3321 : TypePromotionAction(Inst), Position(Inst) { 3322 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 3323 << "\n"); 3324 Inst->moveBefore(Before); 3325 } 3326 3327 /// Move the instruction back to its original position. 3328 void undo() override { 3329 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 3330 Position.insert(Inst); 3331 } 3332 }; 3333 3334 /// Set the operand of an instruction with a new value. 3335 class OperandSetter : public TypePromotionAction { 3336 /// Original operand of the instruction. 3337 Value *Origin; 3338 3339 /// Index of the modified instruction. 3340 unsigned Idx; 3341 3342 public: 3343 /// Set \p Idx operand of \p Inst with \p NewVal. 3344 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 3345 : TypePromotionAction(Inst), Idx(Idx) { 3346 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 3347 << "for:" << *Inst << "\n" 3348 << "with:" << *NewVal << "\n"); 3349 Origin = Inst->getOperand(Idx); 3350 Inst->setOperand(Idx, NewVal); 3351 } 3352 3353 /// Restore the original value of the instruction. 3354 void undo() override { 3355 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 3356 << "for: " << *Inst << "\n" 3357 << "with: " << *Origin << "\n"); 3358 Inst->setOperand(Idx, Origin); 3359 } 3360 }; 3361 3362 /// Hide the operands of an instruction. 3363 /// Do as if this instruction was not using any of its operands. 3364 class OperandsHider : public TypePromotionAction { 3365 /// The list of original operands. 3366 SmallVector<Value *, 4> OriginalValues; 3367 3368 public: 3369 /// Remove \p Inst from the uses of the operands of \p Inst. 3370 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 3371 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 3372 unsigned NumOpnds = Inst->getNumOperands(); 3373 OriginalValues.reserve(NumOpnds); 3374 for (unsigned It = 0; It < NumOpnds; ++It) { 3375 // Save the current operand. 3376 Value *Val = Inst->getOperand(It); 3377 OriginalValues.push_back(Val); 3378 // Set a dummy one. 3379 // We could use OperandSetter here, but that would imply an overhead 3380 // that we are not willing to pay. 3381 Inst->setOperand(It, PoisonValue::get(Val->getType())); 3382 } 3383 } 3384 3385 /// Restore the original list of uses. 3386 void undo() override { 3387 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 3388 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 3389 Inst->setOperand(It, OriginalValues[It]); 3390 } 3391 }; 3392 3393 /// Build a truncate instruction. 3394 class TruncBuilder : public TypePromotionAction { 3395 Value *Val; 3396 3397 public: 3398 /// Build a truncate instruction of \p Opnd producing a \p Ty 3399 /// result. 3400 /// trunc Opnd to Ty. 3401 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 3402 IRBuilder<> Builder(Opnd); 3403 Builder.SetCurrentDebugLocation(DebugLoc()); 3404 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 3405 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 3406 } 3407 3408 /// Get the built value. 3409 Value *getBuiltValue() { return Val; } 3410 3411 /// Remove the built instruction. 3412 void undo() override { 3413 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 3414 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3415 IVal->eraseFromParent(); 3416 } 3417 }; 3418 3419 /// Build a sign extension instruction. 3420 class SExtBuilder : public TypePromotionAction { 3421 Value *Val; 3422 3423 public: 3424 /// Build a sign extension instruction of \p Opnd producing a \p Ty 3425 /// result. 3426 /// sext Opnd to Ty. 3427 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3428 : TypePromotionAction(InsertPt) { 3429 IRBuilder<> Builder(InsertPt); 3430 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 3431 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 3432 } 3433 3434 /// Get the built value. 3435 Value *getBuiltValue() { return Val; } 3436 3437 /// Remove the built instruction. 3438 void undo() override { 3439 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 3440 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3441 IVal->eraseFromParent(); 3442 } 3443 }; 3444 3445 /// Build a zero extension instruction. 3446 class ZExtBuilder : public TypePromotionAction { 3447 Value *Val; 3448 3449 public: 3450 /// Build a zero extension instruction of \p Opnd producing a \p Ty 3451 /// result. 3452 /// zext Opnd to Ty. 3453 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3454 : TypePromotionAction(InsertPt) { 3455 IRBuilder<> Builder(InsertPt); 3456 Builder.SetCurrentDebugLocation(DebugLoc()); 3457 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 3458 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 3459 } 3460 3461 /// Get the built value. 3462 Value *getBuiltValue() { return Val; } 3463 3464 /// Remove the built instruction. 3465 void undo() override { 3466 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 3467 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3468 IVal->eraseFromParent(); 3469 } 3470 }; 3471 3472 /// Mutate an instruction to another type. 3473 class TypeMutator : public TypePromotionAction { 3474 /// Record the original type. 3475 Type *OrigTy; 3476 3477 public: 3478 /// Mutate the type of \p Inst into \p NewTy. 3479 TypeMutator(Instruction *Inst, Type *NewTy) 3480 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 3481 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 3482 << "\n"); 3483 Inst->mutateType(NewTy); 3484 } 3485 3486 /// Mutate the instruction back to its original type. 3487 void undo() override { 3488 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 3489 << "\n"); 3490 Inst->mutateType(OrigTy); 3491 } 3492 }; 3493 3494 /// Replace the uses of an instruction by another instruction. 3495 class UsesReplacer : public TypePromotionAction { 3496 /// Helper structure to keep track of the replaced uses. 3497 struct InstructionAndIdx { 3498 /// The instruction using the instruction. 3499 Instruction *Inst; 3500 3501 /// The index where this instruction is used for Inst. 3502 unsigned Idx; 3503 3504 InstructionAndIdx(Instruction *Inst, unsigned Idx) 3505 : Inst(Inst), Idx(Idx) {} 3506 }; 3507 3508 /// Keep track of the original uses (pair Instruction, Index). 3509 SmallVector<InstructionAndIdx, 4> OriginalUses; 3510 /// Keep track of the debug users. 3511 SmallVector<DbgValueInst *, 1> DbgValues; 3512 /// And non-instruction debug-users too. 3513 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 3514 3515 /// Keep track of the new value so that we can undo it by replacing 3516 /// instances of the new value with the original value. 3517 Value *New; 3518 3519 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3520 3521 public: 3522 /// Replace all the use of \p Inst by \p New. 3523 UsesReplacer(Instruction *Inst, Value *New) 3524 : TypePromotionAction(Inst), New(New) { 3525 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3526 << "\n"); 3527 // Record the original uses. 3528 for (Use &U : Inst->uses()) { 3529 Instruction *UserI = cast<Instruction>(U.getUser()); 3530 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3531 } 3532 // Record the debug uses separately. They are not in the instruction's 3533 // use list, but they are replaced by RAUW. 3534 findDbgValues(DbgValues, Inst, &DbgVariableRecords); 3535 3536 // Now, we can replace the uses. 3537 Inst->replaceAllUsesWith(New); 3538 } 3539 3540 /// Reassign the original uses of Inst to Inst. 3541 void undo() override { 3542 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3543 for (InstructionAndIdx &Use : OriginalUses) 3544 Use.Inst->setOperand(Use.Idx, Inst); 3545 // RAUW has replaced all original uses with references to the new value, 3546 // including the debug uses. Since we are undoing the replacements, 3547 // the original debug uses must also be reinstated to maintain the 3548 // correctness and utility of debug value instructions. 3549 for (auto *DVI : DbgValues) 3550 DVI->replaceVariableLocationOp(New, Inst); 3551 // Similar story with DbgVariableRecords, the non-instruction 3552 // representation of dbg.values. 3553 for (DbgVariableRecord *DVR : DbgVariableRecords) 3554 DVR->replaceVariableLocationOp(New, Inst); 3555 } 3556 }; 3557 3558 /// Remove an instruction from the IR. 3559 class InstructionRemover : public TypePromotionAction { 3560 /// Original position of the instruction. 3561 InsertionHandler Inserter; 3562 3563 /// Helper structure to hide all the link to the instruction. In other 3564 /// words, this helps to do as if the instruction was removed. 3565 OperandsHider Hider; 3566 3567 /// Keep track of the uses replaced, if any. 3568 UsesReplacer *Replacer = nullptr; 3569 3570 /// Keep track of instructions removed. 3571 SetOfInstrs &RemovedInsts; 3572 3573 public: 3574 /// Remove all reference of \p Inst and optionally replace all its 3575 /// uses with New. 3576 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3577 /// \pre If !Inst->use_empty(), then New != nullptr 3578 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3579 Value *New = nullptr) 3580 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3581 RemovedInsts(RemovedInsts) { 3582 if (New) 3583 Replacer = new UsesReplacer(Inst, New); 3584 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3585 RemovedInsts.insert(Inst); 3586 /// The instructions removed here will be freed after completing 3587 /// optimizeBlock() for all blocks as we need to keep track of the 3588 /// removed instructions during promotion. 3589 Inst->removeFromParent(); 3590 } 3591 3592 ~InstructionRemover() override { delete Replacer; } 3593 3594 InstructionRemover &operator=(const InstructionRemover &other) = delete; 3595 InstructionRemover(const InstructionRemover &other) = delete; 3596 3597 /// Resurrect the instruction and reassign it to the proper uses if 3598 /// new value was provided when build this action. 3599 void undo() override { 3600 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3601 Inserter.insert(Inst); 3602 if (Replacer) 3603 Replacer->undo(); 3604 Hider.undo(); 3605 RemovedInsts.erase(Inst); 3606 } 3607 }; 3608 3609 public: 3610 /// Restoration point. 3611 /// The restoration point is a pointer to an action instead of an iterator 3612 /// because the iterator may be invalidated but not the pointer. 3613 using ConstRestorationPt = const TypePromotionAction *; 3614 3615 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3616 : RemovedInsts(RemovedInsts) {} 3617 3618 /// Advocate every changes made in that transaction. Return true if any change 3619 /// happen. 3620 bool commit(); 3621 3622 /// Undo all the changes made after the given point. 3623 void rollback(ConstRestorationPt Point); 3624 3625 /// Get the current restoration point. 3626 ConstRestorationPt getRestorationPoint() const; 3627 3628 /// \name API for IR modification with state keeping to support rollback. 3629 /// @{ 3630 /// Same as Instruction::setOperand. 3631 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3632 3633 /// Same as Instruction::eraseFromParent. 3634 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3635 3636 /// Same as Value::replaceAllUsesWith. 3637 void replaceAllUsesWith(Instruction *Inst, Value *New); 3638 3639 /// Same as Value::mutateType. 3640 void mutateType(Instruction *Inst, Type *NewTy); 3641 3642 /// Same as IRBuilder::createTrunc. 3643 Value *createTrunc(Instruction *Opnd, Type *Ty); 3644 3645 /// Same as IRBuilder::createSExt. 3646 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3647 3648 /// Same as IRBuilder::createZExt. 3649 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3650 3651 private: 3652 /// The ordered list of actions made so far. 3653 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3654 3655 using CommitPt = 3656 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3657 3658 SetOfInstrs &RemovedInsts; 3659 }; 3660 3661 } // end anonymous namespace 3662 3663 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3664 Value *NewVal) { 3665 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3666 Inst, Idx, NewVal)); 3667 } 3668 3669 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3670 Value *NewVal) { 3671 Actions.push_back( 3672 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3673 Inst, RemovedInsts, NewVal)); 3674 } 3675 3676 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3677 Value *New) { 3678 Actions.push_back( 3679 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3680 } 3681 3682 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3683 Actions.push_back( 3684 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3685 } 3686 3687 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { 3688 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3689 Value *Val = Ptr->getBuiltValue(); 3690 Actions.push_back(std::move(Ptr)); 3691 return Val; 3692 } 3693 3694 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, 3695 Type *Ty) { 3696 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3697 Value *Val = Ptr->getBuiltValue(); 3698 Actions.push_back(std::move(Ptr)); 3699 return Val; 3700 } 3701 3702 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, 3703 Type *Ty) { 3704 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3705 Value *Val = Ptr->getBuiltValue(); 3706 Actions.push_back(std::move(Ptr)); 3707 return Val; 3708 } 3709 3710 TypePromotionTransaction::ConstRestorationPt 3711 TypePromotionTransaction::getRestorationPoint() const { 3712 return !Actions.empty() ? Actions.back().get() : nullptr; 3713 } 3714 3715 bool TypePromotionTransaction::commit() { 3716 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3717 Action->commit(); 3718 bool Modified = !Actions.empty(); 3719 Actions.clear(); 3720 return Modified; 3721 } 3722 3723 void TypePromotionTransaction::rollback( 3724 TypePromotionTransaction::ConstRestorationPt Point) { 3725 while (!Actions.empty() && Point != Actions.back().get()) { 3726 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3727 Curr->undo(); 3728 } 3729 } 3730 3731 namespace { 3732 3733 /// A helper class for matching addressing modes. 3734 /// 3735 /// This encapsulates the logic for matching the target-legal addressing modes. 3736 class AddressingModeMatcher { 3737 SmallVectorImpl<Instruction *> &AddrModeInsts; 3738 const TargetLowering &TLI; 3739 const TargetRegisterInfo &TRI; 3740 const DataLayout &DL; 3741 const LoopInfo &LI; 3742 const std::function<const DominatorTree &()> getDTFn; 3743 3744 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3745 /// the memory instruction that we're computing this address for. 3746 Type *AccessTy; 3747 unsigned AddrSpace; 3748 Instruction *MemoryInst; 3749 3750 /// This is the addressing mode that we're building up. This is 3751 /// part of the return value of this addressing mode matching stuff. 3752 ExtAddrMode &AddrMode; 3753 3754 /// The instructions inserted by other CodeGenPrepare optimizations. 3755 const SetOfInstrs &InsertedInsts; 3756 3757 /// A map from the instructions to their type before promotion. 3758 InstrToOrigTy &PromotedInsts; 3759 3760 /// The ongoing transaction where every action should be registered. 3761 TypePromotionTransaction &TPT; 3762 3763 // A GEP which has too large offset to be folded into the addressing mode. 3764 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3765 3766 /// This is set to true when we should not do profitability checks. 3767 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3768 bool IgnoreProfitability; 3769 3770 /// True if we are optimizing for size. 3771 bool OptSize = false; 3772 3773 ProfileSummaryInfo *PSI; 3774 BlockFrequencyInfo *BFI; 3775 3776 AddressingModeMatcher( 3777 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3778 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3779 const std::function<const DominatorTree &()> getDTFn, Type *AT, 3780 unsigned AS, Instruction *MI, ExtAddrMode &AM, 3781 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3782 TypePromotionTransaction &TPT, 3783 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3784 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3785 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3786 DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn), 3787 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3788 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3789 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3790 IgnoreProfitability = false; 3791 } 3792 3793 public: 3794 /// Find the maximal addressing mode that a load/store of V can fold, 3795 /// give an access type of AccessTy. This returns a list of involved 3796 /// instructions in AddrModeInsts. 3797 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3798 /// optimizations. 3799 /// \p PromotedInsts maps the instructions to their type before promotion. 3800 /// \p The ongoing transaction where every action should be registered. 3801 static ExtAddrMode 3802 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3803 SmallVectorImpl<Instruction *> &AddrModeInsts, 3804 const TargetLowering &TLI, const LoopInfo &LI, 3805 const std::function<const DominatorTree &()> getDTFn, 3806 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3807 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3808 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3809 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3810 ExtAddrMode Result; 3811 3812 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, 3813 AccessTy, AS, MemoryInst, Result, 3814 InsertedInsts, PromotedInsts, TPT, 3815 LargeOffsetGEP, OptSize, PSI, BFI) 3816 .matchAddr(V, 0); 3817 (void)Success; 3818 assert(Success && "Couldn't select *anything*?"); 3819 return Result; 3820 } 3821 3822 private: 3823 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3824 bool matchAddr(Value *Addr, unsigned Depth); 3825 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3826 bool *MovedAway = nullptr); 3827 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3828 ExtAddrMode &AMBefore, 3829 ExtAddrMode &AMAfter); 3830 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3831 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3832 Value *PromotedOperand) const; 3833 }; 3834 3835 class PhiNodeSet; 3836 3837 /// An iterator for PhiNodeSet. 3838 class PhiNodeSetIterator { 3839 PhiNodeSet *const Set; 3840 size_t CurrentIndex = 0; 3841 3842 public: 3843 /// The constructor. Start should point to either a valid element, or be equal 3844 /// to the size of the underlying SmallVector of the PhiNodeSet. 3845 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); 3846 PHINode *operator*() const; 3847 PhiNodeSetIterator &operator++(); 3848 bool operator==(const PhiNodeSetIterator &RHS) const; 3849 bool operator!=(const PhiNodeSetIterator &RHS) const; 3850 }; 3851 3852 /// Keeps a set of PHINodes. 3853 /// 3854 /// This is a minimal set implementation for a specific use case: 3855 /// It is very fast when there are very few elements, but also provides good 3856 /// performance when there are many. It is similar to SmallPtrSet, but also 3857 /// provides iteration by insertion order, which is deterministic and stable 3858 /// across runs. It is also similar to SmallSetVector, but provides removing 3859 /// elements in O(1) time. This is achieved by not actually removing the element 3860 /// from the underlying vector, so comes at the cost of using more memory, but 3861 /// that is fine, since PhiNodeSets are used as short lived objects. 3862 class PhiNodeSet { 3863 friend class PhiNodeSetIterator; 3864 3865 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3866 using iterator = PhiNodeSetIterator; 3867 3868 /// Keeps the elements in the order of their insertion in the underlying 3869 /// vector. To achieve constant time removal, it never deletes any element. 3870 SmallVector<PHINode *, 32> NodeList; 3871 3872 /// Keeps the elements in the underlying set implementation. This (and not the 3873 /// NodeList defined above) is the source of truth on whether an element 3874 /// is actually in the collection. 3875 MapType NodeMap; 3876 3877 /// Points to the first valid (not deleted) element when the set is not empty 3878 /// and the value is not zero. Equals to the size of the underlying vector 3879 /// when the set is empty. When the value is 0, as in the beginning, the 3880 /// first element may or may not be valid. 3881 size_t FirstValidElement = 0; 3882 3883 public: 3884 /// Inserts a new element to the collection. 3885 /// \returns true if the element is actually added, i.e. was not in the 3886 /// collection before the operation. 3887 bool insert(PHINode *Ptr) { 3888 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3889 NodeList.push_back(Ptr); 3890 return true; 3891 } 3892 return false; 3893 } 3894 3895 /// Removes the element from the collection. 3896 /// \returns whether the element is actually removed, i.e. was in the 3897 /// collection before the operation. 3898 bool erase(PHINode *Ptr) { 3899 if (NodeMap.erase(Ptr)) { 3900 SkipRemovedElements(FirstValidElement); 3901 return true; 3902 } 3903 return false; 3904 } 3905 3906 /// Removes all elements and clears the collection. 3907 void clear() { 3908 NodeMap.clear(); 3909 NodeList.clear(); 3910 FirstValidElement = 0; 3911 } 3912 3913 /// \returns an iterator that will iterate the elements in the order of 3914 /// insertion. 3915 iterator begin() { 3916 if (FirstValidElement == 0) 3917 SkipRemovedElements(FirstValidElement); 3918 return PhiNodeSetIterator(this, FirstValidElement); 3919 } 3920 3921 /// \returns an iterator that points to the end of the collection. 3922 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3923 3924 /// Returns the number of elements in the collection. 3925 size_t size() const { return NodeMap.size(); } 3926 3927 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3928 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } 3929 3930 private: 3931 /// Updates the CurrentIndex so that it will point to a valid element. 3932 /// 3933 /// If the element of NodeList at CurrentIndex is valid, it does not 3934 /// change it. If there are no more valid elements, it updates CurrentIndex 3935 /// to point to the end of the NodeList. 3936 void SkipRemovedElements(size_t &CurrentIndex) { 3937 while (CurrentIndex < NodeList.size()) { 3938 auto it = NodeMap.find(NodeList[CurrentIndex]); 3939 // If the element has been deleted and added again later, NodeMap will 3940 // point to a different index, so CurrentIndex will still be invalid. 3941 if (it != NodeMap.end() && it->second == CurrentIndex) 3942 break; 3943 ++CurrentIndex; 3944 } 3945 } 3946 }; 3947 3948 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3949 : Set(Set), CurrentIndex(Start) {} 3950 3951 PHINode *PhiNodeSetIterator::operator*() const { 3952 assert(CurrentIndex < Set->NodeList.size() && 3953 "PhiNodeSet access out of range"); 3954 return Set->NodeList[CurrentIndex]; 3955 } 3956 3957 PhiNodeSetIterator &PhiNodeSetIterator::operator++() { 3958 assert(CurrentIndex < Set->NodeList.size() && 3959 "PhiNodeSet access out of range"); 3960 ++CurrentIndex; 3961 Set->SkipRemovedElements(CurrentIndex); 3962 return *this; 3963 } 3964 3965 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3966 return CurrentIndex == RHS.CurrentIndex; 3967 } 3968 3969 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3970 return !((*this) == RHS); 3971 } 3972 3973 /// Keep track of simplification of Phi nodes. 3974 /// Accept the set of all phi nodes and erase phi node from this set 3975 /// if it is simplified. 3976 class SimplificationTracker { 3977 DenseMap<Value *, Value *> Storage; 3978 const SimplifyQuery &SQ; 3979 // Tracks newly created Phi nodes. The elements are iterated by insertion 3980 // order. 3981 PhiNodeSet AllPhiNodes; 3982 // Tracks newly created Select nodes. 3983 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3984 3985 public: 3986 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} 3987 3988 Value *Get(Value *V) { 3989 do { 3990 auto SV = Storage.find(V); 3991 if (SV == Storage.end()) 3992 return V; 3993 V = SV->second; 3994 } while (true); 3995 } 3996 3997 Value *Simplify(Value *Val) { 3998 SmallVector<Value *, 32> WorkList; 3999 SmallPtrSet<Value *, 32> Visited; 4000 WorkList.push_back(Val); 4001 while (!WorkList.empty()) { 4002 auto *P = WorkList.pop_back_val(); 4003 if (!Visited.insert(P).second) 4004 continue; 4005 if (auto *PI = dyn_cast<Instruction>(P)) 4006 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 4007 for (auto *U : PI->users()) 4008 WorkList.push_back(cast<Value>(U)); 4009 Put(PI, V); 4010 PI->replaceAllUsesWith(V); 4011 if (auto *PHI = dyn_cast<PHINode>(PI)) 4012 AllPhiNodes.erase(PHI); 4013 if (auto *Select = dyn_cast<SelectInst>(PI)) 4014 AllSelectNodes.erase(Select); 4015 PI->eraseFromParent(); 4016 } 4017 } 4018 return Get(Val); 4019 } 4020 4021 void Put(Value *From, Value *To) { Storage.insert({From, To}); } 4022 4023 void ReplacePhi(PHINode *From, PHINode *To) { 4024 Value *OldReplacement = Get(From); 4025 while (OldReplacement != From) { 4026 From = To; 4027 To = dyn_cast<PHINode>(OldReplacement); 4028 OldReplacement = Get(From); 4029 } 4030 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 4031 Put(From, To); 4032 From->replaceAllUsesWith(To); 4033 AllPhiNodes.erase(From); 4034 From->eraseFromParent(); 4035 } 4036 4037 PhiNodeSet &newPhiNodes() { return AllPhiNodes; } 4038 4039 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 4040 4041 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 4042 4043 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 4044 4045 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 4046 4047 void destroyNewNodes(Type *CommonType) { 4048 // For safe erasing, replace the uses with dummy value first. 4049 auto *Dummy = PoisonValue::get(CommonType); 4050 for (auto *I : AllPhiNodes) { 4051 I->replaceAllUsesWith(Dummy); 4052 I->eraseFromParent(); 4053 } 4054 AllPhiNodes.clear(); 4055 for (auto *I : AllSelectNodes) { 4056 I->replaceAllUsesWith(Dummy); 4057 I->eraseFromParent(); 4058 } 4059 AllSelectNodes.clear(); 4060 } 4061 }; 4062 4063 /// A helper class for combining addressing modes. 4064 class AddressingModeCombiner { 4065 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 4066 typedef std::pair<PHINode *, PHINode *> PHIPair; 4067 4068 private: 4069 /// The addressing modes we've collected. 4070 SmallVector<ExtAddrMode, 16> AddrModes; 4071 4072 /// The field in which the AddrModes differ, when we have more than one. 4073 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 4074 4075 /// Are the AddrModes that we have all just equal to their original values? 4076 bool AllAddrModesTrivial = true; 4077 4078 /// Common Type for all different fields in addressing modes. 4079 Type *CommonType = nullptr; 4080 4081 /// SimplifyQuery for simplifyInstruction utility. 4082 const SimplifyQuery &SQ; 4083 4084 /// Original Address. 4085 Value *Original; 4086 4087 /// Common value among addresses 4088 Value *CommonValue = nullptr; 4089 4090 public: 4091 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 4092 : SQ(_SQ), Original(OriginalValue) {} 4093 4094 ~AddressingModeCombiner() { eraseCommonValueIfDead(); } 4095 4096 /// Get the combined AddrMode 4097 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } 4098 4099 /// Add a new AddrMode if it's compatible with the AddrModes we already 4100 /// have. 4101 /// \return True iff we succeeded in doing so. 4102 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 4103 // Take note of if we have any non-trivial AddrModes, as we need to detect 4104 // when all AddrModes are trivial as then we would introduce a phi or select 4105 // which just duplicates what's already there. 