xref: /llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp (revision c64ce8bf283120fd145a57d0e61f9697f719139d)
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/CodeGenPrepare.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/CodeGenTypes/MachineValueType.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/Argument.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfo.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GetElementPtrTypeIterator.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/GlobalVariable.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/IntrinsicsAArch64.h"
66 #include "llvm/IR/LLVMContext.h"
67 #include "llvm/IR/MDBuilder.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Operator.h"
70 #include "llvm/IR/PatternMatch.h"
71 #include "llvm/IR/ProfDataUtils.h"
72 #include "llvm/IR/Statepoint.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/Use.h"
75 #include "llvm/IR/User.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/IR/ValueHandle.h"
78 #include "llvm/IR/ValueMap.h"
79 #include "llvm/InitializePasses.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/BlockFrequency.h"
82 #include "llvm/Support/BranchProbability.h"
83 #include "llvm/Support/Casting.h"
84 #include "llvm/Support/CommandLine.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/ErrorHandling.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Target/TargetMachine.h"
91 #include "llvm/Target/TargetOptions.h"
92 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
93 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
94 #include "llvm/Transforms/Utils/Local.h"
95 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
96 #include "llvm/Transforms/Utils/SizeOpts.h"
97 #include <algorithm>
98 #include <cassert>
99 #include <cstdint>
100 #include <iterator>
101 #include <limits>
102 #include <memory>
103 #include <optional>
104 #include <utility>
105 #include <vector>
106 
107 using namespace llvm;
108 using namespace llvm::PatternMatch;
109 
110 #define DEBUG_TYPE "codegenprepare"
111 
112 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
113 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
114 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
115 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
116                       "sunken Cmps");
117 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
118                        "of sunken Casts");
119 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
120                           "computations were sunk");
121 STATISTIC(NumMemoryInstsPhiCreated,
122           "Number of phis created when address "
123           "computations were sunk to memory instructions");
124 STATISTIC(NumMemoryInstsSelectCreated,
125           "Number of select created when address "
126           "computations were sunk to memory instructions");
127 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
128 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
129 STATISTIC(NumAndsAdded,
130           "Number of and mask instructions added to form ext loads");
131 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
132 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
133 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
134 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
135 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
136 
137 static cl::opt<bool> DisableBranchOpts(
138     "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
139     cl::desc("Disable branch optimizations in CodeGenPrepare"));
140 
141 static cl::opt<bool>
142     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
143                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
144 
145 static cl::opt<bool>
146     DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden,
147                           cl::init(false),
148                           cl::desc("Disable select to branch conversion."));
149 
150 static cl::opt<bool>
151     AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true),
152                       cl::desc("Address sinking in CGP using GEPs."));
153 
154 static cl::opt<bool>
155     EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true),
156                         cl::desc("Enable sinkinig and/cmp into branches."));
157 
158 static cl::opt<bool> DisableStoreExtract(
159     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
160     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
161 
162 static cl::opt<bool> StressStoreExtract(
163     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
164     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
165 
166 static cl::opt<bool> DisableExtLdPromotion(
167     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
168     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
169              "CodeGenPrepare"));
170 
171 static cl::opt<bool> StressExtLdPromotion(
172     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
173     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
174              "optimization in CodeGenPrepare"));
175 
176 static cl::opt<bool> DisablePreheaderProtect(
177     "disable-preheader-prot", cl::Hidden, cl::init(false),
178     cl::desc("Disable protection against removing loop preheaders"));
179 
180 static cl::opt<bool> ProfileGuidedSectionPrefix(
181     "profile-guided-section-prefix", cl::Hidden, cl::init(true),
182     cl::desc("Use profile info to add section prefix for hot/cold functions"));
183 
184 static cl::opt<bool> ProfileUnknownInSpecialSection(
185     "profile-unknown-in-special-section", cl::Hidden,
186     cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
187              "profile, we cannot tell the function is cold for sure because "
188              "it may be a function newly added without ever being sampled. "
189              "With the flag enabled, compiler can put such profile unknown "
190              "functions into a special section, so runtime system can choose "
191              "to handle it in a different way than .text section, to save "
192              "RAM for example. "));
193 
194 static cl::opt<bool> BBSectionsGuidedSectionPrefix(
195     "bbsections-guided-section-prefix", cl::Hidden, cl::init(true),
196     cl::desc("Use the basic-block-sections profile to determine the text "
197              "section prefix for hot functions. Functions with "
198              "basic-block-sections profile will be placed in `.text.hot` "
199              "regardless of their FDO profile info. Other functions won't be "
200              "impacted, i.e., their prefixes will be decided by FDO/sampleFDO "
201              "profiles."));
202 
203 static cl::opt<uint64_t> FreqRatioToSkipMerge(
204     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
205     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
206              "(frequency of destination block) is greater than this ratio"));
207 
208 static cl::opt<bool> ForceSplitStore(
209     "force-split-store", cl::Hidden, cl::init(false),
210     cl::desc("Force store splitting no matter what the target query says."));
211 
212 static cl::opt<bool> EnableTypePromotionMerge(
213     "cgp-type-promotion-merge", cl::Hidden,
214     cl::desc("Enable merging of redundant sexts when one is dominating"
215              " the other."),
216     cl::init(true));
217 
218 static cl::opt<bool> DisableComplexAddrModes(
219     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
220     cl::desc("Disables combining addressing modes with different parts "
221              "in optimizeMemoryInst."));
222 
223 static cl::opt<bool>
224     AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
225                     cl::desc("Allow creation of Phis in Address sinking."));
226 
227 static cl::opt<bool> AddrSinkNewSelects(
228     "addr-sink-new-select", cl::Hidden, cl::init(true),
229     cl::desc("Allow creation of selects in Address sinking."));
230 
231 static cl::opt<bool> AddrSinkCombineBaseReg(
232     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
233     cl::desc("Allow combining of BaseReg field in Address sinking."));
234 
235 static cl::opt<bool> AddrSinkCombineBaseGV(
236     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
237     cl::desc("Allow combining of BaseGV field in Address sinking."));
238 
239 static cl::opt<bool> AddrSinkCombineBaseOffs(
240     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
241     cl::desc("Allow combining of BaseOffs field in Address sinking."));
242 
243 static cl::opt<bool> AddrSinkCombineScaledReg(
244     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
245     cl::desc("Allow combining of ScaledReg field in Address sinking."));
246 
247 static cl::opt<bool>
248     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
249                          cl::init(true),
250                          cl::desc("Enable splitting large offset of GEP."));
251 
252 static cl::opt<bool> EnableICMP_EQToICMP_ST(
253     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
254     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
255 
256 static cl::opt<bool>
257     VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
258                      cl::desc("Enable BFI update verification for "
259                               "CodeGenPrepare."));
260 
261 static cl::opt<bool>
262     OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true),
263                      cl::desc("Enable converting phi types in CodeGenPrepare"));
264 
265 static cl::opt<unsigned>
266     HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden,
267                             cl::desc("Least BB number of huge function."));
268 
269 static cl::opt<unsigned>
270     MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100),
271                           cl::Hidden,
272                           cl::desc("Max number of address users to look at"));
273 
274 static cl::opt<bool>
275     DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false),
276                       cl::desc("Disable elimination of dead PHI nodes."));
277 
278 namespace {
279 
280 enum ExtType {
281   ZeroExtension, // Zero extension has been seen.
282   SignExtension, // Sign extension has been seen.
283   BothExtension  // This extension type is used if we saw sext after
284                  // ZeroExtension had been set, or if we saw zext after
285                  // SignExtension had been set. It makes the type
286                  // information of a promoted instruction invalid.
287 };
288 
289 enum ModifyDT {
290   NotModifyDT, // Not Modify any DT.
291   ModifyBBDT,  // Modify the Basic Block Dominator Tree.
292   ModifyInstDT // Modify the Instruction Dominator in a Basic Block,
293                // This usually means we move/delete/insert instruction
294                // in a Basic Block. So we should re-iterate instructions
295                // in such Basic Block.
296 };
297 
298 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
299 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
300 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
301 using SExts = SmallVector<Instruction *, 16>;
302 using ValueToSExts = MapVector<Value *, SExts>;
303 
304 class TypePromotionTransaction;
305 
306 class CodeGenPrepare {
307   friend class CodeGenPrepareLegacyPass;
308   const TargetMachine *TM = nullptr;
309   const TargetSubtargetInfo *SubtargetInfo = nullptr;
310   const TargetLowering *TLI = nullptr;
311   const TargetRegisterInfo *TRI = nullptr;
312   const TargetTransformInfo *TTI = nullptr;
313   const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr;
314   const TargetLibraryInfo *TLInfo = nullptr;
315   LoopInfo *LI = nullptr;
316   std::unique_ptr<BlockFrequencyInfo> BFI;
317   std::unique_ptr<BranchProbabilityInfo> BPI;
318   ProfileSummaryInfo *PSI = nullptr;
319 
320   /// As we scan instructions optimizing them, this is the next instruction
321   /// to optimize. Transforms that can invalidate this should update it.
322   BasicBlock::iterator CurInstIterator;
323 
324   /// Keeps track of non-local addresses that have been sunk into a block.
325   /// This allows us to avoid inserting duplicate code for blocks with
326   /// multiple load/stores of the same address. The usage of WeakTrackingVH
327   /// enables SunkAddrs to be treated as a cache whose entries can be
328   /// invalidated if a sunken address computation has been erased.
329   ValueMap<Value *, WeakTrackingVH> SunkAddrs;
330 
331   /// Keeps track of all instructions inserted for the current function.
332   SetOfInstrs InsertedInsts;
333 
334   /// Keeps track of the type of the related instruction before their
335   /// promotion for the current function.
336   InstrToOrigTy PromotedInsts;
337 
338   /// Keep track of instructions removed during promotion.
339   SetOfInstrs RemovedInsts;
340 
341   /// Keep track of sext chains based on their initial value.
342   DenseMap<Value *, Instruction *> SeenChainsForSExt;
343 
344   /// Keep track of GEPs accessing the same data structures such as structs or
345   /// arrays that are candidates to be split later because of their large
346   /// size.
347   MapVector<AssertingVH<Value>,
348             SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
349       LargeOffsetGEPMap;
350 
351   /// Keep track of new GEP base after splitting the GEPs having large offset.
352   SmallSet<AssertingVH<Value>, 2> NewGEPBases;
353 
354   /// Map serial numbers to Large offset GEPs.
355   DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
356 
357   /// Keep track of SExt promoted.
358   ValueToSExts ValToSExtendedUses;
359 
360   /// True if the function has the OptSize attribute.
361   bool OptSize;
362 
363   /// DataLayout for the Function being processed.
364   const DataLayout *DL = nullptr;
365 
366   /// Building the dominator tree can be expensive, so we only build it
367   /// lazily and update it when required.
368   std::unique_ptr<DominatorTree> DT;
369 
370 public:
371   CodeGenPrepare(){};
372   CodeGenPrepare(const TargetMachine *TM) : TM(TM){};
373   /// If encounter huge function, we need to limit the build time.
374   bool IsHugeFunc = false;
375 
376   /// FreshBBs is like worklist, it collected the updated BBs which need
377   /// to be optimized again.
378   /// Note: Consider building time in this pass, when a BB updated, we need
379   /// to insert such BB into FreshBBs for huge function.
380   SmallSet<BasicBlock *, 32> FreshBBs;
381 
382   void releaseMemory() {
383     // Clear per function information.
384     InsertedInsts.clear();
385     PromotedInsts.clear();
386     FreshBBs.clear();
387     BPI.reset();
388     BFI.reset();
389   }
390 
391   bool run(Function &F, FunctionAnalysisManager &AM);
392 
393 private:
394   template <typename F>
395   void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
396     // Substituting can cause recursive simplifications, which can invalidate
397     // our iterator.  Use a WeakTrackingVH to hold onto it in case this
398     // happens.
399     Value *CurValue = &*CurInstIterator;
400     WeakTrackingVH IterHandle(CurValue);
401 
402     f();
403 
404     // If the iterator instruction was recursively deleted, start over at the
405     // start of the block.
406     if (IterHandle != CurValue) {
407       CurInstIterator = BB->begin();
408       SunkAddrs.clear();
409     }
410   }
411 
412   // Get the DominatorTree, building if necessary.
413   DominatorTree &getDT(Function &F) {
414     if (!DT)
415       DT = std::make_unique<DominatorTree>(F);
416     return *DT;
417   }
418 
419   void removeAllAssertingVHReferences(Value *V);
420   bool eliminateAssumptions(Function &F);
421   bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr);
422   bool eliminateMostlyEmptyBlocks(Function &F);
423   BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
424   bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
425   void eliminateMostlyEmptyBlock(BasicBlock *BB);
426   bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
427                                      bool isPreheader);
428   bool makeBitReverse(Instruction &I);
429   bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT);
430   bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT);
431   bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy,
432                           unsigned AddrSpace);
433   bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
434   bool optimizeInlineAsmInst(CallInst *CS);
435   bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT);
436   bool optimizeExt(Instruction *&I);
437   bool optimizeExtUses(Instruction *I);
438   bool optimizeLoadExt(LoadInst *Load);
439   bool optimizeShiftInst(BinaryOperator *BO);
440   bool optimizeFunnelShift(IntrinsicInst *Fsh);
441   bool optimizeSelectInst(SelectInst *SI);
442   bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
443   bool optimizeSwitchType(SwitchInst *SI);
444   bool optimizeSwitchPhiConstants(SwitchInst *SI);
445   bool optimizeSwitchInst(SwitchInst *SI);
446   bool optimizeExtractElementInst(Instruction *Inst);
447   bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT);
448   bool fixupDbgValue(Instruction *I);
449   bool fixupDbgVariableRecord(DbgVariableRecord &I);
450   bool fixupDbgVariableRecordsOnInst(Instruction &I);
451   bool placeDbgValues(Function &F);
452   bool placePseudoProbes(Function &F);
453   bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
454                     LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
455   bool tryToPromoteExts(TypePromotionTransaction &TPT,
456                         const SmallVectorImpl<Instruction *> &Exts,
457                         SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
458                         unsigned CreatedInstsCost = 0);
459   bool mergeSExts(Function &F);
460   bool splitLargeGEPOffsets();
461   bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
462                        SmallPtrSetImpl<Instruction *> &DeletedInstrs);
463   bool optimizePhiTypes(Function &F);
464   bool performAddressTypePromotion(
465       Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
466       bool HasPromoted, TypePromotionTransaction &TPT,
467       SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
468   bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT);
469   bool simplifyOffsetableRelocate(GCStatepointInst &I);
470 
471   bool tryToSinkFreeOperands(Instruction *I);
472   bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1,
473                                    CmpInst *Cmp, Intrinsic::ID IID);
474   bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT);
475   bool optimizeURem(Instruction *Rem);
476   bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
477   bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
478   void verifyBFIUpdates(Function &F);
479   bool _run(Function &F);
480 };
481 
482 class CodeGenPrepareLegacyPass : public FunctionPass {
483 public:
484   static char ID; // Pass identification, replacement for typeid
485 
486   CodeGenPrepareLegacyPass() : FunctionPass(ID) {
487     initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry());
488   }
489 
490   bool runOnFunction(Function &F) override;
491 
492   StringRef getPassName() const override { return "CodeGen Prepare"; }
493 
494   void getAnalysisUsage(AnalysisUsage &AU) const override {
495     // FIXME: When we can selectively preserve passes, preserve the domtree.
496     AU.addRequired<ProfileSummaryInfoWrapperPass>();
497     AU.addRequired<TargetLibraryInfoWrapperPass>();
498     AU.addRequired<TargetPassConfig>();
499     AU.addRequired<TargetTransformInfoWrapperPass>();
500     AU.addRequired<LoopInfoWrapperPass>();
501     AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
502   }
503 };
504 
505 } // end anonymous namespace
506 
507 char CodeGenPrepareLegacyPass::ID = 0;
508 
509 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) {
510   if (skipFunction(F))
511     return false;
512   auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
513   CodeGenPrepare CGP(TM);
514   CGP.DL = &F.getDataLayout();
515   CGP.SubtargetInfo = TM->getSubtargetImpl(F);
516   CGP.TLI = CGP.SubtargetInfo->getTargetLowering();
517   CGP.TRI = CGP.SubtargetInfo->getRegisterInfo();
518   CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
519   CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
520   CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
521   CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI));
522   CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI));
523   CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
524   auto BBSPRWP =
525       getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
526   CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr;
527 
528   return CGP._run(F);
529 }
530 
531 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE,
532                       "Optimize for code generation", false, false)
533 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass)
534 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
535 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
536 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
537 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
538 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
539 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE,
540                     "Optimize for code generation", false, false)
541 
542 FunctionPass *llvm::createCodeGenPrepareLegacyPass() {
543   return new CodeGenPrepareLegacyPass();
544 }
545 
546 PreservedAnalyses CodeGenPreparePass::run(Function &F,
547                                           FunctionAnalysisManager &AM) {
548   CodeGenPrepare CGP(TM);
549 
550   bool Changed = CGP.run(F, AM);
551   if (!Changed)
552     return PreservedAnalyses::all();
553 
554   PreservedAnalyses PA;
555   PA.preserve<TargetLibraryAnalysis>();
556   PA.preserve<TargetIRAnalysis>();
557   PA.preserve<LoopAnalysis>();
558   return PA;
559 }
560 
561 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) {
562   DL = &F.getDataLayout();
563   SubtargetInfo = TM->getSubtargetImpl(F);
564   TLI = SubtargetInfo->getTargetLowering();
565   TRI = SubtargetInfo->getRegisterInfo();
566   TLInfo = &AM.getResult<TargetLibraryAnalysis>(F);
567   TTI = &AM.getResult<TargetIRAnalysis>(F);
568   LI = &AM.getResult<LoopAnalysis>(F);
569   BPI.reset(new BranchProbabilityInfo(F, *LI));
570   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
571   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
572   PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
573   BBSectionsProfileReader =
574       AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F);
575   return _run(F);
576 }
577 
578 bool CodeGenPrepare::_run(Function &F) {
579   bool EverMadeChange = false;
580 
581   OptSize = F.hasOptSize();
582   // Use the basic-block-sections profile to promote hot functions to .text.hot
583   // if requested.
584   if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader &&
585       BBSectionsProfileReader->isFunctionHot(F.getName())) {
586     F.setSectionPrefix("hot");
587   } else if (ProfileGuidedSectionPrefix) {
588     // The hot attribute overwrites profile count based hotness while profile
589     // counts based hotness overwrite the cold attribute.
590     // This is a conservative behabvior.
591     if (F.hasFnAttribute(Attribute::Hot) ||
592         PSI->isFunctionHotInCallGraph(&F, *BFI))
593       F.setSectionPrefix("hot");
594     // If PSI shows this function is not hot, we will placed the function
595     // into unlikely section if (1) PSI shows this is a cold function, or
596     // (2) the function has a attribute of cold.
597     else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
598              F.hasFnAttribute(Attribute::Cold))
599       F.setSectionPrefix("unlikely");
600     else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
601              PSI->isFunctionHotnessUnknown(F))
602       F.setSectionPrefix("unknown");
603   }
604 
605   /// This optimization identifies DIV instructions that can be
606   /// profitably bypassed and carried out with a shorter, faster divide.
607   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
608     const DenseMap<unsigned int, unsigned int> &BypassWidths =
609         TLI->getBypassSlowDivWidths();
610     BasicBlock *BB = &*F.begin();
611     while (BB != nullptr) {
612       // bypassSlowDivision may create new BBs, but we don't want to reapply the
613       // optimization to those blocks.
614       BasicBlock *Next = BB->getNextNode();
615       // F.hasOptSize is already checked in the outer if statement.
616       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
617         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
618       BB = Next;
619     }
620   }
621 
622   // Get rid of @llvm.assume builtins before attempting to eliminate empty
623   // blocks, since there might be blocks that only contain @llvm.assume calls
624   // (plus arguments that we can get rid of).
625   EverMadeChange |= eliminateAssumptions(F);
626 
627   // Eliminate blocks that contain only PHI nodes and an
628   // unconditional branch.
629   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
630 
631   ModifyDT ModifiedDT = ModifyDT::NotModifyDT;
632   if (!DisableBranchOpts)
633     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
634 
635   // Split some critical edges where one of the sources is an indirect branch,
636   // to help generate sane code for PHIs involving such edges.
637   EverMadeChange |=
638       SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true);
639 
640   // If we are optimzing huge function, we need to consider the build time.
641   // Because the basic algorithm's complex is near O(N!).
642   IsHugeFunc = F.size() > HugeFuncThresholdInCGPP;
643 
644   // Transformations above may invalidate dominator tree and/or loop info.
645   DT.reset();
646   LI->releaseMemory();
647   LI->analyze(getDT(F));
648 
649   bool MadeChange = true;
650   bool FuncIterated = false;
651   while (MadeChange) {
652     MadeChange = false;
653 
654     for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
655       if (FuncIterated && !FreshBBs.contains(&BB))
656         continue;
657 
658       ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT;
659       bool Changed = optimizeBlock(BB, ModifiedDTOnIteration);
660 
661       if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT)
662         DT.reset();
663 
664       MadeChange |= Changed;
665       if (IsHugeFunc) {
666         // If the BB is updated, it may still has chance to be optimized.
667         // This usually happen at sink optimization.
668         // For example:
669         //
670         // bb0:
671         // %and = and i32 %a, 4
672         // %cmp = icmp eq i32 %and, 0
673         //
674         // If the %cmp sink to other BB, the %and will has chance to sink.
675         if (Changed)
676           FreshBBs.insert(&BB);
677         else if (FuncIterated)
678           FreshBBs.erase(&BB);
679       } else {
680         // For small/normal functions, we restart BB iteration if the dominator
681         // tree of the Function was changed.
682         if (ModifiedDTOnIteration != ModifyDT::NotModifyDT)
683           break;
684       }
685     }
686     // We have iterated all the BB in the (only work for huge) function.
687     FuncIterated = IsHugeFunc;
688 
689     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
690       MadeChange |= mergeSExts(F);
691     if (!LargeOffsetGEPMap.empty())
692       MadeChange |= splitLargeGEPOffsets();
693     MadeChange |= optimizePhiTypes(F);
694 
695     if (MadeChange)
696       eliminateFallThrough(F, DT.get());
697 
698 #ifndef NDEBUG
699     if (MadeChange && VerifyLoopInfo)
700       LI->verify(getDT(F));
701 #endif
702 
703     // Really free removed instructions during promotion.
704     for (Instruction *I : RemovedInsts)
705       I->deleteValue();
706 
707     EverMadeChange |= MadeChange;
708     SeenChainsForSExt.clear();
709     ValToSExtendedUses.clear();
710     RemovedInsts.clear();
711     LargeOffsetGEPMap.clear();
712     LargeOffsetGEPID.clear();
713   }
714 
715   NewGEPBases.clear();
716   SunkAddrs.clear();
717 
718   if (!DisableBranchOpts) {
719     MadeChange = false;
720     // Use a set vector to get deterministic iteration order. The order the
721     // blocks are removed may affect whether or not PHI nodes in successors
722     // are removed.
723     SmallSetVector<BasicBlock *, 8> WorkList;
724     for (BasicBlock &BB : F) {
725       SmallVector<BasicBlock *, 2> Successors(successors(&BB));
726       MadeChange |= ConstantFoldTerminator(&BB, true);
727       if (!MadeChange)
728         continue;
729 
730       for (BasicBlock *Succ : Successors)
731         if (pred_empty(Succ))
732           WorkList.insert(Succ);
733     }
734 
735     // Delete the dead blocks and any of their dead successors.
736     MadeChange |= !WorkList.empty();
737     while (!WorkList.empty()) {
738       BasicBlock *BB = WorkList.pop_back_val();
739       SmallVector<BasicBlock *, 2> Successors(successors(BB));
740 
741       DeleteDeadBlock(BB);
742 
743       for (BasicBlock *Succ : Successors)
744         if (pred_empty(Succ))
745           WorkList.insert(Succ);
746     }
747 
748     // Merge pairs of basic blocks with unconditional branches, connected by
749     // a single edge.
750     if (EverMadeChange || MadeChange)
751       MadeChange |= eliminateFallThrough(F);
752 
753     EverMadeChange |= MadeChange;
754   }
755 
756   if (!DisableGCOpts) {
757     SmallVector<GCStatepointInst *, 2> Statepoints;
758     for (BasicBlock &BB : F)
759       for (Instruction &I : BB)
760         if (auto *SP = dyn_cast<GCStatepointInst>(&I))
761           Statepoints.push_back(SP);
762     for (auto &I : Statepoints)
763       EverMadeChange |= simplifyOffsetableRelocate(*I);
764   }
765 
766   // Do this last to clean up use-before-def scenarios introduced by other
767   // preparatory transforms.
768   EverMadeChange |= placeDbgValues(F);
769   EverMadeChange |= placePseudoProbes(F);
770 
771 #ifndef NDEBUG
772   if (VerifyBFIUpdates)
773     verifyBFIUpdates(F);
774 #endif
775 
776   return EverMadeChange;
777 }
778 
779 bool CodeGenPrepare::eliminateAssumptions(Function &F) {
780   bool MadeChange = false;
781   for (BasicBlock &BB : F) {
782     CurInstIterator = BB.begin();
783     while (CurInstIterator != BB.end()) {
784       Instruction *I = &*(CurInstIterator++);
785       if (auto *Assume = dyn_cast<AssumeInst>(I)) {
786         MadeChange = true;
787         Value *Operand = Assume->getOperand(0);
788         Assume->eraseFromParent();
789 
790         resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
791           RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
792         });
793       }
794     }
795   }
796   return MadeChange;
797 }
798 
799 /// An instruction is about to be deleted, so remove all references to it in our
800 /// GEP-tracking data strcutures.
801 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
802   LargeOffsetGEPMap.erase(V);
803   NewGEPBases.erase(V);
804 
805   auto GEP = dyn_cast<GetElementPtrInst>(V);
806   if (!GEP)
807     return;
808 
809   LargeOffsetGEPID.erase(GEP);
810 
811   auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
812   if (VecI == LargeOffsetGEPMap.end())
813     return;
814 
815   auto &GEPVector = VecI->second;
816   llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
817 
818   if (GEPVector.empty())
819     LargeOffsetGEPMap.erase(VecI);
820 }
821 
822 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
823 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
824   DominatorTree NewDT(F);
825   LoopInfo NewLI(NewDT);
826   BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
827   BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
828   NewBFI.verifyMatch(*BFI);
829 }
830 
831 /// Merge basic blocks which are connected by a single edge, where one of the
832 /// basic blocks has a single successor pointing to the other basic block,
833 /// which has a single predecessor.
834 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) {
835   bool Changed = false;
836   // Scan all of the blocks in the function, except for the entry block.
837   // Use a temporary array to avoid iterator being invalidated when
838   // deleting blocks.
839   SmallVector<WeakTrackingVH, 16> Blocks;
840   for (auto &Block : llvm::drop_begin(F))
841     Blocks.push_back(&Block);
842 
843   SmallSet<WeakTrackingVH, 16> Preds;
844   for (auto &Block : Blocks) {
845     auto *BB = cast_or_null<BasicBlock>(Block);
846     if (!BB)
847       continue;
848     // If the destination block has a single pred, then this is a trivial
849     // edge, just collapse it.
850     BasicBlock *SinglePred = BB->getSinglePredecessor();
851 
852     // Don't merge if BB's address is taken.
853     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken())
854       continue;
855 
856     // Make an effort to skip unreachable blocks.
857     if (DT && !DT->isReachableFromEntry(BB))
858       continue;
859 
860     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
861     if (Term && !Term->isConditional()) {
862       Changed = true;
863       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
864 
865       // Merge BB into SinglePred and delete it.
866       MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr,
867                                 /* MemDep */ nullptr,
868                                 /* PredecessorWithTwoSuccessors */ false, DT);
869       Preds.insert(SinglePred);
870 
871       if (IsHugeFunc) {
872         // Update FreshBBs to optimize the merged BB.
873         FreshBBs.insert(SinglePred);
874         FreshBBs.erase(BB);
875       }
876     }
877   }
878 
879   // (Repeatedly) merging blocks into their predecessors can create redundant
880   // debug intrinsics.
881   for (const auto &Pred : Preds)
882     if (auto *BB = cast_or_null<BasicBlock>(Pred))
883       RemoveRedundantDbgInstrs(BB);
884 
885   return Changed;
886 }
887 
888 /// Find a destination block from BB if BB is mergeable empty block.
889 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
890   // If this block doesn't end with an uncond branch, ignore it.
891   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
892   if (!BI || !BI->isUnconditional())
893     return nullptr;
894 
895   // If the instruction before the branch (skipping debug info) isn't a phi
896   // node, then other stuff is happening here.
897   BasicBlock::iterator BBI = BI->getIterator();
898   if (BBI != BB->begin()) {
899     --BBI;
900     while (isa<DbgInfoIntrinsic>(BBI)) {
901       if (BBI == BB->begin())
902         break;
903       --BBI;
904     }
905     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
906       return nullptr;
907   }
908 
909   // Do not break infinite loops.
910   BasicBlock *DestBB = BI->getSuccessor(0);
911   if (DestBB == BB)
912     return nullptr;
913 
914   if (!canMergeBlocks(BB, DestBB))
915     DestBB = nullptr;
916 
917   return DestBB;
918 }
919 
920 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
921 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
922 /// edges in ways that are non-optimal for isel. Start by eliminating these
923 /// blocks so we can split them the way we want them.
924 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
925   SmallPtrSet<BasicBlock *, 16> Preheaders;
926   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
927   while (!LoopList.empty()) {
928     Loop *L = LoopList.pop_back_val();
929     llvm::append_range(LoopList, *L);
930     if (BasicBlock *Preheader = L->getLoopPreheader())
931       Preheaders.insert(Preheader);
932   }
933 
934   bool MadeChange = false;
935   // Copy blocks into a temporary array to avoid iterator invalidation issues
936   // as we remove them.
937   // Note that this intentionally skips the entry block.
938   SmallVector<WeakTrackingVH, 16> Blocks;
939   for (auto &Block : llvm::drop_begin(F)) {
940     // Delete phi nodes that could block deleting other empty blocks.
941     if (!DisableDeletePHIs)
942       MadeChange |= DeleteDeadPHIs(&Block, TLInfo);
943     Blocks.push_back(&Block);
944   }
945 
946   for (auto &Block : Blocks) {
947     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
948     if (!BB)
949       continue;
950     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
951     if (!DestBB ||
952         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
953       continue;
954 
955     eliminateMostlyEmptyBlock(BB);
956     MadeChange = true;
957   }
958   return MadeChange;
959 }
960 
961 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
962                                                    BasicBlock *DestBB,
963                                                    bool isPreheader) {
964   // Do not delete loop preheaders if doing so would create a critical edge.
965   // Loop preheaders can be good locations to spill registers. If the
966   // preheader is deleted and we create a critical edge, registers may be
967   // spilled in the loop body instead.
968   if (!DisablePreheaderProtect && isPreheader &&
969       !(BB->getSinglePredecessor() &&
970         BB->getSinglePredecessor()->getSingleSuccessor()))
971     return false;
972 
973   // Skip merging if the block's successor is also a successor to any callbr
974   // that leads to this block.
975   // FIXME: Is this really needed? Is this a correctness issue?
976   for (BasicBlock *Pred : predecessors(BB)) {
977     if (isa<CallBrInst>(Pred->getTerminator()) &&
978         llvm::is_contained(successors(Pred), DestBB))
979       return false;
980   }
981 
982   // Try to skip merging if the unique predecessor of BB is terminated by a
983   // switch or indirect branch instruction, and BB is used as an incoming block
984   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
985   // add COPY instructions in the predecessor of BB instead of BB (if it is not
986   // merged). Note that the critical edge created by merging such blocks wont be
987   // split in MachineSink because the jump table is not analyzable. By keeping
988   // such empty block (BB), ISel will place COPY instructions in BB, not in the
989   // predecessor of BB.
990   BasicBlock *Pred = BB->getUniquePredecessor();
991   if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) ||
992                  isa<IndirectBrInst>(Pred->getTerminator())))
993     return true;
994 
995   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
996     return true;
997 
998   // We use a simple cost heuristic which determine skipping merging is
999   // profitable if the cost of skipping merging is less than the cost of
1000   // merging : Cost(skipping merging) < Cost(merging BB), where the
1001   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
1002   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
1003   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
1004   //   Freq(Pred) / Freq(BB) > 2.
1005   // Note that if there are multiple empty blocks sharing the same incoming
1006   // value for the PHIs in the DestBB, we consider them together. In such
1007   // case, Cost(merging BB) will be the sum of their frequencies.
1008 
1009   if (!isa<PHINode>(DestBB->begin()))
1010     return true;
1011 
1012   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
1013 
1014   // Find all other incoming blocks from which incoming values of all PHIs in
1015   // DestBB are the same as the ones from BB.
1016   for (BasicBlock *DestBBPred : predecessors(DestBB)) {
1017     if (DestBBPred == BB)
1018       continue;
1019 
1020     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
1021           return DestPN.getIncomingValueForBlock(BB) ==
1022                  DestPN.getIncomingValueForBlock(DestBBPred);
1023         }))
1024       SameIncomingValueBBs.insert(DestBBPred);
1025   }
1026 
1027   // See if all BB's incoming values are same as the value from Pred. In this
1028   // case, no reason to skip merging because COPYs are expected to be place in
1029   // Pred already.
1030   if (SameIncomingValueBBs.count(Pred))
1031     return true;
1032 
1033   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
1034   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
1035 
1036   for (auto *SameValueBB : SameIncomingValueBBs)
1037     if (SameValueBB->getUniquePredecessor() == Pred &&
1038         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
1039       BBFreq += BFI->getBlockFreq(SameValueBB);
1040 
1041   std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge);
1042   return !Limit || PredFreq <= *Limit;
1043 }
1044 
1045 /// Return true if we can merge BB into DestBB if there is a single
1046 /// unconditional branch between them, and BB contains no other non-phi
1047 /// instructions.
1048 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
1049                                     const BasicBlock *DestBB) const {
1050   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
1051   // the successor.  If there are more complex condition (e.g. preheaders),
1052   // don't mess around with them.
1053   for (const PHINode &PN : BB->phis()) {
1054     for (const User *U : PN.users()) {
1055       const Instruction *UI = cast<Instruction>(U);
1056       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
1057         return false;
1058       // If User is inside DestBB block and it is a PHINode then check
1059       // incoming value. If incoming value is not from BB then this is
1060       // a complex condition (e.g. preheaders) we want to avoid here.
1061       if (UI->getParent() == DestBB) {
1062         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
1063           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
1064             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
1065             if (Insn && Insn->getParent() == BB &&
1066                 Insn->getParent() != UPN->getIncomingBlock(I))
1067               return false;
1068           }
1069       }
1070     }
1071   }
1072 
1073   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
1074   // and DestBB may have conflicting incoming values for the block.  If so, we
1075   // can't merge the block.
1076   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
1077   if (!DestBBPN)
1078     return true; // no conflict.
1079 
1080   // Collect the preds of BB.
1081   SmallPtrSet<const BasicBlock *, 16> BBPreds;
1082   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1083     // It is faster to get preds from a PHI than with pred_iterator.
1084     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1085       BBPreds.insert(BBPN->getIncomingBlock(i));
1086   } else {
1087     BBPreds.insert(pred_begin(BB), pred_end(BB));
1088   }
1089 
1090   // Walk the preds of DestBB.
1091   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
1092     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
1093     if (BBPreds.count(Pred)) { // Common predecessor?
1094       for (const PHINode &PN : DestBB->phis()) {
1095         const Value *V1 = PN.getIncomingValueForBlock(Pred);
1096         const Value *V2 = PN.getIncomingValueForBlock(BB);
1097 
1098         // If V2 is a phi node in BB, look up what the mapped value will be.
1099         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
1100           if (V2PN->getParent() == BB)
1101             V2 = V2PN->getIncomingValueForBlock(Pred);
1102 
1103         // If there is a conflict, bail out.
1104         if (V1 != V2)
1105           return false;
1106       }
1107     }
1108   }
1109 
1110   return true;
1111 }
1112 
1113 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs.
1114 static void replaceAllUsesWith(Value *Old, Value *New,
1115                                SmallSet<BasicBlock *, 32> &FreshBBs,
1116                                bool IsHuge) {
1117   auto *OldI = dyn_cast<Instruction>(Old);
1118   if (OldI) {
1119     for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end();
1120          UI != E; ++UI) {
1121       Instruction *User = cast<Instruction>(*UI);
1122       if (IsHuge)
1123         FreshBBs.insert(User->getParent());
1124     }
1125   }
1126   Old->replaceAllUsesWith(New);
1127 }
1128 
1129 /// Eliminate a basic block that has only phi's and an unconditional branch in
1130 /// it.
1131 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
1132   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1133   BasicBlock *DestBB = BI->getSuccessor(0);
1134 
1135   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
1136                     << *BB << *DestBB);
1137 
1138   // If the destination block has a single pred, then this is a trivial edge,
1139   // just collapse it.
1140   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
1141     if (SinglePred != DestBB) {
1142       assert(SinglePred == BB &&
1143              "Single predecessor not the same as predecessor");
1144       // Merge DestBB into SinglePred/BB and delete it.
1145       MergeBlockIntoPredecessor(DestBB);
1146       // Note: BB(=SinglePred) will not be deleted on this path.
1147       // DestBB(=its single successor) is the one that was deleted.
1148       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
1149 
1150       if (IsHugeFunc) {
1151         // Update FreshBBs to optimize the merged BB.
1152         FreshBBs.insert(SinglePred);
1153         FreshBBs.erase(DestBB);
1154       }
1155       return;
1156     }
1157   }
1158 
1159   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
1160   // to handle the new incoming edges it is about to have.
1161   for (PHINode &PN : DestBB->phis()) {
1162     // Remove the incoming value for BB, and remember it.
1163     Value *InVal = PN.removeIncomingValue(BB, false);
1164 
1165     // Two options: either the InVal is a phi node defined in BB or it is some
1166     // value that dominates BB.
1167     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
1168     if (InValPhi && InValPhi->getParent() == BB) {
1169       // Add all of the input values of the input PHI as inputs of this phi.
1170       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
1171         PN.addIncoming(InValPhi->getIncomingValue(i),
1172                        InValPhi->getIncomingBlock(i));
1173     } else {
1174       // Otherwise, add one instance of the dominating value for each edge that
1175       // we will be adding.
1176       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1177         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1178           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
1179       } else {
1180         for (BasicBlock *Pred : predecessors(BB))
1181           PN.addIncoming(InVal, Pred);
1182       }
1183     }
1184   }
1185 
1186   // The PHIs are now updated, change everything that refers to BB to use
1187   // DestBB and remove BB.
