1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/CodeGenPrepare.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/CodeGenTypes/MachineValueType.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/Argument.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfo.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/GlobalVariable.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/IntrinsicsAArch64.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/MDBuilder.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/ProfDataUtils.h" 72 #include "llvm/IR/Statepoint.h" 73 #include "llvm/IR/Type.h" 74 #include "llvm/IR/Use.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/IR/ValueHandle.h" 78 #include "llvm/IR/ValueMap.h" 79 #include "llvm/InitializePasses.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/BlockFrequency.h" 82 #include "llvm/Support/BranchProbability.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/CommandLine.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Target/TargetMachine.h" 91 #include "llvm/Target/TargetOptions.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 96 #include "llvm/Transforms/Utils/SizeOpts.h" 97 #include <algorithm> 98 #include <cassert> 99 #include <cstdint> 100 #include <iterator> 101 #include <limits> 102 #include <memory> 103 #include <optional> 104 #include <utility> 105 #include <vector> 106 107 using namespace llvm; 108 using namespace llvm::PatternMatch; 109 110 #define DEBUG_TYPE "codegenprepare" 111 112 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 113 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 114 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 115 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 116 "sunken Cmps"); 117 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 118 "of sunken Casts"); 119 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 120 "computations were sunk"); 121 STATISTIC(NumMemoryInstsPhiCreated, 122 "Number of phis created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumMemoryInstsSelectCreated, 125 "Number of select created when address " 126 "computations were sunk to memory instructions"); 127 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 128 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 129 STATISTIC(NumAndsAdded, 130 "Number of and mask instructions added to form ext loads"); 131 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 132 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 133 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 134 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 135 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 136 137 static cl::opt<bool> DisableBranchOpts( 138 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable branch optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> 142 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 143 cl::desc("Disable GC optimizations in CodeGenPrepare")); 144 145 static cl::opt<bool> 146 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, 147 cl::init(false), 148 cl::desc("Disable select to branch conversion.")); 149 150 static cl::opt<bool> 151 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), 152 cl::desc("Address sinking in CGP using GEPs.")); 153 154 static cl::opt<bool> 155 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), 156 cl::desc("Enable sinkinig and/cmp into branches.")); 157 158 static cl::opt<bool> DisableStoreExtract( 159 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> StressStoreExtract( 163 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 164 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 165 166 static cl::opt<bool> DisableExtLdPromotion( 167 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 169 "CodeGenPrepare")); 170 171 static cl::opt<bool> StressExtLdPromotion( 172 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 173 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 174 "optimization in CodeGenPrepare")); 175 176 static cl::opt<bool> DisablePreheaderProtect( 177 "disable-preheader-prot", cl::Hidden, cl::init(false), 178 cl::desc("Disable protection against removing loop preheaders")); 179 180 static cl::opt<bool> ProfileGuidedSectionPrefix( 181 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 182 cl::desc("Use profile info to add section prefix for hot/cold functions")); 183 184 static cl::opt<bool> ProfileUnknownInSpecialSection( 185 "profile-unknown-in-special-section", cl::Hidden, 186 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 187 "profile, we cannot tell the function is cold for sure because " 188 "it may be a function newly added without ever being sampled. " 189 "With the flag enabled, compiler can put such profile unknown " 190 "functions into a special section, so runtime system can choose " 191 "to handle it in a different way than .text section, to save " 192 "RAM for example. ")); 193 194 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 195 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 196 cl::desc("Use the basic-block-sections profile to determine the text " 197 "section prefix for hot functions. Functions with " 198 "basic-block-sections profile will be placed in `.text.hot` " 199 "regardless of their FDO profile info. Other functions won't be " 200 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 201 "profiles.")); 202 203 static cl::opt<uint64_t> FreqRatioToSkipMerge( 204 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 205 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 206 "(frequency of destination block) is greater than this ratio")); 207 208 static cl::opt<bool> ForceSplitStore( 209 "force-split-store", cl::Hidden, cl::init(false), 210 cl::desc("Force store splitting no matter what the target query says.")); 211 212 static cl::opt<bool> EnableTypePromotionMerge( 213 "cgp-type-promotion-merge", cl::Hidden, 214 cl::desc("Enable merging of redundant sexts when one is dominating" 215 " the other."), 216 cl::init(true)); 217 218 static cl::opt<bool> DisableComplexAddrModes( 219 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 220 cl::desc("Disables combining addressing modes with different parts " 221 "in optimizeMemoryInst.")); 222 223 static cl::opt<bool> 224 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 225 cl::desc("Allow creation of Phis in Address sinking.")); 226 227 static cl::opt<bool> AddrSinkNewSelects( 228 "addr-sink-new-select", cl::Hidden, cl::init(true), 229 cl::desc("Allow creation of selects in Address sinking.")); 230 231 static cl::opt<bool> AddrSinkCombineBaseReg( 232 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 233 cl::desc("Allow combining of BaseReg field in Address sinking.")); 234 235 static cl::opt<bool> AddrSinkCombineBaseGV( 236 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 237 cl::desc("Allow combining of BaseGV field in Address sinking.")); 238 239 static cl::opt<bool> AddrSinkCombineBaseOffs( 240 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 241 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 242 243 static cl::opt<bool> AddrSinkCombineScaledReg( 244 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 245 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 246 247 static cl::opt<bool> 248 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 249 cl::init(true), 250 cl::desc("Enable splitting large offset of GEP.")); 251 252 static cl::opt<bool> EnableICMP_EQToICMP_ST( 253 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 254 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 255 256 static cl::opt<bool> 257 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 258 cl::desc("Enable BFI update verification for " 259 "CodeGenPrepare.")); 260 261 static cl::opt<bool> 262 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), 263 cl::desc("Enable converting phi types in CodeGenPrepare")); 264 265 static cl::opt<unsigned> 266 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, 267 cl::desc("Least BB number of huge function.")); 268 269 static cl::opt<unsigned> 270 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), 271 cl::Hidden, 272 cl::desc("Max number of address users to look at")); 273 274 static cl::opt<bool> 275 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false), 276 cl::desc("Disable elimination of dead PHI nodes.")); 277 278 namespace { 279 280 enum ExtType { 281 ZeroExtension, // Zero extension has been seen. 282 SignExtension, // Sign extension has been seen. 283 BothExtension // This extension type is used if we saw sext after 284 // ZeroExtension had been set, or if we saw zext after 285 // SignExtension had been set. It makes the type 286 // information of a promoted instruction invalid. 287 }; 288 289 enum ModifyDT { 290 NotModifyDT, // Not Modify any DT. 291 ModifyBBDT, // Modify the Basic Block Dominator Tree. 292 ModifyInstDT // Modify the Instruction Dominator in a Basic Block, 293 // This usually means we move/delete/insert instruction 294 // in a Basic Block. So we should re-iterate instructions 295 // in such Basic Block. 296 }; 297 298 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 299 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 300 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 301 using SExts = SmallVector<Instruction *, 16>; 302 using ValueToSExts = MapVector<Value *, SExts>; 303 304 class TypePromotionTransaction; 305 306 class CodeGenPrepare { 307 friend class CodeGenPrepareLegacyPass; 308 const TargetMachine *TM = nullptr; 309 const TargetSubtargetInfo *SubtargetInfo = nullptr; 310 const TargetLowering *TLI = nullptr; 311 const TargetRegisterInfo *TRI = nullptr; 312 const TargetTransformInfo *TTI = nullptr; 313 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 314 const TargetLibraryInfo *TLInfo = nullptr; 315 LoopInfo *LI = nullptr; 316 std::unique_ptr<BlockFrequencyInfo> BFI; 317 std::unique_ptr<BranchProbabilityInfo> BPI; 318 ProfileSummaryInfo *PSI = nullptr; 319 320 /// As we scan instructions optimizing them, this is the next instruction 321 /// to optimize. Transforms that can invalidate this should update it. 322 BasicBlock::iterator CurInstIterator; 323 324 /// Keeps track of non-local addresses that have been sunk into a block. 325 /// This allows us to avoid inserting duplicate code for blocks with 326 /// multiple load/stores of the same address. The usage of WeakTrackingVH 327 /// enables SunkAddrs to be treated as a cache whose entries can be 328 /// invalidated if a sunken address computation has been erased. 329 ValueMap<Value *, WeakTrackingVH> SunkAddrs; 330 331 /// Keeps track of all instructions inserted for the current function. 332 SetOfInstrs InsertedInsts; 333 334 /// Keeps track of the type of the related instruction before their 335 /// promotion for the current function. 336 InstrToOrigTy PromotedInsts; 337 338 /// Keep track of instructions removed during promotion. 339 SetOfInstrs RemovedInsts; 340 341 /// Keep track of sext chains based on their initial value. 342 DenseMap<Value *, Instruction *> SeenChainsForSExt; 343 344 /// Keep track of GEPs accessing the same data structures such as structs or 345 /// arrays that are candidates to be split later because of their large 346 /// size. 347 MapVector<AssertingVH<Value>, 348 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 349 LargeOffsetGEPMap; 350 351 /// Keep track of new GEP base after splitting the GEPs having large offset. 352 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 353 354 /// Map serial numbers to Large offset GEPs. 355 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 356 357 /// Keep track of SExt promoted. 358 ValueToSExts ValToSExtendedUses; 359 360 /// True if the function has the OptSize attribute. 361 bool OptSize; 362 363 /// DataLayout for the Function being processed. 364 const DataLayout *DL = nullptr; 365 366 /// Building the dominator tree can be expensive, so we only build it 367 /// lazily and update it when required. 368 std::unique_ptr<DominatorTree> DT; 369 370 public: 371 CodeGenPrepare(){}; 372 CodeGenPrepare(const TargetMachine *TM) : TM(TM){}; 373 /// If encounter huge function, we need to limit the build time. 374 bool IsHugeFunc = false; 375 376 /// FreshBBs is like worklist, it collected the updated BBs which need 377 /// to be optimized again. 378 /// Note: Consider building time in this pass, when a BB updated, we need 379 /// to insert such BB into FreshBBs for huge function. 380 SmallSet<BasicBlock *, 32> FreshBBs; 381 382 void releaseMemory() { 383 // Clear per function information. 384 InsertedInsts.clear(); 385 PromotedInsts.clear(); 386 FreshBBs.clear(); 387 BPI.reset(); 388 BFI.reset(); 389 } 390 391 bool run(Function &F, FunctionAnalysisManager &AM); 392 393 private: 394 template <typename F> 395 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 396 // Substituting can cause recursive simplifications, which can invalidate 397 // our iterator. Use a WeakTrackingVH to hold onto it in case this 398 // happens. 399 Value *CurValue = &*CurInstIterator; 400 WeakTrackingVH IterHandle(CurValue); 401 402 f(); 403 404 // If the iterator instruction was recursively deleted, start over at the 405 // start of the block. 406 if (IterHandle != CurValue) { 407 CurInstIterator = BB->begin(); 408 SunkAddrs.clear(); 409 } 410 } 411 412 // Get the DominatorTree, building if necessary. 413 DominatorTree &getDT(Function &F) { 414 if (!DT) 415 DT = std::make_unique<DominatorTree>(F); 416 return *DT; 417 } 418 419 void removeAllAssertingVHReferences(Value *V); 420 bool eliminateAssumptions(Function &F); 421 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); 422 bool eliminateMostlyEmptyBlocks(Function &F); 423 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 424 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 425 void eliminateMostlyEmptyBlock(BasicBlock *BB); 426 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 427 bool isPreheader); 428 bool makeBitReverse(Instruction &I); 429 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); 430 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); 431 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, 432 unsigned AddrSpace); 433 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 434 bool optimizeInlineAsmInst(CallInst *CS); 435 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); 436 bool optimizeExt(Instruction *&I); 437 bool optimizeExtUses(Instruction *I); 438 bool optimizeLoadExt(LoadInst *Load); 439 bool optimizeShiftInst(BinaryOperator *BO); 440 bool optimizeFunnelShift(IntrinsicInst *Fsh); 441 bool optimizeSelectInst(SelectInst *SI); 442 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 443 bool optimizeSwitchType(SwitchInst *SI); 444 bool optimizeSwitchPhiConstants(SwitchInst *SI); 445 bool optimizeSwitchInst(SwitchInst *SI); 446 bool optimizeExtractElementInst(Instruction *Inst); 447 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); 448 bool fixupDbgValue(Instruction *I); 449 bool fixupDbgVariableRecord(DbgVariableRecord &I); 450 bool fixupDbgVariableRecordsOnInst(Instruction &I); 451 bool placeDbgValues(Function &F); 452 bool placePseudoProbes(Function &F); 453 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 454 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 455 bool tryToPromoteExts(TypePromotionTransaction &TPT, 456 const SmallVectorImpl<Instruction *> &Exts, 457 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 458 unsigned CreatedInstsCost = 0); 459 bool mergeSExts(Function &F); 460 bool splitLargeGEPOffsets(); 461 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 462 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 463 bool optimizePhiTypes(Function &F); 464 bool performAddressTypePromotion( 465 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 466 bool HasPromoted, TypePromotionTransaction &TPT, 467 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 468 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); 469 bool simplifyOffsetableRelocate(GCStatepointInst &I); 470 471 bool tryToSinkFreeOperands(Instruction *I); 472 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, 473 CmpInst *Cmp, Intrinsic::ID IID); 474 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); 475 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 476 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 477 void verifyBFIUpdates(Function &F); 478 bool _run(Function &F); 479 }; 480 481 class CodeGenPrepareLegacyPass : public FunctionPass { 482 public: 483 static char ID; // Pass identification, replacement for typeid 484 485 CodeGenPrepareLegacyPass() : FunctionPass(ID) { 486 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry()); 487 } 488 489 bool runOnFunction(Function &F) override; 490 491 StringRef getPassName() const override { return "CodeGen Prepare"; } 492 493 void getAnalysisUsage(AnalysisUsage &AU) const override { 494 // FIXME: When we can selectively preserve passes, preserve the domtree. 495 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 496 AU.addRequired<TargetLibraryInfoWrapperPass>(); 497 AU.addRequired<TargetPassConfig>(); 498 AU.addRequired<TargetTransformInfoWrapperPass>(); 499 AU.addRequired<LoopInfoWrapperPass>(); 500 AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 501 } 502 }; 503 504 } // end anonymous namespace 505 506 char CodeGenPrepareLegacyPass::ID = 0; 507 508 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) { 509 if (skipFunction(F)) 510 return false; 511 auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 512 CodeGenPrepare CGP(TM); 513 CGP.DL = &F.getDataLayout(); 514 CGP.SubtargetInfo = TM->getSubtargetImpl(F); 515 CGP.TLI = CGP.SubtargetInfo->getTargetLowering(); 516 CGP.TRI = CGP.SubtargetInfo->getRegisterInfo(); 517 CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 518 CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 519 CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 520 CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI)); 521 CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI)); 522 CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 523 auto BBSPRWP = 524 getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 525 CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr; 526 527 return CGP._run(F); 528 } 529 530 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE, 531 "Optimize for code generation", false, false) 532 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass) 533 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 534 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 535 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 536 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 537 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 538 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE, 539 "Optimize for code generation", false, false) 540 541 FunctionPass *llvm::createCodeGenPrepareLegacyPass() { 542 return new CodeGenPrepareLegacyPass(); 543 } 544 545 PreservedAnalyses CodeGenPreparePass::run(Function &F, 546 FunctionAnalysisManager &AM) { 547 CodeGenPrepare CGP(TM); 548 549 bool Changed = CGP.run(F, AM); 550 if (!Changed) 551 return PreservedAnalyses::all(); 552 553 PreservedAnalyses PA; 554 PA.preserve<TargetLibraryAnalysis>(); 555 PA.preserve<TargetIRAnalysis>(); 556 PA.preserve<LoopAnalysis>(); 557 return PA; 558 } 559 560 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) { 561 DL = &F.getDataLayout(); 562 SubtargetInfo = TM->getSubtargetImpl(F); 563 TLI = SubtargetInfo->getTargetLowering(); 564 TRI = SubtargetInfo->getRegisterInfo(); 565 TLInfo = &AM.getResult<TargetLibraryAnalysis>(F); 566 TTI = &AM.getResult<TargetIRAnalysis>(F); 567 LI = &AM.getResult<LoopAnalysis>(F); 568 BPI.reset(new BranchProbabilityInfo(F, *LI)); 569 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 570 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 571 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 572 BBSectionsProfileReader = 573 AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F); 574 return _run(F); 575 } 576 577 bool CodeGenPrepare::_run(Function &F) { 578 bool EverMadeChange = false; 579 580 OptSize = F.hasOptSize(); 581 // Use the basic-block-sections profile to promote hot functions to .text.hot 582 // if requested. 583 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 584 BBSectionsProfileReader->isFunctionHot(F.getName())) { 585 F.setSectionPrefix("hot"); 586 } else if (ProfileGuidedSectionPrefix) { 587 // The hot attribute overwrites profile count based hotness while profile 588 // counts based hotness overwrite the cold attribute. 589 // This is a conservative behabvior. 590 if (F.hasFnAttribute(Attribute::Hot) || 591 PSI->isFunctionHotInCallGraph(&F, *BFI)) 592 F.setSectionPrefix("hot"); 593 // If PSI shows this function is not hot, we will placed the function 594 // into unlikely section if (1) PSI shows this is a cold function, or 595 // (2) the function has a attribute of cold. 596 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 597 F.hasFnAttribute(Attribute::Cold)) 598 F.setSectionPrefix("unlikely"); 599 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 600 PSI->isFunctionHotnessUnknown(F)) 601 F.setSectionPrefix("unknown"); 602 } 603 604 /// This optimization identifies DIV instructions that can be 605 /// profitably bypassed and carried out with a shorter, faster divide. 606 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 607 const DenseMap<unsigned int, unsigned int> &BypassWidths = 608 TLI->getBypassSlowDivWidths(); 609 BasicBlock *BB = &*F.begin(); 610 while (BB != nullptr) { 611 // bypassSlowDivision may create new BBs, but we don't want to reapply the 612 // optimization to those blocks. 613 BasicBlock *Next = BB->getNextNode(); 614 // F.hasOptSize is already checked in the outer if statement. 615 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 616 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 617 BB = Next; 618 } 619 } 620 621 // Get rid of @llvm.assume builtins before attempting to eliminate empty 622 // blocks, since there might be blocks that only contain @llvm.assume calls 623 // (plus arguments that we can get rid of). 624 EverMadeChange |= eliminateAssumptions(F); 625 626 // Eliminate blocks that contain only PHI nodes and an 627 // unconditional branch. 628 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 629 630 ModifyDT ModifiedDT = ModifyDT::NotModifyDT; 631 if (!DisableBranchOpts) 632 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 633 634 // Split some critical edges where one of the sources is an indirect branch, 635 // to help generate sane code for PHIs involving such edges. 636 EverMadeChange |= 637 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 638 639 // If we are optimzing huge function, we need to consider the build time. 640 // Because the basic algorithm's complex is near O(N!). 641 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; 642 643 // Transformations above may invalidate dominator tree and/or loop info. 644 DT.reset(); 645 LI->releaseMemory(); 646 LI->analyze(getDT(F)); 647 648 bool MadeChange = true; 649 bool FuncIterated = false; 650 while (MadeChange) { 651 MadeChange = false; 652 653 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 654 if (FuncIterated && !FreshBBs.contains(&BB)) 655 continue; 656 657 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; 658 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); 659 660 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) 661 DT.reset(); 662 663 MadeChange |= Changed; 664 if (IsHugeFunc) { 665 // If the BB is updated, it may still has chance to be optimized. 666 // This usually happen at sink optimization. 667 // For example: 668 // 669 // bb0: 670 // %and = and i32 %a, 4 671 // %cmp = icmp eq i32 %and, 0 672 // 673 // If the %cmp sink to other BB, the %and will has chance to sink. 674 if (Changed) 675 FreshBBs.insert(&BB); 676 else if (FuncIterated) 677 FreshBBs.erase(&BB); 678 } else { 679 // For small/normal functions, we restart BB iteration if the dominator 680 // tree of the Function was changed. 681 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) 682 break; 683 } 684 } 685 // We have iterated all the BB in the (only work for huge) function. 686 FuncIterated = IsHugeFunc; 687 688 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 689 MadeChange |= mergeSExts(F); 690 if (!LargeOffsetGEPMap.empty()) 691 MadeChange |= splitLargeGEPOffsets(); 692 MadeChange |= optimizePhiTypes(F); 693 694 if (MadeChange) 695 eliminateFallThrough(F, DT.get()); 696 697 #ifndef NDEBUG 698 if (MadeChange && VerifyLoopInfo) 699 LI->verify(getDT(F)); 700 #endif 701 702 // Really free removed instructions during promotion. 703 for (Instruction *I : RemovedInsts) 704 I->deleteValue(); 705 706 EverMadeChange |= MadeChange; 707 SeenChainsForSExt.clear(); 708 ValToSExtendedUses.clear(); 709 RemovedInsts.clear(); 710 LargeOffsetGEPMap.clear(); 711 LargeOffsetGEPID.clear(); 712 } 713 714 NewGEPBases.clear(); 715 SunkAddrs.clear(); 716 717 if (!DisableBranchOpts) { 718 MadeChange = false; 719 // Use a set vector to get deterministic iteration order. The order the 720 // blocks are removed may affect whether or not PHI nodes in successors 721 // are removed. 722 SmallSetVector<BasicBlock *, 8> WorkList; 723 for (BasicBlock &BB : F) { 724 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 725 MadeChange |= ConstantFoldTerminator(&BB, true); 726 if (!MadeChange) 727 continue; 728 729 for (BasicBlock *Succ : Successors) 730 if (pred_empty(Succ)) 731 WorkList.insert(Succ); 732 } 733 734 // Delete the dead blocks and any of their dead successors. 735 MadeChange |= !WorkList.empty(); 736 while (!WorkList.empty()) { 737 BasicBlock *BB = WorkList.pop_back_val(); 738 SmallVector<BasicBlock *, 2> Successors(successors(BB)); 739 740 DeleteDeadBlock(BB); 741 742 for (BasicBlock *Succ : Successors) 743 if (pred_empty(Succ)) 744 WorkList.insert(Succ); 745 } 746 747 // Merge pairs of basic blocks with unconditional branches, connected by 748 // a single edge. 749 if (EverMadeChange || MadeChange) 750 MadeChange |= eliminateFallThrough(F); 751 752 EverMadeChange |= MadeChange; 753 } 754 755 if (!DisableGCOpts) { 756 SmallVector<GCStatepointInst *, 2> Statepoints; 757 for (BasicBlock &BB : F) 758 for (Instruction &I : BB) 759 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 760 Statepoints.push_back(SP); 761 for (auto &I : Statepoints) 762 EverMadeChange |= simplifyOffsetableRelocate(*I); 763 } 764 765 // Do this last to clean up use-before-def scenarios introduced by other 766 // preparatory transforms. 767 EverMadeChange |= placeDbgValues(F); 768 EverMadeChange |= placePseudoProbes(F); 769 770 #ifndef NDEBUG 771 if (VerifyBFIUpdates) 772 verifyBFIUpdates(F); 773 #endif 774 775 return EverMadeChange; 776 } 777 778 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 779 bool MadeChange = false; 780 for (BasicBlock &BB : F) { 781 CurInstIterator = BB.begin(); 782 while (CurInstIterator != BB.end()) { 783 Instruction *I = &*(CurInstIterator++); 784 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 785 MadeChange = true; 786 Value *Operand = Assume->getOperand(0); 787 Assume->eraseFromParent(); 788 789 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 790 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 791 }); 792 } 793 } 794 } 795 return MadeChange; 796 } 797 798 /// An instruction is about to be deleted, so remove all references to it in our 799 /// GEP-tracking data strcutures. 800 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 801 LargeOffsetGEPMap.erase(V); 802 NewGEPBases.erase(V); 803 804 auto GEP = dyn_cast<GetElementPtrInst>(V); 805 if (!GEP) 806 return; 807 808 LargeOffsetGEPID.erase(GEP); 809 810 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 811 if (VecI == LargeOffsetGEPMap.end()) 812 return; 813 814 auto &GEPVector = VecI->second; 815 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 816 817 if (GEPVector.empty()) 818 LargeOffsetGEPMap.erase(VecI); 819 } 820 821 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 822 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 823 DominatorTree NewDT(F); 824 LoopInfo NewLI(NewDT); 825 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 826 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 827 NewBFI.verifyMatch(*BFI); 828 } 829 830 /// Merge basic blocks which are connected by a single edge, where one of the 831 /// basic blocks has a single successor pointing to the other basic block, 832 /// which has a single predecessor. 833 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { 834 bool Changed = false; 835 // Scan all of the blocks in the function, except for the entry block. 836 // Use a temporary array to avoid iterator being invalidated when 837 // deleting blocks. 838 SmallVector<WeakTrackingVH, 16> Blocks; 839 for (auto &Block : llvm::drop_begin(F)) 840 Blocks.push_back(&Block); 841 842 SmallSet<WeakTrackingVH, 16> Preds; 843 for (auto &Block : Blocks) { 844 auto *BB = cast_or_null<BasicBlock>(Block); 845 if (!BB) 846 continue; 847 // If the destination block has a single pred, then this is a trivial 848 // edge, just collapse it. 849 BasicBlock *SinglePred = BB->getSinglePredecessor(); 850 851 // Don't merge if BB's address is taken. 852 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) 853 continue; 854 855 // Make an effort to skip unreachable blocks. 856 if (DT && !DT->isReachableFromEntry(BB)) 857 continue; 858 859 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 860 if (Term && !Term->isConditional()) { 861 Changed = true; 862 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 863 864 // Merge BB into SinglePred and delete it. 865 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, 866 /* MemDep */ nullptr, 867 /* PredecessorWithTwoSuccessors */ false, DT); 868 Preds.insert(SinglePred); 869 870 if (IsHugeFunc) { 871 // Update FreshBBs to optimize the merged BB. 872 FreshBBs.insert(SinglePred); 873 FreshBBs.erase(BB); 874 } 875 } 876 } 877 878 // (Repeatedly) merging blocks into their predecessors can create redundant 879 // debug intrinsics. 880 for (const auto &Pred : Preds) 881 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 882 RemoveRedundantDbgInstrs(BB); 883 884 return Changed; 885 } 886 887 /// Find a destination block from BB if BB is mergeable empty block. 888 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 889 // If this block doesn't end with an uncond branch, ignore it. 890 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 891 if (!BI || !BI->isUnconditional()) 892 return nullptr; 893 894 // If the instruction before the branch (skipping debug info) isn't a phi 895 // node, then other stuff is happening here. 896 BasicBlock::iterator BBI = BI->getIterator(); 897 if (BBI != BB->begin()) { 898 --BBI; 899 while (isa<DbgInfoIntrinsic>(BBI)) { 900 if (BBI == BB->begin()) 901 break; 902 --BBI; 903 } 904 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 905 return nullptr; 906 } 907 908 // Do not break infinite loops. 909 BasicBlock *DestBB = BI->getSuccessor(0); 910 if (DestBB == BB) 911 return nullptr; 912 913 if (!canMergeBlocks(BB, DestBB)) 914 DestBB = nullptr; 915 916 return DestBB; 917 } 918 919 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 920 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 921 /// edges in ways that are non-optimal for isel. Start by eliminating these 922 /// blocks so we can split them the way we want them. 923 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 924 SmallPtrSet<BasicBlock *, 16> Preheaders; 925 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 926 while (!LoopList.empty()) { 927 Loop *L = LoopList.pop_back_val(); 928 llvm::append_range(LoopList, *L); 929 if (BasicBlock *Preheader = L->getLoopPreheader()) 930 Preheaders.insert(Preheader); 931 } 932 933 bool MadeChange = false; 934 // Copy blocks into a temporary array to avoid iterator invalidation issues 935 // as we remove them. 936 // Note that this intentionally skips the entry block. 937 SmallVector<WeakTrackingVH, 16> Blocks; 938 for (auto &Block : llvm::drop_begin(F)) { 939 // Delete phi nodes that could block deleting other empty blocks. 940 if (!DisableDeletePHIs) 941 MadeChange |= DeleteDeadPHIs(&Block, TLInfo); 942 Blocks.push_back(&Block); 943 } 944 945 for (auto &Block : Blocks) { 946 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 947 if (!BB) 948 continue; 949 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 950 if (!DestBB || 951 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 952 continue; 953 954 eliminateMostlyEmptyBlock(BB); 955 MadeChange = true; 956 } 957 return MadeChange; 958 } 959 960 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 961 BasicBlock *DestBB, 962 bool isPreheader) { 963 // Do not delete loop preheaders if doing so would create a critical edge. 964 // Loop preheaders can be good locations to spill registers. If the 965 // preheader is deleted and we create a critical edge, registers may be 966 // spilled in the loop body instead. 967 if (!DisablePreheaderProtect && isPreheader && 968 !(BB->getSinglePredecessor() && 969 BB->getSinglePredecessor()->getSingleSuccessor())) 970 return false; 971 972 // Skip merging if the block's successor is also a successor to any callbr 973 // that leads to this block. 974 // FIXME: Is this really needed? Is this a correctness issue? 975 for (BasicBlock *Pred : predecessors(BB)) { 976 if (isa<CallBrInst>(Pred->getTerminator()) && 977 llvm::is_contained(successors(Pred), DestBB)) 978 return false; 979 } 980 981 // Try to skip merging if the unique predecessor of BB is terminated by a 982 // switch or indirect branch instruction, and BB is used as an incoming block 983 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 984 // add COPY instructions in the predecessor of BB instead of BB (if it is not 985 // merged). Note that the critical edge created by merging such blocks wont be 986 // split in MachineSink because the jump table is not analyzable. By keeping 987 // such empty block (BB), ISel will place COPY instructions in BB, not in the 988 // predecessor of BB. 989 BasicBlock *Pred = BB->getUniquePredecessor(); 990 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || 991 isa<IndirectBrInst>(Pred->getTerminator()))) 992 return true; 993 994 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 995 return true; 996 997 // We use a simple cost heuristic which determine skipping merging is 998 // profitable if the cost of skipping merging is less than the cost of 999 // merging : Cost(skipping merging) < Cost(merging BB), where the 1000 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 1001 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 1002 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 1003 // Freq(Pred) / Freq(BB) > 2. 1004 // Note that if there are multiple empty blocks sharing the same incoming 1005 // value for the PHIs in the DestBB, we consider them together. In such 1006 // case, Cost(merging BB) will be the sum of their frequencies. 1007 1008 if (!isa<PHINode>(DestBB->begin())) 1009 return true; 1010 1011 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 1012 1013 // Find all other incoming blocks from which incoming values of all PHIs in 1014 // DestBB are the same as the ones from BB. 1015 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 1016 if (DestBBPred == BB) 1017 continue; 1018 1019 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 1020 return DestPN.getIncomingValueForBlock(BB) == 1021 DestPN.getIncomingValueForBlock(DestBBPred); 1022 })) 1023 SameIncomingValueBBs.insert(DestBBPred); 1024 } 1025 1026 // See if all BB's incoming values are same as the value from Pred. In this 1027 // case, no reason to skip merging because COPYs are expected to be place in 1028 // Pred already. 1029 if (SameIncomingValueBBs.count(Pred)) 1030 return true; 1031 1032 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 1033 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 1034 1035 for (auto *SameValueBB : SameIncomingValueBBs) 1036 if (SameValueBB->getUniquePredecessor() == Pred && 1037 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 1038 BBFreq += BFI->getBlockFreq(SameValueBB); 1039 1040 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge); 1041 return !Limit || PredFreq <= *Limit; 1042 } 1043 1044 /// Return true if we can merge BB into DestBB if there is a single 1045 /// unconditional branch between them, and BB contains no other non-phi 1046 /// instructions. 1047 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 1048 const BasicBlock *DestBB) const { 1049 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 1050 // the successor. If there are more complex condition (e.g. preheaders), 1051 // don't mess around with them. 1052 for (const PHINode &PN : BB->phis()) { 1053 for (const User *U : PN.users()) { 1054 const Instruction *UI = cast<Instruction>(U); 1055 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 1056 return false; 1057 // If User is inside DestBB block and it is a PHINode then check 1058 // incoming value. If incoming value is not from BB then this is 1059 // a complex condition (e.g. preheaders) we want to avoid here. 1060 if (UI->getParent() == DestBB) { 1061 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 1062 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 1063 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 1064 if (Insn && Insn->getParent() == BB && 1065 Insn->getParent() != UPN->getIncomingBlock(I)) 1066 return false; 1067 } 1068 } 1069 } 1070 } 1071 1072 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 1073 // and DestBB may have conflicting incoming values for the block. If so, we 1074 // can't merge the block. 1075 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 1076 if (!DestBBPN) 1077 return true; // no conflict. 1078 1079 // Collect the preds of BB. 1080 SmallPtrSet<const BasicBlock *, 16> BBPreds; 1081 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1082 // It is faster to get preds from a PHI than with pred_iterator. 1083 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1084 BBPreds.insert(BBPN->getIncomingBlock(i)); 1085 } else { 1086 BBPreds.insert(pred_begin(BB), pred_end(BB)); 1087 } 1088 1089 // Walk the preds of DestBB. 1090 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 1091 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 1092 if (BBPreds.count(Pred)) { // Common predecessor? 1093 for (const PHINode &PN : DestBB->phis()) { 1094 const Value *V1 = PN.getIncomingValueForBlock(Pred); 1095 const Value *V2 = PN.getIncomingValueForBlock(BB); 1096 1097 // If V2 is a phi node in BB, look up what the mapped value will be. 1098 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 1099 if (V2PN->getParent() == BB) 1100 V2 = V2PN->getIncomingValueForBlock(Pred); 1101 1102 // If there is a conflict, bail out. 1103 if (V1 != V2) 1104 return false; 1105 } 1106 } 1107 } 1108 1109 return true; 1110 } 1111 1112 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. 