4106 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 4107 4108 // If this is the first addrmode then everything is fine. 4109 if (AddrModes.empty()) { 4110 AddrModes.emplace_back(NewAddrMode); 4111 return true; 4112 } 4113 4114 // Figure out how different this is from the other address modes, which we 4115 // can do just by comparing against the first one given that we only care 4116 // about the cumulative difference. 4117 ExtAddrMode::FieldName ThisDifferentField = 4118 AddrModes[0].compare(NewAddrMode); 4119 if (DifferentField == ExtAddrMode::NoField) 4120 DifferentField = ThisDifferentField; 4121 else if (DifferentField != ThisDifferentField) 4122 DifferentField = ExtAddrMode::MultipleFields; 4123 4124 // If NewAddrMode differs in more than one dimension we cannot handle it. 4125 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 4126 4127 // If Scale Field is different then we reject. 4128 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 4129 4130 // We also must reject the case when base offset is different and 4131 // scale reg is not null, we cannot handle this case due to merge of 4132 // different offsets will be used as ScaleReg. 4133 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 4134 !NewAddrMode.ScaledReg); 4135 4136 // We also must reject the case when GV is different and BaseReg installed 4137 // due to we want to use base reg as a merge of GV values. 4138 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 4139 !NewAddrMode.HasBaseReg); 4140 4141 // Even if NewAddMode is the same we still need to collect it due to 4142 // original value is different. And later we will need all original values 4143 // as anchors during finding the common Phi node. 4144 if (CanHandle) 4145 AddrModes.emplace_back(NewAddrMode); 4146 else 4147 AddrModes.clear(); 4148 4149 return CanHandle; 4150 } 4151 4152 /// Combine the addressing modes we've collected into a single 4153 /// addressing mode. 4154 /// \return True iff we successfully combined them or we only had one so 4155 /// didn't need to combine them anyway. 4156 bool combineAddrModes() { 4157 // If we have no AddrModes then they can't be combined. 4158 if (AddrModes.size() == 0) 4159 return false; 4160 4161 // A single AddrMode can trivially be combined. 4162 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 4163 return true; 4164 4165 // If the AddrModes we collected are all just equal to the value they are 4166 // derived from then combining them wouldn't do anything useful. 4167 if (AllAddrModesTrivial) 4168 return false; 4169 4170 if (!addrModeCombiningAllowed()) 4171 return false; 4172 4173 // Build a map between <original value, basic block where we saw it> to 4174 // value of base register. 4175 // Bail out if there is no common type. 4176 FoldAddrToValueMapping Map; 4177 if (!initializeMap(Map)) 4178 return false; 4179 4180 CommonValue = findCommon(Map); 4181 if (CommonValue) 4182 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 4183 return CommonValue != nullptr; 4184 } 4185 4186 private: 4187 /// `CommonValue` may be a placeholder inserted by us. 4188 /// If the placeholder is not used, we should remove this dead instruction. 4189 void eraseCommonValueIfDead() { 4190 if (CommonValue && CommonValue->getNumUses() == 0) 4191 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) 4192 CommonInst->eraseFromParent(); 4193 } 4194 4195 /// Initialize Map with anchor values. For address seen 4196 /// we set the value of different field saw in this address. 4197 /// At the same time we find a common type for different field we will 4198 /// use to create new Phi/Select nodes. Keep it in CommonType field. 4199 /// Return false if there is no common type found. 4200 bool initializeMap(FoldAddrToValueMapping &Map) { 4201 // Keep track of keys where the value is null. We will need to replace it 4202 // with constant null when we know the common type. 4203 SmallVector<Value *, 2> NullValue; 4204 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 4205 for (auto &AM : AddrModes) { 4206 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 4207 if (DV) { 4208 auto *Type = DV->getType(); 4209 if (CommonType && CommonType != Type) 4210 return false; 4211 CommonType = Type; 4212 Map[AM.OriginalValue] = DV; 4213 } else { 4214 NullValue.push_back(AM.OriginalValue); 4215 } 4216 } 4217 assert(CommonType && "At least one non-null value must be!"); 4218 for (auto *V : NullValue) 4219 Map[V] = Constant::getNullValue(CommonType); 4220 return true; 4221 } 4222 4223 /// We have mapping between value A and other value B where B was a field in 4224 /// addressing mode represented by A. Also we have an original value C 4225 /// representing an address we start with. Traversing from C through phi and 4226 /// selects we ended up with A's in a map. This utility function tries to find 4227 /// a value V which is a field in addressing mode C and traversing through phi 4228 /// nodes and selects we will end up in corresponded values B in a map. 4229 /// The utility will create a new Phi/Selects if needed. 4230 // The simple example looks as follows: 4231 // BB1: 4232 // p1 = b1 + 40 4233 // br cond BB2, BB3 4234 // BB2: 4235 // p2 = b2 + 40 4236 // br BB3 4237 // BB3: 4238 // p = phi [p1, BB1], [p2, BB2] 4239 // v = load p 4240 // Map is 4241 // p1 -> b1 4242 // p2 -> b2 4243 // Request is 4244 // p -> ? 4245 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 4246 Value *findCommon(FoldAddrToValueMapping &Map) { 4247 // Tracks the simplification of newly created phi nodes. The reason we use 4248 // this mapping is because we will add new created Phi nodes in AddrToBase. 4249 // Simplification of Phi nodes is recursive, so some Phi node may 4250 // be simplified after we added it to AddrToBase. In reality this 4251 // simplification is possible only if original phi/selects were not 4252 // simplified yet. 4253 // Using this mapping we can find the current value in AddrToBase. 4254 SimplificationTracker ST(SQ); 4255 4256 // First step, DFS to create PHI nodes for all intermediate blocks. 4257 // Also fill traverse order for the second step. 4258 SmallVector<Value *, 32> TraverseOrder; 4259 InsertPlaceholders(Map, TraverseOrder, ST); 4260 4261 // Second Step, fill new nodes by merged values and simplify if possible. 4262 FillPlaceholders(Map, TraverseOrder, ST); 4263 4264 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 4265 ST.destroyNewNodes(CommonType); 4266 return nullptr; 4267 } 4268 4269 // Now we'd like to match New Phi nodes to existed ones. 4270 unsigned PhiNotMatchedCount = 0; 4271 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 4272 ST.destroyNewNodes(CommonType); 4273 return nullptr; 4274 } 4275 4276 auto *Result = ST.Get(Map.find(Original)->second); 4277 if (Result) { 4278 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 4279 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 4280 } 4281 return Result; 4282 } 4283 4284 /// Try to match PHI node to Candidate. 4285 /// Matcher tracks the matched Phi nodes. 4286 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 4287 SmallSetVector<PHIPair, 8> &Matcher, 4288 PhiNodeSet &PhiNodesToMatch) { 4289 SmallVector<PHIPair, 8> WorkList; 4290 Matcher.insert({PHI, Candidate}); 4291 SmallSet<PHINode *, 8> MatchedPHIs; 4292 MatchedPHIs.insert(PHI); 4293 WorkList.push_back({PHI, Candidate}); 4294 SmallSet<PHIPair, 8> Visited; 4295 while (!WorkList.empty()) { 4296 auto Item = WorkList.pop_back_val(); 4297 if (!Visited.insert(Item).second) 4298 continue; 4299 // We iterate over all incoming values to Phi to compare them. 4300 // If values are different and both of them Phi and the first one is a 4301 // Phi we added (subject to match) and both of them is in the same basic 4302 // block then we can match our pair if values match. So we state that 4303 // these values match and add it to work list to verify that. 4304 for (auto *B : Item.first->blocks()) { 4305 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 4306 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 4307 if (FirstValue == SecondValue) 4308 continue; 4309 4310 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 4311 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 4312 4313 // One of them is not Phi or 4314 // The first one is not Phi node from the set we'd like to match or 4315 // Phi nodes from different basic blocks then 4316 // we will not be able to match. 4317 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 4318 FirstPhi->getParent() != SecondPhi->getParent()) 4319 return false; 4320 4321 // If we already matched them then continue. 4322 if (Matcher.count({FirstPhi, SecondPhi})) 4323 continue; 4324 // So the values are different and does not match. So we need them to 4325 // match. (But we register no more than one match per PHI node, so that 4326 // we won't later try to replace them twice.) 4327 if (MatchedPHIs.insert(FirstPhi).second) 4328 Matcher.insert({FirstPhi, SecondPhi}); 4329 // But me must check it. 4330 WorkList.push_back({FirstPhi, SecondPhi}); 4331 } 4332 } 4333 return true; 4334 } 4335 4336 /// For the given set of PHI nodes (in the SimplificationTracker) try 4337 /// to find their equivalents. 4338 /// Returns false if this matching fails and creation of new Phi is disabled. 4339 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 4340 unsigned &PhiNotMatchedCount) { 4341 // Matched and PhiNodesToMatch iterate their elements in a deterministic 4342 // order, so the replacements (ReplacePhi) are also done in a deterministic 4343 // order. 4344 SmallSetVector<PHIPair, 8> Matched; 4345 SmallPtrSet<PHINode *, 8> WillNotMatch; 4346 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 4347 while (PhiNodesToMatch.size()) { 4348 PHINode *PHI = *PhiNodesToMatch.begin(); 4349 4350 // Add us, if no Phi nodes in the basic block we do not match. 4351 WillNotMatch.clear(); 4352 WillNotMatch.insert(PHI); 4353 4354 // Traverse all Phis until we found equivalent or fail to do that. 4355 bool IsMatched = false; 4356 for (auto &P : PHI->getParent()->phis()) { 4357 // Skip new Phi nodes. 4358 if (PhiNodesToMatch.count(&P)) 4359 continue; 4360 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 4361 break; 4362 // If it does not match, collect all Phi nodes from matcher. 4363 // if we end up with no match, them all these Phi nodes will not match 4364 // later. 4365 for (auto M : Matched) 4366 WillNotMatch.insert(M.first); 4367 Matched.clear(); 4368 } 4369 if (IsMatched) { 4370 // Replace all matched values and erase them. 4371 for (auto MV : Matched) 4372 ST.ReplacePhi(MV.first, MV.second); 4373 Matched.clear(); 4374 continue; 4375 } 4376 // If we are not allowed to create new nodes then bail out. 4377 if (!AllowNewPhiNodes) 4378 return false; 4379 // Just remove all seen values in matcher. They will not match anything. 4380 PhiNotMatchedCount += WillNotMatch.size(); 4381 for (auto *P : WillNotMatch) 4382 PhiNodesToMatch.erase(P); 4383 } 4384 return true; 4385 } 4386 /// Fill the placeholders with values from predecessors and simplify them. 4387 void FillPlaceholders(FoldAddrToValueMapping &Map, 4388 SmallVectorImpl<Value *> &TraverseOrder, 4389 SimplificationTracker &ST) { 4390 while (!TraverseOrder.empty()) { 4391 Value *Current = TraverseOrder.pop_back_val(); 4392 assert(Map.contains(Current) && "No node to fill!!!"); 4393 Value *V = Map[Current]; 4394 4395 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 4396 // CurrentValue also must be Select. 4397 auto *CurrentSelect = cast<SelectInst>(Current); 4398 auto *TrueValue = CurrentSelect->getTrueValue(); 4399 assert(Map.contains(TrueValue) && "No True Value!"); 4400 Select->setTrueValue(ST.Get(Map[TrueValue])); 4401 auto *FalseValue = CurrentSelect->getFalseValue(); 4402 assert(Map.contains(FalseValue) && "No False Value!"); 4403 Select->setFalseValue(ST.Get(Map[FalseValue])); 4404 } else { 4405 // Must be a Phi node then. 4406 auto *PHI = cast<PHINode>(V); 4407 // Fill the Phi node with values from predecessors. 4408 for (auto *B : predecessors(PHI->getParent())) { 4409 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 4410 assert(Map.contains(PV) && "No predecessor Value!"); 4411 PHI->addIncoming(ST.Get(Map[PV]), B); 4412 } 4413 } 4414 Map[Current] = ST.Simplify(V); 4415 } 4416 } 4417 4418 /// Starting from original value recursively iterates over def-use chain up to 4419 /// known ending values represented in a map. For each traversed phi/select 4420 /// inserts a placeholder Phi or Select. 4421 /// Reports all new created Phi/Select nodes by adding them to set. 4422 /// Also reports and order in what values have been traversed. 4423 void InsertPlaceholders(FoldAddrToValueMapping &Map, 4424 SmallVectorImpl<Value *> &TraverseOrder, 4425 SimplificationTracker &ST) { 4426 SmallVector<Value *, 32> Worklist; 4427 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 4428 "Address must be a Phi or Select node"); 4429 auto *Dummy = PoisonValue::get(CommonType); 4430 Worklist.push_back(Original); 4431 while (!Worklist.empty()) { 4432 Value *Current = Worklist.pop_back_val(); 4433 // if it is already visited or it is an ending value then skip it. 4434 if (Map.contains(Current)) 4435 continue; 4436 TraverseOrder.push_back(Current); 4437 4438 // CurrentValue must be a Phi node or select. All others must be covered 4439 // by anchors. 4440 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 4441 // Is it OK to get metadata from OrigSelect?! 4442 // Create a Select placeholder with dummy value. 4443 SelectInst *Select = 4444 SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy, 4445 CurrentSelect->getName(), 4446 CurrentSelect->getIterator(), CurrentSelect); 4447 Map[Current] = Select; 4448 ST.insertNewSelect(Select); 4449 // We are interested in True and False values. 4450 Worklist.push_back(CurrentSelect->getTrueValue()); 4451 Worklist.push_back(CurrentSelect->getFalseValue()); 4452 } else { 4453 // It must be a Phi node then. 4454 PHINode *CurrentPhi = cast<PHINode>(Current); 4455 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 4456 PHINode *PHI = 4457 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator()); 4458 Map[Current] = PHI; 4459 ST.insertNewPhi(PHI); 4460 append_range(Worklist, CurrentPhi->incoming_values()); 4461 } 4462 } 4463 } 4464 4465 bool addrModeCombiningAllowed() { 4466 if (DisableComplexAddrModes) 4467 return false; 4468 switch (DifferentField) { 4469 default: 4470 return false; 4471 case ExtAddrMode::BaseRegField: 4472 return AddrSinkCombineBaseReg; 4473 case ExtAddrMode::BaseGVField: 4474 return AddrSinkCombineBaseGV; 4475 case ExtAddrMode::BaseOffsField: 4476 return AddrSinkCombineBaseOffs; 4477 case ExtAddrMode::ScaledRegField: 4478 return AddrSinkCombineScaledReg; 4479 } 4480 } 4481 }; 4482 } // end anonymous namespace 4483 4484 /// Try adding ScaleReg*Scale to the current addressing mode. 4485 /// Return true and update AddrMode if this addr mode is legal for the target, 4486 /// false if not. 4487 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 4488 unsigned Depth) { 4489 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 4490 // mode. Just process that directly. 4491 if (Scale == 1) 4492 return matchAddr(ScaleReg, Depth); 4493 4494 // If the scale is 0, it takes nothing to add this. 4495 if (Scale == 0) 4496 return true; 4497 4498 // If we already have a scale of this value, we can add to it, otherwise, we 4499 // need an available scale field. 4500 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 4501 return false; 4502 4503 ExtAddrMode TestAddrMode = AddrMode; 4504 4505 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 4506 // [A+B + A*7] -> [B+A*8]. 4507 TestAddrMode.Scale += Scale; 4508 TestAddrMode.ScaledReg = ScaleReg; 4509 4510 // If the new address isn't legal, bail out. 4511 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 4512 return false; 4513 4514 // It was legal, so commit it. 4515 AddrMode = TestAddrMode; 4516 4517 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 4518 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 4519 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 4520 // go any further: we can reuse it and cannot eliminate it. 4521 ConstantInt *CI = nullptr; 4522 Value *AddLHS = nullptr; 4523 if (isa<Instruction>(ScaleReg) && // not a constant expr. 4524 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 4525 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 4526 TestAddrMode.InBounds = false; 4527 TestAddrMode.ScaledReg = AddLHS; 4528 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 4529 4530 // If this addressing mode is legal, commit it and remember that we folded 4531 // this instruction. 4532 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 4533 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 4534 AddrMode = TestAddrMode; 4535 return true; 4536 } 4537 // Restore status quo. 4538 TestAddrMode = AddrMode; 4539 } 4540 4541 // If this is an add recurrence with a constant step, return the increment 4542 // instruction and the canonicalized step. 4543 auto GetConstantStep = 4544 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { 4545 auto *PN = dyn_cast<PHINode>(V); 4546 if (!PN) 4547 return std::nullopt; 4548 auto IVInc = getIVIncrement(PN, &LI); 4549 if (!IVInc) 4550 return std::nullopt; 4551 // TODO: The result of the intrinsics above is two-complement. However when 4552 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 4553 // If it has nuw or nsw flags, we need to make sure that these flags are 4554 // inferrable at the point of memory instruction. Otherwise we are replacing 4555 // well-defined two-complement computation with poison. Currently, to avoid 4556 // potentially complex analysis needed to prove this, we reject such cases. 4557 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 4558 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 4559 return std::nullopt; 4560 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 4561 return std::make_pair(IVInc->first, ConstantStep->getValue()); 4562 return std::nullopt; 4563 }; 4564 4565 // Try to account for the following special case: 4566 // 1. ScaleReg is an inductive variable; 4567 // 2. We use it with non-zero offset; 4568 // 3. IV's increment is available at the point of memory instruction. 4569 // 4570 // In this case, we may reuse the IV increment instead of the IV Phi to 4571 // achieve the following advantages: 4572 // 1. If IV step matches the offset, we will have no need in the offset; 4573 // 2. Even if they don't match, we will reduce the overlap of living IV 4574 // and IV increment, that will potentially lead to better register 4575 // assignment. 4576 if (AddrMode.BaseOffs) { 4577 if (auto IVStep = GetConstantStep(ScaleReg)) { 4578 Instruction *IVInc = IVStep->first; 4579 // The following assert is important to ensure a lack of infinite loops. 4580 // This transforms is (intentionally) the inverse of the one just above. 4581 // If they don't agree on the definition of an increment, we'd alternate 4582 // back and forth indefinitely. 4583 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 4584 APInt Step = IVStep->second; 4585 APInt Offset = Step * AddrMode.Scale; 4586 if (Offset.isSignedIntN(64)) { 4587 TestAddrMode.InBounds = false; 4588 TestAddrMode.ScaledReg = IVInc; 4589 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 4590 // If this addressing mode is legal, commit it.. 4591 // (Note that we defer the (expensive) domtree base legality check 4592 // to the very last possible point.) 4593 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 4594 getDTFn().dominates(IVInc, MemoryInst)) { 4595 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 4596 AddrMode = TestAddrMode; 4597 return true; 4598 } 4599 // Restore status quo. 4600 TestAddrMode = AddrMode; 4601 } 4602 } 4603 } 4604 4605 // Otherwise, just return what we have. 4606 return true; 4607 } 4608 4609 /// This is a little filter, which returns true if an addressing computation 4610 /// involving I might be folded into a load/store accessing it. 4611 /// This doesn't need to be perfect, but needs to accept at least 4612 /// the set of instructions that MatchOperationAddr can. 4613 static bool MightBeFoldableInst(Instruction *I) { 4614 switch (I->getOpcode()) { 4615 case Instruction::BitCast: 4616 case Instruction::AddrSpaceCast: 4617 // Don't touch identity bitcasts. 4618 if (I->getType() == I->getOperand(0)->getType()) 4619 return false; 4620 return I->getType()->isIntOrPtrTy(); 4621 case Instruction::PtrToInt: 4622 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4623 return true; 4624 case Instruction::IntToPtr: 4625 // We know the input is intptr_t, so this is foldable. 4626 return true; 4627 case Instruction::Add: 4628 return true; 4629 case Instruction::Mul: 4630 case Instruction::Shl: 4631 // Can only handle X*C and X << C. 4632 return isa<ConstantInt>(I->getOperand(1)); 4633 case Instruction::GetElementPtr: 4634 return true; 4635 default: 4636 return false; 4637 } 4638 } 4639 4640 /// Check whether or not \p Val is a legal instruction for \p TLI. 4641 /// \note \p Val is assumed to be the product of some type promotion. 4642 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4643 /// to be legal, as the non-promoted value would have had the same state. 4644 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4645 const DataLayout &DL, Value *Val) { 4646 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4647 if (!PromotedInst) 4648 return false; 4649 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4650 // If the ISDOpcode is undefined, it was undefined before the promotion. 4651 if (!ISDOpcode) 4652 return true; 4653 // Otherwise, check if the promoted instruction is legal or not. 4654 return TLI.isOperationLegalOrCustom( 4655 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4656 } 4657 4658 namespace { 4659 4660 /// Hepler class to perform type promotion. 4661 class TypePromotionHelper { 4662 /// Utility function to add a promoted instruction \p ExtOpnd to 4663 /// \p PromotedInsts and record the type of extension we have seen. 4664 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4665 Instruction *ExtOpnd, bool IsSExt) { 4666 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4667 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4668 if (It != PromotedInsts.end()) { 4669 // If the new extension is same as original, the information in 4670 // PromotedInsts[ExtOpnd] is still correct. 4671 if (It->second.getInt() == ExtTy) 4672 return; 4673 4674 // Now the new extension is different from old extension, we make 4675 // the type information invalid by setting extension type to 4676 // BothExtension. 4677 ExtTy = BothExtension; 4678 } 4679 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4680 } 4681 4682 /// Utility function to query the original type of instruction \p Opnd 4683 /// with a matched extension type. If the extension doesn't match, we 4684 /// cannot use the information we had on the original type. 4685 /// BothExtension doesn't match any extension type. 4686 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4687 Instruction *Opnd, bool IsSExt) { 4688 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4689 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4690 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4691 return It->second.getPointer(); 4692 return nullptr; 4693 } 4694 4695 /// Utility function to check whether or not a sign or zero extension 4696 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4697 /// either using the operands of \p Inst or promoting \p Inst. 4698 /// The type of the extension is defined by \p IsSExt. 4699 /// In other words, check if: 4700 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4701 /// #1 Promotion applies: 4702 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4703 /// #2 Operand reuses: 4704 /// ext opnd1 to ConsideredExtType. 4705 /// \p PromotedInsts maps the instructions to their type before promotion. 4706 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4707 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4708 4709 /// Utility function to determine if \p OpIdx should be promoted when 4710 /// promoting \p Inst. 4711 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4712 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4713 } 4714 4715 /// Utility function to promote the operand of \p Ext when this 4716 /// operand is a promotable trunc or sext or zext. 4717 /// \p PromotedInsts maps the instructions to their type before promotion. 4718 /// \p CreatedInstsCost[out] contains the cost of all instructions 4719 /// created to promote the operand of Ext. 4720 /// Newly added extensions are inserted in \p Exts. 4721 /// Newly added truncates are inserted in \p Truncs. 4722 /// Should never be called directly. 4723 /// \return The promoted value which is used instead of Ext. 4724 static Value *promoteOperandForTruncAndAnyExt( 4725 Instruction *Ext, TypePromotionTransaction &TPT, 4726 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4727 SmallVectorImpl<Instruction *> *Exts, 4728 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4729 4730 /// Utility function to promote the operand of \p Ext when this 4731 /// operand is promotable and is not a supported trunc or sext. 4732 /// \p PromotedInsts maps the instructions to their type before promotion. 4733 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4734 /// created to promote the operand of Ext. 4735 /// Newly added extensions are inserted in \p Exts. 4736 /// Newly added truncates are inserted in \p Truncs. 4737 /// Should never be called directly. 4738 /// \return The promoted value which is used instead of Ext. 4739 static Value *promoteOperandForOther(Instruction *Ext, 4740 TypePromotionTransaction &TPT, 4741 InstrToOrigTy &PromotedInsts, 4742 unsigned &CreatedInstsCost, 4743 SmallVectorImpl<Instruction *> *Exts, 4744 SmallVectorImpl<Instruction *> *Truncs, 4745 const TargetLowering &TLI, bool IsSExt); 4746 4747 /// \see promoteOperandForOther. 4748 static Value *signExtendOperandForOther( 4749 Instruction *Ext, TypePromotionTransaction &TPT, 4750 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4751 SmallVectorImpl<Instruction *> *Exts, 4752 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4753 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4754 Exts, Truncs, TLI, true); 4755 } 4756 4757 /// \see promoteOperandForOther. 4758 static Value *zeroExtendOperandForOther( 4759 Instruction *Ext, TypePromotionTransaction &TPT, 4760 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4761 SmallVectorImpl<Instruction *> *Exts, 4762 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4763 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4764 Exts, Truncs, TLI, false); 4765 } 4766 4767 public: 4768 /// Type for the utility function that promotes the operand of Ext. 4769 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4770 InstrToOrigTy &PromotedInsts, 4771 unsigned &CreatedInstsCost, 4772 SmallVectorImpl<Instruction *> *Exts, 4773 SmallVectorImpl<Instruction *> *Truncs, 4774 const TargetLowering &TLI); 4775 4776 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4777 /// action to promote the operand of \p Ext instead of using Ext. 4778 /// \return NULL if no promotable action is possible with the current 4779 /// sign extension. 4780 /// \p InsertedInsts keeps track of all the instructions inserted by the 4781 /// other CodeGenPrepare optimizations. This information is important 4782 /// because we do not want to promote these instructions as CodeGenPrepare 4783 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4784 /// \p PromotedInsts maps the instructions to their type before promotion. 