1188   BB->replaceAllUsesWith(DestBB);
1189   BB->eraseFromParent();
1190   ++NumBlocksElim;
1191 
1192   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1193 }
1194 
1195 // Computes a map of base pointer relocation instructions to corresponding
1196 // derived pointer relocation instructions given a vector of all relocate calls
1197 static void computeBaseDerivedRelocateMap(
1198     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1199     MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>>
1200         &RelocateInstMap) {
1201   // Collect information in two maps: one primarily for locating the base object
1202   // while filling the second map; the second map is the final structure holding
1203   // a mapping between Base and corresponding Derived relocate calls
1204   MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1205   for (auto *ThisRelocate : AllRelocateCalls) {
1206     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1207                             ThisRelocate->getDerivedPtrIndex());
1208     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1209   }
1210   for (auto &Item : RelocateIdxMap) {
1211     std::pair<unsigned, unsigned> Key = Item.first;
1212     if (Key.first == Key.second)
1213       // Base relocation: nothing to insert
1214       continue;
1215 
1216     GCRelocateInst *I = Item.second;
1217     auto BaseKey = std::make_pair(Key.first, Key.first);
1218 
1219     // We're iterating over RelocateIdxMap so we cannot modify it.
1220     auto MaybeBase = RelocateIdxMap.find(BaseKey);
1221     if (MaybeBase == RelocateIdxMap.end())
1222       // TODO: We might want to insert a new base object relocate and gep off
1223       // that, if there are enough derived object relocates.
1224       continue;
1225 
1226     RelocateInstMap[MaybeBase->second].push_back(I);
1227   }
1228 }
1229 
1230 // Accepts a GEP and extracts the operands into a vector provided they're all
1231 // small integer constants
1232 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1233                                           SmallVectorImpl<Value *> &OffsetV) {
1234   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1235     // Only accept small constant integer operands
1236     auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1237     if (!Op || Op->getZExtValue() > 20)
1238       return false;
1239   }
1240 
1241   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1242     OffsetV.push_back(GEP->getOperand(i));
1243   return true;
1244 }
1245 
1246 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1247 // replace, computes a replacement, and affects it.
1248 static bool
1249 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1250                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
1251   bool MadeChange = false;
1252   // We must ensure the relocation of derived pointer is defined after
1253   // relocation of base pointer. If we find a relocation corresponding to base
1254   // defined earlier than relocation of base then we move relocation of base
1255   // right before found relocation. We consider only relocation in the same
1256   // basic block as relocation of base. Relocations from other basic block will
1257   // be skipped by optimization and we do not care about them.
1258   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1259        &*R != RelocatedBase; ++R)
1260     if (auto *RI = dyn_cast<GCRelocateInst>(R))
1261       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1262         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1263           RelocatedBase->moveBefore(RI);
1264           MadeChange = true;
1265           break;
1266         }
1267 
1268   for (GCRelocateInst *ToReplace : Targets) {
1269     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1270            "Not relocating a derived object of the original base object");
1271     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1272       // A duplicate relocate call. TODO: coalesce duplicates.
1273       continue;
1274     }
1275 
1276     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1277       // Base and derived relocates are in different basic blocks.
1278       // In this case transform is only valid when base dominates derived
1279       // relocate. However it would be too expensive to check dominance
1280       // for each such relocate, so we skip the whole transformation.
1281       continue;
1282     }
1283 
1284     Value *Base = ToReplace->getBasePtr();
1285     auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1286     if (!Derived || Derived->getPointerOperand() != Base)
1287       continue;
1288 
1289     SmallVector<Value *, 2> OffsetV;
1290     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1291       continue;
1292 
1293     // Create a Builder and replace the target callsite with a gep
1294     assert(RelocatedBase->getNextNode() &&
1295            "Should always have one since it's not a terminator");
1296 
1297     // Insert after RelocatedBase
1298     IRBuilder<> Builder(RelocatedBase->getNextNode());
1299     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1300 
1301     // If gc_relocate does not match the actual type, cast it to the right type.
1302     // In theory, there must be a bitcast after gc_relocate if the type does not
1303     // match, and we should reuse it to get the derived pointer. But it could be
1304     // cases like this:
1305     // bb1:
1306     //  ...
1307     //  %g1 = call coldcc i8 addrspace(1)*
1308     //  @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1309     //
1310     // bb2:
1311     //  ...
1312     //  %g2 = call coldcc i8 addrspace(1)*
1313     //  @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1314     //
1315     // merge:
1316     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1317     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1318     //
1319     // In this case, we can not find the bitcast any more. So we insert a new
1320     // bitcast no matter there is already one or not. In this way, we can handle
1321     // all cases, and the extra bitcast should be optimized away in later
1322     // passes.
1323     Value *ActualRelocatedBase = RelocatedBase;
1324     if (RelocatedBase->getType() != Base->getType()) {
1325       ActualRelocatedBase =
1326           Builder.CreateBitCast(RelocatedBase, Base->getType());
1327     }
1328     Value *Replacement =
1329         Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase,
1330                           ArrayRef(OffsetV));
1331     Replacement->takeName(ToReplace);
1332     // If the newly generated derived pointer's type does not match the original
1333     // derived pointer's type, cast the new derived pointer to match it. Same
1334     // reasoning as above.
1335     Value *ActualReplacement = Replacement;
1336     if (Replacement->getType() != ToReplace->getType()) {
1337       ActualReplacement =
1338           Builder.CreateBitCast(Replacement, ToReplace->getType());
1339     }
1340     ToReplace->replaceAllUsesWith(ActualReplacement);
1341     ToReplace->eraseFromParent();
1342 
1343     MadeChange = true;
1344   }
1345   return MadeChange;
1346 }
1347 
1348 // Turns this:
1349 //
1350 // %base = ...
1351 // %ptr = gep %base + 15
1352 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1353 // %base' = relocate(%tok, i32 4, i32 4)
1354 // %ptr' = relocate(%tok, i32 4, i32 5)
1355 // %val = load %ptr'
1356 //
1357 // into this:
1358 //
1359 // %base = ...
1360 // %ptr = gep %base + 15
1361 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1362 // %base' = gc.relocate(%tok, i32 4, i32 4)
1363 // %ptr' = gep %base' + 15
1364 // %val = load %ptr'
1365 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1366   bool MadeChange = false;
1367   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1368   for (auto *U : I.users())
1369     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1370       // Collect all the relocate calls associated with a statepoint
1371       AllRelocateCalls.push_back(Relocate);
1372 
1373   // We need at least one base pointer relocation + one derived pointer
1374   // relocation to mangle
1375   if (AllRelocateCalls.size() < 2)
1376     return false;
1377 
1378   // RelocateInstMap is a mapping from the base relocate instruction to the
1379   // corresponding derived relocate instructions
1380   MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap;
1381   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1382   if (RelocateInstMap.empty())
1383     return false;
1384 
1385   for (auto &Item : RelocateInstMap)
1386     // Item.first is the RelocatedBase to offset against
1387     // Item.second is the vector of Targets to replace
1388     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1389   return MadeChange;
1390 }
1391 
1392 /// Sink the specified cast instruction into its user blocks.
1393 static bool SinkCast(CastInst *CI) {
1394   BasicBlock *DefBB = CI->getParent();
1395 
1396   /// InsertedCasts - Only insert a cast in each block once.
1397   DenseMap<BasicBlock *, CastInst *> InsertedCasts;
1398 
1399   bool MadeChange = false;
1400   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1401        UI != E;) {
1402     Use &TheUse = UI.getUse();
1403     Instruction *User = cast<Instruction>(*UI);
1404 
1405     // Figure out which BB this cast is used in.  For PHI's this is the
1406     // appropriate predecessor block.
1407     BasicBlock *UserBB = User->getParent();
1408     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1409       UserBB = PN->getIncomingBlock(TheUse);
1410     }
1411 
1412     // Preincrement use iterator so we don't invalidate it.
1413     ++UI;
1414 
1415     // The first insertion point of a block containing an EH pad is after the
1416     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1417     if (User->isEHPad())
1418       continue;
1419 
1420     // If the block selected to receive the cast is an EH pad that does not
1421     // allow non-PHI instructions before the terminator, we can't sink the
1422     // cast.
1423     if (UserBB->getTerminator()->isEHPad())
1424       continue;
1425 
1426     // If this user is in the same block as the cast, don't change the cast.
1427     if (UserBB == DefBB)
1428       continue;
1429 
1430     // If we have already inserted a cast into this block, use it.
1431     CastInst *&InsertedCast = InsertedCasts[UserBB];
1432 
1433     if (!InsertedCast) {
1434       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1435       assert(InsertPt != UserBB->end());
1436       InsertedCast = cast<CastInst>(CI->clone());
1437       InsertedCast->insertBefore(*UserBB, InsertPt);
1438     }
1439 
1440     // Replace a use of the cast with a use of the new cast.
1441     TheUse = InsertedCast;
1442     MadeChange = true;
1443     ++NumCastUses;
1444   }
1445 
1446   // If we removed all uses, nuke the cast.
1447   if (CI->use_empty()) {
1448     salvageDebugInfo(*CI);
1449     CI->eraseFromParent();
1450     MadeChange = true;
1451   }
1452 
1453   return MadeChange;
1454 }
1455 
1456 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1457 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1458 /// reduce the number of virtual registers that must be created and coalesced.
1459 ///
1460 /// Return true if any changes are made.
1461 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1462                                        const DataLayout &DL) {
1463   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1464   // than sinking only nop casts, but is helpful on some platforms.
1465   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1466     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1467                                  ASC->getDestAddressSpace()))
1468       return false;
1469   }
1470 
1471   // If this is a noop copy,
1472   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1473   EVT DstVT = TLI.getValueType(DL, CI->getType());
1474 
1475   // This is an fp<->int conversion?
1476   if (SrcVT.isInteger() != DstVT.isInteger())
1477     return false;
1478 
1479   // If this is an extension, it will be a zero or sign extension, which
1480   // isn't a noop.
1481   if (SrcVT.bitsLT(DstVT))
1482     return false;
1483 
1484   // If these values will be promoted, find out what they will be promoted
1485   // to.  This helps us consider truncates on PPC as noop copies when they
1486   // are.
1487   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1488       TargetLowering::TypePromoteInteger)
1489     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1490   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1491       TargetLowering::TypePromoteInteger)
1492     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1493 
1494   // If, after promotion, these are the same types, this is a noop copy.
1495   if (SrcVT != DstVT)
1496     return false;
1497 
1498   return SinkCast(CI);
1499 }
1500 
1501 // Match a simple increment by constant operation.  Note that if a sub is
1502 // matched, the step is negated (as if the step had been canonicalized to
1503 // an add, even though we leave the instruction alone.)
1504 static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS,
1505                            Constant *&Step) {
1506   if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1507       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>(
1508                        m_Instruction(LHS), m_Constant(Step)))))
1509     return true;
1510   if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1511       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
1512                        m_Instruction(LHS), m_Constant(Step))))) {
1513     Step = ConstantExpr::getNeg(Step);
1514     return true;
1515   }
1516   return false;
1517 }
1518 
1519 /// If given \p PN is an inductive variable with value IVInc coming from the
1520 /// backedge, and on each iteration it gets increased by Step, return pair
1521 /// <IVInc, Step>. Otherwise, return std::nullopt.
1522 static std::optional<std::pair<Instruction *, Constant *>>
1523 getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1524   const Loop *L = LI->getLoopFor(PN->getParent());
1525   if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1526     return std::nullopt;
1527   auto *IVInc =
1528       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1529   if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1530     return std::nullopt;
1531   Instruction *LHS = nullptr;
1532   Constant *Step = nullptr;
1533   if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1534     return std::make_pair(IVInc, Step);
1535   return std::nullopt;
1536 }
1537 
1538 static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1539   auto *I = dyn_cast<Instruction>(V);
1540   if (!I)
1541     return false;
1542   Instruction *LHS = nullptr;
1543   Constant *Step = nullptr;
1544   if (!matchIncrement(I, LHS, Step))
1545     return false;
1546   if (auto *PN = dyn_cast<PHINode>(LHS))
1547     if (auto IVInc = getIVIncrement(PN, LI))
1548       return IVInc->first == I;
1549   return false;
1550 }
1551 
1552 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1553                                                  Value *Arg0, Value *Arg1,
1554                                                  CmpInst *Cmp,
1555                                                  Intrinsic::ID IID) {
1556   auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1557     if (!isIVIncrement(BO, LI))
1558       return false;
1559     const Loop *L = LI->getLoopFor(BO->getParent());
1560     assert(L && "L should not be null after isIVIncrement()");
1561     // Do not risk on moving increment into a child loop.
1562     if (LI->getLoopFor(Cmp->getParent()) != L)
1563       return false;
1564 
1565     // Finally, we need to ensure that the insert point will dominate all
1566     // existing uses of the increment.
1567 
1568     auto &DT = getDT(*BO->getParent()->getParent());
1569     if (DT.dominates(Cmp->getParent(), BO->getParent()))
1570       // If we're moving up the dom tree, all uses are trivially dominated.
1571       // (This is the common case for code produced by LSR.)
1572       return true;
1573 
1574     // Otherwise, special case the single use in the phi recurrence.
1575     return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1576   };
1577   if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1578     // We used to use a dominator tree here to allow multi-block optimization.
1579     // But that was problematic because:
1580     // 1. It could cause a perf regression by hoisting the math op into the
1581     //    critical path.
1582     // 2. It could cause a perf regression by creating a value that was live
1583     //    across multiple blocks and increasing register pressure.
1584     // 3. Use of a dominator tree could cause large compile-time regression.
1585     //    This is because we recompute the DT on every change in the main CGP
1586     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1587     //    that was fixed, using a DT here would be ok.
1588     //
1589     // There is one important particular case we still want to handle: if BO is
1590     // the IV increment. Important properties that make it profitable:
1591     // - We can speculate IV increment anywhere in the loop (as long as the
1592     //   indvar Phi is its only user);
1593     // - Upon computing Cmp, we effectively compute something equivalent to the
1594     //   IV increment (despite it loops differently in the IR). So moving it up
1595     //   to the cmp point does not really increase register pressure.
1596     return false;
1597   }
1598 
1599   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1600   if (BO->getOpcode() == Instruction::Add &&
1601       IID == Intrinsic::usub_with_overflow) {
1602     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1603     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1604   }
1605 
1606   // Insert at the first instruction of the pair.
1607   Instruction *InsertPt = nullptr;
1608   for (Instruction &Iter : *Cmp->getParent()) {
1609     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1610     // the overflow intrinsic are defined.
1611     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1612       InsertPt = &Iter;
1613       break;
1614     }
1615   }
1616   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1617 
1618   IRBuilder<> Builder(InsertPt);
1619   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1620   if (BO->getOpcode() != Instruction::Xor) {
1621     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1622     replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc);
1623   } else
1624     assert(BO->hasOneUse() &&
1625            "Patterns with XOr should use the BO only in the compare");
1626   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1627   replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc);
1628   Cmp->eraseFromParent();
1629   BO->eraseFromParent();
1630   return true;
1631 }
1632 
1633 /// Match special-case patterns that check for unsigned add overflow.
1634 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1635                                                    BinaryOperator *&Add) {
1636   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1637   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1638   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1639 
1640   // We are not expecting non-canonical/degenerate code. Just bail out.
1641   if (isa<Constant>(A))
1642     return false;
1643 
1644   ICmpInst::Predicate Pred = Cmp->getPredicate();
1645   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1646     B = ConstantInt::get(B->getType(), 1);
1647   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1648     B = Constant::getAllOnesValue(B->getType());
1649   else
1650     return false;
1651 
1652   // Check the users of the variable operand of the compare looking for an add
1653   // with the adjusted constant.
1654   for (User *U : A->users()) {
1655     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1656       Add = cast<BinaryOperator>(U);
1657       return true;
1658     }
1659   }
1660   return false;
1661 }
1662 
1663 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1664 /// intrinsic. Return true if any changes were made.
1665 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1666                                                ModifyDT &ModifiedDT) {
1667   bool EdgeCase = false;
1668   Value *A, *B;
1669   BinaryOperator *Add;
1670   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1671     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1672       return false;
1673     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1674     A = Add->getOperand(0);
1675     B = Add->getOperand(1);
1676     EdgeCase = true;
1677   }
1678 
1679   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1680                                  TLI->getValueType(*DL, Add->getType()),
1681                                  Add->hasNUsesOrMore(EdgeCase ? 1 : 2)))
1682     return false;
1683 
1684   // We don't want to move around uses of condition values this late, so we
1685   // check if it is legal to create the call to the intrinsic in the basic
1686   // block containing the icmp.
1687   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1688     return false;
1689 
1690   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1691                                    Intrinsic::uadd_with_overflow))
1692     return false;
1693 
1694   // Reset callers - do not crash by iterating over a dead instruction.
1695   ModifiedDT = ModifyDT::ModifyInstDT;
1696   return true;
1697 }
1698 
1699 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1700                                                ModifyDT &ModifiedDT) {
1701   // We are not expecting non-canonical/degenerate code. Just bail out.
1702   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1703   if (isa<Constant>(A) && isa<Constant>(B))
1704     return false;
1705 
1706   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1707   ICmpInst::Predicate Pred = Cmp->getPredicate();
1708   if (Pred == ICmpInst::ICMP_UGT) {
1709     std::swap(A, B);
1710     Pred = ICmpInst::ICMP_ULT;
1711   }
1712   // Convert special-case: (A == 0) is the same as (A u< 1).
1713   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1714     B = ConstantInt::get(B->getType(), 1);
1715     Pred = ICmpInst::ICMP_ULT;
1716   }
1717   // Convert special-case: (A != 0) is the same as (0 u< A).
1718   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1719     std::swap(A, B);
1720     Pred = ICmpInst::ICMP_ULT;
1721   }
1722   if (Pred != ICmpInst::ICMP_ULT)
1723     return false;
1724 
1725   // Walk the users of a variable operand of a compare looking for a subtract or
1726   // add with that same operand. Also match the 2nd operand of the compare to
1727   // the add/sub, but that may be a negated constant operand of an add.
1728   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1729   BinaryOperator *Sub = nullptr;
1730   for (User *U : CmpVariableOperand->users()) {
1731     // A - B, A u< B --> usubo(A, B)
1732     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1733       Sub = cast<BinaryOperator>(U);
1734       break;
1735     }
1736 
1737     // A + (-C), A u< C (canonicalized form of (sub A, C))
1738     const APInt *CmpC, *AddC;
1739     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1740         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1741       Sub = cast<BinaryOperator>(U);
1742       break;
1743     }
1744   }
1745   if (!Sub)
1746     return false;
1747 
1748   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1749                                  TLI->getValueType(*DL, Sub->getType()),
1750                                  Sub->hasNUsesOrMore(1)))
1751     return false;
1752 
1753   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1754                                    Cmp, Intrinsic::usub_with_overflow))
1755     return false;
1756 
1757   // Reset callers - do not crash by iterating over a dead instruction.
1758   ModifiedDT = ModifyDT::ModifyInstDT;
1759   return true;
1760 }
1761 
1762 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1763 /// registers that must be created and coalesced. This is a clear win except on
1764 /// targets with multiple condition code registers (PowerPC), where it might
1765 /// lose; some adjustment may be wanted there.
1766 ///
1767 /// Return true if any changes are made.
1768 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1769   if (TLI.hasMultipleConditionRegisters())
1770     return false;
1771 
1772   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1773   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1774     return false;
1775 
1776   // Only insert a cmp in each block once.
1777   DenseMap<BasicBlock *, CmpInst *> InsertedCmps;
1778 
1779   bool MadeChange = false;
1780   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1781        UI != E;) {
1782     Use &TheUse = UI.getUse();
1783     Instruction *User = cast<Instruction>(*UI);
1784 
1785     // Preincrement use iterator so we don't invalidate it.
1786     ++UI;
1787 
1788     // Don't bother for PHI nodes.
1789     if (isa<PHINode>(User))
1790       continue;
1791 
1792     // Figure out which BB this cmp is used in.
1793     BasicBlock *UserBB = User->getParent();
1794     BasicBlock *DefBB = Cmp->getParent();
1795 
1796     // If this user is in the same block as the cmp, don't change the cmp.
1797     if (UserBB == DefBB)
1798       continue;
1799 
1800     // If we have already inserted a cmp into this block, use it.
1801     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1802 
1803     if (!InsertedCmp) {
1804       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1805       assert(InsertPt != UserBB->end());
1806       InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1807                                     Cmp->getOperand(0), Cmp->getOperand(1), "");
1808       InsertedCmp->insertBefore(*UserBB, InsertPt);
1809       // Propagate the debug info.
1810       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1811     }
1812 
1813     // Replace a use of the cmp with a use of the new cmp.
1814     TheUse = InsertedCmp;
1815     MadeChange = true;
1816     ++NumCmpUses;
1817   }
1818 
1819   // If we removed all uses, nuke the cmp.
1820   if (Cmp->use_empty()) {
1821     Cmp->eraseFromParent();
1822     MadeChange = true;
1823   }
1824 
1825   return MadeChange;
1826 }
1827 
1828 /// For pattern like:
1829 ///
1830 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1831 ///   ...
1832 /// DomBB:
1833 ///   ...
1834 ///   br DomCond, TrueBB, CmpBB
1835 /// CmpBB: (with DomBB being the single predecessor)
1836 ///   ...
1837 ///   Cmp = icmp eq CmpOp0, CmpOp1
1838 ///   ...
1839 ///
1840 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1841 /// different from lowering of icmp eq (PowerPC). This function try to convert
1842 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1843 /// After that, DomCond and Cmp can use the same comparison so reduce one
1844 /// comparison.
1845 ///
1846 /// Return true if any changes are made.
1847 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1848                                        const TargetLowering &TLI) {
1849   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1850     return false;
1851 
1852   ICmpInst::Predicate Pred = Cmp->getPredicate();
1853   if (Pred != ICmpInst::ICMP_EQ)
1854     return false;
1855 
1856   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1857   // icmp slt/sgt would introduce more redundant LLVM IR.
1858   for (User *U : Cmp->users()) {
1859     if (isa<BranchInst>(U))
1860       continue;
1861     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1862       continue;
1863     return false;
1864   }
1865 
1866   // This is a cheap/incomplete check for dominance - just match a single
1867   // predecessor with a conditional branch.
1868   BasicBlock *CmpBB = Cmp->getParent();
1869   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1870   if (!DomBB)
1871     return false;
1872 
1873   // We want to ensure that the only way control gets to the comparison of
1874   // interest is that a less/greater than comparison on the same operands is
1875   // false.
1876   Value *DomCond;
1877   BasicBlock *TrueBB, *FalseBB;
1878   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1879     return false;
1880   if (CmpBB != FalseBB)
1881     return false;
1882 
1883   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1884   ICmpInst::Predicate DomPred;
1885   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1886     return false;
1887   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1888     return false;
1889 
1890   // Convert the equality comparison to the opposite of the dominating
1891   // comparison and swap the direction for all branch/select users.
1892   // We have conceptually converted:
1893   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1894   // to
1895   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1896   // And similarly for branches.
1897   for (User *U : Cmp->users()) {
1898     if (auto *BI = dyn_cast<BranchInst>(U)) {
1899       assert(BI->isConditional() && "Must be conditional");
1900       BI->swapSuccessors();
1901       continue;
1902     }
1903     if (auto *SI = dyn_cast<SelectInst>(U)) {
1904       // Swap operands
1905       SI->swapValues();
1906       SI->swapProfMetadata();
1907       continue;
1908     }
1909     llvm_unreachable("Must be a branch or a select");
1910   }
1911   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1912   return true;
1913 }
1914 
1915 /// Many architectures use the same instruction for both subtract and cmp. Try
1916 /// to swap cmp operands to match subtract operations to allow for CSE.
1917 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) {
1918   Value *Op0 = Cmp->getOperand(0);
1919   Value *Op1 = Cmp->getOperand(1);
1920   if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) ||
1921       isa<Constant>(Op1) || Op0 == Op1)
1922     return false;
1923 
1924   // If a subtract already has the same operands as a compare, swapping would be
1925   // bad. If a subtract has the same operands as a compare but in reverse order,
1926   // then swapping is good.
1927   int GoodToSwap = 0;
1928   unsigned NumInspected = 0;
1929   for (const User *U : Op0->users()) {
1930     // Avoid walking many users.
1931     if (++NumInspected > 128)
1932       return false;
1933     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
1934       GoodToSwap++;
1935     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
1936       GoodToSwap--;
1937   }
1938 
1939   if (GoodToSwap > 0) {
1940     Cmp->swapOperands();
1941     return true;
1942   }
1943   return false;
1944 }
1945 
1946 static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI,
1947                                   const DataLayout &DL) {
1948   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp);
1949   if (!FCmp)
1950     return false;
1951 
1952   // Don't fold if the target offers free fabs and the predicate is legal.
1953   EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType());
1954   if (TLI.isFAbsFree(VT) &&
1955       TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()),
1956                           VT.getSimpleVT()))
1957     return false;
1958 
1959   // Reverse the canonicalization if it is a FP class test
1960   auto ShouldReverseTransform = [](FPClassTest ClassTest) {
1961     return ClassTest == fcInf || ClassTest == (fcInf | fcNan);
1962   };
1963   auto [ClassVal, ClassTest] =
1964       fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
1965                       FCmp->getOperand(0), FCmp->getOperand(1));
1966   if (!ClassVal)
1967     return false;
1968 
1969   if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest))
1970     return false;
1971 
1972   IRBuilder<> Builder(Cmp);
1973   Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest);
1974   Cmp->replaceAllUsesWith(IsFPClass);
1975   RecursivelyDeleteTriviallyDeadInstructions(Cmp);
1976   return true;
1977 }
1978 
1979 static bool isRemOfLoopIncrementWithLoopInvariant(Instruction *Rem,
1980                                                   const LoopInfo *LI,
1981                                                   Value *&RemAmtOut,
1982                                                   PHINode *&LoopIncrPNOut) {
1983   Value *Incr, *RemAmt;
1984   // NB: If RemAmt is a power of 2 it *should* have been transformed by now.
1985   if (!match(Rem, m_URem(m_Value(Incr), m_Value(RemAmt))))
1986     return false;
1987 
1988   // Find out loop increment PHI.
1989   auto *PN = dyn_cast<PHINode>(Incr);
1990   if (!PN)
1991     return false;
1992 
1993   // This isn't strictly necessary, what we really need is one increment and any
1994   // amount of initial values all being the same.
1995   if (PN->getNumIncomingValues() != 2)
1996     return false;
1997 
1998   // Only trivially analyzable loops.
1999   Loop *L = LI->getLoopFor(Rem->getParent());
2000   if (!L || !L->getLoopPreheader() || !L->getLoopLatch())
2001     return false;
2002 
2003   // Only works if the remainder amount is a loop invaraint
2004   if (!L->isLoopInvariant(RemAmt))
2005     return false;
2006 
2007   // Is the PHI a loop increment?
2008   auto LoopIncrInfo = getIVIncrement(PN, LI);
2009   if (!LoopIncrInfo)
2010     return false;
2011 
2012   // getIVIncrement finds the loop at PN->getParent(). This might be a different
2013   // loop from the loop with Rem->getParent().
2014   if (L->getHeader() != PN->getParent())
2015     return false;
2016 
2017   // We need remainder_amount % increment_amount to be zero. Increment of one
2018   // satisfies that without any special logic and is overwhelmingly the common
2019   // case.
2020   if (!match(LoopIncrInfo->second, m_One()))
2021     return false;
2022 
2023   // Need the increment to not overflow.
2024   if (!match(LoopIncrInfo->first, m_NUWAdd(m_Value(), m_Value())))
2025     return false;
2026 
2027   // Set output variables.
2028   RemAmtOut = RemAmt;
2029   LoopIncrPNOut = PN;
2030 
2031   return true;
2032 }
2033 
2034 // Try to transform:
2035 //
2036 // for(i = Start; i < End; ++i)
2037 //    Rem = (i nuw+ IncrLoopInvariant) u% RemAmtLoopInvariant;
2038 //
2039 // ->
2040 //
2041 // Rem = (Start nuw+ IncrLoopInvariant) % RemAmtLoopInvariant;
2042 // for(i = Start; i < End; ++i, ++rem)
2043 //    Rem = rem == RemAmtLoopInvariant ? 0 : Rem;
2044 //
2045 // Currently only implemented for `IncrLoopInvariant` being zero.
2046 static bool foldURemOfLoopIncrement(Instruction *Rem, const DataLayout *DL,
2047                                     const LoopInfo *LI,
2048                                     SmallSet<BasicBlock *, 32> &FreshBBs,
2049                                     bool IsHuge) {
2050   Value *RemAmt;
2051   PHINode *LoopIncrPN;
2052   if (!isRemOfLoopIncrementWithLoopInvariant(Rem, LI, RemAmt, LoopIncrPN))
2053     return false;
2054 
2055   // Only non-constant remainder as the extra IV is probably not profitable
2056   // in that case.
2057   //
2058   // Potential TODO(1): `urem` of a const ends up as `mul` + `shift` + `add`. If
2059   // we can rule out register pressure and ensure this `urem` is executed each
2060   // iteration, its probably profitable to handle the const case as well.
2061   //
2062   // Potential TODO(2): Should we have a check for how "nested" this remainder
2063   // operation is? The new code runs every iteration so if the remainder is
2064   // guarded behind unlikely conditions this might not be worth it.
2065   if (match(RemAmt, m_ImmConstant()))
2066     return false;
2067   Loop *L = LI->getLoopFor(Rem->getParent());
2068 
2069   Value *Start = LoopIncrPN->getIncomingValueForBlock(L->getLoopPreheader());
2070 
2071   // Create new remainder with induction variable.
2072   Type *Ty = Rem->getType();
2073   IRBuilder<> Builder(Rem->getContext());
2074 
2075   Builder.SetInsertPoint(LoopIncrPN);
2076   PHINode *NewRem = Builder.CreatePHI(Ty, 2);
2077 
2078   Builder.SetInsertPoint(cast<Instruction>(
2079       LoopIncrPN->getIncomingValueForBlock(L->getLoopLatch())));
2080   // `(add (urem x, y), 1)` is always nuw.
2081   Value *RemAdd = Builder.CreateNUWAdd(NewRem, ConstantInt::get(Ty, 1));
2082   Value *RemCmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, RemAdd, RemAmt);
2083   Value *RemSel =
2084       Builder.CreateSelect(RemCmp, Constant::getNullValue(Ty), RemAdd);
2085 
2086   NewRem->addIncoming(Start, L->getLoopPreheader());
2087   NewRem->addIncoming(RemSel, L->getLoopLatch());
2088 
2089   // Insert all touched BBs.
2090   FreshBBs.insert(LoopIncrPN->getParent());
2091   FreshBBs.insert(L->getLoopLatch());
2092   FreshBBs.insert(Rem->getParent());
2093 
2094   replaceAllUsesWith(Rem, NewRem, FreshBBs, IsHuge);
2095   Rem->eraseFromParent();
2096   return true;
2097 }
2098 
2099 bool CodeGenPrepare::optimizeURem(Instruction *Rem) {
2100   if (foldURemOfLoopIncrement(Rem, DL, LI, FreshBBs, IsHugeFunc))
2101     return true;
2102   return false;
2103 }
2104 
2105 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) {
2106   if (sinkCmpExpression(Cmp, *TLI))
2107     return true;
2108 
2109   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
2110     return true;
2111 
2112   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
2113     return true;
2114 
2115   if (foldICmpWithDominatingICmp(Cmp, *TLI))
2116     return true;
2117 
2118   if (swapICmpOperandsToExposeCSEOpportunities(Cmp))
2119     return true;
2120 
2121   if (foldFCmpToFPClassTest(Cmp, *TLI, *DL))
2122     return true;
2123 
2124   return false;
2125 }
2126 
2127 /// Duplicate and sink the given 'and' instruction into user blocks where it is
2128 /// used in a compare to allow isel to generate better code for targets where
2129 /// this operation can be combined.
2130 ///
2131 /// Return true if any changes are made.
2132 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI,
2133                                   SetOfInstrs &InsertedInsts) {
2134   // Double-check that we're not trying to optimize an instruction that was
2135   // already optimized by some other part of this pass.
2136   assert(!InsertedInsts.count(AndI) &&
2137          "Attempting to optimize already optimized and instruction");
2138   (void)InsertedInsts;
2139 
2140   // Nothing to do for single use in same basic block.
2141   if (AndI->hasOneUse() &&
2142       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
2143     return false;
2144 
2145   // Try to avoid cases where sinking/duplicating is likely to increase register
2146   // pressure.
2147   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
2148       !isa<ConstantInt>(AndI->getOperand(1)) &&
2149       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
2150     return false;
2151 
2152   for (auto *U : AndI->users()) {
2153     Instruction *User = cast<Instruction>(U);
2154 
2155     // Only sink 'and' feeding icmp with 0.
2156     if (!isa<ICmpInst>(User))
2157       return false;
2158 
2159     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
2160     if (!CmpC || !CmpC->isZero())
2161       return false;
2162   }
2163 
2164   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
2165     return false;
2166 
2167   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
2168   LLVM_DEBUG(AndI->getParent()->dump());
2169 
2170   // Push the 'and' into the same block as the icmp 0.  There should only be
2171   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
2172   // others, so we don't need to keep track of which BBs we insert into.
2173   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
2174        UI != E;) {
2175     Use &TheUse = UI.getUse();
2176     Instruction *User = cast<Instruction>(*UI);
2177 
2178     // Preincrement use iterator so we don't invalidate it.
2179     ++UI;
2180 
2181     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
2182 
2183     // Keep the 'and' in the same place if the use is already in the same block.
2184     Instruction *InsertPt =
2185         User->getParent() == AndI->getParent() ? AndI : User;
2186     Instruction *InsertedAnd = BinaryOperator::Create(
2187         Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "",
2188         InsertPt->getIterator());
2189     // Propagate the debug info.
2190     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
2191 
2192     // Replace a use of the 'and' with a use of the new 'and'.
2193     TheUse = InsertedAnd;
2194     ++NumAndUses;
2195     LLVM_DEBUG(User->getParent()->dump());
2196   }
2197 
2198   // We removed all uses, nuke the and.
2199   AndI->eraseFromParent();
2200   return true;
2201 }
2202 
2203 /// Check if the candidates could be combined with a shift instruction, which
2204 /// includes:
2205 /// 1. Truncate instruction
2206 /// 2. And instruction and the imm is a mask of the low bits:
2207 /// imm & (imm+1) == 0
2208 static bool isExtractBitsCandidateUse(Instruction *User) {
2209   if (!isa<TruncInst>(User)) {
2210     if (User->getOpcode() != Instruction::And ||
2211         !isa<ConstantInt>(User->getOperand(1)))
2212       return false;
2213 
2214     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
2215 
2216     if ((Cimm & (Cimm + 1)).getBoolValue())
2217       return false;
2218   }
2219   return true;
2220 }
2221 
2222 /// Sink both shift and truncate instruction to the use of truncate's BB.
2223 static bool
2224 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
2225                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
2226                      const TargetLowering &TLI, const DataLayout &DL) {
2227   BasicBlock *UserBB = User->getParent();
2228   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
2229   auto *TruncI = cast<TruncInst>(User);
2230   bool MadeChange = false;
2231 
2232   for (Value::user_iterator TruncUI = TruncI->user_begin(),
2233                             TruncE = TruncI->user_end();
2234        TruncUI != TruncE;) {
2235 
2236     Use &TruncTheUse = TruncUI.getUse();
2237     Instruction *TruncUser = cast<Instruction>(*TruncUI);
2238     // Preincrement use iterator so we don't invalidate it.
2239 
2240     ++TruncUI;
2241 
2242     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
2243     if (!ISDOpcode)
2244       continue;
2245 
2246     // If the use is actually a legal node, there will not be an
2247     // implicit truncate.
2248     // FIXME: always querying the result type is just an
2249     // approximation; some nodes' legality is determined by the
2250     // operand or other means. There's no good way to find out though.
2251     if (TLI.isOperationLegalOrCustom(
2252             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
2253       continue;
2254 
2255     // Don't bother for PHI nodes.
2256     if (isa<PHINode>(TruncUser))
2257       continue;
2258 
2259     BasicBlock *TruncUserBB = TruncUser->getParent();
2260 
2261     if (UserBB == TruncUserBB)
2262       continue;
2263 
2264     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
2265     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
2266 
2267     if (!InsertedShift && !InsertedTrunc) {
2268       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
2269       assert(InsertPt != TruncUserBB->end());
2270       // Sink the shift
2271       if (ShiftI->getOpcode() == Instruction::AShr)
2272         InsertedShift =
2273             BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2274       else
2275         InsertedShift =
2276             BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2277       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2278       InsertedShift->insertBefore(*TruncUserBB, InsertPt);
2279 
2280       // Sink the trunc
2281       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
2282       TruncInsertPt++;
2283       // It will go ahead of any debug-info.
2284       TruncInsertPt.setHeadBit(true);
2285       assert(TruncInsertPt != TruncUserBB->end());
2286 
2287       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
2288                                        TruncI->getType(), "");
2289       InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt);
2290       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
2291 
2292       MadeChange = true;
2293 
2294       TruncTheUse = InsertedTrunc;
2295     }
2296   }
2297   return MadeChange;
2298 }
2299 
2300 /// Sink the shift *right* instruction into user blocks if the uses could
2301 /// potentially be combined with this shift instruction and generate BitExtract
2302 /// instruction. It will only be applied if the architecture supports BitExtract
2303 /// instruction. Here is an example:
2304 /// BB1:
2305 ///   %x.extract.shift = lshr i64 %arg1, 32
2306 /// BB2:
2307 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
2308 /// ==>
2309 ///
2310 /// BB2:
2311 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
2312 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
2313 ///
2314 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
2315 /// instruction.
2316 /// Return true if any changes are made.
2317 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
2318                                 const TargetLowering &TLI,
2319                                 const DataLayout &DL) {
2320   BasicBlock *DefBB = ShiftI->getParent();
2321 
2322   /// Only insert instructions in each block once.
2323   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
2324 
2325   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
2326 
2327   bool MadeChange = false;
2328   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
2329        UI != E;) {
2330     Use &TheUse = UI.getUse();
2331     Instruction *User = cast<Instruction>(*UI);
2332     // Preincrement use iterator so we don't invalidate it.
2333     ++UI;
2334 
2335     // Don't bother for PHI nodes.
2336     if (isa<PHINode>(User))
2337       continue;
2338 
2339     if (!isExtractBitsCandidateUse(User))
2340       continue;
2341 
2342     BasicBlock *UserBB = User->getParent();
2343 
2344     if (UserBB == DefBB) {
2345       // If the shift and truncate instruction are in the same BB. The use of
2346       // the truncate(TruncUse) may still introduce another truncate if not
2347       // legal. In this case, we would like to sink both shift and truncate
2348       // instruction to the BB of TruncUse.