1113 static void replaceAllUsesWith(Value *Old, Value *New, 1114 SmallSet<BasicBlock *, 32> &FreshBBs, 1115 bool IsHuge) { 1116 auto *OldI = dyn_cast<Instruction>(Old); 1117 if (OldI) { 1118 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); 1119 UI != E; ++UI) { 1120 Instruction *User = cast<Instruction>(*UI); 1121 if (IsHuge) 1122 FreshBBs.insert(User->getParent()); 1123 } 1124 } 1125 Old->replaceAllUsesWith(New); 1126 } 1127 1128 /// Eliminate a basic block that has only phi's and an unconditional branch in 1129 /// it. 1130 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 1131 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1132 BasicBlock *DestBB = BI->getSuccessor(0); 1133 1134 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 1135 << *BB << *DestBB); 1136 1137 // If the destination block has a single pred, then this is a trivial edge, 1138 // just collapse it. 1139 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 1140 if (SinglePred != DestBB) { 1141 assert(SinglePred == BB && 1142 "Single predecessor not the same as predecessor"); 1143 // Merge DestBB into SinglePred/BB and delete it. 1144 MergeBlockIntoPredecessor(DestBB); 1145 // Note: BB(=SinglePred) will not be deleted on this path. 1146 // DestBB(=its single successor) is the one that was deleted. 1147 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 1148 1149 if (IsHugeFunc) { 1150 // Update FreshBBs to optimize the merged BB. 1151 FreshBBs.insert(SinglePred); 1152 FreshBBs.erase(DestBB); 1153 } 1154 return; 1155 } 1156 } 1157 1158 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 1159 // to handle the new incoming edges it is about to have. 1160 for (PHINode &PN : DestBB->phis()) { 1161 // Remove the incoming value for BB, and remember it. 1162 Value *InVal = PN.removeIncomingValue(BB, false); 1163 1164 // Two options: either the InVal is a phi node defined in BB or it is some 1165 // value that dominates BB. 1166 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 1167 if (InValPhi && InValPhi->getParent() == BB) { 1168 // Add all of the input values of the input PHI as inputs of this phi. 1169 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 1170 PN.addIncoming(InValPhi->getIncomingValue(i), 1171 InValPhi->getIncomingBlock(i)); 1172 } else { 1173 // Otherwise, add one instance of the dominating value for each edge that 1174 // we will be adding. 1175 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1176 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1177 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1178 } else { 1179 for (BasicBlock *Pred : predecessors(BB)) 1180 PN.addIncoming(InVal, Pred); 1181 } 1182 } 1183 } 1184 1185 // The PHIs are now updated, change everything that refers to BB to use 1186 // DestBB and remove BB. 1187 BB->replaceAllUsesWith(DestBB); 1188 BB->eraseFromParent(); 1189 ++NumBlocksElim; 1190 1191 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1192 } 1193 1194 // Computes a map of base pointer relocation instructions to corresponding 1195 // derived pointer relocation instructions given a vector of all relocate calls 1196 static void computeBaseDerivedRelocateMap( 1197 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1198 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> 1199 &RelocateInstMap) { 1200 // Collect information in two maps: one primarily for locating the base object 1201 // while filling the second map; the second map is the final structure holding 1202 // a mapping between Base and corresponding Derived relocate calls 1203 MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1204 for (auto *ThisRelocate : AllRelocateCalls) { 1205 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1206 ThisRelocate->getDerivedPtrIndex()); 1207 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1208 } 1209 for (auto &Item : RelocateIdxMap) { 1210 std::pair<unsigned, unsigned> Key = Item.first; 1211 if (Key.first == Key.second) 1212 // Base relocation: nothing to insert 1213 continue; 1214 1215 GCRelocateInst *I = Item.second; 1216 auto BaseKey = std::make_pair(Key.first, Key.first); 1217 1218 // We're iterating over RelocateIdxMap so we cannot modify it. 1219 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1220 if (MaybeBase == RelocateIdxMap.end()) 1221 // TODO: We might want to insert a new base object relocate and gep off 1222 // that, if there are enough derived object relocates. 1223 continue; 1224 1225 RelocateInstMap[MaybeBase->second].push_back(I); 1226 } 1227 } 1228 1229 // Accepts a GEP and extracts the operands into a vector provided they're all 1230 // small integer constants 1231 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1232 SmallVectorImpl<Value *> &OffsetV) { 1233 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1234 // Only accept small constant integer operands 1235 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1236 if (!Op || Op->getZExtValue() > 20) 1237 return false; 1238 } 1239 1240 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1241 OffsetV.push_back(GEP->getOperand(i)); 1242 return true; 1243 } 1244 1245 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1246 // replace, computes a replacement, and affects it. 1247 static bool 1248 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1249 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1250 bool MadeChange = false; 1251 // We must ensure the relocation of derived pointer is defined after 1252 // relocation of base pointer. If we find a relocation corresponding to base 1253 // defined earlier than relocation of base then we move relocation of base 1254 // right before found relocation. We consider only relocation in the same 1255 // basic block as relocation of base. Relocations from other basic block will 1256 // be skipped by optimization and we do not care about them. 1257 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1258 &*R != RelocatedBase; ++R) 1259 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1260 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1261 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1262 RelocatedBase->moveBefore(RI); 1263 MadeChange = true; 1264 break; 1265 } 1266 1267 for (GCRelocateInst *ToReplace : Targets) { 1268 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1269 "Not relocating a derived object of the original base object"); 1270 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1271 // A duplicate relocate call. TODO: coalesce duplicates. 1272 continue; 1273 } 1274 1275 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1276 // Base and derived relocates are in different basic blocks. 1277 // In this case transform is only valid when base dominates derived 1278 // relocate. However it would be too expensive to check dominance 1279 // for each such relocate, so we skip the whole transformation. 1280 continue; 1281 } 1282 1283 Value *Base = ToReplace->getBasePtr(); 1284 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1285 if (!Derived || Derived->getPointerOperand() != Base) 1286 continue; 1287 1288 SmallVector<Value *, 2> OffsetV; 1289 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1290 continue; 1291 1292 // Create a Builder and replace the target callsite with a gep 1293 assert(RelocatedBase->getNextNode() && 1294 "Should always have one since it's not a terminator"); 1295 1296 // Insert after RelocatedBase 1297 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1298 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1299 1300 // If gc_relocate does not match the actual type, cast it to the right type. 1301 // In theory, there must be a bitcast after gc_relocate if the type does not 1302 // match, and we should reuse it to get the derived pointer. But it could be 1303 // cases like this: 1304 // bb1: 1305 // ... 1306 // %g1 = call coldcc i8 addrspace(1)* 1307 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1308 // 1309 // bb2: 1310 // ... 1311 // %g2 = call coldcc i8 addrspace(1)* 1312 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1313 // 1314 // merge: 1315 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1316 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1317 // 1318 // In this case, we can not find the bitcast any more. So we insert a new 1319 // bitcast no matter there is already one or not. In this way, we can handle 1320 // all cases, and the extra bitcast should be optimized away in later 1321 // passes. 1322 Value *ActualRelocatedBase = RelocatedBase; 1323 if (RelocatedBase->getType() != Base->getType()) { 1324 ActualRelocatedBase = 1325 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1326 } 1327 Value *Replacement = 1328 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, 1329 ArrayRef(OffsetV)); 1330 Replacement->takeName(ToReplace); 1331 // If the newly generated derived pointer's type does not match the original 1332 // derived pointer's type, cast the new derived pointer to match it. Same 1333 // reasoning as above. 1334 Value *ActualReplacement = Replacement; 1335 if (Replacement->getType() != ToReplace->getType()) { 1336 ActualReplacement = 1337 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1338 } 1339 ToReplace->replaceAllUsesWith(ActualReplacement); 1340 ToReplace->eraseFromParent(); 1341 1342 MadeChange = true; 1343 } 1344 return MadeChange; 1345 } 1346 1347 // Turns this: 1348 // 1349 // %base = ... 1350 // %ptr = gep %base + 15 1351 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1352 // %base' = relocate(%tok, i32 4, i32 4) 1353 // %ptr' = relocate(%tok, i32 4, i32 5) 1354 // %val = load %ptr' 1355 // 1356 // into this: 1357 // 1358 // %base = ... 1359 // %ptr = gep %base + 15 1360 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1361 // %base' = gc.relocate(%tok, i32 4, i32 4) 1362 // %ptr' = gep %base' + 15 1363 // %val = load %ptr' 1364 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1365 bool MadeChange = false; 1366 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1367 for (auto *U : I.users()) 1368 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1369 // Collect all the relocate calls associated with a statepoint 1370 AllRelocateCalls.push_back(Relocate); 1371 1372 // We need at least one base pointer relocation + one derived pointer 1373 // relocation to mangle 1374 if (AllRelocateCalls.size() < 2) 1375 return false; 1376 1377 // RelocateInstMap is a mapping from the base relocate instruction to the 1378 // corresponding derived relocate instructions 1379 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap; 1380 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1381 if (RelocateInstMap.empty()) 1382 return false; 1383 1384 for (auto &Item : RelocateInstMap) 1385 // Item.first is the RelocatedBase to offset against 1386 // Item.second is the vector of Targets to replace 1387 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1388 return MadeChange; 1389 } 1390 1391 /// Sink the specified cast instruction into its user blocks. 1392 static bool SinkCast(CastInst *CI) { 1393 BasicBlock *DefBB = CI->getParent(); 1394 1395 /// InsertedCasts - Only insert a cast in each block once. 1396 DenseMap<BasicBlock *, CastInst *> InsertedCasts; 1397 1398 bool MadeChange = false; 1399 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1400 UI != E;) { 1401 Use &TheUse = UI.getUse(); 1402 Instruction *User = cast<Instruction>(*UI); 1403 1404 // Figure out which BB this cast is used in. For PHI's this is the 1405 // appropriate predecessor block. 1406 BasicBlock *UserBB = User->getParent(); 1407 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1408 UserBB = PN->getIncomingBlock(TheUse); 1409 } 1410 1411 // Preincrement use iterator so we don't invalidate it. 1412 ++UI; 1413 1414 // The first insertion point of a block containing an EH pad is after the 1415 // pad. If the pad is the user, we cannot sink the cast past the pad. 1416 if (User->isEHPad()) 1417 continue; 1418 1419 // If the block selected to receive the cast is an EH pad that does not 1420 // allow non-PHI instructions before the terminator, we can't sink the 1421 // cast. 1422 if (UserBB->getTerminator()->isEHPad()) 1423 continue; 1424 1425 // If this user is in the same block as the cast, don't change the cast. 1426 if (UserBB == DefBB) 1427 continue; 1428 1429 // If we have already inserted a cast into this block, use it. 1430 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1431 1432 if (!InsertedCast) { 1433 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1434 assert(InsertPt != UserBB->end()); 1435 InsertedCast = cast<CastInst>(CI->clone()); 1436 InsertedCast->insertBefore(*UserBB, InsertPt); 1437 } 1438 1439 // Replace a use of the cast with a use of the new cast. 1440 TheUse = InsertedCast; 1441 MadeChange = true; 1442 ++NumCastUses; 1443 } 1444 1445 // If we removed all uses, nuke the cast. 1446 if (CI->use_empty()) { 1447 salvageDebugInfo(*CI); 1448 CI->eraseFromParent(); 1449 MadeChange = true; 1450 } 1451 1452 return MadeChange; 1453 } 1454 1455 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1456 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1457 /// reduce the number of virtual registers that must be created and coalesced. 1458 /// 1459 /// Return true if any changes are made. 1460 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1461 const DataLayout &DL) { 1462 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1463 // than sinking only nop casts, but is helpful on some platforms. 1464 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1465 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1466 ASC->getDestAddressSpace())) 1467 return false; 1468 } 1469 1470 // If this is a noop copy, 1471 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1472 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1473 1474 // This is an fp<->int conversion? 1475 if (SrcVT.isInteger() != DstVT.isInteger()) 1476 return false; 1477 1478 // If this is an extension, it will be a zero or sign extension, which 1479 // isn't a noop. 1480 if (SrcVT.bitsLT(DstVT)) 1481 return false; 1482 1483 // If these values will be promoted, find out what they will be promoted 1484 // to. This helps us consider truncates on PPC as noop copies when they 1485 // are. 1486 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1487 TargetLowering::TypePromoteInteger) 1488 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1489 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1490 TargetLowering::TypePromoteInteger) 1491 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1492 1493 // If, after promotion, these are the same types, this is a noop copy. 1494 if (SrcVT != DstVT) 1495 return false; 1496 1497 return SinkCast(CI); 1498 } 1499 1500 // Match a simple increment by constant operation. Note that if a sub is 1501 // matched, the step is negated (as if the step had been canonicalized to 1502 // an add, even though we leave the instruction alone.) 1503 static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, 1504 Constant *&Step) { 1505 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1506 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1507 m_Instruction(LHS), m_Constant(Step))))) 1508 return true; 1509 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1510 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1511 m_Instruction(LHS), m_Constant(Step))))) { 1512 Step = ConstantExpr::getNeg(Step); 1513 return true; 1514 } 1515 return false; 1516 } 1517 1518 /// If given \p PN is an inductive variable with value IVInc coming from the 1519 /// backedge, and on each iteration it gets increased by Step, return pair 1520 /// <IVInc, Step>. Otherwise, return std::nullopt. 1521 static std::optional<std::pair<Instruction *, Constant *>> 1522 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1523 const Loop *L = LI->getLoopFor(PN->getParent()); 1524 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1525 return std::nullopt; 1526 auto *IVInc = 1527 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1528 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1529 return std::nullopt; 1530 Instruction *LHS = nullptr; 1531 Constant *Step = nullptr; 1532 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1533 return std::make_pair(IVInc, Step); 1534 return std::nullopt; 1535 } 1536 1537 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1538 auto *I = dyn_cast<Instruction>(V); 1539 if (!I) 1540 return false; 1541 Instruction *LHS = nullptr; 1542 Constant *Step = nullptr; 1543 if (!matchIncrement(I, LHS, Step)) 1544 return false; 1545 if (auto *PN = dyn_cast<PHINode>(LHS)) 1546 if (auto IVInc = getIVIncrement(PN, LI)) 1547 return IVInc->first == I; 1548 return false; 1549 } 1550 1551 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1552 Value *Arg0, Value *Arg1, 1553 CmpInst *Cmp, 1554 Intrinsic::ID IID) { 1555 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1556 if (!isIVIncrement(BO, LI)) 1557 return false; 1558 const Loop *L = LI->getLoopFor(BO->getParent()); 1559 assert(L && "L should not be null after isIVIncrement()"); 1560 // Do not risk on moving increment into a child loop. 1561 if (LI->getLoopFor(Cmp->getParent()) != L) 1562 return false; 1563 1564 // Finally, we need to ensure that the insert point will dominate all 1565 // existing uses of the increment. 1566 1567 auto &DT = getDT(*BO->getParent()->getParent()); 1568 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1569 // If we're moving up the dom tree, all uses are trivially dominated. 1570 // (This is the common case for code produced by LSR.) 1571 return true; 1572 1573 // Otherwise, special case the single use in the phi recurrence. 1574 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1575 }; 1576 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1577 // We used to use a dominator tree here to allow multi-block optimization. 1578 // But that was problematic because: 1579 // 1. It could cause a perf regression by hoisting the math op into the 1580 // critical path. 1581 // 2. It could cause a perf regression by creating a value that was live 1582 // across multiple blocks and increasing register pressure. 1583 // 3. Use of a dominator tree could cause large compile-time regression. 1584 // This is because we recompute the DT on every change in the main CGP 1585 // run-loop. The recomputing is probably unnecessary in many cases, so if 1586 // that was fixed, using a DT here would be ok. 1587 // 1588 // There is one important particular case we still want to handle: if BO is 1589 // the IV increment. Important properties that make it profitable: 1590 // - We can speculate IV increment anywhere in the loop (as long as the 1591 // indvar Phi is its only user); 1592 // - Upon computing Cmp, we effectively compute something equivalent to the 1593 // IV increment (despite it loops differently in the IR). So moving it up 1594 // to the cmp point does not really increase register pressure. 1595 return false; 1596 } 1597 1598 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1599 if (BO->getOpcode() == Instruction::Add && 1600 IID == Intrinsic::usub_with_overflow) { 1601 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1602 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1603 } 1604 1605 // Insert at the first instruction of the pair. 1606 Instruction *InsertPt = nullptr; 1607 for (Instruction &Iter : *Cmp->getParent()) { 1608 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1609 // the overflow intrinsic are defined. 1610 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1611 InsertPt = &Iter; 1612 break; 1613 } 1614 } 1615 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1616 1617 IRBuilder<> Builder(InsertPt); 1618 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1619 if (BO->getOpcode() != Instruction::Xor) { 1620 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1621 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); 1622 } else 1623 assert(BO->hasOneUse() && 1624 "Patterns with XOr should use the BO only in the compare"); 1625 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1626 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); 1627 Cmp->eraseFromParent(); 1628 BO->eraseFromParent(); 1629 return true; 1630 } 1631 1632 /// Match special-case patterns that check for unsigned add overflow. 1633 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1634 BinaryOperator *&Add) { 1635 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1636 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1637 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1638 1639 // We are not expecting non-canonical/degenerate code. Just bail out. 1640 if (isa<Constant>(A)) 1641 return false; 1642 1643 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1644 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1645 B = ConstantInt::get(B->getType(), 1); 1646 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1647 B = Constant::getAllOnesValue(B->getType()); 1648 else 1649 return false; 1650 1651 // Check the users of the variable operand of the compare looking for an add 1652 // with the adjusted constant. 1653 for (User *U : A->users()) { 1654 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1655 Add = cast<BinaryOperator>(U); 1656 return true; 1657 } 1658 } 1659 return false; 1660 } 1661 1662 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1663 /// intrinsic. Return true if any changes were made. 1664 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1665 ModifyDT &ModifiedDT) { 1666 bool EdgeCase = false; 1667 Value *A, *B; 1668 BinaryOperator *Add; 1669 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1670 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1671 return false; 1672 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1673 A = Add->getOperand(0); 1674 B = Add->getOperand(1); 1675 EdgeCase = true; 1676 } 1677 1678 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1679 TLI->getValueType(*DL, Add->getType()), 1680 Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) 1681 return false; 1682 1683 // We don't want to move around uses of condition values this late, so we 1684 // check if it is legal to create the call to the intrinsic in the basic 1685 // block containing the icmp. 1686 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1687 return false; 1688 1689 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1690 Intrinsic::uadd_with_overflow)) 1691 return false; 1692 1693 // Reset callers - do not crash by iterating over a dead instruction. 1694 ModifiedDT = ModifyDT::ModifyInstDT; 1695 return true; 1696 } 1697 1698 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1699 ModifyDT &ModifiedDT) { 1700 // We are not expecting non-canonical/degenerate code. Just bail out. 1701 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1702 if (isa<Constant>(A) && isa<Constant>(B)) 1703 return false; 1704 1705 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1706 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1707 if (Pred == ICmpInst::ICMP_UGT) { 1708 std::swap(A, B); 1709 Pred = ICmpInst::ICMP_ULT; 1710 } 1711 // Convert special-case: (A == 0) is the same as (A u< 1). 1712 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1713 B = ConstantInt::get(B->getType(), 1); 1714 Pred = ICmpInst::ICMP_ULT; 1715 } 1716 // Convert special-case: (A != 0) is the same as (0 u< A). 1717 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1718 std::swap(A, B); 1719 Pred = ICmpInst::ICMP_ULT; 1720 } 1721 if (Pred != ICmpInst::ICMP_ULT) 1722 return false; 1723 1724 // Walk the users of a variable operand of a compare looking for a subtract or 1725 // add with that same operand. Also match the 2nd operand of the compare to 1726 // the add/sub, but that may be a negated constant operand of an add. 1727 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1728 BinaryOperator *Sub = nullptr; 1729 for (User *U : CmpVariableOperand->users()) { 1730 // A - B, A u< B --> usubo(A, B) 1731 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1732 Sub = cast<BinaryOperator>(U); 1733 break; 1734 } 1735 1736 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1737 const APInt *CmpC, *AddC; 1738 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1739 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1740 Sub = cast<BinaryOperator>(U); 1741 break; 1742 } 1743 } 1744 if (!Sub) 1745 return false; 1746 1747 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1748 TLI->getValueType(*DL, Sub->getType()), 1749 Sub->hasNUsesOrMore(1))) 1750 return false; 1751 1752 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1753 Cmp, Intrinsic::usub_with_overflow)) 1754 return false; 1755 1756 // Reset callers - do not crash by iterating over a dead instruction. 1757 ModifiedDT = ModifyDT::ModifyInstDT; 1758 return true; 1759 } 1760 1761 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1762 /// registers that must be created and coalesced. This is a clear win except on 1763 /// targets with multiple condition code registers (PowerPC), where it might 1764 /// lose; some adjustment may be wanted there. 1765 /// 1766 /// Return true if any changes are made. 1767 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1768 if (TLI.hasMultipleConditionRegisters()) 1769 return false; 1770 1771 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1772 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1773 return false; 1774 1775 // Only insert a cmp in each block once. 1776 DenseMap<BasicBlock *, CmpInst *> InsertedCmps; 1777 1778 bool MadeChange = false; 1779 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1780 UI != E;) { 1781 Use &TheUse = UI.getUse(); 1782 Instruction *User = cast<Instruction>(*UI); 1783 1784 // Preincrement use iterator so we don't invalidate it. 1785 ++UI; 1786 1787 // Don't bother for PHI nodes. 1788 if (isa<PHINode>(User)) 1789 continue; 1790 1791 // Figure out which BB this cmp is used in. 1792 BasicBlock *UserBB = User->getParent(); 1793 BasicBlock *DefBB = Cmp->getParent(); 1794 1795 // If this user is in the same block as the cmp, don't change the cmp. 1796 if (UserBB == DefBB) 1797 continue; 1798 1799 // If we have already inserted a cmp into this block, use it. 1800 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1801 1802 if (!InsertedCmp) { 1803 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1804 assert(InsertPt != UserBB->end()); 1805 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1806 Cmp->getOperand(0), Cmp->getOperand(1), ""); 1807 InsertedCmp->insertBefore(*UserBB, InsertPt); 1808 // Propagate the debug info. 1809 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1810 } 1811 1812 // Replace a use of the cmp with a use of the new cmp. 1813 TheUse = InsertedCmp; 1814 MadeChange = true; 1815 ++NumCmpUses; 1816 } 1817 1818 // If we removed all uses, nuke the cmp. 1819 if (Cmp->use_empty()) { 1820 Cmp->eraseFromParent(); 1821 MadeChange = true; 1822 } 1823 1824 return MadeChange; 1825 } 1826 1827 /// For pattern like: 1828 /// 1829 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1830 /// ... 1831 /// DomBB: 1832 /// ... 1833 /// br DomCond, TrueBB, CmpBB 1834 /// CmpBB: (with DomBB being the single predecessor) 1835 /// ... 1836 /// Cmp = icmp eq CmpOp0, CmpOp1 1837 /// ... 1838 /// 1839 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1840 /// different from lowering of icmp eq (PowerPC). This function try to convert 1841 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1842 /// After that, DomCond and Cmp can use the same comparison so reduce one 1843 /// comparison. 1844 /// 1845 /// Return true if any changes are made. 1846 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1847 const TargetLowering &TLI) { 1848 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1849 return false; 1850 1851 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1852 if (Pred != ICmpInst::ICMP_EQ) 1853 return false; 1854 1855 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1856 // icmp slt/sgt would introduce more redundant LLVM IR. 1857 for (User *U : Cmp->users()) { 1858 if (isa<BranchInst>(U)) 1859 continue; 1860 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1861 continue; 1862 return false; 1863 } 1864 1865 // This is a cheap/incomplete check for dominance - just match a single 1866 // predecessor with a conditional branch. 1867 BasicBlock *CmpBB = Cmp->getParent(); 1868 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1869 if (!DomBB) 1870 return false; 1871 1872 // We want to ensure that the only way control gets to the comparison of 1873 // interest is that a less/greater than comparison on the same operands is 1874 // false. 1875 Value *DomCond; 1876 BasicBlock *TrueBB, *FalseBB; 1877 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1878 return false; 1879 if (CmpBB != FalseBB) 1880 return false; 1881 1882 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1883 ICmpInst::Predicate DomPred; 1884 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1885 return false; 1886 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1887 return false; 1888 1889 // Convert the equality comparison to the opposite of the dominating 1890 // comparison and swap the direction for all branch/select users. 1891 // We have conceptually converted: 1892 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1893 // to 1894 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1895 // And similarly for branches. 1896 for (User *U : Cmp->users()) { 1897 if (auto *BI = dyn_cast<BranchInst>(U)) { 1898 assert(BI->isConditional() && "Must be conditional"); 1899 BI->swapSuccessors(); 1900 continue; 1901 } 1902 if (auto *SI = dyn_cast<SelectInst>(U)) { 1903 // Swap operands 1904 SI->swapValues(); 1905 SI->swapProfMetadata(); 1906 continue; 1907 } 1908 llvm_unreachable("Must be a branch or a select"); 1909 } 1910 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1911 return true; 1912 } 1913 1914 /// Many architectures use the same instruction for both subtract and cmp. Try 1915 /// to swap cmp operands to match subtract operations to allow for CSE. 1916 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { 1917 Value *Op0 = Cmp->getOperand(0); 1918 Value *Op1 = Cmp->getOperand(1); 1919 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) || 1920 isa<Constant>(Op1) || Op0 == Op1) 1921 return false; 1922 1923 // If a subtract already has the same operands as a compare, swapping would be 1924 // bad. If a subtract has the same operands as a compare but in reverse order, 1925 // then swapping is good. 1926 int GoodToSwap = 0; 1927 unsigned NumInspected = 0; 1928 for (const User *U : Op0->users()) { 1929 // Avoid walking many users. 1930 if (++NumInspected > 128) 1931 return false; 1932 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 1933 GoodToSwap++; 1934 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 1935 GoodToSwap--; 1936 } 1937 1938 if (GoodToSwap > 0) { 1939 Cmp->swapOperands(); 1940 return true; 1941 } 1942 return false; 1943 } 1944 1945 static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI, 1946 const DataLayout &DL) { 1947 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp); 1948 if (!FCmp) 1949 return false; 1950 1951 // Don't fold if the target offers free fabs and the predicate is legal. 1952 EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType()); 1953 if (TLI.isFAbsFree(VT) && 1954 TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()), 1955 VT.getSimpleVT())) 1956 return false; 1957 1958 // Reverse the canonicalization if it is a FP class test 1959 auto ShouldReverseTransform = [](FPClassTest ClassTest) { 1960 return ClassTest == fcInf || ClassTest == (fcInf | fcNan); 1961 }; 1962 auto [ClassVal, ClassTest] = 1963 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), 1964 FCmp->getOperand(0), FCmp->getOperand(1)); 1965 if (!ClassVal) 1966 return false; 1967 1968 if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest)) 1969 return false; 1970 1971 IRBuilder<> Builder(Cmp); 1972 Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest); 1973 Cmp->replaceAllUsesWith(IsFPClass); 1974 RecursivelyDeleteTriviallyDeadInstructions(Cmp); 1975 return true; 1976 } 1977 1978 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { 1979 if (sinkCmpExpression(Cmp, *TLI)) 1980 return true; 1981 1982 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1983 return true; 1984 1985 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1986 return true; 1987 1988 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1989 return true; 1990 1991 if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) 1992 return true; 1993 1994 if (foldFCmpToFPClassTest(Cmp, *TLI, *DL)) 1995 return true; 1996 1997 return false; 1998 } 1999 2000 /// Duplicate and sink the given 'and' instruction into user blocks where it is 2001 /// used in a compare to allow isel to generate better code for targets where 2002 /// this operation can be combined. 2003 /// 2004 /// Return true if any changes are made. 2005 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, 2006 SetOfInstrs &InsertedInsts) { 2007 // Double-check that we're not trying to optimize an instruction that was 2008 // already optimized by some other part of this pass. 2009 assert(!InsertedInsts.count(AndI) && 2010 "Attempting to optimize already optimized and instruction"); 2011 (void)InsertedInsts; 2012 2013 // Nothing to do for single use in same basic block. 2014 if (AndI->hasOneUse() && 2015 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 2016 return false; 2017 2018 // Try to avoid cases where sinking/duplicating is likely to increase register 2019 // pressure. 2020 if (!isa<ConstantInt>(AndI->getOperand(0)) && 2021 !isa<ConstantInt>(AndI->getOperand(1)) && 2022 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 2023 return false; 2024 2025 for (auto *U : AndI->users()) { 2026 Instruction *User = cast<Instruction>(U); 2027 2028 // Only sink 'and' feeding icmp with 0. 2029 if (!isa<ICmpInst>(User)) 2030 return false; 2031 2032 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 2033 if (!CmpC || !CmpC->isZero()) 2034 return false; 2035 } 2036 2037 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 2038 return false; 2039 2040 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 2041 LLVM_DEBUG(AndI->getParent()->dump()); 2042 2043 // Push the 'and' into the same block as the icmp 0. There should only be 2044 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 2045 // others, so we don't need to keep track of which BBs we insert into. 2046 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 2047 UI != E;) { 2048 Use &TheUse = UI.getUse(); 2049 Instruction *User = cast<Instruction>(*UI); 2050 2051 // Preincrement use iterator so we don't invalidate it. 2052 ++UI; 2053 2054 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 2055 2056 // Keep the 'and' in the same place if the use is already in the same block. 2057 Instruction *InsertPt = 2058 User->getParent() == AndI->getParent() ? AndI : User; 2059 Instruction *InsertedAnd = BinaryOperator::Create( 2060 Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "", 2061 InsertPt->getIterator()); 2062 // Propagate the debug info. 2063 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 2064 2065 // Replace a use of the 'and' with a use of the new 'and'. 2066 TheUse = InsertedAnd; 2067 ++NumAndUses; 2068 LLVM_DEBUG(User->getParent()->dump()); 2069 } 2070 2071 // We removed all uses, nuke the and. 2072 AndI->eraseFromParent(); 2073 return true; 2074 } 2075 2076 /// Check if the candidates could be combined with a shift instruction, which 2077 /// includes: 2078 /// 1. Truncate instruction 2079 /// 2. And instruction and the imm is a mask of the low bits: 2080 /// imm & (imm+1) == 0 2081 static bool isExtractBitsCandidateUse(Instruction *User) { 2082 if (!isa<TruncInst>(User)) { 2083 if (User->getOpcode() != Instruction::And || 2084 !isa<ConstantInt>(User->getOperand(1))) 2085 return false; 2086 2087 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 2088 2089 if ((Cimm & (Cimm + 1)).getBoolValue()) 2090 return false; 2091 } 2092 return true; 2093 } 2094 2095 /// Sink both shift and truncate instruction to the use of truncate's BB. 2096 static bool 2097 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 2098 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 2099 const TargetLowering &TLI, const DataLayout &DL) { 2100 BasicBlock *UserBB = User->getParent(); 2101 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 2102 auto *TruncI = cast<TruncInst>(User); 2103 bool MadeChange = false; 2104 2105 for (Value::user_iterator TruncUI = TruncI->user_begin(), 2106 TruncE = TruncI->user_end(); 2107 TruncUI != TruncE;) { 2108 2109 Use &TruncTheUse = TruncUI.getUse(); 2110 Instruction *TruncUser = cast<Instruction>(*TruncUI); 2111 // Preincrement use iterator so we don't invalidate it. 2112 2113 ++TruncUI; 2114 2115 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 2116 if (!ISDOpcode) 2117 continue; 2118 2119 // If the use is actually a legal node, there will not be an 2120 // implicit truncate. 2121 // FIXME: always querying the result type is just an 2122 // approximation; some nodes' legality is determined by the 2123 // operand or other means. There's no good way to find out though. 2124 if (TLI.isOperationLegalOrCustom( 2125 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 2126 continue; 2127 2128 // Don't bother for PHI nodes. 2129 if (isa<PHINode>(TruncUser)) 2130 continue; 2131 2132 BasicBlock *TruncUserBB = TruncUser->getParent(); 2133 2134 if (UserBB == TruncUserBB) 2135 continue; 2136 2137 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 2138 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 2139 2140 if (!InsertedShift && !InsertedTrunc) { 2141 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 2142 assert(InsertPt != TruncUserBB->end()); 2143 // Sink the shift 2144 if (ShiftI->getOpcode() == Instruction::AShr) 2145 InsertedShift = 2146 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2147 else 2148 InsertedShift = 2149 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2150 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2151 InsertedShift->insertBefore(*TruncUserBB, InsertPt); 2152 2153 // Sink the trunc 2154 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 2155 TruncInsertPt++; 2156 // It will go ahead of any debug-info. 2157 TruncInsertPt.setHeadBit(true); 2158 assert(TruncInsertPt != TruncUserBB->end()); 2159 2160 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 2161 TruncI->getType(), ""); 2162 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt); 2163 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 2164 2165 MadeChange = true; 2166 2167 TruncTheUse = InsertedTrunc; 2168 } 2169 } 2170 return MadeChange; 2171 } 2172 2173 /// Sink the shift *right* instruction into user blocks if the uses could 2174 /// potentially be combined with this shift instruction and generate BitExtract 2175 /// instruction. It will only be applied if the architecture supports BitExtract 2176 /// instruction. Here is an example: 2177 /// BB1: 2178 /// %x.extract.shift = lshr i64 %arg1, 32 2179 /// BB2: 2180 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 2181 /// ==> 2182 /// 2183 /// BB2: 2184 /// %x.extract.shift.1 = lshr i64 %arg1, 32 2185 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 2186 /// 2187 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 2188 /// instruction. 