4785 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4786 const TargetLowering &TLI, 4787 const InstrToOrigTy &PromotedInsts); 4788 }; 4789 4790 } // end anonymous namespace 4791 4792 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4793 Type *ConsideredExtType, 4794 const InstrToOrigTy &PromotedInsts, 4795 bool IsSExt) { 4796 // The promotion helper does not know how to deal with vector types yet. 4797 // To be able to fix that, we would need to fix the places where we 4798 // statically extend, e.g., constants and such. 4799 if (Inst->getType()->isVectorTy()) 4800 return false; 4801 4802 // We can always get through zext. 4803 if (isa<ZExtInst>(Inst)) 4804 return true; 4805 4806 // sext(sext) is ok too. 4807 if (IsSExt && isa<SExtInst>(Inst)) 4808 return true; 4809 4810 // We can get through binary operator, if it is legal. In other words, the 4811 // binary operator must have a nuw or nsw flag. 4812 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4813 if (isa<OverflowingBinaryOperator>(BinOp) && 4814 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4815 (IsSExt && BinOp->hasNoSignedWrap()))) 4816 return true; 4817 4818 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4819 if ((Inst->getOpcode() == Instruction::And || 4820 Inst->getOpcode() == Instruction::Or)) 4821 return true; 4822 4823 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4824 if (Inst->getOpcode() == Instruction::Xor) { 4825 // Make sure it is not a NOT. 4826 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4827 if (!Cst->getValue().isAllOnes()) 4828 return true; 4829 } 4830 4831 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4832 // It may change a poisoned value into a regular value, like 4833 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4834 // poisoned value regular value 4835 // It should be OK since undef covers valid value. 4836 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4837 return true; 4838 4839 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4840 // It may change a poisoned value into a regular value, like 4841 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4842 // poisoned value regular value 4843 // It should be OK since undef covers valid value. 4844 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4845 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4846 if (ExtInst->hasOneUse()) { 4847 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4848 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4849 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4850 if (Cst && 4851 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4852 return true; 4853 } 4854 } 4855 } 4856 4857 // Check if we can do the following simplification. 4858 // ext(trunc(opnd)) --> ext(opnd) 4859 if (!isa<TruncInst>(Inst)) 4860 return false; 4861 4862 Value *OpndVal = Inst->getOperand(0); 4863 // Check if we can use this operand in the extension. 4864 // If the type is larger than the result type of the extension, we cannot. 4865 if (!OpndVal->getType()->isIntegerTy() || 4866 OpndVal->getType()->getIntegerBitWidth() > 4867 ConsideredExtType->getIntegerBitWidth()) 4868 return false; 4869 4870 // If the operand of the truncate is not an instruction, we will not have 4871 // any information on the dropped bits. 4872 // (Actually we could for constant but it is not worth the extra logic). 4873 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4874 if (!Opnd) 4875 return false; 4876 4877 // Check if the source of the type is narrow enough. 4878 // I.e., check that trunc just drops extended bits of the same kind of 4879 // the extension. 4880 // #1 get the type of the operand and check the kind of the extended bits. 4881 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4882 if (OpndType) 4883 ; 4884 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4885 OpndType = Opnd->getOperand(0)->getType(); 4886 else 4887 return false; 4888 4889 // #2 check that the truncate just drops extended bits. 4890 return Inst->getType()->getIntegerBitWidth() >= 4891 OpndType->getIntegerBitWidth(); 4892 } 4893 4894 TypePromotionHelper::Action TypePromotionHelper::getAction( 4895 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4896 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4897 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4898 "Unexpected instruction type"); 4899 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4900 Type *ExtTy = Ext->getType(); 4901 bool IsSExt = isa<SExtInst>(Ext); 4902 // If the operand of the extension is not an instruction, we cannot 4903 // get through. 4904 // If it, check we can get through. 4905 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4906 return nullptr; 4907 4908 // Do not promote if the operand has been added by codegenprepare. 4909 // Otherwise, it means we are undoing an optimization that is likely to be 4910 // redone, thus causing potential infinite loop. 4911 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4912 return nullptr; 4913 4914 // SExt or Trunc instructions. 4915 // Return the related handler. 4916 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4917 isa<ZExtInst>(ExtOpnd)) 4918 return promoteOperandForTruncAndAnyExt; 4919 4920 // Regular instruction. 4921 // Abort early if we will have to insert non-free instructions. 4922 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4923 return nullptr; 4924 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4925 } 4926 4927 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4928 Instruction *SExt, TypePromotionTransaction &TPT, 4929 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4930 SmallVectorImpl<Instruction *> *Exts, 4931 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4932 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4933 // get through it and this method should not be called. 4934 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4935 Value *ExtVal = SExt; 4936 bool HasMergedNonFreeExt = false; 4937 if (isa<ZExtInst>(SExtOpnd)) { 4938 // Replace s|zext(zext(opnd)) 4939 // => zext(opnd). 4940 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4941 Value *ZExt = 4942 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4943 TPT.replaceAllUsesWith(SExt, ZExt); 4944 TPT.eraseInstruction(SExt); 4945 ExtVal = ZExt; 4946 } else { 4947 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4948 // => z|sext(opnd). 4949 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4950 } 4951 CreatedInstsCost = 0; 4952 4953 // Remove dead code. 4954 if (SExtOpnd->use_empty()) 4955 TPT.eraseInstruction(SExtOpnd); 4956 4957 // Check if the extension is still needed. 4958 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4959 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4960 if (ExtInst) { 4961 if (Exts) 4962 Exts->push_back(ExtInst); 4963 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4964 } 4965 return ExtVal; 4966 } 4967 4968 // At this point we have: ext ty opnd to ty. 4969 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4970 Value *NextVal = ExtInst->getOperand(0); 4971 TPT.eraseInstruction(ExtInst, NextVal); 4972 return NextVal; 4973 } 4974 4975 Value *TypePromotionHelper::promoteOperandForOther( 4976 Instruction *Ext, TypePromotionTransaction &TPT, 4977 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4978 SmallVectorImpl<Instruction *> *Exts, 4979 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4980 bool IsSExt) { 4981 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4982 // get through it and this method should not be called. 4983 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4984 CreatedInstsCost = 0; 4985 if (!ExtOpnd->hasOneUse()) { 4986 // ExtOpnd will be promoted. 4987 // All its uses, but Ext, will need to use a truncated value of the 4988 // promoted version. 4989 // Create the truncate now. 4990 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4991 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4992 // Insert it just after the definition. 4993 ITrunc->moveAfter(ExtOpnd); 4994 if (Truncs) 4995 Truncs->push_back(ITrunc); 4996 } 4997 4998 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4999 // Restore the operand of Ext (which has been replaced by the previous call 5000 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 5001 TPT.setOperand(Ext, 0, ExtOpnd); 5002 } 5003 5004 // Get through the Instruction: 5005 // 1. Update its type. 5006 // 2. Replace the uses of Ext by Inst. 5007 // 3. Extend each operand that needs to be extended. 5008 5009 // Remember the original type of the instruction before promotion. 5010 // This is useful to know that the high bits are sign extended bits. 5011 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 5012 // Step #1. 5013 TPT.mutateType(ExtOpnd, Ext->getType()); 5014 // Step #2. 5015 TPT.replaceAllUsesWith(Ext, ExtOpnd); 5016 // Step #3. 5017 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 5018 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 5019 ++OpIdx) { 5020 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 5021 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 5022 !shouldExtOperand(ExtOpnd, OpIdx)) { 5023 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 5024 continue; 5025 } 5026 // Check if we can statically extend the operand. 5027 Value *Opnd = ExtOpnd->getOperand(OpIdx); 5028 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 5029 LLVM_DEBUG(dbgs() << "Statically extend\n"); 5030 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 5031 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 5032 : Cst->getValue().zext(BitWidth); 5033 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 5034 continue; 5035 } 5036 // UndefValue are typed, so we have to statically sign extend them. 5037 if (isa<UndefValue>(Opnd)) { 5038 LLVM_DEBUG(dbgs() << "Statically extend\n"); 5039 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 5040 continue; 5041 } 5042 5043 // Otherwise we have to explicitly sign extend the operand. 5044 Value *ValForExtOpnd = IsSExt 5045 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType()) 5046 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType()); 5047 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 5048 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd); 5049 if (!InstForExtOpnd) 5050 continue; 5051 5052 if (Exts) 5053 Exts->push_back(InstForExtOpnd); 5054 5055 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd); 5056 } 5057 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 5058 TPT.eraseInstruction(Ext); 5059 return ExtOpnd; 5060 } 5061 5062 /// Check whether or not promoting an instruction to a wider type is profitable. 5063 /// \p NewCost gives the cost of extension instructions created by the 5064 /// promotion. 5065 /// \p OldCost gives the cost of extension instructions before the promotion 5066 /// plus the number of instructions that have been 5067 /// matched in the addressing mode the promotion. 5068 /// \p PromotedOperand is the value that has been promoted. 5069 /// \return True if the promotion is profitable, false otherwise. 5070 bool AddressingModeMatcher::isPromotionProfitable( 5071 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 5072 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 5073 << '\n'); 5074 // The cost of the new extensions is greater than the cost of the 5075 // old extension plus what we folded. 5076 // This is not profitable. 5077 if (NewCost > OldCost) 5078 return false; 5079 if (NewCost < OldCost) 5080 return true; 5081 // The promotion is neutral but it may help folding the sign extension in 5082 // loads for instance. 5083 // Check that we did not create an illegal instruction. 5084 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 5085 } 5086 5087 /// Given an instruction or constant expr, see if we can fold the operation 5088 /// into the addressing mode. If so, update the addressing mode and return 5089 /// true, otherwise return false without modifying AddrMode. 5090 /// If \p MovedAway is not NULL, it contains the information of whether or 5091 /// not AddrInst has to be folded into the addressing mode on success. 5092 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 5093 /// because it has been moved away. 5094 /// Thus AddrInst must not be added in the matched instructions. 5095 /// This state can happen when AddrInst is a sext, since it may be moved away. 5096 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 5097 /// not be referenced anymore. 5098 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 5099 unsigned Depth, 5100 bool *MovedAway) { 5101 // Avoid exponential behavior on extremely deep expression trees. 5102 if (Depth >= 5) 5103 return false; 5104 5105 // By default, all matched instructions stay in place. 5106 if (MovedAway) 5107 *MovedAway = false; 5108 5109 switch (Opcode) { 5110 case Instruction::PtrToInt: 5111 // PtrToInt is always a noop, as we know that the int type is pointer sized. 5112 return matchAddr(AddrInst->getOperand(0), Depth); 5113 case Instruction::IntToPtr: { 5114 auto AS = AddrInst->getType()->getPointerAddressSpace(); 5115 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 5116 // This inttoptr is a no-op if the integer type is pointer sized. 5117 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 5118 return matchAddr(AddrInst->getOperand(0), Depth); 5119 return false; 5120 } 5121 case Instruction::BitCast: 5122 // BitCast is always a noop, and we can handle it as long as it is 5123 // int->int or pointer->pointer (we don't want int<->fp or something). 5124 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 5125 // Don't touch identity bitcasts. These were probably put here by LSR, 5126 // and we don't want to mess around with them. Assume it knows what it 5127 // is doing. 5128 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 5129 return matchAddr(AddrInst->getOperand(0), Depth); 5130 return false; 5131 case Instruction::AddrSpaceCast: { 5132 unsigned SrcAS = 5133 AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 5134 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 5135 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 5136 return matchAddr(AddrInst->getOperand(0), Depth); 5137 return false; 5138 } 5139 case Instruction::Add: { 5140 // Check to see if we can merge in one operand, then the other. If so, we 5141 // win. 5142 ExtAddrMode BackupAddrMode = AddrMode; 5143 unsigned OldSize = AddrModeInsts.size(); 5144 // Start a transaction at this point. 5145 // The LHS may match but not the RHS. 5146 // Therefore, we need a higher level restoration point to undo partially 5147 // matched operation. 5148 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5149 TPT.getRestorationPoint(); 5150 5151 // Try to match an integer constant second to increase its chance of ending 5152 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. 5153 int First = 0, Second = 1; 5154 if (isa<ConstantInt>(AddrInst->getOperand(First)) 5155 && !isa<ConstantInt>(AddrInst->getOperand(Second))) 5156 std::swap(First, Second); 5157 AddrMode.InBounds = false; 5158 if (matchAddr(AddrInst->getOperand(First), Depth + 1) && 5159 matchAddr(AddrInst->getOperand(Second), Depth + 1)) 5160 return true; 5161 5162 // Restore the old addr mode info. 5163 AddrMode = BackupAddrMode; 5164 AddrModeInsts.resize(OldSize); 5165 TPT.rollback(LastKnownGood); 5166 5167 // Otherwise this was over-aggressive. Try merging operands in the opposite 5168 // order. 5169 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && 5170 matchAddr(AddrInst->getOperand(First), Depth + 1)) 5171 return true; 5172 5173 // Otherwise we definitely can't merge the ADD in. 5174 AddrMode = BackupAddrMode; 5175 AddrModeInsts.resize(OldSize); 5176 TPT.rollback(LastKnownGood); 5177 break; 5178 } 5179 // case Instruction::Or: 5180 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 5181 // break; 5182 case Instruction::Mul: 5183 case Instruction::Shl: { 5184 // Can only handle X*C and X << C. 5185 AddrMode.InBounds = false; 5186 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 5187 if (!RHS || RHS->getBitWidth() > 64) 5188 return false; 5189 int64_t Scale = Opcode == Instruction::Shl 5190 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 5191 : RHS->getSExtValue(); 5192 5193 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 5194 } 5195 case Instruction::GetElementPtr: { 5196 // Scan the GEP. We check it if it contains constant offsets and at most 5197 // one variable offset. 5198 int VariableOperand = -1; 5199 unsigned VariableScale = 0; 5200 5201 int64_t ConstantOffset = 0; 5202 gep_type_iterator GTI = gep_type_begin(AddrInst); 5203 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 5204 if (StructType *STy = GTI.getStructTypeOrNull()) { 5205 const StructLayout *SL = DL.getStructLayout(STy); 5206 unsigned Idx = 5207 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 5208 ConstantOffset += SL->getElementOffset(Idx); 5209 } else { 5210 TypeSize TS = GTI.getSequentialElementStride(DL); 5211 if (TS.isNonZero()) { 5212 // The optimisations below currently only work for fixed offsets. 5213 if (TS.isScalable()) 5214 return false; 5215 int64_t TypeSize = TS.getFixedValue(); 5216 if (ConstantInt *CI = 5217 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 5218 const APInt &CVal = CI->getValue(); 5219 if (CVal.getSignificantBits() <= 64) { 5220 ConstantOffset += CVal.getSExtValue() * TypeSize; 5221 continue; 5222 } 5223 } 5224 // We only allow one variable index at the moment. 5225 if (VariableOperand != -1) 5226 return false; 5227 5228 // Remember the variable index. 5229 VariableOperand = i; 5230 VariableScale = TypeSize; 5231 } 5232 } 5233 } 5234 5235 // A common case is for the GEP to only do a constant offset. In this case, 5236 // just add it to the disp field and check validity. 5237 if (VariableOperand == -1) { 5238 AddrMode.BaseOffs += ConstantOffset; 5239 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { 5240 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 5241 AddrMode.InBounds = false; 5242 return true; 5243 } 5244 AddrMode.BaseOffs -= ConstantOffset; 5245 5246 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 5247 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 5248 ConstantOffset > 0) { 5249 // Record GEPs with non-zero offsets as candidates for splitting in 5250 // the event that the offset cannot fit into the r+i addressing mode. 5251 // Simple and common case that only one GEP is used in calculating the 5252 // address for the memory access. 5253 Value *Base = AddrInst->getOperand(0); 5254 auto *BaseI = dyn_cast<Instruction>(Base); 5255 auto *GEP = cast<GetElementPtrInst>(AddrInst); 5256 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 5257 (BaseI && !isa<CastInst>(BaseI) && 5258 !isa<GetElementPtrInst>(BaseI))) { 5259 // Make sure the parent block allows inserting non-PHI instructions 5260 // before the terminator. 5261 BasicBlock *Parent = BaseI ? BaseI->getParent() 5262 : &GEP->getFunction()->getEntryBlock(); 5263 if (!Parent->getTerminator()->isEHPad()) 5264 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 5265 } 5266 } 5267 5268 return false; 5269 } 5270 5271 // Save the valid addressing mode in case we can't match. 5272 ExtAddrMode BackupAddrMode = AddrMode; 5273 unsigned OldSize = AddrModeInsts.size(); 5274 5275 // See if the scale and offset amount is valid for this target. 5276 AddrMode.BaseOffs += ConstantOffset; 5277 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 5278 AddrMode.InBounds = false; 5279 5280 // Match the base operand of the GEP. 5281 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { 5282 // If it couldn't be matched, just stuff the value in a register. 5283 if (AddrMode.HasBaseReg) { 5284 AddrMode = BackupAddrMode; 5285 AddrModeInsts.resize(OldSize); 5286 return false; 5287 } 5288 AddrMode.HasBaseReg = true; 5289 AddrMode.BaseReg = AddrInst->getOperand(0); 5290 } 5291 5292 // Match the remaining variable portion of the GEP. 5293 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 5294 Depth)) { 5295 // If it couldn't be matched, try stuffing the base into a register 5296 // instead of matching it, and retrying the match of the scale. 5297 AddrMode = BackupAddrMode; 5298 AddrModeInsts.resize(OldSize); 5299 if (AddrMode.HasBaseReg) 5300 return false; 5301 AddrMode.HasBaseReg = true; 5302 AddrMode.BaseReg = AddrInst->getOperand(0); 5303 AddrMode.BaseOffs += ConstantOffset; 5304 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 5305 VariableScale, Depth)) { 5306 // If even that didn't work, bail. 5307 AddrMode = BackupAddrMode; 5308 AddrModeInsts.resize(OldSize); 5309 return false; 5310 } 5311 } 5312 5313 return true; 5314 } 5315 case Instruction::SExt: 5316 case Instruction::ZExt: { 5317 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 5318 if (!Ext) 5319 return false; 5320 5321 // Try to move this ext out of the way of the addressing mode. 5322 // Ask for a method for doing so. 5323 TypePromotionHelper::Action TPH = 5324 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 5325 if (!TPH) 5326 return false; 5327 5328 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5329 TPT.getRestorationPoint(); 5330 unsigned CreatedInstsCost = 0; 5331 unsigned ExtCost = !TLI.isExtFree(Ext); 5332 Value *PromotedOperand = 5333 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 5334 // SExt has been moved away. 5335 // Thus either it will be rematched later in the recursive calls or it is 5336 // gone. Anyway, we must not fold it into the addressing mode at this point. 5337 // E.g., 5338 // op = add opnd, 1 5339 // idx = ext op 5340 // addr = gep base, idx 5341 // is now: 5342 // promotedOpnd = ext opnd <- no match here 5343 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 5344 // addr = gep base, op <- match 5345 if (MovedAway) 5346 *MovedAway = true; 5347 5348 assert(PromotedOperand && 5349 "TypePromotionHelper should have filtered out those cases"); 5350 5351 ExtAddrMode BackupAddrMode = AddrMode; 5352 unsigned OldSize = AddrModeInsts.size(); 5353 5354 if (!matchAddr(PromotedOperand, Depth) || 5355 // The total of the new cost is equal to the cost of the created 5356 // instructions. 5357 // The total of the old cost is equal to the cost of the extension plus 5358 // what we have saved in the addressing mode. 5359 !isPromotionProfitable(CreatedInstsCost, 5360 ExtCost + (AddrModeInsts.size() - OldSize), 5361 PromotedOperand)) { 5362 AddrMode = BackupAddrMode; 5363 AddrModeInsts.resize(OldSize); 5364 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 5365 TPT.rollback(LastKnownGood); 5366 return false; 5367 } 5368 return true; 5369 } 5370 case Instruction::Call: 5371 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) { 5372 if (II->getIntrinsicID() == Intrinsic::threadlocal_address) { 5373 GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0)); 5374 if (TLI.addressingModeSupportsTLS(GV)) 5375 return matchAddr(AddrInst->getOperand(0), Depth); 5376 } 5377 } 5378 break; 5379 } 5380 return false; 5381 } 5382 5383 /// If we can, try to add the value of 'Addr' into the current addressing mode. 5384 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 5385 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 5386 /// for the target. 5387 /// 5388 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 5389 // Start a transaction at this point that we will rollback if the matching 5390 // fails. 5391 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5392 TPT.getRestorationPoint(); 5393 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 5394 if (CI->getValue().isSignedIntN(64)) { 5395 // Fold in immediates if legal for the target. 5396 AddrMode.BaseOffs += CI->getSExtValue(); 5397 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5398 return true; 5399 AddrMode.BaseOffs -= CI->getSExtValue(); 5400 } 5401 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 5402 // If this is a global variable, try to fold it into the addressing mode. 5403 if (!AddrMode.BaseGV) { 5404 AddrMode.BaseGV = GV; 5405 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5406 return true; 5407 AddrMode.BaseGV = nullptr; 5408 } 5409 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 5410 ExtAddrMode BackupAddrMode = AddrMode; 5411 unsigned OldSize = AddrModeInsts.size(); 5412 5413 // Check to see if it is possible to fold this operation. 5414 bool MovedAway = false; 5415 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 5416 // This instruction may have been moved away. If so, there is nothing 5417 // to check here. 5418 if (MovedAway) 5419 return true; 5420 // Okay, it's possible to fold this. Check to see if it is actually 5421 // *profitable* to do so. We use a simple cost model to avoid increasing 5422 // register pressure too much. 5423 if (I->hasOneUse() || 5424 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 5425 AddrModeInsts.push_back(I); 5426 return true; 5427 } 5428 5429 // It isn't profitable to do this, roll back. 5430 AddrMode = BackupAddrMode; 5431 AddrModeInsts.resize(OldSize); 5432 TPT.rollback(LastKnownGood); 5433 } 5434 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 5435 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 5436 return true; 5437 TPT.rollback(LastKnownGood); 5438 } else if (isa<ConstantPointerNull>(Addr)) { 5439 // Null pointer gets folded without affecting the addressing mode. 5440 return true; 5441 } 5442 5443 // Worse case, the target should support [reg] addressing modes. :) 5444 if (!AddrMode.HasBaseReg) { 5445 AddrMode.HasBaseReg = true; 5446 AddrMode.BaseReg = Addr; 5447 // Still check for legality in case the target supports [imm] but not [i+r]. 5448 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5449 return true; 5450 AddrMode.HasBaseReg = false; 5451 AddrMode.BaseReg = nullptr; 5452 } 5453 5454 // If the base register is already taken, see if we can do [r+r]. 5455 if (AddrMode.Scale == 0) { 5456 AddrMode.Scale = 1; 5457 AddrMode.ScaledReg = Addr; 5458 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5459 return true; 5460 AddrMode.Scale = 0; 5461 AddrMode.ScaledReg = nullptr; 5462 } 5463 // Couldn't match. 5464 TPT.rollback(LastKnownGood); 5465 return false; 5466 } 5467 5468 /// Check to see if all uses of OpVal by the specified inline asm call are due 5469 /// to memory operands. If so, return true, otherwise return false. 5470 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 5471 const TargetLowering &TLI, 5472 const TargetRegisterInfo &TRI) { 5473 const Function *F = CI->getFunction(); 5474 TargetLowering::AsmOperandInfoVector TargetConstraints = 5475 TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI); 5476 5477 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5478 // Compute the constraint code and ConstraintType to use. 5479 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5480 5481 // If this asm operand is our Value*, and if it isn't an indirect memory 5482 // operand, we can't fold it! TODO: Also handle C_Address? 5483 if (OpInfo.CallOperandVal == OpVal && 5484 (OpInfo.ConstraintType != TargetLowering::C_Memory || 5485 !OpInfo.isIndirect)) 5486 return false; 5487 } 5488 5489 return true; 5490 } 5491 5492 /// Recursively walk all the uses of I until we find a memory use. 5493 /// If we find an obviously non-foldable instruction, return true. 5494 /// Add accessed addresses and types to MemoryUses. 5495 static bool FindAllMemoryUses( 5496 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5497 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 5498 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 5499 BlockFrequencyInfo *BFI, unsigned &SeenInsts) { 5500 // If we already considered this instruction, we're done. 5501 if (!ConsideredInsts.insert(I).second) 5502 return false; 5503 5504 // If this is an obviously unfoldable instruction, bail out. 5505 if (!MightBeFoldableInst(I)) 5506 return true; 5507 5508 // Loop over all the uses, recursively processing them. 5509 for (Use &U : I->uses()) { 5510 // Conservatively return true if we're seeing a large number or a deep chain 5511 // of users. This avoids excessive compilation times in pathological cases. 