2349       // for example:
2350       // BB1:
2351       // i64 shift.result = lshr i64 opnd, imm
2352       // trunc.result = trunc shift.result to i16
2353       //
2354       // BB2:
2355       //   ----> We will have an implicit truncate here if the architecture does
2356       //   not have i16 compare.
2357       // cmp i16 trunc.result, opnd2
2358       //
2359       if (isa<TruncInst>(User) &&
2360           shiftIsLegal
2361           // If the type of the truncate is legal, no truncate will be
2362           // introduced in other basic blocks.
2363           && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
2364         MadeChange =
2365             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
2366 
2367       continue;
2368     }
2369     // If we have already inserted a shift into this block, use it.
2370     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
2371 
2372     if (!InsertedShift) {
2373       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
2374       assert(InsertPt != UserBB->end());
2375 
2376       if (ShiftI->getOpcode() == Instruction::AShr)
2377         InsertedShift =
2378             BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2379       else
2380         InsertedShift =
2381             BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2382       InsertedShift->insertBefore(*UserBB, InsertPt);
2383       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2384 
2385       MadeChange = true;
2386     }
2387 
2388     // Replace a use of the shift with a use of the new shift.
2389     TheUse = InsertedShift;
2390   }
2391 
2392   // If we removed all uses, or there are none, nuke the shift.
2393   if (ShiftI->use_empty()) {
2394     salvageDebugInfo(*ShiftI);
2395     ShiftI->eraseFromParent();
2396     MadeChange = true;
2397   }
2398 
2399   return MadeChange;
2400 }
2401 
2402 /// If counting leading or trailing zeros is an expensive operation and a zero
2403 /// input is defined, add a check for zero to avoid calling the intrinsic.
2404 ///
2405 /// We want to transform:
2406 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2407 ///
2408 /// into:
2409 ///   entry:
2410 ///     %cmpz = icmp eq i64 %A, 0
2411 ///     br i1 %cmpz, label %cond.end, label %cond.false
2412 ///   cond.false:
2413 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2414 ///     br label %cond.end
2415 ///   cond.end:
2416 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2417 ///
2418 /// If the transform is performed, return true and set ModifiedDT to true.
2419 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2420                                   LoopInfo &LI,
2421                                   const TargetLowering *TLI,
2422                                   const DataLayout *DL, ModifyDT &ModifiedDT,
2423                                   SmallSet<BasicBlock *, 32> &FreshBBs,
2424                                   bool IsHugeFunc) {
2425   // If a zero input is undefined, it doesn't make sense to despeculate that.
2426   if (match(CountZeros->getOperand(1), m_One()))
2427     return false;
2428 
2429   // If it's cheap to speculate, there's nothing to do.
2430   Type *Ty = CountZeros->getType();
2431   auto IntrinsicID = CountZeros->getIntrinsicID();
2432   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) ||
2433       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty)))
2434     return false;
2435 
2436   // Only handle legal scalar cases. Anything else requires too much work.
2437   unsigned SizeInBits = Ty->getScalarSizeInBits();
2438   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
2439     return false;
2440 
2441   // Bail if the value is never zero.
2442   Use &Op = CountZeros->getOperandUse(0);
2443   if (isKnownNonZero(Op, *DL))
2444     return false;
2445 
2446   // The intrinsic will be sunk behind a compare against zero and branch.
2447   BasicBlock *StartBlock = CountZeros->getParent();
2448   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2449   if (IsHugeFunc)
2450     FreshBBs.insert(CallBlock);
2451 
2452   // Create another block after the count zero intrinsic. A PHI will be added
2453   // in this block to select the result of the intrinsic or the bit-width
2454   // constant if the input to the intrinsic is zero.
2455   BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros));
2456   // Any debug-info after CountZeros should not be included.
2457   SplitPt.setHeadBit(true);
2458   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2459   if (IsHugeFunc)
2460     FreshBBs.insert(EndBlock);
2461 
2462   // Update the LoopInfo. The new blocks are in the same loop as the start
2463   // block.
2464   if (Loop *L = LI.getLoopFor(StartBlock)) {
2465     L->addBasicBlockToLoop(CallBlock, LI);
2466     L->addBasicBlockToLoop(EndBlock, LI);
2467   }
2468 
2469   // Set up a builder to create a compare, conditional branch, and PHI.
2470   IRBuilder<> Builder(CountZeros->getContext());
2471   Builder.SetInsertPoint(StartBlock->getTerminator());
2472   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2473 
2474   // Replace the unconditional branch that was created by the first split with
2475   // a compare against zero and a conditional branch.
2476   Value *Zero = Constant::getNullValue(Ty);
2477   // Avoid introducing branch on poison. This also replaces the ctz operand.
2478   if (!isGuaranteedNotToBeUndefOrPoison(Op))
2479     Op = Builder.CreateFreeze(Op, Op->getName() + ".fr");
2480   Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz");
2481   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2482   StartBlock->getTerminator()->eraseFromParent();
2483 
2484   // Create a PHI in the end block to select either the output of the intrinsic
2485   // or the bit width of the operand.
2486   Builder.SetInsertPoint(EndBlock, EndBlock->begin());
2487   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2488   replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc);
2489   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2490   PN->addIncoming(BitWidth, StartBlock);
2491   PN->addIncoming(CountZeros, CallBlock);
2492 
2493   // We are explicitly handling the zero case, so we can set the intrinsic's
2494   // undefined zero argument to 'true'. This will also prevent reprocessing the
2495   // intrinsic; we only despeculate when a zero input is defined.
2496   CountZeros->setArgOperand(1, Builder.getTrue());
2497   ModifiedDT = ModifyDT::ModifyBBDT;
2498   return true;
2499 }
2500 
2501 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) {
2502   BasicBlock *BB = CI->getParent();
2503 
2504   // Lower inline assembly if we can.
2505   // If we found an inline asm expession, and if the target knows how to
2506   // lower it to normal LLVM code, do so now.
2507   if (CI->isInlineAsm()) {
2508     if (TLI->ExpandInlineAsm(CI)) {
2509       // Avoid invalidating the iterator.
2510       CurInstIterator = BB->begin();
2511       // Avoid processing instructions out of order, which could cause
2512       // reuse before a value is defined.
2513       SunkAddrs.clear();
2514       return true;
2515     }
2516     // Sink address computing for memory operands into the block.
2517     if (optimizeInlineAsmInst(CI))
2518       return true;
2519   }
2520 
2521   // Align the pointer arguments to this call if the target thinks it's a good
2522   // idea
2523   unsigned MinSize;
2524   Align PrefAlign;
2525   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2526     for (auto &Arg : CI->args()) {
2527       // We want to align both objects whose address is used directly and
2528       // objects whose address is used in casts and GEPs, though it only makes
2529       // sense for GEPs if the offset is a multiple of the desired alignment and
2530       // if size - offset meets the size threshold.
2531       if (!Arg->getType()->isPointerTy())
2532         continue;
2533       APInt Offset(DL->getIndexSizeInBits(
2534                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2535                    0);
2536       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2537       uint64_t Offset2 = Offset.getLimitedValue();
2538       if (!isAligned(PrefAlign, Offset2))
2539         continue;
2540       AllocaInst *AI;
2541       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign &&
2542           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2543         AI->setAlignment(PrefAlign);
2544       // Global variables can only be aligned if they are defined in this
2545       // object (i.e. they are uniquely initialized in this object), and
2546       // over-aligning global variables that have an explicit section is
2547       // forbidden.
2548       GlobalVariable *GV;
2549       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2550           GV->getPointerAlignment(*DL) < PrefAlign &&
2551           DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2)
2552         GV->setAlignment(PrefAlign);
2553     }
2554   }
2555   // If this is a memcpy (or similar) then we may be able to improve the
2556   // alignment.
2557   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2558     Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2559     MaybeAlign MIDestAlign = MI->getDestAlign();
2560     if (!MIDestAlign || DestAlign > *MIDestAlign)
2561       MI->setDestAlignment(DestAlign);
2562     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2563       MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2564       Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2565       if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2566         MTI->setSourceAlignment(SrcAlign);
2567     }
2568   }
2569 
2570   // If we have a cold call site, try to sink addressing computation into the
2571   // cold block.  This interacts with our handling for loads and stores to
2572   // ensure that we can fold all uses of a potential addressing computation
2573   // into their uses.  TODO: generalize this to work over profiling data
2574   if (CI->hasFnAttr(Attribute::Cold) && !OptSize &&
2575       !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2576     for (auto &Arg : CI->args()) {
2577       if (!Arg->getType()->isPointerTy())
2578         continue;
2579       unsigned AS = Arg->getType()->getPointerAddressSpace();
2580       if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS))
2581         return true;
2582     }
2583 
2584   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2585   if (II) {
2586     switch (II->getIntrinsicID()) {
2587     default:
2588       break;
2589     case Intrinsic::assume:
2590       llvm_unreachable("llvm.assume should have been removed already");
2591     case Intrinsic::allow_runtime_check:
2592     case Intrinsic::allow_ubsan_check:
2593     case Intrinsic::experimental_widenable_condition: {
2594       // Give up on future widening opportunities so that we can fold away dead
2595       // paths and merge blocks before going into block-local instruction
2596       // selection.
2597       if (II->use_empty()) {
2598         II->eraseFromParent();
2599         return true;
2600       }
2601       Constant *RetVal = ConstantInt::getTrue(II->getContext());
2602       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2603         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2604       });
2605       return true;
2606     }
2607     case Intrinsic::objectsize:
2608       llvm_unreachable("llvm.objectsize.* should have been lowered already");
2609     case Intrinsic::is_constant:
2610       llvm_unreachable("llvm.is.constant.* should have been lowered already");
2611     case Intrinsic::aarch64_stlxr:
2612     case Intrinsic::aarch64_stxr: {
2613       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2614       if (!ExtVal || !ExtVal->hasOneUse() ||
2615           ExtVal->getParent() == CI->getParent())
2616         return false;
2617       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2618       ExtVal->moveBefore(CI);
2619       // Mark this instruction as "inserted by CGP", so that other
2620       // optimizations don't touch it.
2621       InsertedInsts.insert(ExtVal);
2622       return true;
2623     }
2624 
2625     case Intrinsic::launder_invariant_group:
2626     case Intrinsic::strip_invariant_group: {
2627       Value *ArgVal = II->getArgOperand(0);
2628       auto it = LargeOffsetGEPMap.find(II);
2629       if (it != LargeOffsetGEPMap.end()) {
2630         // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2631         // Make sure not to have to deal with iterator invalidation
2632         // after possibly adding ArgVal to LargeOffsetGEPMap.
2633         auto GEPs = std::move(it->second);
2634         LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2635         LargeOffsetGEPMap.erase(II);
2636       }
2637 
2638       replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc);
2639       II->eraseFromParent();
2640       return true;
2641     }
2642     case Intrinsic::cttz:
2643     case Intrinsic::ctlz:
2644       // If counting zeros is expensive, try to avoid it.
2645       return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs,
2646                                    IsHugeFunc);
2647     case Intrinsic::fshl:
2648     case Intrinsic::fshr:
2649       return optimizeFunnelShift(II);
2650     case Intrinsic::dbg_assign:
2651     case Intrinsic::dbg_value:
2652       return fixupDbgValue(II);
2653     case Intrinsic::masked_gather:
2654       return optimizeGatherScatterInst(II, II->getArgOperand(0));
2655     case Intrinsic::masked_scatter:
2656       return optimizeGatherScatterInst(II, II->getArgOperand(1));
2657     }
2658 
2659     SmallVector<Value *, 2> PtrOps;
2660     Type *AccessTy;
2661     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2662       while (!PtrOps.empty()) {
2663         Value *PtrVal = PtrOps.pop_back_val();
2664         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2665         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2666           return true;
2667       }
2668   }
2669 
2670   // From here on out we're working with named functions.
2671   if (!CI->getCalledFunction())
2672     return false;
2673 
2674   // Lower all default uses of _chk calls.  This is very similar
2675   // to what InstCombineCalls does, but here we are only lowering calls
2676   // to fortified library functions (e.g. __memcpy_chk) that have the default
2677   // "don't know" as the objectsize.  Anything else should be left alone.
2678   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2679   IRBuilder<> Builder(CI);
2680   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2681     replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc);
2682     CI->eraseFromParent();
2683     return true;
2684   }
2685 
2686   return false;
2687 }
2688 
2689 static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo,
2690                                           const CallInst *CI) {
2691   assert(CI && CI->use_empty());
2692 
2693   if (const auto *II = dyn_cast<IntrinsicInst>(CI))
2694     switch (II->getIntrinsicID()) {
2695     case Intrinsic::memset:
2696     case Intrinsic::memcpy:
2697     case Intrinsic::memmove:
2698       return true;
2699     default:
2700       return false;
2701     }
2702 
2703   LibFunc LF;
2704   Function *Callee = CI->getCalledFunction();
2705   if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF))
2706     switch (LF) {
2707     case LibFunc_strcpy:
2708     case LibFunc_strncpy:
2709     case LibFunc_strcat:
2710     case LibFunc_strncat:
2711       return true;
2712     default:
2713       return false;
2714     }
2715 
2716   return false;
2717 }
2718 
2719 /// Look for opportunities to duplicate return instructions to the predecessor
2720 /// to enable tail call optimizations. The case it is currently looking for is
2721 /// the following one. Known intrinsics or library function that may be tail
2722 /// called are taken into account as well.
2723 /// @code
2724 /// bb0:
2725 ///   %tmp0 = tail call i32 @f0()
2726 ///   br label %return
2727 /// bb1:
2728 ///   %tmp1 = tail call i32 @f1()
2729 ///   br label %return
2730 /// bb2:
2731 ///   %tmp2 = tail call i32 @f2()
2732 ///   br label %return
2733 /// return:
2734 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2735 ///   ret i32 %retval
2736 /// @endcode
2737 ///
2738 /// =>
2739 ///
2740 /// @code
2741 /// bb0:
2742 ///   %tmp0 = tail call i32 @f0()
2743 ///   ret i32 %tmp0
2744 /// bb1:
2745 ///   %tmp1 = tail call i32 @f1()
2746 ///   ret i32 %tmp1
2747 /// bb2:
2748 ///   %tmp2 = tail call i32 @f2()
2749 ///   ret i32 %tmp2
2750 /// @endcode
2751 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB,
2752                                                 ModifyDT &ModifiedDT) {
2753   if (!BB->getTerminator())
2754     return false;
2755 
2756   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2757   if (!RetI)
2758     return false;
2759 
2760   assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop");
2761 
2762   PHINode *PN = nullptr;
2763   ExtractValueInst *EVI = nullptr;
2764   BitCastInst *BCI = nullptr;
2765   Value *V = RetI->getReturnValue();
2766   if (V) {
2767     BCI = dyn_cast<BitCastInst>(V);
2768     if (BCI)
2769       V = BCI->getOperand(0);
2770 
2771     EVI = dyn_cast<ExtractValueInst>(V);
2772     if (EVI) {
2773       V = EVI->getOperand(0);
2774       if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2775         return false;
2776     }
2777 
2778     PN = dyn_cast<PHINode>(V);
2779   }
2780 
2781   if (PN && PN->getParent() != BB)
2782     return false;
2783 
2784   auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2785     const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2786     if (BC && BC->hasOneUse())
2787       Inst = BC->user_back();
2788 
2789     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2790       return II->getIntrinsicID() == Intrinsic::lifetime_end;
2791     return false;
2792   };
2793 
2794   // Make sure there are no instructions between the first instruction
2795   // and return.
2796   const Instruction *BI = BB->getFirstNonPHI();
2797   // Skip over debug and the bitcast.
2798   while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI ||
2799          isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI))
2800     BI = BI->getNextNode();
2801   if (BI != RetI)
2802     return false;
2803 
2804   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2805   /// call.
2806   const Function *F = BB->getParent();
2807   SmallVector<BasicBlock *, 4> TailCallBBs;
2808   if (PN) {
2809     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2810       // Look through bitcasts.
2811       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2812       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2813       BasicBlock *PredBB = PN->getIncomingBlock(I);
2814       // Make sure the phi value is indeed produced by the tail call.
2815       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2816           TLI->mayBeEmittedAsTailCall(CI) &&
2817           attributesPermitTailCall(F, CI, RetI, *TLI)) {
2818         TailCallBBs.push_back(PredBB);
2819       } else {
2820         // Consider the cases in which the phi value is indirectly produced by
2821         // the tail call, for example when encountering memset(), memmove(),
2822         // strcpy(), whose return value may have been optimized out. In such
2823         // cases, the value needs to be the first function argument.
2824         //
2825         // bb0:
2826         //   tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1)
2827         //   br label %return
2828         // return:
2829         //   %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ]
2830         if (PredBB && PredBB->getSingleSuccessor() == BB)
2831           CI = dyn_cast_or_null<CallInst>(
2832               PredBB->getTerminator()->getPrevNonDebugInstruction(true));
2833 
2834         if (CI && CI->use_empty() &&
2835             isIntrinsicOrLFToBeTailCalled(TLInfo, CI) &&
2836             IncomingVal == CI->getArgOperand(0) &&
2837             TLI->mayBeEmittedAsTailCall(CI) &&
2838             attributesPermitTailCall(F, CI, RetI, *TLI))
2839           TailCallBBs.push_back(PredBB);
2840       }
2841     }
2842   } else {
2843     SmallPtrSet<BasicBlock *, 4> VisitedBBs;
2844     for (BasicBlock *Pred : predecessors(BB)) {
2845       if (!VisitedBBs.insert(Pred).second)
2846         continue;
2847       if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) {
2848         CallInst *CI = dyn_cast<CallInst>(I);
2849         if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2850             attributesPermitTailCall(F, CI, RetI, *TLI)) {
2851           // Either we return void or the return value must be the first
2852           // argument of a known intrinsic or library function.
2853           if (!V || isa<UndefValue>(V) ||
2854               (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) &&
2855                V == CI->getArgOperand(0))) {
2856             TailCallBBs.push_back(Pred);
2857           }
2858         }
2859       }
2860     }
2861   }
2862 
2863   bool Changed = false;
2864   for (auto const &TailCallBB : TailCallBBs) {
2865     // Make sure the call instruction is followed by an unconditional branch to
2866     // the return block.
2867     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2868     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2869       continue;
2870 
2871     // Duplicate the return into TailCallBB.
2872     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2873     assert(!VerifyBFIUpdates ||
2874            BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2875     BFI->setBlockFreq(BB,
2876                       (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)));
2877     ModifiedDT = ModifyDT::ModifyBBDT;
2878     Changed = true;
2879     ++NumRetsDup;
2880   }
2881 
2882   // If we eliminated all predecessors of the block, delete the block now.
2883   if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2884     BB->eraseFromParent();
2885 
2886   return Changed;
2887 }
2888 
2889 //===----------------------------------------------------------------------===//
2890 // Memory Optimization
2891 //===----------------------------------------------------------------------===//
2892 
2893 namespace {
2894 
2895 /// This is an extended version of TargetLowering::AddrMode
2896 /// which holds actual Value*'s for register values.
2897 struct ExtAddrMode : public TargetLowering::AddrMode {
2898   Value *BaseReg = nullptr;
2899   Value *ScaledReg = nullptr;
2900   Value *OriginalValue = nullptr;
2901   bool InBounds = true;
2902 
2903   enum FieldName {
2904     NoField = 0x00,
2905     BaseRegField = 0x01,
2906     BaseGVField = 0x02,
2907     BaseOffsField = 0x04,
2908     ScaledRegField = 0x08,
2909     ScaleField = 0x10,
2910     MultipleFields = 0xff
2911   };
2912 
2913   ExtAddrMode() = default;
2914 
2915   void print(raw_ostream &OS) const;
2916   void dump() const;
2917 
2918   FieldName compare(const ExtAddrMode &other) {
2919     // First check that the types are the same on each field, as differing types
2920     // is something we can't cope with later on.
2921     if (BaseReg && other.BaseReg &&
2922         BaseReg->getType() != other.BaseReg->getType())
2923       return MultipleFields;
2924     if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType())
2925       return MultipleFields;
2926     if (ScaledReg && other.ScaledReg &&
2927         ScaledReg->getType() != other.ScaledReg->getType())
2928       return MultipleFields;
2929 
2930     // Conservatively reject 'inbounds' mismatches.
2931     if (InBounds != other.InBounds)
2932       return MultipleFields;
2933 
2934     // Check each field to see if it differs.
2935     unsigned Result = NoField;
2936     if (BaseReg != other.BaseReg)
2937       Result |= BaseRegField;
2938     if (BaseGV != other.BaseGV)
2939       Result |= BaseGVField;
2940     if (BaseOffs != other.BaseOffs)
2941       Result |= BaseOffsField;
2942     if (ScaledReg != other.ScaledReg)
2943       Result |= ScaledRegField;
2944     // Don't count 0 as being a different scale, because that actually means
2945     // unscaled (which will already be counted by having no ScaledReg).
2946     if (Scale && other.Scale && Scale != other.Scale)
2947       Result |= ScaleField;
2948 
2949     if (llvm::popcount(Result) > 1)
2950       return MultipleFields;
2951     else
2952       return static_cast<FieldName>(Result);
2953   }
2954 
2955   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2956   // with no offset.
2957   bool isTrivial() {
2958     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2959     // trivial if at most one of these terms is nonzero, except that BaseGV and
2960     // BaseReg both being zero actually means a null pointer value, which we
2961     // consider to be 'non-zero' here.
2962     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2963   }
2964 
2965   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2966     switch (Field) {
2967     default:
2968       return nullptr;
2969     case BaseRegField:
2970       return BaseReg;
2971     case BaseGVField:
2972       return BaseGV;
2973     case ScaledRegField:
2974       return ScaledReg;
2975     case BaseOffsField:
2976       return ConstantInt::get(IntPtrTy, BaseOffs);
2977     }
2978   }
2979 
2980   void SetCombinedField(FieldName Field, Value *V,
2981                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2982     switch (Field) {
2983     default:
2984       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2985       break;
2986     case ExtAddrMode::BaseRegField:
2987       BaseReg = V;
2988       break;
2989     case ExtAddrMode::BaseGVField:
2990       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2991       // in the BaseReg field.
2992       assert(BaseReg == nullptr);
2993       BaseReg = V;
2994       BaseGV = nullptr;
2995       break;
2996     case ExtAddrMode::ScaledRegField:
2997       ScaledReg = V;
2998       // If we have a mix of scaled and unscaled addrmodes then we want scale
2999       // to be the scale and not zero.
3000       if (!Scale)
3001         for (const ExtAddrMode &AM : AddrModes)
3002           if (AM.Scale) {
3003             Scale = AM.Scale;
3004             break;
3005           }
3006       break;
3007     case ExtAddrMode::BaseOffsField:
3008       // The offset is no longer a constant, so it goes in ScaledReg with a
3009       // scale of 1.
3010       assert(ScaledReg == nullptr);
3011       ScaledReg = V;
3012       Scale = 1;
3013       BaseOffs = 0;
3014       break;
3015     }
3016   }
3017 };
3018 
3019 #ifndef NDEBUG
3020 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
3021   AM.print(OS);
3022   return OS;
3023 }
3024 #endif
3025 
3026 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3027 void ExtAddrMode::print(raw_ostream &OS) const {
3028   bool NeedPlus = false;
3029   OS << "[";
3030   if (InBounds)
3031     OS << "inbounds ";
3032   if (BaseGV) {
3033     OS << "GV:";
3034     BaseGV->printAsOperand(OS, /*PrintType=*/false);
3035     NeedPlus = true;
3036   }
3037 
3038   if (BaseOffs) {
3039     OS << (NeedPlus ? " + " : "") << BaseOffs;
3040     NeedPlus = true;
3041   }
3042 
3043   if (BaseReg) {
3044     OS << (NeedPlus ? " + " : "") << "Base:";
3045     BaseReg->printAsOperand(OS, /*PrintType=*/false);
3046     NeedPlus = true;
3047   }
3048   if (Scale) {
3049     OS << (NeedPlus ? " + " : "") << Scale << "*";
3050     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
3051   }
3052 
3053   OS << ']';
3054 }
3055 
3056 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
3057   print(dbgs());
3058   dbgs() << '\n';
3059 }
3060 #endif
3061 
3062 } // end anonymous namespace
3063 
3064 namespace {
3065 
3066 /// This class provides transaction based operation on the IR.
3067 /// Every change made through this class is recorded in the internal state and
3068 /// can be undone (rollback) until commit is called.
3069 /// CGP does not check if instructions could be speculatively executed when
3070 /// moved. Preserving the original location would pessimize the debugging
3071 /// experience, as well as negatively impact the quality of sample PGO.
3072 class TypePromotionTransaction {
3073   /// This represents the common interface of the individual transaction.
3074   /// Each class implements the logic for doing one specific modification on
3075   /// the IR via the TypePromotionTransaction.
3076   class TypePromotionAction {
3077   protected:
3078     /// The Instruction modified.
3079     Instruction *Inst;
3080 
3081   public:
3082     /// Constructor of the action.
3083     /// The constructor performs the related action on the IR.
3084     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
3085 
3086     virtual ~TypePromotionAction() = default;
3087 
3088     /// Undo the modification done by this action.
3089     /// When this method is called, the IR must be in the same state as it was
3090     /// before this action was applied.
3091     /// \pre Undoing the action works if and only if the IR is in the exact same
3092     /// state as it was directly after this action was applied.
3093     virtual void undo() = 0;
3094 
3095     /// Advocate every change made by this action.
3096     /// When the results on the IR of the action are to be kept, it is important
3097     /// to call this function, otherwise hidden information may be kept forever.
3098     virtual void commit() {
3099       // Nothing to be done, this action is not doing anything.
3100     }
3101   };
3102 
3103   /// Utility to remember the position of an instruction.
3104   class InsertionHandler {
3105     /// Position of an instruction.
3106     /// Either an instruction:
3107     /// - Is the first in a basic block: BB is used.
3108     /// - Has a previous instruction: PrevInst is used.
3109     union {
3110       Instruction *PrevInst;
3111       BasicBlock *BB;
3112     } Point;
3113     std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt;
3114 
3115     /// Remember whether or not the instruction had a previous instruction.
3116     bool HasPrevInstruction;
3117 
3118   public:
3119     /// Record the position of \p Inst.
3120     InsertionHandler(Instruction *Inst) {
3121       HasPrevInstruction = (Inst != &*(Inst->getParent()->begin()));
3122       BasicBlock *BB = Inst->getParent();
3123 
3124       // Record where we would have to re-insert the instruction in the sequence
3125       // of DbgRecords, if we ended up reinserting.
3126       if (BB->IsNewDbgInfoFormat)
3127         BeforeDbgRecord = Inst->getDbgReinsertionPosition();
3128 
3129       if (HasPrevInstruction) {
3130         Point.PrevInst = &*std::prev(Inst->getIterator());
3131       } else {
3132         Point.BB = BB;
3133       }
3134     }
3135 
3136     /// Insert \p Inst at the recorded position.
3137     void insert(Instruction *Inst) {
3138       if (HasPrevInstruction) {
3139         if (Inst->getParent())
3140           Inst->removeFromParent();
3141         Inst->insertAfter(&*Point.PrevInst);
3142       } else {
3143         BasicBlock::iterator Position = Point.BB->getFirstInsertionPt();
3144         if (Inst->getParent())
3145           Inst->moveBefore(*Point.BB, Position);
3146         else
3147           Inst->insertBefore(*Point.BB, Position);
3148       }
3149 
3150       Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord);
3151     }
3152   };
3153 
3154   /// Move an instruction before another.
3155   class InstructionMoveBefore : public TypePromotionAction {
3156     /// Original position of the instruction.
3157     InsertionHandler Position;
3158 
3159   public:
3160     /// Move \p Inst before \p Before.
3161     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
3162         : TypePromotionAction(Inst), Position(Inst) {
3163       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
3164                         << "\n");
3165       Inst->moveBefore(Before);
3166     }
3167 
3168     /// Move the instruction back to its original position.
3169     void undo() override {
3170       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
3171       Position.insert(Inst);
3172     }
3173   };
3174 
3175   /// Set the operand of an instruction with a new value.
3176   class OperandSetter : public TypePromotionAction {
3177     /// Original operand of the instruction.
3178     Value *Origin;
3179 
3180     /// Index of the modified instruction.
3181     unsigned Idx;
3182 
3183   public:
3184     /// Set \p Idx operand of \p Inst with \p NewVal.
3185     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
3186         : TypePromotionAction(Inst), Idx(Idx) {
3187       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
3188                         << "for:" << *Inst << "\n"
3189                         << "with:" << *NewVal << "\n");
3190       Origin = Inst->getOperand(Idx);
3191       Inst->setOperand(Idx, NewVal);
3192     }
3193 
3194     /// Restore the original value of the instruction.
3195     void undo() override {
3196       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
3197                         << "for: " << *Inst << "\n"
3198                         << "with: " << *Origin << "\n");
3199       Inst->setOperand(Idx, Origin);
3200     }
3201   };
3202 
3203   /// Hide the operands of an instruction.
3204   /// Do as if this instruction was not using any of its operands.
3205   class OperandsHider : public TypePromotionAction {
3206     /// The list of original operands.
3207     SmallVector<Value *, 4> OriginalValues;
3208 
3209   public:
3210     /// Remove \p Inst from the uses of the operands of \p Inst.
3211     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
3212       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
3213       unsigned NumOpnds = Inst->getNumOperands();
3214       OriginalValues.reserve(NumOpnds);
3215       for (unsigned It = 0; It < NumOpnds; ++It) {
3216         // Save the current operand.
3217         Value *Val = Inst->getOperand(It);
3218         OriginalValues.push_back(Val);
3219         // Set a dummy one.
3220         // We could use OperandSetter here, but that would imply an overhead
3221         // that we are not willing to pay.
3222         Inst->setOperand(It, UndefValue::get(Val->getType()));
3223       }
3224     }
3225 
3226     /// Restore the original list of uses.
3227     void undo() override {
3228       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
3229       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
3230         Inst->setOperand(It, OriginalValues[It]);
3231     }
3232   };
3233 
3234   /// Build a truncate instruction.
3235   class TruncBuilder : public TypePromotionAction {
3236     Value *Val;
3237 
3238   public:
3239     /// Build a truncate instruction of \p Opnd producing a \p Ty
3240     /// result.
3241     /// trunc Opnd to Ty.
3242     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
3243       IRBuilder<> Builder(Opnd);
3244       Builder.SetCurrentDebugLocation(DebugLoc());
3245       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
3246       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
3247     }
3248 
3249     /// Get the built value.
3250     Value *getBuiltValue() { return Val; }
3251 
3252     /// Remove the built instruction.
3253     void undo() override {
3254       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
3255       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3256         IVal->eraseFromParent();
3257     }
3258   };
3259 
3260   /// Build a sign extension instruction.
3261   class SExtBuilder : public TypePromotionAction {
3262     Value *Val;
3263 
3264   public:
3265     /// Build a sign extension instruction of \p Opnd producing a \p Ty
3266     /// result.
3267     /// sext Opnd to Ty.
3268     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3269         : TypePromotionAction(InsertPt) {
3270       IRBuilder<> Builder(InsertPt);
3271       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
3272       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
3273     }
3274 
3275     /// Get the built value.
3276     Value *getBuiltValue() { return Val; }
3277 
3278     /// Remove the built instruction.
3279     void undo() override {
3280       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
3281       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3282         IVal->eraseFromParent();
3283     }
3284   };
3285 
3286   /// Build a zero extension instruction.
3287   class ZExtBuilder : public TypePromotionAction {
3288     Value *Val;
3289 
3290   public:
3291     /// Build a zero extension instruction of \p Opnd producing a \p Ty
3292     /// result.
3293     /// zext Opnd to Ty.
3294     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3295         : TypePromotionAction(InsertPt) {
3296       IRBuilder<> Builder(InsertPt);
3297       Builder.SetCurrentDebugLocation(DebugLoc());
3298       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
3299       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
3300     }
3301 
3302     /// Get the built value.
3303     Value *getBuiltValue() { return Val; }
3304 
3305     /// Remove the built instruction.
3306     void undo() override {
3307       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
3308       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3309         IVal->eraseFromParent();
3310     }
3311   };
3312 
3313   /// Mutate an instruction to another type.
3314   class TypeMutator : public TypePromotionAction {
3315     /// Record the original type.
3316     Type *OrigTy;
3317 
3318   public:
3319     /// Mutate the type of \p Inst into \p NewTy.
3320     TypeMutator(Instruction *Inst, Type *NewTy)
3321         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
3322       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
3323                         << "\n");
3324       Inst->mutateType(NewTy);
3325     }
3326 
3327     /// Mutate the instruction back to its original type.
3328     void undo() override {
3329       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
3330                         << "\n");
3331       Inst->mutateType(OrigTy);
3332     }
3333   };
3334 
3335   /// Replace the uses of an instruction by another instruction.
3336   class UsesReplacer : public TypePromotionAction {
3337     /// Helper structure to keep track of the replaced uses.
3338     struct InstructionAndIdx {
3339       /// The instruction using the instruction.
3340       Instruction *Inst;
3341 
3342       /// The index where this instruction is used for Inst.
3343       unsigned Idx;
3344 
3345       InstructionAndIdx(Instruction *Inst, unsigned Idx)
3346           : Inst(Inst), Idx(Idx) {}
3347     };
3348 
3349     /// Keep track of the original uses (pair Instruction, Index).
3350     SmallVector<InstructionAndIdx, 4> OriginalUses;
3351     /// Keep track of the debug users.
3352     SmallVector<DbgValueInst *, 1> DbgValues;
3353     /// And non-instruction debug-users too.
3354     SmallVector<DbgVariableRecord *, 1> DbgVariableRecords;
3355 
3356     /// Keep track of the new value so that we can undo it by replacing
3357     /// instances of the new value with the original value.
3358     Value *New;
3359 
3360     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
3361 
3362   public:
3363     /// Replace all the use of \p Inst by \p New.
3364     UsesReplacer(Instruction *Inst, Value *New)
3365         : TypePromotionAction(Inst), New(New) {
3366       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3367                         << "\n");
3368       // Record the original uses.
3369       for (Use &U : Inst->uses()) {
3370         Instruction *UserI = cast<Instruction>(U.getUser());
3371         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3372       }
3373       // Record the debug uses separately. They are not in the instruction's
3374       // use list, but they are replaced by RAUW.
3375       findDbgValues(DbgValues, Inst, &DbgVariableRecords);
3376 
3377       // Now, we can replace the uses.
3378       Inst->replaceAllUsesWith(New);
3379     }
3380 
3381     /// Reassign the original uses of Inst to Inst.
3382     void undo() override {
3383       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3384       for (InstructionAndIdx &Use : OriginalUses)
3385         Use.Inst->setOperand(Use.Idx, Inst);
3386       // RAUW has replaced all original uses with references to the new value,
3387       // including the debug uses. Since we are undoing the replacements,
3388       // the original debug uses must also be reinstated to maintain the
3389       // correctness and utility of debug value instructions.
3390       for (auto *DVI : DbgValues)
3391         DVI->replaceVariableLocationOp(New, Inst);
3392       // Similar story with DbgVariableRecords, the non-instruction
3393       // representation of dbg.values.
3394       for (DbgVariableRecord *DVR : DbgVariableRecords)
3395         DVR->replaceVariableLocationOp(New, Inst);
3396     }
3397   };
3398 
3399   /// Remove an instruction from the IR.
3400   class InstructionRemover : public TypePromotionAction {
3401     /// Original position of the instruction.
3402     InsertionHandler Inserter;
3403 
3404     /// Helper structure to hide all the link to the instruction. In other
3405     /// words, this helps to do as if the instruction was removed.
3406     OperandsHider Hider;
3407 
3408     /// Keep track of the uses replaced, if any.
3409     UsesReplacer *Replacer = nullptr;
3410 
3411     /// Keep track of instructions removed.
3412     SetOfInstrs &RemovedInsts;
3413 
3414   public:
3415     /// Remove all reference of \p Inst and optionally replace all its
3416     /// uses with New.
3417     /// \p RemovedInsts Keep track of the instructions removed by this Action.
3418     /// \pre If !Inst->use_empty(), then New != nullptr
3419     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
3420                        Value *New = nullptr)
3421         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3422           RemovedInsts(RemovedInsts) {
3423       if (New)
3424         Replacer = new UsesReplacer(Inst, New);
3425       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3426       RemovedInsts.insert(Inst);
3427       /// The instructions removed here will be freed after completing
3428       /// optimizeBlock() for all blocks as we need to keep track of the
3429       /// removed instructions during promotion.
3430       Inst->removeFromParent();
3431     }
3432 
3433     ~InstructionRemover() override { delete Replacer; }
3434 
3435     InstructionRemover &operator=(const InstructionRemover &other) = delete;
3436     InstructionRemover(const InstructionRemover &other) = delete;
3437 
3438     /// Resurrect the instruction and reassign it to the proper uses if
3439     /// new value was provided when build this action.
3440     void undo() override {
3441       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3442       Inserter.insert(Inst);
3443       if (Replacer)
3444         Replacer->undo();
3445       Hider.undo();
3446       RemovedInsts.erase(Inst);
3447     }
3448   };
3449 
3450 public:
3451   /// Restoration point.
3452   /// The restoration point is a pointer to an action instead of an iterator
3453   /// because the iterator may be invalidated but not the pointer.
3454   using ConstRestorationPt = const TypePromotionAction *;
3455 
3456   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3457       : RemovedInsts(RemovedInsts) {}
3458 
3459   /// Advocate every changes made in that transaction. Return true if any change
3460   /// happen.
3461   bool commit();
3462 
3463   /// Undo all the changes made after the given point.
3464   void rollback(ConstRestorationPt Point);
3465 
3466   /// Get the current restoration point.
3467   ConstRestorationPt getRestorationPoint() const;
3468 
3469   /// \name API for IR modification with state keeping to support rollback.
3470   /// @{
3471   /// Same as Instruction::setOperand.
3472   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3473 
3474   /// Same as Instruction::eraseFromParent.
3475   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3476 
3477   /// Same as Value::replaceAllUsesWith.
3478   void replaceAllUsesWith(Instruction *Inst, Value *New);
3479 
3480   /// Same as Value::mutateType.
3481   void mutateType(Instruction *Inst, Type *NewTy);
3482 
3483   /// Same as IRBuilder::createTrunc.
3484   Value *createTrunc(Instruction *Opnd, Type *Ty);
3485 
3486   /// Same as IRBuilder::createSExt.
3487   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3488 
3489   /// Same as IRBuilder::createZExt.
3490   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3491 
3492 private:
3493   /// The ordered list of actions made so far.