2189 /// Return true if any changes are made. 2190 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 2191 const TargetLowering &TLI, 2192 const DataLayout &DL) { 2193 BasicBlock *DefBB = ShiftI->getParent(); 2194 2195 /// Only insert instructions in each block once. 2196 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 2197 2198 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 2199 2200 bool MadeChange = false; 2201 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 2202 UI != E;) { 2203 Use &TheUse = UI.getUse(); 2204 Instruction *User = cast<Instruction>(*UI); 2205 // Preincrement use iterator so we don't invalidate it. 2206 ++UI; 2207 2208 // Don't bother for PHI nodes. 2209 if (isa<PHINode>(User)) 2210 continue; 2211 2212 if (!isExtractBitsCandidateUse(User)) 2213 continue; 2214 2215 BasicBlock *UserBB = User->getParent(); 2216 2217 if (UserBB == DefBB) { 2218 // If the shift and truncate instruction are in the same BB. The use of 2219 // the truncate(TruncUse) may still introduce another truncate if not 2220 // legal. In this case, we would like to sink both shift and truncate 2221 // instruction to the BB of TruncUse. 2222 // for example: 2223 // BB1: 2224 // i64 shift.result = lshr i64 opnd, imm 2225 // trunc.result = trunc shift.result to i16 2226 // 2227 // BB2: 2228 // ----> We will have an implicit truncate here if the architecture does 2229 // not have i16 compare. 2230 // cmp i16 trunc.result, opnd2 2231 // 2232 if (isa<TruncInst>(User) && 2233 shiftIsLegal 2234 // If the type of the truncate is legal, no truncate will be 2235 // introduced in other basic blocks. 2236 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 2237 MadeChange = 2238 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 2239 2240 continue; 2241 } 2242 // If we have already inserted a shift into this block, use it. 2243 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 2244 2245 if (!InsertedShift) { 2246 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2247 assert(InsertPt != UserBB->end()); 2248 2249 if (ShiftI->getOpcode() == Instruction::AShr) 2250 InsertedShift = 2251 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2252 else 2253 InsertedShift = 2254 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2255 InsertedShift->insertBefore(*UserBB, InsertPt); 2256 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2257 2258 MadeChange = true; 2259 } 2260 2261 // Replace a use of the shift with a use of the new shift. 2262 TheUse = InsertedShift; 2263 } 2264 2265 // If we removed all uses, or there are none, nuke the shift. 2266 if (ShiftI->use_empty()) { 2267 salvageDebugInfo(*ShiftI); 2268 ShiftI->eraseFromParent(); 2269 MadeChange = true; 2270 } 2271 2272 return MadeChange; 2273 } 2274 2275 /// If counting leading or trailing zeros is an expensive operation and a zero 2276 /// input is defined, add a check for zero to avoid calling the intrinsic. 2277 /// 2278 /// We want to transform: 2279 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2280 /// 2281 /// into: 2282 /// entry: 2283 /// %cmpz = icmp eq i64 %A, 0 2284 /// br i1 %cmpz, label %cond.end, label %cond.false 2285 /// cond.false: 2286 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2287 /// br label %cond.end 2288 /// cond.end: 2289 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2290 /// 2291 /// If the transform is performed, return true and set ModifiedDT to true. 2292 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2293 LoopInfo &LI, 2294 const TargetLowering *TLI, 2295 const DataLayout *DL, ModifyDT &ModifiedDT, 2296 SmallSet<BasicBlock *, 32> &FreshBBs, 2297 bool IsHugeFunc) { 2298 // If a zero input is undefined, it doesn't make sense to despeculate that. 2299 if (match(CountZeros->getOperand(1), m_One())) 2300 return false; 2301 2302 // If it's cheap to speculate, there's nothing to do. 2303 Type *Ty = CountZeros->getType(); 2304 auto IntrinsicID = CountZeros->getIntrinsicID(); 2305 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || 2306 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) 2307 return false; 2308 2309 // Only handle legal scalar cases. Anything else requires too much work. 2310 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2311 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2312 return false; 2313 2314 // Bail if the value is never zero. 2315 Use &Op = CountZeros->getOperandUse(0); 2316 if (isKnownNonZero(Op, *DL)) 2317 return false; 2318 2319 // The intrinsic will be sunk behind a compare against zero and branch. 2320 BasicBlock *StartBlock = CountZeros->getParent(); 2321 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2322 if (IsHugeFunc) 2323 FreshBBs.insert(CallBlock); 2324 2325 // Create another block after the count zero intrinsic. A PHI will be added 2326 // in this block to select the result of the intrinsic or the bit-width 2327 // constant if the input to the intrinsic is zero. 2328 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros)); 2329 // Any debug-info after CountZeros should not be included. 2330 SplitPt.setHeadBit(true); 2331 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2332 if (IsHugeFunc) 2333 FreshBBs.insert(EndBlock); 2334 2335 // Update the LoopInfo. The new blocks are in the same loop as the start 2336 // block. 2337 if (Loop *L = LI.getLoopFor(StartBlock)) { 2338 L->addBasicBlockToLoop(CallBlock, LI); 2339 L->addBasicBlockToLoop(EndBlock, LI); 2340 } 2341 2342 // Set up a builder to create a compare, conditional branch, and PHI. 2343 IRBuilder<> Builder(CountZeros->getContext()); 2344 Builder.SetInsertPoint(StartBlock->getTerminator()); 2345 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2346 2347 // Replace the unconditional branch that was created by the first split with 2348 // a compare against zero and a conditional branch. 2349 Value *Zero = Constant::getNullValue(Ty); 2350 // Avoid introducing branch on poison. This also replaces the ctz operand. 2351 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2352 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2353 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2354 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2355 StartBlock->getTerminator()->eraseFromParent(); 2356 2357 // Create a PHI in the end block to select either the output of the intrinsic 2358 // or the bit width of the operand. 2359 Builder.SetInsertPoint(EndBlock, EndBlock->begin()); 2360 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2361 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); 2362 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2363 PN->addIncoming(BitWidth, StartBlock); 2364 PN->addIncoming(CountZeros, CallBlock); 2365 2366 // We are explicitly handling the zero case, so we can set the intrinsic's 2367 // undefined zero argument to 'true'. This will also prevent reprocessing the 2368 // intrinsic; we only despeculate when a zero input is defined. 2369 CountZeros->setArgOperand(1, Builder.getTrue()); 2370 ModifiedDT = ModifyDT::ModifyBBDT; 2371 return true; 2372 } 2373 2374 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { 2375 BasicBlock *BB = CI->getParent(); 2376 2377 // Lower inline assembly if we can. 2378 // If we found an inline asm expession, and if the target knows how to 2379 // lower it to normal LLVM code, do so now. 2380 if (CI->isInlineAsm()) { 2381 if (TLI->ExpandInlineAsm(CI)) { 2382 // Avoid invalidating the iterator. 2383 CurInstIterator = BB->begin(); 2384 // Avoid processing instructions out of order, which could cause 2385 // reuse before a value is defined. 2386 SunkAddrs.clear(); 2387 return true; 2388 } 2389 // Sink address computing for memory operands into the block. 2390 if (optimizeInlineAsmInst(CI)) 2391 return true; 2392 } 2393 2394 // Align the pointer arguments to this call if the target thinks it's a good 2395 // idea 2396 unsigned MinSize; 2397 Align PrefAlign; 2398 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2399 for (auto &Arg : CI->args()) { 2400 // We want to align both objects whose address is used directly and 2401 // objects whose address is used in casts and GEPs, though it only makes 2402 // sense for GEPs if the offset is a multiple of the desired alignment and 2403 // if size - offset meets the size threshold. 2404 if (!Arg->getType()->isPointerTy()) 2405 continue; 2406 APInt Offset(DL->getIndexSizeInBits( 2407 cast<PointerType>(Arg->getType())->getAddressSpace()), 2408 0); 2409 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2410 uint64_t Offset2 = Offset.getLimitedValue(); 2411 if (!isAligned(PrefAlign, Offset2)) 2412 continue; 2413 AllocaInst *AI; 2414 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2415 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2416 AI->setAlignment(PrefAlign); 2417 // Global variables can only be aligned if they are defined in this 2418 // object (i.e. they are uniquely initialized in this object), and 2419 // over-aligning global variables that have an explicit section is 2420 // forbidden. 2421 GlobalVariable *GV; 2422 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2423 GV->getPointerAlignment(*DL) < PrefAlign && 2424 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) 2425 GV->setAlignment(PrefAlign); 2426 } 2427 } 2428 // If this is a memcpy (or similar) then we may be able to improve the 2429 // alignment. 2430 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2431 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2432 MaybeAlign MIDestAlign = MI->getDestAlign(); 2433 if (!MIDestAlign || DestAlign > *MIDestAlign) 2434 MI->setDestAlignment(DestAlign); 2435 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2436 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2437 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2438 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2439 MTI->setSourceAlignment(SrcAlign); 2440 } 2441 } 2442 2443 // If we have a cold call site, try to sink addressing computation into the 2444 // cold block. This interacts with our handling for loads and stores to 2445 // ensure that we can fold all uses of a potential addressing computation 2446 // into their uses. TODO: generalize this to work over profiling data 2447 if (CI->hasFnAttr(Attribute::Cold) && !OptSize && 2448 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2449 for (auto &Arg : CI->args()) { 2450 if (!Arg->getType()->isPointerTy()) 2451 continue; 2452 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2453 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) 2454 return true; 2455 } 2456 2457 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2458 if (II) { 2459 switch (II->getIntrinsicID()) { 2460 default: 2461 break; 2462 case Intrinsic::assume: 2463 llvm_unreachable("llvm.assume should have been removed already"); 2464 case Intrinsic::allow_runtime_check: 2465 case Intrinsic::allow_ubsan_check: 2466 case Intrinsic::experimental_widenable_condition: { 2467 // Give up on future widening opportunities so that we can fold away dead 2468 // paths and merge blocks before going into block-local instruction 2469 // selection. 2470 if (II->use_empty()) { 2471 II->eraseFromParent(); 2472 return true; 2473 } 2474 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2475 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2476 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2477 }); 2478 return true; 2479 } 2480 case Intrinsic::objectsize: 2481 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2482 case Intrinsic::is_constant: 2483 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2484 case Intrinsic::aarch64_stlxr: 2485 case Intrinsic::aarch64_stxr: { 2486 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2487 if (!ExtVal || !ExtVal->hasOneUse() || 2488 ExtVal->getParent() == CI->getParent()) 2489 return false; 2490 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2491 ExtVal->moveBefore(CI); 2492 // Mark this instruction as "inserted by CGP", so that other 2493 // optimizations don't touch it. 2494 InsertedInsts.insert(ExtVal); 2495 return true; 2496 } 2497 2498 case Intrinsic::launder_invariant_group: 2499 case Intrinsic::strip_invariant_group: { 2500 Value *ArgVal = II->getArgOperand(0); 2501 auto it = LargeOffsetGEPMap.find(II); 2502 if (it != LargeOffsetGEPMap.end()) { 2503 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2504 // Make sure not to have to deal with iterator invalidation 2505 // after possibly adding ArgVal to LargeOffsetGEPMap. 2506 auto GEPs = std::move(it->second); 2507 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2508 LargeOffsetGEPMap.erase(II); 2509 } 2510 2511 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); 2512 II->eraseFromParent(); 2513 return true; 2514 } 2515 case Intrinsic::cttz: 2516 case Intrinsic::ctlz: 2517 // If counting zeros is expensive, try to avoid it. 2518 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs, 2519 IsHugeFunc); 2520 case Intrinsic::fshl: 2521 case Intrinsic::fshr: 2522 return optimizeFunnelShift(II); 2523 case Intrinsic::dbg_assign: 2524 case Intrinsic::dbg_value: 2525 return fixupDbgValue(II); 2526 case Intrinsic::masked_gather: 2527 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2528 case Intrinsic::masked_scatter: 2529 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2530 } 2531 2532 SmallVector<Value *, 2> PtrOps; 2533 Type *AccessTy; 2534 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2535 while (!PtrOps.empty()) { 2536 Value *PtrVal = PtrOps.pop_back_val(); 2537 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2538 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2539 return true; 2540 } 2541 } 2542 2543 // From here on out we're working with named functions. 2544 if (!CI->getCalledFunction()) 2545 return false; 2546 2547 // Lower all default uses of _chk calls. This is very similar 2548 // to what InstCombineCalls does, but here we are only lowering calls 2549 // to fortified library functions (e.g. __memcpy_chk) that have the default 2550 // "don't know" as the objectsize. Anything else should be left alone. 2551 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2552 IRBuilder<> Builder(CI); 2553 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2554 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); 2555 CI->eraseFromParent(); 2556 return true; 2557 } 2558 2559 return false; 2560 } 2561 2562 static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo, 2563 const CallInst *CI) { 2564 assert(CI && CI->use_empty()); 2565 2566 if (const auto *II = dyn_cast<IntrinsicInst>(CI)) 2567 switch (II->getIntrinsicID()) { 2568 case Intrinsic::memset: 2569 case Intrinsic::memcpy: 2570 case Intrinsic::memmove: 2571 return true; 2572 default: 2573 return false; 2574 } 2575 2576 LibFunc LF; 2577 Function *Callee = CI->getCalledFunction(); 2578 if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF)) 2579 switch (LF) { 2580 case LibFunc_strcpy: 2581 case LibFunc_strncpy: 2582 case LibFunc_strcat: 2583 case LibFunc_strncat: 2584 return true; 2585 default: 2586 return false; 2587 } 2588 2589 return false; 2590 } 2591 2592 /// Look for opportunities to duplicate return instructions to the predecessor 2593 /// to enable tail call optimizations. The case it is currently looking for is 2594 /// the following one. Known intrinsics or library function that may be tail 2595 /// called are taken into account as well. 2596 /// @code 2597 /// bb0: 2598 /// %tmp0 = tail call i32 @f0() 2599 /// br label %return 2600 /// bb1: 2601 /// %tmp1 = tail call i32 @f1() 2602 /// br label %return 2603 /// bb2: 2604 /// %tmp2 = tail call i32 @f2() 2605 /// br label %return 2606 /// return: 2607 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2608 /// ret i32 %retval 2609 /// @endcode 2610 /// 2611 /// => 2612 /// 2613 /// @code 2614 /// bb0: 2615 /// %tmp0 = tail call i32 @f0() 2616 /// ret i32 %tmp0 2617 /// bb1: 2618 /// %tmp1 = tail call i32 @f1() 2619 /// ret i32 %tmp1 2620 /// bb2: 2621 /// %tmp2 = tail call i32 @f2() 2622 /// ret i32 %tmp2 2623 /// @endcode 2624 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, 2625 ModifyDT &ModifiedDT) { 2626 if (!BB->getTerminator()) 2627 return false; 2628 2629 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2630 if (!RetI) 2631 return false; 2632 2633 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop"); 2634 2635 PHINode *PN = nullptr; 2636 ExtractValueInst *EVI = nullptr; 2637 BitCastInst *BCI = nullptr; 2638 Value *V = RetI->getReturnValue(); 2639 if (V) { 2640 BCI = dyn_cast<BitCastInst>(V); 2641 if (BCI) 2642 V = BCI->getOperand(0); 2643 2644 EVI = dyn_cast<ExtractValueInst>(V); 2645 if (EVI) { 2646 V = EVI->getOperand(0); 2647 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2648 return false; 2649 } 2650 2651 PN = dyn_cast<PHINode>(V); 2652 } 2653 2654 if (PN && PN->getParent() != BB) 2655 return false; 2656 2657 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2658 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2659 if (BC && BC->hasOneUse()) 2660 Inst = BC->user_back(); 2661 2662 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2663 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2664 return false; 2665 }; 2666 2667 // Make sure there are no instructions between the first instruction 2668 // and return. 2669 const Instruction *BI = BB->getFirstNonPHI(); 2670 // Skip over debug and the bitcast. 2671 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2672 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2673 BI = BI->getNextNode(); 2674 if (BI != RetI) 2675 return false; 2676 2677 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2678 /// call. 2679 const Function *F = BB->getParent(); 2680 SmallVector<BasicBlock *, 4> TailCallBBs; 2681 if (PN) { 2682 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2683 // Look through bitcasts. 2684 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2685 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2686 BasicBlock *PredBB = PN->getIncomingBlock(I); 2687 // Make sure the phi value is indeed produced by the tail call. 2688 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2689 TLI->mayBeEmittedAsTailCall(CI) && 2690 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2691 TailCallBBs.push_back(PredBB); 2692 } else { 2693 // Consider the cases in which the phi value is indirectly produced by 2694 // the tail call, for example when encountering memset(), memmove(), 2695 // strcpy(), whose return value may have been optimized out. In such 2696 // cases, the value needs to be the first function argument. 2697 // 2698 // bb0: 2699 // tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1) 2700 // br label %return 2701 // return: 2702 // %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ] 2703 if (PredBB && PredBB->getSingleSuccessor() == BB) 2704 CI = dyn_cast_or_null<CallInst>( 2705 PredBB->getTerminator()->getPrevNonDebugInstruction(true)); 2706 2707 if (CI && CI->use_empty() && 2708 isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2709 IncomingVal == CI->getArgOperand(0) && 2710 TLI->mayBeEmittedAsTailCall(CI) && 2711 attributesPermitTailCall(F, CI, RetI, *TLI)) 2712 TailCallBBs.push_back(PredBB); 2713 } 2714 } 2715 } else { 2716 SmallPtrSet<BasicBlock *, 4> VisitedBBs; 2717 for (BasicBlock *Pred : predecessors(BB)) { 2718 if (!VisitedBBs.insert(Pred).second) 2719 continue; 2720 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2721 CallInst *CI = dyn_cast<CallInst>(I); 2722 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2723 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2724 // Either we return void or the return value must be the first 2725 // argument of a known intrinsic or library function. 2726 if (!V || isa<UndefValue>(V) || 2727 (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2728 V == CI->getArgOperand(0))) { 2729 TailCallBBs.push_back(Pred); 2730 } 2731 } 2732 } 2733 } 2734 } 2735 2736 bool Changed = false; 2737 for (auto const &TailCallBB : TailCallBBs) { 2738 // Make sure the call instruction is followed by an unconditional branch to 2739 // the return block. 2740 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2741 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2742 continue; 2743 2744 // Duplicate the return into TailCallBB. 2745 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2746 assert(!VerifyBFIUpdates || 2747 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2748 BFI->setBlockFreq(BB, 2749 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB))); 2750 ModifiedDT = ModifyDT::ModifyBBDT; 2751 Changed = true; 2752 ++NumRetsDup; 2753 } 2754 2755 // If we eliminated all predecessors of the block, delete the block now. 2756 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2757 BB->eraseFromParent(); 2758 2759 return Changed; 2760 } 2761 2762 //===----------------------------------------------------------------------===// 2763 // Memory Optimization 2764 //===----------------------------------------------------------------------===// 2765 2766 namespace { 2767 2768 /// This is an extended version of TargetLowering::AddrMode 2769 /// which holds actual Value*'s for register values. 2770 struct ExtAddrMode : public TargetLowering::AddrMode { 2771 Value *BaseReg = nullptr; 2772 Value *ScaledReg = nullptr; 2773 Value *OriginalValue = nullptr; 2774 bool InBounds = true; 2775 2776 enum FieldName { 2777 NoField = 0x00, 2778 BaseRegField = 0x01, 2779 BaseGVField = 0x02, 2780 BaseOffsField = 0x04, 2781 ScaledRegField = 0x08, 2782 ScaleField = 0x10, 2783 MultipleFields = 0xff 2784 }; 2785 2786 ExtAddrMode() = default; 2787 2788 void print(raw_ostream &OS) const; 2789 void dump() const; 2790 2791 FieldName compare(const ExtAddrMode &other) { 2792 // First check that the types are the same on each field, as differing types 2793 // is something we can't cope with later on. 2794 if (BaseReg && other.BaseReg && 2795 BaseReg->getType() != other.BaseReg->getType()) 2796 return MultipleFields; 2797 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) 2798 return MultipleFields; 2799 if (ScaledReg && other.ScaledReg && 2800 ScaledReg->getType() != other.ScaledReg->getType()) 2801 return MultipleFields; 2802 2803 // Conservatively reject 'inbounds' mismatches. 2804 if (InBounds != other.InBounds) 2805 return MultipleFields; 2806 2807 // Check each field to see if it differs. 2808 unsigned Result = NoField; 2809 if (BaseReg != other.BaseReg) 2810 Result |= BaseRegField; 2811 if (BaseGV != other.BaseGV) 2812 Result |= BaseGVField; 2813 if (BaseOffs != other.BaseOffs) 2814 Result |= BaseOffsField; 2815 if (ScaledReg != other.ScaledReg) 2816 Result |= ScaledRegField; 2817 // Don't count 0 as being a different scale, because that actually means 2818 // unscaled (which will already be counted by having no ScaledReg). 2819 if (Scale && other.Scale && Scale != other.Scale) 2820 Result |= ScaleField; 2821 2822 if (llvm::popcount(Result) > 1) 2823 return MultipleFields; 2824 else 2825 return static_cast<FieldName>(Result); 2826 } 2827 2828 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2829 // with no offset. 2830 bool isTrivial() { 2831 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2832 // trivial if at most one of these terms is nonzero, except that BaseGV and 2833 // BaseReg both being zero actually means a null pointer value, which we 2834 // consider to be 'non-zero' here. 2835 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2836 } 2837 2838 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2839 switch (Field) { 2840 default: 2841 return nullptr; 2842 case BaseRegField: 2843 return BaseReg; 2844 case BaseGVField: 2845 return BaseGV; 2846 case ScaledRegField: 2847 return ScaledReg; 2848 case BaseOffsField: 2849 return ConstantInt::get(IntPtrTy, BaseOffs); 2850 } 2851 } 2852 2853 void SetCombinedField(FieldName Field, Value *V, 2854 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2855 switch (Field) { 2856 default: 2857 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2858 break; 2859 case ExtAddrMode::BaseRegField: 2860 BaseReg = V; 2861 break; 2862 case ExtAddrMode::BaseGVField: 2863 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2864 // in the BaseReg field. 2865 assert(BaseReg == nullptr); 2866 BaseReg = V; 2867 BaseGV = nullptr; 2868 break; 2869 case ExtAddrMode::ScaledRegField: 2870 ScaledReg = V; 2871 // If we have a mix of scaled and unscaled addrmodes then we want scale 2872 // to be the scale and not zero. 2873 if (!Scale) 2874 for (const ExtAddrMode &AM : AddrModes) 2875 if (AM.Scale) { 2876 Scale = AM.Scale; 2877 break; 2878 } 2879 break; 2880 case ExtAddrMode::BaseOffsField: 2881 // The offset is no longer a constant, so it goes in ScaledReg with a 2882 // scale of 1. 2883 assert(ScaledReg == nullptr); 2884 ScaledReg = V; 2885 Scale = 1; 2886 BaseOffs = 0; 2887 break; 2888 } 2889 } 2890 }; 2891 2892 #ifndef NDEBUG 2893 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2894 AM.print(OS); 2895 return OS; 2896 } 2897 #endif 2898 2899 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2900 void ExtAddrMode::print(raw_ostream &OS) const { 2901 bool NeedPlus = false; 2902 OS << "["; 2903 if (InBounds) 2904 OS << "inbounds "; 2905 if (BaseGV) { 2906 OS << "GV:"; 2907 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2908 NeedPlus = true; 2909 } 2910 2911 if (BaseOffs) { 2912 OS << (NeedPlus ? " + " : "") << BaseOffs; 2913 NeedPlus = true; 2914 } 2915 2916 if (BaseReg) { 2917 OS << (NeedPlus ? " + " : "") << "Base:"; 2918 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2919 NeedPlus = true; 2920 } 2921 if (Scale) { 2922 OS << (NeedPlus ? " + " : "") << Scale << "*"; 2923 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2924 } 2925 2926 OS << ']'; 2927 } 2928 2929 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2930 print(dbgs()); 2931 dbgs() << '\n'; 2932 } 2933 #endif 2934 2935 } // end anonymous namespace 2936 2937 namespace { 2938 2939 /// This class provides transaction based operation on the IR. 2940 /// Every change made through this class is recorded in the internal state and 2941 /// can be undone (rollback) until commit is called. 2942 /// CGP does not check if instructions could be speculatively executed when 2943 /// moved. Preserving the original location would pessimize the debugging 2944 /// experience, as well as negatively impact the quality of sample PGO. 2945 class TypePromotionTransaction { 2946 /// This represents the common interface of the individual transaction. 2947 /// Each class implements the logic for doing one specific modification on 2948 /// the IR via the TypePromotionTransaction. 2949 class TypePromotionAction { 2950 protected: 2951 /// The Instruction modified. 2952 Instruction *Inst; 2953 2954 public: 2955 /// Constructor of the action. 2956 /// The constructor performs the related action on the IR. 2957 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2958 2959 virtual ~TypePromotionAction() = default; 2960 2961 /// Undo the modification done by this action. 2962 /// When this method is called, the IR must be in the same state as it was 2963 /// before this action was applied. 2964 /// \pre Undoing the action works if and only if the IR is in the exact same 2965 /// state as it was directly after this action was applied. 2966 virtual void undo() = 0; 2967 2968 /// Advocate every change made by this action. 2969 /// When the results on the IR of the action are to be kept, it is important 2970 /// to call this function, otherwise hidden information may be kept forever. 2971 virtual void commit() { 2972 // Nothing to be done, this action is not doing anything. 2973 } 2974 }; 2975 2976 /// Utility to remember the position of an instruction. 2977 class InsertionHandler { 2978 /// Position of an instruction. 2979 /// Either an instruction: 2980 /// - Is the first in a basic block: BB is used. 2981 /// - Has a previous instruction: PrevInst is used. 2982 union { 2983 Instruction *PrevInst; 2984 BasicBlock *BB; 2985 } Point; 2986 std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt; 2987 2988 /// Remember whether or not the instruction had a previous instruction. 2989 bool HasPrevInstruction; 2990 2991 public: 2992 /// Record the position of \p Inst. 2993 InsertionHandler(Instruction *Inst) { 2994 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin())); 2995 BasicBlock *BB = Inst->getParent(); 2996 2997 // Record where we would have to re-insert the instruction in the sequence 2998 // of DbgRecords, if we ended up reinserting. 2999 if (BB->IsNewDbgInfoFormat) 3000 BeforeDbgRecord = Inst->getDbgReinsertionPosition(); 3001 3002 if (HasPrevInstruction) { 3003 Point.PrevInst = &*std::prev(Inst->getIterator()); 3004 } else { 3005 Point.BB = BB; 3006 } 3007 } 3008 3009 /// Insert \p Inst at the recorded position. 3010 void insert(Instruction *Inst) { 3011 if (HasPrevInstruction) { 3012 if (Inst->getParent()) 3013 Inst->removeFromParent(); 3014 Inst->insertAfter(&*Point.PrevInst); 3015 } else { 3016 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt(); 3017 if (Inst->getParent()) 3018 Inst->moveBefore(*Point.BB, Position); 3019 else 3020 Inst->insertBefore(*Point.BB, Position); 3021 } 3022 3023 Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord); 3024 } 3025 }; 3026 3027 /// Move an instruction before another. 3028 class InstructionMoveBefore : public TypePromotionAction { 3029 /// Original position of the instruction. 3030 InsertionHandler Position; 3031 3032 public: 3033 /// Move \p Inst before \p Before. 3034 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 3035 : TypePromotionAction(Inst), Position(Inst) { 3036 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 3037 << "\n"); 3038 Inst->moveBefore(Before); 3039 } 3040 3041 /// Move the instruction back to its original position. 3042 void undo() override { 3043 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 3044 Position.insert(Inst); 3045 } 3046 }; 3047 3048 /// Set the operand of an instruction with a new value. 3049 class OperandSetter : public TypePromotionAction { 3050 /// Original operand of the instruction. 3051 Value *Origin; 3052 3053 /// Index of the modified instruction. 3054 unsigned Idx; 3055 3056 public: 3057 /// Set \p Idx operand of \p Inst with \p NewVal. 3058 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 3059 : TypePromotionAction(Inst), Idx(Idx) { 3060 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 3061 << "for:" << *Inst << "\n" 3062 << "with:" << *NewVal << "\n"); 3063 Origin = Inst->getOperand(Idx); 3064 Inst->setOperand(Idx, NewVal); 3065 } 3066 3067 /// Restore the original value of the instruction. 3068 void undo() override { 3069 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 3070 << "for: " << *Inst << "\n" 3071 << "with: " << *Origin << "\n"); 3072 Inst->setOperand(Idx, Origin); 3073 } 3074 }; 3075 3076 /// Hide the operands of an instruction. 3077 /// Do as if this instruction was not using any of its operands. 3078 class OperandsHider : public TypePromotionAction { 3079 /// The list of original operands. 3080 SmallVector<Value *, 4> OriginalValues; 3081 3082 public: 3083 /// Remove \p Inst from the uses of the operands of \p Inst. 3084 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 3085 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 3086 unsigned NumOpnds = Inst->getNumOperands(); 3087 OriginalValues.reserve(NumOpnds); 3088 for (unsigned It = 0; It < NumOpnds; ++It) { 3089 // Save the current operand. 3090 Value *Val = Inst->getOperand(It); 3091 OriginalValues.push_back(Val); 3092 // Set a dummy one. 3093 // We could use OperandSetter here, but that would imply an overhead 3094 // that we are not willing to pay. 3095 Inst->setOperand(It, UndefValue::get(Val->getType())); 3096 } 3097 } 3098 3099 /// Restore the original list of uses. 3100 void undo() override { 3101 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 3102 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 3103 Inst->setOperand(It, OriginalValues[It]); 3104 } 3105 }; 3106 3107 /// Build a truncate instruction. 3108 class TruncBuilder : public TypePromotionAction { 3109 Value *Val; 3110 3111 public: 3112 /// Build a truncate instruction of \p Opnd producing a \p Ty 3113 /// result. 3114 /// trunc Opnd to Ty. 3115 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 3116 IRBuilder<> Builder(Opnd); 3117 Builder.SetCurrentDebugLocation(DebugLoc()); 3118 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 3119 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 3120 } 3121 3122 /// Get the built value. 3123 Value *getBuiltValue() { return Val; } 3124 3125 /// Remove the built instruction. 3126 void undo() override { 3127 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 3128 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3129 IVal->eraseFromParent(); 3130 } 3131 }; 3132 3133 /// Build a sign extension instruction. 3134 class SExtBuilder : public TypePromotionAction { 3135 Value *Val; 3136 3137 public: 3138 /// Build a sign extension instruction of \p Opnd producing a \p Ty 3139 /// result. 3140 /// sext Opnd to Ty. 3141 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3142 : TypePromotionAction(InsertPt) { 3143 IRBuilder<> Builder(InsertPt); 3144 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 3145 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 3146 } 3147 3148 /// Get the built value. 3149 Value *getBuiltValue() { return Val; } 3150 3151 /// Remove the built instruction. 3152 void undo() override { 3153 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 3154 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3155 IVal->eraseFromParent(); 3156 } 3157 }; 3158 3159 /// Build a zero extension instruction. 3160 class ZExtBuilder : public TypePromotionAction { 3161 Value *Val; 3162 3163 public: 3164 /// Build a zero extension instruction of \p Opnd producing a \p Ty 3165 /// result. 3166 /// zext Opnd to Ty. 3167 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3168 : TypePromotionAction(InsertPt) { 3169 IRBuilder<> Builder(InsertPt); 3170 Builder.SetCurrentDebugLocation(DebugLoc()); 3171 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 3172 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 3173 } 3174 3175 /// Get the built value. 3176 Value *getBuiltValue() { return Val; } 3177 3178 /// Remove the built instruction. 3179 void undo() override { 3180 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 3181 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3182 IVal->eraseFromParent(); 3183 } 3184 }; 3185 3186 /// Mutate an instruction to another type. 3187 class TypeMutator : public TypePromotionAction { 3188 /// Record the original type. 3189 Type *OrigTy; 3190 3191 public: 3192 /// Mutate the type of \p Inst into \p NewTy. 3193 TypeMutator(Instruction *Inst, Type *NewTy) 3194 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 3195 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 3196 << "\n"); 3197 Inst->mutateType(NewTy); 3198 } 3199 3200 /// Mutate the instruction back to its original type. 3201 void undo() override { 3202 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 3203 << "\n"); 3204 Inst->mutateType(OrigTy); 3205 } 3206 }; 3207 3208 /// Replace the uses of an instruction by another instruction. 3209 class UsesReplacer : public TypePromotionAction { 3210 /// Helper structure to keep track of the replaced uses. 3211 struct InstructionAndIdx { 3212 /// The instruction using the instruction. 3213 Instruction *Inst; 3214 3215 /// The index where this instruction is used for Inst. 3216 unsigned Idx; 3217 3218 InstructionAndIdx(Instruction *Inst, unsigned Idx) 3219 : Inst(Inst), Idx(Idx) {} 3220 }; 3221 3222 /// Keep track of the original uses (pair Instruction, Index). 3223 SmallVector<InstructionAndIdx, 4> OriginalUses; 3224 /// Keep track of the debug users. 3225 SmallVector<DbgValueInst *, 1> DbgValues; 3226 /// And non-instruction debug-users too. 3227 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 3228 3229 /// Keep track of the new value so that we can undo it by replacing 3230 /// instances of the new value with the original value. 3231 Value *New; 3232 3233 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3234 3235 public: 3236 /// Replace all the use of \p Inst by \p New. 3237 UsesReplacer(Instruction *Inst, Value *New) 3238 : TypePromotionAction(Inst), New(New) { 3239 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3240 << "\n"); 3241 // Record the original uses. 3242 for (Use &U : Inst->uses()) { 3243 Instruction *UserI = cast<Instruction>(U.getUser()); 3244 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3245 } 3246 // Record the debug uses separately. They are not in the instruction's 3247 // use list, but they are replaced by RAUW. 3248 findDbgValues(DbgValues, Inst, &DbgVariableRecords); 3249 3250 // Now, we can replace the uses. 3251 Inst->replaceAllUsesWith(New); 3252 } 3253 3254 /// Reassign the original uses of Inst to Inst. 3255 void undo() override { 3256 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3257 for (InstructionAndIdx &Use : OriginalUses) 3258 Use.Inst->setOperand(Use.Idx, Inst); 3259 // RAUW has replaced all original uses with references to the new value, 3260 // including the debug uses. Since we are undoing the replacements, 3261 // the original debug uses must also be reinstated to maintain the 3262 // correctness and utility of debug value instructions. 3263 for (auto *DVI : DbgValues) 3264 DVI->replaceVariableLocationOp(New, Inst); 3265 // Similar story with DbgVariableRecords, the non-instruction 3266 // representation of dbg.values. 3267 for (DbgVariableRecord *DVR : DbgVariableRecords) 3268 DVR->replaceVariableLocationOp(New, Inst); 3269 } 3270 }; 3271 3272 /// Remove an instruction from the IR. 3273 class InstructionRemover : public TypePromotionAction { 3274 /// Original position of the instruction. 3275 InsertionHandler Inserter; 3276 3277 /// Helper structure to hide all the link to the instruction. In other 3278 /// words, this helps to do as if the instruction was removed. 3279 OperandsHider Hider; 3280 3281 /// Keep track of the uses replaced, if any. 3282 UsesReplacer *Replacer = nullptr; 3283 3284 /// Keep track of instructions removed. 