5512 if (SeenInsts++ >= MaxAddressUsersToScan) 5513 return true; 5514 5515 Instruction *UserI = cast<Instruction>(U.getUser()); 5516 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 5517 MemoryUses.push_back({&U, LI->getType()}); 5518 continue; 5519 } 5520 5521 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 5522 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 5523 return true; // Storing addr, not into addr. 5524 MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); 5525 continue; 5526 } 5527 5528 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 5529 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 5530 return true; // Storing addr, not into addr. 5531 MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); 5532 continue; 5533 } 5534 5535 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 5536 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 5537 return true; // Storing addr, not into addr. 5538 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); 5539 continue; 5540 } 5541 5542 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 5543 if (CI->hasFnAttr(Attribute::Cold)) { 5544 // If this is a cold call, we can sink the addressing calculation into 5545 // the cold path. See optimizeCallInst 5546 if (!llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI)) 5547 continue; 5548 } 5549 5550 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 5551 if (!IA) 5552 return true; 5553 5554 // If this is a memory operand, we're cool, otherwise bail out. 5555 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 5556 return true; 5557 continue; 5558 } 5559 5560 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5561 PSI, BFI, SeenInsts)) 5562 return true; 5563 } 5564 5565 return false; 5566 } 5567 5568 static bool FindAllMemoryUses( 5569 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5570 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, 5571 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 5572 unsigned SeenInsts = 0; 5573 SmallPtrSet<Instruction *, 16> ConsideredInsts; 5574 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5575 PSI, BFI, SeenInsts); 5576 } 5577 5578 5579 /// Return true if Val is already known to be live at the use site that we're 5580 /// folding it into. If so, there is no cost to include it in the addressing 5581 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 5582 /// instruction already. 5583 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, 5584 Value *KnownLive1, 5585 Value *KnownLive2) { 5586 // If Val is either of the known-live values, we know it is live! 5587 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 5588 return true; 5589 5590 // All values other than instructions and arguments (e.g. constants) are live. 5591 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) 5592 return true; 5593 5594 // If Val is a constant sized alloca in the entry block, it is live, this is 5595 // true because it is just a reference to the stack/frame pointer, which is 5596 // live for the whole function. 5597 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 5598 if (AI->isStaticAlloca()) 5599 return true; 5600 5601 // Check to see if this value is already used in the memory instruction's 5602 // block. If so, it's already live into the block at the very least, so we 5603 // can reasonably fold it. 5604 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 5605 } 5606 5607 /// It is possible for the addressing mode of the machine to fold the specified 5608 /// instruction into a load or store that ultimately uses it. 5609 /// However, the specified instruction has multiple uses. 5610 /// Given this, it may actually increase register pressure to fold it 5611 /// into the load. For example, consider this code: 5612 /// 5613 /// X = ... 5614 /// Y = X+1 5615 /// use(Y) -> nonload/store 5616 /// Z = Y+1 5617 /// load Z 5618 /// 5619 /// In this case, Y has multiple uses, and can be folded into the load of Z 5620 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 5621 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 5622 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 5623 /// number of computations either. 5624 /// 5625 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 5626 /// X was live across 'load Z' for other reasons, we actually *would* want to 5627 /// fold the addressing mode in the Z case. This would make Y die earlier. 5628 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( 5629 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { 5630 if (IgnoreProfitability) 5631 return true; 5632 5633 // AMBefore is the addressing mode before this instruction was folded into it, 5634 // and AMAfter is the addressing mode after the instruction was folded. Get 5635 // the set of registers referenced by AMAfter and subtract out those 5636 // referenced by AMBefore: this is the set of values which folding in this 5637 // address extends the lifetime of. 5638 // 5639 // Note that there are only two potential values being referenced here, 5640 // BaseReg and ScaleReg (global addresses are always available, as are any 5641 // folded immediates). 5642 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5643 5644 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5645 // lifetime wasn't extended by adding this instruction. 5646 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5647 BaseReg = nullptr; 5648 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5649 ScaledReg = nullptr; 5650 5651 // If folding this instruction (and it's subexprs) didn't extend any live 5652 // ranges, we're ok with it. 5653 if (!BaseReg && !ScaledReg) 5654 return true; 5655 5656 // If all uses of this instruction can have the address mode sunk into them, 5657 // we can remove the addressing mode and effectively trade one live register 5658 // for another (at worst.) In this context, folding an addressing mode into 5659 // the use is just a particularly nice way of sinking it. 5660 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; 5661 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) 5662 return false; // Has a non-memory, non-foldable use! 5663 5664 // Now that we know that all uses of this instruction are part of a chain of 5665 // computation involving only operations that could theoretically be folded 5666 // into a memory use, loop over each of these memory operation uses and see 5667 // if they could *actually* fold the instruction. The assumption is that 5668 // addressing modes are cheap and that duplicating the computation involved 5669 // many times is worthwhile, even on a fastpath. For sinking candidates 5670 // (i.e. cold call sites), this serves as a way to prevent excessive code 5671 // growth since most architectures have some reasonable small and fast way to 5672 // compute an effective address. (i.e LEA on x86) 5673 SmallVector<Instruction *, 32> MatchedAddrModeInsts; 5674 for (const std::pair<Use *, Type *> &Pair : MemoryUses) { 5675 Value *Address = Pair.first->get(); 5676 Instruction *UserI = cast<Instruction>(Pair.first->getUser()); 5677 Type *AddressAccessTy = Pair.second; 5678 unsigned AS = Address->getType()->getPointerAddressSpace(); 5679 5680 // Do a match against the root of this address, ignoring profitability. This 5681 // will tell us if the addressing mode for the memory operation will 5682 // *actually* cover the shared instruction. 5683 ExtAddrMode Result; 5684 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5685 0); 5686 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5687 TPT.getRestorationPoint(); 5688 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5689 AddressAccessTy, AS, UserI, Result, 5690 InsertedInsts, PromotedInsts, TPT, 5691 LargeOffsetGEP, OptSize, PSI, BFI); 5692 Matcher.IgnoreProfitability = true; 5693 bool Success = Matcher.matchAddr(Address, 0); 5694 (void)Success; 5695 assert(Success && "Couldn't select *anything*?"); 5696 5697 // The match was to check the profitability, the changes made are not 5698 // part of the original matcher. Therefore, they should be dropped 5699 // otherwise the original matcher will not present the right state. 5700 TPT.rollback(LastKnownGood); 5701 5702 // If the match didn't cover I, then it won't be shared by it. 5703 if (!is_contained(MatchedAddrModeInsts, I)) 5704 return false; 5705 5706 MatchedAddrModeInsts.clear(); 5707 } 5708 5709 return true; 5710 } 5711 5712 /// Return true if the specified values are defined in a 5713 /// different basic block than BB. 5714 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5715 if (Instruction *I = dyn_cast<Instruction>(V)) 5716 return I->getParent() != BB; 5717 return false; 5718 } 5719 5720 /// Sink addressing mode computation immediate before MemoryInst if doing so 5721 /// can be done without increasing register pressure. The need for the 5722 /// register pressure constraint means this can end up being an all or nothing 5723 /// decision for all uses of the same addressing computation. 5724 /// 5725 /// Load and Store Instructions often have addressing modes that can do 5726 /// significant amounts of computation. As such, instruction selection will try 5727 /// to get the load or store to do as much computation as possible for the 5728 /// program. The problem is that isel can only see within a single block. As 5729 /// such, we sink as much legal addressing mode work into the block as possible. 5730 /// 5731 /// This method is used to optimize both load/store and inline asms with memory 5732 /// operands. It's also used to sink addressing computations feeding into cold 5733 /// call sites into their (cold) basic block. 5734 /// 5735 /// The motivation for handling sinking into cold blocks is that doing so can 5736 /// both enable other address mode sinking (by satisfying the register pressure 5737 /// constraint above), and reduce register pressure globally (by removing the 5738 /// addressing mode computation from the fast path entirely.). 5739 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5740 Type *AccessTy, unsigned AddrSpace) { 5741 Value *Repl = Addr; 5742 5743 // Try to collapse single-value PHI nodes. This is necessary to undo 5744 // unprofitable PRE transformations. 5745 SmallVector<Value *, 8> worklist; 5746 SmallPtrSet<Value *, 16> Visited; 5747 worklist.push_back(Addr); 5748 5749 // Use a worklist to iteratively look through PHI and select nodes, and 5750 // ensure that the addressing mode obtained from the non-PHI/select roots of 5751 // the graph are compatible. 5752 bool PhiOrSelectSeen = false; 5753 SmallVector<Instruction *, 16> AddrModeInsts; 5754 const SimplifyQuery SQ(*DL, TLInfo); 5755 AddressingModeCombiner AddrModes(SQ, Addr); 5756 TypePromotionTransaction TPT(RemovedInsts); 5757 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5758 TPT.getRestorationPoint(); 5759 while (!worklist.empty()) { 5760 Value *V = worklist.pop_back_val(); 5761 5762 // We allow traversing cyclic Phi nodes. 5763 // In case of success after this loop we ensure that traversing through 5764 // Phi nodes ends up with all cases to compute address of the form 5765 // BaseGV + Base + Scale * Index + Offset 5766 // where Scale and Offset are constans and BaseGV, Base and Index 5767 // are exactly the same Values in all cases. 5768 // It means that BaseGV, Scale and Offset dominate our memory instruction 5769 // and have the same value as they had in address computation represented 5770 // as Phi. So we can safely sink address computation to memory instruction. 5771 if (!Visited.insert(V).second) 5772 continue; 5773 5774 // For a PHI node, push all of its incoming values. 5775 if (PHINode *P = dyn_cast<PHINode>(V)) { 5776 append_range(worklist, P->incoming_values()); 5777 PhiOrSelectSeen = true; 5778 continue; 5779 } 5780 // Similar for select. 5781 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5782 worklist.push_back(SI->getFalseValue()); 5783 worklist.push_back(SI->getTrueValue()); 5784 PhiOrSelectSeen = true; 5785 continue; 5786 } 5787 5788 // For non-PHIs, determine the addressing mode being computed. Note that 5789 // the result may differ depending on what other uses our candidate 5790 // addressing instructions might have. 5791 AddrModeInsts.clear(); 5792 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5793 0); 5794 // Defer the query (and possible computation of) the dom tree to point of 5795 // actual use. It's expected that most address matches don't actually need 5796 // the domtree. 5797 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5798 Function *F = MemoryInst->getParent()->getParent(); 5799 return this->getDT(*F); 5800 }; 5801 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5802 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5803 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5804 BFI.get()); 5805 5806 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5807 if (GEP && !NewGEPBases.count(GEP)) { 5808 // If splitting the underlying data structure can reduce the offset of a 5809 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5810 // previously split data structures. 5811 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5812 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5813 } 5814 5815 NewAddrMode.OriginalValue = V; 5816 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5817 break; 5818 } 5819 5820 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5821 // or we have multiple but either couldn't combine them or combining them 5822 // wouldn't do anything useful, bail out now. 5823 if (!AddrModes.combineAddrModes()) { 5824 TPT.rollback(LastKnownGood); 5825 return false; 5826 } 5827 bool Modified = TPT.commit(); 5828 5829 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5830 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5831 5832 // If all the instructions matched are already in this BB, don't do anything. 5833 // If we saw a Phi node then it is not local definitely, and if we saw a 5834 // select then we want to push the address calculation past it even if it's 5835 // already in this BB. 5836 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5837 return IsNonLocalValue(V, MemoryInst->getParent()); 5838 })) { 5839 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5840 << "\n"); 5841 return Modified; 5842 } 5843 5844 // Insert this computation right after this user. Since our caller is 5845 // scanning from the top of the BB to the bottom, reuse of the expr are 5846 // guaranteed to happen later. 5847 IRBuilder<> Builder(MemoryInst); 5848 5849 // Now that we determined the addressing expression we want to use and know 5850 // that we have to sink it into this block. Check to see if we have already 5851 // done this for some other load/store instr in this block. If so, reuse 5852 // the computation. Before attempting reuse, check if the address is valid 5853 // as it may have been erased. 5854 5855 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5856 5857 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5858 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5859 if (SunkAddr) { 5860 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5861 << " for " << *MemoryInst << "\n"); 5862 if (SunkAddr->getType() != Addr->getType()) { 5863 if (SunkAddr->getType()->getPointerAddressSpace() != 5864 Addr->getType()->getPointerAddressSpace() && 5865 !DL->isNonIntegralPointerType(Addr->getType())) { 5866 // There are two reasons the address spaces might not match: a no-op 5867 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5868 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5869 // TODO: allow bitcast between different address space pointers with the 5870 // same size. 5871 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5872 SunkAddr = 5873 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5874 } else 5875 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5876 } 5877 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5878 SubtargetInfo->addrSinkUsingGEPs())) { 5879 // By default, we use the GEP-based method when AA is used later. This 5880 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5881 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5882 << " for " << *MemoryInst << "\n"); 5883 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5884 5885 // First, find the pointer. 5886 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5887 ResultPtr = AddrMode.BaseReg; 5888 AddrMode.BaseReg = nullptr; 5889 } 5890 5891 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5892 // We can't add more than one pointer together, nor can we scale a 5893 // pointer (both of which seem meaningless). 5894 if (ResultPtr || AddrMode.Scale != 1) 5895 return Modified; 5896 5897 ResultPtr = AddrMode.ScaledReg; 5898 AddrMode.Scale = 0; 5899 } 5900 5901 // It is only safe to sign extend the BaseReg if we know that the math 5902 // required to create it did not overflow before we extend it. Since 5903 // the original IR value was tossed in favor of a constant back when 5904 // the AddrMode was created we need to bail out gracefully if widths 5905 // do not match instead of extending it. 5906 // 5907 // (See below for code to add the scale.) 5908 if (AddrMode.Scale) { 5909 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5910 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5911 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5912 return Modified; 5913 } 5914 5915 GlobalValue *BaseGV = AddrMode.BaseGV; 5916 if (BaseGV != nullptr) { 5917 if (ResultPtr) 5918 return Modified; 5919 5920 if (BaseGV->isThreadLocal()) { 5921 ResultPtr = Builder.CreateThreadLocalAddress(BaseGV); 5922 } else { 5923 ResultPtr = BaseGV; 5924 } 5925 } 5926 5927 // If the real base value actually came from an inttoptr, then the matcher 5928 // will look through it and provide only the integer value. In that case, 5929 // use it here. 5930 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5931 if (!ResultPtr && AddrMode.BaseReg) { 5932 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5933 "sunkaddr"); 5934 AddrMode.BaseReg = nullptr; 5935 } else if (!ResultPtr && AddrMode.Scale == 1) { 5936 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5937 "sunkaddr"); 5938 AddrMode.Scale = 0; 5939 } 5940 } 5941 5942 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && 5943 !AddrMode.BaseOffs) { 5944 SunkAddr = Constant::getNullValue(Addr->getType()); 5945 } else if (!ResultPtr) { 5946 return Modified; 5947 } else { 5948 Type *I8PtrTy = 5949 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace()); 5950 5951 // Start with the base register. Do this first so that subsequent address 5952 // matching finds it last, which will prevent it from trying to match it 5953 // as the scaled value in case it happens to be a mul. That would be 5954 // problematic if we've sunk a different mul for the scale, because then 5955 // we'd end up sinking both muls. 5956 if (AddrMode.BaseReg) { 5957 Value *V = AddrMode.BaseReg; 5958 if (V->getType() != IntPtrTy) 5959 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5960 5961 ResultIndex = V; 5962 } 5963 5964 // Add the scale value. 5965 if (AddrMode.Scale) { 5966 Value *V = AddrMode.ScaledReg; 5967 if (V->getType() == IntPtrTy) { 5968 // done. 5969 } else { 5970 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5971 cast<IntegerType>(V->getType())->getBitWidth() && 5972 "We can't transform if ScaledReg is too narrow"); 5973 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5974 } 5975 5976 if (AddrMode.Scale != 1) 5977 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5978 "sunkaddr"); 5979 if (ResultIndex) 5980 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5981 else 5982 ResultIndex = V; 5983 } 5984 5985 // Add in the Base Offset if present. 5986 if (AddrMode.BaseOffs) { 5987 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5988 if (ResultIndex) { 5989 // We need to add this separately from the scale above to help with 5990 // SDAG consecutive load/store merging. 5991 if (ResultPtr->getType() != I8PtrTy) 5992 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5993 ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5994 AddrMode.InBounds); 5995 } 5996 5997 ResultIndex = V; 5998 } 5999 6000 if (!ResultIndex) { 6001 SunkAddr = ResultPtr; 6002 } else { 6003 if (ResultPtr->getType() != I8PtrTy) 6004 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 6005 SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 6006 AddrMode.InBounds); 6007 } 6008 6009 if (SunkAddr->getType() != Addr->getType()) { 6010 if (SunkAddr->getType()->getPointerAddressSpace() != 6011 Addr->getType()->getPointerAddressSpace() && 6012 !DL->isNonIntegralPointerType(Addr->getType())) { 6013 // There are two reasons the address spaces might not match: a no-op 6014 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 6015 // ptrtoint/inttoptr pair to ensure we match the original semantics. 6016 // TODO: allow bitcast between different address space pointers with 6017 // the same size. 6018 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 6019 SunkAddr = 6020 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 6021 } else 6022 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 6023 } 6024 } 6025 } else { 6026 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 6027 // non-integral pointers, so in that case bail out now. 6028 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 6029 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 6030 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 6031 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 6032 if (DL->isNonIntegralPointerType(Addr->getType()) || 6033 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 6034 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 6035 (AddrMode.BaseGV && 6036 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 6037 return Modified; 6038 6039 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 6040 << " for " << *MemoryInst << "\n"); 6041 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 6042 Value *Result = nullptr; 6043 6044 // Start with the base register. Do this first so that subsequent address 6045 // matching finds it last, which will prevent it from trying to match it 6046 // as the scaled value in case it happens to be a mul. That would be 6047 // problematic if we've sunk a different mul for the scale, because then 6048 // we'd end up sinking both muls. 6049 if (AddrMode.BaseReg) { 6050 Value *V = AddrMode.BaseReg; 6051 if (V->getType()->isPointerTy()) 6052 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 6053 if (V->getType() != IntPtrTy) 6054 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 6055 Result = V; 6056 } 6057 6058 // Add the scale value. 6059 if (AddrMode.Scale) { 6060 Value *V = AddrMode.ScaledReg; 6061 if (V->getType() == IntPtrTy) { 6062 // done. 6063 } else if (V->getType()->isPointerTy()) { 6064 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 6065 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 6066 cast<IntegerType>(V->getType())->getBitWidth()) { 6067 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 6068 } else { 6069 // It is only safe to sign extend the BaseReg if we know that the math 6070 // required to create it did not overflow before we extend it. Since 6071 // the original IR value was tossed in favor of a constant back when 6072 // the AddrMode was created we need to bail out gracefully if widths 6073 // do not match instead of extending it. 6074 Instruction *I = dyn_cast_or_null<Instruction>(Result); 6075 if (I && (Result != AddrMode.BaseReg)) 6076 I->eraseFromParent(); 6077 return Modified; 6078 } 6079 if (AddrMode.Scale != 1) 6080 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 6081 "sunkaddr"); 6082 if (Result) 6083 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 6084 else 6085 Result = V; 6086 } 6087 6088 // Add in the BaseGV if present. 6089 GlobalValue *BaseGV = AddrMode.BaseGV; 6090 if (BaseGV != nullptr) { 6091 Value *BaseGVPtr; 6092 if (BaseGV->isThreadLocal()) { 6093 BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV); 6094 } else { 6095 BaseGVPtr = BaseGV; 6096 } 6097 Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr"); 6098 if (Result) 6099 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 6100 else 6101 Result = V; 6102 } 6103 6104 // Add in the Base Offset if present. 6105 if (AddrMode.BaseOffs) { 6106 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 6107 if (Result) 6108 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 6109 else 6110 Result = V; 6111 } 6112 6113 if (!Result) 6114 SunkAddr = Constant::getNullValue(Addr->getType()); 6115 else 6116 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 6117 } 6118 6119 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 6120 // Store the newly computed address into the cache. In the case we reused a 6121 // value, this should be idempotent. 6122 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 6123 6124 // If we have no uses, recursively delete the value and all dead instructions 6125 // using it. 6126 if (Repl->use_empty()) { 6127 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 6128 RecursivelyDeleteTriviallyDeadInstructions( 6129 Repl, TLInfo, nullptr, 6130 [&](Value *V) { removeAllAssertingVHReferences(V); }); 6131 }); 6132 } 6133 ++NumMemoryInsts; 6134 return true; 6135 } 6136 6137 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 6138 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 6139 /// only handle a 2 operand GEP in the same basic block or a splat constant 6140 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 6141 /// index. 6142 /// 6143 /// If the existing GEP has a vector base pointer that is splat, we can look 6144 /// through the splat to find the scalar pointer. If we can't find a scalar 6145 /// pointer there's nothing we can do. 6146 /// 6147 /// If we have a GEP with more than 2 indices where the middle indices are all 6148 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 6149 /// 6150 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 6151 /// followed by a GEP with an all zeroes vector index. This will enable 6152 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 6153 /// zero index. 6154 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 6155 Value *Ptr) { 6156 Value *NewAddr; 6157 6158 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 6159 // Don't optimize GEPs that don't have indices. 6160 if (!GEP->hasIndices()) 6161 return false; 6162 6163 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 6164 // FIXME: We should support this by sinking the GEP. 6165 if (MemoryInst->getParent() != GEP->getParent()) 6166 return false; 6167 6168 SmallVector<Value *, 2> Ops(GEP->operands()); 6169 6170 bool RewriteGEP = false; 6171 6172 if (Ops[0]->getType()->isVectorTy()) { 6173 Ops[0] = getSplatValue(Ops[0]); 6174 if (!Ops[0]) 6175 return false; 6176 RewriteGEP = true; 6177 } 6178 6179 unsigned FinalIndex = Ops.size() - 1; 6180 6181 // Ensure all but the last index is 0. 6182 // FIXME: This isn't strictly required. All that's required is that they are 6183 // all scalars or splats. 6184 for (unsigned i = 1; i < FinalIndex; ++i) { 6185 auto *C = dyn_cast<Constant>(Ops[i]); 6186 if (!C) 6187 return false; 6188 if (isa<VectorType>(C->getType())) 6189 C = C->getSplatValue(); 6190 auto *CI = dyn_cast_or_null<ConstantInt>(C); 6191 if (!CI || !CI->isZero()) 6192 return false; 6193 // Scalarize the index if needed. 6194 Ops[i] = CI; 6195 } 6196 6197 // Try to scalarize the final index. 6198 if (Ops[FinalIndex]->getType()->isVectorTy()) { 6199 if (Value *V = getSplatValue(Ops[FinalIndex])) { 6200 auto *C = dyn_cast<ConstantInt>(V); 6201 // Don't scalarize all zeros vector. 