3494   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3495 
3496   using CommitPt =
3497       SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3498 
3499   SetOfInstrs &RemovedInsts;
3500 };
3501 
3502 } // end anonymous namespace
3503 
3504 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3505                                           Value *NewVal) {
3506   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3507       Inst, Idx, NewVal));
3508 }
3509 
3510 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3511                                                 Value *NewVal) {
3512   Actions.push_back(
3513       std::make_unique<TypePromotionTransaction::InstructionRemover>(
3514           Inst, RemovedInsts, NewVal));
3515 }
3516 
3517 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3518                                                   Value *New) {
3519   Actions.push_back(
3520       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3521 }
3522 
3523 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3524   Actions.push_back(
3525       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3526 }
3527 
3528 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) {
3529   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3530   Value *Val = Ptr->getBuiltValue();
3531   Actions.push_back(std::move(Ptr));
3532   return Val;
3533 }
3534 
3535 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd,
3536                                             Type *Ty) {
3537   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3538   Value *Val = Ptr->getBuiltValue();
3539   Actions.push_back(std::move(Ptr));
3540   return Val;
3541 }
3542 
3543 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd,
3544                                             Type *Ty) {
3545   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3546   Value *Val = Ptr->getBuiltValue();
3547   Actions.push_back(std::move(Ptr));
3548   return Val;
3549 }
3550 
3551 TypePromotionTransaction::ConstRestorationPt
3552 TypePromotionTransaction::getRestorationPoint() const {
3553   return !Actions.empty() ? Actions.back().get() : nullptr;
3554 }
3555 
3556 bool TypePromotionTransaction::commit() {
3557   for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3558     Action->commit();
3559   bool Modified = !Actions.empty();
3560   Actions.clear();
3561   return Modified;
3562 }
3563 
3564 void TypePromotionTransaction::rollback(
3565     TypePromotionTransaction::ConstRestorationPt Point) {
3566   while (!Actions.empty() && Point != Actions.back().get()) {
3567     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3568     Curr->undo();
3569   }
3570 }
3571 
3572 namespace {
3573 
3574 /// A helper class for matching addressing modes.
3575 ///
3576 /// This encapsulates the logic for matching the target-legal addressing modes.
3577 class AddressingModeMatcher {
3578   SmallVectorImpl<Instruction *> &AddrModeInsts;
3579   const TargetLowering &TLI;
3580   const TargetRegisterInfo &TRI;
3581   const DataLayout &DL;
3582   const LoopInfo &LI;
3583   const std::function<const DominatorTree &()> getDTFn;
3584 
3585   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3586   /// the memory instruction that we're computing this address for.
3587   Type *AccessTy;
3588   unsigned AddrSpace;
3589   Instruction *MemoryInst;
3590 
3591   /// This is the addressing mode that we're building up. This is
3592   /// part of the return value of this addressing mode matching stuff.
3593   ExtAddrMode &AddrMode;
3594 
3595   /// The instructions inserted by other CodeGenPrepare optimizations.
3596   const SetOfInstrs &InsertedInsts;
3597 
3598   /// A map from the instructions to their type before promotion.
3599   InstrToOrigTy &PromotedInsts;
3600 
3601   /// The ongoing transaction where every action should be registered.
3602   TypePromotionTransaction &TPT;
3603 
3604   // A GEP which has too large offset to be folded into the addressing mode.
3605   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3606 
3607   /// This is set to true when we should not do profitability checks.
3608   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3609   bool IgnoreProfitability;
3610 
3611   /// True if we are optimizing for size.
3612   bool OptSize = false;
3613 
3614   ProfileSummaryInfo *PSI;
3615   BlockFrequencyInfo *BFI;
3616 
3617   AddressingModeMatcher(
3618       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3619       const TargetRegisterInfo &TRI, const LoopInfo &LI,
3620       const std::function<const DominatorTree &()> getDTFn, Type *AT,
3621       unsigned AS, Instruction *MI, ExtAddrMode &AM,
3622       const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3623       TypePromotionTransaction &TPT,
3624       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3625       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3626       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3627         DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn),
3628         AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3629         InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3630         LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3631     IgnoreProfitability = false;
3632   }
3633 
3634 public:
3635   /// Find the maximal addressing mode that a load/store of V can fold,
3636   /// give an access type of AccessTy.  This returns a list of involved
3637   /// instructions in AddrModeInsts.
3638   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3639   /// optimizations.
3640   /// \p PromotedInsts maps the instructions to their type before promotion.
3641   /// \p The ongoing transaction where every action should be registered.
3642   static ExtAddrMode
3643   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3644         SmallVectorImpl<Instruction *> &AddrModeInsts,
3645         const TargetLowering &TLI, const LoopInfo &LI,
3646         const std::function<const DominatorTree &()> getDTFn,
3647         const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3648         InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3649         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3650         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3651     ExtAddrMode Result;
3652 
3653     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn,
3654                                          AccessTy, AS, MemoryInst, Result,
3655                                          InsertedInsts, PromotedInsts, TPT,
3656                                          LargeOffsetGEP, OptSize, PSI, BFI)
3657                        .matchAddr(V, 0);
3658     (void)Success;
3659     assert(Success && "Couldn't select *anything*?");
3660     return Result;
3661   }
3662 
3663 private:
3664   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3665   bool matchAddr(Value *Addr, unsigned Depth);
3666   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3667                           bool *MovedAway = nullptr);
3668   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3669                                             ExtAddrMode &AMBefore,
3670                                             ExtAddrMode &AMAfter);
3671   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3672   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3673                              Value *PromotedOperand) const;
3674 };
3675 
3676 class PhiNodeSet;
3677 
3678 /// An iterator for PhiNodeSet.
3679 class PhiNodeSetIterator {
3680   PhiNodeSet *const Set;
3681   size_t CurrentIndex = 0;
3682 
3683 public:
3684   /// The constructor. Start should point to either a valid element, or be equal
3685   /// to the size of the underlying SmallVector of the PhiNodeSet.
3686   PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start);
3687   PHINode *operator*() const;
3688   PhiNodeSetIterator &operator++();
3689   bool operator==(const PhiNodeSetIterator &RHS) const;
3690   bool operator!=(const PhiNodeSetIterator &RHS) const;
3691 };
3692 
3693 /// Keeps a set of PHINodes.
3694 ///
3695 /// This is a minimal set implementation for a specific use case:
3696 /// It is very fast when there are very few elements, but also provides good
3697 /// performance when there are many. It is similar to SmallPtrSet, but also
3698 /// provides iteration by insertion order, which is deterministic and stable
3699 /// across runs. It is also similar to SmallSetVector, but provides removing
3700 /// elements in O(1) time. This is achieved by not actually removing the element
3701 /// from the underlying vector, so comes at the cost of using more memory, but
3702 /// that is fine, since PhiNodeSets are used as short lived objects.
3703 class PhiNodeSet {
3704   friend class PhiNodeSetIterator;
3705 
3706   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3707   using iterator = PhiNodeSetIterator;
3708 
3709   /// Keeps the elements in the order of their insertion in the underlying
3710   /// vector. To achieve constant time removal, it never deletes any element.
3711   SmallVector<PHINode *, 32> NodeList;
3712 
3713   /// Keeps the elements in the underlying set implementation. This (and not the
3714   /// NodeList defined above) is the source of truth on whether an element
3715   /// is actually in the collection.
3716   MapType NodeMap;
3717 
3718   /// Points to the first valid (not deleted) element when the set is not empty
3719   /// and the value is not zero. Equals to the size of the underlying vector
3720   /// when the set is empty. When the value is 0, as in the beginning, the
3721   /// first element may or may not be valid.
3722   size_t FirstValidElement = 0;
3723 
3724 public:
3725   /// Inserts a new element to the collection.
3726   /// \returns true if the element is actually added, i.e. was not in the
3727   /// collection before the operation.
3728   bool insert(PHINode *Ptr) {
3729     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3730       NodeList.push_back(Ptr);
3731       return true;
3732     }
3733     return false;
3734   }
3735 
3736   /// Removes the element from the collection.
3737   /// \returns whether the element is actually removed, i.e. was in the
3738   /// collection before the operation.
3739   bool erase(PHINode *Ptr) {
3740     if (NodeMap.erase(Ptr)) {
3741       SkipRemovedElements(FirstValidElement);
3742       return true;
3743     }
3744     return false;
3745   }
3746 
3747   /// Removes all elements and clears the collection.
3748   void clear() {
3749     NodeMap.clear();
3750     NodeList.clear();
3751     FirstValidElement = 0;
3752   }
3753 
3754   /// \returns an iterator that will iterate the elements in the order of
3755   /// insertion.
3756   iterator begin() {
3757     if (FirstValidElement == 0)
3758       SkipRemovedElements(FirstValidElement);
3759     return PhiNodeSetIterator(this, FirstValidElement);
3760   }
3761 
3762   /// \returns an iterator that points to the end of the collection.
3763   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3764 
3765   /// Returns the number of elements in the collection.
3766   size_t size() const { return NodeMap.size(); }
3767 
3768   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3769   size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); }
3770 
3771 private:
3772   /// Updates the CurrentIndex so that it will point to a valid element.
3773   ///
3774   /// If the element of NodeList at CurrentIndex is valid, it does not
3775   /// change it. If there are no more valid elements, it updates CurrentIndex
3776   /// to point to the end of the NodeList.
3777   void SkipRemovedElements(size_t &CurrentIndex) {
3778     while (CurrentIndex < NodeList.size()) {
3779       auto it = NodeMap.find(NodeList[CurrentIndex]);
3780       // If the element has been deleted and added again later, NodeMap will
3781       // point to a different index, so CurrentIndex will still be invalid.
3782       if (it != NodeMap.end() && it->second == CurrentIndex)
3783         break;
3784       ++CurrentIndex;
3785     }
3786   }
3787 };
3788 
3789 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3790     : Set(Set), CurrentIndex(Start) {}
3791 
3792 PHINode *PhiNodeSetIterator::operator*() const {
3793   assert(CurrentIndex < Set->NodeList.size() &&
3794          "PhiNodeSet access out of range");
3795   return Set->NodeList[CurrentIndex];
3796 }
3797 
3798 PhiNodeSetIterator &PhiNodeSetIterator::operator++() {
3799   assert(CurrentIndex < Set->NodeList.size() &&
3800          "PhiNodeSet access out of range");
3801   ++CurrentIndex;
3802   Set->SkipRemovedElements(CurrentIndex);
3803   return *this;
3804 }
3805 
3806 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3807   return CurrentIndex == RHS.CurrentIndex;
3808 }
3809 
3810 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3811   return !((*this) == RHS);
3812 }
3813 
3814 /// Keep track of simplification of Phi nodes.
3815 /// Accept the set of all phi nodes and erase phi node from this set
3816 /// if it is simplified.
3817 class SimplificationTracker {
3818   DenseMap<Value *, Value *> Storage;
3819   const SimplifyQuery &SQ;
3820   // Tracks newly created Phi nodes. The elements are iterated by insertion
3821   // order.
3822   PhiNodeSet AllPhiNodes;
3823   // Tracks newly created Select nodes.
3824   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3825 
3826 public:
3827   SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {}
3828 
3829   Value *Get(Value *V) {
3830     do {
3831       auto SV = Storage.find(V);
3832       if (SV == Storage.end())
3833         return V;
3834       V = SV->second;
3835     } while (true);
3836   }
3837 
3838   Value *Simplify(Value *Val) {
3839     SmallVector<Value *, 32> WorkList;
3840     SmallPtrSet<Value *, 32> Visited;
3841     WorkList.push_back(Val);
3842     while (!WorkList.empty()) {
3843       auto *P = WorkList.pop_back_val();
3844       if (!Visited.insert(P).second)
3845         continue;
3846       if (auto *PI = dyn_cast<Instruction>(P))
3847         if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) {
3848           for (auto *U : PI->users())
3849             WorkList.push_back(cast<Value>(U));
3850           Put(PI, V);
3851           PI->replaceAllUsesWith(V);
3852           if (auto *PHI = dyn_cast<PHINode>(PI))
3853             AllPhiNodes.erase(PHI);
3854           if (auto *Select = dyn_cast<SelectInst>(PI))
3855             AllSelectNodes.erase(Select);
3856           PI->eraseFromParent();
3857         }
3858     }
3859     return Get(Val);
3860   }
3861 
3862   void Put(Value *From, Value *To) { Storage.insert({From, To}); }
3863 
3864   void ReplacePhi(PHINode *From, PHINode *To) {
3865     Value *OldReplacement = Get(From);
3866     while (OldReplacement != From) {
3867       From = To;
3868       To = dyn_cast<PHINode>(OldReplacement);
3869       OldReplacement = Get(From);
3870     }
3871     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3872     Put(From, To);
3873     From->replaceAllUsesWith(To);
3874     AllPhiNodes.erase(From);
3875     From->eraseFromParent();
3876   }
3877 
3878   PhiNodeSet &newPhiNodes() { return AllPhiNodes; }
3879 
3880   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3881 
3882   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3883 
3884   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3885 
3886   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3887 
3888   void destroyNewNodes(Type *CommonType) {
3889     // For safe erasing, replace the uses with dummy value first.
3890     auto *Dummy = PoisonValue::get(CommonType);
3891     for (auto *I : AllPhiNodes) {
3892       I->replaceAllUsesWith(Dummy);
3893       I->eraseFromParent();
3894     }
3895     AllPhiNodes.clear();
3896     for (auto *I : AllSelectNodes) {
3897       I->replaceAllUsesWith(Dummy);
3898       I->eraseFromParent();
3899     }
3900     AllSelectNodes.clear();
3901   }
3902 };
3903 
3904 /// A helper class for combining addressing modes.
3905 class AddressingModeCombiner {
3906   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3907   typedef std::pair<PHINode *, PHINode *> PHIPair;
3908 
3909 private:
3910   /// The addressing modes we've collected.
3911   SmallVector<ExtAddrMode, 16> AddrModes;
3912 
3913   /// The field in which the AddrModes differ, when we have more than one.
3914   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3915 
3916   /// Are the AddrModes that we have all just equal to their original values?
3917   bool AllAddrModesTrivial = true;
3918 
3919   /// Common Type for all different fields in addressing modes.
3920   Type *CommonType = nullptr;
3921 
3922   /// SimplifyQuery for simplifyInstruction utility.
3923   const SimplifyQuery &SQ;
3924 
3925   /// Original Address.
3926   Value *Original;
3927 
3928   /// Common value among addresses
3929   Value *CommonValue = nullptr;
3930 
3931 public:
3932   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3933       : SQ(_SQ), Original(OriginalValue) {}
3934 
3935   ~AddressingModeCombiner() { eraseCommonValueIfDead(); }
3936 
3937   /// Get the combined AddrMode
3938   const ExtAddrMode &getAddrMode() const { return AddrModes[0]; }
3939 
3940   /// Add a new AddrMode if it's compatible with the AddrModes we already
3941   /// have.
3942   /// \return True iff we succeeded in doing so.
3943   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3944     // Take note of if we have any non-trivial AddrModes, as we need to detect
3945     // when all AddrModes are trivial as then we would introduce a phi or select
3946     // which just duplicates what's already there.
3947     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3948 
3949     // If this is the first addrmode then everything is fine.
3950     if (AddrModes.empty()) {
3951       AddrModes.emplace_back(NewAddrMode);
3952       return true;
3953     }
3954 
3955     // Figure out how different this is from the other address modes, which we
3956     // can do just by comparing against the first one given that we only care
3957     // about the cumulative difference.
3958     ExtAddrMode::FieldName ThisDifferentField =
3959         AddrModes[0].compare(NewAddrMode);
3960     if (DifferentField == ExtAddrMode::NoField)
3961       DifferentField = ThisDifferentField;
3962     else if (DifferentField != ThisDifferentField)
3963       DifferentField = ExtAddrMode::MultipleFields;
3964 
3965     // If NewAddrMode differs in more than one dimension we cannot handle it.
3966     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3967 
3968     // If Scale Field is different then we reject.
3969     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3970 
3971     // We also must reject the case when base offset is different and
3972     // scale reg is not null, we cannot handle this case due to merge of
3973     // different offsets will be used as ScaleReg.
3974     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3975                               !NewAddrMode.ScaledReg);
3976 
3977     // We also must reject the case when GV is different and BaseReg installed
3978     // due to we want to use base reg as a merge of GV values.
3979     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3980                               !NewAddrMode.HasBaseReg);
3981 
3982     // Even if NewAddMode is the same we still need to collect it due to
3983     // original value is different. And later we will need all original values
3984     // as anchors during finding the common Phi node.
3985     if (CanHandle)
3986       AddrModes.emplace_back(NewAddrMode);
3987     else
3988       AddrModes.clear();
3989 
3990     return CanHandle;
3991   }
3992 
3993   /// Combine the addressing modes we've collected into a single
3994   /// addressing mode.
3995   /// \return True iff we successfully combined them or we only had one so
3996   /// didn't need to combine them anyway.
3997   bool combineAddrModes() {
3998     // If we have no AddrModes then they can't be combined.
3999     if (AddrModes.size() == 0)
4000       return false;
4001 
4002     // A single AddrMode can trivially be combined.
4003     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
4004       return true;
4005 
4006     // If the AddrModes we collected are all just equal to the value they are
4007     // derived from then combining them wouldn't do anything useful.
4008     if (AllAddrModesTrivial)
4009       return false;
4010 
4011     if (!addrModeCombiningAllowed())
4012       return false;
4013 
4014     // Build a map between <original value, basic block where we saw it> to
4015     // value of base register.
4016     // Bail out if there is no common type.
4017     FoldAddrToValueMapping Map;
4018     if (!initializeMap(Map))
4019       return false;
4020 
4021     CommonValue = findCommon(Map);
4022     if (CommonValue)
4023       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
4024     return CommonValue != nullptr;
4025   }
4026 
4027 private:
4028   /// `CommonValue` may be a placeholder inserted by us.
4029   /// If the placeholder is not used, we should remove this dead instruction.
4030   void eraseCommonValueIfDead() {
4031     if (CommonValue && CommonValue->getNumUses() == 0)
4032       if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue))
4033         CommonInst->eraseFromParent();
4034   }
4035 
4036   /// Initialize Map with anchor values. For address seen
4037   /// we set the value of different field saw in this address.
4038   /// At the same time we find a common type for different field we will
4039   /// use to create new Phi/Select nodes. Keep it in CommonType field.
4040   /// Return false if there is no common type found.
4041   bool initializeMap(FoldAddrToValueMapping &Map) {
4042     // Keep track of keys where the value is null. We will need to replace it
4043     // with constant null when we know the common type.
4044     SmallVector<Value *, 2> NullValue;
4045     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
4046     for (auto &AM : AddrModes) {
4047       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
4048       if (DV) {
4049         auto *Type = DV->getType();
4050         if (CommonType && CommonType != Type)
4051           return false;
4052         CommonType = Type;
4053         Map[AM.OriginalValue] = DV;
4054       } else {
4055         NullValue.push_back(AM.OriginalValue);
4056       }
4057     }
4058     assert(CommonType && "At least one non-null value must be!");
4059     for (auto *V : NullValue)
4060       Map[V] = Constant::getNullValue(CommonType);
4061     return true;
4062   }
4063 
4064   /// We have mapping between value A and other value B where B was a field in
4065   /// addressing mode represented by A. Also we have an original value C
4066   /// representing an address we start with. Traversing from C through phi and
4067   /// selects we ended up with A's in a map. This utility function tries to find
4068   /// a value V which is a field in addressing mode C and traversing through phi
4069   /// nodes and selects we will end up in corresponded values B in a map.
4070   /// The utility will create a new Phi/Selects if needed.
4071   // The simple example looks as follows:
4072   // BB1:
4073   //   p1 = b1 + 40
4074   //   br cond BB2, BB3
4075   // BB2:
4076   //   p2 = b2 + 40
4077   //   br BB3
4078   // BB3:
4079   //   p = phi [p1, BB1], [p2, BB2]
4080   //   v = load p
4081   // Map is
4082   //   p1 -> b1
4083   //   p2 -> b2
4084   // Request is
4085   //   p -> ?
4086   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
4087   Value *findCommon(FoldAddrToValueMapping &Map) {
4088     // Tracks the simplification of newly created phi nodes. The reason we use
4089     // this mapping is because we will add new created Phi nodes in AddrToBase.
4090     // Simplification of Phi nodes is recursive, so some Phi node may
4091     // be simplified after we added it to AddrToBase. In reality this
4092     // simplification is possible only if original phi/selects were not
4093     // simplified yet.
4094     // Using this mapping we can find the current value in AddrToBase.
4095     SimplificationTracker ST(SQ);
4096 
4097     // First step, DFS to create PHI nodes for all intermediate blocks.
4098     // Also fill traverse order for the second step.
4099     SmallVector<Value *, 32> TraverseOrder;
4100     InsertPlaceholders(Map, TraverseOrder, ST);
4101 
4102     // Second Step, fill new nodes by merged values and simplify if possible.
4103     FillPlaceholders(Map, TraverseOrder, ST);
4104 
4105     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
4106       ST.destroyNewNodes(CommonType);
4107       return nullptr;
4108     }
4109 
4110     // Now we'd like to match New Phi nodes to existed ones.
4111     unsigned PhiNotMatchedCount = 0;
4112     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
4113       ST.destroyNewNodes(CommonType);
4114       return nullptr;
4115     }
4116 
4117     auto *Result = ST.Get(Map.find(Original)->second);
4118     if (Result) {
4119       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
4120       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
4121     }
4122     return Result;
4123   }
4124 
4125   /// Try to match PHI node to Candidate.
4126   /// Matcher tracks the matched Phi nodes.
4127   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
4128                     SmallSetVector<PHIPair, 8> &Matcher,
4129                     PhiNodeSet &PhiNodesToMatch) {
4130     SmallVector<PHIPair, 8> WorkList;
4131     Matcher.insert({PHI, Candidate});
4132     SmallSet<PHINode *, 8> MatchedPHIs;
4133     MatchedPHIs.insert(PHI);
4134     WorkList.push_back({PHI, Candidate});
4135     SmallSet<PHIPair, 8> Visited;
4136     while (!WorkList.empty()) {
4137       auto Item = WorkList.pop_back_val();
4138       if (!Visited.insert(Item).second)
4139         continue;
4140       // We iterate over all incoming values to Phi to compare them.
4141       // If values are different and both of them Phi and the first one is a
4142       // Phi we added (subject to match) and both of them is in the same basic
4143       // block then we can match our pair if values match. So we state that
4144       // these values match and add it to work list to verify that.
4145       for (auto *B : Item.first->blocks()) {
4146         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
4147         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
4148         if (FirstValue == SecondValue)
4149           continue;
4150 
4151         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
4152         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
4153 
4154         // One of them is not Phi or
4155         // The first one is not Phi node from the set we'd like to match or
4156         // Phi nodes from different basic blocks then
4157         // we will not be able to match.
4158         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
4159             FirstPhi->getParent() != SecondPhi->getParent())
4160           return false;
4161 
4162         // If we already matched them then continue.
4163         if (Matcher.count({FirstPhi, SecondPhi}))
4164           continue;
4165         // So the values are different and does not match. So we need them to
4166         // match. (But we register no more than one match per PHI node, so that
4167         // we won't later try to replace them twice.)
4168         if (MatchedPHIs.insert(FirstPhi).second)
4169           Matcher.insert({FirstPhi, SecondPhi});
4170         // But me must check it.
4171         WorkList.push_back({FirstPhi, SecondPhi});
4172       }
4173     }
4174     return true;
4175   }
4176 
4177   /// For the given set of PHI nodes (in the SimplificationTracker) try
4178   /// to find their equivalents.
4179   /// Returns false if this matching fails and creation of new Phi is disabled.
4180   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
4181                    unsigned &PhiNotMatchedCount) {
4182     // Matched and PhiNodesToMatch iterate their elements in a deterministic
4183     // order, so the replacements (ReplacePhi) are also done in a deterministic
4184     // order.
4185     SmallSetVector<PHIPair, 8> Matched;
4186     SmallPtrSet<PHINode *, 8> WillNotMatch;
4187     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
4188     while (PhiNodesToMatch.size()) {
4189       PHINode *PHI = *PhiNodesToMatch.begin();
4190 
4191       // Add us, if no Phi nodes in the basic block we do not match.
4192       WillNotMatch.clear();
4193       WillNotMatch.insert(PHI);
4194 
4195       // Traverse all Phis until we found equivalent or fail to do that.
4196       bool IsMatched = false;
4197       for (auto &P : PHI->getParent()->phis()) {
4198         // Skip new Phi nodes.
4199         if (PhiNodesToMatch.count(&P))
4200           continue;
4201         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
4202           break;
4203         // If it does not match, collect all Phi nodes from matcher.
4204         // if we end up with no match, them all these Phi nodes will not match
4205         // later.
4206         for (auto M : Matched)
4207           WillNotMatch.insert(M.first);
4208         Matched.clear();
4209       }
4210       if (IsMatched) {
4211         // Replace all matched values and erase them.
4212         for (auto MV : Matched)
4213           ST.ReplacePhi(MV.first, MV.second);
4214         Matched.clear();
4215         continue;
4216       }
4217       // If we are not allowed to create new nodes then bail out.
4218       if (!AllowNewPhiNodes)
4219         return false;
4220       // Just remove all seen values in matcher. They will not match anything.
4221       PhiNotMatchedCount += WillNotMatch.size();
4222       for (auto *P : WillNotMatch)
4223         PhiNodesToMatch.erase(P);
4224     }
4225     return true;
4226   }
4227   /// Fill the placeholders with values from predecessors and simplify them.
4228   void FillPlaceholders(FoldAddrToValueMapping &Map,
4229                         SmallVectorImpl<Value *> &TraverseOrder,
4230                         SimplificationTracker &ST) {
4231     while (!TraverseOrder.empty()) {
4232       Value *Current = TraverseOrder.pop_back_val();
4233       assert(Map.contains(Current) && "No node to fill!!!");
4234       Value *V = Map[Current];
4235 
4236       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
4237         // CurrentValue also must be Select.
4238         auto *CurrentSelect = cast<SelectInst>(Current);
4239         auto *TrueValue = CurrentSelect->getTrueValue();
4240         assert(Map.contains(TrueValue) && "No True Value!");
4241         Select->setTrueValue(ST.Get(Map[TrueValue]));
4242         auto *FalseValue = CurrentSelect->getFalseValue();
4243         assert(Map.contains(FalseValue) && "No False Value!");
4244         Select->setFalseValue(ST.Get(Map[FalseValue]));
4245       } else {
4246         // Must be a Phi node then.
4247         auto *PHI = cast<PHINode>(V);
4248         // Fill the Phi node with values from predecessors.
4249         for (auto *B : predecessors(PHI->getParent())) {
4250           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
4251           assert(Map.contains(PV) && "No predecessor Value!");
4252           PHI->addIncoming(ST.Get(Map[PV]), B);
4253         }
4254       }
4255       Map[Current] = ST.Simplify(V);
4256     }
4257   }
4258 
4259   /// Starting from original value recursively iterates over def-use chain up to
4260   /// known ending values represented in a map. For each traversed phi/select
4261   /// inserts a placeholder Phi or Select.
4262   /// Reports all new created Phi/Select nodes by adding them to set.
4263   /// Also reports and order in what values have been traversed.
4264   void InsertPlaceholders(FoldAddrToValueMapping &Map,
4265                           SmallVectorImpl<Value *> &TraverseOrder,
4266                           SimplificationTracker &ST) {
4267     SmallVector<Value *, 32> Worklist;
4268     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
4269            "Address must be a Phi or Select node");
4270     auto *Dummy = PoisonValue::get(CommonType);
4271     Worklist.push_back(Original);
4272     while (!Worklist.empty()) {
4273       Value *Current = Worklist.pop_back_val();
4274       // if it is already visited or it is an ending value then skip it.
4275       if (Map.contains(Current))
4276         continue;
4277       TraverseOrder.push_back(Current);
4278 
4279       // CurrentValue must be a Phi node or select. All others must be covered
4280       // by anchors.
4281       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
4282         // Is it OK to get metadata from OrigSelect?!
4283         // Create a Select placeholder with dummy value.
4284         SelectInst *Select =
4285             SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy,
4286                                CurrentSelect->getName(),
4287                                CurrentSelect->getIterator(), CurrentSelect);
4288         Map[Current] = Select;
4289         ST.insertNewSelect(Select);
4290         // We are interested in True and False values.
4291         Worklist.push_back(CurrentSelect->getTrueValue());
4292         Worklist.push_back(CurrentSelect->getFalseValue());
4293       } else {
4294         // It must be a Phi node then.
4295         PHINode *CurrentPhi = cast<PHINode>(Current);
4296         unsigned PredCount = CurrentPhi->getNumIncomingValues();
4297         PHINode *PHI =
4298             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator());
4299         Map[Current] = PHI;
4300         ST.insertNewPhi(PHI);
4301         append_range(Worklist, CurrentPhi->incoming_values());
4302       }
4303     }
4304   }
4305 
4306   bool addrModeCombiningAllowed() {
4307     if (DisableComplexAddrModes)
4308       return false;
4309     switch (DifferentField) {
4310     default:
4311       return false;
4312     case ExtAddrMode::BaseRegField:
4313       return AddrSinkCombineBaseReg;
4314     case ExtAddrMode::BaseGVField:
4315       return AddrSinkCombineBaseGV;
4316     case ExtAddrMode::BaseOffsField:
4317       return AddrSinkCombineBaseOffs;
4318     case ExtAddrMode::ScaledRegField:
4319       return AddrSinkCombineScaledReg;
4320     }
4321   }
4322 };
4323 } // end anonymous namespace
4324 
4325 /// Try adding ScaleReg*Scale to the current addressing mode.
4326 /// Return true and update AddrMode if this addr mode is legal for the target,
4327 /// false if not.
4328 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
4329                                              unsigned Depth) {
4330   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
4331   // mode.  Just process that directly.
4332   if (Scale == 1)
4333     return matchAddr(ScaleReg, Depth);
4334 
4335   // If the scale is 0, it takes nothing to add this.
4336   if (Scale == 0)
4337     return true;
4338 
4339   // If we already have a scale of this value, we can add to it, otherwise, we
4340   // need an available scale field.
4341   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
4342     return false;
4343 
4344   ExtAddrMode TestAddrMode = AddrMode;
4345 
4346   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
4347   // [A+B + A*7] -> [B+A*8].
4348   TestAddrMode.Scale += Scale;
4349   TestAddrMode.ScaledReg = ScaleReg;
4350 
4351   // If the new address isn't legal, bail out.
4352   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
4353     return false;
4354 
4355   // It was legal, so commit it.
4356   AddrMode = TestAddrMode;
4357 
4358   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
4359   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
4360   // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
4361   // go any further: we can reuse it and cannot eliminate it.
4362   ConstantInt *CI = nullptr;
4363   Value *AddLHS = nullptr;
4364   if (isa<Instruction>(ScaleReg) && // not a constant expr.
4365       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
4366       !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
4367     TestAddrMode.InBounds = false;
4368     TestAddrMode.ScaledReg = AddLHS;
4369     TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
4370 
4371     // If this addressing mode is legal, commit it and remember that we folded
4372     // this instruction.
4373     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
4374       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
4375       AddrMode = TestAddrMode;
4376       return true;
4377     }
4378     // Restore status quo.
4379     TestAddrMode = AddrMode;
4380   }
4381 
4382   // If this is an add recurrence with a constant step, return the increment
4383   // instruction and the canonicalized step.
4384   auto GetConstantStep =
4385       [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> {
4386     auto *PN = dyn_cast<PHINode>(V);
4387     if (!PN)
4388       return std::nullopt;
4389     auto IVInc = getIVIncrement(PN, &LI);
4390     if (!IVInc)
4391       return std::nullopt;
4392     // TODO: The result of the intrinsics above is two-complement. However when
4393     // IV inc is expressed as add or sub, iv.next is potentially a poison value.
4394     // If it has nuw or nsw flags, we need to make sure that these flags are
4395     // inferrable at the point of memory instruction. Otherwise we are replacing
4396     // well-defined two-complement computation with poison. Currently, to avoid
4397     // potentially complex analysis needed to prove this, we reject such cases.
4398     if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
4399       if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
4400         return std::nullopt;
4401     if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
4402       return std::make_pair(IVInc->first, ConstantStep->getValue());
4403     return std::nullopt;
4404   };
4405 
4406   // Try to account for the following special case:
4407   // 1. ScaleReg is an inductive variable;
4408   // 2. We use it with non-zero offset;
4409   // 3. IV's increment is available at the point of memory instruction.
4410   //
4411   // In this case, we may reuse the IV increment instead of the IV Phi to
4412   // achieve the following advantages:
4413   // 1. If IV step matches the offset, we will have no need in the offset;
4414   // 2. Even if they don't match, we will reduce the overlap of living IV
4415   //    and IV increment, that will potentially lead to better register
4416   //    assignment.
4417   if (AddrMode.BaseOffs) {
4418     if (auto IVStep = GetConstantStep(ScaleReg)) {
4419       Instruction *IVInc = IVStep->first;
4420       // The following assert is important to ensure a lack of infinite loops.
4421       // This transforms is (intentionally) the inverse of the one just above.
4422       // If they don't agree on the definition of an increment, we'd alternate
4423       // back and forth indefinitely.
4424       assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
4425       APInt Step = IVStep->second;
4426       APInt Offset = Step * AddrMode.Scale;
4427       if (Offset.isSignedIntN(64)) {
4428         TestAddrMode.InBounds = false;
4429         TestAddrMode.ScaledReg = IVInc;
4430         TestAddrMode.BaseOffs -= Offset.getLimitedValue();
4431         // If this addressing mode is legal, commit it..
4432         // (Note that we defer the (expensive) domtree base legality check
4433         // to the very last possible point.)
4434         if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
4435             getDTFn().dominates(IVInc, MemoryInst)) {
4436           AddrModeInsts.push_back(cast<Instruction>(IVInc));
4437           AddrMode = TestAddrMode;
4438           return true;
4439         }
4440         // Restore status quo.
4441         TestAddrMode = AddrMode;
4442       }
4443     }
4444   }
4445 
4446   // Otherwise, just return what we have.
4447   return true;
4448 }
4449 
4450 /// This is a little filter, which returns true if an addressing computation
4451 /// involving I might be folded into a load/store accessing it.
4452 /// This doesn't need to be perfect, but needs to accept at least
4453 /// the set of instructions that MatchOperationAddr can.
4454 static bool MightBeFoldableInst(Instruction *I) {
4455   switch (I->getOpcode()) {
4456   case Instruction::BitCast:
4457   case Instruction::AddrSpaceCast:
4458     // Don't touch identity bitcasts.
4459     if (I->getType() == I->getOperand(0)->getType())
4460       return false;
4461     return I->getType()->isIntOrPtrTy();
4462   case Instruction::PtrToInt:
4463     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4464     return true;
4465   case Instruction::IntToPtr:
4466     // We know the input is intptr_t, so this is foldable.
4467     return true;
4468   case Instruction::Add:
4469     return true;
4470   case Instruction::Mul:
4471   case Instruction::Shl:
4472     // Can only handle X*C and X << C.
4473     return isa<ConstantInt>(I->getOperand(1));
4474   case Instruction::GetElementPtr:
4475     return true;
4476   default:
4477     return false;
4478   }
4479 }
4480 
4481 /// Check whether or not \p Val is a legal instruction for \p TLI.
4482 /// \note \p Val is assumed to be the product of some type promotion.
4483 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4484 /// to be legal, as the non-promoted value would have had the same state.
4485 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
4486                                        const DataLayout &DL, Value *Val) {
4487   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4488   if (!PromotedInst)
4489     return false;
4490   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4491   // If the ISDOpcode is undefined, it was undefined before the promotion.
4492   if (!ISDOpcode)
4493     return true;
4494   // Otherwise, check if the promoted instruction is legal or not.
4495   return TLI.isOperationLegalOrCustom(
4496       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4497 }
4498 
4499 namespace {
4500 
4501 /// Hepler class to perform type promotion.
4502 class TypePromotionHelper {
4503   /// Utility function to add a promoted instruction \p ExtOpnd to
4504   /// \p PromotedInsts and record the type of extension we have seen.
4505   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4506                               Instruction *ExtOpnd, bool IsSExt) {
4507     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4508     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
4509     if (It != PromotedInsts.end()) {
4510       // If the new extension is same as original, the information in
4511       // PromotedInsts[ExtOpnd] is still correct.
4512       if (It->second.getInt() == ExtTy)
4513         return;
4514 
4515       // Now the new extension is different from old extension, we make
4516       // the type information invalid by setting extension type to
4517       // BothExtension.
4518       ExtTy = BothExtension;
4519     }
4520     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4521   }
4522 
4523   /// Utility function to query the original type of instruction \p Opnd
4524   /// with a matched extension type. If the extension doesn't match, we
4525   /// cannot use the information we had on the original type.
4526   /// BothExtension doesn't match any extension type.
4527   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4528                                  Instruction *Opnd, bool IsSExt) {
4529     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4530     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4531     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4532       return It->second.getPointer();
4533     return nullptr;
4534   }
4535 
4536   /// Utility function to check whether or not a sign or zero extension
4537   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4538   /// either using the operands of \p Inst or promoting \p Inst.
4539   /// The type of the extension is defined by \p IsSExt.
4540   /// In other words, check if:
4541   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4542   /// #1 Promotion applies:
4543   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4544   /// #2 Operand reuses:
4545   /// ext opnd1 to ConsideredExtType.
4546   /// \p PromotedInsts maps the instructions to their type before promotion.
4547   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4548                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
4549 
4550   /// Utility function to determine if \p OpIdx should be promoted when
4551   /// promoting \p Inst.
4552   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4553     return !(isa<SelectInst>(Inst) && OpIdx == 0);
4554   }
4555 
4556   /// Utility function to promote the operand of \p Ext when this
4557   /// operand is a promotable trunc or sext or zext.
4558   /// \p PromotedInsts maps the instructions to their type before promotion.
4559   /// \p CreatedInstsCost[out] contains the cost of all instructions
4560   /// created to promote the operand of Ext.
4561   /// Newly added extensions are inserted in \p Exts.
4562   /// Newly added truncates are inserted in \p Truncs.
4563   /// Should never be called directly.
4564   /// \return The promoted value which is used instead of Ext.
4565   static Value *promoteOperandForTruncAndAnyExt(
4566       Instruction *Ext, TypePromotionTransaction &TPT,
4567       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4568       SmallVectorImpl<Instruction *> *Exts,
4569       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4570 
4571   /// Utility function to promote the operand of \p Ext when this
4572   /// operand is promotable and is not a supported trunc or sext.
4573   /// \p PromotedInsts maps the instructions to their type before promotion.
4574   /// \p CreatedInstsCost[out] contains the cost of all the instructions
4575   /// created to promote the operand of Ext.
4576   /// Newly added extensions are inserted in \p Exts.
4577   /// Newly added truncates are inserted in \p Truncs.
4578   /// Should never be called directly.
4579   /// \return The promoted value which is used instead of Ext.