3285 SetOfInstrs &RemovedInsts; 3286 3287 public: 3288 /// Remove all reference of \p Inst and optionally replace all its 3289 /// uses with New. 3290 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3291 /// \pre If !Inst->use_empty(), then New != nullptr 3292 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3293 Value *New = nullptr) 3294 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3295 RemovedInsts(RemovedInsts) { 3296 if (New) 3297 Replacer = new UsesReplacer(Inst, New); 3298 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3299 RemovedInsts.insert(Inst); 3300 /// The instructions removed here will be freed after completing 3301 /// optimizeBlock() for all blocks as we need to keep track of the 3302 /// removed instructions during promotion. 3303 Inst->removeFromParent(); 3304 } 3305 3306 ~InstructionRemover() override { delete Replacer; } 3307 3308 InstructionRemover &operator=(const InstructionRemover &other) = delete; 3309 InstructionRemover(const InstructionRemover &other) = delete; 3310 3311 /// Resurrect the instruction and reassign it to the proper uses if 3312 /// new value was provided when build this action. 3313 void undo() override { 3314 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3315 Inserter.insert(Inst); 3316 if (Replacer) 3317 Replacer->undo(); 3318 Hider.undo(); 3319 RemovedInsts.erase(Inst); 3320 } 3321 }; 3322 3323 public: 3324 /// Restoration point. 3325 /// The restoration point is a pointer to an action instead of an iterator 3326 /// because the iterator may be invalidated but not the pointer. 3327 using ConstRestorationPt = const TypePromotionAction *; 3328 3329 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3330 : RemovedInsts(RemovedInsts) {} 3331 3332 /// Advocate every changes made in that transaction. Return true if any change 3333 /// happen. 3334 bool commit(); 3335 3336 /// Undo all the changes made after the given point. 3337 void rollback(ConstRestorationPt Point); 3338 3339 /// Get the current restoration point. 3340 ConstRestorationPt getRestorationPoint() const; 3341 3342 /// \name API for IR modification with state keeping to support rollback. 3343 /// @{ 3344 /// Same as Instruction::setOperand. 3345 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3346 3347 /// Same as Instruction::eraseFromParent. 3348 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3349 3350 /// Same as Value::replaceAllUsesWith. 3351 void replaceAllUsesWith(Instruction *Inst, Value *New); 3352 3353 /// Same as Value::mutateType. 3354 void mutateType(Instruction *Inst, Type *NewTy); 3355 3356 /// Same as IRBuilder::createTrunc. 3357 Value *createTrunc(Instruction *Opnd, Type *Ty); 3358 3359 /// Same as IRBuilder::createSExt. 3360 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3361 3362 /// Same as IRBuilder::createZExt. 3363 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3364 3365 private: 3366 /// The ordered list of actions made so far. 3367 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3368 3369 using CommitPt = 3370 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3371 3372 SetOfInstrs &RemovedInsts; 3373 }; 3374 3375 } // end anonymous namespace 3376 3377 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3378 Value *NewVal) { 3379 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3380 Inst, Idx, NewVal)); 3381 } 3382 3383 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3384 Value *NewVal) { 3385 Actions.push_back( 3386 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3387 Inst, RemovedInsts, NewVal)); 3388 } 3389 3390 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3391 Value *New) { 3392 Actions.push_back( 3393 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3394 } 3395 3396 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3397 Actions.push_back( 3398 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3399 } 3400 3401 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { 3402 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3403 Value *Val = Ptr->getBuiltValue(); 3404 Actions.push_back(std::move(Ptr)); 3405 return Val; 3406 } 3407 3408 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, 3409 Type *Ty) { 3410 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3411 Value *Val = Ptr->getBuiltValue(); 3412 Actions.push_back(std::move(Ptr)); 3413 return Val; 3414 } 3415 3416 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, 3417 Type *Ty) { 3418 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3419 Value *Val = Ptr->getBuiltValue(); 3420 Actions.push_back(std::move(Ptr)); 3421 return Val; 3422 } 3423 3424 TypePromotionTransaction::ConstRestorationPt 3425 TypePromotionTransaction::getRestorationPoint() const { 3426 return !Actions.empty() ? Actions.back().get() : nullptr; 3427 } 3428 3429 bool TypePromotionTransaction::commit() { 3430 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3431 Action->commit(); 3432 bool Modified = !Actions.empty(); 3433 Actions.clear(); 3434 return Modified; 3435 } 3436 3437 void TypePromotionTransaction::rollback( 3438 TypePromotionTransaction::ConstRestorationPt Point) { 3439 while (!Actions.empty() && Point != Actions.back().get()) { 3440 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3441 Curr->undo(); 3442 } 3443 } 3444 3445 namespace { 3446 3447 /// A helper class for matching addressing modes. 3448 /// 3449 /// This encapsulates the logic for matching the target-legal addressing modes. 3450 class AddressingModeMatcher { 3451 SmallVectorImpl<Instruction *> &AddrModeInsts; 3452 const TargetLowering &TLI; 3453 const TargetRegisterInfo &TRI; 3454 const DataLayout &DL; 3455 const LoopInfo &LI; 3456 const std::function<const DominatorTree &()> getDTFn; 3457 3458 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3459 /// the memory instruction that we're computing this address for. 3460 Type *AccessTy; 3461 unsigned AddrSpace; 3462 Instruction *MemoryInst; 3463 3464 /// This is the addressing mode that we're building up. This is 3465 /// part of the return value of this addressing mode matching stuff. 3466 ExtAddrMode &AddrMode; 3467 3468 /// The instructions inserted by other CodeGenPrepare optimizations. 3469 const SetOfInstrs &InsertedInsts; 3470 3471 /// A map from the instructions to their type before promotion. 3472 InstrToOrigTy &PromotedInsts; 3473 3474 /// The ongoing transaction where every action should be registered. 3475 TypePromotionTransaction &TPT; 3476 3477 // A GEP which has too large offset to be folded into the addressing mode. 3478 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3479 3480 /// This is set to true when we should not do profitability checks. 3481 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3482 bool IgnoreProfitability; 3483 3484 /// True if we are optimizing for size. 3485 bool OptSize = false; 3486 3487 ProfileSummaryInfo *PSI; 3488 BlockFrequencyInfo *BFI; 3489 3490 AddressingModeMatcher( 3491 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3492 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3493 const std::function<const DominatorTree &()> getDTFn, Type *AT, 3494 unsigned AS, Instruction *MI, ExtAddrMode &AM, 3495 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3496 TypePromotionTransaction &TPT, 3497 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3498 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3499 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3500 DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn), 3501 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3502 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3503 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3504 IgnoreProfitability = false; 3505 } 3506 3507 public: 3508 /// Find the maximal addressing mode that a load/store of V can fold, 3509 /// give an access type of AccessTy. This returns a list of involved 3510 /// instructions in AddrModeInsts. 3511 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3512 /// optimizations. 3513 /// \p PromotedInsts maps the instructions to their type before promotion. 3514 /// \p The ongoing transaction where every action should be registered. 3515 static ExtAddrMode 3516 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3517 SmallVectorImpl<Instruction *> &AddrModeInsts, 3518 const TargetLowering &TLI, const LoopInfo &LI, 3519 const std::function<const DominatorTree &()> getDTFn, 3520 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3521 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3522 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3523 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3524 ExtAddrMode Result; 3525 3526 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, 3527 AccessTy, AS, MemoryInst, Result, 3528 InsertedInsts, PromotedInsts, TPT, 3529 LargeOffsetGEP, OptSize, PSI, BFI) 3530 .matchAddr(V, 0); 3531 (void)Success; 3532 assert(Success && "Couldn't select *anything*?"); 3533 return Result; 3534 } 3535 3536 private: 3537 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3538 bool matchAddr(Value *Addr, unsigned Depth); 3539 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3540 bool *MovedAway = nullptr); 3541 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3542 ExtAddrMode &AMBefore, 3543 ExtAddrMode &AMAfter); 3544 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3545 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3546 Value *PromotedOperand) const; 3547 }; 3548 3549 class PhiNodeSet; 3550 3551 /// An iterator for PhiNodeSet. 3552 class PhiNodeSetIterator { 3553 PhiNodeSet *const Set; 3554 size_t CurrentIndex = 0; 3555 3556 public: 3557 /// The constructor. Start should point to either a valid element, or be equal 3558 /// to the size of the underlying SmallVector of the PhiNodeSet. 3559 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); 3560 PHINode *operator*() const; 3561 PhiNodeSetIterator &operator++(); 3562 bool operator==(const PhiNodeSetIterator &RHS) const; 3563 bool operator!=(const PhiNodeSetIterator &RHS) const; 3564 }; 3565 3566 /// Keeps a set of PHINodes. 3567 /// 3568 /// This is a minimal set implementation for a specific use case: 3569 /// It is very fast when there are very few elements, but also provides good 3570 /// performance when there are many. It is similar to SmallPtrSet, but also 3571 /// provides iteration by insertion order, which is deterministic and stable 3572 /// across runs. It is also similar to SmallSetVector, but provides removing 3573 /// elements in O(1) time. This is achieved by not actually removing the element 3574 /// from the underlying vector, so comes at the cost of using more memory, but 3575 /// that is fine, since PhiNodeSets are used as short lived objects. 3576 class PhiNodeSet { 3577 friend class PhiNodeSetIterator; 3578 3579 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3580 using iterator = PhiNodeSetIterator; 3581 3582 /// Keeps the elements in the order of their insertion in the underlying 3583 /// vector. To achieve constant time removal, it never deletes any element. 3584 SmallVector<PHINode *, 32> NodeList; 3585 3586 /// Keeps the elements in the underlying set implementation. This (and not the 3587 /// NodeList defined above) is the source of truth on whether an element 3588 /// is actually in the collection. 3589 MapType NodeMap; 3590 3591 /// Points to the first valid (not deleted) element when the set is not empty 3592 /// and the value is not zero. Equals to the size of the underlying vector 3593 /// when the set is empty. When the value is 0, as in the beginning, the 3594 /// first element may or may not be valid. 3595 size_t FirstValidElement = 0; 3596 3597 public: 3598 /// Inserts a new element to the collection. 3599 /// \returns true if the element is actually added, i.e. was not in the 3600 /// collection before the operation. 3601 bool insert(PHINode *Ptr) { 3602 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3603 NodeList.push_back(Ptr); 3604 return true; 3605 } 3606 return false; 3607 } 3608 3609 /// Removes the element from the collection. 3610 /// \returns whether the element is actually removed, i.e. was in the 3611 /// collection before the operation. 3612 bool erase(PHINode *Ptr) { 3613 if (NodeMap.erase(Ptr)) { 3614 SkipRemovedElements(FirstValidElement); 3615 return true; 3616 } 3617 return false; 3618 } 3619 3620 /// Removes all elements and clears the collection. 3621 void clear() { 3622 NodeMap.clear(); 3623 NodeList.clear(); 3624 FirstValidElement = 0; 3625 } 3626 3627 /// \returns an iterator that will iterate the elements in the order of 3628 /// insertion. 3629 iterator begin() { 3630 if (FirstValidElement == 0) 3631 SkipRemovedElements(FirstValidElement); 3632 return PhiNodeSetIterator(this, FirstValidElement); 3633 } 3634 3635 /// \returns an iterator that points to the end of the collection. 3636 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3637 3638 /// Returns the number of elements in the collection. 3639 size_t size() const { return NodeMap.size(); } 3640 3641 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3642 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } 3643 3644 private: 3645 /// Updates the CurrentIndex so that it will point to a valid element. 3646 /// 3647 /// If the element of NodeList at CurrentIndex is valid, it does not 3648 /// change it. If there are no more valid elements, it updates CurrentIndex 3649 /// to point to the end of the NodeList. 3650 void SkipRemovedElements(size_t &CurrentIndex) { 3651 while (CurrentIndex < NodeList.size()) { 3652 auto it = NodeMap.find(NodeList[CurrentIndex]); 3653 // If the element has been deleted and added again later, NodeMap will 3654 // point to a different index, so CurrentIndex will still be invalid. 3655 if (it != NodeMap.end() && it->second == CurrentIndex) 3656 break; 3657 ++CurrentIndex; 3658 } 3659 } 3660 }; 3661 3662 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3663 : Set(Set), CurrentIndex(Start) {} 3664 3665 PHINode *PhiNodeSetIterator::operator*() const { 3666 assert(CurrentIndex < Set->NodeList.size() && 3667 "PhiNodeSet access out of range"); 3668 return Set->NodeList[CurrentIndex]; 3669 } 3670 3671 PhiNodeSetIterator &PhiNodeSetIterator::operator++() { 3672 assert(CurrentIndex < Set->NodeList.size() && 3673 "PhiNodeSet access out of range"); 3674 ++CurrentIndex; 3675 Set->SkipRemovedElements(CurrentIndex); 3676 return *this; 3677 } 3678 3679 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3680 return CurrentIndex == RHS.CurrentIndex; 3681 } 3682 3683 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3684 return !((*this) == RHS); 3685 } 3686 3687 /// Keep track of simplification of Phi nodes. 3688 /// Accept the set of all phi nodes and erase phi node from this set 3689 /// if it is simplified. 3690 class SimplificationTracker { 3691 DenseMap<Value *, Value *> Storage; 3692 const SimplifyQuery &SQ; 3693 // Tracks newly created Phi nodes. The elements are iterated by insertion 3694 // order. 3695 PhiNodeSet AllPhiNodes; 3696 // Tracks newly created Select nodes. 3697 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3698 3699 public: 3700 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} 3701 3702 Value *Get(Value *V) { 3703 do { 3704 auto SV = Storage.find(V); 3705 if (SV == Storage.end()) 3706 return V; 3707 V = SV->second; 3708 } while (true); 3709 } 3710 3711 Value *Simplify(Value *Val) { 3712 SmallVector<Value *, 32> WorkList; 3713 SmallPtrSet<Value *, 32> Visited; 3714 WorkList.push_back(Val); 3715 while (!WorkList.empty()) { 3716 auto *P = WorkList.pop_back_val(); 3717 if (!Visited.insert(P).second) 3718 continue; 3719 if (auto *PI = dyn_cast<Instruction>(P)) 3720 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 3721 for (auto *U : PI->users()) 3722 WorkList.push_back(cast<Value>(U)); 3723 Put(PI, V); 3724 PI->replaceAllUsesWith(V); 3725 if (auto *PHI = dyn_cast<PHINode>(PI)) 3726 AllPhiNodes.erase(PHI); 3727 if (auto *Select = dyn_cast<SelectInst>(PI)) 3728 AllSelectNodes.erase(Select); 3729 PI->eraseFromParent(); 3730 } 3731 } 3732 return Get(Val); 3733 } 3734 3735 void Put(Value *From, Value *To) { Storage.insert({From, To}); } 3736 3737 void ReplacePhi(PHINode *From, PHINode *To) { 3738 Value *OldReplacement = Get(From); 3739 while (OldReplacement != From) { 3740 From = To; 3741 To = dyn_cast<PHINode>(OldReplacement); 3742 OldReplacement = Get(From); 3743 } 3744 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3745 Put(From, To); 3746 From->replaceAllUsesWith(To); 3747 AllPhiNodes.erase(From); 3748 From->eraseFromParent(); 3749 } 3750 3751 PhiNodeSet &newPhiNodes() { return AllPhiNodes; } 3752 3753 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3754 3755 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3756 3757 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3758 3759 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3760 3761 void destroyNewNodes(Type *CommonType) { 3762 // For safe erasing, replace the uses with dummy value first. 3763 auto *Dummy = PoisonValue::get(CommonType); 3764 for (auto *I : AllPhiNodes) { 3765 I->replaceAllUsesWith(Dummy); 3766 I->eraseFromParent(); 3767 } 3768 AllPhiNodes.clear(); 3769 for (auto *I : AllSelectNodes) { 3770 I->replaceAllUsesWith(Dummy); 3771 I->eraseFromParent(); 3772 } 3773 AllSelectNodes.clear(); 3774 } 3775 }; 3776 3777 /// A helper class for combining addressing modes. 3778 class AddressingModeCombiner { 3779 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3780 typedef std::pair<PHINode *, PHINode *> PHIPair; 3781 3782 private: 3783 /// The addressing modes we've collected. 3784 SmallVector<ExtAddrMode, 16> AddrModes; 3785 3786 /// The field in which the AddrModes differ, when we have more than one. 3787 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3788 3789 /// Are the AddrModes that we have all just equal to their original values? 3790 bool AllAddrModesTrivial = true; 3791 3792 /// Common Type for all different fields in addressing modes. 3793 Type *CommonType = nullptr; 3794 3795 /// SimplifyQuery for simplifyInstruction utility. 3796 const SimplifyQuery &SQ; 3797 3798 /// Original Address. 3799 Value *Original; 3800 3801 /// Common value among addresses 3802 Value *CommonValue = nullptr; 3803 3804 public: 3805 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3806 : SQ(_SQ), Original(OriginalValue) {} 3807 3808 ~AddressingModeCombiner() { eraseCommonValueIfDead(); } 3809 3810 /// Get the combined AddrMode 3811 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } 3812 3813 /// Add a new AddrMode if it's compatible with the AddrModes we already 3814 /// have. 3815 /// \return True iff we succeeded in doing so. 3816 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3817 // Take note of if we have any non-trivial AddrModes, as we need to detect 3818 // when all AddrModes are trivial as then we would introduce a phi or select 3819 // which just duplicates what's already there. 3820 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3821 3822 // If this is the first addrmode then everything is fine. 3823 if (AddrModes.empty()) { 3824 AddrModes.emplace_back(NewAddrMode); 3825 return true; 3826 } 3827 3828 // Figure out how different this is from the other address modes, which we 3829 // can do just by comparing against the first one given that we only care 3830 // about the cumulative difference. 3831 ExtAddrMode::FieldName ThisDifferentField = 3832 AddrModes[0].compare(NewAddrMode); 3833 if (DifferentField == ExtAddrMode::NoField) 3834 DifferentField = ThisDifferentField; 3835 else if (DifferentField != ThisDifferentField) 3836 DifferentField = ExtAddrMode::MultipleFields; 3837 3838 // If NewAddrMode differs in more than one dimension we cannot handle it. 3839 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3840 3841 // If Scale Field is different then we reject. 3842 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3843 3844 // We also must reject the case when base offset is different and 3845 // scale reg is not null, we cannot handle this case due to merge of 3846 // different offsets will be used as ScaleReg. 3847 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3848 !NewAddrMode.ScaledReg); 3849 3850 // We also must reject the case when GV is different and BaseReg installed 3851 // due to we want to use base reg as a merge of GV values. 3852 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3853 !NewAddrMode.HasBaseReg); 3854 3855 // Even if NewAddMode is the same we still need to collect it due to 3856 // original value is different. And later we will need all original values 3857 // as anchors during finding the common Phi node. 3858 if (CanHandle) 3859 AddrModes.emplace_back(NewAddrMode); 3860 else 3861 AddrModes.clear(); 3862 3863 return CanHandle; 3864 } 3865 3866 /// Combine the addressing modes we've collected into a single 3867 /// addressing mode. 3868 /// \return True iff we successfully combined them or we only had one so 3869 /// didn't need to combine them anyway. 3870 bool combineAddrModes() { 3871 // If we have no AddrModes then they can't be combined. 3872 if (AddrModes.size() == 0) 3873 return false; 3874 3875 // A single AddrMode can trivially be combined. 3876 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3877 return true; 3878 3879 // If the AddrModes we collected are all just equal to the value they are 3880 // derived from then combining them wouldn't do anything useful. 3881 if (AllAddrModesTrivial) 3882 return false; 3883 3884 if (!addrModeCombiningAllowed()) 3885 return false; 3886 3887 // Build a map between <original value, basic block where we saw it> to 3888 // value of base register. 3889 // Bail out if there is no common type. 3890 FoldAddrToValueMapping Map; 3891 if (!initializeMap(Map)) 3892 return false; 3893 3894 CommonValue = findCommon(Map); 3895 if (CommonValue) 3896 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3897 return CommonValue != nullptr; 3898 } 3899 3900 private: 3901 /// `CommonValue` may be a placeholder inserted by us. 3902 /// If the placeholder is not used, we should remove this dead instruction. 3903 void eraseCommonValueIfDead() { 3904 if (CommonValue && CommonValue->getNumUses() == 0) 3905 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) 3906 CommonInst->eraseFromParent(); 3907 } 3908 3909 /// Initialize Map with anchor values. For address seen 3910 /// we set the value of different field saw in this address. 3911 /// At the same time we find a common type for different field we will 3912 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3913 /// Return false if there is no common type found. 3914 bool initializeMap(FoldAddrToValueMapping &Map) { 3915 // Keep track of keys where the value is null. We will need to replace it 3916 // with constant null when we know the common type. 3917 SmallVector<Value *, 2> NullValue; 3918 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3919 for (auto &AM : AddrModes) { 3920 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3921 if (DV) { 3922 auto *Type = DV->getType(); 3923 if (CommonType && CommonType != Type) 3924 return false; 3925 CommonType = Type; 3926 Map[AM.OriginalValue] = DV; 3927 } else { 3928 NullValue.push_back(AM.OriginalValue); 3929 } 3930 } 3931 assert(CommonType && "At least one non-null value must be!"); 3932 for (auto *V : NullValue) 3933 Map[V] = Constant::getNullValue(CommonType); 3934 return true; 3935 } 3936 3937 /// We have mapping between value A and other value B where B was a field in 3938 /// addressing mode represented by A. Also we have an original value C 3939 /// representing an address we start with. Traversing from C through phi and 3940 /// selects we ended up with A's in a map. This utility function tries to find 3941 /// a value V which is a field in addressing mode C and traversing through phi 3942 /// nodes and selects we will end up in corresponded values B in a map. 3943 /// The utility will create a new Phi/Selects if needed. 3944 // The simple example looks as follows: 3945 // BB1: 3946 // p1 = b1 + 40 3947 // br cond BB2, BB3 3948 // BB2: 3949 // p2 = b2 + 40 3950 // br BB3 3951 // BB3: 3952 // p = phi [p1, BB1], [p2, BB2] 3953 // v = load p 3954 // Map is 3955 // p1 -> b1 3956 // p2 -> b2 3957 // Request is 3958 // p -> ? 3959 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3960 Value *findCommon(FoldAddrToValueMapping &Map) { 3961 // Tracks the simplification of newly created phi nodes. The reason we use 3962 // this mapping is because we will add new created Phi nodes in AddrToBase. 3963 // Simplification of Phi nodes is recursive, so some Phi node may 3964 // be simplified after we added it to AddrToBase. In reality this 3965 // simplification is possible only if original phi/selects were not 3966 // simplified yet. 3967 // Using this mapping we can find the current value in AddrToBase. 3968 SimplificationTracker ST(SQ); 3969 3970 // First step, DFS to create PHI nodes for all intermediate blocks. 3971 // Also fill traverse order for the second step. 3972 SmallVector<Value *, 32> TraverseOrder; 3973 InsertPlaceholders(Map, TraverseOrder, ST); 3974 3975 // Second Step, fill new nodes by merged values and simplify if possible. 3976 FillPlaceholders(Map, TraverseOrder, ST); 3977 3978 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3979 ST.destroyNewNodes(CommonType); 3980 return nullptr; 3981 } 3982 3983 // Now we'd like to match New Phi nodes to existed ones. 3984 unsigned PhiNotMatchedCount = 0; 3985 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3986 ST.destroyNewNodes(CommonType); 3987 return nullptr; 3988 } 3989 3990 auto *Result = ST.Get(Map.find(Original)->second); 3991 if (Result) { 3992 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3993 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3994 } 3995 return Result; 3996 } 3997 3998 /// Try to match PHI node to Candidate. 3999 /// Matcher tracks the matched Phi nodes. 4000 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 4001 SmallSetVector<PHIPair, 8> &Matcher, 4002 PhiNodeSet &PhiNodesToMatch) { 4003 SmallVector<PHIPair, 8> WorkList; 4004 Matcher.insert({PHI, Candidate}); 4005 SmallSet<PHINode *, 8> MatchedPHIs; 4006 MatchedPHIs.insert(PHI); 4007 WorkList.push_back({PHI, Candidate}); 4008 SmallSet<PHIPair, 8> Visited; 4009 while (!WorkList.empty()) { 4010 auto Item = WorkList.pop_back_val(); 4011 if (!Visited.insert(Item).second) 4012 continue; 4013 // We iterate over all incoming values to Phi to compare them. 4014 // If values are different and both of them Phi and the first one is a 4015 // Phi we added (subject to match) and both of them is in the same basic 4016 // block then we can match our pair if values match. So we state that 4017 // these values match and add it to work list to verify that. 4018 for (auto *B : Item.first->blocks()) { 4019 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 4020 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 4021 if (FirstValue == SecondValue) 4022 continue; 4023 4024 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 4025 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 4026 4027 // One of them is not Phi or 4028 // The first one is not Phi node from the set we'd like to match or 4029 // Phi nodes from different basic blocks then 4030 // we will not be able to match. 4031 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 4032 FirstPhi->getParent() != SecondPhi->getParent()) 4033 return false; 4034 4035 // If we already matched them then continue. 4036 if (Matcher.count({FirstPhi, SecondPhi})) 4037 continue; 4038 // So the values are different and does not match. So we need them to 4039 // match. (But we register no more than one match per PHI node, so that 4040 // we won't later try to replace them twice.) 4041 if (MatchedPHIs.insert(FirstPhi).second) 4042 Matcher.insert({FirstPhi, SecondPhi}); 4043 // But me must check it. 4044 WorkList.push_back({FirstPhi, SecondPhi}); 4045 } 4046 } 4047 return true; 4048 } 4049 4050 /// For the given set of PHI nodes (in the SimplificationTracker) try 4051 /// to find their equivalents. 4052 /// Returns false if this matching fails and creation of new Phi is disabled. 4053 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 4054 unsigned &PhiNotMatchedCount) { 4055 // Matched and PhiNodesToMatch iterate their elements in a deterministic 4056 // order, so the replacements (ReplacePhi) are also done in a deterministic 4057 // order. 4058 SmallSetVector<PHIPair, 8> Matched; 4059 SmallPtrSet<PHINode *, 8> WillNotMatch; 4060 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 4061 while (PhiNodesToMatch.size()) { 4062 PHINode *PHI = *PhiNodesToMatch.begin(); 4063 4064 // Add us, if no Phi nodes in the basic block we do not match. 4065 WillNotMatch.clear(); 4066 WillNotMatch.insert(PHI); 4067 4068 // Traverse all Phis until we found equivalent or fail to do that. 4069 bool IsMatched = false; 4070 for (auto &P : PHI->getParent()->phis()) { 4071 // Skip new Phi nodes. 4072 if (PhiNodesToMatch.count(&P)) 4073 continue; 4074 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 4075 break; 4076 // If it does not match, collect all Phi nodes from matcher. 4077 // if we end up with no match, them all these Phi nodes will not match 4078 // later. 4079 for (auto M : Matched) 4080 WillNotMatch.insert(M.first); 4081 Matched.clear(); 4082 } 4083 if (IsMatched) { 4084 // Replace all matched values and erase them. 4085 for (auto MV : Matched) 4086 ST.ReplacePhi(MV.first, MV.second); 4087 Matched.clear(); 4088 continue; 4089 } 4090 // If we are not allowed to create new nodes then bail out. 4091 if (!AllowNewPhiNodes) 4092 return false; 4093 // Just remove all seen values in matcher. They will not match anything. 4094 PhiNotMatchedCount += WillNotMatch.size(); 4095 for (auto *P : WillNotMatch) 4096 PhiNodesToMatch.erase(P); 4097 } 4098 return true; 4099 } 4100 /// Fill the placeholders with values from predecessors and simplify them. 4101 void FillPlaceholders(FoldAddrToValueMapping &Map, 4102 SmallVectorImpl<Value *> &TraverseOrder, 4103 SimplificationTracker &ST) { 4104 while (!TraverseOrder.empty()) { 4105 Value *Current = TraverseOrder.pop_back_val(); 4106 assert(Map.contains(Current) && "No node to fill!!!"); 4107 Value *V = Map[Current]; 4108 4109 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 4110 // CurrentValue also must be Select. 4111 auto *CurrentSelect = cast<SelectInst>(Current); 4112 auto *TrueValue = CurrentSelect->getTrueValue(); 4113 assert(Map.contains(TrueValue) && "No True Value!"); 4114 Select->setTrueValue(ST.Get(Map[TrueValue])); 4115 auto *FalseValue = CurrentSelect->getFalseValue(); 4116 assert(Map.contains(FalseValue) && "No False Value!"); 4117 Select->setFalseValue(ST.Get(Map[FalseValue])); 4118 } else { 4119 // Must be a Phi node then. 4120 auto *PHI = cast<PHINode>(V); 4121 // Fill the Phi node with values from predecessors. 4122 for (auto *B : predecessors(PHI->getParent())) { 4123 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 4124 assert(Map.contains(PV) && "No predecessor Value!"); 4125 PHI->addIncoming(ST.Get(Map[PV]), B); 4126 } 4127 } 4128 Map[Current] = ST.Simplify(V); 4129 } 4130 } 4131 4132 /// Starting from original value recursively iterates over def-use chain up to 4133 /// known ending values represented in a map. For each traversed phi/select 4134 /// inserts a placeholder Phi or Select. 4135 /// Reports all new created Phi/Select nodes by adding them to set. 4136 /// Also reports and order in what values have been traversed. 4137 void InsertPlaceholders(FoldAddrToValueMapping &Map, 4138 SmallVectorImpl<Value *> &TraverseOrder, 4139 SimplificationTracker &ST) { 4140 SmallVector<Value *, 32> Worklist; 4141 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 4142 "Address must be a Phi or Select node"); 4143 auto *Dummy = PoisonValue::get(CommonType); 4144 Worklist.push_back(Original); 4145 while (!Worklist.empty()) { 4146 Value *Current = Worklist.pop_back_val(); 4147 // if it is already visited or it is an ending value then skip it. 4148 if (Map.contains(Current)) 4149 continue; 4150 TraverseOrder.push_back(Current); 4151 4152 // CurrentValue must be a Phi node or select. All others must be covered 4153 // by anchors. 4154 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 4155 // Is it OK to get metadata from OrigSelect?! 4156 // Create a Select placeholder with dummy value. 4157 SelectInst *Select = 4158 SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy, 4159 CurrentSelect->getName(), 4160 CurrentSelect->getIterator(), CurrentSelect); 4161 Map[Current] = Select; 4162 ST.insertNewSelect(Select); 4163 // We are interested in True and False values. 4164 Worklist.push_back(CurrentSelect->getTrueValue()); 4165 Worklist.push_back(CurrentSelect->getFalseValue()); 4166 } else { 4167 // It must be a Phi node then. 4168 PHINode *CurrentPhi = cast<PHINode>(Current); 4169 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 4170 PHINode *PHI = 4171 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator()); 4172 Map[Current] = PHI; 4173 ST.insertNewPhi(PHI); 4174 append_range(Worklist, CurrentPhi->incoming_values()); 4175 } 4176 } 4177 } 4178 4179 bool addrModeCombiningAllowed() { 4180 if (DisableComplexAddrModes) 4181 return false; 4182 switch (DifferentField) { 4183 default: 4184 return false; 4185 case ExtAddrMode::BaseRegField: 4186 return AddrSinkCombineBaseReg; 4187 case ExtAddrMode::BaseGVField: 4188 return AddrSinkCombineBaseGV; 4189 case ExtAddrMode::BaseOffsField: 4190 return AddrSinkCombineBaseOffs; 4191 case ExtAddrMode::ScaledRegField: 4192 return AddrSinkCombineScaledReg; 4193 } 4194 } 4195 }; 4196 } // end anonymous namespace 4197 4198 /// Try adding ScaleReg*Scale to the current addressing mode. 4199 /// Return true and update AddrMode if this addr mode is legal for the target, 4200 /// false if not. 4201 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 4202 unsigned Depth) { 4203 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 4204 // mode. Just process that directly. 4205 if (Scale == 1) 4206 return matchAddr(ScaleReg, Depth); 4207 4208 // If the scale is 0, it takes nothing to add this. 4209 if (Scale == 0) 4210 return true; 4211 4212 // If we already have a scale of this value, we can add to it, otherwise, we 4213 // need an available scale field. 4214 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 4215 return false; 4216 4217 ExtAddrMode TestAddrMode = AddrMode; 4218 4219 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 4220 // [A+B + A*7] -> [B+A*8]. 4221 TestAddrMode.Scale += Scale; 4222 TestAddrMode.ScaledReg = ScaleReg; 4223 4224 // If the new address isn't legal, bail out. 4225 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 4226 return false; 4227 4228 // It was legal, so commit it. 4229 AddrMode = TestAddrMode; 4230 4231 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 4232 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 4233 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 4234 // go any further: we can reuse it and cannot eliminate it. 4235 ConstantInt *CI = nullptr; 4236 Value *AddLHS = nullptr; 4237 if (isa<Instruction>(ScaleReg) && // not a constant expr. 4238 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 4239 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 4240 TestAddrMode.InBounds = false; 4241 TestAddrMode.ScaledReg = AddLHS; 4242 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 4243 4244 // If this addressing mode is legal, commit it and remember that we folded 4245 // this instruction. 4246 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 4247 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 4248 AddrMode = TestAddrMode; 4249 return true; 4250 } 4251 // Restore status quo. 4252 TestAddrMode = AddrMode; 4253 } 4254 4255 // If this is an add recurrence with a constant step, return the increment 4256 // instruction and the canonicalized step. 4257 auto GetConstantStep = 4258 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { 4259 auto *PN = dyn_cast<PHINode>(V); 4260 if (!PN) 4261 return std::nullopt; 4262 auto IVInc = getIVIncrement(PN, &LI); 4263 if (!IVInc) 4264 return std::nullopt; 4265 // TODO: The result of the intrinsics above is two-complement. However when 4266 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 4267 // If it has nuw or nsw flags, we need to make sure that these flags are 4268 // inferrable at the point of memory instruction. Otherwise we are replacing 4269 // well-defined two-complement computation with poison. Currently, to avoid 4270 // potentially complex analysis needed to prove this, we reject such cases. 4271 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 4272 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 4273 return std::nullopt; 4274 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 4275 return std::make_pair(IVInc->first, ConstantStep->getValue()); 4276 return std::nullopt; 4277 }; 4278 4279 // Try to account for the following special case: 4280 // 1. ScaleReg is an inductive variable; 4281 // 2. We use it with non-zero offset; 4282 // 3. IV's increment is available at the point of memory instruction. 4283 // 4284 // In this case, we may reuse the IV increment instead of the IV Phi to 4285 // achieve the following advantages: 4286 // 1. If IV step matches the offset, we will have no need in the offset; 4287 // 2. Even if they don't match, we will reduce the overlap of living IV 4288 // and IV increment, that will potentially lead to better register 4289 // assignment. 4290 if (AddrMode.BaseOffs) { 4291 if (auto IVStep = GetConstantStep(ScaleReg)) { 4292 Instruction *IVInc = IVStep->first; 4293 // The following assert is important to ensure a lack of infinite loops. 4294 // This transforms is (intentionally) the inverse of the one just above. 4295 // If they don't agree on the definition of an increment, we'd alternate 4296 // back and forth indefinitely. 4297 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 4298 APInt Step = IVStep->second; 4299 APInt Offset = Step * AddrMode.Scale; 4300 if (Offset.isSignedIntN(64)) { 4301 TestAddrMode.InBounds = false; 4302 TestAddrMode.ScaledReg = IVInc; 4303 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 4304 // If this addressing mode is legal, commit it.. 4305 // (Note that we defer the (expensive) domtree base legality check 4306 // to the very last possible point.) 4307 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 4308 getDTFn().dominates(IVInc, MemoryInst)) { 4309 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 4310 AddrMode = TestAddrMode; 4311 return true; 4312 } 4313 // Restore status quo. 4314 TestAddrMode = AddrMode; 4315 } 4316 } 4317 } 4318 4319 // Otherwise, just return what we have. 4320 return true; 4321 } 4322 4323 /// This is a little filter, which returns true if an addressing computation 4324 /// involving I might be folded into a load/store accessing it. 4325 /// This doesn't need to be perfect, but needs to accept at least 4326 /// the set of instructions that MatchOperationAddr can. 4327 static bool MightBeFoldableInst(Instruction *I) { 4328 switch (I->getOpcode()) { 4329 case Instruction::BitCast: 4330 case Instruction::AddrSpaceCast: 4331 // Don't touch identity bitcasts. 