6202 if (!C || !C->isZero()) { 6203 Ops[FinalIndex] = V; 6204 RewriteGEP = true; 6205 } 6206 } 6207 } 6208 6209 // If we made any changes or the we have extra operands, we need to generate 6210 // new instructions. 6211 if (!RewriteGEP && Ops.size() == 2) 6212 return false; 6213 6214 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 6215 6216 IRBuilder<> Builder(MemoryInst); 6217 6218 Type *SourceTy = GEP->getSourceElementType(); 6219 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 6220 6221 // If the final index isn't a vector, emit a scalar GEP containing all ops 6222 // and a vector GEP with all zeroes final index. 6223 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 6224 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); 6225 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 6226 auto *SecondTy = GetElementPtrInst::getIndexedType( 6227 SourceTy, ArrayRef(Ops).drop_front()); 6228 NewAddr = 6229 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 6230 } else { 6231 Value *Base = Ops[0]; 6232 Value *Index = Ops[FinalIndex]; 6233 6234 // Create a scalar GEP if there are more than 2 operands. 6235 if (Ops.size() != 2) { 6236 // Replace the last index with 0. 6237 Ops[FinalIndex] = 6238 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType()); 6239 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); 6240 SourceTy = GetElementPtrInst::getIndexedType( 6241 SourceTy, ArrayRef(Ops).drop_front()); 6242 } 6243 6244 // Now create the GEP with scalar pointer and vector index. 6245 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 6246 } 6247 } else if (!isa<Constant>(Ptr)) { 6248 // Not a GEP, maybe its a splat and we can create a GEP to enable 6249 // SelectionDAGBuilder to use it as a uniform base. 6250 Value *V = getSplatValue(Ptr); 6251 if (!V) 6252 return false; 6253 6254 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 6255 6256 IRBuilder<> Builder(MemoryInst); 6257 6258 // Emit a vector GEP with a scalar pointer and all 0s vector index. 6259 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 6260 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 6261 Type *ScalarTy; 6262 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 6263 Intrinsic::masked_gather) { 6264 ScalarTy = MemoryInst->getType()->getScalarType(); 6265 } else { 6266 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 6267 Intrinsic::masked_scatter); 6268 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 6269 } 6270 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 6271 } else { 6272 // Constant, SelectionDAGBuilder knows to check if its a splat. 6273 return false; 6274 } 6275 6276 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 6277 6278 // If we have no uses, recursively delete the value and all dead instructions 6279 // using it. 6280 if (Ptr->use_empty()) 6281 RecursivelyDeleteTriviallyDeadInstructions( 6282 Ptr, TLInfo, nullptr, 6283 [&](Value *V) { removeAllAssertingVHReferences(V); }); 6284 6285 return true; 6286 } 6287 6288 /// If there are any memory operands, use OptimizeMemoryInst to sink their 6289 /// address computing into the block when possible / profitable. 6290 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 6291 bool MadeChange = false; 6292 6293 const TargetRegisterInfo *TRI = 6294 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 6295 TargetLowering::AsmOperandInfoVector TargetConstraints = 6296 TLI->ParseConstraints(*DL, TRI, *CS); 6297 unsigned ArgNo = 0; 6298 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 6299 // Compute the constraint code and ConstraintType to use. 6300 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6301 6302 // TODO: Also handle C_Address? 6303 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6304 OpInfo.isIndirect) { 6305 Value *OpVal = CS->getArgOperand(ArgNo++); 6306 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 6307 } else if (OpInfo.Type == InlineAsm::isInput) 6308 ArgNo++; 6309 } 6310 6311 return MadeChange; 6312 } 6313 6314 /// Check if all the uses of \p Val are equivalent (or free) zero or 6315 /// sign extensions. 6316 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 6317 assert(!Val->use_empty() && "Input must have at least one use"); 6318 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 6319 bool IsSExt = isa<SExtInst>(FirstUser); 6320 Type *ExtTy = FirstUser->getType(); 6321 for (const User *U : Val->users()) { 6322 const Instruction *UI = cast<Instruction>(U); 6323 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 6324 return false; 6325 Type *CurTy = UI->getType(); 6326 // Same input and output types: Same instruction after CSE. 6327 if (CurTy == ExtTy) 6328 continue; 6329 6330 // If IsSExt is true, we are in this situation: 6331 // a = Val 6332 // b = sext ty1 a to ty2 6333 // c = sext ty1 a to ty3 6334 // Assuming ty2 is shorter than ty3, this could be turned into: 6335 // a = Val 6336 // b = sext ty1 a to ty2 6337 // c = sext ty2 b to ty3 6338 // However, the last sext is not free. 6339 if (IsSExt) 6340 return false; 6341 6342 // This is a ZExt, maybe this is free to extend from one type to another. 6343 // In that case, we would not account for a different use. 6344 Type *NarrowTy; 6345 Type *LargeTy; 6346 if (ExtTy->getScalarType()->getIntegerBitWidth() > 6347 CurTy->getScalarType()->getIntegerBitWidth()) { 6348 NarrowTy = CurTy; 6349 LargeTy = ExtTy; 6350 } else { 6351 NarrowTy = ExtTy; 6352 LargeTy = CurTy; 6353 } 6354 6355 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 6356 return false; 6357 } 6358 // All uses are the same or can be derived from one another for free. 6359 return true; 6360 } 6361 6362 /// Try to speculatively promote extensions in \p Exts and continue 6363 /// promoting through newly promoted operands recursively as far as doing so is 6364 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 6365 /// When some promotion happened, \p TPT contains the proper state to revert 6366 /// them. 6367 /// 6368 /// \return true if some promotion happened, false otherwise. 6369 bool CodeGenPrepare::tryToPromoteExts( 6370 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 6371 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 6372 unsigned CreatedInstsCost) { 6373 bool Promoted = false; 6374 6375 // Iterate over all the extensions to try to promote them. 6376 for (auto *I : Exts) { 6377 // Early check if we directly have ext(load). 6378 if (isa<LoadInst>(I->getOperand(0))) { 6379 ProfitablyMovedExts.push_back(I); 6380 continue; 6381 } 6382 6383 // Check whether or not we want to do any promotion. The reason we have 6384 // this check inside the for loop is to catch the case where an extension 6385 // is directly fed by a load because in such case the extension can be moved 6386 // up without any promotion on its operands. 6387 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 6388 return false; 6389 6390 // Get the action to perform the promotion. 6391 TypePromotionHelper::Action TPH = 6392 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 6393 // Check if we can promote. 6394 if (!TPH) { 6395 // Save the current extension as we cannot move up through its operand. 6396 ProfitablyMovedExts.push_back(I); 6397 continue; 6398 } 6399 6400 // Save the current state. 6401 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6402 TPT.getRestorationPoint(); 6403 SmallVector<Instruction *, 4> NewExts; 6404 unsigned NewCreatedInstsCost = 0; 6405 unsigned ExtCost = !TLI->isExtFree(I); 6406 // Promote. 6407 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 6408 &NewExts, nullptr, *TLI); 6409 assert(PromotedVal && 6410 "TypePromotionHelper should have filtered out those cases"); 6411 6412 // We would be able to merge only one extension in a load. 6413 // Therefore, if we have more than 1 new extension we heuristically 6414 // cut this search path, because it means we degrade the code quality. 6415 // With exactly 2, the transformation is neutral, because we will merge 6416 // one extension but leave one. However, we optimistically keep going, 6417 // because the new extension may be removed too. Also avoid replacing a 6418 // single free extension with multiple extensions, as this increases the 6419 // number of IR instructions while not providing any savings. 6420 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 6421 // FIXME: It would be possible to propagate a negative value instead of 6422 // conservatively ceiling it to 0. 6423 TotalCreatedInstsCost = 6424 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 6425 if (!StressExtLdPromotion && 6426 (TotalCreatedInstsCost > 1 || 6427 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) || 6428 (ExtCost == 0 && NewExts.size() > 1))) { 6429 // This promotion is not profitable, rollback to the previous state, and 6430 // save the current extension in ProfitablyMovedExts as the latest 6431 // speculative promotion turned out to be unprofitable. 6432 TPT.rollback(LastKnownGood); 6433 ProfitablyMovedExts.push_back(I); 6434 continue; 6435 } 6436 // Continue promoting NewExts as far as doing so is profitable. 6437 SmallVector<Instruction *, 2> NewlyMovedExts; 6438 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 6439 bool NewPromoted = false; 6440 for (auto *ExtInst : NewlyMovedExts) { 6441 Instruction *MovedExt = cast<Instruction>(ExtInst); 6442 Value *ExtOperand = MovedExt->getOperand(0); 6443 // If we have reached to a load, we need this extra profitability check 6444 // as it could potentially be merged into an ext(load). 6445 if (isa<LoadInst>(ExtOperand) && 6446 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 6447 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 6448 continue; 6449 6450 ProfitablyMovedExts.push_back(MovedExt); 6451 NewPromoted = true; 6452 } 6453 6454 // If none of speculative promotions for NewExts is profitable, rollback 6455 // and save the current extension (I) as the last profitable extension. 6456 if (!NewPromoted) { 6457 TPT.rollback(LastKnownGood); 6458 ProfitablyMovedExts.push_back(I); 6459 continue; 6460 } 6461 // The promotion is profitable. 6462 Promoted = true; 6463 } 6464 return Promoted; 6465 } 6466 6467 /// Merging redundant sexts when one is dominating the other. 6468 bool CodeGenPrepare::mergeSExts(Function &F) { 6469 bool Changed = false; 6470 for (auto &Entry : ValToSExtendedUses) { 6471 SExts &Insts = Entry.second; 6472 SExts CurPts; 6473 for (Instruction *Inst : Insts) { 6474 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 6475 Inst->getOperand(0) != Entry.first) 6476 continue; 6477 bool inserted = false; 6478 for (auto &Pt : CurPts) { 6479 if (getDT(F).dominates(Inst, Pt)) { 6480 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); 6481 RemovedInsts.insert(Pt); 6482 Pt->removeFromParent(); 6483 Pt = Inst; 6484 inserted = true; 6485 Changed = true; 6486 break; 6487 } 6488 if (!getDT(F).dominates(Pt, Inst)) 6489 // Give up if we need to merge in a common dominator as the 6490 // experiments show it is not profitable. 6491 continue; 6492 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); 6493 RemovedInsts.insert(Inst); 6494 Inst->removeFromParent(); 6495 inserted = true; 6496 Changed = true; 6497 break; 6498 } 6499 if (!inserted) 6500 CurPts.push_back(Inst); 6501 } 6502 } 6503 return Changed; 6504 } 6505 6506 // Splitting large data structures so that the GEPs accessing them can have 6507 // smaller offsets so that they can be sunk to the same blocks as their users. 6508 // For example, a large struct starting from %base is split into two parts 6509 // where the second part starts from %new_base. 6510 // 6511 // Before: 6512 // BB0: 6513 // %base = 6514 // 6515 // BB1: 6516 // %gep0 = gep %base, off0 6517 // %gep1 = gep %base, off1 6518 // %gep2 = gep %base, off2 6519 // 6520 // BB2: 6521 // %load1 = load %gep0 6522 // %load2 = load %gep1 6523 // %load3 = load %gep2 6524 // 6525 // After: 6526 // BB0: 6527 // %base = 6528 // %new_base = gep %base, off0 6529 // 6530 // BB1: 6531 // %new_gep0 = %new_base 6532 // %new_gep1 = gep %new_base, off1 - off0 6533 // %new_gep2 = gep %new_base, off2 - off0 6534 // 6535 // BB2: 6536 // %load1 = load i32, i32* %new_gep0 6537 // %load2 = load i32, i32* %new_gep1 6538 // %load3 = load i32, i32* %new_gep2 6539 // 6540 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 6541 // their offsets are smaller enough to fit into the addressing mode. 6542 bool CodeGenPrepare::splitLargeGEPOffsets() { 6543 bool Changed = false; 6544 for (auto &Entry : LargeOffsetGEPMap) { 6545 Value *OldBase = Entry.first; 6546 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 6547 &LargeOffsetGEPs = Entry.second; 6548 auto compareGEPOffset = 6549 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 6550 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 6551 if (LHS.first == RHS.first) 6552 return false; 6553 if (LHS.second != RHS.second) 6554 return LHS.second < RHS.second; 6555 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 6556 }; 6557 // Sorting all the GEPs of the same data structures based on the offsets. 6558 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 6559 LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end()); 6560 // Skip if all the GEPs have the same offsets. 6561 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 6562 continue; 6563 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 6564 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 6565 Value *NewBaseGEP = nullptr; 6566 6567 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase, 6568 GetElementPtrInst *GEP) { 6569 LLVMContext &Ctx = GEP->getContext(); 6570 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6571 Type *I8PtrTy = 6572 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace()); 6573 6574 BasicBlock::iterator NewBaseInsertPt; 6575 BasicBlock *NewBaseInsertBB; 6576 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 6577 // If the base of the struct is an instruction, the new base will be 6578 // inserted close to it. 6579 NewBaseInsertBB = BaseI->getParent(); 6580 if (isa<PHINode>(BaseI)) 6581 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6582 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 6583 NewBaseInsertBB = 6584 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI); 6585 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6586 } else 6587 NewBaseInsertPt = std::next(BaseI->getIterator()); 6588 } else { 6589 // If the current base is an argument or global value, the new base 6590 // will be inserted to the entry block. 6591 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 6592 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6593 } 6594 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 6595 // Create a new base. 6596 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset); 6597 NewBaseGEP = OldBase; 6598 if (NewBaseGEP->getType() != I8PtrTy) 6599 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 6600 NewBaseGEP = 6601 NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep"); 6602 NewGEPBases.insert(NewBaseGEP); 6603 return; 6604 }; 6605 6606 // Check whether all the offsets can be encoded with prefered common base. 6607 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset( 6608 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) { 6609 BaseOffset = PreferBase; 6610 // Create a new base if the offset of the BaseGEP can be decoded with one 6611 // instruction. 6612 createNewBase(BaseOffset, OldBase, BaseGEP); 6613 } 6614 6615 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 6616 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 6617 GetElementPtrInst *GEP = LargeOffsetGEP->first; 6618 int64_t Offset = LargeOffsetGEP->second; 6619 if (Offset != BaseOffset) { 6620 TargetLowering::AddrMode AddrMode; 6621 AddrMode.HasBaseReg = true; 6622 AddrMode.BaseOffs = Offset - BaseOffset; 6623 // The result type of the GEP might not be the type of the memory 6624 // access. 6625 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 6626 GEP->getResultElementType(), 6627 GEP->getAddressSpace())) { 6628 // We need to create a new base if the offset to the current base is 6629 // too large to fit into the addressing mode. So, a very large struct 6630 // may be split into several parts. 6631 BaseGEP = GEP; 6632 BaseOffset = Offset; 6633 NewBaseGEP = nullptr; 6634 } 6635 } 6636 6637 // Generate a new GEP to replace the current one. 6638 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6639 6640 if (!NewBaseGEP) { 6641 // Create a new base if we don't have one yet. Find the insertion 6642 // pointer for the new base first. 6643 createNewBase(BaseOffset, OldBase, GEP); 6644 } 6645 6646 IRBuilder<> Builder(GEP); 6647 Value *NewGEP = NewBaseGEP; 6648 if (Offset != BaseOffset) { 6649 // Calculate the new offset for the new GEP. 6650 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset); 6651 NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index); 6652 } 6653 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); 6654 LargeOffsetGEPID.erase(GEP); 6655 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6656 GEP->eraseFromParent(); 6657 Changed = true; 6658 } 6659 } 6660 return Changed; 6661 } 6662 6663 bool CodeGenPrepare::optimizePhiType( 6664 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6665 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6666 // We are looking for a collection on interconnected phi nodes that together 6667 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6668 // are of the same type. Convert the whole set of nodes to the type of the 6669 // bitcast. 6670 Type *PhiTy = I->getType(); 6671 Type *ConvertTy = nullptr; 6672 if (Visited.count(I) || 6673 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6674 return false; 6675 6676 SmallVector<Instruction *, 4> Worklist; 6677 Worklist.push_back(cast<Instruction>(I)); 6678 SmallPtrSet<PHINode *, 4> PhiNodes; 6679 SmallPtrSet<ConstantData *, 4> Constants; 6680 PhiNodes.insert(I); 6681 Visited.insert(I); 6682 SmallPtrSet<Instruction *, 4> Defs; 6683 SmallPtrSet<Instruction *, 4> Uses; 6684 // This works by adding extra bitcasts between load/stores and removing 6685 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6686 // we can get in the situation where we remove a bitcast in one iteration 6687 // just to add it again in the next. We need to ensure that at least one 6688 // bitcast we remove are anchored to something that will not change back. 6689 bool AnyAnchored = false; 6690 6691 while (!Worklist.empty()) { 6692 Instruction *II = Worklist.pop_back_val(); 6693 6694 if (auto *Phi = dyn_cast<PHINode>(II)) { 6695 // Handle Defs, which might also be PHI's 6696 for (Value *V : Phi->incoming_values()) { 6697 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6698 if (!PhiNodes.count(OpPhi)) { 6699 if (!Visited.insert(OpPhi).second) 6700 return false; 6701 PhiNodes.insert(OpPhi); 6702 Worklist.push_back(OpPhi); 6703 } 6704 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6705 if (!OpLoad->isSimple()) 6706 return false; 6707 if (Defs.insert(OpLoad).second) 6708 Worklist.push_back(OpLoad); 6709 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6710 if (Defs.insert(OpEx).second) 6711 Worklist.push_back(OpEx); 6712 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6713 if (!ConvertTy) 6714 ConvertTy = OpBC->getOperand(0)->getType(); 6715 if (OpBC->getOperand(0)->getType() != ConvertTy) 6716 return false; 6717 if (Defs.insert(OpBC).second) { 6718 Worklist.push_back(OpBC); 6719 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6720 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6721 } 6722 } else if (auto *OpC = dyn_cast<ConstantData>(V)) 6723 Constants.insert(OpC); 6724 else 6725 return false; 6726 } 6727 } 6728 6729 // Handle uses which might also be phi's 6730 for (User *V : II->users()) { 6731 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6732 if (!PhiNodes.count(OpPhi)) { 6733 if (Visited.count(OpPhi)) 6734 return false; 6735 PhiNodes.insert(OpPhi); 6736 Visited.insert(OpPhi); 6737 Worklist.push_back(OpPhi); 6738 } 6739 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6740 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6741 return false; 6742 Uses.insert(OpStore); 6743 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6744 if (!ConvertTy) 6745 ConvertTy = OpBC->getType(); 6746 if (OpBC->getType() != ConvertTy) 6747 return false; 6748 Uses.insert(OpBC); 6749 AnyAnchored |= 6750 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6751 } else { 6752 return false; 6753 } 6754 } 6755 } 6756 6757 if (!ConvertTy || !AnyAnchored || 6758 !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6759 return false; 6760 6761 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6762 << *ConvertTy << "\n"); 6763 6764 // Create all the new phi nodes of the new type, and bitcast any loads to the 6765 // correct type. 6766 ValueToValueMap ValMap; 6767 for (ConstantData *C : Constants) 6768 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy); 6769 for (Instruction *D : Defs) { 6770 if (isa<BitCastInst>(D)) { 6771 ValMap[D] = D->getOperand(0); 6772 DeletedInstrs.insert(D); 6773 } else { 6774 BasicBlock::iterator insertPt = std::next(D->getIterator()); 6775 ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt); 6776 } 6777 } 6778 for (PHINode *Phi : PhiNodes) 6779 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6780 Phi->getName() + ".tc", Phi->getIterator()); 6781 // Pipe together all the PhiNodes. 6782 for (PHINode *Phi : PhiNodes) { 6783 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6784 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6785 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6786 Phi->getIncomingBlock(i)); 6787 Visited.insert(NewPhi); 6788 } 6789 // And finally pipe up the stores and bitcasts 6790 for (Instruction *U : Uses) { 6791 if (isa<BitCastInst>(U)) { 6792 DeletedInstrs.insert(U); 6793 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); 6794 } else { 6795 U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", 6796 U->getIterator())); 6797 } 6798 } 6799 6800 // Save the removed phis to be deleted later. 6801 for (PHINode *Phi : PhiNodes) 6802 DeletedInstrs.insert(Phi); 6803 return true; 6804 } 6805 6806 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6807 if (!OptimizePhiTypes) 6808 return false; 6809 6810 bool Changed = false; 6811 SmallPtrSet<PHINode *, 4> Visited; 6812 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6813 6814 // Attempt to optimize all the phis in the functions to the correct type. 6815 for (auto &BB : F) 6816 for (auto &Phi : BB.phis()) 6817 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6818 6819 // Remove any old phi's that have been converted. 6820 for (auto *I : DeletedInstrs) { 6821 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); 6822 I->eraseFromParent(); 6823 } 6824 6825 return Changed; 6826 } 6827 6828 /// Return true, if an ext(load) can be formed from an extension in 6829 /// \p MovedExts. 6830 bool CodeGenPrepare::canFormExtLd( 6831 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6832 Instruction *&Inst, bool HasPromoted) { 6833 for (auto *MovedExtInst : MovedExts) { 6834 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6835 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6836 Inst = MovedExtInst; 6837 break; 6838 } 6839 } 6840 if (!LI) 6841 return false; 6842 6843 // If they're already in the same block, there's nothing to do. 6844 // Make the cheap checks first if we did not promote. 6845 // If we promoted, we need to check if it is indeed profitable. 6846 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6847 return false; 6848 6849 return TLI->isExtLoad(LI, Inst, *DL); 6850 } 6851 6852 /// Move a zext or sext fed by a load into the same basic block as the load, 6853 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6854 /// extend into the load. 6855 /// 6856 /// E.g., 6857 /// \code 6858 /// %ld = load i32* %addr 6859 /// %add = add nuw i32 %ld, 4 6860 /// %zext = zext i32 %add to i64 6861 // \endcode 6862 /// => 6863 /// \code 6864 /// %ld = load i32* %addr 6865 /// %zext = zext i32 %ld to i64 6866 /// %add = add nuw i64 %zext, 4 6867 /// \encode 6868 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6869 /// allow us to match zext(load i32*) to i64. 6870 /// 6871 /// Also, try to promote the computations used to obtain a sign extended 6872 /// value used into memory accesses. 6873 /// E.g., 6874 /// \code 6875 /// a = add nsw i32 b, 3 6876 /// d = sext i32 a to i64 6877 /// e = getelementptr ..., i64 d 6878 /// \endcode 6879 /// => 6880 /// \code 6881 /// f = sext i32 b to i64 6882 /// a = add nsw i64 f, 3 6883 /// e = getelementptr ..., i64 a 6884 /// \endcode 6885 /// 6886 /// \p Inst[in/out] the extension may be modified during the process if some 6887 /// promotions apply. 6888 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6889 bool AllowPromotionWithoutCommonHeader = false; 6890 /// See if it is an interesting sext operations for the address type 6891 /// promotion before trying to promote it, e.g., the ones with the right 6892 /// type and used in memory accesses. 6893 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6894 *Inst, AllowPromotionWithoutCommonHeader); 6895 TypePromotionTransaction TPT(RemovedInsts); 6896 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6897 TPT.getRestorationPoint(); 6898 SmallVector<Instruction *, 1> Exts; 6899 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6900 Exts.push_back(Inst); 6901 6902 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6903 6904 // Look for a load being extended. 6905 LoadInst *LI = nullptr; 6906 Instruction *ExtFedByLoad; 6907 6908 // Try to promote a chain of computation if it allows to form an extended 6909 // load. 6910 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6911 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6912 TPT.commit(); 6913 // Move the extend into the same block as the load. 6914 ExtFedByLoad->moveAfter(LI); 6915 ++NumExtsMoved; 6916 Inst = ExtFedByLoad; 6917 return true; 6918 } 6919 6920 // Continue promoting SExts if known as considerable depending on targets. 6921 if (ATPConsiderable && 6922 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6923 HasPromoted, TPT, SpeculativelyMovedExts)) 6924 return true; 6925 6926 TPT.rollback(LastKnownGood); 6927 return false; 6928 } 6929 6930 // Perform address type promotion if doing so is profitable. 6931 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6932 // instructions that sign extended the same initial value. However, if 6933 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6934 // extension is just profitable. 6935 bool CodeGenPrepare::performAddressTypePromotion( 6936 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6937 bool HasPromoted, TypePromotionTransaction &TPT, 6938 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6939 bool Promoted = false; 6940 SmallPtrSet<Instruction *, 1> UnhandledExts; 6941 bool AllSeenFirst = true; 6942 for (auto *I : SpeculativelyMovedExts) { 6943 Value *HeadOfChain = I->getOperand(0); 6944 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6945 SeenChainsForSExt.find(HeadOfChain); 6946 // If there is an unhandled SExt which has the same header, try to promote 6947 // it as well. 6948 if (AlreadySeen != SeenChainsForSExt.end()) { 6949 if (AlreadySeen->second != nullptr) 6950 UnhandledExts.insert(AlreadySeen->second); 6951 AllSeenFirst = false; 6952 } 6953 } 6954 6955 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6956 SpeculativelyMovedExts.size() == 1)) { 6957 TPT.commit(); 6958 if (HasPromoted) 6959 Promoted = true; 6960 for (auto *I : SpeculativelyMovedExts) { 6961 Value *HeadOfChain = I->getOperand(0); 6962 SeenChainsForSExt[HeadOfChain] = nullptr; 6963 ValToSExtendedUses[HeadOfChain].push_back(I); 6964 } 6965 // Update Inst as promotion happen. 