4580   static Value *promoteOperandForOther(Instruction *Ext,
4581                                        TypePromotionTransaction &TPT,
4582                                        InstrToOrigTy &PromotedInsts,
4583                                        unsigned &CreatedInstsCost,
4584                                        SmallVectorImpl<Instruction *> *Exts,
4585                                        SmallVectorImpl<Instruction *> *Truncs,
4586                                        const TargetLowering &TLI, bool IsSExt);
4587 
4588   /// \see promoteOperandForOther.
4589   static Value *signExtendOperandForOther(
4590       Instruction *Ext, TypePromotionTransaction &TPT,
4591       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4592       SmallVectorImpl<Instruction *> *Exts,
4593       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4594     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4595                                   Exts, Truncs, TLI, true);
4596   }
4597 
4598   /// \see promoteOperandForOther.
4599   static Value *zeroExtendOperandForOther(
4600       Instruction *Ext, TypePromotionTransaction &TPT,
4601       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4602       SmallVectorImpl<Instruction *> *Exts,
4603       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4604     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4605                                   Exts, Truncs, TLI, false);
4606   }
4607 
4608 public:
4609   /// Type for the utility function that promotes the operand of Ext.
4610   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4611                             InstrToOrigTy &PromotedInsts,
4612                             unsigned &CreatedInstsCost,
4613                             SmallVectorImpl<Instruction *> *Exts,
4614                             SmallVectorImpl<Instruction *> *Truncs,
4615                             const TargetLowering &TLI);
4616 
4617   /// Given a sign/zero extend instruction \p Ext, return the appropriate
4618   /// action to promote the operand of \p Ext instead of using Ext.
4619   /// \return NULL if no promotable action is possible with the current
4620   /// sign extension.
4621   /// \p InsertedInsts keeps track of all the instructions inserted by the
4622   /// other CodeGenPrepare optimizations. This information is important
4623   /// because we do not want to promote these instructions as CodeGenPrepare
4624   /// will reinsert them later. Thus creating an infinite loop: create/remove.
4625   /// \p PromotedInsts maps the instructions to their type before promotion.
4626   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4627                           const TargetLowering &TLI,
4628                           const InstrToOrigTy &PromotedInsts);
4629 };
4630 
4631 } // end anonymous namespace
4632 
4633 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4634                                         Type *ConsideredExtType,
4635                                         const InstrToOrigTy &PromotedInsts,
4636                                         bool IsSExt) {
4637   // The promotion helper does not know how to deal with vector types yet.
4638   // To be able to fix that, we would need to fix the places where we
4639   // statically extend, e.g., constants and such.
4640   if (Inst->getType()->isVectorTy())
4641     return false;
4642 
4643   // We can always get through zext.
4644   if (isa<ZExtInst>(Inst))
4645     return true;
4646 
4647   // sext(sext) is ok too.
4648   if (IsSExt && isa<SExtInst>(Inst))
4649     return true;
4650 
4651   // We can get through binary operator, if it is legal. In other words, the
4652   // binary operator must have a nuw or nsw flag.
4653   if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst))
4654     if (isa<OverflowingBinaryOperator>(BinOp) &&
4655         ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4656          (IsSExt && BinOp->hasNoSignedWrap())))
4657       return true;
4658 
4659   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4660   if ((Inst->getOpcode() == Instruction::And ||
4661        Inst->getOpcode() == Instruction::Or))
4662     return true;
4663 
4664   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4665   if (Inst->getOpcode() == Instruction::Xor) {
4666     // Make sure it is not a NOT.
4667     if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)))
4668       if (!Cst->getValue().isAllOnes())
4669         return true;
4670   }
4671 
4672   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4673   // It may change a poisoned value into a regular value, like
4674   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
4675   //          poisoned value                    regular value
4676   // It should be OK since undef covers valid value.
4677   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4678     return true;
4679 
4680   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4681   // It may change a poisoned value into a regular value, like
4682   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
4683   //          poisoned value                    regular value
4684   // It should be OK since undef covers valid value.
4685   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4686     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4687     if (ExtInst->hasOneUse()) {
4688       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4689       if (AndInst && AndInst->getOpcode() == Instruction::And) {
4690         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4691         if (Cst &&
4692             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4693           return true;
4694       }
4695     }
4696   }
4697 
4698   // Check if we can do the following simplification.
4699   // ext(trunc(opnd)) --> ext(opnd)
4700   if (!isa<TruncInst>(Inst))
4701     return false;
4702 
4703   Value *OpndVal = Inst->getOperand(0);
4704   // Check if we can use this operand in the extension.
4705   // If the type is larger than the result type of the extension, we cannot.
4706   if (!OpndVal->getType()->isIntegerTy() ||
4707       OpndVal->getType()->getIntegerBitWidth() >
4708           ConsideredExtType->getIntegerBitWidth())
4709     return false;
4710 
4711   // If the operand of the truncate is not an instruction, we will not have
4712   // any information on the dropped bits.
4713   // (Actually we could for constant but it is not worth the extra logic).
4714   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4715   if (!Opnd)
4716     return false;
4717 
4718   // Check if the source of the type is narrow enough.
4719   // I.e., check that trunc just drops extended bits of the same kind of
4720   // the extension.
4721   // #1 get the type of the operand and check the kind of the extended bits.
4722   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4723   if (OpndType)
4724     ;
4725   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4726     OpndType = Opnd->getOperand(0)->getType();
4727   else
4728     return false;
4729 
4730   // #2 check that the truncate just drops extended bits.
4731   return Inst->getType()->getIntegerBitWidth() >=
4732          OpndType->getIntegerBitWidth();
4733 }
4734 
4735 TypePromotionHelper::Action TypePromotionHelper::getAction(
4736     Instruction *Ext, const SetOfInstrs &InsertedInsts,
4737     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4738   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4739          "Unexpected instruction type");
4740   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4741   Type *ExtTy = Ext->getType();
4742   bool IsSExt = isa<SExtInst>(Ext);
4743   // If the operand of the extension is not an instruction, we cannot
4744   // get through.
4745   // If it, check we can get through.
4746   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4747     return nullptr;
4748 
4749   // Do not promote if the operand has been added by codegenprepare.
4750   // Otherwise, it means we are undoing an optimization that is likely to be
4751   // redone, thus causing potential infinite loop.
4752   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4753     return nullptr;
4754 
4755   // SExt or Trunc instructions.
4756   // Return the related handler.
4757   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4758       isa<ZExtInst>(ExtOpnd))
4759     return promoteOperandForTruncAndAnyExt;
4760 
4761   // Regular instruction.
4762   // Abort early if we will have to insert non-free instructions.
4763   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4764     return nullptr;
4765   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4766 }
4767 
4768 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4769     Instruction *SExt, TypePromotionTransaction &TPT,
4770     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4771     SmallVectorImpl<Instruction *> *Exts,
4772     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4773   // By construction, the operand of SExt is an instruction. Otherwise we cannot
4774   // get through it and this method should not be called.
4775   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4776   Value *ExtVal = SExt;
4777   bool HasMergedNonFreeExt = false;
4778   if (isa<ZExtInst>(SExtOpnd)) {
4779     // Replace s|zext(zext(opnd))
4780     // => zext(opnd).
4781     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4782     Value *ZExt =
4783         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4784     TPT.replaceAllUsesWith(SExt, ZExt);
4785     TPT.eraseInstruction(SExt);
4786     ExtVal = ZExt;
4787   } else {
4788     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4789     // => z|sext(opnd).
4790     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4791   }
4792   CreatedInstsCost = 0;
4793 
4794   // Remove dead code.
4795   if (SExtOpnd->use_empty())
4796     TPT.eraseInstruction(SExtOpnd);
4797 
4798   // Check if the extension is still needed.
4799   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4800   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4801     if (ExtInst) {
4802       if (Exts)
4803         Exts->push_back(ExtInst);
4804       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4805     }
4806     return ExtVal;
4807   }
4808 
4809   // At this point we have: ext ty opnd to ty.
4810   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4811   Value *NextVal = ExtInst->getOperand(0);
4812   TPT.eraseInstruction(ExtInst, NextVal);
4813   return NextVal;
4814 }
4815 
4816 Value *TypePromotionHelper::promoteOperandForOther(
4817     Instruction *Ext, TypePromotionTransaction &TPT,
4818     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4819     SmallVectorImpl<Instruction *> *Exts,
4820     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4821     bool IsSExt) {
4822   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4823   // get through it and this method should not be called.
4824   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4825   CreatedInstsCost = 0;
4826   if (!ExtOpnd->hasOneUse()) {
4827     // ExtOpnd will be promoted.
4828     // All its uses, but Ext, will need to use a truncated value of the
4829     // promoted version.
4830     // Create the truncate now.
4831     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4832     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4833       // Insert it just after the definition.
4834       ITrunc->moveAfter(ExtOpnd);
4835       if (Truncs)
4836         Truncs->push_back(ITrunc);
4837     }
4838 
4839     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4840     // Restore the operand of Ext (which has been replaced by the previous call
4841     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4842     TPT.setOperand(Ext, 0, ExtOpnd);
4843   }
4844 
4845   // Get through the Instruction:
4846   // 1. Update its type.
4847   // 2. Replace the uses of Ext by Inst.
4848   // 3. Extend each operand that needs to be extended.
4849 
4850   // Remember the original type of the instruction before promotion.
4851   // This is useful to know that the high bits are sign extended bits.
4852   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4853   // Step #1.
4854   TPT.mutateType(ExtOpnd, Ext->getType());
4855   // Step #2.
4856   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4857   // Step #3.
4858   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4859   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4860        ++OpIdx) {
4861     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4862     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4863         !shouldExtOperand(ExtOpnd, OpIdx)) {
4864       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4865       continue;
4866     }
4867     // Check if we can statically extend the operand.
4868     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4869     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4870       LLVM_DEBUG(dbgs() << "Statically extend\n");
4871       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4872       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4873                             : Cst->getValue().zext(BitWidth);
4874       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4875       continue;
4876     }
4877     // UndefValue are typed, so we have to statically sign extend them.
4878     if (isa<UndefValue>(Opnd)) {
4879       LLVM_DEBUG(dbgs() << "Statically extend\n");
4880       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4881       continue;
4882     }
4883 
4884     // Otherwise we have to explicitly sign extend the operand.
4885     Value *ValForExtOpnd = IsSExt
4886                                ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType())
4887                                : TPT.createZExt(ExtOpnd, Opnd, Ext->getType());
4888     TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4889     Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd);
4890     if (!InstForExtOpnd)
4891       continue;
4892 
4893     if (Exts)
4894       Exts->push_back(InstForExtOpnd);
4895 
4896     CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd);
4897   }
4898   LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4899   TPT.eraseInstruction(Ext);
4900   return ExtOpnd;
4901 }
4902 
4903 /// Check whether or not promoting an instruction to a wider type is profitable.
4904 /// \p NewCost gives the cost of extension instructions created by the
4905 /// promotion.
4906 /// \p OldCost gives the cost of extension instructions before the promotion
4907 /// plus the number of instructions that have been
4908 /// matched in the addressing mode the promotion.
4909 /// \p PromotedOperand is the value that has been promoted.
4910 /// \return True if the promotion is profitable, false otherwise.
4911 bool AddressingModeMatcher::isPromotionProfitable(
4912     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4913   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4914                     << '\n');
4915   // The cost of the new extensions is greater than the cost of the
4916   // old extension plus what we folded.
4917   // This is not profitable.
4918   if (NewCost > OldCost)
4919     return false;
4920   if (NewCost < OldCost)
4921     return true;
4922   // The promotion is neutral but it may help folding the sign extension in
4923   // loads for instance.
4924   // Check that we did not create an illegal instruction.
4925   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4926 }
4927 
4928 /// Given an instruction or constant expr, see if we can fold the operation
4929 /// into the addressing mode. If so, update the addressing mode and return
4930 /// true, otherwise return false without modifying AddrMode.
4931 /// If \p MovedAway is not NULL, it contains the information of whether or
4932 /// not AddrInst has to be folded into the addressing mode on success.
4933 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4934 /// because it has been moved away.
4935 /// Thus AddrInst must not be added in the matched instructions.
4936 /// This state can happen when AddrInst is a sext, since it may be moved away.
4937 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4938 /// not be referenced anymore.
4939 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4940                                                unsigned Depth,
4941                                                bool *MovedAway) {
4942   // Avoid exponential behavior on extremely deep expression trees.
4943   if (Depth >= 5)
4944     return false;
4945 
4946   // By default, all matched instructions stay in place.
4947   if (MovedAway)
4948     *MovedAway = false;
4949 
4950   switch (Opcode) {
4951   case Instruction::PtrToInt:
4952     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4953     return matchAddr(AddrInst->getOperand(0), Depth);
4954   case Instruction::IntToPtr: {
4955     auto AS = AddrInst->getType()->getPointerAddressSpace();
4956     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4957     // This inttoptr is a no-op if the integer type is pointer sized.
4958     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4959       return matchAddr(AddrInst->getOperand(0), Depth);
4960     return false;
4961   }
4962   case Instruction::BitCast:
4963     // BitCast is always a noop, and we can handle it as long as it is
4964     // int->int or pointer->pointer (we don't want int<->fp or something).
4965     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4966         // Don't touch identity bitcasts.  These were probably put here by LSR,
4967         // and we don't want to mess around with them.  Assume it knows what it
4968         // is doing.
4969         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4970       return matchAddr(AddrInst->getOperand(0), Depth);
4971     return false;
4972   case Instruction::AddrSpaceCast: {
4973     unsigned SrcAS =
4974         AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4975     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4976     if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4977       return matchAddr(AddrInst->getOperand(0), Depth);
4978     return false;
4979   }
4980   case Instruction::Add: {
4981     // Check to see if we can merge in one operand, then the other.  If so, we
4982     // win.
4983     ExtAddrMode BackupAddrMode = AddrMode;
4984     unsigned OldSize = AddrModeInsts.size();
4985     // Start a transaction at this point.
4986     // The LHS may match but not the RHS.
4987     // Therefore, we need a higher level restoration point to undo partially
4988     // matched operation.
4989     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4990         TPT.getRestorationPoint();
4991 
4992     // Try to match an integer constant second to increase its chance of ending
4993     // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`.
4994     int First = 0, Second = 1;
4995     if (isa<ConstantInt>(AddrInst->getOperand(First))
4996       && !isa<ConstantInt>(AddrInst->getOperand(Second)))
4997         std::swap(First, Second);
4998     AddrMode.InBounds = false;
4999     if (matchAddr(AddrInst->getOperand(First), Depth + 1) &&
5000         matchAddr(AddrInst->getOperand(Second), Depth + 1))
5001       return true;
5002 
5003     // Restore the old addr mode info.
5004     AddrMode = BackupAddrMode;
5005     AddrModeInsts.resize(OldSize);
5006     TPT.rollback(LastKnownGood);
5007 
5008     // Otherwise this was over-aggressive.  Try merging operands in the opposite
5009     // order.
5010     if (matchAddr(AddrInst->getOperand(Second), Depth + 1) &&
5011         matchAddr(AddrInst->getOperand(First), Depth + 1))
5012       return true;
5013 
5014     // Otherwise we definitely can't merge the ADD in.
5015     AddrMode = BackupAddrMode;
5016     AddrModeInsts.resize(OldSize);
5017     TPT.rollback(LastKnownGood);
5018     break;
5019   }
5020   // case Instruction::Or:
5021   //  TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
5022   // break;
5023   case Instruction::Mul:
5024   case Instruction::Shl: {
5025     // Can only handle X*C and X << C.
5026     AddrMode.InBounds = false;
5027     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
5028     if (!RHS || RHS->getBitWidth() > 64)
5029       return false;
5030     int64_t Scale = Opcode == Instruction::Shl
5031                         ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1)
5032                         : RHS->getSExtValue();
5033 
5034     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
5035   }
5036   case Instruction::GetElementPtr: {
5037     // Scan the GEP.  We check it if it contains constant offsets and at most
5038     // one variable offset.
5039     int VariableOperand = -1;
5040     unsigned VariableScale = 0;
5041 
5042     int64_t ConstantOffset = 0;
5043     gep_type_iterator GTI = gep_type_begin(AddrInst);
5044     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
5045       if (StructType *STy = GTI.getStructTypeOrNull()) {
5046         const StructLayout *SL = DL.getStructLayout(STy);
5047         unsigned Idx =
5048             cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
5049         ConstantOffset += SL->getElementOffset(Idx);
5050       } else {
5051         TypeSize TS = GTI.getSequentialElementStride(DL);
5052         if (TS.isNonZero()) {
5053           // The optimisations below currently only work for fixed offsets.
5054           if (TS.isScalable())
5055             return false;
5056           int64_t TypeSize = TS.getFixedValue();
5057           if (ConstantInt *CI =
5058                   dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
5059             const APInt &CVal = CI->getValue();
5060             if (CVal.getSignificantBits() <= 64) {
5061               ConstantOffset += CVal.getSExtValue() * TypeSize;
5062               continue;
5063             }
5064           }
5065           // We only allow one variable index at the moment.
5066           if (VariableOperand != -1)
5067             return false;
5068 
5069           // Remember the variable index.
5070           VariableOperand = i;
5071           VariableScale = TypeSize;
5072         }
5073       }
5074     }
5075 
5076     // A common case is for the GEP to only do a constant offset.  In this case,
5077     // just add it to the disp field and check validity.
5078     if (VariableOperand == -1) {
5079       AddrMode.BaseOffs += ConstantOffset;
5080       if (matchAddr(AddrInst->getOperand(0), Depth + 1)) {
5081           if (!cast<GEPOperator>(AddrInst)->isInBounds())
5082             AddrMode.InBounds = false;
5083           return true;
5084       }
5085       AddrMode.BaseOffs -= ConstantOffset;
5086 
5087       if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
5088           TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
5089           ConstantOffset > 0) {
5090           // Record GEPs with non-zero offsets as candidates for splitting in
5091           // the event that the offset cannot fit into the r+i addressing mode.
5092           // Simple and common case that only one GEP is used in calculating the
5093           // address for the memory access.
5094           Value *Base = AddrInst->getOperand(0);
5095           auto *BaseI = dyn_cast<Instruction>(Base);
5096           auto *GEP = cast<GetElementPtrInst>(AddrInst);
5097           if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
5098               (BaseI && !isa<CastInst>(BaseI) &&
5099                !isa<GetElementPtrInst>(BaseI))) {
5100             // Make sure the parent block allows inserting non-PHI instructions
5101             // before the terminator.
5102             BasicBlock *Parent = BaseI ? BaseI->getParent()
5103                                        : &GEP->getFunction()->getEntryBlock();
5104             if (!Parent->getTerminator()->isEHPad())
5105             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
5106           }
5107       }
5108 
5109       return false;
5110     }
5111 
5112     // Save the valid addressing mode in case we can't match.
5113     ExtAddrMode BackupAddrMode = AddrMode;
5114     unsigned OldSize = AddrModeInsts.size();
5115 
5116     // See if the scale and offset amount is valid for this target.
5117     AddrMode.BaseOffs += ConstantOffset;
5118     if (!cast<GEPOperator>(AddrInst)->isInBounds())
5119       AddrMode.InBounds = false;
5120 
5121     // Match the base operand of the GEP.
5122     if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) {
5123       // If it couldn't be matched, just stuff the value in a register.
5124       if (AddrMode.HasBaseReg) {
5125         AddrMode = BackupAddrMode;
5126         AddrModeInsts.resize(OldSize);
5127         return false;
5128       }
5129       AddrMode.HasBaseReg = true;
5130       AddrMode.BaseReg = AddrInst->getOperand(0);
5131     }
5132 
5133     // Match the remaining variable portion of the GEP.
5134     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
5135                           Depth)) {
5136       // If it couldn't be matched, try stuffing the base into a register
5137       // instead of matching it, and retrying the match of the scale.
5138       AddrMode = BackupAddrMode;
5139       AddrModeInsts.resize(OldSize);
5140       if (AddrMode.HasBaseReg)
5141         return false;
5142       AddrMode.HasBaseReg = true;
5143       AddrMode.BaseReg = AddrInst->getOperand(0);
5144       AddrMode.BaseOffs += ConstantOffset;
5145       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
5146                             VariableScale, Depth)) {
5147         // If even that didn't work, bail.
5148         AddrMode = BackupAddrMode;
5149         AddrModeInsts.resize(OldSize);
5150         return false;
5151       }
5152     }
5153 
5154     return true;
5155   }
5156   case Instruction::SExt:
5157   case Instruction::ZExt: {
5158     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
5159     if (!Ext)
5160       return false;
5161 
5162     // Try to move this ext out of the way of the addressing mode.
5163     // Ask for a method for doing so.
5164     TypePromotionHelper::Action TPH =
5165         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
5166     if (!TPH)
5167       return false;
5168 
5169     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5170         TPT.getRestorationPoint();
5171     unsigned CreatedInstsCost = 0;
5172     unsigned ExtCost = !TLI.isExtFree(Ext);
5173     Value *PromotedOperand =
5174         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
5175     // SExt has been moved away.
5176     // Thus either it will be rematched later in the recursive calls or it is
5177     // gone. Anyway, we must not fold it into the addressing mode at this point.
5178     // E.g.,
5179     // op = add opnd, 1
5180     // idx = ext op
5181     // addr = gep base, idx
5182     // is now:
5183     // promotedOpnd = ext opnd            <- no match here
5184     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
5185     // addr = gep base, op                <- match
5186     if (MovedAway)
5187       *MovedAway = true;
5188 
5189     assert(PromotedOperand &&
5190            "TypePromotionHelper should have filtered out those cases");
5191 
5192     ExtAddrMode BackupAddrMode = AddrMode;
5193     unsigned OldSize = AddrModeInsts.size();
5194 
5195     if (!matchAddr(PromotedOperand, Depth) ||
5196         // The total of the new cost is equal to the cost of the created
5197         // instructions.
5198         // The total of the old cost is equal to the cost of the extension plus
5199         // what we have saved in the addressing mode.
5200         !isPromotionProfitable(CreatedInstsCost,
5201                                ExtCost + (AddrModeInsts.size() - OldSize),
5202                                PromotedOperand)) {
5203       AddrMode = BackupAddrMode;
5204       AddrModeInsts.resize(OldSize);
5205       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
5206       TPT.rollback(LastKnownGood);
5207       return false;
5208     }
5209     return true;
5210   }
5211   case Instruction::Call:
5212     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) {
5213       if (II->getIntrinsicID() == Intrinsic::threadlocal_address) {
5214         GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0));
5215         if (TLI.addressingModeSupportsTLS(GV))
5216           return matchAddr(AddrInst->getOperand(0), Depth);
5217       }
5218     }
5219     break;
5220   }
5221   return false;
5222 }
5223 
5224 /// If we can, try to add the value of 'Addr' into the current addressing mode.
5225 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
5226 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
5227 /// for the target.
5228 ///
5229 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
5230   // Start a transaction at this point that we will rollback if the matching
5231   // fails.
5232   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5233       TPT.getRestorationPoint();
5234   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
5235     if (CI->getValue().isSignedIntN(64)) {
5236       // Fold in immediates if legal for the target.
5237       AddrMode.BaseOffs += CI->getSExtValue();
5238       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5239         return true;
5240       AddrMode.BaseOffs -= CI->getSExtValue();
5241     }
5242   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
5243     // If this is a global variable, try to fold it into the addressing mode.
5244     if (!AddrMode.BaseGV) {
5245       AddrMode.BaseGV = GV;
5246       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5247         return true;
5248       AddrMode.BaseGV = nullptr;
5249     }
5250   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
5251     ExtAddrMode BackupAddrMode = AddrMode;
5252     unsigned OldSize = AddrModeInsts.size();
5253 
5254     // Check to see if it is possible to fold this operation.
5255     bool MovedAway = false;
5256     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
5257       // This instruction may have been moved away. If so, there is nothing
5258       // to check here.
5259       if (MovedAway)
5260         return true;
5261       // Okay, it's possible to fold this.  Check to see if it is actually
5262       // *profitable* to do so.  We use a simple cost model to avoid increasing
5263       // register pressure too much.
5264       if (I->hasOneUse() ||
5265           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
5266         AddrModeInsts.push_back(I);
5267         return true;
5268       }
5269 
5270       // It isn't profitable to do this, roll back.
5271       AddrMode = BackupAddrMode;
5272       AddrModeInsts.resize(OldSize);
5273       TPT.rollback(LastKnownGood);
5274     }
5275   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
5276     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
5277       return true;
5278     TPT.rollback(LastKnownGood);
5279   } else if (isa<ConstantPointerNull>(Addr)) {
5280     // Null pointer gets folded without affecting the addressing mode.
5281     return true;
5282   }
5283 
5284   // Worse case, the target should support [reg] addressing modes. :)
5285   if (!AddrMode.HasBaseReg) {
5286     AddrMode.HasBaseReg = true;
5287     AddrMode.BaseReg = Addr;
5288     // Still check for legality in case the target supports [imm] but not [i+r].
5289     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5290       return true;
5291     AddrMode.HasBaseReg = false;
5292     AddrMode.BaseReg = nullptr;
5293   }
5294 
5295   // If the base register is already taken, see if we can do [r+r].
5296   if (AddrMode.Scale == 0) {
5297     AddrMode.Scale = 1;
5298     AddrMode.ScaledReg = Addr;
5299     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5300       return true;
5301     AddrMode.Scale = 0;
5302     AddrMode.ScaledReg = nullptr;
5303   }
5304   // Couldn't match.
5305   TPT.rollback(LastKnownGood);
5306   return false;
5307 }
5308 
5309 /// Check to see if all uses of OpVal by the specified inline asm call are due
5310 /// to memory operands. If so, return true, otherwise return false.
5311 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
5312                                     const TargetLowering &TLI,
5313                                     const TargetRegisterInfo &TRI) {
5314   const Function *F = CI->getFunction();
5315   TargetLowering::AsmOperandInfoVector TargetConstraints =
5316       TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI);
5317 
5318   for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5319     // Compute the constraint code and ConstraintType to use.
5320     TLI.ComputeConstraintToUse(OpInfo, SDValue());
5321 
5322     // If this asm operand is our Value*, and if it isn't an indirect memory
5323     // operand, we can't fold it!  TODO: Also handle C_Address?
5324     if (OpInfo.CallOperandVal == OpVal &&
5325         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
5326          !OpInfo.isIndirect))
5327       return false;
5328   }
5329 
5330   return true;
5331 }
5332 
5333 /// Recursively walk all the uses of I until we find a memory use.
5334 /// If we find an obviously non-foldable instruction, return true.
5335 /// Add accessed addresses and types to MemoryUses.
5336 static bool FindAllMemoryUses(
5337     Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5338     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
5339     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
5340     BlockFrequencyInfo *BFI, unsigned &SeenInsts) {
5341   // If we already considered this instruction, we're done.
5342   if (!ConsideredInsts.insert(I).second)
5343     return false;
5344 
5345   // If this is an obviously unfoldable instruction, bail out.
5346   if (!MightBeFoldableInst(I))
5347     return true;
5348 
5349   // Loop over all the uses, recursively processing them.
5350   for (Use &U : I->uses()) {
5351     // Conservatively return true if we're seeing a large number or a deep chain
5352     // of users. This avoids excessive compilation times in pathological cases.
5353     if (SeenInsts++ >= MaxAddressUsersToScan)
5354       return true;
5355 
5356     Instruction *UserI = cast<Instruction>(U.getUser());
5357     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
5358       MemoryUses.push_back({&U, LI->getType()});
5359       continue;
5360     }
5361 
5362     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
5363       if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
5364         return true; // Storing addr, not into addr.
5365       MemoryUses.push_back({&U, SI->getValueOperand()->getType()});
5366       continue;
5367     }
5368 
5369     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
5370       if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
5371         return true; // Storing addr, not into addr.
5372       MemoryUses.push_back({&U, RMW->getValOperand()->getType()});
5373       continue;
5374     }
5375 
5376     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
5377       if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
5378         return true; // Storing addr, not into addr.
5379       MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()});
5380       continue;
5381     }
5382 
5383     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
5384       if (CI->hasFnAttr(Attribute::Cold)) {
5385         // If this is a cold call, we can sink the addressing calculation into
5386         // the cold path.  See optimizeCallInst
5387         bool OptForSize =
5388             OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
5389         if (!OptForSize)
5390           continue;
5391       }
5392 
5393       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
5394       if (!IA)
5395         return true;
5396 
5397       // If this is a memory operand, we're cool, otherwise bail out.
5398       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
5399         return true;
5400       continue;
5401     }
5402 
5403     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5404                           PSI, BFI, SeenInsts))
5405       return true;
5406   }
5407 
5408   return false;
5409 }
5410 
5411 static bool FindAllMemoryUses(
5412     Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5413     const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize,
5414     ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
5415   unsigned SeenInsts = 0;
5416   SmallPtrSet<Instruction *, 16> ConsideredInsts;
5417   return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5418                            PSI, BFI, SeenInsts);
5419 }
5420 
5421 
5422 /// Return true if Val is already known to be live at the use site that we're
5423 /// folding it into. If so, there is no cost to include it in the addressing
5424 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
5425 /// instruction already.
5426 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,
5427                                                    Value *KnownLive1,
5428                                                    Value *KnownLive2) {
5429   // If Val is either of the known-live values, we know it is live!
5430   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
5431     return true;
5432 
5433   // All values other than instructions and arguments (e.g. constants) are live.
5434   if (!isa<Instruction>(Val) && !isa<Argument>(Val))
5435     return true;
5436 
5437   // If Val is a constant sized alloca in the entry block, it is live, this is
5438   // true because it is just a reference to the stack/frame pointer, which is
5439   // live for the whole function.
5440   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
5441     if (AI->isStaticAlloca())
5442       return true;
5443 
5444   // Check to see if this value is already used in the memory instruction's
5445   // block.  If so, it's already live into the block at the very least, so we
5446   // can reasonably fold it.
5447   return Val->isUsedInBasicBlock(MemoryInst->getParent());
5448 }
5449 
5450 /// It is possible for the addressing mode of the machine to fold the specified
5451 /// instruction into a load or store that ultimately uses it.
5452 /// However, the specified instruction has multiple uses.
5453 /// Given this, it may actually increase register pressure to fold it
5454 /// into the load. For example, consider this code:
5455 ///
5456 ///     X = ...
5457 ///     Y = X+1
5458 ///     use(Y)   -> nonload/store
5459 ///     Z = Y+1
5460 ///     load Z
5461 ///
5462 /// In this case, Y has multiple uses, and can be folded into the load of Z
5463 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
5464 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
5465 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
5466 /// number of computations either.
5467 ///
5468 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
5469 /// X was live across 'load Z' for other reasons, we actually *would* want to
5470 /// fold the addressing mode in the Z case.  This would make Y die earlier.
5471 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode(
5472     Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) {
5473   if (IgnoreProfitability)
5474     return true;
5475 
5476   // AMBefore is the addressing mode before this instruction was folded into it,
5477   // and AMAfter is the addressing mode after the instruction was folded.  Get
5478   // the set of registers referenced by AMAfter and subtract out those
5479   // referenced by AMBefore: this is the set of values which folding in this
5480   // address extends the lifetime of.
5481   //
5482   // Note that there are only two potential values being referenced here,
5483   // BaseReg and ScaleReg (global addresses are always available, as are any
5484   // folded immediates).
5485   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
5486 
5487   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5488   // lifetime wasn't extended by adding this instruction.
5489   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5490     BaseReg = nullptr;
5491   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5492     ScaledReg = nullptr;
5493 
5494   // If folding this instruction (and it's subexprs) didn't extend any live
5495   // ranges, we're ok with it.
5496   if (!BaseReg && !ScaledReg)
5497     return true;
5498 
5499   // If all uses of this instruction can have the address mode sunk into them,
5500   // we can remove the addressing mode and effectively trade one live register
5501   // for another (at worst.)  In this context, folding an addressing mode into
5502   // the use is just a particularly nice way of sinking it.
5503   SmallVector<std::pair<Use *, Type *>, 16> MemoryUses;
5504   if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI))
5505     return false; // Has a non-memory, non-foldable use!
5506 
5507   // Now that we know that all uses of this instruction are part of a chain of
5508   // computation involving only operations that could theoretically be folded
5509   // into a memory use, loop over each of these memory operation uses and see
5510   // if they could  *actually* fold the instruction.  The assumption is that
5511   // addressing modes are cheap and that duplicating the computation involved
5512   // many times is worthwhile, even on a fastpath. For sinking candidates
5513   // (i.e. cold call sites), this serves as a way to prevent excessive code
5514   // growth since most architectures have some reasonable small and fast way to
5515   // compute an effective address.  (i.e LEA on x86)
5516   SmallVector<Instruction *, 32> MatchedAddrModeInsts;
5517   for (const std::pair<Use *, Type *> &Pair : MemoryUses) {
5518     Value *Address = Pair.first->get();
5519     Instruction *UserI = cast<Instruction>(Pair.first->getUser());
5520     Type *AddressAccessTy = Pair.second;
5521     unsigned AS = Address->getType()->getPointerAddressSpace();
5522 
5523     // Do a match against the root of this address, ignoring profitability. This
5524     // will tell us if the addressing mode for the memory operation will
5525     // *actually* cover the shared instruction.
5526     ExtAddrMode Result;
5527     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5528                                                                       0);
5529     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5530         TPT.getRestorationPoint();
5531     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5532                                   AddressAccessTy, AS, UserI, Result,
5533                                   InsertedInsts, PromotedInsts, TPT,
5534                                   LargeOffsetGEP, OptSize, PSI, BFI);
5535     Matcher.IgnoreProfitability = true;
5536     bool Success = Matcher.matchAddr(Address, 0);
5537     (void)Success;
5538     assert(Success && "Couldn't select *anything*?");
5539 
5540     // The match was to check the profitability, the changes made are not
5541     // part of the original matcher. Therefore, they should be dropped
5542     // otherwise the original matcher will not present the right state.
5543     TPT.rollback(LastKnownGood);
5544 
5545     // If the match didn't cover I, then it won't be shared by it.
5546     if (!is_contained(MatchedAddrModeInsts, I))
5547       return false;
5548 
5549     MatchedAddrModeInsts.clear();
5550   }
5551 
5552   return true;
5553 }
5554 
5555 /// Return true if the specified values are defined in a
5556 /// different basic block than BB.
5557 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5558   if (Instruction *I = dyn_cast<Instruction>(V))
5559     return I->getParent() != BB;
5560   return false;
5561 }
5562 
5563 /// Sink addressing mode computation immediate before MemoryInst if doing so
5564 /// can be done without increasing register pressure.  The need for the
5565 /// register pressure constraint means this can end up being an all or nothing
5566 /// decision for all uses of the same addressing computation.
5567 ///
5568 /// Load and Store Instructions often have addressing modes that can do
5569 /// significant amounts of computation. As such, instruction selection will try
5570 /// to get the load or store to do as much computation as possible for the
5571 /// program. The problem is that isel can only see within a single block. As
5572 /// such, we sink as much legal addressing mode work into the block as possible.
5573 ///
5574 /// This method is used to optimize both load/store and inline asms with memory
5575 /// operands.  It's also used to sink addressing computations feeding into cold
5576 /// call sites into their (cold) basic block.
5577 ///
5578 /// The motivation for handling sinking into cold blocks is that doing so can
5579 /// both enable other address mode sinking (by satisfying the register pressure
5580 /// constraint above), and reduce register pressure globally (by removing the
5581 /// addressing mode computation from the fast path entirely.).
5582 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5583                                         Type *AccessTy, unsigned AddrSpace) {
5584   Value *Repl = Addr;
5585 
5586   // Try to collapse single-value PHI nodes.  This is necessary to undo
5587   // unprofitable PRE transformations.
5588   SmallVector<Value *, 8> worklist;
5589   SmallPtrSet<Value *, 16> Visited;
5590   worklist.push_back(Addr);
5591 
5592   // Use a worklist to iteratively look through PHI and select nodes, and
5593   // ensure that the addressing mode obtained from the non-PHI/select roots of
5594   // the graph are compatible.
5595   bool PhiOrSelectSeen = false;
5596   SmallVector<Instruction *, 16> AddrModeInsts;
5597   const SimplifyQuery SQ(*DL, TLInfo);
5598   AddressingModeCombiner AddrModes(SQ, Addr);
5599   TypePromotionTransaction TPT(RemovedInsts);
5600   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5601       TPT.getRestorationPoint();
5602   while (!worklist.empty()) {
5603     Value *V = worklist.pop_back_val();
5604 
5605     // We allow traversing cyclic Phi nodes.
5606     // In case of success after this loop we ensure that traversing through
5607     // Phi nodes ends up with all cases to compute address of the form
5608     //    BaseGV + Base + Scale * Index + Offset
5609     // where Scale and Offset are constans and BaseGV, Base and Index
5610     // are exactly the same Values in all cases.
5611     // It means that BaseGV, Scale and Offset dominate our memory instruction
5612     // and have the same value as they had in address computation represented
5613     // as Phi. So we can safely sink address computation to memory instruction.
5614     if (!Visited.insert(V).second)
5615       continue;
5616 
5617     // For a PHI node, push all of its incoming values.
5618     if (PHINode *P = dyn_cast<PHINode>(V)) {
5619       append_range(worklist, P->incoming_values());
5620       PhiOrSelectSeen = true;
5621       continue;
5622     }
5623     // Similar for select.
5624     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5625       worklist.push_back(SI->getFalseValue());
5626       worklist.push_back(SI->getTrueValue());
5627       PhiOrSelectSeen = true;
5628       continue;
5629     }
5630 
5631     // For non-PHIs, determine the addressing mode being computed.  Note that
5632     // the result may differ depending on what other uses our candidate
5633     // addressing instructions might have.
5634     AddrModeInsts.clear();
5635     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5636                                                                       0);
5637     // Defer the query (and possible computation of) the dom tree to point of
5638     // actual use.  It's expected that most address matches don't actually need
5639     // the domtree.
5640     auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5641       Function *F = MemoryInst->getParent()->getParent();
5642       return this->getDT(*F);
5643     };
5644     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5645         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5646         *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5647         BFI.get());
5648 
5649     GetElementPtrInst *GEP = LargeOffsetGEP.first;
5650     if (GEP && !NewGEPBases.count(GEP)) {
5651       // If splitting the underlying data structure can reduce the offset of a
5652       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
5653       // previously split data structures.
5654       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5655       LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size()));
5656     }
5657 
5658     NewAddrMode.OriginalValue = V;
5659     if (!AddrModes.addNewAddrMode(NewAddrMode))
5660       break;
5661   }
5662 
5663   // Try to combine the AddrModes we've collected. If we couldn't collect any,
5664   // or we have multiple but either couldn't combine them or combining them
5665   // wouldn't do anything useful, bail out now.
5666   if (!AddrModes.combineAddrModes()) {
5667     TPT.rollback(LastKnownGood);
5668     return false;
5669   }
5670   bool Modified = TPT.commit();
5671 
5672   // Get the combined AddrMode (or the only AddrMode, if we only had one).