4332 if (I->getType() == I->getOperand(0)->getType()) 4333 return false; 4334 return I->getType()->isIntOrPtrTy(); 4335 case Instruction::PtrToInt: 4336 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4337 return true; 4338 case Instruction::IntToPtr: 4339 // We know the input is intptr_t, so this is foldable. 4340 return true; 4341 case Instruction::Add: 4342 return true; 4343 case Instruction::Mul: 4344 case Instruction::Shl: 4345 // Can only handle X*C and X << C. 4346 return isa<ConstantInt>(I->getOperand(1)); 4347 case Instruction::GetElementPtr: 4348 return true; 4349 default: 4350 return false; 4351 } 4352 } 4353 4354 /// Check whether or not \p Val is a legal instruction for \p TLI. 4355 /// \note \p Val is assumed to be the product of some type promotion. 4356 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4357 /// to be legal, as the non-promoted value would have had the same state. 4358 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4359 const DataLayout &DL, Value *Val) { 4360 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4361 if (!PromotedInst) 4362 return false; 4363 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4364 // If the ISDOpcode is undefined, it was undefined before the promotion. 4365 if (!ISDOpcode) 4366 return true; 4367 // Otherwise, check if the promoted instruction is legal or not. 4368 return TLI.isOperationLegalOrCustom( 4369 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4370 } 4371 4372 namespace { 4373 4374 /// Hepler class to perform type promotion. 4375 class TypePromotionHelper { 4376 /// Utility function to add a promoted instruction \p ExtOpnd to 4377 /// \p PromotedInsts and record the type of extension we have seen. 4378 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4379 Instruction *ExtOpnd, bool IsSExt) { 4380 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4381 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4382 if (It != PromotedInsts.end()) { 4383 // If the new extension is same as original, the information in 4384 // PromotedInsts[ExtOpnd] is still correct. 4385 if (It->second.getInt() == ExtTy) 4386 return; 4387 4388 // Now the new extension is different from old extension, we make 4389 // the type information invalid by setting extension type to 4390 // BothExtension. 4391 ExtTy = BothExtension; 4392 } 4393 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4394 } 4395 4396 /// Utility function to query the original type of instruction \p Opnd 4397 /// with a matched extension type. If the extension doesn't match, we 4398 /// cannot use the information we had on the original type. 4399 /// BothExtension doesn't match any extension type. 4400 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4401 Instruction *Opnd, bool IsSExt) { 4402 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4403 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4404 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4405 return It->second.getPointer(); 4406 return nullptr; 4407 } 4408 4409 /// Utility function to check whether or not a sign or zero extension 4410 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4411 /// either using the operands of \p Inst or promoting \p Inst. 4412 /// The type of the extension is defined by \p IsSExt. 4413 /// In other words, check if: 4414 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4415 /// #1 Promotion applies: 4416 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4417 /// #2 Operand reuses: 4418 /// ext opnd1 to ConsideredExtType. 4419 /// \p PromotedInsts maps the instructions to their type before promotion. 4420 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4421 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4422 4423 /// Utility function to determine if \p OpIdx should be promoted when 4424 /// promoting \p Inst. 4425 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4426 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4427 } 4428 4429 /// Utility function to promote the operand of \p Ext when this 4430 /// operand is a promotable trunc or sext or zext. 4431 /// \p PromotedInsts maps the instructions to their type before promotion. 4432 /// \p CreatedInstsCost[out] contains the cost of all instructions 4433 /// created to promote the operand of Ext. 4434 /// Newly added extensions are inserted in \p Exts. 4435 /// Newly added truncates are inserted in \p Truncs. 4436 /// Should never be called directly. 4437 /// \return The promoted value which is used instead of Ext. 4438 static Value *promoteOperandForTruncAndAnyExt( 4439 Instruction *Ext, TypePromotionTransaction &TPT, 4440 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4441 SmallVectorImpl<Instruction *> *Exts, 4442 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4443 4444 /// Utility function to promote the operand of \p Ext when this 4445 /// operand is promotable and is not a supported trunc or sext. 4446 /// \p PromotedInsts maps the instructions to their type before promotion. 4447 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4448 /// created to promote the operand of Ext. 4449 /// Newly added extensions are inserted in \p Exts. 4450 /// Newly added truncates are inserted in \p Truncs. 4451 /// Should never be called directly. 4452 /// \return The promoted value which is used instead of Ext. 4453 static Value *promoteOperandForOther(Instruction *Ext, 4454 TypePromotionTransaction &TPT, 4455 InstrToOrigTy &PromotedInsts, 4456 unsigned &CreatedInstsCost, 4457 SmallVectorImpl<Instruction *> *Exts, 4458 SmallVectorImpl<Instruction *> *Truncs, 4459 const TargetLowering &TLI, bool IsSExt); 4460 4461 /// \see promoteOperandForOther. 4462 static Value *signExtendOperandForOther( 4463 Instruction *Ext, TypePromotionTransaction &TPT, 4464 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4465 SmallVectorImpl<Instruction *> *Exts, 4466 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4467 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4468 Exts, Truncs, TLI, true); 4469 } 4470 4471 /// \see promoteOperandForOther. 4472 static Value *zeroExtendOperandForOther( 4473 Instruction *Ext, TypePromotionTransaction &TPT, 4474 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4475 SmallVectorImpl<Instruction *> *Exts, 4476 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4477 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4478 Exts, Truncs, TLI, false); 4479 } 4480 4481 public: 4482 /// Type for the utility function that promotes the operand of Ext. 4483 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4484 InstrToOrigTy &PromotedInsts, 4485 unsigned &CreatedInstsCost, 4486 SmallVectorImpl<Instruction *> *Exts, 4487 SmallVectorImpl<Instruction *> *Truncs, 4488 const TargetLowering &TLI); 4489 4490 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4491 /// action to promote the operand of \p Ext instead of using Ext. 4492 /// \return NULL if no promotable action is possible with the current 4493 /// sign extension. 4494 /// \p InsertedInsts keeps track of all the instructions inserted by the 4495 /// other CodeGenPrepare optimizations. This information is important 4496 /// because we do not want to promote these instructions as CodeGenPrepare 4497 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4498 /// \p PromotedInsts maps the instructions to their type before promotion. 4499 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4500 const TargetLowering &TLI, 4501 const InstrToOrigTy &PromotedInsts); 4502 }; 4503 4504 } // end anonymous namespace 4505 4506 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4507 Type *ConsideredExtType, 4508 const InstrToOrigTy &PromotedInsts, 4509 bool IsSExt) { 4510 // The promotion helper does not know how to deal with vector types yet. 4511 // To be able to fix that, we would need to fix the places where we 4512 // statically extend, e.g., constants and such. 4513 if (Inst->getType()->isVectorTy()) 4514 return false; 4515 4516 // We can always get through zext. 4517 if (isa<ZExtInst>(Inst)) 4518 return true; 4519 4520 // sext(sext) is ok too. 4521 if (IsSExt && isa<SExtInst>(Inst)) 4522 return true; 4523 4524 // We can get through binary operator, if it is legal. In other words, the 4525 // binary operator must have a nuw or nsw flag. 4526 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4527 if (isa<OverflowingBinaryOperator>(BinOp) && 4528 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4529 (IsSExt && BinOp->hasNoSignedWrap()))) 4530 return true; 4531 4532 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4533 if ((Inst->getOpcode() == Instruction::And || 4534 Inst->getOpcode() == Instruction::Or)) 4535 return true; 4536 4537 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4538 if (Inst->getOpcode() == Instruction::Xor) { 4539 // Make sure it is not a NOT. 4540 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4541 if (!Cst->getValue().isAllOnes()) 4542 return true; 4543 } 4544 4545 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4546 // It may change a poisoned value into a regular value, like 4547 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4548 // poisoned value regular value 4549 // It should be OK since undef covers valid value. 4550 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4551 return true; 4552 4553 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4554 // It may change a poisoned value into a regular value, like 4555 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4556 // poisoned value regular value 4557 // It should be OK since undef covers valid value. 4558 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4559 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4560 if (ExtInst->hasOneUse()) { 4561 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4562 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4563 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4564 if (Cst && 4565 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4566 return true; 4567 } 4568 } 4569 } 4570 4571 // Check if we can do the following simplification. 4572 // ext(trunc(opnd)) --> ext(opnd) 4573 if (!isa<TruncInst>(Inst)) 4574 return false; 4575 4576 Value *OpndVal = Inst->getOperand(0); 4577 // Check if we can use this operand in the extension. 4578 // If the type is larger than the result type of the extension, we cannot. 4579 if (!OpndVal->getType()->isIntegerTy() || 4580 OpndVal->getType()->getIntegerBitWidth() > 4581 ConsideredExtType->getIntegerBitWidth()) 4582 return false; 4583 4584 // If the operand of the truncate is not an instruction, we will not have 4585 // any information on the dropped bits. 4586 // (Actually we could for constant but it is not worth the extra logic). 4587 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4588 if (!Opnd) 4589 return false; 4590 4591 // Check if the source of the type is narrow enough. 4592 // I.e., check that trunc just drops extended bits of the same kind of 4593 // the extension. 4594 // #1 get the type of the operand and check the kind of the extended bits. 4595 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4596 if (OpndType) 4597 ; 4598 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4599 OpndType = Opnd->getOperand(0)->getType(); 4600 else 4601 return false; 4602 4603 // #2 check that the truncate just drops extended bits. 4604 return Inst->getType()->getIntegerBitWidth() >= 4605 OpndType->getIntegerBitWidth(); 4606 } 4607 4608 TypePromotionHelper::Action TypePromotionHelper::getAction( 4609 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4610 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4611 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4612 "Unexpected instruction type"); 4613 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4614 Type *ExtTy = Ext->getType(); 4615 bool IsSExt = isa<SExtInst>(Ext); 4616 // If the operand of the extension is not an instruction, we cannot 4617 // get through. 4618 // If it, check we can get through. 4619 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4620 return nullptr; 4621 4622 // Do not promote if the operand has been added by codegenprepare. 4623 // Otherwise, it means we are undoing an optimization that is likely to be 4624 // redone, thus causing potential infinite loop. 4625 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4626 return nullptr; 4627 4628 // SExt or Trunc instructions. 4629 // Return the related handler. 4630 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4631 isa<ZExtInst>(ExtOpnd)) 4632 return promoteOperandForTruncAndAnyExt; 4633 4634 // Regular instruction. 4635 // Abort early if we will have to insert non-free instructions. 4636 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4637 return nullptr; 4638 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4639 } 4640 4641 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4642 Instruction *SExt, TypePromotionTransaction &TPT, 4643 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4644 SmallVectorImpl<Instruction *> *Exts, 4645 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4646 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4647 // get through it and this method should not be called. 4648 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4649 Value *ExtVal = SExt; 4650 bool HasMergedNonFreeExt = false; 4651 if (isa<ZExtInst>(SExtOpnd)) { 4652 // Replace s|zext(zext(opnd)) 4653 // => zext(opnd). 4654 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4655 Value *ZExt = 4656 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4657 TPT.replaceAllUsesWith(SExt, ZExt); 4658 TPT.eraseInstruction(SExt); 4659 ExtVal = ZExt; 4660 } else { 4661 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4662 // => z|sext(opnd). 4663 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4664 } 4665 CreatedInstsCost = 0; 4666 4667 // Remove dead code. 4668 if (SExtOpnd->use_empty()) 4669 TPT.eraseInstruction(SExtOpnd); 4670 4671 // Check if the extension is still needed. 4672 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4673 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4674 if (ExtInst) { 4675 if (Exts) 4676 Exts->push_back(ExtInst); 4677 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4678 } 4679 return ExtVal; 4680 } 4681 4682 // At this point we have: ext ty opnd to ty. 4683 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4684 Value *NextVal = ExtInst->getOperand(0); 4685 TPT.eraseInstruction(ExtInst, NextVal); 4686 return NextVal; 4687 } 4688 4689 Value *TypePromotionHelper::promoteOperandForOther( 4690 Instruction *Ext, TypePromotionTransaction &TPT, 4691 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4692 SmallVectorImpl<Instruction *> *Exts, 4693 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4694 bool IsSExt) { 4695 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4696 // get through it and this method should not be called. 4697 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4698 CreatedInstsCost = 0; 4699 if (!ExtOpnd->hasOneUse()) { 4700 // ExtOpnd will be promoted. 4701 // All its uses, but Ext, will need to use a truncated value of the 4702 // promoted version. 4703 // Create the truncate now. 4704 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4705 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4706 // Insert it just after the definition. 4707 ITrunc->moveAfter(ExtOpnd); 4708 if (Truncs) 4709 Truncs->push_back(ITrunc); 4710 } 4711 4712 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4713 // Restore the operand of Ext (which has been replaced by the previous call 4714 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4715 TPT.setOperand(Ext, 0, ExtOpnd); 4716 } 4717 4718 // Get through the Instruction: 4719 // 1. Update its type. 4720 // 2. Replace the uses of Ext by Inst. 4721 // 3. Extend each operand that needs to be extended. 4722 4723 // Remember the original type of the instruction before promotion. 4724 // This is useful to know that the high bits are sign extended bits. 4725 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4726 // Step #1. 4727 TPT.mutateType(ExtOpnd, Ext->getType()); 4728 // Step #2. 4729 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4730 // Step #3. 4731 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4732 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4733 ++OpIdx) { 4734 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4735 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4736 !shouldExtOperand(ExtOpnd, OpIdx)) { 4737 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4738 continue; 4739 } 4740 // Check if we can statically extend the operand. 4741 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4742 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4743 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4744 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4745 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4746 : Cst->getValue().zext(BitWidth); 4747 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4748 continue; 4749 } 4750 // UndefValue are typed, so we have to statically sign extend them. 4751 if (isa<UndefValue>(Opnd)) { 4752 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4753 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4754 continue; 4755 } 4756 4757 // Otherwise we have to explicitly sign extend the operand. 4758 Value *ValForExtOpnd = IsSExt 4759 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType()) 4760 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType()); 4761 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4762 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd); 4763 if (!InstForExtOpnd) 4764 continue; 4765 4766 if (Exts) 4767 Exts->push_back(InstForExtOpnd); 4768 4769 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd); 4770 } 4771 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4772 TPT.eraseInstruction(Ext); 4773 return ExtOpnd; 4774 } 4775 4776 /// Check whether or not promoting an instruction to a wider type is profitable. 4777 /// \p NewCost gives the cost of extension instructions created by the 4778 /// promotion. 4779 /// \p OldCost gives the cost of extension instructions before the promotion 4780 /// plus the number of instructions that have been 4781 /// matched in the addressing mode the promotion. 4782 /// \p PromotedOperand is the value that has been promoted. 4783 /// \return True if the promotion is profitable, false otherwise. 4784 bool AddressingModeMatcher::isPromotionProfitable( 4785 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4786 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4787 << '\n'); 4788 // The cost of the new extensions is greater than the cost of the 4789 // old extension plus what we folded. 4790 // This is not profitable. 4791 if (NewCost > OldCost) 4792 return false; 4793 if (NewCost < OldCost) 4794 return true; 4795 // The promotion is neutral but it may help folding the sign extension in 4796 // loads for instance. 4797 // Check that we did not create an illegal instruction. 4798 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4799 } 4800 4801 /// Given an instruction or constant expr, see if we can fold the operation 4802 /// into the addressing mode. If so, update the addressing mode and return 4803 /// true, otherwise return false without modifying AddrMode. 4804 /// If \p MovedAway is not NULL, it contains the information of whether or 4805 /// not AddrInst has to be folded into the addressing mode on success. 4806 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4807 /// because it has been moved away. 4808 /// Thus AddrInst must not be added in the matched instructions. 4809 /// This state can happen when AddrInst is a sext, since it may be moved away. 4810 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4811 /// not be referenced anymore. 4812 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4813 unsigned Depth, 4814 bool *MovedAway) { 4815 // Avoid exponential behavior on extremely deep expression trees. 4816 if (Depth >= 5) 4817 return false; 4818 4819 // By default, all matched instructions stay in place. 4820 if (MovedAway) 4821 *MovedAway = false; 4822 4823 switch (Opcode) { 4824 case Instruction::PtrToInt: 4825 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4826 return matchAddr(AddrInst->getOperand(0), Depth); 4827 case Instruction::IntToPtr: { 4828 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4829 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4830 // This inttoptr is a no-op if the integer type is pointer sized. 4831 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4832 return matchAddr(AddrInst->getOperand(0), Depth); 4833 return false; 4834 } 4835 case Instruction::BitCast: 4836 // BitCast is always a noop, and we can handle it as long as it is 4837 // int->int or pointer->pointer (we don't want int<->fp or something). 4838 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4839 // Don't touch identity bitcasts. These were probably put here by LSR, 4840 // and we don't want to mess around with them. Assume it knows what it 4841 // is doing. 4842 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4843 return matchAddr(AddrInst->getOperand(0), Depth); 4844 return false; 4845 case Instruction::AddrSpaceCast: { 4846 unsigned SrcAS = 4847 AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4848 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4849 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4850 return matchAddr(AddrInst->getOperand(0), Depth); 4851 return false; 4852 } 4853 case Instruction::Add: { 4854 // Check to see if we can merge in one operand, then the other. If so, we 4855 // win. 4856 ExtAddrMode BackupAddrMode = AddrMode; 4857 unsigned OldSize = AddrModeInsts.size(); 4858 // Start a transaction at this point. 4859 // The LHS may match but not the RHS. 4860 // Therefore, we need a higher level restoration point to undo partially 4861 // matched operation. 4862 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4863 TPT.getRestorationPoint(); 4864 4865 // Try to match an integer constant second to increase its chance of ending 4866 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. 4867 int First = 0, Second = 1; 4868 if (isa<ConstantInt>(AddrInst->getOperand(First)) 4869 && !isa<ConstantInt>(AddrInst->getOperand(Second))) 4870 std::swap(First, Second); 4871 AddrMode.InBounds = false; 4872 if (matchAddr(AddrInst->getOperand(First), Depth + 1) && 4873 matchAddr(AddrInst->getOperand(Second), Depth + 1)) 4874 return true; 4875 4876 // Restore the old addr mode info. 4877 AddrMode = BackupAddrMode; 4878 AddrModeInsts.resize(OldSize); 4879 TPT.rollback(LastKnownGood); 4880 4881 // Otherwise this was over-aggressive. Try merging operands in the opposite 4882 // order. 4883 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && 4884 matchAddr(AddrInst->getOperand(First), Depth + 1)) 4885 return true; 4886 4887 // Otherwise we definitely can't merge the ADD in. 4888 AddrMode = BackupAddrMode; 4889 AddrModeInsts.resize(OldSize); 4890 TPT.rollback(LastKnownGood); 4891 break; 4892 } 4893 // case Instruction::Or: 4894 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4895 // break; 4896 case Instruction::Mul: 4897 case Instruction::Shl: { 4898 // Can only handle X*C and X << C. 4899 AddrMode.InBounds = false; 4900 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4901 if (!RHS || RHS->getBitWidth() > 64) 4902 return false; 4903 int64_t Scale = Opcode == Instruction::Shl 4904 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 4905 : RHS->getSExtValue(); 4906 4907 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4908 } 4909 case Instruction::GetElementPtr: { 4910 // Scan the GEP. We check it if it contains constant offsets and at most 4911 // one variable offset. 4912 int VariableOperand = -1; 4913 unsigned VariableScale = 0; 4914 4915 int64_t ConstantOffset = 0; 4916 gep_type_iterator GTI = gep_type_begin(AddrInst); 4917 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4918 if (StructType *STy = GTI.getStructTypeOrNull()) { 4919 const StructLayout *SL = DL.getStructLayout(STy); 4920 unsigned Idx = 4921 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4922 ConstantOffset += SL->getElementOffset(Idx); 4923 } else { 4924 TypeSize TS = GTI.getSequentialElementStride(DL); 4925 if (TS.isNonZero()) { 4926 // The optimisations below currently only work for fixed offsets. 4927 if (TS.isScalable()) 4928 return false; 4929 int64_t TypeSize = TS.getFixedValue(); 4930 if (ConstantInt *CI = 4931 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4932 const APInt &CVal = CI->getValue(); 4933 if (CVal.getSignificantBits() <= 64) { 4934 ConstantOffset += CVal.getSExtValue() * TypeSize; 4935 continue; 4936 } 4937 } 4938 // We only allow one variable index at the moment. 4939 if (VariableOperand != -1) 4940 return false; 4941 4942 // Remember the variable index. 4943 VariableOperand = i; 4944 VariableScale = TypeSize; 4945 } 4946 } 4947 } 4948 4949 // A common case is for the GEP to only do a constant offset. In this case, 4950 // just add it to the disp field and check validity. 4951 if (VariableOperand == -1) { 4952 AddrMode.BaseOffs += ConstantOffset; 4953 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { 4954 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4955 AddrMode.InBounds = false; 4956 return true; 4957 } 4958 AddrMode.BaseOffs -= ConstantOffset; 4959 4960 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4961 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4962 ConstantOffset > 0) { 4963 // Record GEPs with non-zero offsets as candidates for splitting in 4964 // the event that the offset cannot fit into the r+i addressing mode. 4965 // Simple and common case that only one GEP is used in calculating the 4966 // address for the memory access. 4967 Value *Base = AddrInst->getOperand(0); 4968 auto *BaseI = dyn_cast<Instruction>(Base); 4969 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4970 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4971 (BaseI && !isa<CastInst>(BaseI) && 4972 !isa<GetElementPtrInst>(BaseI))) { 4973 // Make sure the parent block allows inserting non-PHI instructions 4974 // before the terminator. 4975 BasicBlock *Parent = BaseI ? BaseI->getParent() 4976 : &GEP->getFunction()->getEntryBlock(); 4977 if (!Parent->getTerminator()->isEHPad()) 4978 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4979 } 4980 } 4981 4982 return false; 4983 } 4984 4985 // Save the valid addressing mode in case we can't match. 4986 ExtAddrMode BackupAddrMode = AddrMode; 4987 unsigned OldSize = AddrModeInsts.size(); 4988 4989 // See if the scale and offset amount is valid for this target. 4990 AddrMode.BaseOffs += ConstantOffset; 4991 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4992 AddrMode.InBounds = false; 4993 4994 // Match the base operand of the GEP. 4995 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { 4996 // If it couldn't be matched, just stuff the value in a register. 4997 if (AddrMode.HasBaseReg) { 4998 AddrMode = BackupAddrMode; 4999 AddrModeInsts.resize(OldSize); 5000 return false; 5001 } 5002 AddrMode.HasBaseReg = true; 5003 AddrMode.BaseReg = AddrInst->getOperand(0); 5004 } 5005 5006 // Match the remaining variable portion of the GEP. 5007 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 5008 Depth)) { 5009 // If it couldn't be matched, try stuffing the base into a register 5010 // instead of matching it, and retrying the match of the scale. 5011 AddrMode = BackupAddrMode; 5012 AddrModeInsts.resize(OldSize); 5013 if (AddrMode.HasBaseReg) 5014 return false; 5015 AddrMode.HasBaseReg = true; 5016 AddrMode.BaseReg = AddrInst->getOperand(0); 5017 AddrMode.BaseOffs += ConstantOffset; 5018 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 5019 VariableScale, Depth)) { 5020 // If even that didn't work, bail. 5021 AddrMode = BackupAddrMode; 5022 AddrModeInsts.resize(OldSize); 5023 return false; 5024 } 5025 } 5026 5027 return true; 5028 } 5029 case Instruction::SExt: 5030 case Instruction::ZExt: { 5031 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 5032 if (!Ext) 5033 return false; 5034 5035 // Try to move this ext out of the way of the addressing mode. 5036 // Ask for a method for doing so. 5037 TypePromotionHelper::Action TPH = 5038 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 5039 if (!TPH) 5040 return false; 5041 5042 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5043 TPT.getRestorationPoint(); 5044 unsigned CreatedInstsCost = 0; 5045 unsigned ExtCost = !TLI.isExtFree(Ext); 5046 Value *PromotedOperand = 5047 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 5048 // SExt has been moved away. 5049 // Thus either it will be rematched later in the recursive calls or it is 5050 // gone. Anyway, we must not fold it into the addressing mode at this point. 5051 // E.g., 5052 // op = add opnd, 1 5053 // idx = ext op 5054 // addr = gep base, idx 5055 // is now: 5056 // promotedOpnd = ext opnd <- no match here 5057 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 5058 // addr = gep base, op <- match 5059 if (MovedAway) 5060 *MovedAway = true; 5061 5062 assert(PromotedOperand && 5063 "TypePromotionHelper should have filtered out those cases"); 5064 5065 ExtAddrMode BackupAddrMode = AddrMode; 5066 unsigned OldSize = AddrModeInsts.size(); 5067 5068 if (!matchAddr(PromotedOperand, Depth) || 5069 // The total of the new cost is equal to the cost of the created 5070 // instructions. 5071 // The total of the old cost is equal to the cost of the extension plus 5072 // what we have saved in the addressing mode. 5073 !isPromotionProfitable(CreatedInstsCost, 5074 ExtCost + (AddrModeInsts.size() - OldSize), 5075 PromotedOperand)) { 5076 AddrMode = BackupAddrMode; 5077 AddrModeInsts.resize(OldSize); 5078 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 5079 TPT.rollback(LastKnownGood); 5080 return false; 5081 } 5082 return true; 5083 } 5084 case Instruction::Call: 5085 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) { 5086 if (II->getIntrinsicID() == Intrinsic::threadlocal_address) { 5087 GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0)); 5088 if (TLI.addressingModeSupportsTLS(GV)) 5089 return matchAddr(AddrInst->getOperand(0), Depth); 5090 } 5091 } 5092 break; 5093 } 5094 return false; 5095 } 5096 5097 /// If we can, try to add the value of 'Addr' into the current addressing mode. 5098 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 5099 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 5100 /// for the target. 5101 /// 5102 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 5103 // Start a transaction at this point that we will rollback if the matching 5104 // fails. 5105 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5106 TPT.getRestorationPoint(); 5107 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 5108 if (CI->getValue().isSignedIntN(64)) { 5109 // Fold in immediates if legal for the target. 5110 AddrMode.BaseOffs += CI->getSExtValue(); 5111 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5112 return true; 5113 AddrMode.BaseOffs -= CI->getSExtValue(); 5114 } 5115 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 5116 // If this is a global variable, try to fold it into the addressing mode. 5117 if (!AddrMode.BaseGV) { 5118 AddrMode.BaseGV = GV; 5119 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5120 return true; 5121 AddrMode.BaseGV = nullptr; 5122 } 5123 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 5124 ExtAddrMode BackupAddrMode = AddrMode; 5125 unsigned OldSize = AddrModeInsts.size(); 5126 5127 // Check to see if it is possible to fold this operation. 5128 bool MovedAway = false; 5129 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 5130 // This instruction may have been moved away. If so, there is nothing 5131 // to check here. 5132 if (MovedAway) 5133 return true; 5134 // Okay, it's possible to fold this. Check to see if it is actually 5135 // *profitable* to do so. We use a simple cost model to avoid increasing 5136 // register pressure too much. 5137 if (I->hasOneUse() || 5138 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 5139 AddrModeInsts.push_back(I); 5140 return true; 5141 } 5142 5143 // It isn't profitable to do this, roll back. 5144 AddrMode = BackupAddrMode; 5145 AddrModeInsts.resize(OldSize); 5146 TPT.rollback(LastKnownGood); 5147 } 5148 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 5149 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 5150 return true; 5151 TPT.rollback(LastKnownGood); 5152 } else if (isa<ConstantPointerNull>(Addr)) { 5153 // Null pointer gets folded without affecting the addressing mode. 5154 return true; 5155 } 5156 5157 // Worse case, the target should support [reg] addressing modes. :) 5158 if (!AddrMode.HasBaseReg) { 5159 AddrMode.HasBaseReg = true; 5160 AddrMode.BaseReg = Addr; 5161 // Still check for legality in case the target supports [imm] but not [i+r]. 5162 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5163 return true; 5164 AddrMode.HasBaseReg = false; 5165 AddrMode.BaseReg = nullptr; 5166 } 5167 5168 // If the base register is already taken, see if we can do [r+r]. 5169 if (AddrMode.Scale == 0) { 5170 AddrMode.Scale = 1; 5171 AddrMode.ScaledReg = Addr; 5172 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5173 return true; 5174 AddrMode.Scale = 0; 5175 AddrMode.ScaledReg = nullptr; 5176 } 5177 // Couldn't match. 5178 TPT.rollback(LastKnownGood); 5179 return false; 5180 } 5181 5182 /// Check to see if all uses of OpVal by the specified inline asm call are due 5183 /// to memory operands. If so, return true, otherwise return false. 5184 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 5185 const TargetLowering &TLI, 5186 const TargetRegisterInfo &TRI) { 5187 const Function *F = CI->getFunction(); 5188 TargetLowering::AsmOperandInfoVector TargetConstraints = 5189 TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI); 5190 5191 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5192 // Compute the constraint code and ConstraintType to use. 5193 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5194 5195 // If this asm operand is our Value*, and if it isn't an indirect memory 5196 // operand, we can't fold it! TODO: Also handle C_Address? 5197 if (OpInfo.CallOperandVal == OpVal && 5198 (OpInfo.ConstraintType != TargetLowering::C_Memory || 5199 !OpInfo.isIndirect)) 5200 return false; 5201 } 5202 5203 return true; 5204 } 5205 5206 /// Recursively walk all the uses of I until we find a memory use. 5207 /// If we find an obviously non-foldable instruction, return true. 5208 /// Add accessed addresses and types to MemoryUses. 5209 static bool FindAllMemoryUses( 5210 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5211 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 5212 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 5213 BlockFrequencyInfo *BFI, unsigned &SeenInsts) { 5214 // If we already considered this instruction, we're done. 5215 if (!ConsideredInsts.insert(I).second) 5216 return false; 5217 5218 // If this is an obviously unfoldable instruction, bail out. 5219 if (!MightBeFoldableInst(I)) 5220 return true; 5221 5222 // Loop over all the uses, recursively processing them. 5223 for (Use &U : I->uses()) { 5224 // Conservatively return true if we're seeing a large number or a deep chain 5225 // of users. This avoids excessive compilation times in pathological cases. 5226 if (SeenInsts++ >= MaxAddressUsersToScan) 5227 return true; 5228 5229 Instruction *UserI = cast<Instruction>(U.getUser()); 5230 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 5231 MemoryUses.push_back({&U, LI->getType()}); 5232 continue; 5233 } 5234 5235 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 5236 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 5237 return true; // Storing addr, not into addr. 5238 MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); 5239 continue; 5240 } 5241 5242 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 5243 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 5244 return true; // Storing addr, not into addr. 5245 MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); 5246 continue; 5247 } 5248 5249 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 5250 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 5251 return true; // Storing addr, not into addr. 5252 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); 5253 continue; 5254 } 5255 5256 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 5257 if (CI->hasFnAttr(Attribute::Cold)) { 5258 // If this is a cold call, we can sink the addressing calculation into 5259 // the cold path. See optimizeCallInst 5260 bool OptForSize = 5261 OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 5262 if (!OptForSize) 5263 continue; 5264 } 5265 5266 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 5267 if (!IA) 5268 return true; 5269 5270 // If this is a memory operand, we're cool, otherwise bail out. 5271 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 5272 return true; 5273 continue; 5274 } 5275 5276 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5277 PSI, BFI, SeenInsts)) 5278 return true; 5279 } 5280 5281 return false; 5282 } 5283 5284 static bool FindAllMemoryUses( 5285 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5286 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, 5287 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 5288 unsigned SeenInsts = 0; 5289 SmallPtrSet<Instruction *, 16> ConsideredInsts; 5290 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5291 PSI, BFI, SeenInsts); 5292 } 5293 5294 5295 /// Return true if Val is already known to be live at the use site that we're 5296 /// folding it into. If so, there is no cost to include it in the addressing 5297 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 5298 /// instruction already. 5299 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, 5300 Value *KnownLive1, 5301 Value *KnownLive2) { 5302 // If Val is either of the known-live values, we know it is live! 5303 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 5304 return true; 5305 5306 // All values other than instructions and arguments (e.g. constants) are live. 5307 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) 5308 return true; 5309 5310 // If Val is a constant sized alloca in the entry block, it is live, this is 5311 // true because it is just a reference to the stack/frame pointer, which is 5312 // live for the whole function. 