6966 Inst = SpeculativelyMovedExts.pop_back_val(); 6967 } else { 6968 // This is the first chain visited from the header, keep the current chain 6969 // as unhandled. Defer to promote this until we encounter another SExt 6970 // chain derived from the same header. 6971 for (auto *I : SpeculativelyMovedExts) { 6972 Value *HeadOfChain = I->getOperand(0); 6973 SeenChainsForSExt[HeadOfChain] = Inst; 6974 } 6975 return false; 6976 } 6977 6978 if (!AllSeenFirst && !UnhandledExts.empty()) 6979 for (auto *VisitedSExt : UnhandledExts) { 6980 if (RemovedInsts.count(VisitedSExt)) 6981 continue; 6982 TypePromotionTransaction TPT(RemovedInsts); 6983 SmallVector<Instruction *, 1> Exts; 6984 SmallVector<Instruction *, 2> Chains; 6985 Exts.push_back(VisitedSExt); 6986 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6987 TPT.commit(); 6988 if (HasPromoted) 6989 Promoted = true; 6990 for (auto *I : Chains) { 6991 Value *HeadOfChain = I->getOperand(0); 6992 // Mark this as handled. 6993 SeenChainsForSExt[HeadOfChain] = nullptr; 6994 ValToSExtendedUses[HeadOfChain].push_back(I); 6995 } 6996 } 6997 return Promoted; 6998 } 6999 7000 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 7001 BasicBlock *DefBB = I->getParent(); 7002 7003 // If the result of a {s|z}ext and its source are both live out, rewrite all 7004 // other uses of the source with result of extension. 7005 Value *Src = I->getOperand(0); 7006 if (Src->hasOneUse()) 7007 return false; 7008 7009 // Only do this xform if truncating is free. 7010 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 7011 return false; 7012 7013 // Only safe to perform the optimization if the source is also defined in 7014 // this block. 7015 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 7016 return false; 7017 7018 bool DefIsLiveOut = false; 7019 for (User *U : I->users()) { 7020 Instruction *UI = cast<Instruction>(U); 7021 7022 // Figure out which BB this ext is used in. 7023 BasicBlock *UserBB = UI->getParent(); 7024 if (UserBB == DefBB) 7025 continue; 7026 DefIsLiveOut = true; 7027 break; 7028 } 7029 if (!DefIsLiveOut) 7030 return false; 7031 7032 // Make sure none of the uses are PHI nodes. 7033 for (User *U : Src->users()) { 7034 Instruction *UI = cast<Instruction>(U); 7035 BasicBlock *UserBB = UI->getParent(); 7036 if (UserBB == DefBB) 7037 continue; 7038 // Be conservative. We don't want this xform to end up introducing 7039 // reloads just before load / store instructions. 7040 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 7041 return false; 7042 } 7043 7044 // InsertedTruncs - Only insert one trunc in each block once. 7045 DenseMap<BasicBlock *, Instruction *> InsertedTruncs; 7046 7047 bool MadeChange = false; 7048 for (Use &U : Src->uses()) { 7049 Instruction *User = cast<Instruction>(U.getUser()); 7050 7051 // Figure out which BB this ext is used in. 7052 BasicBlock *UserBB = User->getParent(); 7053 if (UserBB == DefBB) 7054 continue; 7055 7056 // Both src and def are live in this block. Rewrite the use. 7057 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 7058 7059 if (!InsertedTrunc) { 7060 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 7061 assert(InsertPt != UserBB->end()); 7062 InsertedTrunc = new TruncInst(I, Src->getType(), ""); 7063 InsertedTrunc->insertBefore(*UserBB, InsertPt); 7064 InsertedInsts.insert(InsertedTrunc); 7065 } 7066 7067 // Replace a use of the {s|z}ext source with a use of the result. 7068 U = InsertedTrunc; 7069 ++NumExtUses; 7070 MadeChange = true; 7071 } 7072 7073 return MadeChange; 7074 } 7075 7076 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 7077 // just after the load if the target can fold this into one extload instruction, 7078 // with the hope of eliminating some of the other later "and" instructions using 7079 // the loaded value. "and"s that are made trivially redundant by the insertion 7080 // of the new "and" are removed by this function, while others (e.g. those whose 7081 // path from the load goes through a phi) are left for isel to potentially 7082 // remove. 7083 // 7084 // For example: 7085 // 7086 // b0: 7087 // x = load i32 7088 // ... 7089 // b1: 7090 // y = and x, 0xff 7091 // z = use y 7092 // 7093 // becomes: 7094 // 7095 // b0: 7096 // x = load i32 7097 // x' = and x, 0xff 7098 // ... 7099 // b1: 7100 // z = use x' 7101 // 7102 // whereas: 7103 // 7104 // b0: 7105 // x1 = load i32 7106 // ... 7107 // b1: 7108 // x2 = load i32 7109 // ... 7110 // b2: 7111 // x = phi x1, x2 7112 // y = and x, 0xff 7113 // 7114 // becomes (after a call to optimizeLoadExt for each load): 7115 // 7116 // b0: 7117 // x1 = load i32 7118 // x1' = and x1, 0xff 7119 // ... 7120 // b1: 7121 // x2 = load i32 7122 // x2' = and x2, 0xff 7123 // ... 7124 // b2: 7125 // x = phi x1', x2' 7126 // y = and x, 0xff 7127 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 7128 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 7129 return false; 7130 7131 // Skip loads we've already transformed. 7132 if (Load->hasOneUse() && 7133 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 7134 return false; 7135 7136 // Look at all uses of Load, looking through phis, to determine how many bits 7137 // of the loaded value are needed. 7138 SmallVector<Instruction *, 8> WorkList; 7139 SmallPtrSet<Instruction *, 16> Visited; 7140 SmallVector<Instruction *, 8> AndsToMaybeRemove; 7141 SmallVector<Instruction *, 8> DropFlags; 7142 for (auto *U : Load->users()) 7143 WorkList.push_back(cast<Instruction>(U)); 7144 7145 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 7146 unsigned BitWidth = LoadResultVT.getSizeInBits(); 7147 // If the BitWidth is 0, do not try to optimize the type 7148 if (BitWidth == 0) 7149 return false; 7150 7151 APInt DemandBits(BitWidth, 0); 7152 APInt WidestAndBits(BitWidth, 0); 7153 7154 while (!WorkList.empty()) { 7155 Instruction *I = WorkList.pop_back_val(); 7156 7157 // Break use-def graph loops. 7158 if (!Visited.insert(I).second) 7159 continue; 7160 7161 // For a PHI node, push all of its users. 7162 if (auto *Phi = dyn_cast<PHINode>(I)) { 7163 for (auto *U : Phi->users()) 7164 WorkList.push_back(cast<Instruction>(U)); 7165 continue; 7166 } 7167 7168 switch (I->getOpcode()) { 7169 case Instruction::And: { 7170 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 7171 if (!AndC) 7172 return false; 7173 APInt AndBits = AndC->getValue(); 7174 DemandBits |= AndBits; 7175 // Keep track of the widest and mask we see. 7176 if (AndBits.ugt(WidestAndBits)) 7177 WidestAndBits = AndBits; 7178 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 7179 AndsToMaybeRemove.push_back(I); 7180 break; 7181 } 7182 7183 case Instruction::Shl: { 7184 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 7185 if (!ShlC) 7186 return false; 7187 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 7188 DemandBits.setLowBits(BitWidth - ShiftAmt); 7189 DropFlags.push_back(I); 7190 break; 7191 } 7192 7193 case Instruction::Trunc: { 7194 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 7195 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 7196 DemandBits.setLowBits(TruncBitWidth); 7197 DropFlags.push_back(I); 7198 break; 7199 } 7200 7201 default: 7202 return false; 7203 } 7204 } 7205 7206 uint32_t ActiveBits = DemandBits.getActiveBits(); 7207 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 7208 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 7209 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 7210 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 7211 // followed by an AND. 7212 // TODO: Look into removing this restriction by fixing backends to either 7213 // return false for isLoadExtLegal for i1 or have them select this pattern to 7214 // a single instruction. 7215 // 7216 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 7217 // mask, since these are the only ands that will be removed by isel. 7218 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 7219 WidestAndBits != DemandBits) 7220 return false; 7221 7222 LLVMContext &Ctx = Load->getType()->getContext(); 7223 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 7224 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 7225 7226 // Reject cases that won't be matched as extloads. 7227 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 7228 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 7229 return false; 7230 7231 IRBuilder<> Builder(Load->getNextNonDebugInstruction()); 7232 auto *NewAnd = cast<Instruction>( 7233 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 7234 // Mark this instruction as "inserted by CGP", so that other 7235 // optimizations don't touch it. 7236 InsertedInsts.insert(NewAnd); 7237 7238 // Replace all uses of load with new and (except for the use of load in the 7239 // new and itself). 7240 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); 7241 NewAnd->setOperand(0, Load); 7242 7243 // Remove any and instructions that are now redundant. 7244 for (auto *And : AndsToMaybeRemove) 7245 // Check that the and mask is the same as the one we decided to put on the 7246 // new and. 7247 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 7248 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); 7249 if (&*CurInstIterator == And) 7250 CurInstIterator = std::next(And->getIterator()); 7251 And->eraseFromParent(); 7252 ++NumAndUses; 7253 } 7254 7255 // NSW flags may not longer hold. 7256 for (auto *Inst : DropFlags) 7257 Inst->setHasNoSignedWrap(false); 7258 7259 ++NumAndsAdded; 7260 return true; 7261 } 7262 7263 /// Check if V (an operand of a select instruction) is an expensive instruction 7264 /// that is only used once. 7265 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 7266 auto *I = dyn_cast<Instruction>(V); 7267 // If it's safe to speculatively execute, then it should not have side 7268 // effects; therefore, it's safe to sink and possibly *not* execute. 7269 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 7270 TTI->isExpensiveToSpeculativelyExecute(I); 7271 } 7272 7273 /// Returns true if a SelectInst should be turned into an explicit branch. 7274 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 7275 const TargetLowering *TLI, 7276 SelectInst *SI) { 7277 // If even a predictable select is cheap, then a branch can't be cheaper. 7278 if (!TLI->isPredictableSelectExpensive()) 7279 return false; 7280 7281 // FIXME: This should use the same heuristics as IfConversion to determine 7282 // whether a select is better represented as a branch. 7283 7284 // If metadata tells us that the select condition is obviously predictable, 7285 // then we want to replace the select with a branch. 7286 uint64_t TrueWeight, FalseWeight; 7287 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { 7288 uint64_t Max = std::max(TrueWeight, FalseWeight); 7289 uint64_t Sum = TrueWeight + FalseWeight; 7290 if (Sum != 0) { 7291 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 7292 if (Probability > TTI->getPredictableBranchThreshold()) 7293 return true; 7294 } 7295 } 7296 7297 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 7298 7299 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 7300 // comparison condition. If the compare has more than one use, there's 7301 // probably another cmov or setcc around, so it's not worth emitting a branch. 7302 if (!Cmp || !Cmp->hasOneUse()) 7303 return false; 7304 7305 // If either operand of the select is expensive and only needed on one side 7306 // of the select, we should form a branch. 7307 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 7308 sinkSelectOperand(TTI, SI->getFalseValue())) 7309 return true; 7310 7311 return false; 7312 } 7313 7314 /// If \p isTrue is true, return the true value of \p SI, otherwise return 7315 /// false value of \p SI. If the true/false value of \p SI is defined by any 7316 /// select instructions in \p Selects, look through the defining select 7317 /// instruction until the true/false value is not defined in \p Selects. 7318 static Value * 7319 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 7320 const SmallPtrSet<const Instruction *, 2> &Selects) { 7321 Value *V = nullptr; 7322 7323 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 7324 DefSI = dyn_cast<SelectInst>(V)) { 7325 assert(DefSI->getCondition() == SI->getCondition() && 7326 "The condition of DefSI does not match with SI"); 7327 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 7328 } 7329 7330 assert(V && "Failed to get select true/false value"); 7331 return V; 7332 } 7333 7334 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 7335 assert(Shift->isShift() && "Expected a shift"); 7336 7337 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 7338 // general vector shifts, and (3) the shift amount is a select-of-splatted 7339 // values, hoist the shifts before the select: 7340 // shift Op0, (select Cond, TVal, FVal) --> 7341 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 7342 // 7343 // This is inverting a generic IR transform when we know that the cost of a 7344 // general vector shift is more than the cost of 2 shift-by-scalars. 7345 // We can't do this effectively in SDAG because we may not be able to 7346 // determine if the select operands are splats from within a basic block. 7347 Type *Ty = Shift->getType(); 7348 if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty)) 7349 return false; 7350 Value *Cond, *TVal, *FVal; 7351 if (!match(Shift->getOperand(1), 7352 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7353 return false; 7354 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7355 return false; 7356 7357 IRBuilder<> Builder(Shift); 7358 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 7359 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 7360 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 7361 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7362 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); 7363 Shift->eraseFromParent(); 7364 return true; 7365 } 7366 7367 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 7368 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 7369 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 7370 "Expected a funnel shift"); 7371 7372 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 7373 // than general vector shifts, and (3) the shift amount is select-of-splatted 7374 // values, hoist the funnel shifts before the select: 7375 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 7376 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 7377 // 7378 // This is inverting a generic IR transform when we know that the cost of a 7379 // general vector shift is more than the cost of 2 shift-by-scalars. 7380 // We can't do this effectively in SDAG because we may not be able to 7381 // determine if the select operands are splats from within a basic block. 7382 Type *Ty = Fsh->getType(); 7383 if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty)) 7384 return false; 7385 Value *Cond, *TVal, *FVal; 7386 if (!match(Fsh->getOperand(2), 7387 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7388 return false; 7389 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7390 return false; 7391 7392 IRBuilder<> Builder(Fsh); 7393 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 7394 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); 7395 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); 7396 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7397 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); 7398 Fsh->eraseFromParent(); 7399 return true; 7400 } 7401 7402 /// If we have a SelectInst that will likely profit from branch prediction, 7403 /// turn it into a branch. 7404 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 7405 if (DisableSelectToBranch) 7406 return false; 7407 7408 // If the SelectOptimize pass is enabled, selects have already been optimized. 7409 if (!getCGPassBuilderOption().DisableSelectOptimize) 7410 return false; 7411 7412 // Find all consecutive select instructions that share the same condition. 7413 SmallVector<SelectInst *, 2> ASI; 7414 ASI.push_back(SI); 7415 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 7416 It != SI->getParent()->end(); ++It) { 7417 SelectInst *I = dyn_cast<SelectInst>(&*It); 7418 if (I && SI->getCondition() == I->getCondition()) { 7419 ASI.push_back(I); 7420 } else { 7421 break; 7422 } 7423 } 7424 7425 SelectInst *LastSI = ASI.back(); 7426 // Increment the current iterator to skip all the rest of select instructions 7427 // because they will be either "not lowered" or "all lowered" to branch. 7428 CurInstIterator = std::next(LastSI->getIterator()); 7429 // Examine debug-info attached to the consecutive select instructions. They 7430 // won't be individually optimised by optimizeInst, so we need to perform 7431 // DbgVariableRecord maintenence here instead. 7432 for (SelectInst *SI : ArrayRef(ASI).drop_front()) 7433 fixupDbgVariableRecordsOnInst(*SI); 7434 7435 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 7436 7437 // Can we convert the 'select' to CF ? 7438 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 7439 return false; 7440 7441 TargetLowering::SelectSupportKind SelectKind; 7442 if (SI->getType()->isVectorTy()) 7443 SelectKind = TargetLowering::ScalarCondVectorVal; 7444 else 7445 SelectKind = TargetLowering::ScalarValSelect; 7446 7447 if (TLI->isSelectSupported(SelectKind) && 7448 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || 7449 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 7450 return false; 7451 7452 // The DominatorTree needs to be rebuilt by any consumers after this 7453 // transformation. We simply reset here rather than setting the ModifiedDT 7454 // flag to avoid restarting the function walk in runOnFunction for each 7455 // select optimized. 7456 DT.reset(); 7457 7458 // Transform a sequence like this: 7459 // start: 7460 // %cmp = cmp uge i32 %a, %b 7461 // %sel = select i1 %cmp, i32 %c, i32 %d 7462 // 7463 // Into: 7464 // start: 7465 // %cmp = cmp uge i32 %a, %b 7466 // %cmp.frozen = freeze %cmp 7467 // br i1 %cmp.frozen, label %select.true, label %select.false 7468 // select.true: 7469 // br label %select.end 7470 // select.false: 7471 // br label %select.end 7472 // select.end: 7473 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 7474 // 7475 // %cmp should be frozen, otherwise it may introduce undefined behavior. 7476 // In addition, we may sink instructions that produce %c or %d from 7477 // the entry block into the destination(s) of the new branch. 7478 // If the true or false blocks do not contain a sunken instruction, that 7479 // block and its branch may be optimized away. In that case, one side of the 7480 // first branch will point directly to select.end, and the corresponding PHI 7481 // predecessor block will be the start block. 7482 7483 // Collect values that go on the true side and the values that go on the false 7484 // side. 7485 SmallVector<Instruction *> TrueInstrs, FalseInstrs; 7486 for (SelectInst *SI : ASI) { 7487 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) 7488 TrueInstrs.push_back(cast<Instruction>(V)); 7489 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) 7490 FalseInstrs.push_back(cast<Instruction>(V)); 7491 } 7492 7493 // Split the select block, according to how many (if any) values go on each 7494 // side. 7495 BasicBlock *StartBlock = SI->getParent(); 7496 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI)); 7497 // We should split before any debug-info. 7498 SplitPt.setHeadBit(true); 7499 7500 IRBuilder<> IB(SI); 7501 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 7502 7503 BasicBlock *TrueBlock = nullptr; 7504 BasicBlock *FalseBlock = nullptr; 7505 BasicBlock *EndBlock = nullptr; 7506 BranchInst *TrueBranch = nullptr; 7507 BranchInst *FalseBranch = nullptr; 7508 if (TrueInstrs.size() == 0) { 7509 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse( 7510 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7511 FalseBlock = FalseBranch->getParent(); 7512 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0)); 7513 } else if (FalseInstrs.size() == 0) { 7514 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen( 7515 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7516 TrueBlock = TrueBranch->getParent(); 7517 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7518 } else { 7519 Instruction *ThenTerm = nullptr; 7520 Instruction *ElseTerm = nullptr; 7521 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm, 7522 nullptr, nullptr, LI); 7523 TrueBranch = cast<BranchInst>(ThenTerm); 7524 FalseBranch = cast<BranchInst>(ElseTerm); 7525 TrueBlock = TrueBranch->getParent(); 7526 FalseBlock = FalseBranch->getParent(); 7527 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7528 } 7529 7530 EndBlock->setName("select.end"); 7531 if (TrueBlock) 7532 TrueBlock->setName("select.true.sink"); 7533 if (FalseBlock) 7534 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" 7535 : "select.false.sink"); 7536 7537 if (IsHugeFunc) { 7538 if (TrueBlock) 7539 FreshBBs.insert(TrueBlock); 7540 if (FalseBlock) 7541 FreshBBs.insert(FalseBlock); 7542 FreshBBs.insert(EndBlock); 7543 } 7544 7545 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); 7546 7547 static const unsigned MD[] = { 7548 LLVMContext::MD_prof, LLVMContext::MD_unpredictable, 7549 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; 7550 StartBlock->getTerminator()->copyMetadata(*SI, MD); 7551 7552 // Sink expensive instructions into the conditional blocks to avoid executing 7553 // them speculatively. 7554 for (Instruction *I : TrueInstrs) 7555 I->moveBefore(TrueBranch->getIterator()); 7556 for (Instruction *I : FalseInstrs) 7557 I->moveBefore(FalseBranch->getIterator()); 7558 7559 // If we did not create a new block for one of the 'true' or 'false' paths 7560 // of the condition, it means that side of the branch goes to the end block 7561 // directly and the path originates from the start block from the point of 7562 // view of the new PHI. 7563 if (TrueBlock == nullptr) 7564 TrueBlock = StartBlock; 7565 else if (FalseBlock == nullptr) 7566 FalseBlock = StartBlock; 7567 7568 SmallPtrSet<const Instruction *, 2> INS; 7569 INS.insert(ASI.begin(), ASI.end()); 7570 // Use reverse iterator because later select may use the value of the 7571 // earlier select, and we need to propagate value through earlier select 7572 // to get the PHI operand. 7573 for (SelectInst *SI : llvm::reverse(ASI)) { 7574 // The select itself is replaced with a PHI Node. 7575 PHINode *PN = PHINode::Create(SI->getType(), 2, ""); 7576 PN->insertBefore(EndBlock->begin()); 7577 PN->takeName(SI); 7578 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 7579 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 7580 PN->setDebugLoc(SI->getDebugLoc()); 7581 7582 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); 7583 SI->eraseFromParent(); 7584 INS.erase(SI); 7585 ++NumSelectsExpanded; 7586 } 7587 7588 // Instruct OptimizeBlock to skip to the next block. 7589 CurInstIterator = StartBlock->end(); 7590 return true; 7591 } 7592 7593 /// Some targets only accept certain types for splat inputs. For example a VDUP 7594 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 7595 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 7596 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 7597 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 7598 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 7599 m_Undef(), m_ZeroMask()))) 7600 return false; 7601 Type *NewType = TLI->shouldConvertSplatType(SVI); 7602 if (!NewType) 7603 return false; 7604 7605 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 7606 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 7607 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 7608 "Expected a type of the same size!"); 7609 auto *NewVecType = 7610 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 7611 7612 // Create a bitcast (shuffle (insert (bitcast(..)))) 7613 IRBuilder<> Builder(SVI->getContext()); 7614 Builder.SetInsertPoint(SVI); 7615 Value *BC1 = Builder.CreateBitCast( 7616 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 7617 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 7618 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 7619 7620 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); 7621 RecursivelyDeleteTriviallyDeadInstructions( 7622 SVI, TLInfo, nullptr, 7623 [&](Value *V) { removeAllAssertingVHReferences(V); }); 7624 7625 // Also hoist the bitcast up to its operand if it they are not in the same 7626 // block. 7627 if (auto *BCI = dyn_cast<Instruction>(BC1)) 7628 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 7629 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 7630 !Op->isTerminator() && !Op->isEHPad()) 7631 BCI->moveAfter(Op); 7632 7633 return true; 7634 } 7635 7636 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 7637 // If the operands of I can be folded into a target instruction together with 7638 // I, duplicate and sink them. 7639 SmallVector<Use *, 4> OpsToSink; 7640 if (!TTI->isProfitableToSinkOperands(I, OpsToSink)) 7641 return false; 7642 7643 // OpsToSink can contain multiple uses in a use chain (e.g. 7644 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 7645 // uses must come first, so we process the ops in reverse order so as to not 7646 // create invalid IR. 7647 BasicBlock *TargetBB = I->getParent(); 7648 bool Changed = false; 7649 SmallVector<Use *, 4> ToReplace; 7650 Instruction *InsertPoint = I; 7651 DenseMap<const Instruction *, unsigned long> InstOrdering; 7652 unsigned long InstNumber = 0; 7653 for (const auto &I : *TargetBB) 7654 InstOrdering[&I] = InstNumber++; 7655 7656 for (Use *U : reverse(OpsToSink)) { 7657 auto *UI = cast<Instruction>(U->get()); 7658 if (isa<PHINode>(UI)) 7659 continue; 7660 if (UI->getParent() == TargetBB) { 7661 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 7662 InsertPoint = UI; 7663 continue; 7664 } 7665 ToReplace.push_back(U); 7666 } 7667 7668 SetVector<Instruction *> MaybeDead; 7669 DenseMap<Instruction *, Instruction *> NewInstructions; 7670 for (Use *U : ToReplace) { 7671 auto *UI = cast<Instruction>(U->get()); 7672 Instruction *NI = UI->clone(); 7673 7674 if (IsHugeFunc) { 7675 // Now we clone an instruction, its operands' defs may sink to this BB 7676 // now. So we put the operands defs' BBs into FreshBBs to do optimization. 7677 for (Value *Op : NI->operands()) 7678 if (auto *OpDef = dyn_cast<Instruction>(Op)) 7679 FreshBBs.insert(OpDef->getParent()); 7680 } 7681 7682 NewInstructions[UI] = NI; 7683 MaybeDead.insert(UI); 7684 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 7685 NI->insertBefore(InsertPoint->getIterator()); 7686 InsertPoint = NI; 7687 InsertedInsts.insert(NI); 7688 7689 // Update the use for the new instruction, making sure that we update the 7690 // sunk instruction uses, if it is part of a chain that has already been 7691 // sunk. 7692 Instruction *OldI = cast<Instruction>(U->getUser()); 7693 if (auto It = NewInstructions.find(OldI); It != NewInstructions.end()) 7694 It->second->setOperand(U->getOperandNo(), NI); 7695 else 7696 U->set(NI); 7697 Changed = true; 7698 } 7699 7700 // Remove instructions that are dead after sinking. 7701 for (auto *I : MaybeDead) { 7702 if (!I->hasNUsesOrMore(1)) { 7703 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7704 I->eraseFromParent(); 7705 } 7706 } 7707 7708 return Changed; 7709 } 7710 7711 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7712 Value *Cond = SI->getCondition(); 7713 Type *OldType = Cond->getType(); 7714 LLVMContext &Context = Cond->getContext(); 7715 EVT OldVT = TLI->getValueType(*DL, OldType); 7716 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7717 unsigned RegWidth = RegType.getSizeInBits(); 7718 7719 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7720 return false; 7721 7722 // If the register width is greater than the type width, expand the condition 7723 // of the switch instruction and each case constant to the width of the 7724 // register. By widening the type of the switch condition, subsequent 7725 // comparisons (for case comparisons) will not need to be extended to the 7726 // preferred register width, so we will potentially eliminate N-1 extends, 7727 // where N is the number of cases in the switch. 