5673   ExtAddrMode AddrMode = AddrModes.getAddrMode();
5674 
5675   // If all the instructions matched are already in this BB, don't do anything.
5676   // If we saw a Phi node then it is not local definitely, and if we saw a
5677   // select then we want to push the address calculation past it even if it's
5678   // already in this BB.
5679   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5680         return IsNonLocalValue(V, MemoryInst->getParent());
5681       })) {
5682     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
5683                       << "\n");
5684     return Modified;
5685   }
5686 
5687   // Insert this computation right after this user.  Since our caller is
5688   // scanning from the top of the BB to the bottom, reuse of the expr are
5689   // guaranteed to happen later.
5690   IRBuilder<> Builder(MemoryInst);
5691 
5692   // Now that we determined the addressing expression we want to use and know
5693   // that we have to sink it into this block.  Check to see if we have already
5694   // done this for some other load/store instr in this block.  If so, reuse
5695   // the computation.  Before attempting reuse, check if the address is valid
5696   // as it may have been erased.
5697 
5698   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5699 
5700   Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5701   Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5702   if (SunkAddr) {
5703     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5704                       << " for " << *MemoryInst << "\n");
5705     if (SunkAddr->getType() != Addr->getType()) {
5706       if (SunkAddr->getType()->getPointerAddressSpace() !=
5707               Addr->getType()->getPointerAddressSpace() &&
5708           !DL->isNonIntegralPointerType(Addr->getType())) {
5709         // There are two reasons the address spaces might not match: a no-op
5710         // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5711         // ptrtoint/inttoptr pair to ensure we match the original semantics.
5712         // TODO: allow bitcast between different address space pointers with the
5713         // same size.
5714         SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5715         SunkAddr =
5716             Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5717       } else
5718         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5719     }
5720   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5721                                    SubtargetInfo->addrSinkUsingGEPs())) {
5722     // By default, we use the GEP-based method when AA is used later. This
5723     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5724     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5725                       << " for " << *MemoryInst << "\n");
5726     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5727 
5728     // First, find the pointer.
5729     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5730       ResultPtr = AddrMode.BaseReg;
5731       AddrMode.BaseReg = nullptr;
5732     }
5733 
5734     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5735       // We can't add more than one pointer together, nor can we scale a
5736       // pointer (both of which seem meaningless).
5737       if (ResultPtr || AddrMode.Scale != 1)
5738         return Modified;
5739 
5740       ResultPtr = AddrMode.ScaledReg;
5741       AddrMode.Scale = 0;
5742     }
5743 
5744     // It is only safe to sign extend the BaseReg if we know that the math
5745     // required to create it did not overflow before we extend it. Since
5746     // the original IR value was tossed in favor of a constant back when
5747     // the AddrMode was created we need to bail out gracefully if widths
5748     // do not match instead of extending it.
5749     //
5750     // (See below for code to add the scale.)
5751     if (AddrMode.Scale) {
5752       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5753       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5754           cast<IntegerType>(ScaledRegTy)->getBitWidth())
5755         return Modified;
5756     }
5757 
5758     GlobalValue *BaseGV = AddrMode.BaseGV;
5759     if (BaseGV != nullptr) {
5760       if (ResultPtr)
5761         return Modified;
5762 
5763       if (BaseGV->isThreadLocal()) {
5764         ResultPtr = Builder.CreateThreadLocalAddress(BaseGV);
5765       } else {
5766         ResultPtr = BaseGV;
5767       }
5768     }
5769 
5770     // If the real base value actually came from an inttoptr, then the matcher
5771     // will look through it and provide only the integer value. In that case,
5772     // use it here.
5773     if (!DL->isNonIntegralPointerType(Addr->getType())) {
5774       if (!ResultPtr && AddrMode.BaseReg) {
5775         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5776                                            "sunkaddr");
5777         AddrMode.BaseReg = nullptr;
5778       } else if (!ResultPtr && AddrMode.Scale == 1) {
5779         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5780                                            "sunkaddr");
5781         AddrMode.Scale = 0;
5782       }
5783     }
5784 
5785     if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale &&
5786         !AddrMode.BaseOffs) {
5787       SunkAddr = Constant::getNullValue(Addr->getType());
5788     } else if (!ResultPtr) {
5789       return Modified;
5790     } else {
5791       Type *I8PtrTy =
5792           Builder.getPtrTy(Addr->getType()->getPointerAddressSpace());
5793 
5794       // Start with the base register. Do this first so that subsequent address
5795       // matching finds it last, which will prevent it from trying to match it
5796       // as the scaled value in case it happens to be a mul. That would be
5797       // problematic if we've sunk a different mul for the scale, because then
5798       // we'd end up sinking both muls.
5799       if (AddrMode.BaseReg) {
5800         Value *V = AddrMode.BaseReg;
5801         if (V->getType() != IntPtrTy)
5802           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5803 
5804         ResultIndex = V;
5805       }
5806 
5807       // Add the scale value.
5808       if (AddrMode.Scale) {
5809         Value *V = AddrMode.ScaledReg;
5810         if (V->getType() == IntPtrTy) {
5811           // done.
5812         } else {
5813           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5814                      cast<IntegerType>(V->getType())->getBitWidth() &&
5815                  "We can't transform if ScaledReg is too narrow");
5816           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5817         }
5818 
5819         if (AddrMode.Scale != 1)
5820           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5821                                 "sunkaddr");
5822         if (ResultIndex)
5823           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5824         else
5825           ResultIndex = V;
5826       }
5827 
5828       // Add in the Base Offset if present.
5829       if (AddrMode.BaseOffs) {
5830         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5831         if (ResultIndex) {
5832           // We need to add this separately from the scale above to help with
5833           // SDAG consecutive load/store merging.
5834           if (ResultPtr->getType() != I8PtrTy)
5835             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5836           ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
5837                                            AddrMode.InBounds);
5838         }
5839 
5840         ResultIndex = V;
5841       }
5842 
5843       if (!ResultIndex) {
5844         SunkAddr = ResultPtr;
5845       } else {
5846         if (ResultPtr->getType() != I8PtrTy)
5847           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5848         SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
5849                                         AddrMode.InBounds);
5850       }
5851 
5852       if (SunkAddr->getType() != Addr->getType()) {
5853         if (SunkAddr->getType()->getPointerAddressSpace() !=
5854                 Addr->getType()->getPointerAddressSpace() &&
5855             !DL->isNonIntegralPointerType(Addr->getType())) {
5856           // There are two reasons the address spaces might not match: a no-op
5857           // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5858           // ptrtoint/inttoptr pair to ensure we match the original semantics.
5859           // TODO: allow bitcast between different address space pointers with
5860           // the same size.
5861           SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5862           SunkAddr =
5863               Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5864         } else
5865           SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5866       }
5867     }
5868   } else {
5869     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5870     // non-integral pointers, so in that case bail out now.
5871     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5872     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5873     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5874     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5875     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5876         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5877         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5878         (AddrMode.BaseGV &&
5879          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5880       return Modified;
5881 
5882     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5883                       << " for " << *MemoryInst << "\n");
5884     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5885     Value *Result = nullptr;
5886 
5887     // Start with the base register. Do this first so that subsequent address
5888     // matching finds it last, which will prevent it from trying to match it
5889     // as the scaled value in case it happens to be a mul. That would be
5890     // problematic if we've sunk a different mul for the scale, because then
5891     // we'd end up sinking both muls.
5892     if (AddrMode.BaseReg) {
5893       Value *V = AddrMode.BaseReg;
5894       if (V->getType()->isPointerTy())
5895         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5896       if (V->getType() != IntPtrTy)
5897         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5898       Result = V;
5899     }
5900 
5901     // Add the scale value.
5902     if (AddrMode.Scale) {
5903       Value *V = AddrMode.ScaledReg;
5904       if (V->getType() == IntPtrTy) {
5905         // done.
5906       } else if (V->getType()->isPointerTy()) {
5907         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5908       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5909                  cast<IntegerType>(V->getType())->getBitWidth()) {
5910         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5911       } else {
5912         // It is only safe to sign extend the BaseReg if we know that the math
5913         // required to create it did not overflow before we extend it. Since
5914         // the original IR value was tossed in favor of a constant back when
5915         // the AddrMode was created we need to bail out gracefully if widths
5916         // do not match instead of extending it.
5917         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5918         if (I && (Result != AddrMode.BaseReg))
5919           I->eraseFromParent();
5920         return Modified;
5921       }
5922       if (AddrMode.Scale != 1)
5923         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5924                               "sunkaddr");
5925       if (Result)
5926         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5927       else
5928         Result = V;
5929     }
5930 
5931     // Add in the BaseGV if present.
5932     GlobalValue *BaseGV = AddrMode.BaseGV;
5933     if (BaseGV != nullptr) {
5934       Value *BaseGVPtr;
5935       if (BaseGV->isThreadLocal()) {
5936         BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV);
5937       } else {
5938         BaseGVPtr = BaseGV;
5939       }
5940       Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr");
5941       if (Result)
5942         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5943       else
5944         Result = V;
5945     }
5946 
5947     // Add in the Base Offset if present.
5948     if (AddrMode.BaseOffs) {
5949       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5950       if (Result)
5951         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5952       else
5953         Result = V;
5954     }
5955 
5956     if (!Result)
5957       SunkAddr = Constant::getNullValue(Addr->getType());
5958     else
5959       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5960   }
5961 
5962   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5963   // Store the newly computed address into the cache. In the case we reused a
5964   // value, this should be idempotent.
5965   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5966 
5967   // If we have no uses, recursively delete the value and all dead instructions
5968   // using it.
5969   if (Repl->use_empty()) {
5970     resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5971       RecursivelyDeleteTriviallyDeadInstructions(
5972           Repl, TLInfo, nullptr,
5973           [&](Value *V) { removeAllAssertingVHReferences(V); });
5974     });
5975   }
5976   ++NumMemoryInsts;
5977   return true;
5978 }
5979 
5980 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5981 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5982 /// only handle a 2 operand GEP in the same basic block or a splat constant
5983 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5984 /// index.
5985 ///
5986 /// If the existing GEP has a vector base pointer that is splat, we can look
5987 /// through the splat to find the scalar pointer. If we can't find a scalar
5988 /// pointer there's nothing we can do.
5989 ///
5990 /// If we have a GEP with more than 2 indices where the middle indices are all
5991 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5992 ///
5993 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5994 /// followed by a GEP with an all zeroes vector index. This will enable
5995 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5996 /// zero index.
5997 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5998                                                Value *Ptr) {
5999   Value *NewAddr;
6000 
6001   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
6002     // Don't optimize GEPs that don't have indices.
6003     if (!GEP->hasIndices())
6004       return false;
6005 
6006     // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
6007     // FIXME: We should support this by sinking the GEP.
6008     if (MemoryInst->getParent() != GEP->getParent())
6009       return false;
6010 
6011     SmallVector<Value *, 2> Ops(GEP->operands());
6012 
6013     bool RewriteGEP = false;
6014 
6015     if (Ops[0]->getType()->isVectorTy()) {
6016       Ops[0] = getSplatValue(Ops[0]);
6017       if (!Ops[0])
6018         return false;
6019       RewriteGEP = true;
6020     }
6021 
6022     unsigned FinalIndex = Ops.size() - 1;
6023 
6024     // Ensure all but the last index is 0.
6025     // FIXME: This isn't strictly required. All that's required is that they are
6026     // all scalars or splats.
6027     for (unsigned i = 1; i < FinalIndex; ++i) {
6028       auto *C = dyn_cast<Constant>(Ops[i]);
6029       if (!C)
6030         return false;
6031       if (isa<VectorType>(C->getType()))
6032         C = C->getSplatValue();
6033       auto *CI = dyn_cast_or_null<ConstantInt>(C);
6034       if (!CI || !CI->isZero())
6035         return false;
6036       // Scalarize the index if needed.
6037       Ops[i] = CI;
6038     }
6039 
6040     // Try to scalarize the final index.
6041     if (Ops[FinalIndex]->getType()->isVectorTy()) {
6042       if (Value *V = getSplatValue(Ops[FinalIndex])) {
6043         auto *C = dyn_cast<ConstantInt>(V);
6044         // Don't scalarize all zeros vector.
6045         if (!C || !C->isZero()) {
6046           Ops[FinalIndex] = V;
6047           RewriteGEP = true;
6048         }
6049       }
6050     }
6051 
6052     // If we made any changes or the we have extra operands, we need to generate
6053     // new instructions.
6054     if (!RewriteGEP && Ops.size() == 2)
6055       return false;
6056 
6057     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
6058 
6059     IRBuilder<> Builder(MemoryInst);
6060 
6061     Type *SourceTy = GEP->getSourceElementType();
6062     Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
6063 
6064     // If the final index isn't a vector, emit a scalar GEP containing all ops
6065     // and a vector GEP with all zeroes final index.
6066     if (!Ops[FinalIndex]->getType()->isVectorTy()) {
6067       NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front());
6068       auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
6069       auto *SecondTy = GetElementPtrInst::getIndexedType(
6070           SourceTy, ArrayRef(Ops).drop_front());
6071       NewAddr =
6072           Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy));
6073     } else {
6074       Value *Base = Ops[0];
6075       Value *Index = Ops[FinalIndex];
6076 
6077       // Create a scalar GEP if there are more than 2 operands.
6078       if (Ops.size() != 2) {
6079         // Replace the last index with 0.
6080         Ops[FinalIndex] =
6081             Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType());
6082         Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front());
6083         SourceTy = GetElementPtrInst::getIndexedType(
6084             SourceTy, ArrayRef(Ops).drop_front());
6085       }
6086 
6087       // Now create the GEP with scalar pointer and vector index.
6088       NewAddr = Builder.CreateGEP(SourceTy, Base, Index);
6089     }
6090   } else if (!isa<Constant>(Ptr)) {
6091     // Not a GEP, maybe its a splat and we can create a GEP to enable
6092     // SelectionDAGBuilder to use it as a uniform base.
6093     Value *V = getSplatValue(Ptr);
6094     if (!V)
6095       return false;
6096 
6097     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
6098 
6099     IRBuilder<> Builder(MemoryInst);
6100 
6101     // Emit a vector GEP with a scalar pointer and all 0s vector index.
6102     Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
6103     auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
6104     Type *ScalarTy;
6105     if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
6106         Intrinsic::masked_gather) {
6107       ScalarTy = MemoryInst->getType()->getScalarType();
6108     } else {
6109       assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
6110              Intrinsic::masked_scatter);
6111       ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType();
6112     }
6113     NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy));
6114   } else {
6115     // Constant, SelectionDAGBuilder knows to check if its a splat.
6116     return false;
6117   }
6118 
6119   MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
6120 
6121   // If we have no uses, recursively delete the value and all dead instructions
6122   // using it.
6123   if (Ptr->use_empty())
6124     RecursivelyDeleteTriviallyDeadInstructions(
6125         Ptr, TLInfo, nullptr,
6126         [&](Value *V) { removeAllAssertingVHReferences(V); });
6127 
6128   return true;
6129 }
6130 
6131 /// If there are any memory operands, use OptimizeMemoryInst to sink their
6132 /// address computing into the block when possible / profitable.
6133 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
6134   bool MadeChange = false;
6135 
6136   const TargetRegisterInfo *TRI =
6137       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
6138   TargetLowering::AsmOperandInfoVector TargetConstraints =
6139       TLI->ParseConstraints(*DL, TRI, *CS);
6140   unsigned ArgNo = 0;
6141   for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
6142     // Compute the constraint code and ConstraintType to use.
6143     TLI->ComputeConstraintToUse(OpInfo, SDValue());
6144 
6145     // TODO: Also handle C_Address?
6146     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6147         OpInfo.isIndirect) {
6148       Value *OpVal = CS->getArgOperand(ArgNo++);
6149       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
6150     } else if (OpInfo.Type == InlineAsm::isInput)
6151       ArgNo++;
6152   }
6153 
6154   return MadeChange;
6155 }
6156 
6157 /// Check if all the uses of \p Val are equivalent (or free) zero or
6158 /// sign extensions.
6159 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
6160   assert(!Val->use_empty() && "Input must have at least one use");
6161   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
6162   bool IsSExt = isa<SExtInst>(FirstUser);
6163   Type *ExtTy = FirstUser->getType();
6164   for (const User *U : Val->users()) {
6165     const Instruction *UI = cast<Instruction>(U);
6166     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
6167       return false;
6168     Type *CurTy = UI->getType();
6169     // Same input and output types: Same instruction after CSE.
6170     if (CurTy == ExtTy)
6171       continue;
6172 
6173     // If IsSExt is true, we are in this situation:
6174     // a = Val
6175     // b = sext ty1 a to ty2
6176     // c = sext ty1 a to ty3
6177     // Assuming ty2 is shorter than ty3, this could be turned into:
6178     // a = Val
6179     // b = sext ty1 a to ty2
6180     // c = sext ty2 b to ty3
6181     // However, the last sext is not free.
6182     if (IsSExt)
6183       return false;
6184 
6185     // This is a ZExt, maybe this is free to extend from one type to another.
6186     // In that case, we would not account for a different use.
6187     Type *NarrowTy;
6188     Type *LargeTy;
6189     if (ExtTy->getScalarType()->getIntegerBitWidth() >
6190         CurTy->getScalarType()->getIntegerBitWidth()) {
6191       NarrowTy = CurTy;
6192       LargeTy = ExtTy;
6193     } else {
6194       NarrowTy = ExtTy;
6195       LargeTy = CurTy;
6196     }
6197 
6198     if (!TLI.isZExtFree(NarrowTy, LargeTy))
6199       return false;
6200   }
6201   // All uses are the same or can be derived from one another for free.
6202   return true;
6203 }
6204 
6205 /// Try to speculatively promote extensions in \p Exts and continue
6206 /// promoting through newly promoted operands recursively as far as doing so is
6207 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
6208 /// When some promotion happened, \p TPT contains the proper state to revert
6209 /// them.
6210 ///
6211 /// \return true if some promotion happened, false otherwise.
6212 bool CodeGenPrepare::tryToPromoteExts(
6213     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
6214     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
6215     unsigned CreatedInstsCost) {
6216   bool Promoted = false;
6217 
6218   // Iterate over all the extensions to try to promote them.
6219   for (auto *I : Exts) {
6220     // Early check if we directly have ext(load).
6221     if (isa<LoadInst>(I->getOperand(0))) {
6222       ProfitablyMovedExts.push_back(I);
6223       continue;
6224     }
6225 
6226     // Check whether or not we want to do any promotion.  The reason we have
6227     // this check inside the for loop is to catch the case where an extension
6228     // is directly fed by a load because in such case the extension can be moved
6229     // up without any promotion on its operands.
6230     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
6231       return false;
6232 
6233     // Get the action to perform the promotion.
6234     TypePromotionHelper::Action TPH =
6235         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
6236     // Check if we can promote.
6237     if (!TPH) {
6238       // Save the current extension as we cannot move up through its operand.
6239       ProfitablyMovedExts.push_back(I);
6240       continue;
6241     }
6242 
6243     // Save the current state.
6244     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6245         TPT.getRestorationPoint();
6246     SmallVector<Instruction *, 4> NewExts;
6247     unsigned NewCreatedInstsCost = 0;
6248     unsigned ExtCost = !TLI->isExtFree(I);
6249     // Promote.
6250     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
6251                              &NewExts, nullptr, *TLI);
6252     assert(PromotedVal &&
6253            "TypePromotionHelper should have filtered out those cases");
6254 
6255     // We would be able to merge only one extension in a load.
6256     // Therefore, if we have more than 1 new extension we heuristically
6257     // cut this search path, because it means we degrade the code quality.
6258     // With exactly 2, the transformation is neutral, because we will merge
6259     // one extension but leave one. However, we optimistically keep going,
6260     // because the new extension may be removed too. Also avoid replacing a
6261     // single free extension with multiple extensions, as this increases the
6262     // number of IR instructions while not providing any savings.
6263     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
6264     // FIXME: It would be possible to propagate a negative value instead of
6265     // conservatively ceiling it to 0.
6266     TotalCreatedInstsCost =
6267         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
6268     if (!StressExtLdPromotion &&
6269         (TotalCreatedInstsCost > 1 ||
6270          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) ||
6271          (ExtCost == 0 && NewExts.size() > 1))) {
6272       // This promotion is not profitable, rollback to the previous state, and
6273       // save the current extension in ProfitablyMovedExts as the latest
6274       // speculative promotion turned out to be unprofitable.
6275       TPT.rollback(LastKnownGood);
6276       ProfitablyMovedExts.push_back(I);
6277       continue;
6278     }
6279     // Continue promoting NewExts as far as doing so is profitable.
6280     SmallVector<Instruction *, 2> NewlyMovedExts;
6281     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
6282     bool NewPromoted = false;
6283     for (auto *ExtInst : NewlyMovedExts) {
6284       Instruction *MovedExt = cast<Instruction>(ExtInst);
6285       Value *ExtOperand = MovedExt->getOperand(0);
6286       // If we have reached to a load, we need this extra profitability check
6287       // as it could potentially be merged into an ext(load).
6288       if (isa<LoadInst>(ExtOperand) &&
6289           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
6290             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
6291         continue;
6292 
6293       ProfitablyMovedExts.push_back(MovedExt);
6294       NewPromoted = true;
6295     }
6296 
6297     // If none of speculative promotions for NewExts is profitable, rollback
6298     // and save the current extension (I) as the last profitable extension.
6299     if (!NewPromoted) {
6300       TPT.rollback(LastKnownGood);
6301       ProfitablyMovedExts.push_back(I);
6302       continue;
6303     }
6304     // The promotion is profitable.
6305     Promoted = true;
6306   }
6307   return Promoted;
6308 }
6309 
6310 /// Merging redundant sexts when one is dominating the other.
6311 bool CodeGenPrepare::mergeSExts(Function &F) {
6312   bool Changed = false;
6313   for (auto &Entry : ValToSExtendedUses) {
6314     SExts &Insts = Entry.second;
6315     SExts CurPts;
6316     for (Instruction *Inst : Insts) {
6317       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
6318           Inst->getOperand(0) != Entry.first)
6319         continue;
6320       bool inserted = false;
6321       for (auto &Pt : CurPts) {
6322         if (getDT(F).dominates(Inst, Pt)) {
6323           replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc);
6324           RemovedInsts.insert(Pt);
6325           Pt->removeFromParent();
6326           Pt = Inst;
6327           inserted = true;
6328           Changed = true;
6329           break;
6330         }
6331         if (!getDT(F).dominates(Pt, Inst))
6332           // Give up if we need to merge in a common dominator as the
6333           // experiments show it is not profitable.
6334           continue;
6335         replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc);
6336         RemovedInsts.insert(Inst);
6337         Inst->removeFromParent();
6338         inserted = true;
6339         Changed = true;
6340         break;
6341       }
6342       if (!inserted)
6343         CurPts.push_back(Inst);
6344     }
6345   }
6346   return Changed;
6347 }
6348 
6349 // Splitting large data structures so that the GEPs accessing them can have
6350 // smaller offsets so that they can be sunk to the same blocks as their users.
6351 // For example, a large struct starting from %base is split into two parts
6352 // where the second part starts from %new_base.
6353 //
6354 // Before:
6355 // BB0:
6356 //   %base     =
6357 //
6358 // BB1:
6359 //   %gep0     = gep %base, off0
6360 //   %gep1     = gep %base, off1
6361 //   %gep2     = gep %base, off2
6362 //
6363 // BB2:
6364 //   %load1    = load %gep0
6365 //   %load2    = load %gep1
6366 //   %load3    = load %gep2
6367 //
6368 // After:
6369 // BB0:
6370 //   %base     =
6371 //   %new_base = gep %base, off0
6372 //
6373 // BB1:
6374 //   %new_gep0 = %new_base
6375 //   %new_gep1 = gep %new_base, off1 - off0
6376 //   %new_gep2 = gep %new_base, off2 - off0
6377 //
6378 // BB2:
6379 //   %load1    = load i32, i32* %new_gep0
6380 //   %load2    = load i32, i32* %new_gep1
6381 //   %load3    = load i32, i32* %new_gep2
6382 //
6383 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
6384 // their offsets are smaller enough to fit into the addressing mode.
6385 bool CodeGenPrepare::splitLargeGEPOffsets() {
6386   bool Changed = false;
6387   for (auto &Entry : LargeOffsetGEPMap) {
6388     Value *OldBase = Entry.first;
6389     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
6390         &LargeOffsetGEPs = Entry.second;
6391     auto compareGEPOffset =
6392         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
6393             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
6394           if (LHS.first == RHS.first)
6395             return false;
6396           if (LHS.second != RHS.second)
6397             return LHS.second < RHS.second;
6398           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
6399         };
6400     // Sorting all the GEPs of the same data structures based on the offsets.
6401     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
6402     LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end());
6403     // Skip if all the GEPs have the same offsets.
6404     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
6405       continue;
6406     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
6407     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
6408     Value *NewBaseGEP = nullptr;
6409 
6410     auto createNewBase = [&](int64_t BaseOffset, Value *OldBase,
6411                              GetElementPtrInst *GEP) {
6412       LLVMContext &Ctx = GEP->getContext();
6413       Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6414       Type *I8PtrTy =
6415           PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace());
6416 
6417       BasicBlock::iterator NewBaseInsertPt;
6418       BasicBlock *NewBaseInsertBB;
6419       if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
6420         // If the base of the struct is an instruction, the new base will be
6421         // inserted close to it.
6422         NewBaseInsertBB = BaseI->getParent();
6423         if (isa<PHINode>(BaseI))
6424           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6425         else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
6426           NewBaseInsertBB =
6427               SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI);
6428           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6429         } else
6430           NewBaseInsertPt = std::next(BaseI->getIterator());
6431       } else {
6432         // If the current base is an argument or global value, the new base
6433         // will be inserted to the entry block.
6434         NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
6435         NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6436       }
6437       IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
6438       // Create a new base.
6439       Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset);
6440       NewBaseGEP = OldBase;
6441       if (NewBaseGEP->getType() != I8PtrTy)
6442         NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
6443       NewBaseGEP =
6444           NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep");
6445       NewGEPBases.insert(NewBaseGEP);
6446       return;
6447     };
6448 
6449     // Check whether all the offsets can be encoded with prefered common base.
6450     if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset(
6451             LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) {
6452       BaseOffset = PreferBase;
6453       // Create a new base if the offset of the BaseGEP can be decoded with one
6454       // instruction.
6455       createNewBase(BaseOffset, OldBase, BaseGEP);
6456     }
6457 
6458     auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
6459     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
6460       GetElementPtrInst *GEP = LargeOffsetGEP->first;
6461       int64_t Offset = LargeOffsetGEP->second;
6462       if (Offset != BaseOffset) {
6463         TargetLowering::AddrMode AddrMode;
6464         AddrMode.HasBaseReg = true;
6465         AddrMode.BaseOffs = Offset - BaseOffset;
6466         // The result type of the GEP might not be the type of the memory
6467         // access.
6468         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
6469                                         GEP->getResultElementType(),
6470                                         GEP->getAddressSpace())) {
6471           // We need to create a new base if the offset to the current base is
6472           // too large to fit into the addressing mode. So, a very large struct
6473           // may be split into several parts.
6474           BaseGEP = GEP;
6475           BaseOffset = Offset;
6476           NewBaseGEP = nullptr;
6477         }
6478       }
6479 
6480       // Generate a new GEP to replace the current one.
6481       Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6482 
6483       if (!NewBaseGEP) {
6484         // Create a new base if we don't have one yet.  Find the insertion
6485         // pointer for the new base first.
6486         createNewBase(BaseOffset, OldBase, GEP);
6487       }
6488 
6489       IRBuilder<> Builder(GEP);
6490       Value *NewGEP = NewBaseGEP;
6491       if (Offset != BaseOffset) {
6492         // Calculate the new offset for the new GEP.
6493         Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset);
6494         NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index);
6495       }
6496       replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc);
6497       LargeOffsetGEPID.erase(GEP);
6498       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
6499       GEP->eraseFromParent();
6500       Changed = true;
6501     }
6502   }
6503   return Changed;
6504 }
6505 
6506 bool CodeGenPrepare::optimizePhiType(
6507     PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
6508     SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
6509   // We are looking for a collection on interconnected phi nodes that together
6510   // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
6511   // are of the same type. Convert the whole set of nodes to the type of the
6512   // bitcast.
6513   Type *PhiTy = I->getType();
6514   Type *ConvertTy = nullptr;
6515   if (Visited.count(I) ||
6516       (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
6517     return false;
6518 
6519   SmallVector<Instruction *, 4> Worklist;
6520   Worklist.push_back(cast<Instruction>(I));
6521   SmallPtrSet<PHINode *, 4> PhiNodes;
6522   SmallPtrSet<ConstantData *, 4> Constants;
6523   PhiNodes.insert(I);
6524   Visited.insert(I);
6525   SmallPtrSet<Instruction *, 4> Defs;
6526   SmallPtrSet<Instruction *, 4> Uses;
6527   // This works by adding extra bitcasts between load/stores and removing
6528   // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6529   // we can get in the situation where we remove a bitcast in one iteration
6530   // just to add it again in the next. We need to ensure that at least one
6531   // bitcast we remove are anchored to something that will not change back.
6532   bool AnyAnchored = false;
6533 
6534   while (!Worklist.empty()) {
6535     Instruction *II = Worklist.pop_back_val();
6536 
6537     if (auto *Phi = dyn_cast<PHINode>(II)) {
6538       // Handle Defs, which might also be PHI's
6539       for (Value *V : Phi->incoming_values()) {
6540         if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6541           if (!PhiNodes.count(OpPhi)) {
6542             if (!Visited.insert(OpPhi).second)
6543               return false;
6544             PhiNodes.insert(OpPhi);
6545             Worklist.push_back(OpPhi);
6546           }
6547         } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6548           if (!OpLoad->isSimple())
6549             return false;
6550           if (Defs.insert(OpLoad).second)
6551             Worklist.push_back(OpLoad);
6552         } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6553           if (Defs.insert(OpEx).second)
6554             Worklist.push_back(OpEx);
6555         } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6556           if (!ConvertTy)
6557             ConvertTy = OpBC->getOperand(0)->getType();
6558           if (OpBC->getOperand(0)->getType() != ConvertTy)
6559             return false;
6560           if (Defs.insert(OpBC).second) {
6561             Worklist.push_back(OpBC);
6562             AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
6563                            !isa<ExtractElementInst>(OpBC->getOperand(0));
6564           }
6565         } else if (auto *OpC = dyn_cast<ConstantData>(V))
6566           Constants.insert(OpC);
6567         else
6568           return false;
6569       }
6570     }
6571 
6572     // Handle uses which might also be phi's
6573     for (User *V : II->users()) {
6574       if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6575         if (!PhiNodes.count(OpPhi)) {
6576           if (Visited.count(OpPhi))
6577             return false;
6578           PhiNodes.insert(OpPhi);
6579           Visited.insert(OpPhi);
6580           Worklist.push_back(OpPhi);
6581         }
6582       } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
6583         if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
6584           return false;
6585         Uses.insert(OpStore);
6586       } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6587         if (!ConvertTy)
6588           ConvertTy = OpBC->getType();
6589         if (OpBC->getType() != ConvertTy)
6590           return false;
6591         Uses.insert(OpBC);
6592         AnyAnchored |=
6593             any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
6594       } else {
6595         return false;
6596       }
6597     }
6598   }
6599 
6600   if (!ConvertTy || !AnyAnchored ||
6601       !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
6602     return false;
6603 
6604   LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
6605                     << *ConvertTy << "\n");
6606 
6607   // Create all the new phi nodes of the new type, and bitcast any loads to the
6608   // correct type.
6609   ValueToValueMap ValMap;
6610   for (ConstantData *C : Constants)
6611     ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy);
6612   for (Instruction *D : Defs) {
6613     if (isa<BitCastInst>(D)) {
6614       ValMap[D] = D->getOperand(0);
6615       DeletedInstrs.insert(D);
6616     } else {
6617       BasicBlock::iterator insertPt = std::next(D->getIterator());
6618       ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt);
6619     }
6620   }
6621   for (PHINode *Phi : PhiNodes)
6622     ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
6623                                   Phi->getName() + ".tc", Phi->getIterator());
6624   // Pipe together all the PhiNodes.
6625   for (PHINode *Phi : PhiNodes) {
6626     PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
6627     for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
6628       NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
6629                           Phi->getIncomingBlock(i));
6630     Visited.insert(NewPhi);
6631   }
6632   // And finally pipe up the stores and bitcasts
6633   for (Instruction *U : Uses) {
6634     if (isa<BitCastInst>(U)) {
6635       DeletedInstrs.insert(U);
6636       replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc);
6637     } else {
6638       U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc",
6639                                        U->getIterator()));
6640     }
6641   }
6642 
6643   // Save the removed phis to be deleted later.
6644   for (PHINode *Phi : PhiNodes)
6645     DeletedInstrs.insert(Phi);
6646   return true;
6647 }
6648 
6649 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
6650   if (!OptimizePhiTypes)
6651     return false;
6652 
6653   bool Changed = false;
6654   SmallPtrSet<PHINode *, 4> Visited;
6655   SmallPtrSet<Instruction *, 4> DeletedInstrs;
6656 
6657   // Attempt to optimize all the phis in the functions to the correct type.
6658   for (auto &BB : F)
6659     for (auto &Phi : BB.phis())
6660       Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
6661 
6662   // Remove any old phi's that have been converted.
6663   for (auto *I : DeletedInstrs) {
6664     replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc);
6665     I->eraseFromParent();
6666   }
6667 
6668   return Changed;
6669 }
6670 
6671 /// Return true, if an ext(load) can be formed from an extension in
6672 /// \p MovedExts.
6673 bool CodeGenPrepare::canFormExtLd(
6674     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
6675     Instruction *&Inst, bool HasPromoted) {
6676   for (auto *MovedExtInst : MovedExts) {
6677     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
6678       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
6679       Inst = MovedExtInst;
6680       break;
6681     }
6682   }
6683   if (!LI)
6684     return false;
6685 
6686   // If they're already in the same block, there's nothing to do.
6687   // Make the cheap checks first if we did not promote.
6688   // If we promoted, we need to check if it is indeed profitable.
6689   if (!HasPromoted && LI->getParent() == Inst->getParent())
6690     return false;
6691 
6692   return TLI->isExtLoad(LI, Inst, *DL);
6693 }
6694 
6695 /// Move a zext or sext fed by a load into the same basic block as the load,
6696 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6697 /// extend into the load.
6698 ///
6699 /// E.g.,
6700 /// \code
6701 /// %ld = load i32* %addr
6702 /// %add = add nuw i32 %ld, 4
6703 /// %zext = zext i32 %add to i64
6704 // \endcode
6705 /// =>
6706 /// \code
6707 /// %ld = load i32* %addr
6708 /// %zext = zext i32 %ld to i64
6709 /// %add = add nuw i64 %zext, 4
6710 /// \encode
6711 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6712 /// allow us to match zext(load i32*) to i64.
6713 ///
6714 /// Also, try to promote the computations used to obtain a sign extended
6715 /// value used into memory accesses.
6716 /// E.g.,
6717 /// \code
6718 /// a = add nsw i32 b, 3
6719 /// d = sext i32 a to i64
6720 /// e = getelementptr ..., i64 d
6721 /// \endcode
6722 /// =>
6723 /// \code
6724 /// f = sext i32 b to i64
6725 /// a = add nsw i64 f, 3
6726 /// e = getelementptr ..., i64 a
6727 /// \endcode
6728 ///
6729 /// \p Inst[in/out] the extension may be modified during the process if some
6730 /// promotions apply.
6731 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6732   bool AllowPromotionWithoutCommonHeader = false;
6733   /// See if it is an interesting sext operations for the address type
6734   /// promotion before trying to promote it, e.g., the ones with the right
6735   /// type and used in memory accesses.
6736   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6737       *Inst, AllowPromotionWithoutCommonHeader);
6738   TypePromotionTransaction TPT(RemovedInsts);
6739   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6740       TPT.getRestorationPoint();
6741   SmallVector<Instruction *, 1> Exts;
6742   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6743   Exts.push_back(Inst);
6744 
6745   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6746 
6747   // Look for a load being extended.
6748   LoadInst *LI = nullptr;
6749   Instruction *ExtFedByLoad;
6750 
6751   // Try to promote a chain of computation if it allows to form an extended
6752   // load.
6753   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6754     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6755     TPT.commit();
6756     // Move the extend into the same block as the load.
6757     ExtFedByLoad->moveAfter(LI);
6758     ++NumExtsMoved;
6759     Inst = ExtFedByLoad;
6760     return true;
6761   }
6762 
6763   // Continue promoting SExts if known as considerable depending on targets.
6764   if (ATPConsiderable &&
6765       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6766                                   HasPromoted, TPT, SpeculativelyMovedExts))
6767     return true;
6768 
6769   TPT.rollback(LastKnownGood);
6770   return false;
6771 }
6772 
6773 // Perform address type promotion if doing so is profitable.
6774 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6775 // instructions that sign extended the same initial value. However, if
6776 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6777 // extension is just profitable.
6778 bool CodeGenPrepare::performAddressTypePromotion(
6779     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6780     bool HasPromoted, TypePromotionTransaction &TPT,
6781     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6782   bool Promoted = false;
6783   SmallPtrSet<Instruction *, 1> UnhandledExts;
6784   bool AllSeenFirst = true;
6785   for (auto *I : SpeculativelyMovedExts) {
6786     Value *HeadOfChain = I->getOperand(0);
6787     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6788         SeenChainsForSExt.find(HeadOfChain);
6789     // If there is an unhandled SExt which has the same header, try to promote
6790     // it as well.
6791     if (AlreadySeen != SeenChainsForSExt.end()) {
6792       if (AlreadySeen->second != nullptr)
6793         UnhandledExts.insert(AlreadySeen->second);
6794       AllSeenFirst = false;
6795     }
6796   }
6797 
6798   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6799                         SpeculativelyMovedExts.size() == 1)) {
6800     TPT.commit();
6801     if (HasPromoted)
6802       Promoted = true;
6803     for (auto *I : SpeculativelyMovedExts) {
6804       Value *HeadOfChain = I->getOperand(0);
6805       SeenChainsForSExt[HeadOfChain] = nullptr;
6806       ValToSExtendedUses[HeadOfChain].push_back(I);
6807     }
6808     // Update Inst as promotion happen.
6809     Inst = SpeculativelyMovedExts.pop_back_val();
6810   } else {
6811     // This is the first chain visited from the header, keep the current chain
6812     // as unhandled. Defer to promote this until we encounter another SExt
6813     // chain derived from the same header.