5313 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 5314 if (AI->isStaticAlloca()) 5315 return true; 5316 5317 // Check to see if this value is already used in the memory instruction's 5318 // block. If so, it's already live into the block at the very least, so we 5319 // can reasonably fold it. 5320 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 5321 } 5322 5323 /// It is possible for the addressing mode of the machine to fold the specified 5324 /// instruction into a load or store that ultimately uses it. 5325 /// However, the specified instruction has multiple uses. 5326 /// Given this, it may actually increase register pressure to fold it 5327 /// into the load. For example, consider this code: 5328 /// 5329 /// X = ... 5330 /// Y = X+1 5331 /// use(Y) -> nonload/store 5332 /// Z = Y+1 5333 /// load Z 5334 /// 5335 /// In this case, Y has multiple uses, and can be folded into the load of Z 5336 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 5337 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 5338 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 5339 /// number of computations either. 5340 /// 5341 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 5342 /// X was live across 'load Z' for other reasons, we actually *would* want to 5343 /// fold the addressing mode in the Z case. This would make Y die earlier. 5344 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( 5345 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { 5346 if (IgnoreProfitability) 5347 return true; 5348 5349 // AMBefore is the addressing mode before this instruction was folded into it, 5350 // and AMAfter is the addressing mode after the instruction was folded. Get 5351 // the set of registers referenced by AMAfter and subtract out those 5352 // referenced by AMBefore: this is the set of values which folding in this 5353 // address extends the lifetime of. 5354 // 5355 // Note that there are only two potential values being referenced here, 5356 // BaseReg and ScaleReg (global addresses are always available, as are any 5357 // folded immediates). 5358 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5359 5360 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5361 // lifetime wasn't extended by adding this instruction. 5362 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5363 BaseReg = nullptr; 5364 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5365 ScaledReg = nullptr; 5366 5367 // If folding this instruction (and it's subexprs) didn't extend any live 5368 // ranges, we're ok with it. 5369 if (!BaseReg && !ScaledReg) 5370 return true; 5371 5372 // If all uses of this instruction can have the address mode sunk into them, 5373 // we can remove the addressing mode and effectively trade one live register 5374 // for another (at worst.) In this context, folding an addressing mode into 5375 // the use is just a particularly nice way of sinking it. 5376 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; 5377 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) 5378 return false; // Has a non-memory, non-foldable use! 5379 5380 // Now that we know that all uses of this instruction are part of a chain of 5381 // computation involving only operations that could theoretically be folded 5382 // into a memory use, loop over each of these memory operation uses and see 5383 // if they could *actually* fold the instruction. The assumption is that 5384 // addressing modes are cheap and that duplicating the computation involved 5385 // many times is worthwhile, even on a fastpath. For sinking candidates 5386 // (i.e. cold call sites), this serves as a way to prevent excessive code 5387 // growth since most architectures have some reasonable small and fast way to 5388 // compute an effective address. (i.e LEA on x86) 5389 SmallVector<Instruction *, 32> MatchedAddrModeInsts; 5390 for (const std::pair<Use *, Type *> &Pair : MemoryUses) { 5391 Value *Address = Pair.first->get(); 5392 Instruction *UserI = cast<Instruction>(Pair.first->getUser()); 5393 Type *AddressAccessTy = Pair.second; 5394 unsigned AS = Address->getType()->getPointerAddressSpace(); 5395 5396 // Do a match against the root of this address, ignoring profitability. This 5397 // will tell us if the addressing mode for the memory operation will 5398 // *actually* cover the shared instruction. 5399 ExtAddrMode Result; 5400 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5401 0); 5402 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5403 TPT.getRestorationPoint(); 5404 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5405 AddressAccessTy, AS, UserI, Result, 5406 InsertedInsts, PromotedInsts, TPT, 5407 LargeOffsetGEP, OptSize, PSI, BFI); 5408 Matcher.IgnoreProfitability = true; 5409 bool Success = Matcher.matchAddr(Address, 0); 5410 (void)Success; 5411 assert(Success && "Couldn't select *anything*?"); 5412 5413 // The match was to check the profitability, the changes made are not 5414 // part of the original matcher. Therefore, they should be dropped 5415 // otherwise the original matcher will not present the right state. 5416 TPT.rollback(LastKnownGood); 5417 5418 // If the match didn't cover I, then it won't be shared by it. 5419 if (!is_contained(MatchedAddrModeInsts, I)) 5420 return false; 5421 5422 MatchedAddrModeInsts.clear(); 5423 } 5424 5425 return true; 5426 } 5427 5428 /// Return true if the specified values are defined in a 5429 /// different basic block than BB. 5430 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5431 if (Instruction *I = dyn_cast<Instruction>(V)) 5432 return I->getParent() != BB; 5433 return false; 5434 } 5435 5436 /// Sink addressing mode computation immediate before MemoryInst if doing so 5437 /// can be done without increasing register pressure. The need for the 5438 /// register pressure constraint means this can end up being an all or nothing 5439 /// decision for all uses of the same addressing computation. 5440 /// 5441 /// Load and Store Instructions often have addressing modes that can do 5442 /// significant amounts of computation. As such, instruction selection will try 5443 /// to get the load or store to do as much computation as possible for the 5444 /// program. The problem is that isel can only see within a single block. As 5445 /// such, we sink as much legal addressing mode work into the block as possible. 5446 /// 5447 /// This method is used to optimize both load/store and inline asms with memory 5448 /// operands. It's also used to sink addressing computations feeding into cold 5449 /// call sites into their (cold) basic block. 5450 /// 5451 /// The motivation for handling sinking into cold blocks is that doing so can 5452 /// both enable other address mode sinking (by satisfying the register pressure 5453 /// constraint above), and reduce register pressure globally (by removing the 5454 /// addressing mode computation from the fast path entirely.). 5455 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5456 Type *AccessTy, unsigned AddrSpace) { 5457 Value *Repl = Addr; 5458 5459 // Try to collapse single-value PHI nodes. This is necessary to undo 5460 // unprofitable PRE transformations. 5461 SmallVector<Value *, 8> worklist; 5462 SmallPtrSet<Value *, 16> Visited; 5463 worklist.push_back(Addr); 5464 5465 // Use a worklist to iteratively look through PHI and select nodes, and 5466 // ensure that the addressing mode obtained from the non-PHI/select roots of 5467 // the graph are compatible. 5468 bool PhiOrSelectSeen = false; 5469 SmallVector<Instruction *, 16> AddrModeInsts; 5470 const SimplifyQuery SQ(*DL, TLInfo); 5471 AddressingModeCombiner AddrModes(SQ, Addr); 5472 TypePromotionTransaction TPT(RemovedInsts); 5473 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5474 TPT.getRestorationPoint(); 5475 while (!worklist.empty()) { 5476 Value *V = worklist.pop_back_val(); 5477 5478 // We allow traversing cyclic Phi nodes. 5479 // In case of success after this loop we ensure that traversing through 5480 // Phi nodes ends up with all cases to compute address of the form 5481 // BaseGV + Base + Scale * Index + Offset 5482 // where Scale and Offset are constans and BaseGV, Base and Index 5483 // are exactly the same Values in all cases. 5484 // It means that BaseGV, Scale and Offset dominate our memory instruction 5485 // and have the same value as they had in address computation represented 5486 // as Phi. So we can safely sink address computation to memory instruction. 5487 if (!Visited.insert(V).second) 5488 continue; 5489 5490 // For a PHI node, push all of its incoming values. 5491 if (PHINode *P = dyn_cast<PHINode>(V)) { 5492 append_range(worklist, P->incoming_values()); 5493 PhiOrSelectSeen = true; 5494 continue; 5495 } 5496 // Similar for select. 5497 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5498 worklist.push_back(SI->getFalseValue()); 5499 worklist.push_back(SI->getTrueValue()); 5500 PhiOrSelectSeen = true; 5501 continue; 5502 } 5503 5504 // For non-PHIs, determine the addressing mode being computed. Note that 5505 // the result may differ depending on what other uses our candidate 5506 // addressing instructions might have. 5507 AddrModeInsts.clear(); 5508 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5509 0); 5510 // Defer the query (and possible computation of) the dom tree to point of 5511 // actual use. It's expected that most address matches don't actually need 5512 // the domtree. 5513 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5514 Function *F = MemoryInst->getParent()->getParent(); 5515 return this->getDT(*F); 5516 }; 5517 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5518 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5519 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5520 BFI.get()); 5521 5522 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5523 if (GEP && !NewGEPBases.count(GEP)) { 5524 // If splitting the underlying data structure can reduce the offset of a 5525 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5526 // previously split data structures. 5527 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5528 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5529 } 5530 5531 NewAddrMode.OriginalValue = V; 5532 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5533 break; 5534 } 5535 5536 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5537 // or we have multiple but either couldn't combine them or combining them 5538 // wouldn't do anything useful, bail out now. 5539 if (!AddrModes.combineAddrModes()) { 5540 TPT.rollback(LastKnownGood); 5541 return false; 5542 } 5543 bool Modified = TPT.commit(); 5544 5545 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5546 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5547 5548 // If all the instructions matched are already in this BB, don't do anything. 5549 // If we saw a Phi node then it is not local definitely, and if we saw a 5550 // select then we want to push the address calculation past it even if it's 5551 // already in this BB. 5552 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5553 return IsNonLocalValue(V, MemoryInst->getParent()); 5554 })) { 5555 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5556 << "\n"); 5557 return Modified; 5558 } 5559 5560 // Insert this computation right after this user. Since our caller is 5561 // scanning from the top of the BB to the bottom, reuse of the expr are 5562 // guaranteed to happen later. 5563 IRBuilder<> Builder(MemoryInst); 5564 5565 // Now that we determined the addressing expression we want to use and know 5566 // that we have to sink it into this block. Check to see if we have already 5567 // done this for some other load/store instr in this block. If so, reuse 5568 // the computation. Before attempting reuse, check if the address is valid 5569 // as it may have been erased. 5570 5571 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5572 5573 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5574 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5575 if (SunkAddr) { 5576 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5577 << " for " << *MemoryInst << "\n"); 5578 if (SunkAddr->getType() != Addr->getType()) { 5579 if (SunkAddr->getType()->getPointerAddressSpace() != 5580 Addr->getType()->getPointerAddressSpace() && 5581 !DL->isNonIntegralPointerType(Addr->getType())) { 5582 // There are two reasons the address spaces might not match: a no-op 5583 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5584 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5585 // TODO: allow bitcast between different address space pointers with the 5586 // same size. 5587 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5588 SunkAddr = 5589 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5590 } else 5591 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5592 } 5593 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5594 SubtargetInfo->addrSinkUsingGEPs())) { 5595 // By default, we use the GEP-based method when AA is used later. This 5596 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5597 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5598 << " for " << *MemoryInst << "\n"); 5599 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5600 5601 // First, find the pointer. 5602 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5603 ResultPtr = AddrMode.BaseReg; 5604 AddrMode.BaseReg = nullptr; 5605 } 5606 5607 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5608 // We can't add more than one pointer together, nor can we scale a 5609 // pointer (both of which seem meaningless). 5610 if (ResultPtr || AddrMode.Scale != 1) 5611 return Modified; 5612 5613 ResultPtr = AddrMode.ScaledReg; 5614 AddrMode.Scale = 0; 5615 } 5616 5617 // It is only safe to sign extend the BaseReg if we know that the math 5618 // required to create it did not overflow before we extend it. Since 5619 // the original IR value was tossed in favor of a constant back when 5620 // the AddrMode was created we need to bail out gracefully if widths 5621 // do not match instead of extending it. 5622 // 5623 // (See below for code to add the scale.) 5624 if (AddrMode.Scale) { 5625 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5626 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5627 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5628 return Modified; 5629 } 5630 5631 GlobalValue *BaseGV = AddrMode.BaseGV; 5632 if (BaseGV != nullptr) { 5633 if (ResultPtr) 5634 return Modified; 5635 5636 if (BaseGV->isThreadLocal()) { 5637 ResultPtr = Builder.CreateThreadLocalAddress(BaseGV); 5638 } else { 5639 ResultPtr = BaseGV; 5640 } 5641 } 5642 5643 // If the real base value actually came from an inttoptr, then the matcher 5644 // will look through it and provide only the integer value. In that case, 5645 // use it here. 5646 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5647 if (!ResultPtr && AddrMode.BaseReg) { 5648 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5649 "sunkaddr"); 5650 AddrMode.BaseReg = nullptr; 5651 } else if (!ResultPtr && AddrMode.Scale == 1) { 5652 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5653 "sunkaddr"); 5654 AddrMode.Scale = 0; 5655 } 5656 } 5657 5658 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && 5659 !AddrMode.BaseOffs) { 5660 SunkAddr = Constant::getNullValue(Addr->getType()); 5661 } else if (!ResultPtr) { 5662 return Modified; 5663 } else { 5664 Type *I8PtrTy = 5665 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace()); 5666 5667 // Start with the base register. Do this first so that subsequent address 5668 // matching finds it last, which will prevent it from trying to match it 5669 // as the scaled value in case it happens to be a mul. That would be 5670 // problematic if we've sunk a different mul for the scale, because then 5671 // we'd end up sinking both muls. 5672 if (AddrMode.BaseReg) { 5673 Value *V = AddrMode.BaseReg; 5674 if (V->getType() != IntPtrTy) 5675 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5676 5677 ResultIndex = V; 5678 } 5679 5680 // Add the scale value. 5681 if (AddrMode.Scale) { 5682 Value *V = AddrMode.ScaledReg; 5683 if (V->getType() == IntPtrTy) { 5684 // done. 5685 } else { 5686 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5687 cast<IntegerType>(V->getType())->getBitWidth() && 5688 "We can't transform if ScaledReg is too narrow"); 5689 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5690 } 5691 5692 if (AddrMode.Scale != 1) 5693 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5694 "sunkaddr"); 5695 if (ResultIndex) 5696 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5697 else 5698 ResultIndex = V; 5699 } 5700 5701 // Add in the Base Offset if present. 5702 if (AddrMode.BaseOffs) { 5703 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5704 if (ResultIndex) { 5705 // We need to add this separately from the scale above to help with 5706 // SDAG consecutive load/store merging. 5707 if (ResultPtr->getType() != I8PtrTy) 5708 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5709 ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5710 AddrMode.InBounds); 5711 } 5712 5713 ResultIndex = V; 5714 } 5715 5716 if (!ResultIndex) { 5717 SunkAddr = ResultPtr; 5718 } else { 5719 if (ResultPtr->getType() != I8PtrTy) 5720 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5721 SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5722 AddrMode.InBounds); 5723 } 5724 5725 if (SunkAddr->getType() != Addr->getType()) { 5726 if (SunkAddr->getType()->getPointerAddressSpace() != 5727 Addr->getType()->getPointerAddressSpace() && 5728 !DL->isNonIntegralPointerType(Addr->getType())) { 5729 // There are two reasons the address spaces might not match: a no-op 5730 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5731 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5732 // TODO: allow bitcast between different address space pointers with 5733 // the same size. 5734 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5735 SunkAddr = 5736 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5737 } else 5738 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5739 } 5740 } 5741 } else { 5742 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5743 // non-integral pointers, so in that case bail out now. 5744 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5745 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5746 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5747 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5748 if (DL->isNonIntegralPointerType(Addr->getType()) || 5749 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5750 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5751 (AddrMode.BaseGV && 5752 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5753 return Modified; 5754 5755 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5756 << " for " << *MemoryInst << "\n"); 5757 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5758 Value *Result = nullptr; 5759 5760 // Start with the base register. Do this first so that subsequent address 5761 // matching finds it last, which will prevent it from trying to match it 5762 // as the scaled value in case it happens to be a mul. That would be 5763 // problematic if we've sunk a different mul for the scale, because then 5764 // we'd end up sinking both muls. 5765 if (AddrMode.BaseReg) { 5766 Value *V = AddrMode.BaseReg; 5767 if (V->getType()->isPointerTy()) 5768 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5769 if (V->getType() != IntPtrTy) 5770 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5771 Result = V; 5772 } 5773 5774 // Add the scale value. 5775 if (AddrMode.Scale) { 5776 Value *V = AddrMode.ScaledReg; 5777 if (V->getType() == IntPtrTy) { 5778 // done. 5779 } else if (V->getType()->isPointerTy()) { 5780 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5781 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5782 cast<IntegerType>(V->getType())->getBitWidth()) { 5783 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5784 } else { 5785 // It is only safe to sign extend the BaseReg if we know that the math 5786 // required to create it did not overflow before we extend it. Since 5787 // the original IR value was tossed in favor of a constant back when 5788 // the AddrMode was created we need to bail out gracefully if widths 5789 // do not match instead of extending it. 5790 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5791 if (I && (Result != AddrMode.BaseReg)) 5792 I->eraseFromParent(); 5793 return Modified; 5794 } 5795 if (AddrMode.Scale != 1) 5796 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5797 "sunkaddr"); 5798 if (Result) 5799 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5800 else 5801 Result = V; 5802 } 5803 5804 // Add in the BaseGV if present. 5805 GlobalValue *BaseGV = AddrMode.BaseGV; 5806 if (BaseGV != nullptr) { 5807 Value *BaseGVPtr; 5808 if (BaseGV->isThreadLocal()) { 5809 BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV); 5810 } else { 5811 BaseGVPtr = BaseGV; 5812 } 5813 Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr"); 5814 if (Result) 5815 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5816 else 5817 Result = V; 5818 } 5819 5820 // Add in the Base Offset if present. 5821 if (AddrMode.BaseOffs) { 5822 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5823 if (Result) 5824 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5825 else 5826 Result = V; 5827 } 5828 5829 if (!Result) 5830 SunkAddr = Constant::getNullValue(Addr->getType()); 5831 else 5832 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5833 } 5834 5835 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5836 // Store the newly computed address into the cache. In the case we reused a 5837 // value, this should be idempotent. 5838 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5839 5840 // If we have no uses, recursively delete the value and all dead instructions 5841 // using it. 5842 if (Repl->use_empty()) { 5843 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5844 RecursivelyDeleteTriviallyDeadInstructions( 5845 Repl, TLInfo, nullptr, 5846 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5847 }); 5848 } 5849 ++NumMemoryInsts; 5850 return true; 5851 } 5852 5853 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5854 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5855 /// only handle a 2 operand GEP in the same basic block or a splat constant 5856 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5857 /// index. 5858 /// 5859 /// If the existing GEP has a vector base pointer that is splat, we can look 5860 /// through the splat to find the scalar pointer. If we can't find a scalar 5861 /// pointer there's nothing we can do. 5862 /// 5863 /// If we have a GEP with more than 2 indices where the middle indices are all 5864 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5865 /// 5866 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5867 /// followed by a GEP with an all zeroes vector index. This will enable 5868 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5869 /// zero index. 5870 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5871 Value *Ptr) { 5872 Value *NewAddr; 5873 5874 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5875 // Don't optimize GEPs that don't have indices. 5876 if (!GEP->hasIndices()) 5877 return false; 5878 5879 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5880 // FIXME: We should support this by sinking the GEP. 5881 if (MemoryInst->getParent() != GEP->getParent()) 5882 return false; 5883 5884 SmallVector<Value *, 2> Ops(GEP->operands()); 5885 5886 bool RewriteGEP = false; 5887 5888 if (Ops[0]->getType()->isVectorTy()) { 5889 Ops[0] = getSplatValue(Ops[0]); 5890 if (!Ops[0]) 5891 return false; 5892 RewriteGEP = true; 5893 } 5894 5895 unsigned FinalIndex = Ops.size() - 1; 5896 5897 // Ensure all but the last index is 0. 5898 // FIXME: This isn't strictly required. All that's required is that they are 5899 // all scalars or splats. 5900 for (unsigned i = 1; i < FinalIndex; ++i) { 5901 auto *C = dyn_cast<Constant>(Ops[i]); 5902 if (!C) 5903 return false; 5904 if (isa<VectorType>(C->getType())) 5905 C = C->getSplatValue(); 5906 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5907 if (!CI || !CI->isZero()) 5908 return false; 5909 // Scalarize the index if needed. 5910 Ops[i] = CI; 5911 } 5912 5913 // Try to scalarize the final index. 5914 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5915 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5916 auto *C = dyn_cast<ConstantInt>(V); 5917 // Don't scalarize all zeros vector. 5918 if (!C || !C->isZero()) { 5919 Ops[FinalIndex] = V; 5920 RewriteGEP = true; 5921 } 5922 } 5923 } 5924 5925 // If we made any changes or the we have extra operands, we need to generate 5926 // new instructions. 5927 if (!RewriteGEP && Ops.size() == 2) 5928 return false; 5929 5930 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5931 5932 IRBuilder<> Builder(MemoryInst); 5933 5934 Type *SourceTy = GEP->getSourceElementType(); 5935 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5936 5937 // If the final index isn't a vector, emit a scalar GEP containing all ops 5938 // and a vector GEP with all zeroes final index. 5939 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5940 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); 5941 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5942 auto *SecondTy = GetElementPtrInst::getIndexedType( 5943 SourceTy, ArrayRef(Ops).drop_front()); 5944 NewAddr = 5945 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5946 } else { 5947 Value *Base = Ops[0]; 5948 Value *Index = Ops[FinalIndex]; 5949 5950 // Create a scalar GEP if there are more than 2 operands. 5951 if (Ops.size() != 2) { 5952 // Replace the last index with 0. 5953 Ops[FinalIndex] = 5954 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType()); 5955 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); 5956 SourceTy = GetElementPtrInst::getIndexedType( 5957 SourceTy, ArrayRef(Ops).drop_front()); 5958 } 5959 5960 // Now create the GEP with scalar pointer and vector index. 5961 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5962 } 5963 } else if (!isa<Constant>(Ptr)) { 5964 // Not a GEP, maybe its a splat and we can create a GEP to enable 5965 // SelectionDAGBuilder to use it as a uniform base. 5966 Value *V = getSplatValue(Ptr); 5967 if (!V) 5968 return false; 5969 5970 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5971 5972 IRBuilder<> Builder(MemoryInst); 5973 5974 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5975 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5976 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5977 Type *ScalarTy; 5978 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5979 Intrinsic::masked_gather) { 5980 ScalarTy = MemoryInst->getType()->getScalarType(); 5981 } else { 5982 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5983 Intrinsic::masked_scatter); 5984 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5985 } 5986 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5987 } else { 5988 // Constant, SelectionDAGBuilder knows to check if its a splat. 5989 return false; 5990 } 5991 5992 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5993 5994 // If we have no uses, recursively delete the value and all dead instructions 5995 // using it. 5996 if (Ptr->use_empty()) 5997 RecursivelyDeleteTriviallyDeadInstructions( 5998 Ptr, TLInfo, nullptr, 5999 [&](Value *V) { removeAllAssertingVHReferences(V); }); 6000 6001 return true; 6002 } 6003 6004 /// If there are any memory operands, use OptimizeMemoryInst to sink their 6005 /// address computing into the block when possible / profitable. 6006 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 6007 bool MadeChange = false; 6008 6009 const TargetRegisterInfo *TRI = 6010 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 6011 TargetLowering::AsmOperandInfoVector TargetConstraints = 6012 TLI->ParseConstraints(*DL, TRI, *CS); 6013 unsigned ArgNo = 0; 6014 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 6015 // Compute the constraint code and ConstraintType to use. 6016 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6017 6018 // TODO: Also handle C_Address? 6019 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6020 OpInfo.isIndirect) { 6021 Value *OpVal = CS->getArgOperand(ArgNo++); 6022 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 6023 } else if (OpInfo.Type == InlineAsm::isInput) 6024 ArgNo++; 6025 } 6026 6027 return MadeChange; 6028 } 6029 6030 /// Check if all the uses of \p Val are equivalent (or free) zero or 6031 /// sign extensions. 6032 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 6033 assert(!Val->use_empty() && "Input must have at least one use"); 6034 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 6035 bool IsSExt = isa<SExtInst>(FirstUser); 6036 Type *ExtTy = FirstUser->getType(); 6037 for (const User *U : Val->users()) { 6038 const Instruction *UI = cast<Instruction>(U); 6039 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 6040 return false; 6041 Type *CurTy = UI->getType(); 6042 // Same input and output types: Same instruction after CSE. 6043 if (CurTy == ExtTy) 6044 continue; 6045 6046 // If IsSExt is true, we are in this situation: 6047 // a = Val 6048 // b = sext ty1 a to ty2 6049 // c = sext ty1 a to ty3 6050 // Assuming ty2 is shorter than ty3, this could be turned into: 6051 // a = Val 6052 // b = sext ty1 a to ty2 6053 // c = sext ty2 b to ty3 6054 // However, the last sext is not free. 6055 if (IsSExt) 6056 return false; 6057 6058 // This is a ZExt, maybe this is free to extend from one type to another. 6059 // In that case, we would not account for a different use. 6060 Type *NarrowTy; 6061 Type *LargeTy; 6062 if (ExtTy->getScalarType()->getIntegerBitWidth() > 6063 CurTy->getScalarType()->getIntegerBitWidth()) { 6064 NarrowTy = CurTy; 6065 LargeTy = ExtTy; 6066 } else { 6067 NarrowTy = ExtTy; 6068 LargeTy = CurTy; 6069 } 6070 6071 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 6072 return false; 6073 } 6074 // All uses are the same or can be derived from one another for free. 6075 return true; 6076 } 6077 6078 /// Try to speculatively promote extensions in \p Exts and continue 6079 /// promoting through newly promoted operands recursively as far as doing so is 6080 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 6081 /// When some promotion happened, \p TPT contains the proper state to revert 6082 /// them. 6083 /// 6084 /// \return true if some promotion happened, false otherwise. 6085 bool CodeGenPrepare::tryToPromoteExts( 6086 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 6087 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 6088 unsigned CreatedInstsCost) { 6089 bool Promoted = false; 6090 6091 // Iterate over all the extensions to try to promote them. 6092 for (auto *I : Exts) { 6093 // Early check if we directly have ext(load). 6094 if (isa<LoadInst>(I->getOperand(0))) { 6095 ProfitablyMovedExts.push_back(I); 6096 continue; 6097 } 6098 6099 // Check whether or not we want to do any promotion. The reason we have 6100 // this check inside the for loop is to catch the case where an extension 6101 // is directly fed by a load because in such case the extension can be moved 6102 // up without any promotion on its operands. 6103 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 6104 return false; 6105 6106 // Get the action to perform the promotion. 6107 TypePromotionHelper::Action TPH = 6108 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 6109 // Check if we can promote. 6110 if (!TPH) { 6111 // Save the current extension as we cannot move up through its operand. 6112 ProfitablyMovedExts.push_back(I); 6113 continue; 6114 } 6115 6116 // Save the current state. 6117 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6118 TPT.getRestorationPoint(); 6119 SmallVector<Instruction *, 4> NewExts; 6120 unsigned NewCreatedInstsCost = 0; 6121 unsigned ExtCost = !TLI->isExtFree(I); 6122 // Promote. 6123 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 6124 &NewExts, nullptr, *TLI); 6125 assert(PromotedVal && 6126 "TypePromotionHelper should have filtered out those cases"); 6127 6128 // We would be able to merge only one extension in a load. 6129 // Therefore, if we have more than 1 new extension we heuristically 6130 // cut this search path, because it means we degrade the code quality. 6131 // With exactly 2, the transformation is neutral, because we will merge 6132 // one extension but leave one. However, we optimistically keep going, 6133 // because the new extension may be removed too. Also avoid replacing a 6134 // single free extension with multiple extensions, as this increases the 6135 // number of IR instructions while not providing any savings. 6136 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 6137 // FIXME: It would be possible to propagate a negative value instead of 6138 // conservatively ceiling it to 0. 6139 TotalCreatedInstsCost = 6140 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 6141 if (!StressExtLdPromotion && 6142 (TotalCreatedInstsCost > 1 || 6143 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) || 6144 (ExtCost == 0 && NewExts.size() > 1))) { 6145 // This promotion is not profitable, rollback to the previous state, and 6146 // save the current extension in ProfitablyMovedExts as the latest 6147 // speculative promotion turned out to be unprofitable. 6148 TPT.rollback(LastKnownGood); 6149 ProfitablyMovedExts.push_back(I); 6150 continue; 6151 } 6152 // Continue promoting NewExts as far as doing so is profitable. 6153 SmallVector<Instruction *, 2> NewlyMovedExts; 6154 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 6155 bool NewPromoted = false; 6156 for (auto *ExtInst : NewlyMovedExts) { 6157 Instruction *MovedExt = cast<Instruction>(ExtInst); 6158 Value *ExtOperand = MovedExt->getOperand(0); 6159 // If we have reached to a load, we need this extra profitability check 6160 // as it could potentially be merged into an ext(load). 6161 if (isa<LoadInst>(ExtOperand) && 6162 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 6163 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 6164 continue; 6165 6166 ProfitablyMovedExts.push_back(MovedExt); 6167 NewPromoted = true; 6168 } 6169 6170 // If none of speculative promotions for NewExts is profitable, rollback 6171 // and save the current extension (I) as the last profitable extension. 6172 if (!NewPromoted) { 6173 TPT.rollback(LastKnownGood); 6174 ProfitablyMovedExts.push_back(I); 6175 continue; 6176 } 6177 // The promotion is profitable. 6178 Promoted = true; 6179 } 6180 return Promoted; 6181 } 6182 6183 /// Merging redundant sexts when one is dominating the other. 6184 bool CodeGenPrepare::mergeSExts(Function &F) { 6185 bool Changed = false; 6186 for (auto &Entry : ValToSExtendedUses) { 6187 SExts &Insts = Entry.second; 6188 SExts CurPts; 6189 for (Instruction *Inst : Insts) { 6190 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 6191 Inst->getOperand(0) != Entry.first) 6192 continue; 6193 bool inserted = false; 6194 for (auto &Pt : CurPts) { 6195 if (getDT(F).dominates(Inst, Pt)) { 6196 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); 6197 RemovedInsts.insert(Pt); 6198 Pt->removeFromParent(); 6199 Pt = Inst; 6200 inserted = true; 6201 Changed = true; 6202 break; 6203 } 6204 if (!getDT(F).dominates(Pt, Inst)) 6205 // Give up if we need to merge in a common dominator as the 6206 // experiments show it is not profitable. 6207 continue; 6208 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); 6209 RemovedInsts.insert(Inst); 6210 Inst->removeFromParent(); 6211 inserted = true; 6212 Changed = true; 6213 break; 6214 } 6215 if (!inserted) 6216 CurPts.push_back(Inst); 6217 } 6218 } 6219 return Changed; 6220 } 6221 6222 // Splitting large data structures so that the GEPs accessing them can have 6223 // smaller offsets so that they can be sunk to the same blocks as their users. 6224 // For example, a large struct starting from %base is split into two parts 6225 // where the second part starts from %new_base. 6226 // 6227 // Before: 6228 // BB0: 6229 // %base = 6230 // 6231 // BB1: 6232 // %gep0 = gep %base, off0 6233 // %gep1 = gep %base, off1 6234 // %gep2 = gep %base, off2 6235 // 6236 // BB2: 6237 // %load1 = load %gep0 6238 // %load2 = load %gep1 6239 // %load3 = load %gep2 6240 // 6241 // After: 6242 // BB0: 6243 // %base = 6244 // %new_base = gep %base, off0 6245 // 6246 // BB1: 6247 // %new_gep0 = %new_base 6248 // %new_gep1 = gep %new_base, off1 - off0 6249 // %new_gep2 = gep %new_base, off2 - off0 6250 // 6251 // BB2: 6252 // %load1 = load i32, i32* %new_gep0 6253 // %load2 = load i32, i32* %new_gep1 6254 // %load3 = load i32, i32* %new_gep2 6255 // 6256 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 6257 // their offsets are smaller enough to fit into the addressing mode. 6258 bool CodeGenPrepare::splitLargeGEPOffsets() { 6259 bool Changed = false; 6260 for (auto &Entry : LargeOffsetGEPMap) { 6261 Value *OldBase = Entry.first; 6262 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 6263 &LargeOffsetGEPs = Entry.second; 6264 auto compareGEPOffset = 6265 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 6266 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 6267 if (LHS.first == RHS.first) 6268 return false; 6269 if (LHS.second != RHS.second) 6270 return LHS.second < RHS.second; 6271 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 6272 }; 6273 // Sorting all the GEPs of the same data structures based on the offsets. 6274 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 6275 LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end()); 6276 // Skip if all the GEPs have the same offsets. 6277 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 6278 continue; 6279 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 6280 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 6281 Value *NewBaseGEP = nullptr; 6282 6283 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase, 6284 GetElementPtrInst *GEP) { 6285 LLVMContext &Ctx = GEP->getContext(); 6286 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6287 Type *I8PtrTy = 6288 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace()); 6289 6290 BasicBlock::iterator NewBaseInsertPt; 6291 BasicBlock *NewBaseInsertBB; 6292 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 6293 // If the base of the struct is an instruction, the new base will be 6294 // inserted close to it. 6295 NewBaseInsertBB = BaseI->getParent(); 6296 if (isa<PHINode>(BaseI)) 6297 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6298 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 6299 NewBaseInsertBB = 6300 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI); 6301 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6302 } else 6303 NewBaseInsertPt = std::next(BaseI->getIterator()); 6304 } else { 6305 // If the current base is an argument or global value, the new base 6306 // will be inserted to the entry block. 