7728 auto *NewType = Type::getIntNTy(Context, RegWidth); 7729 7730 // Extend the switch condition and case constants using the target preferred 7731 // extend unless the switch condition is a function argument with an extend 7732 // attribute. In that case, we can avoid an unnecessary mask/extension by 7733 // matching the argument extension instead. 7734 Instruction::CastOps ExtType = Instruction::ZExt; 7735 // Some targets prefer SExt over ZExt. 7736 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7737 ExtType = Instruction::SExt; 7738 7739 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7740 if (Arg->hasSExtAttr()) 7741 ExtType = Instruction::SExt; 7742 if (Arg->hasZExtAttr()) 7743 ExtType = Instruction::ZExt; 7744 } 7745 7746 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7747 ExtInst->insertBefore(SI->getIterator()); 7748 ExtInst->setDebugLoc(SI->getDebugLoc()); 7749 SI->setCondition(ExtInst); 7750 for (auto Case : SI->cases()) { 7751 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7752 APInt WideConst = (ExtType == Instruction::ZExt) 7753 ? NarrowConst.zext(RegWidth) 7754 : NarrowConst.sext(RegWidth); 7755 Case.setValue(ConstantInt::get(Context, WideConst)); 7756 } 7757 7758 return true; 7759 } 7760 7761 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7762 // The SCCP optimization tends to produce code like this: 7763 // switch(x) { case 42: phi(42, ...) } 7764 // Materializing the constant for the phi-argument needs instructions; So we 7765 // change the code to: 7766 // switch(x) { case 42: phi(x, ...) } 7767 7768 Value *Condition = SI->getCondition(); 7769 // Avoid endless loop in degenerate case. 7770 if (isa<ConstantInt>(*Condition)) 7771 return false; 7772 7773 bool Changed = false; 7774 BasicBlock *SwitchBB = SI->getParent(); 7775 Type *ConditionType = Condition->getType(); 7776 7777 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7778 ConstantInt *CaseValue = Case.getCaseValue(); 7779 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7780 // Set to true if we previously checked that `CaseBB` is only reached by 7781 // a single case from this switch. 7782 bool CheckedForSinglePred = false; 7783 for (PHINode &PHI : CaseBB->phis()) { 7784 Type *PHIType = PHI.getType(); 7785 // If ZExt is free then we can also catch patterns like this: 7786 // switch((i32)x) { case 42: phi((i64)42, ...); } 7787 // and replace `(i64)42` with `zext i32 %x to i64`. 7788 bool TryZExt = 7789 PHIType->isIntegerTy() && 7790 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7791 TLI->isZExtFree(ConditionType, PHIType); 7792 if (PHIType == ConditionType || TryZExt) { 7793 // Set to true to skip this case because of multiple preds. 7794 bool SkipCase = false; 7795 Value *Replacement = nullptr; 7796 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7797 Value *PHIValue = PHI.getIncomingValue(I); 7798 if (PHIValue != CaseValue) { 7799 if (!TryZExt) 7800 continue; 7801 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7802 if (!PHIValueInt || 7803 PHIValueInt->getValue() != 7804 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7805 continue; 7806 } 7807 if (PHI.getIncomingBlock(I) != SwitchBB) 7808 continue; 7809 // We cannot optimize if there are multiple case labels jumping to 7810 // this block. This check may get expensive when there are many 7811 // case labels so we test for it last. 7812 if (!CheckedForSinglePred) { 7813 CheckedForSinglePred = true; 7814 if (SI->findCaseDest(CaseBB) == nullptr) { 7815 SkipCase = true; 7816 break; 7817 } 7818 } 7819 7820 if (Replacement == nullptr) { 7821 if (PHIValue == CaseValue) { 7822 Replacement = Condition; 7823 } else { 7824 IRBuilder<> Builder(SI); 7825 Replacement = Builder.CreateZExt(Condition, PHIType); 7826 } 7827 } 7828 PHI.setIncomingValue(I, Replacement); 7829 Changed = true; 7830 } 7831 if (SkipCase) 7832 break; 7833 } 7834 } 7835 } 7836 return Changed; 7837 } 7838 7839 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7840 bool Changed = optimizeSwitchType(SI); 7841 Changed |= optimizeSwitchPhiConstants(SI); 7842 return Changed; 7843 } 7844 7845 namespace { 7846 7847 /// Helper class to promote a scalar operation to a vector one. 7848 /// This class is used to move downward extractelement transition. 7849 /// E.g., 7850 /// a = vector_op <2 x i32> 7851 /// b = extractelement <2 x i32> a, i32 0 7852 /// c = scalar_op b 7853 /// store c 7854 /// 7855 /// => 7856 /// a = vector_op <2 x i32> 7857 /// c = vector_op a (equivalent to scalar_op on the related lane) 7858 /// * d = extractelement <2 x i32> c, i32 0 7859 /// * store d 7860 /// Assuming both extractelement and store can be combine, we get rid of the 7861 /// transition. 7862 class VectorPromoteHelper { 7863 /// DataLayout associated with the current module. 7864 const DataLayout &DL; 7865 7866 /// Used to perform some checks on the legality of vector operations. 7867 const TargetLowering &TLI; 7868 7869 /// Used to estimated the cost of the promoted chain. 7870 const TargetTransformInfo &TTI; 7871 7872 /// The transition being moved downwards. 7873 Instruction *Transition; 7874 7875 /// The sequence of instructions to be promoted. 7876 SmallVector<Instruction *, 4> InstsToBePromoted; 7877 7878 /// Cost of combining a store and an extract. 7879 unsigned StoreExtractCombineCost; 7880 7881 /// Instruction that will be combined with the transition. 7882 Instruction *CombineInst = nullptr; 7883 7884 /// The instruction that represents the current end of the transition. 7885 /// Since we are faking the promotion until we reach the end of the chain 7886 /// of computation, we need a way to get the current end of the transition. 7887 Instruction *getEndOfTransition() const { 7888 if (InstsToBePromoted.empty()) 7889 return Transition; 7890 return InstsToBePromoted.back(); 7891 } 7892 7893 /// Return the index of the original value in the transition. 7894 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7895 /// c, is at index 0. 7896 unsigned getTransitionOriginalValueIdx() const { 7897 assert(isa<ExtractElementInst>(Transition) && 7898 "Other kind of transitions are not supported yet"); 7899 return 0; 7900 } 7901 7902 /// Return the index of the index in the transition. 7903 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7904 /// is at index 1. 7905 unsigned getTransitionIdx() const { 7906 assert(isa<ExtractElementInst>(Transition) && 7907 "Other kind of transitions are not supported yet"); 7908 return 1; 7909 } 7910 7911 /// Get the type of the transition. 7912 /// This is the type of the original value. 7913 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7914 /// transition is <2 x i32>. 7915 Type *getTransitionType() const { 7916 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7917 } 7918 7919 /// Promote \p ToBePromoted by moving \p Def downward through. 7920 /// I.e., we have the following sequence: 7921 /// Def = Transition <ty1> a to <ty2> 7922 /// b = ToBePromoted <ty2> Def, ... 7923 /// => 7924 /// b = ToBePromoted <ty1> a, ... 7925 /// Def = Transition <ty1> ToBePromoted to <ty2> 7926 void promoteImpl(Instruction *ToBePromoted); 7927 7928 /// Check whether or not it is profitable to promote all the 7929 /// instructions enqueued to be promoted. 7930 bool isProfitableToPromote() { 7931 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7932 unsigned Index = isa<ConstantInt>(ValIdx) 7933 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7934 : -1; 7935 Type *PromotedType = getTransitionType(); 7936 7937 StoreInst *ST = cast<StoreInst>(CombineInst); 7938 unsigned AS = ST->getPointerAddressSpace(); 7939 // Check if this store is supported. 7940 if (!TLI.allowsMisalignedMemoryAccesses( 7941 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7942 ST->getAlign())) { 7943 // If this is not supported, there is no way we can combine 7944 // the extract with the store. 7945 return false; 7946 } 7947 7948 // The scalar chain of computation has to pay for the transition 7949 // scalar to vector. 7950 // The vector chain has to account for the combining cost. 7951 enum TargetTransformInfo::TargetCostKind CostKind = 7952 TargetTransformInfo::TCK_RecipThroughput; 7953 InstructionCost ScalarCost = 7954 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); 7955 InstructionCost VectorCost = StoreExtractCombineCost; 7956 for (const auto &Inst : InstsToBePromoted) { 7957 // Compute the cost. 7958 // By construction, all instructions being promoted are arithmetic ones. 7959 // Moreover, one argument is a constant that can be viewed as a splat 7960 // constant. 7961 Value *Arg0 = Inst->getOperand(0); 7962 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7963 isa<ConstantFP>(Arg0); 7964 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; 7965 if (IsArg0Constant) 7966 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7967 else 7968 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7969 7970 ScalarCost += TTI.getArithmeticInstrCost( 7971 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); 7972 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7973 CostKind, Arg0Info, Arg1Info); 7974 } 7975 LLVM_DEBUG( 7976 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7977 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7978 return ScalarCost > VectorCost; 7979 } 7980 7981 /// Generate a constant vector with \p Val with the same 7982 /// number of elements as the transition. 7983 /// \p UseSplat defines whether or not \p Val should be replicated 7984 /// across the whole vector. 7985 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7986 /// otherwise we generate a vector with as many poison as possible: 7987 /// <poison, ..., poison, Val, poison, ..., poison> where \p Val is only 7988 /// used at the index of the extract. 7989 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7990 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7991 if (!UseSplat) { 7992 // If we cannot determine where the constant must be, we have to 7993 // use a splat constant. 7994 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7995 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7996 ExtractIdx = CstVal->getSExtValue(); 7997 else 7998 UseSplat = true; 7999 } 8000 8001 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 8002 if (UseSplat) 8003 return ConstantVector::getSplat(EC, Val); 8004 8005 if (!EC.isScalable()) { 8006 SmallVector<Constant *, 4> ConstVec; 8007 PoisonValue *PoisonVal = PoisonValue::get(Val->getType()); 8008 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 8009 if (Idx == ExtractIdx) 8010 ConstVec.push_back(Val); 8011 else 8012 ConstVec.push_back(PoisonVal); 8013 } 8014 return ConstantVector::get(ConstVec); 8015 } else 8016 llvm_unreachable( 8017 "Generate scalable vector for non-splat is unimplemented"); 8018 } 8019 8020 /// Check if promoting to a vector type an operand at \p OperandIdx 8021 /// in \p Use can trigger undefined behavior. 8022 static bool canCauseUndefinedBehavior(const Instruction *Use, 8023 unsigned OperandIdx) { 8024 // This is not safe to introduce undef when the operand is on 8025 // the right hand side of a division-like instruction. 8026 if (OperandIdx != 1) 8027 return false; 8028 switch (Use->getOpcode()) { 8029 default: 8030 return false; 8031 case Instruction::SDiv: 8032 case Instruction::UDiv: 8033 case Instruction::SRem: 8034 case Instruction::URem: 8035 return true; 8036 case Instruction::FDiv: 8037 case Instruction::FRem: 8038 return !Use->hasNoNaNs(); 8039 } 8040 llvm_unreachable(nullptr); 8041 } 8042 8043 public: 8044 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 8045 const TargetTransformInfo &TTI, Instruction *Transition, 8046 unsigned CombineCost) 8047 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 8048 StoreExtractCombineCost(CombineCost) { 8049 assert(Transition && "Do not know how to promote null"); 8050 } 8051 8052 /// Check if we can promote \p ToBePromoted to \p Type. 8053 bool canPromote(const Instruction *ToBePromoted) const { 8054 // We could support CastInst too. 8055 return isa<BinaryOperator>(ToBePromoted); 8056 } 8057 8058 /// Check if it is profitable to promote \p ToBePromoted 8059 /// by moving downward the transition through. 8060 bool shouldPromote(const Instruction *ToBePromoted) const { 8061 // Promote only if all the operands can be statically expanded. 8062 // Indeed, we do not want to introduce any new kind of transitions. 8063 for (const Use &U : ToBePromoted->operands()) { 8064 const Value *Val = U.get(); 8065 if (Val == getEndOfTransition()) { 8066 // If the use is a division and the transition is on the rhs, 8067 // we cannot promote the operation, otherwise we may create a 8068 // division by zero. 8069 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 8070 return false; 8071 continue; 8072 } 8073 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 8074 !isa<ConstantFP>(Val)) 8075 return false; 8076 } 8077 // Check that the resulting operation is legal. 8078 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 8079 if (!ISDOpcode) 8080 return false; 8081 return StressStoreExtract || 8082 TLI.isOperationLegalOrCustom( 8083 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 8084 } 8085 8086 /// Check whether or not \p Use can be combined 8087 /// with the transition. 8088 /// I.e., is it possible to do Use(Transition) => AnotherUse? 8089 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 8090 8091 /// Record \p ToBePromoted as part of the chain to be promoted. 8092 void enqueueForPromotion(Instruction *ToBePromoted) { 8093 InstsToBePromoted.push_back(ToBePromoted); 8094 } 8095 8096 /// Set the instruction that will be combined with the transition. 8097 void recordCombineInstruction(Instruction *ToBeCombined) { 8098 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 8099 CombineInst = ToBeCombined; 8100 } 8101 8102 /// Promote all the instructions enqueued for promotion if it is 8103 /// is profitable. 8104 /// \return True if the promotion happened, false otherwise. 8105 bool promote() { 8106 // Check if there is something to promote. 8107 // Right now, if we do not have anything to combine with, 8108 // we assume the promotion is not profitable. 8109 if (InstsToBePromoted.empty() || !CombineInst) 8110 return false; 8111 8112 // Check cost. 8113 if (!StressStoreExtract && !isProfitableToPromote()) 8114 return false; 8115 8116 // Promote. 8117 for (auto &ToBePromoted : InstsToBePromoted) 8118 promoteImpl(ToBePromoted); 8119 InstsToBePromoted.clear(); 8120 return true; 8121 } 8122 }; 8123 8124 } // end anonymous namespace 8125 8126 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 8127 // At this point, we know that all the operands of ToBePromoted but Def 8128 // can be statically promoted. 8129 // For Def, we need to use its parameter in ToBePromoted: 8130 // b = ToBePromoted ty1 a 8131 // Def = Transition ty1 b to ty2 8132 // Move the transition down. 8133 // 1. Replace all uses of the promoted operation by the transition. 8134 // = ... b => = ... Def. 8135 assert(ToBePromoted->getType() == Transition->getType() && 8136 "The type of the result of the transition does not match " 8137 "the final type"); 8138 ToBePromoted->replaceAllUsesWith(Transition); 8139 // 2. Update the type of the uses. 8140 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 8141 Type *TransitionTy = getTransitionType(); 8142 ToBePromoted->mutateType(TransitionTy); 8143 // 3. Update all the operands of the promoted operation with promoted 8144 // operands. 8145 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 8146 for (Use &U : ToBePromoted->operands()) { 8147 Value *Val = U.get(); 8148 Value *NewVal = nullptr; 8149 if (Val == Transition) 8150 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 8151 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 8152 isa<ConstantFP>(Val)) { 8153 // Use a splat constant if it is not safe to use undef. 8154 NewVal = getConstantVector( 8155 cast<Constant>(Val), 8156 isa<UndefValue>(Val) || 8157 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 8158 } else 8159 llvm_unreachable("Did you modified shouldPromote and forgot to update " 8160 "this?"); 8161 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 8162 } 8163 Transition->moveAfter(ToBePromoted); 8164 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 8165 } 8166 8167 /// Some targets can do store(extractelement) with one instruction. 8168 /// Try to push the extractelement towards the stores when the target 8169 /// has this feature and this is profitable. 8170 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 8171 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 8172 if (DisableStoreExtract || 8173 (!StressStoreExtract && 8174 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 8175 Inst->getOperand(1), CombineCost))) 8176 return false; 8177 8178 // At this point we know that Inst is a vector to scalar transition. 8179 // Try to move it down the def-use chain, until: 8180 // - We can combine the transition with its single use 8181 // => we got rid of the transition. 8182 // - We escape the current basic block 8183 // => we would need to check that we are moving it at a cheaper place and 8184 // we do not do that for now. 8185 BasicBlock *Parent = Inst->getParent(); 8186 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 8187 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 8188 // If the transition has more than one use, assume this is not going to be 8189 // beneficial. 8190 while (Inst->hasOneUse()) { 8191 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 8192 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 8193 8194 if (ToBePromoted->getParent() != Parent) { 8195 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 8196 << ToBePromoted->getParent()->getName() 8197 << ") than the transition (" << Parent->getName() 8198 << ").\n"); 8199 return false; 8200 } 8201 8202 if (VPH.canCombine(ToBePromoted)) { 8203 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 8204 << "will be combined with: " << *ToBePromoted << '\n'); 8205 VPH.recordCombineInstruction(ToBePromoted); 8206 bool Changed = VPH.promote(); 8207 NumStoreExtractExposed += Changed; 8208 return Changed; 8209 } 8210 8211 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 8212 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 8213 return false; 8214 8215 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 8216 8217 VPH.enqueueForPromotion(ToBePromoted); 8218 Inst = ToBePromoted; 8219 } 8220 return false; 8221 } 8222 8223 /// For the instruction sequence of store below, F and I values 8224 /// are bundled together as an i64 value before being stored into memory. 8225 /// Sometimes it is more efficient to generate separate stores for F and I, 8226 /// which can remove the bitwise instructions or sink them to colder places. 8227 /// 8228 /// (store (or (zext (bitcast F to i32) to i64), 8229 /// (shl (zext I to i64), 32)), addr) --> 8230 /// (store F, addr) and (store I, addr+4) 8231 /// 8232 /// Similarly, splitting for other merged store can also be beneficial, like: 8233 /// For pair of {i32, i32}, i64 store --> two i32 stores. 8234 /// For pair of {i32, i16}, i64 store --> two i32 stores. 8235 /// For pair of {i16, i16}, i32 store --> two i16 stores. 8236 /// For pair of {i16, i8}, i32 store --> two i16 stores. 8237 /// For pair of {i8, i8}, i16 store --> two i8 stores. 8238 /// 8239 /// We allow each target to determine specifically which kind of splitting is 8240 /// supported. 8241 /// 8242 /// The store patterns are commonly seen from the simple code snippet below 8243 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 8244 /// void goo(const std::pair<int, float> &); 8245 /// hoo() { 8246 /// ... 8247 /// goo(std::make_pair(tmp, ftmp)); 8248 /// ... 8249 /// } 8250 /// 8251 /// Although we already have similar splitting in DAG Combine, we duplicate 8252 /// it in CodeGenPrepare to catch the case in which pattern is across 8253 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 8254 /// during code expansion. 8255 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 8256 const TargetLowering &TLI) { 8257 // Handle simple but common cases only. 8258 Type *StoreType = SI.getValueOperand()->getType(); 8259 8260 // The code below assumes shifting a value by <number of bits>, 8261 // whereas scalable vectors would have to be shifted by 8262 // <2log(vscale) + number of bits> in order to store the 8263 // low/high parts. Bailing out for now. 8264 if (StoreType->isScalableTy()) 8265 return false; 8266 8267 if (!DL.typeSizeEqualsStoreSize(StoreType) || 8268 DL.getTypeSizeInBits(StoreType) == 0) 8269 return false; 8270 8271 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 8272 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 8273 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 8274 return false; 8275 8276 // Don't split the store if it is volatile. 8277 if (SI.isVolatile()) 8278 return false; 8279 8280 // Match the following patterns: 8281 // (store (or (zext LValue to i64), 8282 // (shl (zext HValue to i64), 32)), HalfValBitSize) 8283 // or 8284 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 8285 // (zext LValue to i64), 8286 // Expect both operands of OR and the first operand of SHL have only 8287 // one use. 8288 Value *LValue, *HValue; 8289 if (!match(SI.getValueOperand(), 8290 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 8291 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 8292 m_SpecificInt(HalfValBitSize)))))) 8293 return false; 8294 8295 // Check LValue and HValue are int with size less or equal than 32. 8296 if (!LValue->getType()->isIntegerTy() || 8297 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 8298 !HValue->getType()->isIntegerTy() || 8299 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 8300 return false; 8301 8302 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 8303 // as the input of target query. 8304 auto *LBC = dyn_cast<BitCastInst>(LValue); 8305 auto *HBC = dyn_cast<BitCastInst>(HValue); 8306 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 8307 : EVT::getEVT(LValue->getType()); 8308 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 8309 : EVT::getEVT(HValue->getType()); 8310 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 8311 return false; 8312 8313 // Start to split store. 8314 IRBuilder<> Builder(SI.getContext()); 8315 Builder.SetInsertPoint(&SI); 8316 8317 // If LValue/HValue is a bitcast in another BB, create a new one in current 8318 // BB so it may be merged with the splitted stores by dag combiner. 8319 if (LBC && LBC->getParent() != SI.getParent()) 8320 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 8321 if (HBC && HBC->getParent() != SI.getParent()) 8322 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 8323 8324 bool IsLE = SI.getDataLayout().isLittleEndian(); 8325 auto CreateSplitStore = [&](Value *V, bool Upper) { 8326 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 8327 Value *Addr = SI.getPointerOperand(); 8328 Align Alignment = SI.getAlign(); 8329 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 8330 if (IsOffsetStore) { 8331 Addr = Builder.CreateGEP( 8332 SplitStoreType, Addr, 8333 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 8334 8335 // When splitting the store in half, naturally one half will retain the 8336 // alignment of the original wider store, regardless of whether it was 8337 // over-aligned or not, while the other will require adjustment. 8338 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 8339 } 8340 Builder.CreateAlignedStore(V, Addr, Alignment); 8341 }; 8342 8343 CreateSplitStore(LValue, false); 8344 CreateSplitStore(HValue, true); 8345 8346 // Delete the old store. 8347 SI.eraseFromParent(); 8348 return true; 8349 } 8350 8351 // Return true if the GEP has two operands, the first operand is of a sequential 8352 // type, and the second operand is a constant. 8353 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 8354 gep_type_iterator I = gep_type_begin(*GEP); 8355 return GEP->getNumOperands() == 2 && I.isSequential() && 8356 isa<ConstantInt>(GEP->getOperand(1)); 8357 } 8358 8359 // Try unmerging GEPs to reduce liveness interference (register pressure) across 8360 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 8361 // reducing liveness interference across those edges benefits global register 8362 // allocation. Currently handles only certain cases. 8363 // 8364 // For example, unmerge %GEPI and %UGEPI as below. 8365 // 8366 // ---------- BEFORE ---------- 8367 // SrcBlock: 8368 // ... 8369 // %GEPIOp = ... 8370 // ... 8371 // %GEPI = gep %GEPIOp, Idx 8372 // ... 8373 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 8374 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 8375 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 8376 // %UGEPI) 8377 // 8378 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 8379 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 8380 // ... 8381 // 8382 // DstBi: 8383 // ... 8384 // %UGEPI = gep %GEPIOp, UIdx 8385 // ... 8386 // --------------------------- 8387 // 8388 // ---------- AFTER ---------- 8389 // SrcBlock: 8390 // ... (same as above) 8391 // (* %GEPI is still alive on the indirectbr edges) 8392 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 8393 // unmerging) 8394 // ... 8395 // 8396 // DstBi: 8397 // ... 8398 // %UGEPI = gep %GEPI, (UIdx-Idx) 8399 // ... 8400 // --------------------------- 8401 // 8402 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 8403 // no longer alive on them. 8404 // 8405 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 8406 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 8407 // not to disable further simplications and optimizations as a result of GEP 8408 // merging. 8409 // 8410 // Note this unmerging may increase the length of the data flow critical path 8411 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 8412 // between the register pressure and the length of data-flow critical 8413 // path. Restricting this to the uncommon IndirectBr case would minimize the 8414 // impact of potentially longer critical path, if any, and the impact on compile 8415 // time. 8416 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 8417 const TargetTransformInfo *TTI) { 8418 BasicBlock *SrcBlock = GEPI->getParent(); 8419 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 8420 // (non-IndirectBr) cases exit early here. 8421 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 8422 return false; 8423 // Check that GEPI is a simple gep with a single constant index. 8424 if (!GEPSequentialConstIndexed(GEPI)) 8425 return false; 8426 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 8427 // Check that GEPI is a cheap one. 8428 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 8429 TargetTransformInfo::TCK_SizeAndLatency) > 8430 TargetTransformInfo::TCC_Basic) 8431 return false; 8432 Value *GEPIOp = GEPI->getOperand(0); 8433 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 8434 if (!isa<Instruction>(GEPIOp)) 8435 return false; 8436 auto *GEPIOpI = cast<Instruction>(GEPIOp); 8437 if (GEPIOpI->getParent() != SrcBlock) 8438 return false; 8439 // Check that GEP is used outside the block, meaning it's alive on the 8440 // IndirectBr edge(s). 