6814     for (auto *I : SpeculativelyMovedExts) {
6815       Value *HeadOfChain = I->getOperand(0);
6816       SeenChainsForSExt[HeadOfChain] = Inst;
6817     }
6818     return false;
6819   }
6820 
6821   if (!AllSeenFirst && !UnhandledExts.empty())
6822     for (auto *VisitedSExt : UnhandledExts) {
6823       if (RemovedInsts.count(VisitedSExt))
6824         continue;
6825       TypePromotionTransaction TPT(RemovedInsts);
6826       SmallVector<Instruction *, 1> Exts;
6827       SmallVector<Instruction *, 2> Chains;
6828       Exts.push_back(VisitedSExt);
6829       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6830       TPT.commit();
6831       if (HasPromoted)
6832         Promoted = true;
6833       for (auto *I : Chains) {
6834         Value *HeadOfChain = I->getOperand(0);
6835         // Mark this as handled.
6836         SeenChainsForSExt[HeadOfChain] = nullptr;
6837         ValToSExtendedUses[HeadOfChain].push_back(I);
6838       }
6839     }
6840   return Promoted;
6841 }
6842 
6843 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6844   BasicBlock *DefBB = I->getParent();
6845 
6846   // If the result of a {s|z}ext and its source are both live out, rewrite all
6847   // other uses of the source with result of extension.
6848   Value *Src = I->getOperand(0);
6849   if (Src->hasOneUse())
6850     return false;
6851 
6852   // Only do this xform if truncating is free.
6853   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6854     return false;
6855 
6856   // Only safe to perform the optimization if the source is also defined in
6857   // this block.
6858   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6859     return false;
6860 
6861   bool DefIsLiveOut = false;
6862   for (User *U : I->users()) {
6863     Instruction *UI = cast<Instruction>(U);
6864 
6865     // Figure out which BB this ext is used in.
6866     BasicBlock *UserBB = UI->getParent();
6867     if (UserBB == DefBB)
6868       continue;
6869     DefIsLiveOut = true;
6870     break;
6871   }
6872   if (!DefIsLiveOut)
6873     return false;
6874 
6875   // Make sure none of the uses are PHI nodes.
6876   for (User *U : Src->users()) {
6877     Instruction *UI = cast<Instruction>(U);
6878     BasicBlock *UserBB = UI->getParent();
6879     if (UserBB == DefBB)
6880       continue;
6881     // Be conservative. We don't want this xform to end up introducing
6882     // reloads just before load / store instructions.
6883     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6884       return false;
6885   }
6886 
6887   // InsertedTruncs - Only insert one trunc in each block once.
6888   DenseMap<BasicBlock *, Instruction *> InsertedTruncs;
6889 
6890   bool MadeChange = false;
6891   for (Use &U : Src->uses()) {
6892     Instruction *User = cast<Instruction>(U.getUser());
6893 
6894     // Figure out which BB this ext is used in.
6895     BasicBlock *UserBB = User->getParent();
6896     if (UserBB == DefBB)
6897       continue;
6898 
6899     // Both src and def are live in this block. Rewrite the use.
6900     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6901 
6902     if (!InsertedTrunc) {
6903       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6904       assert(InsertPt != UserBB->end());
6905       InsertedTrunc = new TruncInst(I, Src->getType(), "");
6906       InsertedTrunc->insertBefore(*UserBB, InsertPt);
6907       InsertedInsts.insert(InsertedTrunc);
6908     }
6909 
6910     // Replace a use of the {s|z}ext source with a use of the result.
6911     U = InsertedTrunc;
6912     ++NumExtUses;
6913     MadeChange = true;
6914   }
6915 
6916   return MadeChange;
6917 }
6918 
6919 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
6920 // just after the load if the target can fold this into one extload instruction,
6921 // with the hope of eliminating some of the other later "and" instructions using
6922 // the loaded value.  "and"s that are made trivially redundant by the insertion
6923 // of the new "and" are removed by this function, while others (e.g. those whose
6924 // path from the load goes through a phi) are left for isel to potentially
6925 // remove.
6926 //
6927 // For example:
6928 //
6929 // b0:
6930 //   x = load i32
6931 //   ...
6932 // b1:
6933 //   y = and x, 0xff
6934 //   z = use y
6935 //
6936 // becomes:
6937 //
6938 // b0:
6939 //   x = load i32
6940 //   x' = and x, 0xff
6941 //   ...
6942 // b1:
6943 //   z = use x'
6944 //
6945 // whereas:
6946 //
6947 // b0:
6948 //   x1 = load i32
6949 //   ...
6950 // b1:
6951 //   x2 = load i32
6952 //   ...
6953 // b2:
6954 //   x = phi x1, x2
6955 //   y = and x, 0xff
6956 //
6957 // becomes (after a call to optimizeLoadExt for each load):
6958 //
6959 // b0:
6960 //   x1 = load i32
6961 //   x1' = and x1, 0xff
6962 //   ...
6963 // b1:
6964 //   x2 = load i32
6965 //   x2' = and x2, 0xff
6966 //   ...
6967 // b2:
6968 //   x = phi x1', x2'
6969 //   y = and x, 0xff
6970 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6971   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6972     return false;
6973 
6974   // Skip loads we've already transformed.
6975   if (Load->hasOneUse() &&
6976       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6977     return false;
6978 
6979   // Look at all uses of Load, looking through phis, to determine how many bits
6980   // of the loaded value are needed.
6981   SmallVector<Instruction *, 8> WorkList;
6982   SmallPtrSet<Instruction *, 16> Visited;
6983   SmallVector<Instruction *, 8> AndsToMaybeRemove;
6984   for (auto *U : Load->users())
6985     WorkList.push_back(cast<Instruction>(U));
6986 
6987   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6988   unsigned BitWidth = LoadResultVT.getSizeInBits();
6989   // If the BitWidth is 0, do not try to optimize the type
6990   if (BitWidth == 0)
6991     return false;
6992 
6993   APInt DemandBits(BitWidth, 0);
6994   APInt WidestAndBits(BitWidth, 0);
6995 
6996   while (!WorkList.empty()) {
6997     Instruction *I = WorkList.pop_back_val();
6998 
6999     // Break use-def graph loops.
7000     if (!Visited.insert(I).second)
7001       continue;
7002 
7003     // For a PHI node, push all of its users.
7004     if (auto *Phi = dyn_cast<PHINode>(I)) {
7005       for (auto *U : Phi->users())
7006         WorkList.push_back(cast<Instruction>(U));
7007       continue;
7008     }
7009 
7010     switch (I->getOpcode()) {
7011     case Instruction::And: {
7012       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
7013       if (!AndC)
7014         return false;
7015       APInt AndBits = AndC->getValue();
7016       DemandBits |= AndBits;
7017       // Keep track of the widest and mask we see.
7018       if (AndBits.ugt(WidestAndBits))
7019         WidestAndBits = AndBits;
7020       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
7021         AndsToMaybeRemove.push_back(I);
7022       break;
7023     }
7024 
7025     case Instruction::Shl: {
7026       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
7027       if (!ShlC)
7028         return false;
7029       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
7030       DemandBits.setLowBits(BitWidth - ShiftAmt);
7031       break;
7032     }
7033 
7034     case Instruction::Trunc: {
7035       EVT TruncVT = TLI->getValueType(*DL, I->getType());
7036       unsigned TruncBitWidth = TruncVT.getSizeInBits();
7037       DemandBits.setLowBits(TruncBitWidth);
7038       break;
7039     }
7040 
7041     default:
7042       return false;
7043     }
7044   }
7045 
7046   uint32_t ActiveBits = DemandBits.getActiveBits();
7047   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
7048   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
7049   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
7050   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
7051   // followed by an AND.
7052   // TODO: Look into removing this restriction by fixing backends to either
7053   // return false for isLoadExtLegal for i1 or have them select this pattern to
7054   // a single instruction.
7055   //
7056   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
7057   // mask, since these are the only ands that will be removed by isel.
7058   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
7059       WidestAndBits != DemandBits)
7060     return false;
7061 
7062   LLVMContext &Ctx = Load->getType()->getContext();
7063   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
7064   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
7065 
7066   // Reject cases that won't be matched as extloads.
7067   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
7068       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
7069     return false;
7070 
7071   IRBuilder<> Builder(Load->getNextNonDebugInstruction());
7072   auto *NewAnd = cast<Instruction>(
7073       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
7074   // Mark this instruction as "inserted by CGP", so that other
7075   // optimizations don't touch it.
7076   InsertedInsts.insert(NewAnd);
7077 
7078   // Replace all uses of load with new and (except for the use of load in the
7079   // new and itself).
7080   replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc);
7081   NewAnd->setOperand(0, Load);
7082 
7083   // Remove any and instructions that are now redundant.
7084   for (auto *And : AndsToMaybeRemove)
7085     // Check that the and mask is the same as the one we decided to put on the
7086     // new and.
7087     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
7088       replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc);
7089       if (&*CurInstIterator == And)
7090         CurInstIterator = std::next(And->getIterator());
7091       And->eraseFromParent();
7092       ++NumAndUses;
7093     }
7094 
7095   ++NumAndsAdded;
7096   return true;
7097 }
7098 
7099 /// Check if V (an operand of a select instruction) is an expensive instruction
7100 /// that is only used once.
7101 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
7102   auto *I = dyn_cast<Instruction>(V);
7103   // If it's safe to speculatively execute, then it should not have side
7104   // effects; therefore, it's safe to sink and possibly *not* execute.
7105   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
7106          TTI->isExpensiveToSpeculativelyExecute(I);
7107 }
7108 
7109 /// Returns true if a SelectInst should be turned into an explicit branch.
7110 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
7111                                                 const TargetLowering *TLI,
7112                                                 SelectInst *SI) {
7113   // If even a predictable select is cheap, then a branch can't be cheaper.
7114   if (!TLI->isPredictableSelectExpensive())
7115     return false;
7116 
7117   // FIXME: This should use the same heuristics as IfConversion to determine
7118   // whether a select is better represented as a branch.
7119 
7120   // If metadata tells us that the select condition is obviously predictable,
7121   // then we want to replace the select with a branch.
7122   uint64_t TrueWeight, FalseWeight;
7123   if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
7124     uint64_t Max = std::max(TrueWeight, FalseWeight);
7125     uint64_t Sum = TrueWeight + FalseWeight;
7126     if (Sum != 0) {
7127       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
7128       if (Probability > TTI->getPredictableBranchThreshold())
7129         return true;
7130     }
7131   }
7132 
7133   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
7134 
7135   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
7136   // comparison condition. If the compare has more than one use, there's
7137   // probably another cmov or setcc around, so it's not worth emitting a branch.
7138   if (!Cmp || !Cmp->hasOneUse())
7139     return false;
7140 
7141   // If either operand of the select is expensive and only needed on one side
7142   // of the select, we should form a branch.
7143   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
7144       sinkSelectOperand(TTI, SI->getFalseValue()))
7145     return true;
7146 
7147   return false;
7148 }
7149 
7150 /// If \p isTrue is true, return the true value of \p SI, otherwise return
7151 /// false value of \p SI. If the true/false value of \p SI is defined by any
7152 /// select instructions in \p Selects, look through the defining select
7153 /// instruction until the true/false value is not defined in \p Selects.
7154 static Value *
7155 getTrueOrFalseValue(SelectInst *SI, bool isTrue,
7156                     const SmallPtrSet<const Instruction *, 2> &Selects) {
7157   Value *V = nullptr;
7158 
7159   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
7160        DefSI = dyn_cast<SelectInst>(V)) {
7161     assert(DefSI->getCondition() == SI->getCondition() &&
7162            "The condition of DefSI does not match with SI");
7163     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
7164   }
7165 
7166   assert(V && "Failed to get select true/false value");
7167   return V;
7168 }
7169 
7170 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
7171   assert(Shift->isShift() && "Expected a shift");
7172 
7173   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
7174   // general vector shifts, and (3) the shift amount is a select-of-splatted
7175   // values, hoist the shifts before the select:
7176   //   shift Op0, (select Cond, TVal, FVal) -->
7177   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
7178   //
7179   // This is inverting a generic IR transform when we know that the cost of a
7180   // general vector shift is more than the cost of 2 shift-by-scalars.
7181   // We can't do this effectively in SDAG because we may not be able to
7182   // determine if the select operands are splats from within a basic block.
7183   Type *Ty = Shift->getType();
7184   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
7185     return false;
7186   Value *Cond, *TVal, *FVal;
7187   if (!match(Shift->getOperand(1),
7188              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
7189     return false;
7190   if (!isSplatValue(TVal) || !isSplatValue(FVal))
7191     return false;
7192 
7193   IRBuilder<> Builder(Shift);
7194   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
7195   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
7196   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
7197   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
7198   replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc);
7199   Shift->eraseFromParent();
7200   return true;
7201 }
7202 
7203 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
7204   Intrinsic::ID Opcode = Fsh->getIntrinsicID();
7205   assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
7206          "Expected a funnel shift");
7207 
7208   // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
7209   // than general vector shifts, and (3) the shift amount is select-of-splatted
7210   // values, hoist the funnel shifts before the select:
7211   //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
7212   //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
7213   //
7214   // This is inverting a generic IR transform when we know that the cost of a
7215   // general vector shift is more than the cost of 2 shift-by-scalars.
7216   // We can't do this effectively in SDAG because we may not be able to
7217   // determine if the select operands are splats from within a basic block.
7218   Type *Ty = Fsh->getType();
7219   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
7220     return false;
7221   Value *Cond, *TVal, *FVal;
7222   if (!match(Fsh->getOperand(2),
7223              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
7224     return false;
7225   if (!isSplatValue(TVal) || !isSplatValue(FVal))
7226     return false;
7227 
7228   IRBuilder<> Builder(Fsh);
7229   Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
7230   Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal});
7231   Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal});
7232   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
7233   replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc);
7234   Fsh->eraseFromParent();
7235   return true;
7236 }
7237 
7238 /// If we have a SelectInst that will likely profit from branch prediction,
7239 /// turn it into a branch.
7240 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
7241   if (DisableSelectToBranch)
7242     return false;
7243 
7244   // If the SelectOptimize pass is enabled, selects have already been optimized.
7245   if (!getCGPassBuilderOption().DisableSelectOptimize)
7246     return false;
7247 
7248   // Find all consecutive select instructions that share the same condition.
7249   SmallVector<SelectInst *, 2> ASI;
7250   ASI.push_back(SI);
7251   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
7252        It != SI->getParent()->end(); ++It) {
7253     SelectInst *I = dyn_cast<SelectInst>(&*It);
7254     if (I && SI->getCondition() == I->getCondition()) {
7255       ASI.push_back(I);
7256     } else {
7257       break;
7258     }
7259   }
7260 
7261   SelectInst *LastSI = ASI.back();
7262   // Increment the current iterator to skip all the rest of select instructions
7263   // because they will be either "not lowered" or "all lowered" to branch.
7264   CurInstIterator = std::next(LastSI->getIterator());
7265   // Examine debug-info attached to the consecutive select instructions. They
7266   // won't be individually optimised by optimizeInst, so we need to perform
7267   // DbgVariableRecord maintenence here instead.
7268   for (SelectInst *SI : ArrayRef(ASI).drop_front())
7269     fixupDbgVariableRecordsOnInst(*SI);
7270 
7271   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
7272 
7273   // Can we convert the 'select' to CF ?
7274   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
7275     return false;
7276 
7277   TargetLowering::SelectSupportKind SelectKind;
7278   if (SI->getType()->isVectorTy())
7279     SelectKind = TargetLowering::ScalarCondVectorVal;
7280   else
7281     SelectKind = TargetLowering::ScalarValSelect;
7282 
7283   if (TLI->isSelectSupported(SelectKind) &&
7284       (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
7285        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
7286     return false;
7287 
7288   // The DominatorTree needs to be rebuilt by any consumers after this
7289   // transformation. We simply reset here rather than setting the ModifiedDT
7290   // flag to avoid restarting the function walk in runOnFunction for each
7291   // select optimized.
7292   DT.reset();
7293 
7294   // Transform a sequence like this:
7295   //    start:
7296   //       %cmp = cmp uge i32 %a, %b
7297   //       %sel = select i1 %cmp, i32 %c, i32 %d
7298   //
7299   // Into:
7300   //    start:
7301   //       %cmp = cmp uge i32 %a, %b
7302   //       %cmp.frozen = freeze %cmp
7303   //       br i1 %cmp.frozen, label %select.true, label %select.false
7304   //    select.true:
7305   //       br label %select.end
7306   //    select.false:
7307   //       br label %select.end
7308   //    select.end:
7309   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
7310   //
7311   // %cmp should be frozen, otherwise it may introduce undefined behavior.
7312   // In addition, we may sink instructions that produce %c or %d from
7313   // the entry block into the destination(s) of the new branch.
7314   // If the true or false blocks do not contain a sunken instruction, that
7315   // block and its branch may be optimized away. In that case, one side of the
7316   // first branch will point directly to select.end, and the corresponding PHI
7317   // predecessor block will be the start block.
7318 
7319   // Collect values that go on the true side and the values that go on the false
7320   // side.
7321   SmallVector<Instruction *> TrueInstrs, FalseInstrs;
7322   for (SelectInst *SI : ASI) {
7323     if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V))
7324       TrueInstrs.push_back(cast<Instruction>(V));
7325     if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V))
7326       FalseInstrs.push_back(cast<Instruction>(V));
7327   }
7328 
7329   // Split the select block, according to how many (if any) values go on each
7330   // side.
7331   BasicBlock *StartBlock = SI->getParent();
7332   BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI));
7333   // We should split before any debug-info.
7334   SplitPt.setHeadBit(true);
7335 
7336   IRBuilder<> IB(SI);
7337   auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
7338 
7339   BasicBlock *TrueBlock = nullptr;
7340   BasicBlock *FalseBlock = nullptr;
7341   BasicBlock *EndBlock = nullptr;
7342   BranchInst *TrueBranch = nullptr;
7343   BranchInst *FalseBranch = nullptr;
7344   if (TrueInstrs.size() == 0) {
7345     FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse(
7346         CondFr, SplitPt, false, nullptr, nullptr, LI));
7347     FalseBlock = FalseBranch->getParent();
7348     EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0));
7349   } else if (FalseInstrs.size() == 0) {
7350     TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen(
7351         CondFr, SplitPt, false, nullptr, nullptr, LI));
7352     TrueBlock = TrueBranch->getParent();
7353     EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7354   } else {
7355     Instruction *ThenTerm = nullptr;
7356     Instruction *ElseTerm = nullptr;
7357     SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm,
7358                                   nullptr, nullptr, LI);
7359     TrueBranch = cast<BranchInst>(ThenTerm);
7360     FalseBranch = cast<BranchInst>(ElseTerm);
7361     TrueBlock = TrueBranch->getParent();
7362     FalseBlock = FalseBranch->getParent();
7363     EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7364   }
7365 
7366   EndBlock->setName("select.end");
7367   if (TrueBlock)
7368     TrueBlock->setName("select.true.sink");
7369   if (FalseBlock)
7370     FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false"
7371                                                 : "select.false.sink");
7372 
7373   if (IsHugeFunc) {
7374     if (TrueBlock)
7375       FreshBBs.insert(TrueBlock);
7376     if (FalseBlock)
7377       FreshBBs.insert(FalseBlock);
7378     FreshBBs.insert(EndBlock);
7379   }
7380 
7381   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
7382 
7383   static const unsigned MD[] = {
7384       LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
7385       LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
7386   StartBlock->getTerminator()->copyMetadata(*SI, MD);
7387 
7388   // Sink expensive instructions into the conditional blocks to avoid executing
7389   // them speculatively.
7390   for (Instruction *I : TrueInstrs)
7391     I->moveBefore(TrueBranch);
7392   for (Instruction *I : FalseInstrs)
7393     I->moveBefore(FalseBranch);
7394 
7395   // If we did not create a new block for one of the 'true' or 'false' paths
7396   // of the condition, it means that side of the branch goes to the end block
7397   // directly and the path originates from the start block from the point of
7398   // view of the new PHI.
7399   if (TrueBlock == nullptr)
7400     TrueBlock = StartBlock;
7401   else if (FalseBlock == nullptr)
7402     FalseBlock = StartBlock;
7403 
7404   SmallPtrSet<const Instruction *, 2> INS;
7405   INS.insert(ASI.begin(), ASI.end());
7406   // Use reverse iterator because later select may use the value of the
7407   // earlier select, and we need to propagate value through earlier select
7408   // to get the PHI operand.
7409   for (SelectInst *SI : llvm::reverse(ASI)) {
7410     // The select itself is replaced with a PHI Node.
7411     PHINode *PN = PHINode::Create(SI->getType(), 2, "");
7412     PN->insertBefore(EndBlock->begin());
7413     PN->takeName(SI);
7414     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
7415     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
7416     PN->setDebugLoc(SI->getDebugLoc());
7417 
7418     replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc);
7419     SI->eraseFromParent();
7420     INS.erase(SI);
7421     ++NumSelectsExpanded;
7422   }
7423 
7424   // Instruct OptimizeBlock to skip to the next block.
7425   CurInstIterator = StartBlock->end();
7426   return true;
7427 }
7428 
7429 /// Some targets only accept certain types for splat inputs. For example a VDUP
7430 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
7431 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
7432 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
7433   // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
7434   if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
7435                             m_Undef(), m_ZeroMask())))
7436     return false;
7437   Type *NewType = TLI->shouldConvertSplatType(SVI);
7438   if (!NewType)
7439     return false;
7440 
7441   auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
7442   assert(!NewType->isVectorTy() && "Expected a scalar type!");
7443   assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
7444          "Expected a type of the same size!");
7445   auto *NewVecType =
7446       FixedVectorType::get(NewType, SVIVecType->getNumElements());
7447 
7448   // Create a bitcast (shuffle (insert (bitcast(..))))
7449   IRBuilder<> Builder(SVI->getContext());
7450   Builder.SetInsertPoint(SVI);
7451   Value *BC1 = Builder.CreateBitCast(
7452       cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
7453   Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
7454   Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
7455 
7456   replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc);
7457   RecursivelyDeleteTriviallyDeadInstructions(
7458       SVI, TLInfo, nullptr,
7459       [&](Value *V) { removeAllAssertingVHReferences(V); });
7460 
7461   // Also hoist the bitcast up to its operand if it they are not in the same
7462   // block.
7463   if (auto *BCI = dyn_cast<Instruction>(BC1))
7464     if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
7465       if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
7466           !Op->isTerminator() && !Op->isEHPad())
7467         BCI->moveAfter(Op);
7468 
7469   return true;
7470 }
7471 
7472 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
7473   // If the operands of I can be folded into a target instruction together with
7474   // I, duplicate and sink them.
7475   SmallVector<Use *, 4> OpsToSink;
7476   if (!TLI->shouldSinkOperands(I, OpsToSink))
7477     return false;
7478 
7479   // OpsToSink can contain multiple uses in a use chain (e.g.
7480   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
7481   // uses must come first, so we process the ops in reverse order so as to not
7482   // create invalid IR.
7483   BasicBlock *TargetBB = I->getParent();
7484   bool Changed = false;
7485   SmallVector<Use *, 4> ToReplace;
7486   Instruction *InsertPoint = I;
7487   DenseMap<const Instruction *, unsigned long> InstOrdering;
7488   unsigned long InstNumber = 0;
7489   for (const auto &I : *TargetBB)
7490     InstOrdering[&I] = InstNumber++;
7491 
7492   for (Use *U : reverse(OpsToSink)) {
7493     auto *UI = cast<Instruction>(U->get());
7494     if (isa<PHINode>(UI))
7495       continue;
7496     if (UI->getParent() == TargetBB) {
7497       if (InstOrdering[UI] < InstOrdering[InsertPoint])
7498         InsertPoint = UI;
7499       continue;
7500     }
7501     ToReplace.push_back(U);
7502   }
7503 
7504   SetVector<Instruction *> MaybeDead;
7505   DenseMap<Instruction *, Instruction *> NewInstructions;
7506   for (Use *U : ToReplace) {
7507     auto *UI = cast<Instruction>(U->get());
7508     Instruction *NI = UI->clone();
7509 
7510     if (IsHugeFunc) {
7511       // Now we clone an instruction, its operands' defs may sink to this BB
7512       // now. So we put the operands defs' BBs into FreshBBs to do optimization.
7513       for (Value *Op : NI->operands())
7514         if (auto *OpDef = dyn_cast<Instruction>(Op))
7515           FreshBBs.insert(OpDef->getParent());
7516     }
7517 
7518     NewInstructions[UI] = NI;
7519     MaybeDead.insert(UI);
7520     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
7521     NI->insertBefore(InsertPoint);
7522     InsertPoint = NI;
7523     InsertedInsts.insert(NI);
7524 
7525     // Update the use for the new instruction, making sure that we update the
7526     // sunk instruction uses, if it is part of a chain that has already been
7527     // sunk.
7528     Instruction *OldI = cast<Instruction>(U->getUser());
7529     if (NewInstructions.count(OldI))
7530       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
7531     else
7532       U->set(NI);
7533     Changed = true;
7534   }
7535 
7536   // Remove instructions that are dead after sinking.
7537   for (auto *I : MaybeDead) {
7538     if (!I->hasNUsesOrMore(1)) {
7539       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
7540       I->eraseFromParent();
7541     }
7542   }
7543 
7544   return Changed;
7545 }
7546 
7547 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) {
7548   Value *Cond = SI->getCondition();
7549   Type *OldType = Cond->getType();
7550   LLVMContext &Context = Cond->getContext();
7551   EVT OldVT = TLI->getValueType(*DL, OldType);
7552   MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT);
7553   unsigned RegWidth = RegType.getSizeInBits();
7554 
7555   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
7556     return false;
7557 
7558   // If the register width is greater than the type width, expand the condition
7559   // of the switch instruction and each case constant to the width of the
7560   // register. By widening the type of the switch condition, subsequent
7561   // comparisons (for case comparisons) will not need to be extended to the
7562   // preferred register width, so we will potentially eliminate N-1 extends,
7563   // where N is the number of cases in the switch.
7564   auto *NewType = Type::getIntNTy(Context, RegWidth);
7565 
7566   // Extend the switch condition and case constants using the target preferred
7567   // extend unless the switch condition is a function argument with an extend
7568   // attribute. In that case, we can avoid an unnecessary mask/extension by
7569   // matching the argument extension instead.
7570   Instruction::CastOps ExtType = Instruction::ZExt;
7571   // Some targets prefer SExt over ZExt.
7572   if (TLI->isSExtCheaperThanZExt(OldVT, RegType))
7573     ExtType = Instruction::SExt;
7574 
7575   if (auto *Arg = dyn_cast<Argument>(Cond)) {
7576     if (Arg->hasSExtAttr())
7577       ExtType = Instruction::SExt;
7578     if (Arg->hasZExtAttr())
7579       ExtType = Instruction::ZExt;
7580   }
7581 
7582   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
7583   ExtInst->insertBefore(SI);
7584   ExtInst->setDebugLoc(SI->getDebugLoc());
7585   SI->setCondition(ExtInst);
7586   for (auto Case : SI->cases()) {
7587     const APInt &NarrowConst = Case.getCaseValue()->getValue();
7588     APInt WideConst = (ExtType == Instruction::ZExt)
7589                           ? NarrowConst.zext(RegWidth)
7590                           : NarrowConst.sext(RegWidth);
7591     Case.setValue(ConstantInt::get(Context, WideConst));
7592   }
7593 
7594   return true;
7595 }
7596 
7597 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) {
7598   // The SCCP optimization tends to produce code like this:
7599   //   switch(x) { case 42: phi(42, ...) }
7600   // Materializing the constant for the phi-argument needs instructions; So we
7601   // change the code to:
7602   //   switch(x) { case 42: phi(x, ...) }
7603 
7604   Value *Condition = SI->getCondition();
7605   // Avoid endless loop in degenerate case.
7606   if (isa<ConstantInt>(*Condition))
7607     return false;
7608 
7609   bool Changed = false;
7610   BasicBlock *SwitchBB = SI->getParent();
7611   Type *ConditionType = Condition->getType();
7612 
7613   for (const SwitchInst::CaseHandle &Case : SI->cases()) {
7614     ConstantInt *CaseValue = Case.getCaseValue();
7615     BasicBlock *CaseBB = Case.getCaseSuccessor();
7616     // Set to true if we previously checked that `CaseBB` is only reached by
7617     // a single case from this switch.
7618     bool CheckedForSinglePred = false;
7619     for (PHINode &PHI : CaseBB->phis()) {
7620       Type *PHIType = PHI.getType();
7621       // If ZExt is free then we can also catch patterns like this:
7622       //   switch((i32)x) { case 42: phi((i64)42, ...); }
7623       // and replace `(i64)42` with `zext i32 %x to i64`.
7624       bool TryZExt =
7625           PHIType->isIntegerTy() &&
7626           PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() &&
7627           TLI->isZExtFree(ConditionType, PHIType);
7628       if (PHIType == ConditionType || TryZExt) {
7629         // Set to true to skip this case because of multiple preds.
7630         bool SkipCase = false;
7631         Value *Replacement = nullptr;
7632         for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) {
7633           Value *PHIValue = PHI.getIncomingValue(I);
7634           if (PHIValue != CaseValue) {
7635             if (!TryZExt)
7636               continue;
7637             ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue);
7638             if (!PHIValueInt ||
7639                 PHIValueInt->getValue() !=
7640                     CaseValue->getValue().zext(PHIType->getIntegerBitWidth()))
7641               continue;
7642           }
7643           if (PHI.getIncomingBlock(I) != SwitchBB)
7644             continue;
7645           // We cannot optimize if there are multiple case labels jumping to
7646           // this block.  This check may get expensive when there are many
7647           // case labels so we test for it last.
7648           if (!CheckedForSinglePred) {
7649             CheckedForSinglePred = true;
7650             if (SI->findCaseDest(CaseBB) == nullptr) {
7651               SkipCase = true;
7652               break;
7653             }
7654           }
7655 
7656           if (Replacement == nullptr) {
7657             if (PHIValue == CaseValue) {
7658               Replacement = Condition;
7659             } else {
7660               IRBuilder<> Builder(SI);
7661               Replacement = Builder.CreateZExt(Condition, PHIType);
7662             }
7663           }
7664           PHI.setIncomingValue(I, Replacement);
7665           Changed = true;
7666         }
7667         if (SkipCase)
7668           break;
7669       }
7670     }
7671   }
7672   return Changed;
7673 }
7674 
7675 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
7676   bool Changed = optimizeSwitchType(SI);
7677   Changed |= optimizeSwitchPhiConstants(SI);
7678   return Changed;
7679 }
7680 
7681 namespace {
7682 
7683 /// Helper class to promote a scalar operation to a vector one.
7684 /// This class is used to move downward extractelement transition.
7685 /// E.g.,
7686 /// a = vector_op <2 x i32>
7687 /// b = extractelement <2 x i32> a, i32 0
7688 /// c = scalar_op b
7689 /// store c
7690 ///
7691 /// =>
7692 /// a = vector_op <2 x i32>
7693 /// c = vector_op a (equivalent to scalar_op on the related lane)
7694 /// * d = extractelement <2 x i32> c, i32 0
7695 /// * store d
7696 /// Assuming both extractelement and store can be combine, we get rid of the
7697 /// transition.
7698 class VectorPromoteHelper {
7699   /// DataLayout associated with the current module.
7700   const DataLayout &DL;
7701 
7702   /// Used to perform some checks on the legality of vector operations.
7703   const TargetLowering &TLI;
7704 
7705   /// Used to estimated the cost of the promoted chain.
7706   const TargetTransformInfo &TTI;
7707 
7708   /// The transition being moved downwards.
7709   Instruction *Transition;
7710 
7711   /// The sequence of instructions to be promoted.
7712   SmallVector<Instruction *, 4> InstsToBePromoted;
7713 
7714   /// Cost of combining a store and an extract.
7715   unsigned StoreExtractCombineCost;
7716 
7717   /// Instruction that will be combined with the transition.
7718   Instruction *CombineInst = nullptr;
7719 
7720   /// The instruction that represents the current end of the transition.
7721   /// Since we are faking the promotion until we reach the end of the chain
7722   /// of computation, we need a way to get the current end of the transition.
7723   Instruction *getEndOfTransition() const {
7724     if (InstsToBePromoted.empty())
7725       return Transition;
7726     return InstsToBePromoted.back();
7727   }
7728 
7729   /// Return the index of the original value in the transition.
7730   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7731   /// c, is at index 0.
7732   unsigned getTransitionOriginalValueIdx() const {
7733     assert(isa<ExtractElementInst>(Transition) &&
7734            "Other kind of transitions are not supported yet");
7735     return 0;
7736   }
7737 
7738   /// Return the index of the index in the transition.
7739   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7740   /// is at index 1.
7741   unsigned getTransitionIdx() const {
7742     assert(isa<ExtractElementInst>(Transition) &&
7743            "Other kind of transitions are not supported yet");
7744     return 1;
7745   }
7746 
7747   /// Get the type of the transition.
7748   /// This is the type of the original value.
7749   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7750   /// transition is <2 x i32>.
7751   Type *getTransitionType() const {
7752     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
7753   }
7754 
7755   /// Promote \p ToBePromoted by moving \p Def downward through.
7756   /// I.e., we have the following sequence:
7757   /// Def = Transition <ty1> a to <ty2>
7758   /// b = ToBePromoted <ty2> Def, ...
7759   /// =>
7760   /// b = ToBePromoted <ty1> a, ...
7761   /// Def = Transition <ty1> ToBePromoted to <ty2>
7762   void promoteImpl(Instruction *ToBePromoted);
7763 
7764   /// Check whether or not it is profitable to promote all the
7765   /// instructions enqueued to be promoted.
7766   bool isProfitableToPromote() {
7767     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
7768     unsigned Index = isa<ConstantInt>(ValIdx)
7769                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
7770                          : -1;
7771     Type *PromotedType = getTransitionType();
7772 
7773     StoreInst *ST = cast<StoreInst>(CombineInst);
7774     unsigned AS = ST->getPointerAddressSpace();
7775     // Check if this store is supported.
7776     if (!TLI.allowsMisalignedMemoryAccesses(
7777             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
7778             ST->getAlign())) {
7779       // If this is not supported, there is no way we can combine
7780       // the extract with the store.
7781       return false;
7782     }
7783 
7784     // The scalar chain of computation has to pay for the transition
7785     // scalar to vector.
7786     // The vector chain has to account for the combining cost.
7787     enum TargetTransformInfo::TargetCostKind CostKind =
7788         TargetTransformInfo::TCK_RecipThroughput;
7789     InstructionCost ScalarCost =
7790         TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index);
7791     InstructionCost VectorCost = StoreExtractCombineCost;
7792     for (const auto &Inst : InstsToBePromoted) {
7793       // Compute the cost.
7794       // By construction, all instructions being promoted are arithmetic ones.
7795       // Moreover, one argument is a constant that can be viewed as a splat
7796       // constant.
7797       Value *Arg0 = Inst->getOperand(0);
7798       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
7799                             isa<ConstantFP>(Arg0);
7800       TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info;
7801       if (IsArg0Constant)
7802         Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7803       else
7804         Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7805 
7806       ScalarCost += TTI.getArithmeticInstrCost(
7807           Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info);
7808       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
7809                                                CostKind, Arg0Info, Arg1Info);
7810     }
7811     LLVM_DEBUG(
7812         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7813                << ScalarCost << "\nVector: " << VectorCost << '\n');
7814     return ScalarCost > VectorCost;
7815   }
7816 
7817   /// Generate a constant vector with \p Val with the same
7818   /// number of elements as the transition.
7819   /// \p UseSplat defines whether or not \p Val should be replicated
7820   /// across the whole vector.
7821   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7822   /// otherwise we generate a vector with as many undef as possible:
7823   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7824   /// used at the index of the extract.
7825   Value *getConstantVector(Constant *Val, bool UseSplat) const {
7826     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
7827     if (!UseSplat) {
7828       // If we cannot determine where the constant must be, we have to
7829       // use a splat constant.
7830       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
7831       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
7832         ExtractIdx = CstVal->getSExtValue();
7833       else
7834         UseSplat = true;
7835     }
7836 
7837     ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7838     if (UseSplat)
7839       return ConstantVector::getSplat(EC, Val);
7840 
7841     if (!EC.isScalable()) {
7842       SmallVector<Constant *, 4> ConstVec;
7843       UndefValue *UndefVal = UndefValue::get(Val->getType());
7844       for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7845         if (Idx == ExtractIdx)
7846           ConstVec.push_back(Val);
7847         else
7848           ConstVec.push_back(UndefVal);
7849       }
7850       return ConstantVector::get(ConstVec);
7851     } else
7852       llvm_unreachable(
7853           "Generate scalable vector for non-splat is unimplemented");
7854   }
7855 
7856   /// Check if promoting to a vector type an operand at \p OperandIdx
7857   /// in \p Use can trigger undefined behavior.
7858   static bool canCauseUndefinedBehavior(const Instruction *Use,
7859                                         unsigned OperandIdx) {
7860     // This is not safe to introduce undef when the operand is on
7861     // the right hand side of a division-like instruction.
7862     if (OperandIdx != 1)
7863       return false;
7864     switch (Use->getOpcode()) {
7865     default:
7866       return false;
7867     case Instruction::SDiv:
7868     case Instruction::UDiv:
7869     case Instruction::SRem:
7870     case Instruction::URem:
7871       return true;
7872     case Instruction::FDiv:
7873     case Instruction::FRem:
7874       return !Use->hasNoNaNs();
7875     }
7876     llvm_unreachable(nullptr);
7877   }
7878 
7879 public:
7880   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7881                       const TargetTransformInfo &TTI, Instruction *Transition,
7882                       unsigned CombineCost)
7883       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7884         StoreExtractCombineCost(CombineCost) {
7885     assert(Transition && "Do not know how to promote null");
7886   }
7887 
7888   /// Check if we can promote \p ToBePromoted to \p Type.
7889   bool canPromote(const Instruction *ToBePromoted) const {
7890     // We could support CastInst too.
7891     return isa<BinaryOperator>(ToBePromoted);
7892   }
7893 
7894   /// Check if it is profitable to promote \p ToBePromoted
7895   /// by moving downward the transition through.
7896   bool shouldPromote(const Instruction *ToBePromoted) const {
7897     // Promote only if all the operands can be statically expanded.
7898     // Indeed, we do not want to introduce any new kind of transitions.
7899     for (const Use &U : ToBePromoted->operands()) {
7900       const Value *Val = U.get();
7901       if (Val == getEndOfTransition()) {
7902         // If the use is a division and the transition is on the rhs,
7903         // we cannot promote the operation, otherwise we may create a
7904         // division by zero.
7905         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7906           return false;
7907         continue;
7908       }
7909       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7910           !isa<ConstantFP>(Val))
7911         return false;
7912     }
7913     // Check that the resulting operation is legal.
7914     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7915     if (!ISDOpcode)
7916       return false;
7917     return StressStoreExtract ||
7918            TLI.isOperationLegalOrCustom(
7919                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7920   }
7921 
7922   /// Check whether or not \p Use can be combined
7923   /// with the transition.