6307 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 6308 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6309 } 6310 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 6311 // Create a new base. 6312 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset); 6313 NewBaseGEP = OldBase; 6314 if (NewBaseGEP->getType() != I8PtrTy) 6315 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 6316 NewBaseGEP = 6317 NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep"); 6318 NewGEPBases.insert(NewBaseGEP); 6319 return; 6320 }; 6321 6322 // Check whether all the offsets can be encoded with prefered common base. 6323 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset( 6324 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) { 6325 BaseOffset = PreferBase; 6326 // Create a new base if the offset of the BaseGEP can be decoded with one 6327 // instruction. 6328 createNewBase(BaseOffset, OldBase, BaseGEP); 6329 } 6330 6331 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 6332 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 6333 GetElementPtrInst *GEP = LargeOffsetGEP->first; 6334 int64_t Offset = LargeOffsetGEP->second; 6335 if (Offset != BaseOffset) { 6336 TargetLowering::AddrMode AddrMode; 6337 AddrMode.HasBaseReg = true; 6338 AddrMode.BaseOffs = Offset - BaseOffset; 6339 // The result type of the GEP might not be the type of the memory 6340 // access. 6341 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 6342 GEP->getResultElementType(), 6343 GEP->getAddressSpace())) { 6344 // We need to create a new base if the offset to the current base is 6345 // too large to fit into the addressing mode. So, a very large struct 6346 // may be split into several parts. 6347 BaseGEP = GEP; 6348 BaseOffset = Offset; 6349 NewBaseGEP = nullptr; 6350 } 6351 } 6352 6353 // Generate a new GEP to replace the current one. 6354 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6355 6356 if (!NewBaseGEP) { 6357 // Create a new base if we don't have one yet. Find the insertion 6358 // pointer for the new base first. 6359 createNewBase(BaseOffset, OldBase, GEP); 6360 } 6361 6362 IRBuilder<> Builder(GEP); 6363 Value *NewGEP = NewBaseGEP; 6364 if (Offset != BaseOffset) { 6365 // Calculate the new offset for the new GEP. 6366 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset); 6367 NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index); 6368 } 6369 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); 6370 LargeOffsetGEPID.erase(GEP); 6371 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6372 GEP->eraseFromParent(); 6373 Changed = true; 6374 } 6375 } 6376 return Changed; 6377 } 6378 6379 bool CodeGenPrepare::optimizePhiType( 6380 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6381 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6382 // We are looking for a collection on interconnected phi nodes that together 6383 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6384 // are of the same type. Convert the whole set of nodes to the type of the 6385 // bitcast. 6386 Type *PhiTy = I->getType(); 6387 Type *ConvertTy = nullptr; 6388 if (Visited.count(I) || 6389 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6390 return false; 6391 6392 SmallVector<Instruction *, 4> Worklist; 6393 Worklist.push_back(cast<Instruction>(I)); 6394 SmallPtrSet<PHINode *, 4> PhiNodes; 6395 SmallPtrSet<ConstantData *, 4> Constants; 6396 PhiNodes.insert(I); 6397 Visited.insert(I); 6398 SmallPtrSet<Instruction *, 4> Defs; 6399 SmallPtrSet<Instruction *, 4> Uses; 6400 // This works by adding extra bitcasts between load/stores and removing 6401 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6402 // we can get in the situation where we remove a bitcast in one iteration 6403 // just to add it again in the next. We need to ensure that at least one 6404 // bitcast we remove are anchored to something that will not change back. 6405 bool AnyAnchored = false; 6406 6407 while (!Worklist.empty()) { 6408 Instruction *II = Worklist.pop_back_val(); 6409 6410 if (auto *Phi = dyn_cast<PHINode>(II)) { 6411 // Handle Defs, which might also be PHI's 6412 for (Value *V : Phi->incoming_values()) { 6413 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6414 if (!PhiNodes.count(OpPhi)) { 6415 if (!Visited.insert(OpPhi).second) 6416 return false; 6417 PhiNodes.insert(OpPhi); 6418 Worklist.push_back(OpPhi); 6419 } 6420 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6421 if (!OpLoad->isSimple()) 6422 return false; 6423 if (Defs.insert(OpLoad).second) 6424 Worklist.push_back(OpLoad); 6425 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6426 if (Defs.insert(OpEx).second) 6427 Worklist.push_back(OpEx); 6428 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6429 if (!ConvertTy) 6430 ConvertTy = OpBC->getOperand(0)->getType(); 6431 if (OpBC->getOperand(0)->getType() != ConvertTy) 6432 return false; 6433 if (Defs.insert(OpBC).second) { 6434 Worklist.push_back(OpBC); 6435 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6436 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6437 } 6438 } else if (auto *OpC = dyn_cast<ConstantData>(V)) 6439 Constants.insert(OpC); 6440 else 6441 return false; 6442 } 6443 } 6444 6445 // Handle uses which might also be phi's 6446 for (User *V : II->users()) { 6447 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6448 if (!PhiNodes.count(OpPhi)) { 6449 if (Visited.count(OpPhi)) 6450 return false; 6451 PhiNodes.insert(OpPhi); 6452 Visited.insert(OpPhi); 6453 Worklist.push_back(OpPhi); 6454 } 6455 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6456 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6457 return false; 6458 Uses.insert(OpStore); 6459 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6460 if (!ConvertTy) 6461 ConvertTy = OpBC->getType(); 6462 if (OpBC->getType() != ConvertTy) 6463 return false; 6464 Uses.insert(OpBC); 6465 AnyAnchored |= 6466 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6467 } else { 6468 return false; 6469 } 6470 } 6471 } 6472 6473 if (!ConvertTy || !AnyAnchored || 6474 !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6475 return false; 6476 6477 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6478 << *ConvertTy << "\n"); 6479 6480 // Create all the new phi nodes of the new type, and bitcast any loads to the 6481 // correct type. 6482 ValueToValueMap ValMap; 6483 for (ConstantData *C : Constants) 6484 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy); 6485 for (Instruction *D : Defs) { 6486 if (isa<BitCastInst>(D)) { 6487 ValMap[D] = D->getOperand(0); 6488 DeletedInstrs.insert(D); 6489 } else { 6490 BasicBlock::iterator insertPt = std::next(D->getIterator()); 6491 ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt); 6492 } 6493 } 6494 for (PHINode *Phi : PhiNodes) 6495 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6496 Phi->getName() + ".tc", Phi->getIterator()); 6497 // Pipe together all the PhiNodes. 6498 for (PHINode *Phi : PhiNodes) { 6499 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6500 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6501 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6502 Phi->getIncomingBlock(i)); 6503 Visited.insert(NewPhi); 6504 } 6505 // And finally pipe up the stores and bitcasts 6506 for (Instruction *U : Uses) { 6507 if (isa<BitCastInst>(U)) { 6508 DeletedInstrs.insert(U); 6509 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); 6510 } else { 6511 U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", 6512 U->getIterator())); 6513 } 6514 } 6515 6516 // Save the removed phis to be deleted later. 6517 for (PHINode *Phi : PhiNodes) 6518 DeletedInstrs.insert(Phi); 6519 return true; 6520 } 6521 6522 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6523 if (!OptimizePhiTypes) 6524 return false; 6525 6526 bool Changed = false; 6527 SmallPtrSet<PHINode *, 4> Visited; 6528 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6529 6530 // Attempt to optimize all the phis in the functions to the correct type. 6531 for (auto &BB : F) 6532 for (auto &Phi : BB.phis()) 6533 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6534 6535 // Remove any old phi's that have been converted. 6536 for (auto *I : DeletedInstrs) { 6537 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); 6538 I->eraseFromParent(); 6539 } 6540 6541 return Changed; 6542 } 6543 6544 /// Return true, if an ext(load) can be formed from an extension in 6545 /// \p MovedExts. 6546 bool CodeGenPrepare::canFormExtLd( 6547 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6548 Instruction *&Inst, bool HasPromoted) { 6549 for (auto *MovedExtInst : MovedExts) { 6550 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6551 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6552 Inst = MovedExtInst; 6553 break; 6554 } 6555 } 6556 if (!LI) 6557 return false; 6558 6559 // If they're already in the same block, there's nothing to do. 6560 // Make the cheap checks first if we did not promote. 6561 // If we promoted, we need to check if it is indeed profitable. 6562 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6563 return false; 6564 6565 return TLI->isExtLoad(LI, Inst, *DL); 6566 } 6567 6568 /// Move a zext or sext fed by a load into the same basic block as the load, 6569 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6570 /// extend into the load. 6571 /// 6572 /// E.g., 6573 /// \code 6574 /// %ld = load i32* %addr 6575 /// %add = add nuw i32 %ld, 4 6576 /// %zext = zext i32 %add to i64 6577 // \endcode 6578 /// => 6579 /// \code 6580 /// %ld = load i32* %addr 6581 /// %zext = zext i32 %ld to i64 6582 /// %add = add nuw i64 %zext, 4 6583 /// \encode 6584 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6585 /// allow us to match zext(load i32*) to i64. 6586 /// 6587 /// Also, try to promote the computations used to obtain a sign extended 6588 /// value used into memory accesses. 6589 /// E.g., 6590 /// \code 6591 /// a = add nsw i32 b, 3 6592 /// d = sext i32 a to i64 6593 /// e = getelementptr ..., i64 d 6594 /// \endcode 6595 /// => 6596 /// \code 6597 /// f = sext i32 b to i64 6598 /// a = add nsw i64 f, 3 6599 /// e = getelementptr ..., i64 a 6600 /// \endcode 6601 /// 6602 /// \p Inst[in/out] the extension may be modified during the process if some 6603 /// promotions apply. 6604 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6605 bool AllowPromotionWithoutCommonHeader = false; 6606 /// See if it is an interesting sext operations for the address type 6607 /// promotion before trying to promote it, e.g., the ones with the right 6608 /// type and used in memory accesses. 6609 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6610 *Inst, AllowPromotionWithoutCommonHeader); 6611 TypePromotionTransaction TPT(RemovedInsts); 6612 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6613 TPT.getRestorationPoint(); 6614 SmallVector<Instruction *, 1> Exts; 6615 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6616 Exts.push_back(Inst); 6617 6618 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6619 6620 // Look for a load being extended. 6621 LoadInst *LI = nullptr; 6622 Instruction *ExtFedByLoad; 6623 6624 // Try to promote a chain of computation if it allows to form an extended 6625 // load. 6626 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6627 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6628 TPT.commit(); 6629 // Move the extend into the same block as the load. 6630 ExtFedByLoad->moveAfter(LI); 6631 ++NumExtsMoved; 6632 Inst = ExtFedByLoad; 6633 return true; 6634 } 6635 6636 // Continue promoting SExts if known as considerable depending on targets. 6637 if (ATPConsiderable && 6638 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6639 HasPromoted, TPT, SpeculativelyMovedExts)) 6640 return true; 6641 6642 TPT.rollback(LastKnownGood); 6643 return false; 6644 } 6645 6646 // Perform address type promotion if doing so is profitable. 6647 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6648 // instructions that sign extended the same initial value. However, if 6649 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6650 // extension is just profitable. 6651 bool CodeGenPrepare::performAddressTypePromotion( 6652 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6653 bool HasPromoted, TypePromotionTransaction &TPT, 6654 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6655 bool Promoted = false; 6656 SmallPtrSet<Instruction *, 1> UnhandledExts; 6657 bool AllSeenFirst = true; 6658 for (auto *I : SpeculativelyMovedExts) { 6659 Value *HeadOfChain = I->getOperand(0); 6660 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6661 SeenChainsForSExt.find(HeadOfChain); 6662 // If there is an unhandled SExt which has the same header, try to promote 6663 // it as well. 6664 if (AlreadySeen != SeenChainsForSExt.end()) { 6665 if (AlreadySeen->second != nullptr) 6666 UnhandledExts.insert(AlreadySeen->second); 6667 AllSeenFirst = false; 6668 } 6669 } 6670 6671 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6672 SpeculativelyMovedExts.size() == 1)) { 6673 TPT.commit(); 6674 if (HasPromoted) 6675 Promoted = true; 6676 for (auto *I : SpeculativelyMovedExts) { 6677 Value *HeadOfChain = I->getOperand(0); 6678 SeenChainsForSExt[HeadOfChain] = nullptr; 6679 ValToSExtendedUses[HeadOfChain].push_back(I); 6680 } 6681 // Update Inst as promotion happen. 6682 Inst = SpeculativelyMovedExts.pop_back_val(); 6683 } else { 6684 // This is the first chain visited from the header, keep the current chain 6685 // as unhandled. Defer to promote this until we encounter another SExt 6686 // chain derived from the same header. 6687 for (auto *I : SpeculativelyMovedExts) { 6688 Value *HeadOfChain = I->getOperand(0); 6689 SeenChainsForSExt[HeadOfChain] = Inst; 6690 } 6691 return false; 6692 } 6693 6694 if (!AllSeenFirst && !UnhandledExts.empty()) 6695 for (auto *VisitedSExt : UnhandledExts) { 6696 if (RemovedInsts.count(VisitedSExt)) 6697 continue; 6698 TypePromotionTransaction TPT(RemovedInsts); 6699 SmallVector<Instruction *, 1> Exts; 6700 SmallVector<Instruction *, 2> Chains; 6701 Exts.push_back(VisitedSExt); 6702 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6703 TPT.commit(); 6704 if (HasPromoted) 6705 Promoted = true; 6706 for (auto *I : Chains) { 6707 Value *HeadOfChain = I->getOperand(0); 6708 // Mark this as handled. 6709 SeenChainsForSExt[HeadOfChain] = nullptr; 6710 ValToSExtendedUses[HeadOfChain].push_back(I); 6711 } 6712 } 6713 return Promoted; 6714 } 6715 6716 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6717 BasicBlock *DefBB = I->getParent(); 6718 6719 // If the result of a {s|z}ext and its source are both live out, rewrite all 6720 // other uses of the source with result of extension. 6721 Value *Src = I->getOperand(0); 6722 if (Src->hasOneUse()) 6723 return false; 6724 6725 // Only do this xform if truncating is free. 6726 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6727 return false; 6728 6729 // Only safe to perform the optimization if the source is also defined in 6730 // this block. 6731 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6732 return false; 6733 6734 bool DefIsLiveOut = false; 6735 for (User *U : I->users()) { 6736 Instruction *UI = cast<Instruction>(U); 6737 6738 // Figure out which BB this ext is used in. 6739 BasicBlock *UserBB = UI->getParent(); 6740 if (UserBB == DefBB) 6741 continue; 6742 DefIsLiveOut = true; 6743 break; 6744 } 6745 if (!DefIsLiveOut) 6746 return false; 6747 6748 // Make sure none of the uses are PHI nodes. 6749 for (User *U : Src->users()) { 6750 Instruction *UI = cast<Instruction>(U); 6751 BasicBlock *UserBB = UI->getParent(); 6752 if (UserBB == DefBB) 6753 continue; 6754 // Be conservative. We don't want this xform to end up introducing 6755 // reloads just before load / store instructions. 6756 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6757 return false; 6758 } 6759 6760 // InsertedTruncs - Only insert one trunc in each block once. 6761 DenseMap<BasicBlock *, Instruction *> InsertedTruncs; 6762 6763 bool MadeChange = false; 6764 for (Use &U : Src->uses()) { 6765 Instruction *User = cast<Instruction>(U.getUser()); 6766 6767 // Figure out which BB this ext is used in. 6768 BasicBlock *UserBB = User->getParent(); 6769 if (UserBB == DefBB) 6770 continue; 6771 6772 // Both src and def are live in this block. Rewrite the use. 6773 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6774 6775 if (!InsertedTrunc) { 6776 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6777 assert(InsertPt != UserBB->end()); 6778 InsertedTrunc = new TruncInst(I, Src->getType(), ""); 6779 InsertedTrunc->insertBefore(*UserBB, InsertPt); 6780 InsertedInsts.insert(InsertedTrunc); 6781 } 6782 6783 // Replace a use of the {s|z}ext source with a use of the result. 6784 U = InsertedTrunc; 6785 ++NumExtUses; 6786 MadeChange = true; 6787 } 6788 6789 return MadeChange; 6790 } 6791 6792 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6793 // just after the load if the target can fold this into one extload instruction, 6794 // with the hope of eliminating some of the other later "and" instructions using 6795 // the loaded value. "and"s that are made trivially redundant by the insertion 6796 // of the new "and" are removed by this function, while others (e.g. those whose 6797 // path from the load goes through a phi) are left for isel to potentially 6798 // remove. 6799 // 6800 // For example: 6801 // 6802 // b0: 6803 // x = load i32 6804 // ... 6805 // b1: 6806 // y = and x, 0xff 6807 // z = use y 6808 // 6809 // becomes: 6810 // 6811 // b0: 6812 // x = load i32 6813 // x' = and x, 0xff 6814 // ... 6815 // b1: 6816 // z = use x' 6817 // 6818 // whereas: 6819 // 6820 // b0: 6821 // x1 = load i32 6822 // ... 6823 // b1: 6824 // x2 = load i32 6825 // ... 6826 // b2: 6827 // x = phi x1, x2 6828 // y = and x, 0xff 6829 // 6830 // becomes (after a call to optimizeLoadExt for each load): 6831 // 6832 // b0: 6833 // x1 = load i32 6834 // x1' = and x1, 0xff 6835 // ... 6836 // b1: 6837 // x2 = load i32 6838 // x2' = and x2, 0xff 6839 // ... 6840 // b2: 6841 // x = phi x1', x2' 6842 // y = and x, 0xff 6843 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6844 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6845 return false; 6846 6847 // Skip loads we've already transformed. 6848 if (Load->hasOneUse() && 6849 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6850 return false; 6851 6852 // Look at all uses of Load, looking through phis, to determine how many bits 6853 // of the loaded value are needed. 6854 SmallVector<Instruction *, 8> WorkList; 6855 SmallPtrSet<Instruction *, 16> Visited; 6856 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6857 for (auto *U : Load->users()) 6858 WorkList.push_back(cast<Instruction>(U)); 6859 6860 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6861 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6862 // If the BitWidth is 0, do not try to optimize the type 6863 if (BitWidth == 0) 6864 return false; 6865 6866 APInt DemandBits(BitWidth, 0); 6867 APInt WidestAndBits(BitWidth, 0); 6868 6869 while (!WorkList.empty()) { 6870 Instruction *I = WorkList.pop_back_val(); 6871 6872 // Break use-def graph loops. 6873 if (!Visited.insert(I).second) 6874 continue; 6875 6876 // For a PHI node, push all of its users. 6877 if (auto *Phi = dyn_cast<PHINode>(I)) { 6878 for (auto *U : Phi->users()) 6879 WorkList.push_back(cast<Instruction>(U)); 6880 continue; 6881 } 6882 6883 switch (I->getOpcode()) { 6884 case Instruction::And: { 6885 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6886 if (!AndC) 6887 return false; 6888 APInt AndBits = AndC->getValue(); 6889 DemandBits |= AndBits; 6890 // Keep track of the widest and mask we see. 6891 if (AndBits.ugt(WidestAndBits)) 6892 WidestAndBits = AndBits; 6893 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6894 AndsToMaybeRemove.push_back(I); 6895 break; 6896 } 6897 6898 case Instruction::Shl: { 6899 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6900 if (!ShlC) 6901 return false; 6902 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6903 DemandBits.setLowBits(BitWidth - ShiftAmt); 6904 break; 6905 } 6906 6907 case Instruction::Trunc: { 6908 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6909 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6910 DemandBits.setLowBits(TruncBitWidth); 6911 break; 6912 } 6913 6914 default: 6915 return false; 6916 } 6917 } 6918 6919 uint32_t ActiveBits = DemandBits.getActiveBits(); 6920 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6921 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6922 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6923 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6924 // followed by an AND. 6925 // TODO: Look into removing this restriction by fixing backends to either 6926 // return false for isLoadExtLegal for i1 or have them select this pattern to 6927 // a single instruction. 6928 // 6929 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6930 // mask, since these are the only ands that will be removed by isel. 6931 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6932 WidestAndBits != DemandBits) 6933 return false; 6934 6935 LLVMContext &Ctx = Load->getType()->getContext(); 6936 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6937 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6938 6939 // Reject cases that won't be matched as extloads. 6940 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6941 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6942 return false; 6943 6944 IRBuilder<> Builder(Load->getNextNonDebugInstruction()); 6945 auto *NewAnd = cast<Instruction>( 6946 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6947 // Mark this instruction as "inserted by CGP", so that other 6948 // optimizations don't touch it. 6949 InsertedInsts.insert(NewAnd); 6950 6951 // Replace all uses of load with new and (except for the use of load in the 6952 // new and itself). 6953 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); 6954 NewAnd->setOperand(0, Load); 6955 6956 // Remove any and instructions that are now redundant. 6957 for (auto *And : AndsToMaybeRemove) 6958 // Check that the and mask is the same as the one we decided to put on the 6959 // new and. 6960 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6961 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); 6962 if (&*CurInstIterator == And) 6963 CurInstIterator = std::next(And->getIterator()); 6964 And->eraseFromParent(); 6965 ++NumAndUses; 6966 } 6967 6968 ++NumAndsAdded; 6969 return true; 6970 } 6971 6972 /// Check if V (an operand of a select instruction) is an expensive instruction 6973 /// that is only used once. 6974 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6975 auto *I = dyn_cast<Instruction>(V); 6976 // If it's safe to speculatively execute, then it should not have side 6977 // effects; therefore, it's safe to sink and possibly *not* execute. 6978 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6979 TTI->isExpensiveToSpeculativelyExecute(I); 6980 } 6981 6982 /// Returns true if a SelectInst should be turned into an explicit branch. 6983 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6984 const TargetLowering *TLI, 6985 SelectInst *SI) { 6986 // If even a predictable select is cheap, then a branch can't be cheaper. 6987 if (!TLI->isPredictableSelectExpensive()) 6988 return false; 6989 6990 // FIXME: This should use the same heuristics as IfConversion to determine 6991 // whether a select is better represented as a branch. 6992 6993 // If metadata tells us that the select condition is obviously predictable, 6994 // then we want to replace the select with a branch. 6995 uint64_t TrueWeight, FalseWeight; 6996 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { 6997 uint64_t Max = std::max(TrueWeight, FalseWeight); 6998 uint64_t Sum = TrueWeight + FalseWeight; 6999 if (Sum != 0) { 7000 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 7001 if (Probability > TTI->getPredictableBranchThreshold()) 7002 return true; 7003 } 7004 } 7005 7006 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 7007 7008 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 7009 // comparison condition. If the compare has more than one use, there's 7010 // probably another cmov or setcc around, so it's not worth emitting a branch. 7011 if (!Cmp || !Cmp->hasOneUse()) 7012 return false; 7013 7014 // If either operand of the select is expensive and only needed on one side 7015 // of the select, we should form a branch. 7016 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 7017 sinkSelectOperand(TTI, SI->getFalseValue())) 7018 return true; 7019 7020 return false; 7021 } 7022 7023 /// If \p isTrue is true, return the true value of \p SI, otherwise return 7024 /// false value of \p SI. If the true/false value of \p SI is defined by any 7025 /// select instructions in \p Selects, look through the defining select 7026 /// instruction until the true/false value is not defined in \p Selects. 7027 static Value * 7028 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 7029 const SmallPtrSet<const Instruction *, 2> &Selects) { 7030 Value *V = nullptr; 7031 7032 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 7033 DefSI = dyn_cast<SelectInst>(V)) { 7034 assert(DefSI->getCondition() == SI->getCondition() && 7035 "The condition of DefSI does not match with SI"); 7036 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 7037 } 7038 7039 assert(V && "Failed to get select true/false value"); 7040 return V; 7041 } 7042 7043 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 7044 assert(Shift->isShift() && "Expected a shift"); 7045 7046 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 7047 // general vector shifts, and (3) the shift amount is a select-of-splatted 7048 // values, hoist the shifts before the select: 7049 // shift Op0, (select Cond, TVal, FVal) --> 7050 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 7051 // 7052 // This is inverting a generic IR transform when we know that the cost of a 7053 // general vector shift is more than the cost of 2 shift-by-scalars. 7054 // We can't do this effectively in SDAG because we may not be able to 7055 // determine if the select operands are splats from within a basic block. 7056 Type *Ty = Shift->getType(); 7057 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 7058 return false; 7059 Value *Cond, *TVal, *FVal; 7060 if (!match(Shift->getOperand(1), 7061 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7062 return false; 7063 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7064 return false; 7065 7066 IRBuilder<> Builder(Shift); 7067 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 7068 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 7069 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 7070 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7071 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); 7072 Shift->eraseFromParent(); 7073 return true; 7074 } 7075 7076 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 7077 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 7078 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 7079 "Expected a funnel shift"); 7080 7081 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 7082 // than general vector shifts, and (3) the shift amount is select-of-splatted 7083 // values, hoist the funnel shifts before the select: 7084 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 7085 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 7086 // 7087 // This is inverting a generic IR transform when we know that the cost of a 7088 // general vector shift is more than the cost of 2 shift-by-scalars. 7089 // We can't do this effectively in SDAG because we may not be able to 7090 // determine if the select operands are splats from within a basic block. 7091 Type *Ty = Fsh->getType(); 7092 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 7093 return false; 7094 Value *Cond, *TVal, *FVal; 7095 if (!match(Fsh->getOperand(2), 7096 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7097 return false; 7098 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7099 return false; 7100 7101 IRBuilder<> Builder(Fsh); 7102 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 7103 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); 7104 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); 7105 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7106 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); 7107 Fsh->eraseFromParent(); 7108 return true; 7109 } 7110 7111 /// If we have a SelectInst that will likely profit from branch prediction, 7112 /// turn it into a branch. 7113 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 7114 if (DisableSelectToBranch) 7115 return false; 7116 7117 // If the SelectOptimize pass is enabled, selects have already been optimized. 7118 if (!getCGPassBuilderOption().DisableSelectOptimize) 7119 return false; 7120 7121 // Find all consecutive select instructions that share the same condition. 7122 SmallVector<SelectInst *, 2> ASI; 7123 ASI.push_back(SI); 7124 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 7125 It != SI->getParent()->end(); ++It) { 7126 SelectInst *I = dyn_cast<SelectInst>(&*It); 7127 if (I && SI->getCondition() == I->getCondition()) { 7128 ASI.push_back(I); 7129 } else { 7130 break; 7131 } 7132 } 7133 7134 SelectInst *LastSI = ASI.back(); 7135 // Increment the current iterator to skip all the rest of select instructions 7136 // because they will be either "not lowered" or "all lowered" to branch. 7137 CurInstIterator = std::next(LastSI->getIterator()); 7138 // Examine debug-info attached to the consecutive select instructions. They 7139 // won't be individually optimised by optimizeInst, so we need to perform 7140 // DbgVariableRecord maintenence here instead. 7141 for (SelectInst *SI : ArrayRef(ASI).drop_front()) 7142 fixupDbgVariableRecordsOnInst(*SI); 7143 7144 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 7145 7146 // Can we convert the 'select' to CF ? 7147 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 7148 return false; 7149 7150 TargetLowering::SelectSupportKind SelectKind; 7151 if (SI->getType()->isVectorTy()) 7152 SelectKind = TargetLowering::ScalarCondVectorVal; 7153 else 7154 SelectKind = TargetLowering::ScalarValSelect; 7155 7156 if (TLI->isSelectSupported(SelectKind) && 7157 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 7158 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 7159 return false; 7160 7161 // The DominatorTree needs to be rebuilt by any consumers after this 7162 // transformation. We simply reset here rather than setting the ModifiedDT 7163 // flag to avoid restarting the function walk in runOnFunction for each 7164 // select optimized. 7165 DT.reset(); 7166 7167 // Transform a sequence like this: 7168 // start: 7169 // %cmp = cmp uge i32 %a, %b 7170 // %sel = select i1 %cmp, i32 %c, i32 %d 7171 // 7172 // Into: 7173 // start: 7174 // %cmp = cmp uge i32 %a, %b 7175 // %cmp.frozen = freeze %cmp 7176 // br i1 %cmp.frozen, label %select.true, label %select.false 7177 // select.true: 7178 // br label %select.end 7179 // select.false: 7180 // br label %select.end 7181 // select.end: 7182 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 7183 // 7184 // %cmp should be frozen, otherwise it may introduce undefined behavior. 7185 // In addition, we may sink instructions that produce %c or %d from 7186 // the entry block into the destination(s) of the new branch. 7187 // If the true or false blocks do not contain a sunken instruction, that 7188 // block and its branch may be optimized away. In that case, one side of the 7189 // first branch will point directly to select.end, and the corresponding PHI 7190 // predecessor block will be the start block. 7191 7192 // Collect values that go on the true side and the values that go on the false 7193 // side. 7194 SmallVector<Instruction *> TrueInstrs, FalseInstrs; 7195 for (SelectInst *SI : ASI) { 7196 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) 7197 TrueInstrs.push_back(cast<Instruction>(V)); 7198 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) 7199 FalseInstrs.push_back(cast<Instruction>(V)); 7200 } 7201 7202 // Split the select block, according to how many (if any) values go on each 7203 // side. 7204 BasicBlock *StartBlock = SI->getParent(); 7205 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI)); 7206 // We should split before any debug-info. 7207 SplitPt.setHeadBit(true); 7208 7209 IRBuilder<> IB(SI); 7210 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 7211 7212 BasicBlock *TrueBlock = nullptr; 7213 BasicBlock *FalseBlock = nullptr; 7214 BasicBlock *EndBlock = nullptr; 7215 BranchInst *TrueBranch = nullptr; 7216 BranchInst *FalseBranch = nullptr; 7217 if (TrueInstrs.size() == 0) { 7218 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse( 7219 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7220 FalseBlock = FalseBranch->getParent(); 7221 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0)); 7222 } else if (FalseInstrs.size() == 0) { 7223 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen( 7224 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7225 TrueBlock = TrueBranch->getParent(); 7226 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7227 } else { 7228 Instruction *ThenTerm = nullptr; 7229 Instruction *ElseTerm = nullptr; 7230 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm, 7231 nullptr, nullptr, LI); 7232 TrueBranch = cast<BranchInst>(ThenTerm); 7233 FalseBranch = cast<BranchInst>(ElseTerm); 7234 TrueBlock = TrueBranch->getParent(); 7235 FalseBlock = FalseBranch->getParent(); 7236 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7237 } 7238 7239 EndBlock->setName("select.end"); 7240 if (TrueBlock) 7241 TrueBlock->setName("select.true.sink"); 7242 if (FalseBlock) 7243 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" 7244 : "select.false.sink"); 7245 7246 if (IsHugeFunc) { 7247 if (TrueBlock) 7248 FreshBBs.insert(TrueBlock); 7249 if (FalseBlock) 7250 FreshBBs.insert(FalseBlock); 7251 FreshBBs.insert(EndBlock); 7252 } 7253 7254 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); 7255 7256 static const unsigned MD[] = { 7257 LLVMContext::MD_prof, LLVMContext::MD_unpredictable, 7258 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; 7259 StartBlock->getTerminator()->copyMetadata(*SI, MD); 7260 7261 // Sink expensive instructions into the conditional blocks to avoid executing 7262 // them speculatively. 7263 for (Instruction *I : TrueInstrs) 7264 I->moveBefore(TrueBranch); 7265 for (Instruction *I : FalseInstrs) 7266 I->moveBefore(FalseBranch); 7267 7268 // If we did not create a new block for one of the 'true' or 'false' paths 7269 // of the condition, it means that side of the branch goes to the end block 7270 // directly and the path originates from the start block from the point of 7271 // view of the new PHI. 7272 if (TrueBlock == nullptr) 7273 TrueBlock = StartBlock; 7274 else if (FalseBlock == nullptr) 7275 FalseBlock = StartBlock; 7276 7277 SmallPtrSet<const Instruction *, 2> INS; 7278 INS.insert(ASI.begin(), ASI.end()); 7279 // Use reverse iterator because later select may use the value of the 7280 // earlier select, and we need to propagate value through earlier select 7281 // to get the PHI operand. 7282 for (SelectInst *SI : llvm::reverse(ASI)) { 7283 // The select itself is replaced with a PHI Node. 7284 PHINode *PN = PHINode::Create(SI->getType(), 2, ""); 7285 PN->insertBefore(EndBlock->begin()); 7286 PN->takeName(SI); 7287 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 7288 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 7289 PN->setDebugLoc(SI->getDebugLoc()); 7290 7291 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); 7292 SI->eraseFromParent(); 7293 INS.erase(SI); 7294 ++NumSelectsExpanded; 7295 } 7296 7297 // Instruct OptimizeBlock to skip to the next block. 7298 CurInstIterator = StartBlock->end(); 7299 return true; 7300 } 7301 7302 /// Some targets only accept certain types for splat inputs. For example a VDUP 7303 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 7304 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 7305 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 7306 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 7307 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 7308 m_Undef(), m_ZeroMask()))) 7309 return false; 7310 Type *NewType = TLI->shouldConvertSplatType(SVI); 7311 if (!NewType) 7312 return false; 7313 7314 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 7315 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 7316 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 7317 "Expected a type of the same size!"); 7318 auto *NewVecType = 7319 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 7320 7321 // Create a bitcast (shuffle (insert (bitcast(..)))) 7322 IRBuilder<> Builder(SVI->getContext()); 7323 Builder.SetInsertPoint(SVI); 7324 Value *BC1 = Builder.CreateBitCast( 7325 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 7326 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 7327 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 7328 7329 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); 7330 RecursivelyDeleteTriviallyDeadInstructions( 7331 SVI, TLInfo, nullptr, 7332 [&](Value *V) { removeAllAssertingVHReferences(V); }); 7333 7334 // Also hoist the bitcast up to its operand if it they are not in the same 7335 // block. 7336 if (auto *BCI = dyn_cast<Instruction>(BC1)) 7337 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 7338 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 7339 !Op->isTerminator() && !Op->isEHPad()) 7340 BCI->moveAfter(Op); 7341 7342 return true; 7343 } 7344 7345 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 7346 // If the operands of I can be folded into a target instruction together with 7347 // I, duplicate and sink them. 7348 SmallVector<Use *, 4> OpsToSink; 7349 if (!TLI->shouldSinkOperands(I, OpsToSink)) 7350 return false; 7351 7352 // OpsToSink can contain multiple uses in a use chain (e.g. 7353 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 7354 // uses must come first, so we process the ops in reverse order so as to not 7355 // create invalid IR. 7356 BasicBlock *TargetBB = I->getParent(); 7357 bool Changed = false; 7358 SmallVector<Use *, 4> ToReplace; 7359 Instruction *InsertPoint = I; 7360 DenseMap<const Instruction *, unsigned long> InstOrdering; 7361 unsigned long InstNumber = 0; 7362 for (const auto &I : *TargetBB) 7363 InstOrdering[&I] = InstNumber++; 7364 7365 for (Use *U : reverse(OpsToSink)) { 7366 auto *UI = cast<Instruction>(U->get()); 7367 if (isa<PHINode>(UI)) 7368 continue; 7369 if (UI->getParent() == TargetBB) { 7370 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 7371 InsertPoint = UI; 7372 continue; 7373 } 7374 ToReplace.push_back(U); 7375 } 7376 7377 SetVector<Instruction *> MaybeDead; 7378 DenseMap<Instruction *, Instruction *> NewInstructions; 7379 for (Use *U : ToReplace) { 7380 auto *UI = cast<Instruction>(U->get()); 7381 Instruction *NI = UI->clone(); 7382 7383 if (IsHugeFunc) { 7384 // Now we clone an instruction, its operands' defs may sink to this BB 7385 // now. So we put the operands defs' BBs into FreshBBs to do optimization. 