8441 if (llvm::none_of(GEPI->users(), [&](User *Usr) { 8442 if (auto *I = dyn_cast<Instruction>(Usr)) { 8443 if (I->getParent() != SrcBlock) { 8444 return true; 8445 } 8446 } 8447 return false; 8448 })) 8449 return false; 8450 // The second elements of the GEP chains to be unmerged. 8451 std::vector<GetElementPtrInst *> UGEPIs; 8452 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 8453 // on IndirectBr edges. 8454 for (User *Usr : GEPIOp->users()) { 8455 if (Usr == GEPI) 8456 continue; 8457 // Check if Usr is an Instruction. If not, give up. 8458 if (!isa<Instruction>(Usr)) 8459 return false; 8460 auto *UI = cast<Instruction>(Usr); 8461 // Check if Usr in the same block as GEPIOp, which is fine, skip. 8462 if (UI->getParent() == SrcBlock) 8463 continue; 8464 // Check if Usr is a GEP. If not, give up. 8465 if (!isa<GetElementPtrInst>(Usr)) 8466 return false; 8467 auto *UGEPI = cast<GetElementPtrInst>(Usr); 8468 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 8469 // the pointer operand to it. If so, record it in the vector. If not, give 8470 // up. 8471 if (!GEPSequentialConstIndexed(UGEPI)) 8472 return false; 8473 if (UGEPI->getOperand(0) != GEPIOp) 8474 return false; 8475 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType()) 8476 return false; 8477 if (GEPIIdx->getType() != 8478 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 8479 return false; 8480 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8481 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 8482 TargetTransformInfo::TCK_SizeAndLatency) > 8483 TargetTransformInfo::TCC_Basic) 8484 return false; 8485 UGEPIs.push_back(UGEPI); 8486 } 8487 if (UGEPIs.size() == 0) 8488 return false; 8489 // Check the materializing cost of (Uidx-Idx). 8490 for (GetElementPtrInst *UGEPI : UGEPIs) { 8491 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8492 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 8493 InstructionCost ImmCost = TTI->getIntImmCost( 8494 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 8495 if (ImmCost > TargetTransformInfo::TCC_Basic) 8496 return false; 8497 } 8498 // Now unmerge between GEPI and UGEPIs. 8499 for (GetElementPtrInst *UGEPI : UGEPIs) { 8500 UGEPI->setOperand(0, GEPI); 8501 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8502 Constant *NewUGEPIIdx = ConstantInt::get( 8503 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); 8504 UGEPI->setOperand(1, NewUGEPIIdx); 8505 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 8506 // inbounds to avoid UB. 8507 if (!GEPI->isInBounds()) { 8508 UGEPI->setIsInBounds(false); 8509 } 8510 } 8511 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 8512 // alive on IndirectBr edges). 8513 assert(llvm::none_of(GEPIOp->users(), 8514 [&](User *Usr) { 8515 return cast<Instruction>(Usr)->getParent() != SrcBlock; 8516 }) && 8517 "GEPIOp is used outside SrcBlock"); 8518 return true; 8519 } 8520 8521 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, 8522 SmallSet<BasicBlock *, 32> &FreshBBs, 8523 bool IsHugeFunc) { 8524 // Try and convert 8525 // %c = icmp ult %x, 8 8526 // br %c, bla, blb 8527 // %tc = lshr %x, 3 8528 // to 8529 // %tc = lshr %x, 3 8530 // %c = icmp eq %tc, 0 8531 // br %c, bla, blb 8532 // Creating the cmp to zero can be better for the backend, especially if the 8533 // lshr produces flags that can be used automatically. 8534 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 8535 return false; 8536 8537 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 8538 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 8539 return false; 8540 8541 Value *X = Cmp->getOperand(0); 8542 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 8543 8544 for (auto *U : X->users()) { 8545 Instruction *UI = dyn_cast<Instruction>(U); 8546 // A quick dominance check 8547 if (!UI || 8548 (UI->getParent() != Branch->getParent() && 8549 UI->getParent() != Branch->getSuccessor(0) && 8550 UI->getParent() != Branch->getSuccessor(1)) || 8551 (UI->getParent() != Branch->getParent() && 8552 !UI->getParent()->getSinglePredecessor())) 8553 continue; 8554 8555 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 8556 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 8557 IRBuilder<> Builder(Branch); 8558 if (UI->getParent() != Branch->getParent()) 8559 UI->moveBefore(Branch->getIterator()); 8560 UI->dropPoisonGeneratingFlags(); 8561 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 8562 ConstantInt::get(UI->getType(), 0)); 8563 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8564 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8565 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8566 return true; 8567 } 8568 if (Cmp->isEquality() && 8569 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 8570 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 8571 IRBuilder<> Builder(Branch); 8572 if (UI->getParent() != Branch->getParent()) 8573 UI->moveBefore(Branch->getIterator()); 8574 UI->dropPoisonGeneratingFlags(); 8575 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 8576 ConstantInt::get(UI->getType(), 0)); 8577 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8578 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8579 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8580 return true; 8581 } 8582 } 8583 return false; 8584 } 8585 8586 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { 8587 bool AnyChange = false; 8588 AnyChange = fixupDbgVariableRecordsOnInst(*I); 8589 8590 // Bail out if we inserted the instruction to prevent optimizations from 8591 // stepping on each other's toes. 8592 if (InsertedInsts.count(I)) 8593 return AnyChange; 8594 8595 // TODO: Move into the switch on opcode below here. 8596 if (PHINode *P = dyn_cast<PHINode>(I)) { 8597 // It is possible for very late stage optimizations (such as SimplifyCFG) 8598 // to introduce PHI nodes too late to be cleaned up. If we detect such a 8599 // trivial PHI, go ahead and zap it here. 8600 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 8601 LargeOffsetGEPMap.erase(P); 8602 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); 8603 P->eraseFromParent(); 8604 ++NumPHIsElim; 8605 return true; 8606 } 8607 return AnyChange; 8608 } 8609 8610 if (CastInst *CI = dyn_cast<CastInst>(I)) { 8611 // If the source of the cast is a constant, then this should have 8612 // already been constant folded. The only reason NOT to constant fold 8613 // it is if something (e.g. LSR) was careful to place the constant 8614 // evaluation in a block other than then one that uses it (e.g. to hoist 8615 // the address of globals out of a loop). If this is the case, we don't 8616 // want to forward-subst the cast. 8617 if (isa<Constant>(CI->getOperand(0))) 8618 return AnyChange; 8619 8620 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 8621 return true; 8622 8623 if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) || 8624 isa<TruncInst>(I)) && 8625 TLI->optimizeExtendOrTruncateConversion( 8626 I, LI->getLoopFor(I->getParent()), *TTI)) 8627 return true; 8628 8629 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 8630 /// Sink a zext or sext into its user blocks if the target type doesn't 8631 /// fit in one register 8632 if (TLI->getTypeAction(CI->getContext(), 8633 TLI->getValueType(*DL, CI->getType())) == 8634 TargetLowering::TypeExpandInteger) { 8635 return SinkCast(CI); 8636 } else { 8637 if (TLI->optimizeExtendOrTruncateConversion( 8638 I, LI->getLoopFor(I->getParent()), *TTI)) 8639 return true; 8640 8641 bool MadeChange = optimizeExt(I); 8642 return MadeChange | optimizeExtUses(I); 8643 } 8644 } 8645 return AnyChange; 8646 } 8647 8648 if (auto *Cmp = dyn_cast<CmpInst>(I)) 8649 if (optimizeCmp(Cmp, ModifiedDT)) 8650 return true; 8651 8652 if (match(I, m_URem(m_Value(), m_Value()))) 8653 if (optimizeURem(I)) 8654 return true; 8655 8656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8657 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8658 bool Modified = optimizeLoadExt(LI); 8659 unsigned AS = LI->getPointerAddressSpace(); 8660 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 8661 return Modified; 8662 } 8663 8664 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 8665 if (splitMergedValStore(*SI, *DL, *TLI)) 8666 return true; 8667 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8668 unsigned AS = SI->getPointerAddressSpace(); 8669 return optimizeMemoryInst(I, SI->getOperand(1), 8670 SI->getOperand(0)->getType(), AS); 8671 } 8672 8673 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 8674 unsigned AS = RMW->getPointerAddressSpace(); 8675 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); 8676 } 8677 8678 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 8679 unsigned AS = CmpX->getPointerAddressSpace(); 8680 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 8681 CmpX->getCompareOperand()->getType(), AS); 8682 } 8683 8684 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 8685 8686 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 8687 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 8688 return true; 8689 8690 // TODO: Move this into the switch on opcode - it handles shifts already. 8691 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 8692 BinOp->getOpcode() == Instruction::LShr)) { 8693 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 8694 if (CI && TLI->hasExtractBitsInsn()) 8695 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 8696 return true; 8697 } 8698 8699 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 8700 if (GEPI->hasAllZeroIndices()) { 8701 /// The GEP operand must be a pointer, so must its result -> BitCast 8702 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 8703 GEPI->getName(), GEPI->getIterator()); 8704 NC->setDebugLoc(GEPI->getDebugLoc()); 8705 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); 8706 RecursivelyDeleteTriviallyDeadInstructions( 8707 GEPI, TLInfo, nullptr, 8708 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8709 ++NumGEPsElim; 8710 optimizeInst(NC, ModifiedDT); 8711 return true; 8712 } 8713 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8714 return true; 8715 } 8716 } 8717 8718 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8719 // freeze(icmp a, const)) -> icmp (freeze a), const 8720 // This helps generate efficient conditional jumps. 8721 Instruction *CmpI = nullptr; 8722 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8723 CmpI = II; 8724 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8725 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8726 8727 if (CmpI && CmpI->hasOneUse()) { 8728 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8729 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8730 isa<ConstantPointerNull>(Op0); 8731 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8732 isa<ConstantPointerNull>(Op1); 8733 if (Const0 || Const1) { 8734 if (!Const0 || !Const1) { 8735 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator()); 8736 F->takeName(FI); 8737 CmpI->setOperand(Const0 ? 1 : 0, F); 8738 } 8739 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); 8740 FI->eraseFromParent(); 8741 return true; 8742 } 8743 } 8744 return AnyChange; 8745 } 8746 8747 if (tryToSinkFreeOperands(I)) 8748 return true; 8749 8750 switch (I->getOpcode()) { 8751 case Instruction::Shl: 8752 case Instruction::LShr: 8753 case Instruction::AShr: 8754 return optimizeShiftInst(cast<BinaryOperator>(I)); 8755 case Instruction::Call: 8756 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8757 case Instruction::Select: 8758 return optimizeSelectInst(cast<SelectInst>(I)); 8759 case Instruction::ShuffleVector: 8760 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8761 case Instruction::Switch: 8762 return optimizeSwitchInst(cast<SwitchInst>(I)); 8763 case Instruction::ExtractElement: 8764 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8765 case Instruction::Br: 8766 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); 8767 } 8768 8769 return AnyChange; 8770 } 8771 8772 /// Given an OR instruction, check to see if this is a bitreverse 8773 /// idiom. If so, insert the new intrinsic and return true. 8774 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8775 if (!I.getType()->isIntegerTy() || 8776 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8777 TLI->getValueType(*DL, I.getType(), true))) 8778 return false; 8779 8780 SmallVector<Instruction *, 4> Insts; 8781 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8782 return false; 8783 Instruction *LastInst = Insts.back(); 8784 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); 8785 RecursivelyDeleteTriviallyDeadInstructions( 8786 &I, TLInfo, nullptr, 8787 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8788 return true; 8789 } 8790 8791 // In this pass we look for GEP and cast instructions that are used 8792 // across basic blocks and rewrite them to improve basic-block-at-a-time 8793 // selection. 8794 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { 8795 SunkAddrs.clear(); 8796 bool MadeChange = false; 8797 8798 do { 8799 CurInstIterator = BB.begin(); 8800 ModifiedDT = ModifyDT::NotModifyDT; 8801 while (CurInstIterator != BB.end()) { 8802 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8803 if (ModifiedDT != ModifyDT::NotModifyDT) { 8804 // For huge function we tend to quickly go though the inner optmization 8805 // opportunities in the BB. So we go back to the BB head to re-optimize 8806 // each instruction instead of go back to the function head. 8807 if (IsHugeFunc) { 8808 DT.reset(); 8809 getDT(*BB.getParent()); 8810 break; 8811 } else { 8812 return true; 8813 } 8814 } 8815 } 8816 } while (ModifiedDT == ModifyDT::ModifyInstDT); 8817 8818 bool MadeBitReverse = true; 8819 while (MadeBitReverse) { 8820 MadeBitReverse = false; 8821 for (auto &I : reverse(BB)) { 8822 if (makeBitReverse(I)) { 8823 MadeBitReverse = MadeChange = true; 8824 break; 8825 } 8826 } 8827 } 8828 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8829 8830 return MadeChange; 8831 } 8832 8833 // Some CGP optimizations may move or alter what's computed in a block. Check 8834 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8835 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8836 assert(isa<DbgValueInst>(I)); 8837 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8838 8839 // Does this dbg.value refer to a sunk address calculation? 8840 bool AnyChange = false; 8841 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8842 DVI.location_ops().end()); 8843 for (Value *Location : LocationOps) { 8844 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8845 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8846 if (SunkAddr) { 8847 // Point dbg.value at locally computed address, which should give the best 8848 // opportunity to be accurately lowered. This update may change the type 8849 // of pointer being referred to; however this makes no difference to 8850 // debugging information, and we can't generate bitcasts that may affect 8851 // codegen. 8852 DVI.replaceVariableLocationOp(Location, SunkAddr); 8853 AnyChange = true; 8854 } 8855 } 8856 return AnyChange; 8857 } 8858 8859 bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) { 8860 bool AnyChange = false; 8861 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 8862 AnyChange |= fixupDbgVariableRecord(DVR); 8863 return AnyChange; 8864 } 8865 8866 // FIXME: should updating debug-info really cause the "changed" flag to fire, 8867 // which can cause a function to be reprocessed? 8868 bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) { 8869 if (DVR.Type != DbgVariableRecord::LocationType::Value && 8870 DVR.Type != DbgVariableRecord::LocationType::Assign) 8871 return false; 8872 8873 // Does this DbgVariableRecord refer to a sunk address calculation? 8874 bool AnyChange = false; 8875 SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(), 8876 DVR.location_ops().end()); 8877 for (Value *Location : LocationOps) { 8878 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8879 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8880 if (SunkAddr) { 8881 // Point dbg.value at locally computed address, which should give the best 8882 // opportunity to be accurately lowered. This update may change the type 8883 // of pointer being referred to; however this makes no difference to 8884 // debugging information, and we can't generate bitcasts that may affect 8885 // codegen. 8886 DVR.replaceVariableLocationOp(Location, SunkAddr); 8887 AnyChange = true; 8888 } 8889 } 8890 return AnyChange; 8891 } 8892 8893 static void DbgInserterHelper(DbgValueInst *DVI, BasicBlock::iterator VI) { 8894 DVI->removeFromParent(); 8895 if (isa<PHINode>(VI)) 8896 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 8897 else 8898 DVI->insertAfter(VI); 8899 } 8900 8901 static void DbgInserterHelper(DbgVariableRecord *DVR, BasicBlock::iterator VI) { 8902 DVR->removeFromParent(); 8903 BasicBlock *VIBB = VI->getParent(); 8904 if (isa<PHINode>(VI)) 8905 VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt()); 8906 else 8907 VIBB->insertDbgRecordAfter(DVR, &*VI); 8908 } 8909 8910 // A llvm.dbg.value may be using a value before its definition, due to 8911 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8912 // them by moving the dbg.value to immediately after the value definition. 8913 // FIXME: Ideally this should never be necessary, and this has the potential 8914 // to re-order dbg.value intrinsics. 8915 bool CodeGenPrepare::placeDbgValues(Function &F) { 8916 bool MadeChange = false; 8917 DominatorTree DT(F); 8918 8919 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) { 8920 SmallVector<Instruction *, 4> VIs; 8921 for (Value *V : DbgItem->location_ops()) 8922 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8923 VIs.push_back(VI); 8924 8925 // This item may depend on multiple instructions, complicating any 8926 // potential sink. This block takes the defensive approach, opting to 8927 // "undef" the item if it has more than one instruction and any of them do 8928 // not dominate iem. 8929 for (Instruction *VI : VIs) { 8930 if (VI->isTerminator()) 8931 continue; 8932 8933 // If VI is a phi in a block with an EHPad terminator, we can't insert 8934 // after it. 8935 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8936 continue; 8937 8938 // If the defining instruction dominates the dbg.value, we do not need 8939 // to move the dbg.value. 8940 if (DT.dominates(VI, Position)) 8941 continue; 8942 8943 // If we depend on multiple instructions and any of them doesn't 8944 // dominate this DVI, we probably can't salvage it: moving it to 8945 // after any of the instructions could cause us to lose the others. 8946 if (VIs.size() > 1) { 8947 LLVM_DEBUG( 8948 dbgs() 8949 << "Unable to find valid location for Debug Value, undefing:\n" 8950 << *DbgItem); 8951 DbgItem->setKillLocation(); 8952 break; 8953 } 8954 8955 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8956 << *DbgItem << ' ' << *VI); 8957 DbgInserterHelper(DbgItem, VI->getIterator()); 8958 MadeChange = true; 8959 ++NumDbgValueMoved; 8960 } 8961 }; 8962 8963 for (BasicBlock &BB : F) { 8964 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8965 // Process dbg.value intrinsics. 8966 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8967 if (DVI) { 8968 DbgProcessor(DVI, DVI); 8969 continue; 8970 } 8971 8972 // If this isn't a dbg.value, process any attached DbgVariableRecord 8973 // records attached to this instruction. 8974 for (DbgVariableRecord &DVR : llvm::make_early_inc_range( 8975 filterDbgVars(Insn.getDbgRecordRange()))) { 8976 if (DVR.Type != DbgVariableRecord::LocationType::Value) 8977 continue; 8978 DbgProcessor(&DVR, &Insn); 8979 } 8980 } 8981 } 8982 8983 return MadeChange; 8984 } 8985 8986 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8987 // probes can be chained dependencies of other regular DAG nodes and block DAG 8988 // combine optimizations. 8989 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8990 bool MadeChange = false; 8991 for (auto &Block : F) { 8992 // Move the rest probes to the beginning of the block. 8993 auto FirstInst = Block.getFirstInsertionPt(); 8994 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8995 ++FirstInst; 8996 BasicBlock::iterator I(FirstInst); 8997 I++; 8998 while (I != Block.end()) { 8999 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 9000 II->moveBefore(FirstInst); 9001 MadeChange = true; 9002 } 9003 } 9004 } 9005 return MadeChange; 9006 } 9007 9008 /// Scale down both weights to fit into uint32_t. 9009 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 9010 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 9011 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 9012 NewTrue = NewTrue / Scale; 9013 NewFalse = NewFalse / Scale; 9014 } 9015 9016 /// Some targets prefer to split a conditional branch like: 9017 /// \code 9018 /// %0 = icmp ne i32 %a, 0 9019 /// %1 = icmp ne i32 %b, 0 9020 /// %or.cond = or i1 %0, %1 9021 /// br i1 %or.cond, label %TrueBB, label %FalseBB 9022 /// \endcode 9023 /// into multiple branch instructions like: 9024 /// \code 9025 /// bb1: 9026 /// %0 = icmp ne i32 %a, 0 9027 /// br i1 %0, label %TrueBB, label %bb2 9028 /// bb2: 9029 /// %1 = icmp ne i32 %b, 0 9030 /// br i1 %1, label %TrueBB, label %FalseBB 9031 /// \endcode 9032 /// This usually allows instruction selection to do even further optimizations 9033 /// and combine the compare with the branch instruction. Currently this is 9034 /// applied for targets which have "cheap" jump instructions. 9035 /// 9036 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 9037 /// 9038 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { 9039 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 9040 return false; 9041 9042 bool MadeChange = false; 9043 for (auto &BB : F) { 9044 // Does this BB end with the following? 9045 // %cond1 = icmp|fcmp|binary instruction ... 9046 // %cond2 = icmp|fcmp|binary instruction ... 9047 // %cond.or = or|and i1 %cond1, cond2 9048 // br i1 %cond.or label %dest1, label %dest2" 9049 Instruction *LogicOp; 9050 BasicBlock *TBB, *FBB; 9051 if (!match(BB.getTerminator(), 9052 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 9053 continue; 9054 9055 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 9056 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 9057 continue; 9058 9059 // The merging of mostly empty BB can cause a degenerate branch. 9060 if (TBB == FBB) 9061 continue; 9062 9063 unsigned Opc; 9064 Value *Cond1, *Cond2; 9065 if (match(LogicOp, 9066 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 9067 Opc = Instruction::And; 9068 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 9069 m_OneUse(m_Value(Cond2))))) 9070 Opc = Instruction::Or; 9071 else 9072 continue; 9073 9074 auto IsGoodCond = [](Value *Cond) { 9075 return match( 9076 Cond, 9077 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 9078 m_LogicalOr(m_Value(), m_Value())))); 9079 }; 9080 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 9081 continue; 9082 9083 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 9084 9085 // Create a new BB. 9086 auto *TmpBB = 9087 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 9088 BB.getParent(), BB.getNextNode()); 9089 if (IsHugeFunc) 9090 FreshBBs.insert(TmpBB); 9091 9092 // Update original basic block by using the first condition directly by the 9093 // branch instruction and removing the no longer needed and/or instruction. 9094 Br1->setCondition(Cond1); 9095 LogicOp->eraseFromParent(); 9096 9097 // Depending on the condition we have to either replace the true or the 9098 // false successor of the original branch instruction. 9099 if (Opc == Instruction::And) 9100 Br1->setSuccessor(0, TmpBB); 9101 else 9102 Br1->setSuccessor(1, TmpBB); 9103 9104 // Fill in the new basic block. 9105 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 9106 if (auto *I = dyn_cast<Instruction>(Cond2)) { 9107 I->removeFromParent(); 9108 I->insertBefore(Br2->getIterator()); 9109 } 9110 9111 // Update PHI nodes in both successors. The original BB needs to be 9112 // replaced in one successor's PHI nodes, because the branch comes now from 9113 // the newly generated BB (NewBB). In the other successor we need to add one 9114 // incoming edge to the PHI nodes, because both branch instructions target 9115 // now the same successor. Depending on the original branch condition 9116 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 9117 // we perform the correct update for the PHI nodes. 9118 // This doesn't change the successor order of the just created branch 9119 // instruction (or any other instruction). 9120 if (Opc == Instruction::Or) 9121 std::swap(TBB, FBB); 9122 9123 // Replace the old BB with the new BB. 9124 TBB->replacePhiUsesWith(&BB, TmpBB); 9125 9126 // Add another incoming edge from the new BB. 9127 for (PHINode &PN : FBB->phis()) { 9128 auto *Val = PN.getIncomingValueForBlock(&BB); 9129 PN.addIncoming(Val, TmpBB); 9130 } 9131 9132 // Update the branch weights (from SelectionDAGBuilder:: 9133 // FindMergedConditions). 9134 if (Opc == Instruction::Or) { 9135 // Codegen X | Y as: 9136 // BB1: 9137 // jmp_if_X TBB 9138 // jmp TmpBB 9139 // TmpBB: 9140 // jmp_if_Y TBB 9141 // jmp FBB 9142 // 9143 9144 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 9145 // The requirement is that 9146 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 9147 // = TrueProb for original BB. 9148 // Assuming the original weights are A and B, one choice is to set BB1's 9149 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 9150 // assumes that 9151 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 9152 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 9153 // TmpBB, but the math is more complicated. 9154 uint64_t TrueWeight, FalseWeight; 9155 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 9156 uint64_t NewTrueWeight = TrueWeight; 9157 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 9158 scaleWeights(NewTrueWeight, NewFalseWeight); 9159 Br1->setMetadata(LLVMContext::MD_prof, 9160 MDBuilder(Br1->getContext()) 9161 .createBranchWeights(TrueWeight, FalseWeight, 9162 hasBranchWeightOrigin(*Br1))); 9163 9164 NewTrueWeight = TrueWeight; 9165 NewFalseWeight = 2 * FalseWeight; 9166 scaleWeights(NewTrueWeight, NewFalseWeight); 9167 Br2->setMetadata(LLVMContext::MD_prof, 9168 MDBuilder(Br2->getContext()) 9169 .createBranchWeights(TrueWeight, FalseWeight)); 9170 } 9171 } else { 9172 // Codegen X & Y as: 9173 // BB1: 9174 // jmp_if_X TmpBB 9175 // jmp FBB 9176 // TmpBB: 9177 // jmp_if_Y TBB 9178 // jmp FBB 9179 // 9180 // This requires creation of TmpBB after CurBB. 9181 9182 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 9183 // The requirement is that 9184 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 9185 // = FalseProb for original BB. 9186 // Assuming the original weights are A and B, one choice is to set BB1's 9187 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 9188 // assumes that 9189 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 9190 uint64_t TrueWeight, FalseWeight; 9191 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 9192 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 9193 uint64_t NewFalseWeight = FalseWeight; 9194 scaleWeights(NewTrueWeight, NewFalseWeight); 9195 Br1->setMetadata(LLVMContext::MD_prof, 9196 MDBuilder(Br1->getContext()) 9197 .createBranchWeights(TrueWeight, FalseWeight)); 9198 9199 NewTrueWeight = 2 * TrueWeight; 9200 NewFalseWeight = FalseWeight; 9201 scaleWeights(NewTrueWeight, NewFalseWeight); 9202 Br2->setMetadata(LLVMContext::MD_prof, 9203 MDBuilder(Br2->getContext()) 9204 .createBranchWeights(TrueWeight, FalseWeight)); 9205 } 9206 } 9207 9208 ModifiedDT = ModifyDT::ModifyBBDT; 9209 MadeChange = true; 9210 9211 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 9212 TmpBB->dump()); 9213 } 9214 return MadeChange; 9215 } 9216