7924   /// I.e., is it possible to do Use(Transition) => AnotherUse?
7925   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7926 
7927   /// Record \p ToBePromoted as part of the chain to be promoted.
7928   void enqueueForPromotion(Instruction *ToBePromoted) {
7929     InstsToBePromoted.push_back(ToBePromoted);
7930   }
7931 
7932   /// Set the instruction that will be combined with the transition.
7933   void recordCombineInstruction(Instruction *ToBeCombined) {
7934     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7935     CombineInst = ToBeCombined;
7936   }
7937 
7938   /// Promote all the instructions enqueued for promotion if it is
7939   /// is profitable.
7940   /// \return True if the promotion happened, false otherwise.
7941   bool promote() {
7942     // Check if there is something to promote.
7943     // Right now, if we do not have anything to combine with,
7944     // we assume the promotion is not profitable.
7945     if (InstsToBePromoted.empty() || !CombineInst)
7946       return false;
7947 
7948     // Check cost.
7949     if (!StressStoreExtract && !isProfitableToPromote())
7950       return false;
7951 
7952     // Promote.
7953     for (auto &ToBePromoted : InstsToBePromoted)
7954       promoteImpl(ToBePromoted);
7955     InstsToBePromoted.clear();
7956     return true;
7957   }
7958 };
7959 
7960 } // end anonymous namespace
7961 
7962 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7963   // At this point, we know that all the operands of ToBePromoted but Def
7964   // can be statically promoted.
7965   // For Def, we need to use its parameter in ToBePromoted:
7966   // b = ToBePromoted ty1 a
7967   // Def = Transition ty1 b to ty2
7968   // Move the transition down.
7969   // 1. Replace all uses of the promoted operation by the transition.
7970   // = ... b => = ... Def.
7971   assert(ToBePromoted->getType() == Transition->getType() &&
7972          "The type of the result of the transition does not match "
7973          "the final type");
7974   ToBePromoted->replaceAllUsesWith(Transition);
7975   // 2. Update the type of the uses.
7976   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7977   Type *TransitionTy = getTransitionType();
7978   ToBePromoted->mutateType(TransitionTy);
7979   // 3. Update all the operands of the promoted operation with promoted
7980   // operands.
7981   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7982   for (Use &U : ToBePromoted->operands()) {
7983     Value *Val = U.get();
7984     Value *NewVal = nullptr;
7985     if (Val == Transition)
7986       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7987     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7988              isa<ConstantFP>(Val)) {
7989       // Use a splat constant if it is not safe to use undef.
7990       NewVal = getConstantVector(
7991           cast<Constant>(Val),
7992           isa<UndefValue>(Val) ||
7993               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7994     } else
7995       llvm_unreachable("Did you modified shouldPromote and forgot to update "
7996                        "this?");
7997     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7998   }
7999   Transition->moveAfter(ToBePromoted);
8000   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
8001 }
8002 
8003 /// Some targets can do store(extractelement) with one instruction.
8004 /// Try to push the extractelement towards the stores when the target
8005 /// has this feature and this is profitable.
8006 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
8007   unsigned CombineCost = std::numeric_limits<unsigned>::max();
8008   if (DisableStoreExtract ||
8009       (!StressStoreExtract &&
8010        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
8011                                        Inst->getOperand(1), CombineCost)))
8012     return false;
8013 
8014   // At this point we know that Inst is a vector to scalar transition.
8015   // Try to move it down the def-use chain, until:
8016   // - We can combine the transition with its single use
8017   //   => we got rid of the transition.
8018   // - We escape the current basic block
8019   //   => we would need to check that we are moving it at a cheaper place and
8020   //      we do not do that for now.
8021   BasicBlock *Parent = Inst->getParent();
8022   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
8023   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
8024   // If the transition has more than one use, assume this is not going to be
8025   // beneficial.
8026   while (Inst->hasOneUse()) {
8027     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
8028     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
8029 
8030     if (ToBePromoted->getParent() != Parent) {
8031       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
8032                         << ToBePromoted->getParent()->getName()
8033                         << ") than the transition (" << Parent->getName()
8034                         << ").\n");
8035       return false;
8036     }
8037 
8038     if (VPH.canCombine(ToBePromoted)) {
8039       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
8040                         << "will be combined with: " << *ToBePromoted << '\n');
8041       VPH.recordCombineInstruction(ToBePromoted);
8042       bool Changed = VPH.promote();
8043       NumStoreExtractExposed += Changed;
8044       return Changed;
8045     }
8046 
8047     LLVM_DEBUG(dbgs() << "Try promoting.\n");
8048     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
8049       return false;
8050 
8051     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
8052 
8053     VPH.enqueueForPromotion(ToBePromoted);
8054     Inst = ToBePromoted;
8055   }
8056   return false;
8057 }
8058 
8059 /// For the instruction sequence of store below, F and I values
8060 /// are bundled together as an i64 value before being stored into memory.
8061 /// Sometimes it is more efficient to generate separate stores for F and I,
8062 /// which can remove the bitwise instructions or sink them to colder places.
8063 ///
8064 ///   (store (or (zext (bitcast F to i32) to i64),
8065 ///              (shl (zext I to i64), 32)), addr)  -->
8066 ///   (store F, addr) and (store I, addr+4)
8067 ///
8068 /// Similarly, splitting for other merged store can also be beneficial, like:
8069 /// For pair of {i32, i32}, i64 store --> two i32 stores.
8070 /// For pair of {i32, i16}, i64 store --> two i32 stores.
8071 /// For pair of {i16, i16}, i32 store --> two i16 stores.
8072 /// For pair of {i16, i8},  i32 store --> two i16 stores.
8073 /// For pair of {i8, i8},   i16 store --> two i8 stores.
8074 ///
8075 /// We allow each target to determine specifically which kind of splitting is
8076 /// supported.
8077 ///
8078 /// The store patterns are commonly seen from the simple code snippet below
8079 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
8080 ///   void goo(const std::pair<int, float> &);
8081 ///   hoo() {
8082 ///     ...
8083 ///     goo(std::make_pair(tmp, ftmp));
8084 ///     ...
8085 ///   }
8086 ///
8087 /// Although we already have similar splitting in DAG Combine, we duplicate
8088 /// it in CodeGenPrepare to catch the case in which pattern is across
8089 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
8090 /// during code expansion.
8091 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
8092                                 const TargetLowering &TLI) {
8093   // Handle simple but common cases only.
8094   Type *StoreType = SI.getValueOperand()->getType();
8095 
8096   // The code below assumes shifting a value by <number of bits>,
8097   // whereas scalable vectors would have to be shifted by
8098   // <2log(vscale) + number of bits> in order to store the
8099   // low/high parts. Bailing out for now.
8100   if (StoreType->isScalableTy())
8101     return false;
8102 
8103   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
8104       DL.getTypeSizeInBits(StoreType) == 0)
8105     return false;
8106 
8107   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
8108   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
8109   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
8110     return false;
8111 
8112   // Don't split the store if it is volatile.
8113   if (SI.isVolatile())
8114     return false;
8115 
8116   // Match the following patterns:
8117   // (store (or (zext LValue to i64),
8118   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
8119   //  or
8120   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
8121   //            (zext LValue to i64),
8122   // Expect both operands of OR and the first operand of SHL have only
8123   // one use.
8124   Value *LValue, *HValue;
8125   if (!match(SI.getValueOperand(),
8126              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
8127                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
8128                                    m_SpecificInt(HalfValBitSize))))))
8129     return false;
8130 
8131   // Check LValue and HValue are int with size less or equal than 32.
8132   if (!LValue->getType()->isIntegerTy() ||
8133       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
8134       !HValue->getType()->isIntegerTy() ||
8135       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
8136     return false;
8137 
8138   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
8139   // as the input of target query.
8140   auto *LBC = dyn_cast<BitCastInst>(LValue);
8141   auto *HBC = dyn_cast<BitCastInst>(HValue);
8142   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
8143                   : EVT::getEVT(LValue->getType());
8144   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
8145                    : EVT::getEVT(HValue->getType());
8146   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
8147     return false;
8148 
8149   // Start to split store.
8150   IRBuilder<> Builder(SI.getContext());
8151   Builder.SetInsertPoint(&SI);
8152 
8153   // If LValue/HValue is a bitcast in another BB, create a new one in current
8154   // BB so it may be merged with the splitted stores by dag combiner.
8155   if (LBC && LBC->getParent() != SI.getParent())
8156     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
8157   if (HBC && HBC->getParent() != SI.getParent())
8158     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
8159 
8160   bool IsLE = SI.getDataLayout().isLittleEndian();
8161   auto CreateSplitStore = [&](Value *V, bool Upper) {
8162     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
8163     Value *Addr = SI.getPointerOperand();
8164     Align Alignment = SI.getAlign();
8165     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
8166     if (IsOffsetStore) {
8167       Addr = Builder.CreateGEP(
8168           SplitStoreType, Addr,
8169           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
8170 
8171       // When splitting the store in half, naturally one half will retain the
8172       // alignment of the original wider store, regardless of whether it was
8173       // over-aligned or not, while the other will require adjustment.
8174       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
8175     }
8176     Builder.CreateAlignedStore(V, Addr, Alignment);
8177   };
8178 
8179   CreateSplitStore(LValue, false);
8180   CreateSplitStore(HValue, true);
8181 
8182   // Delete the old store.
8183   SI.eraseFromParent();
8184   return true;
8185 }
8186 
8187 // Return true if the GEP has two operands, the first operand is of a sequential
8188 // type, and the second operand is a constant.
8189 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
8190   gep_type_iterator I = gep_type_begin(*GEP);
8191   return GEP->getNumOperands() == 2 && I.isSequential() &&
8192          isa<ConstantInt>(GEP->getOperand(1));
8193 }
8194 
8195 // Try unmerging GEPs to reduce liveness interference (register pressure) across
8196 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
8197 // reducing liveness interference across those edges benefits global register
8198 // allocation. Currently handles only certain cases.
8199 //
8200 // For example, unmerge %GEPI and %UGEPI as below.
8201 //
8202 // ---------- BEFORE ----------
8203 // SrcBlock:
8204 //   ...
8205 //   %GEPIOp = ...
8206 //   ...
8207 //   %GEPI = gep %GEPIOp, Idx
8208 //   ...
8209 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
8210 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
8211 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
8212 //   %UGEPI)
8213 //
8214 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
8215 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
8216 // ...
8217 //
8218 // DstBi:
8219 //   ...
8220 //   %UGEPI = gep %GEPIOp, UIdx
8221 // ...
8222 // ---------------------------
8223 //
8224 // ---------- AFTER ----------
8225 // SrcBlock:
8226 //   ... (same as above)
8227 //    (* %GEPI is still alive on the indirectbr edges)
8228 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
8229 //    unmerging)
8230 // ...
8231 //
8232 // DstBi:
8233 //   ...
8234 //   %UGEPI = gep %GEPI, (UIdx-Idx)
8235 //   ...
8236 // ---------------------------
8237 //
8238 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
8239 // no longer alive on them.
8240 //
8241 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
8242 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
8243 // not to disable further simplications and optimizations as a result of GEP
8244 // merging.
8245 //
8246 // Note this unmerging may increase the length of the data flow critical path
8247 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
8248 // between the register pressure and the length of data-flow critical
8249 // path. Restricting this to the uncommon IndirectBr case would minimize the
8250 // impact of potentially longer critical path, if any, and the impact on compile
8251 // time.
8252 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
8253                                              const TargetTransformInfo *TTI) {
8254   BasicBlock *SrcBlock = GEPI->getParent();
8255   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
8256   // (non-IndirectBr) cases exit early here.
8257   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
8258     return false;
8259   // Check that GEPI is a simple gep with a single constant index.
8260   if (!GEPSequentialConstIndexed(GEPI))
8261     return false;
8262   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
8263   // Check that GEPI is a cheap one.
8264   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
8265                          TargetTransformInfo::TCK_SizeAndLatency) >
8266       TargetTransformInfo::TCC_Basic)
8267     return false;
8268   Value *GEPIOp = GEPI->getOperand(0);
8269   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
8270   if (!isa<Instruction>(GEPIOp))
8271     return false;
8272   auto *GEPIOpI = cast<Instruction>(GEPIOp);
8273   if (GEPIOpI->getParent() != SrcBlock)
8274     return false;
8275   // Check that GEP is used outside the block, meaning it's alive on the
8276   // IndirectBr edge(s).
8277   if (llvm::none_of(GEPI->users(), [&](User *Usr) {
8278         if (auto *I = dyn_cast<Instruction>(Usr)) {
8279           if (I->getParent() != SrcBlock) {
8280             return true;
8281           }
8282         }
8283         return false;
8284       }))
8285     return false;
8286   // The second elements of the GEP chains to be unmerged.
8287   std::vector<GetElementPtrInst *> UGEPIs;
8288   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
8289   // on IndirectBr edges.
8290   for (User *Usr : GEPIOp->users()) {
8291     if (Usr == GEPI)
8292       continue;
8293     // Check if Usr is an Instruction. If not, give up.
8294     if (!isa<Instruction>(Usr))
8295       return false;
8296     auto *UI = cast<Instruction>(Usr);
8297     // Check if Usr in the same block as GEPIOp, which is fine, skip.
8298     if (UI->getParent() == SrcBlock)
8299       continue;
8300     // Check if Usr is a GEP. If not, give up.
8301     if (!isa<GetElementPtrInst>(Usr))
8302       return false;
8303     auto *UGEPI = cast<GetElementPtrInst>(Usr);
8304     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
8305     // the pointer operand to it. If so, record it in the vector. If not, give
8306     // up.
8307     if (!GEPSequentialConstIndexed(UGEPI))
8308       return false;
8309     if (UGEPI->getOperand(0) != GEPIOp)
8310       return false;
8311     if (UGEPI->getSourceElementType() != GEPI->getSourceElementType())
8312       return false;
8313     if (GEPIIdx->getType() !=
8314         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
8315       return false;
8316     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8317     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
8318                            TargetTransformInfo::TCK_SizeAndLatency) >
8319         TargetTransformInfo::TCC_Basic)
8320       return false;
8321     UGEPIs.push_back(UGEPI);
8322   }
8323   if (UGEPIs.size() == 0)
8324     return false;
8325   // Check the materializing cost of (Uidx-Idx).
8326   for (GetElementPtrInst *UGEPI : UGEPIs) {
8327     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8328     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
8329     InstructionCost ImmCost = TTI->getIntImmCost(
8330         NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
8331     if (ImmCost > TargetTransformInfo::TCC_Basic)
8332       return false;
8333   }
8334   // Now unmerge between GEPI and UGEPIs.
8335   for (GetElementPtrInst *UGEPI : UGEPIs) {
8336     UGEPI->setOperand(0, GEPI);
8337     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8338     Constant *NewUGEPIIdx = ConstantInt::get(
8339         GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue());
8340     UGEPI->setOperand(1, NewUGEPIIdx);
8341     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
8342     // inbounds to avoid UB.
8343     if (!GEPI->isInBounds()) {
8344       UGEPI->setIsInBounds(false);
8345     }
8346   }
8347   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
8348   // alive on IndirectBr edges).
8349   assert(llvm::none_of(GEPIOp->users(),
8350                        [&](User *Usr) {
8351                          return cast<Instruction>(Usr)->getParent() != SrcBlock;
8352                        }) &&
8353          "GEPIOp is used outside SrcBlock");
8354   return true;
8355 }
8356 
8357 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI,
8358                            SmallSet<BasicBlock *, 32> &FreshBBs,
8359                            bool IsHugeFunc) {
8360   // Try and convert
8361   //  %c = icmp ult %x, 8
8362   //  br %c, bla, blb
8363   //  %tc = lshr %x, 3
8364   // to
8365   //  %tc = lshr %x, 3
8366   //  %c = icmp eq %tc, 0
8367   //  br %c, bla, blb
8368   // Creating the cmp to zero can be better for the backend, especially if the
8369   // lshr produces flags that can be used automatically.
8370   if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
8371     return false;
8372 
8373   ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
8374   if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
8375     return false;
8376 
8377   Value *X = Cmp->getOperand(0);
8378   APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
8379 
8380   for (auto *U : X->users()) {
8381     Instruction *UI = dyn_cast<Instruction>(U);
8382     // A quick dominance check
8383     if (!UI ||
8384         (UI->getParent() != Branch->getParent() &&
8385          UI->getParent() != Branch->getSuccessor(0) &&
8386          UI->getParent() != Branch->getSuccessor(1)) ||
8387         (UI->getParent() != Branch->getParent() &&
8388          !UI->getParent()->getSinglePredecessor()))
8389       continue;
8390 
8391     if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
8392         match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
8393       IRBuilder<> Builder(Branch);
8394       if (UI->getParent() != Branch->getParent())
8395         UI->moveBefore(Branch);
8396       UI->dropPoisonGeneratingFlags();
8397       Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
8398                                         ConstantInt::get(UI->getType(), 0));
8399       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8400       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8401       replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8402       return true;
8403     }
8404     if (Cmp->isEquality() &&
8405         (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
8406          match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) {
8407       IRBuilder<> Builder(Branch);
8408       if (UI->getParent() != Branch->getParent())
8409         UI->moveBefore(Branch);
8410       UI->dropPoisonGeneratingFlags();
8411       Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
8412                                         ConstantInt::get(UI->getType(), 0));
8413       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8414       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8415       replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8416       return true;
8417     }
8418   }
8419   return false;
8420 }
8421 
8422 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) {
8423   bool AnyChange = false;
8424   AnyChange = fixupDbgVariableRecordsOnInst(*I);
8425 
8426   // Bail out if we inserted the instruction to prevent optimizations from
8427   // stepping on each other's toes.
8428   if (InsertedInsts.count(I))
8429     return AnyChange;
8430 
8431   // TODO: Move into the switch on opcode below here.
8432   if (PHINode *P = dyn_cast<PHINode>(I)) {
8433     // It is possible for very late stage optimizations (such as SimplifyCFG)
8434     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
8435     // trivial PHI, go ahead and zap it here.
8436     if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) {
8437       LargeOffsetGEPMap.erase(P);
8438       replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc);
8439       P->eraseFromParent();
8440       ++NumPHIsElim;
8441       return true;
8442     }
8443     return AnyChange;
8444   }
8445 
8446   if (CastInst *CI = dyn_cast<CastInst>(I)) {
8447     // If the source of the cast is a constant, then this should have
8448     // already been constant folded.  The only reason NOT to constant fold
8449     // it is if something (e.g. LSR) was careful to place the constant
8450     // evaluation in a block other than then one that uses it (e.g. to hoist
8451     // the address of globals out of a loop).  If this is the case, we don't
8452     // want to forward-subst the cast.
8453     if (isa<Constant>(CI->getOperand(0)))
8454       return AnyChange;
8455 
8456     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
8457       return true;
8458 
8459     if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) ||
8460          isa<TruncInst>(I)) &&
8461         TLI->optimizeExtendOrTruncateConversion(
8462             I, LI->getLoopFor(I->getParent()), *TTI))
8463       return true;
8464 
8465     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
8466       /// Sink a zext or sext into its user blocks if the target type doesn't
8467       /// fit in one register
8468       if (TLI->getTypeAction(CI->getContext(),
8469                              TLI->getValueType(*DL, CI->getType())) ==
8470           TargetLowering::TypeExpandInteger) {
8471         return SinkCast(CI);
8472       } else {
8473         if (TLI->optimizeExtendOrTruncateConversion(
8474                 I, LI->getLoopFor(I->getParent()), *TTI))
8475           return true;
8476 
8477         bool MadeChange = optimizeExt(I);
8478         return MadeChange | optimizeExtUses(I);
8479       }
8480     }
8481     return AnyChange;
8482   }
8483 
8484   if (auto *Cmp = dyn_cast<CmpInst>(I))
8485     if (optimizeCmp(Cmp, ModifiedDT))
8486       return true;
8487 
8488   if (match(I, m_URem(m_Value(), m_Value())))
8489     if (optimizeURem(I))
8490       return true;
8491 
8492   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8493     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8494     bool Modified = optimizeLoadExt(LI);
8495     unsigned AS = LI->getPointerAddressSpace();
8496     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
8497     return Modified;
8498   }
8499 
8500   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
8501     if (splitMergedValStore(*SI, *DL, *TLI))
8502       return true;
8503     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8504     unsigned AS = SI->getPointerAddressSpace();
8505     return optimizeMemoryInst(I, SI->getOperand(1),
8506                               SI->getOperand(0)->getType(), AS);
8507   }
8508 
8509   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
8510     unsigned AS = RMW->getPointerAddressSpace();
8511     return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS);
8512   }
8513 
8514   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
8515     unsigned AS = CmpX->getPointerAddressSpace();
8516     return optimizeMemoryInst(I, CmpX->getPointerOperand(),
8517                               CmpX->getCompareOperand()->getType(), AS);
8518   }
8519 
8520   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
8521 
8522   if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking &&
8523       sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts))
8524     return true;
8525 
8526   // TODO: Move this into the switch on opcode - it handles shifts already.
8527   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
8528                 BinOp->getOpcode() == Instruction::LShr)) {
8529     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
8530     if (CI && TLI->hasExtractBitsInsn())
8531       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
8532         return true;
8533   }
8534 
8535   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
8536     if (GEPI->hasAllZeroIndices()) {
8537       /// The GEP operand must be a pointer, so must its result -> BitCast
8538       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
8539                                         GEPI->getName(), GEPI->getIterator());
8540       NC->setDebugLoc(GEPI->getDebugLoc());
8541       replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc);
8542       RecursivelyDeleteTriviallyDeadInstructions(
8543           GEPI, TLInfo, nullptr,
8544           [&](Value *V) { removeAllAssertingVHReferences(V); });
8545       ++NumGEPsElim;
8546       optimizeInst(NC, ModifiedDT);
8547       return true;
8548     }
8549     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
8550       return true;
8551     }
8552   }
8553 
8554   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
8555     // freeze(icmp a, const)) -> icmp (freeze a), const
8556     // This helps generate efficient conditional jumps.
8557     Instruction *CmpI = nullptr;
8558     if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
8559       CmpI = II;
8560     else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
8561       CmpI = F->getFastMathFlags().none() ? F : nullptr;
8562 
8563     if (CmpI && CmpI->hasOneUse()) {
8564       auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
8565       bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
8566                     isa<ConstantPointerNull>(Op0);
8567       bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
8568                     isa<ConstantPointerNull>(Op1);
8569       if (Const0 || Const1) {
8570         if (!Const0 || !Const1) {
8571           auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator());
8572           F->takeName(FI);
8573           CmpI->setOperand(Const0 ? 1 : 0, F);
8574         }
8575         replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc);
8576         FI->eraseFromParent();
8577         return true;
8578       }
8579     }
8580     return AnyChange;
8581   }
8582 
8583   if (tryToSinkFreeOperands(I))
8584     return true;
8585 
8586   switch (I->getOpcode()) {
8587   case Instruction::Shl:
8588   case Instruction::LShr:
8589   case Instruction::AShr:
8590     return optimizeShiftInst(cast<BinaryOperator>(I));
8591   case Instruction::Call:
8592     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
8593   case Instruction::Select:
8594     return optimizeSelectInst(cast<SelectInst>(I));
8595   case Instruction::ShuffleVector:
8596     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
8597   case Instruction::Switch:
8598     return optimizeSwitchInst(cast<SwitchInst>(I));
8599   case Instruction::ExtractElement:
8600     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
8601   case Instruction::Br:
8602     return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc);
8603   }
8604 
8605   return AnyChange;
8606 }
8607 
8608 /// Given an OR instruction, check to see if this is a bitreverse
8609 /// idiom. If so, insert the new intrinsic and return true.
8610 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
8611   if (!I.getType()->isIntegerTy() ||
8612       !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
8613                                      TLI->getValueType(*DL, I.getType(), true)))
8614     return false;
8615 
8616   SmallVector<Instruction *, 4> Insts;
8617   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
8618     return false;
8619   Instruction *LastInst = Insts.back();
8620   replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc);
8621   RecursivelyDeleteTriviallyDeadInstructions(
8622       &I, TLInfo, nullptr,
8623       [&](Value *V) { removeAllAssertingVHReferences(V); });
8624   return true;
8625 }
8626 
8627 // In this pass we look for GEP and cast instructions that are used
8628 // across basic blocks and rewrite them to improve basic-block-at-a-time
8629 // selection.
8630 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) {
8631   SunkAddrs.clear();
8632   bool MadeChange = false;
8633 
8634   do {
8635     CurInstIterator = BB.begin();
8636     ModifiedDT = ModifyDT::NotModifyDT;
8637     while (CurInstIterator != BB.end()) {
8638       MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
8639       if (ModifiedDT != ModifyDT::NotModifyDT) {
8640         // For huge function we tend to quickly go though the inner optmization
8641         // opportunities in the BB. So we go back to the BB head to re-optimize
8642         // each instruction instead of go back to the function head.
8643         if (IsHugeFunc) {
8644           DT.reset();
8645           getDT(*BB.getParent());
8646           break;
8647         } else {
8648           return true;
8649         }
8650       }
8651     }
8652   } while (ModifiedDT == ModifyDT::ModifyInstDT);
8653 
8654   bool MadeBitReverse = true;
8655   while (MadeBitReverse) {
8656     MadeBitReverse = false;
8657     for (auto &I : reverse(BB)) {
8658       if (makeBitReverse(I)) {
8659         MadeBitReverse = MadeChange = true;
8660         break;
8661       }
8662     }
8663   }
8664   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
8665 
8666   return MadeChange;
8667 }
8668 
8669 // Some CGP optimizations may move or alter what's computed in a block. Check
8670 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
8671 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
8672   assert(isa<DbgValueInst>(I));
8673   DbgValueInst &DVI = *cast<DbgValueInst>(I);
8674 
8675   // Does this dbg.value refer to a sunk address calculation?
8676   bool AnyChange = false;
8677   SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(),
8678                                      DVI.location_ops().end());
8679   for (Value *Location : LocationOps) {
8680     WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8681     Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8682     if (SunkAddr) {
8683       // Point dbg.value at locally computed address, which should give the best
8684       // opportunity to be accurately lowered. This update may change the type
8685       // of pointer being referred to; however this makes no difference to
8686       // debugging information, and we can't generate bitcasts that may affect
8687       // codegen.
8688       DVI.replaceVariableLocationOp(Location, SunkAddr);
8689       AnyChange = true;
8690     }
8691   }
8692   return AnyChange;
8693 }
8694 
8695 bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) {
8696   bool AnyChange = false;
8697   for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
8698     AnyChange |= fixupDbgVariableRecord(DVR);
8699   return AnyChange;
8700 }
8701 
8702 // FIXME: should updating debug-info really cause the "changed" flag to fire,
8703 // which can cause a function to be reprocessed?
8704 bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) {
8705   if (DVR.Type != DbgVariableRecord::LocationType::Value &&
8706       DVR.Type != DbgVariableRecord::LocationType::Assign)
8707     return false;
8708 
8709   // Does this DbgVariableRecord refer to a sunk address calculation?
8710   bool AnyChange = false;
8711   SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(),
8712                                      DVR.location_ops().end());
8713   for (Value *Location : LocationOps) {
8714     WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8715     Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8716     if (SunkAddr) {
8717       // Point dbg.value at locally computed address, which should give the best
8718       // opportunity to be accurately lowered. This update may change the type
8719       // of pointer being referred to; however this makes no difference to
8720       // debugging information, and we can't generate bitcasts that may affect
8721       // codegen.
8722       DVR.replaceVariableLocationOp(Location, SunkAddr);
8723       AnyChange = true;
8724     }
8725   }
8726   return AnyChange;
8727 }
8728 
8729 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) {
8730   DVI->removeFromParent();
8731   if (isa<PHINode>(VI))
8732     DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
8733   else
8734     DVI->insertAfter(VI);
8735 }
8736 
8737 static void DbgInserterHelper(DbgVariableRecord *DVR, Instruction *VI) {
8738   DVR->removeFromParent();
8739   BasicBlock *VIBB = VI->getParent();
8740   if (isa<PHINode>(VI))
8741     VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt());
8742   else
8743     VIBB->insertDbgRecordAfter(DVR, VI);
8744 }
8745 
8746 // A llvm.dbg.value may be using a value before its definition, due to
8747 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8748 // them by moving the dbg.value to immediately after the value definition.
8749 // FIXME: Ideally this should never be necessary, and this has the potential
8750 // to re-order dbg.value intrinsics.
8751 bool CodeGenPrepare::placeDbgValues(Function &F) {
8752   bool MadeChange = false;
8753   DominatorTree DT(F);
8754 
8755   auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) {
8756     SmallVector<Instruction *, 4> VIs;
8757     for (Value *V : DbgItem->location_ops())
8758       if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
8759         VIs.push_back(VI);
8760 
8761     // This item may depend on multiple instructions, complicating any
8762     // potential sink. This block takes the defensive approach, opting to
8763     // "undef" the item if it has more than one instruction and any of them do
8764     // not dominate iem.
8765     for (Instruction *VI : VIs) {
8766       if (VI->isTerminator())
8767         continue;
8768 
8769       // If VI is a phi in a block with an EHPad terminator, we can't insert
8770       // after it.
8771       if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
8772         continue;
8773 
8774       // If the defining instruction dominates the dbg.value, we do not need
8775       // to move the dbg.value.
8776       if (DT.dominates(VI, Position))
8777         continue;
8778 
8779       // If we depend on multiple instructions and any of them doesn't
8780       // dominate this DVI, we probably can't salvage it: moving it to
8781       // after any of the instructions could cause us to lose the others.
8782       if (VIs.size() > 1) {
8783         LLVM_DEBUG(
8784             dbgs()
8785             << "Unable to find valid location for Debug Value, undefing:\n"
8786             << *DbgItem);
8787         DbgItem->setKillLocation();
8788         break;
8789       }
8790 
8791       LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8792                         << *DbgItem << ' ' << *VI);
8793       DbgInserterHelper(DbgItem, VI);
8794       MadeChange = true;
8795       ++NumDbgValueMoved;
8796     }
8797   };
8798 
8799   for (BasicBlock &BB : F) {
8800     for (Instruction &Insn : llvm::make_early_inc_range(BB)) {
8801       // Process dbg.value intrinsics.
8802       DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn);
8803       if (DVI) {
8804         DbgProcessor(DVI, DVI);
8805         continue;
8806       }
8807 
8808       // If this isn't a dbg.value, process any attached DbgVariableRecord
8809       // records attached to this instruction.
8810       for (DbgVariableRecord &DVR : llvm::make_early_inc_range(
8811                filterDbgVars(Insn.getDbgRecordRange()))) {
8812         if (DVR.Type != DbgVariableRecord::LocationType::Value)
8813           continue;
8814         DbgProcessor(&DVR, &Insn);
8815       }
8816     }
8817   }
8818 
8819   return MadeChange;
8820 }
8821 
8822 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8823 // probes can be chained dependencies of other regular DAG nodes and block DAG
8824 // combine optimizations.
8825 bool CodeGenPrepare::placePseudoProbes(Function &F) {
8826   bool MadeChange = false;
8827   for (auto &Block : F) {
8828     // Move the rest probes to the beginning of the block.
8829     auto FirstInst = Block.getFirstInsertionPt();
8830     while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
8831       ++FirstInst;
8832     BasicBlock::iterator I(FirstInst);
8833     I++;
8834     while (I != Block.end()) {
8835       if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
8836         II->moveBefore(&*FirstInst);
8837         MadeChange = true;
8838       }
8839     }
8840   }
8841   return MadeChange;
8842 }
8843 
8844 /// Scale down both weights to fit into uint32_t.
8845 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
8846   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
8847   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
8848   NewTrue = NewTrue / Scale;
8849   NewFalse = NewFalse / Scale;
8850 }
8851 
8852 /// Some targets prefer to split a conditional branch like:
8853 /// \code
8854 ///   %0 = icmp ne i32 %a, 0
8855 ///   %1 = icmp ne i32 %b, 0
8856 ///   %or.cond = or i1 %0, %1
8857 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
8858 /// \endcode
8859 /// into multiple branch instructions like:
8860 /// \code
8861 ///   bb1:
8862 ///     %0 = icmp ne i32 %a, 0
8863 ///     br i1 %0, label %TrueBB, label %bb2
8864 ///   bb2:
8865 ///     %1 = icmp ne i32 %b, 0
8866 ///     br i1 %1, label %TrueBB, label %FalseBB
8867 /// \endcode
8868 /// This usually allows instruction selection to do even further optimizations
8869 /// and combine the compare with the branch instruction. Currently this is
8870 /// applied for targets which have "cheap" jump instructions.
8871 ///
8872 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8873 ///
8874 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) {
8875   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
8876     return false;
8877 
8878   bool MadeChange = false;
8879   for (auto &BB : F) {
8880     // Does this BB end with the following?
8881     //   %cond1 = icmp|fcmp|binary instruction ...
8882     //   %cond2 = icmp|fcmp|binary instruction ...
8883     //   %cond.or = or|and i1 %cond1, cond2
8884     //   br i1 %cond.or label %dest1, label %dest2"
8885     Instruction *LogicOp;
8886     BasicBlock *TBB, *FBB;
8887     if (!match(BB.getTerminator(),
8888                m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
8889       continue;
8890 
8891     auto *Br1 = cast<BranchInst>(BB.getTerminator());
8892     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
8893       continue;
8894 
8895     // The merging of mostly empty BB can cause a degenerate branch.
8896     if (TBB == FBB)
8897       continue;
8898 
8899     unsigned Opc;
8900     Value *Cond1, *Cond2;
8901     if (match(LogicOp,
8902               m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
8903       Opc = Instruction::And;
8904     else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
8905                                         m_OneUse(m_Value(Cond2)))))
8906       Opc = Instruction::Or;
8907     else
8908       continue;
8909 
8910     auto IsGoodCond = [](Value *Cond) {
8911       return match(
8912           Cond,
8913           m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8914                                            m_LogicalOr(m_Value(), m_Value()))));
8915     };
8916     if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
8917       continue;
8918 
8919     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
8920 
8921     // Create a new BB.
8922     auto *TmpBB =
8923         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
8924                            BB.getParent(), BB.getNextNode());
8925     if (IsHugeFunc)
8926       FreshBBs.insert(TmpBB);
8927 
8928     // Update original basic block by using the first condition directly by the
8929     // branch instruction and removing the no longer needed and/or instruction.
8930     Br1->setCondition(Cond1);
8931     LogicOp->eraseFromParent();
8932 
8933     // Depending on the condition we have to either replace the true or the
8934     // false successor of the original branch instruction.
8935     if (Opc == Instruction::And)
8936       Br1->setSuccessor(0, TmpBB);
8937     else
8938       Br1->setSuccessor(1, TmpBB);
8939 
8940     // Fill in the new basic block.
8941     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
8942     if (auto *I = dyn_cast<Instruction>(Cond2)) {
8943       I->removeFromParent();
8944       I->insertBefore(Br2);
8945     }
8946 
8947     // Update PHI nodes in both successors. The original BB needs to be
8948     // replaced in one successor's PHI nodes, because the branch comes now from
8949     // the newly generated BB (NewBB). In the other successor we need to add one
8950     // incoming edge to the PHI nodes, because both branch instructions target
8951     // now the same successor. Depending on the original branch condition
8952     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8953     // we perform the correct update for the PHI nodes.
8954     // This doesn't change the successor order of the just created branch
8955     // instruction (or any other instruction).
8956     if (Opc == Instruction::Or)
8957       std::swap(TBB, FBB);
8958 
8959     // Replace the old BB with the new BB.
8960     TBB->replacePhiUsesWith(&BB, TmpBB);
8961 
8962     // Add another incoming edge from the new BB.
8963     for (PHINode &PN : FBB->phis()) {
8964       auto *Val = PN.getIncomingValueForBlock(&BB);
8965       PN.addIncoming(Val, TmpBB);
8966     }
8967 
8968     // Update the branch weights (from SelectionDAGBuilder::
8969     // FindMergedConditions).
8970     if (Opc == Instruction::Or) {
8971       // Codegen X | Y as:
8972       // BB1:
8973       //   jmp_if_X TBB
8974       //   jmp TmpBB
8975       // TmpBB:
8976       //   jmp_if_Y TBB
8977       //   jmp FBB
8978       //
8979 
8980       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8981       // The requirement is that
8982       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8983       //     = TrueProb for original BB.
8984       // Assuming the original weights are A and B, one choice is to set BB1's
8985       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8986       // assumes that
8987       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8988       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8989       // TmpBB, but the math is more complicated.
8990       uint64_t TrueWeight, FalseWeight;
8991       if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
8992         uint64_t NewTrueWeight = TrueWeight;
8993         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
8994         scaleWeights(NewTrueWeight, NewFalseWeight);
8995         Br1->setMetadata(LLVMContext::MD_prof,
8996                          MDBuilder(Br1->getContext())
8997                              .createBranchWeights(TrueWeight, FalseWeight,
8998                                                   hasBranchWeightOrigin(*Br1)));
8999 
9000         NewTrueWeight = TrueWeight;
9001         NewFalseWeight = 2 * FalseWeight;
9002         scaleWeights(NewTrueWeight, NewFalseWeight);
9003         Br2->setMetadata(LLVMContext::MD_prof,
9004                          MDBuilder(Br2->getContext())
9005                              .createBranchWeights(TrueWeight, FalseWeight));
9006       }
9007     } else {
9008       // Codegen X & Y as:
9009       // BB1:
9010       //   jmp_if_X TmpBB
9011       //   jmp FBB
9012       // TmpBB:
9013       //   jmp_if_Y TBB
9014       //   jmp FBB
9015       //
9016       //  This requires creation of TmpBB after CurBB.
9017 
9018       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
9019       // The requirement is that
9020       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
9021       //     = FalseProb for original BB.
9022       // Assuming the original weights are A and B, one choice is to set BB1's
9023       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
9024       // assumes that
9025       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
9026       uint64_t TrueWeight, FalseWeight;
9027       if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
9028         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
9029         uint64_t NewFalseWeight = FalseWeight;
9030         scaleWeights(NewTrueWeight, NewFalseWeight);
9031         Br1->setMetadata(LLVMContext::MD_prof,
9032                          MDBuilder(Br1->getContext())
9033                              .createBranchWeights(TrueWeight, FalseWeight));
9034 
9035         NewTrueWeight = 2 * TrueWeight;
9036         NewFalseWeight = FalseWeight;
9037         scaleWeights(NewTrueWeight, NewFalseWeight);
9038         Br2->setMetadata(LLVMContext::MD_prof,
9039                          MDBuilder(Br2->getContext())
9040                              .createBranchWeights(TrueWeight, FalseWeight));
9041       }
9042     }
9043 
9044     ModifiedDT = ModifyDT::ModifyBBDT;
9045     MadeChange = true;
9046 
9047     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
9048                TmpBB->dump());
9049   }
9050   return MadeChange;
9051 }
9052