7386 for (Value *Op : NI->operands()) 7387 if (auto *OpDef = dyn_cast<Instruction>(Op)) 7388 FreshBBs.insert(OpDef->getParent()); 7389 } 7390 7391 NewInstructions[UI] = NI; 7392 MaybeDead.insert(UI); 7393 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 7394 NI->insertBefore(InsertPoint); 7395 InsertPoint = NI; 7396 InsertedInsts.insert(NI); 7397 7398 // Update the use for the new instruction, making sure that we update the 7399 // sunk instruction uses, if it is part of a chain that has already been 7400 // sunk. 7401 Instruction *OldI = cast<Instruction>(U->getUser()); 7402 if (NewInstructions.count(OldI)) 7403 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 7404 else 7405 U->set(NI); 7406 Changed = true; 7407 } 7408 7409 // Remove instructions that are dead after sinking. 7410 for (auto *I : MaybeDead) { 7411 if (!I->hasNUsesOrMore(1)) { 7412 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7413 I->eraseFromParent(); 7414 } 7415 } 7416 7417 return Changed; 7418 } 7419 7420 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7421 Value *Cond = SI->getCondition(); 7422 Type *OldType = Cond->getType(); 7423 LLVMContext &Context = Cond->getContext(); 7424 EVT OldVT = TLI->getValueType(*DL, OldType); 7425 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7426 unsigned RegWidth = RegType.getSizeInBits(); 7427 7428 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7429 return false; 7430 7431 // If the register width is greater than the type width, expand the condition 7432 // of the switch instruction and each case constant to the width of the 7433 // register. By widening the type of the switch condition, subsequent 7434 // comparisons (for case comparisons) will not need to be extended to the 7435 // preferred register width, so we will potentially eliminate N-1 extends, 7436 // where N is the number of cases in the switch. 7437 auto *NewType = Type::getIntNTy(Context, RegWidth); 7438 7439 // Extend the switch condition and case constants using the target preferred 7440 // extend unless the switch condition is a function argument with an extend 7441 // attribute. In that case, we can avoid an unnecessary mask/extension by 7442 // matching the argument extension instead. 7443 Instruction::CastOps ExtType = Instruction::ZExt; 7444 // Some targets prefer SExt over ZExt. 7445 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7446 ExtType = Instruction::SExt; 7447 7448 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7449 if (Arg->hasSExtAttr()) 7450 ExtType = Instruction::SExt; 7451 if (Arg->hasZExtAttr()) 7452 ExtType = Instruction::ZExt; 7453 } 7454 7455 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7456 ExtInst->insertBefore(SI); 7457 ExtInst->setDebugLoc(SI->getDebugLoc()); 7458 SI->setCondition(ExtInst); 7459 for (auto Case : SI->cases()) { 7460 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7461 APInt WideConst = (ExtType == Instruction::ZExt) 7462 ? NarrowConst.zext(RegWidth) 7463 : NarrowConst.sext(RegWidth); 7464 Case.setValue(ConstantInt::get(Context, WideConst)); 7465 } 7466 7467 return true; 7468 } 7469 7470 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7471 // The SCCP optimization tends to produce code like this: 7472 // switch(x) { case 42: phi(42, ...) } 7473 // Materializing the constant for the phi-argument needs instructions; So we 7474 // change the code to: 7475 // switch(x) { case 42: phi(x, ...) } 7476 7477 Value *Condition = SI->getCondition(); 7478 // Avoid endless loop in degenerate case. 7479 if (isa<ConstantInt>(*Condition)) 7480 return false; 7481 7482 bool Changed = false; 7483 BasicBlock *SwitchBB = SI->getParent(); 7484 Type *ConditionType = Condition->getType(); 7485 7486 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7487 ConstantInt *CaseValue = Case.getCaseValue(); 7488 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7489 // Set to true if we previously checked that `CaseBB` is only reached by 7490 // a single case from this switch. 7491 bool CheckedForSinglePred = false; 7492 for (PHINode &PHI : CaseBB->phis()) { 7493 Type *PHIType = PHI.getType(); 7494 // If ZExt is free then we can also catch patterns like this: 7495 // switch((i32)x) { case 42: phi((i64)42, ...); } 7496 // and replace `(i64)42` with `zext i32 %x to i64`. 7497 bool TryZExt = 7498 PHIType->isIntegerTy() && 7499 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7500 TLI->isZExtFree(ConditionType, PHIType); 7501 if (PHIType == ConditionType || TryZExt) { 7502 // Set to true to skip this case because of multiple preds. 7503 bool SkipCase = false; 7504 Value *Replacement = nullptr; 7505 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7506 Value *PHIValue = PHI.getIncomingValue(I); 7507 if (PHIValue != CaseValue) { 7508 if (!TryZExt) 7509 continue; 7510 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7511 if (!PHIValueInt || 7512 PHIValueInt->getValue() != 7513 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7514 continue; 7515 } 7516 if (PHI.getIncomingBlock(I) != SwitchBB) 7517 continue; 7518 // We cannot optimize if there are multiple case labels jumping to 7519 // this block. This check may get expensive when there are many 7520 // case labels so we test for it last. 7521 if (!CheckedForSinglePred) { 7522 CheckedForSinglePred = true; 7523 if (SI->findCaseDest(CaseBB) == nullptr) { 7524 SkipCase = true; 7525 break; 7526 } 7527 } 7528 7529 if (Replacement == nullptr) { 7530 if (PHIValue == CaseValue) { 7531 Replacement = Condition; 7532 } else { 7533 IRBuilder<> Builder(SI); 7534 Replacement = Builder.CreateZExt(Condition, PHIType); 7535 } 7536 } 7537 PHI.setIncomingValue(I, Replacement); 7538 Changed = true; 7539 } 7540 if (SkipCase) 7541 break; 7542 } 7543 } 7544 } 7545 return Changed; 7546 } 7547 7548 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7549 bool Changed = optimizeSwitchType(SI); 7550 Changed |= optimizeSwitchPhiConstants(SI); 7551 return Changed; 7552 } 7553 7554 namespace { 7555 7556 /// Helper class to promote a scalar operation to a vector one. 7557 /// This class is used to move downward extractelement transition. 7558 /// E.g., 7559 /// a = vector_op <2 x i32> 7560 /// b = extractelement <2 x i32> a, i32 0 7561 /// c = scalar_op b 7562 /// store c 7563 /// 7564 /// => 7565 /// a = vector_op <2 x i32> 7566 /// c = vector_op a (equivalent to scalar_op on the related lane) 7567 /// * d = extractelement <2 x i32> c, i32 0 7568 /// * store d 7569 /// Assuming both extractelement and store can be combine, we get rid of the 7570 /// transition. 7571 class VectorPromoteHelper { 7572 /// DataLayout associated with the current module. 7573 const DataLayout &DL; 7574 7575 /// Used to perform some checks on the legality of vector operations. 7576 const TargetLowering &TLI; 7577 7578 /// Used to estimated the cost of the promoted chain. 7579 const TargetTransformInfo &TTI; 7580 7581 /// The transition being moved downwards. 7582 Instruction *Transition; 7583 7584 /// The sequence of instructions to be promoted. 7585 SmallVector<Instruction *, 4> InstsToBePromoted; 7586 7587 /// Cost of combining a store and an extract. 7588 unsigned StoreExtractCombineCost; 7589 7590 /// Instruction that will be combined with the transition. 7591 Instruction *CombineInst = nullptr; 7592 7593 /// The instruction that represents the current end of the transition. 7594 /// Since we are faking the promotion until we reach the end of the chain 7595 /// of computation, we need a way to get the current end of the transition. 7596 Instruction *getEndOfTransition() const { 7597 if (InstsToBePromoted.empty()) 7598 return Transition; 7599 return InstsToBePromoted.back(); 7600 } 7601 7602 /// Return the index of the original value in the transition. 7603 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7604 /// c, is at index 0. 7605 unsigned getTransitionOriginalValueIdx() const { 7606 assert(isa<ExtractElementInst>(Transition) && 7607 "Other kind of transitions are not supported yet"); 7608 return 0; 7609 } 7610 7611 /// Return the index of the index in the transition. 7612 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7613 /// is at index 1. 7614 unsigned getTransitionIdx() const { 7615 assert(isa<ExtractElementInst>(Transition) && 7616 "Other kind of transitions are not supported yet"); 7617 return 1; 7618 } 7619 7620 /// Get the type of the transition. 7621 /// This is the type of the original value. 7622 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7623 /// transition is <2 x i32>. 7624 Type *getTransitionType() const { 7625 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7626 } 7627 7628 /// Promote \p ToBePromoted by moving \p Def downward through. 7629 /// I.e., we have the following sequence: 7630 /// Def = Transition <ty1> a to <ty2> 7631 /// b = ToBePromoted <ty2> Def, ... 7632 /// => 7633 /// b = ToBePromoted <ty1> a, ... 7634 /// Def = Transition <ty1> ToBePromoted to <ty2> 7635 void promoteImpl(Instruction *ToBePromoted); 7636 7637 /// Check whether or not it is profitable to promote all the 7638 /// instructions enqueued to be promoted. 7639 bool isProfitableToPromote() { 7640 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7641 unsigned Index = isa<ConstantInt>(ValIdx) 7642 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7643 : -1; 7644 Type *PromotedType = getTransitionType(); 7645 7646 StoreInst *ST = cast<StoreInst>(CombineInst); 7647 unsigned AS = ST->getPointerAddressSpace(); 7648 // Check if this store is supported. 7649 if (!TLI.allowsMisalignedMemoryAccesses( 7650 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7651 ST->getAlign())) { 7652 // If this is not supported, there is no way we can combine 7653 // the extract with the store. 7654 return false; 7655 } 7656 7657 // The scalar chain of computation has to pay for the transition 7658 // scalar to vector. 7659 // The vector chain has to account for the combining cost. 7660 enum TargetTransformInfo::TargetCostKind CostKind = 7661 TargetTransformInfo::TCK_RecipThroughput; 7662 InstructionCost ScalarCost = 7663 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); 7664 InstructionCost VectorCost = StoreExtractCombineCost; 7665 for (const auto &Inst : InstsToBePromoted) { 7666 // Compute the cost. 7667 // By construction, all instructions being promoted are arithmetic ones. 7668 // Moreover, one argument is a constant that can be viewed as a splat 7669 // constant. 7670 Value *Arg0 = Inst->getOperand(0); 7671 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7672 isa<ConstantFP>(Arg0); 7673 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; 7674 if (IsArg0Constant) 7675 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7676 else 7677 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7678 7679 ScalarCost += TTI.getArithmeticInstrCost( 7680 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); 7681 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7682 CostKind, Arg0Info, Arg1Info); 7683 } 7684 LLVM_DEBUG( 7685 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7686 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7687 return ScalarCost > VectorCost; 7688 } 7689 7690 /// Generate a constant vector with \p Val with the same 7691 /// number of elements as the transition. 7692 /// \p UseSplat defines whether or not \p Val should be replicated 7693 /// across the whole vector. 7694 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7695 /// otherwise we generate a vector with as many undef as possible: 7696 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7697 /// used at the index of the extract. 7698 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7699 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7700 if (!UseSplat) { 7701 // If we cannot determine where the constant must be, we have to 7702 // use a splat constant. 7703 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7704 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7705 ExtractIdx = CstVal->getSExtValue(); 7706 else 7707 UseSplat = true; 7708 } 7709 7710 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7711 if (UseSplat) 7712 return ConstantVector::getSplat(EC, Val); 7713 7714 if (!EC.isScalable()) { 7715 SmallVector<Constant *, 4> ConstVec; 7716 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7717 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7718 if (Idx == ExtractIdx) 7719 ConstVec.push_back(Val); 7720 else 7721 ConstVec.push_back(UndefVal); 7722 } 7723 return ConstantVector::get(ConstVec); 7724 } else 7725 llvm_unreachable( 7726 "Generate scalable vector for non-splat is unimplemented"); 7727 } 7728 7729 /// Check if promoting to a vector type an operand at \p OperandIdx 7730 /// in \p Use can trigger undefined behavior. 7731 static bool canCauseUndefinedBehavior(const Instruction *Use, 7732 unsigned OperandIdx) { 7733 // This is not safe to introduce undef when the operand is on 7734 // the right hand side of a division-like instruction. 7735 if (OperandIdx != 1) 7736 return false; 7737 switch (Use->getOpcode()) { 7738 default: 7739 return false; 7740 case Instruction::SDiv: 7741 case Instruction::UDiv: 7742 case Instruction::SRem: 7743 case Instruction::URem: 7744 return true; 7745 case Instruction::FDiv: 7746 case Instruction::FRem: 7747 return !Use->hasNoNaNs(); 7748 } 7749 llvm_unreachable(nullptr); 7750 } 7751 7752 public: 7753 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7754 const TargetTransformInfo &TTI, Instruction *Transition, 7755 unsigned CombineCost) 7756 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7757 StoreExtractCombineCost(CombineCost) { 7758 assert(Transition && "Do not know how to promote null"); 7759 } 7760 7761 /// Check if we can promote \p ToBePromoted to \p Type. 7762 bool canPromote(const Instruction *ToBePromoted) const { 7763 // We could support CastInst too. 7764 return isa<BinaryOperator>(ToBePromoted); 7765 } 7766 7767 /// Check if it is profitable to promote \p ToBePromoted 7768 /// by moving downward the transition through. 7769 bool shouldPromote(const Instruction *ToBePromoted) const { 7770 // Promote only if all the operands can be statically expanded. 7771 // Indeed, we do not want to introduce any new kind of transitions. 7772 for (const Use &U : ToBePromoted->operands()) { 7773 const Value *Val = U.get(); 7774 if (Val == getEndOfTransition()) { 7775 // If the use is a division and the transition is on the rhs, 7776 // we cannot promote the operation, otherwise we may create a 7777 // division by zero. 7778 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7779 return false; 7780 continue; 7781 } 7782 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7783 !isa<ConstantFP>(Val)) 7784 return false; 7785 } 7786 // Check that the resulting operation is legal. 7787 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7788 if (!ISDOpcode) 7789 return false; 7790 return StressStoreExtract || 7791 TLI.isOperationLegalOrCustom( 7792 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7793 } 7794 7795 /// Check whether or not \p Use can be combined 7796 /// with the transition. 7797 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7798 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7799 7800 /// Record \p ToBePromoted as part of the chain to be promoted. 7801 void enqueueForPromotion(Instruction *ToBePromoted) { 7802 InstsToBePromoted.push_back(ToBePromoted); 7803 } 7804 7805 /// Set the instruction that will be combined with the transition. 7806 void recordCombineInstruction(Instruction *ToBeCombined) { 7807 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7808 CombineInst = ToBeCombined; 7809 } 7810 7811 /// Promote all the instructions enqueued for promotion if it is 7812 /// is profitable. 7813 /// \return True if the promotion happened, false otherwise. 7814 bool promote() { 7815 // Check if there is something to promote. 7816 // Right now, if we do not have anything to combine with, 7817 // we assume the promotion is not profitable. 7818 if (InstsToBePromoted.empty() || !CombineInst) 7819 return false; 7820 7821 // Check cost. 7822 if (!StressStoreExtract && !isProfitableToPromote()) 7823 return false; 7824 7825 // Promote. 7826 for (auto &ToBePromoted : InstsToBePromoted) 7827 promoteImpl(ToBePromoted); 7828 InstsToBePromoted.clear(); 7829 return true; 7830 } 7831 }; 7832 7833 } // end anonymous namespace 7834 7835 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7836 // At this point, we know that all the operands of ToBePromoted but Def 7837 // can be statically promoted. 7838 // For Def, we need to use its parameter in ToBePromoted: 7839 // b = ToBePromoted ty1 a 7840 // Def = Transition ty1 b to ty2 7841 // Move the transition down. 7842 // 1. Replace all uses of the promoted operation by the transition. 7843 // = ... b => = ... Def. 7844 assert(ToBePromoted->getType() == Transition->getType() && 7845 "The type of the result of the transition does not match " 7846 "the final type"); 7847 ToBePromoted->replaceAllUsesWith(Transition); 7848 // 2. Update the type of the uses. 7849 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7850 Type *TransitionTy = getTransitionType(); 7851 ToBePromoted->mutateType(TransitionTy); 7852 // 3. Update all the operands of the promoted operation with promoted 7853 // operands. 7854 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7855 for (Use &U : ToBePromoted->operands()) { 7856 Value *Val = U.get(); 7857 Value *NewVal = nullptr; 7858 if (Val == Transition) 7859 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7860 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7861 isa<ConstantFP>(Val)) { 7862 // Use a splat constant if it is not safe to use undef. 7863 NewVal = getConstantVector( 7864 cast<Constant>(Val), 7865 isa<UndefValue>(Val) || 7866 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7867 } else 7868 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7869 "this?"); 7870 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7871 } 7872 Transition->moveAfter(ToBePromoted); 7873 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7874 } 7875 7876 /// Some targets can do store(extractelement) with one instruction. 7877 /// Try to push the extractelement towards the stores when the target 7878 /// has this feature and this is profitable. 7879 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7880 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7881 if (DisableStoreExtract || 7882 (!StressStoreExtract && 7883 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7884 Inst->getOperand(1), CombineCost))) 7885 return false; 7886 7887 // At this point we know that Inst is a vector to scalar transition. 7888 // Try to move it down the def-use chain, until: 7889 // - We can combine the transition with its single use 7890 // => we got rid of the transition. 7891 // - We escape the current basic block 7892 // => we would need to check that we are moving it at a cheaper place and 7893 // we do not do that for now. 7894 BasicBlock *Parent = Inst->getParent(); 7895 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7896 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7897 // If the transition has more than one use, assume this is not going to be 7898 // beneficial. 7899 while (Inst->hasOneUse()) { 7900 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7901 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7902 7903 if (ToBePromoted->getParent() != Parent) { 7904 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7905 << ToBePromoted->getParent()->getName() 7906 << ") than the transition (" << Parent->getName() 7907 << ").\n"); 7908 return false; 7909 } 7910 7911 if (VPH.canCombine(ToBePromoted)) { 7912 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7913 << "will be combined with: " << *ToBePromoted << '\n'); 7914 VPH.recordCombineInstruction(ToBePromoted); 7915 bool Changed = VPH.promote(); 7916 NumStoreExtractExposed += Changed; 7917 return Changed; 7918 } 7919 7920 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7921 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7922 return false; 7923 7924 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7925 7926 VPH.enqueueForPromotion(ToBePromoted); 7927 Inst = ToBePromoted; 7928 } 7929 return false; 7930 } 7931 7932 /// For the instruction sequence of store below, F and I values 7933 /// are bundled together as an i64 value before being stored into memory. 7934 /// Sometimes it is more efficient to generate separate stores for F and I, 7935 /// which can remove the bitwise instructions or sink them to colder places. 7936 /// 7937 /// (store (or (zext (bitcast F to i32) to i64), 7938 /// (shl (zext I to i64), 32)), addr) --> 7939 /// (store F, addr) and (store I, addr+4) 7940 /// 7941 /// Similarly, splitting for other merged store can also be beneficial, like: 7942 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7943 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7944 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7945 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7946 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7947 /// 7948 /// We allow each target to determine specifically which kind of splitting is 7949 /// supported. 7950 /// 7951 /// The store patterns are commonly seen from the simple code snippet below 7952 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7953 /// void goo(const std::pair<int, float> &); 7954 /// hoo() { 7955 /// ... 7956 /// goo(std::make_pair(tmp, ftmp)); 7957 /// ... 7958 /// } 7959 /// 7960 /// Although we already have similar splitting in DAG Combine, we duplicate 7961 /// it in CodeGenPrepare to catch the case in which pattern is across 7962 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7963 /// during code expansion. 7964 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7965 const TargetLowering &TLI) { 7966 // Handle simple but common cases only. 7967 Type *StoreType = SI.getValueOperand()->getType(); 7968 7969 // The code below assumes shifting a value by <number of bits>, 7970 // whereas scalable vectors would have to be shifted by 7971 // <2log(vscale) + number of bits> in order to store the 7972 // low/high parts. Bailing out for now. 7973 if (StoreType->isScalableTy()) 7974 return false; 7975 7976 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7977 DL.getTypeSizeInBits(StoreType) == 0) 7978 return false; 7979 7980 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7981 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7982 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7983 return false; 7984 7985 // Don't split the store if it is volatile. 7986 if (SI.isVolatile()) 7987 return false; 7988 7989 // Match the following patterns: 7990 // (store (or (zext LValue to i64), 7991 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7992 // or 7993 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7994 // (zext LValue to i64), 7995 // Expect both operands of OR and the first operand of SHL have only 7996 // one use. 7997 Value *LValue, *HValue; 7998 if (!match(SI.getValueOperand(), 7999 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 8000 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 8001 m_SpecificInt(HalfValBitSize)))))) 8002 return false; 8003 8004 // Check LValue and HValue are int with size less or equal than 32. 8005 if (!LValue->getType()->isIntegerTy() || 8006 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 8007 !HValue->getType()->isIntegerTy() || 8008 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 8009 return false; 8010 8011 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 8012 // as the input of target query. 8013 auto *LBC = dyn_cast<BitCastInst>(LValue); 8014 auto *HBC = dyn_cast<BitCastInst>(HValue); 8015 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 8016 : EVT::getEVT(LValue->getType()); 8017 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 8018 : EVT::getEVT(HValue->getType()); 8019 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 8020 return false; 8021 8022 // Start to split store. 8023 IRBuilder<> Builder(SI.getContext()); 8024 Builder.SetInsertPoint(&SI); 8025 8026 // If LValue/HValue is a bitcast in another BB, create a new one in current 8027 // BB so it may be merged with the splitted stores by dag combiner. 8028 if (LBC && LBC->getParent() != SI.getParent()) 8029 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 8030 if (HBC && HBC->getParent() != SI.getParent()) 8031 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 8032 8033 bool IsLE = SI.getDataLayout().isLittleEndian(); 8034 auto CreateSplitStore = [&](Value *V, bool Upper) { 8035 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 8036 Value *Addr = SI.getPointerOperand(); 8037 Align Alignment = SI.getAlign(); 8038 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 8039 if (IsOffsetStore) { 8040 Addr = Builder.CreateGEP( 8041 SplitStoreType, Addr, 8042 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 8043 8044 // When splitting the store in half, naturally one half will retain the 8045 // alignment of the original wider store, regardless of whether it was 8046 // over-aligned or not, while the other will require adjustment. 8047 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 8048 } 8049 Builder.CreateAlignedStore(V, Addr, Alignment); 8050 }; 8051 8052 CreateSplitStore(LValue, false); 8053 CreateSplitStore(HValue, true); 8054 8055 // Delete the old store. 8056 SI.eraseFromParent(); 8057 return true; 8058 } 8059 8060 // Return true if the GEP has two operands, the first operand is of a sequential 8061 // type, and the second operand is a constant. 8062 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 8063 gep_type_iterator I = gep_type_begin(*GEP); 8064 return GEP->getNumOperands() == 2 && I.isSequential() && 8065 isa<ConstantInt>(GEP->getOperand(1)); 8066 } 8067 8068 // Try unmerging GEPs to reduce liveness interference (register pressure) across 8069 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 8070 // reducing liveness interference across those edges benefits global register 8071 // allocation. Currently handles only certain cases. 8072 // 8073 // For example, unmerge %GEPI and %UGEPI as below. 8074 // 8075 // ---------- BEFORE ---------- 8076 // SrcBlock: 8077 // ... 8078 // %GEPIOp = ... 8079 // ... 8080 // %GEPI = gep %GEPIOp, Idx 8081 // ... 8082 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 8083 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 8084 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 8085 // %UGEPI) 8086 // 8087 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 8088 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 8089 // ... 8090 // 8091 // DstBi: 8092 // ... 8093 // %UGEPI = gep %GEPIOp, UIdx 8094 // ... 8095 // --------------------------- 8096 // 8097 // ---------- AFTER ---------- 8098 // SrcBlock: 8099 // ... (same as above) 8100 // (* %GEPI is still alive on the indirectbr edges) 8101 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 8102 // unmerging) 8103 // ... 8104 // 8105 // DstBi: 8106 // ... 8107 // %UGEPI = gep %GEPI, (UIdx-Idx) 8108 // ... 8109 // --------------------------- 8110 // 8111 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 8112 // no longer alive on them. 8113 // 8114 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 8115 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 8116 // not to disable further simplications and optimizations as a result of GEP 8117 // merging. 8118 // 8119 // Note this unmerging may increase the length of the data flow critical path 8120 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 8121 // between the register pressure and the length of data-flow critical 8122 // path. Restricting this to the uncommon IndirectBr case would minimize the 8123 // impact of potentially longer critical path, if any, and the impact on compile 8124 // time. 8125 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 8126 const TargetTransformInfo *TTI) { 8127 BasicBlock *SrcBlock = GEPI->getParent(); 8128 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 8129 // (non-IndirectBr) cases exit early here. 8130 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 8131 return false; 8132 // Check that GEPI is a simple gep with a single constant index. 8133 if (!GEPSequentialConstIndexed(GEPI)) 8134 return false; 8135 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 8136 // Check that GEPI is a cheap one. 8137 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 8138 TargetTransformInfo::TCK_SizeAndLatency) > 8139 TargetTransformInfo::TCC_Basic) 8140 return false; 8141 Value *GEPIOp = GEPI->getOperand(0); 8142 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 8143 if (!isa<Instruction>(GEPIOp)) 8144 return false; 8145 auto *GEPIOpI = cast<Instruction>(GEPIOp); 8146 if (GEPIOpI->getParent() != SrcBlock) 8147 return false; 8148 // Check that GEP is used outside the block, meaning it's alive on the 8149 // IndirectBr edge(s). 8150 if (llvm::none_of(GEPI->users(), [&](User *Usr) { 8151 if (auto *I = dyn_cast<Instruction>(Usr)) { 8152 if (I->getParent() != SrcBlock) { 8153 return true; 8154 } 8155 } 8156 return false; 8157 })) 8158 return false; 8159 // The second elements of the GEP chains to be unmerged. 8160 std::vector<GetElementPtrInst *> UGEPIs; 8161 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 8162 // on IndirectBr edges. 8163 for (User *Usr : GEPIOp->users()) { 8164 if (Usr == GEPI) 8165 continue; 8166 // Check if Usr is an Instruction. If not, give up. 8167 if (!isa<Instruction>(Usr)) 8168 return false; 8169 auto *UI = cast<Instruction>(Usr); 8170 // Check if Usr in the same block as GEPIOp, which is fine, skip. 8171 if (UI->getParent() == SrcBlock) 8172 continue; 8173 // Check if Usr is a GEP. If not, give up. 8174 if (!isa<GetElementPtrInst>(Usr)) 8175 return false; 8176 auto *UGEPI = cast<GetElementPtrInst>(Usr); 8177 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 8178 // the pointer operand to it. If so, record it in the vector. If not, give 8179 // up. 8180 if (!GEPSequentialConstIndexed(UGEPI)) 8181 return false; 8182 if (UGEPI->getOperand(0) != GEPIOp) 8183 return false; 8184 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType()) 8185 return false; 8186 if (GEPIIdx->getType() != 8187 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 8188 return false; 8189 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8190 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 8191 TargetTransformInfo::TCK_SizeAndLatency) > 8192 TargetTransformInfo::TCC_Basic) 8193 return false; 8194 UGEPIs.push_back(UGEPI); 8195 } 8196 if (UGEPIs.size() == 0) 8197 return false; 8198 // Check the materializing cost of (Uidx-Idx). 8199 for (GetElementPtrInst *UGEPI : UGEPIs) { 8200 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8201 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 8202 InstructionCost ImmCost = TTI->getIntImmCost( 8203 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 8204 if (ImmCost > TargetTransformInfo::TCC_Basic) 8205 return false; 8206 } 8207 // Now unmerge between GEPI and UGEPIs. 8208 for (GetElementPtrInst *UGEPI : UGEPIs) { 8209 UGEPI->setOperand(0, GEPI); 8210 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8211 Constant *NewUGEPIIdx = ConstantInt::get( 8212 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); 8213 UGEPI->setOperand(1, NewUGEPIIdx); 8214 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 8215 // inbounds to avoid UB. 8216 if (!GEPI->isInBounds()) { 8217 UGEPI->setIsInBounds(false); 8218 } 8219 } 8220 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 8221 // alive on IndirectBr edges). 8222 assert(llvm::none_of(GEPIOp->users(), 8223 [&](User *Usr) { 8224 return cast<Instruction>(Usr)->getParent() != SrcBlock; 8225 }) && 8226 "GEPIOp is used outside SrcBlock"); 8227 return true; 8228 } 8229 8230 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, 8231 SmallSet<BasicBlock *, 32> &FreshBBs, 8232 bool IsHugeFunc) { 8233 // Try and convert 8234 // %c = icmp ult %x, 8 8235 // br %c, bla, blb 8236 // %tc = lshr %x, 3 8237 // to 8238 // %tc = lshr %x, 3 8239 // %c = icmp eq %tc, 0 8240 // br %c, bla, blb 8241 // Creating the cmp to zero can be better for the backend, especially if the 8242 // lshr produces flags that can be used automatically. 8243 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 8244 return false; 8245 8246 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 8247 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 8248 return false; 8249 8250 Value *X = Cmp->getOperand(0); 8251 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 8252 8253 for (auto *U : X->users()) { 8254 Instruction *UI = dyn_cast<Instruction>(U); 8255 // A quick dominance check 8256 if (!UI || 8257 (UI->getParent() != Branch->getParent() && 8258 UI->getParent() != Branch->getSuccessor(0) && 8259 UI->getParent() != Branch->getSuccessor(1)) || 8260 (UI->getParent() != Branch->getParent() && 8261 !UI->getParent()->getSinglePredecessor())) 8262 continue; 8263 8264 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 8265 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 8266 IRBuilder<> Builder(Branch); 8267 if (UI->getParent() != Branch->getParent()) 8268 UI->moveBefore(Branch); 8269 UI->dropPoisonGeneratingFlags(); 8270 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 8271 ConstantInt::get(UI->getType(), 0)); 8272 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8273 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8274 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8275 return true; 8276 } 8277 if (Cmp->isEquality() && 8278 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 8279 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 8280 IRBuilder<> Builder(Branch); 8281 if (UI->getParent() != Branch->getParent()) 8282 UI->moveBefore(Branch); 8283 UI->dropPoisonGeneratingFlags(); 8284 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 8285 ConstantInt::get(UI->getType(), 0)); 8286 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8287 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8288 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8289 return true; 8290 } 8291 } 8292 return false; 8293 } 8294 8295 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { 8296 bool AnyChange = false; 8297 AnyChange = fixupDbgVariableRecordsOnInst(*I); 8298 8299 // Bail out if we inserted the instruction to prevent optimizations from 8300 // stepping on each other's toes. 8301 if (InsertedInsts.count(I)) 8302 return AnyChange; 8303 8304 // TODO: Move into the switch on opcode below here. 8305 if (PHINode *P = dyn_cast<PHINode>(I)) { 8306 // It is possible for very late stage optimizations (such as SimplifyCFG) 8307 // to introduce PHI nodes too late to be cleaned up. If we detect such a 8308 // trivial PHI, go ahead and zap it here. 8309 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 8310 LargeOffsetGEPMap.erase(P); 8311 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); 8312 P->eraseFromParent(); 8313 ++NumPHIsElim; 8314 return true; 8315 } 8316 return AnyChange; 8317 } 8318 8319 if (CastInst *CI = dyn_cast<CastInst>(I)) { 8320 // If the source of the cast is a constant, then this should have 8321 // already been constant folded. The only reason NOT to constant fold 8322 // it is if something (e.g. LSR) was careful to place the constant 8323 // evaluation in a block other than then one that uses it (e.g. to hoist 8324 // the address of globals out of a loop). If this is the case, we don't 8325 // want to forward-subst the cast. 8326 if (isa<Constant>(CI->getOperand(0))) 8327 return AnyChange; 8328 8329 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 8330 return true; 8331 8332 if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) || 8333 isa<TruncInst>(I)) && 8334 TLI->optimizeExtendOrTruncateConversion( 8335 I, LI->getLoopFor(I->getParent()), *TTI)) 8336 return true; 8337 8338 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 8339 /// Sink a zext or sext into its user blocks if the target type doesn't 8340 /// fit in one register 8341 if (TLI->getTypeAction(CI->getContext(), 8342 TLI->getValueType(*DL, CI->getType())) == 8343 TargetLowering::TypeExpandInteger) { 8344 return SinkCast(CI); 8345 } else { 8346 if (TLI->optimizeExtendOrTruncateConversion( 8347 I, LI->getLoopFor(I->getParent()), *TTI)) 8348 return true; 8349 8350 bool MadeChange = optimizeExt(I); 8351 return MadeChange | optimizeExtUses(I); 8352 } 8353 } 8354 return AnyChange; 8355 } 8356 8357 if (auto *Cmp = dyn_cast<CmpInst>(I)) 8358 if (optimizeCmp(Cmp, ModifiedDT)) 8359 return true; 8360 8361 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8362 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8363 bool Modified = optimizeLoadExt(LI); 8364 unsigned AS = LI->getPointerAddressSpace(); 8365 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 8366 return Modified; 8367 } 8368 8369 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 8370 if (splitMergedValStore(*SI, *DL, *TLI)) 8371 return true; 8372 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8373 unsigned AS = SI->getPointerAddressSpace(); 8374 return optimizeMemoryInst(I, SI->getOperand(1), 8375 SI->getOperand(0)->getType(), AS); 8376 } 8377 8378 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 8379 unsigned AS = RMW->getPointerAddressSpace(); 8380 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); 8381 } 8382 8383 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 8384 unsigned AS = CmpX->getPointerAddressSpace(); 8385 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 8386 CmpX->getCompareOperand()->getType(), AS); 8387 } 8388 8389 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 8390 8391 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 8392 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 8393 return true; 8394 8395 // TODO: Move this into the switch on opcode - it handles shifts already. 8396 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 8397 BinOp->getOpcode() == Instruction::LShr)) { 8398 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 8399 if (CI && TLI->hasExtractBitsInsn()) 8400 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 8401 return true; 8402 } 8403 8404 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 8405 if (GEPI->hasAllZeroIndices()) { 8406 /// The GEP operand must be a pointer, so must its result -> BitCast 8407 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 8408 GEPI->getName(), GEPI->getIterator()); 8409 NC->setDebugLoc(GEPI->getDebugLoc()); 8410 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); 8411 RecursivelyDeleteTriviallyDeadInstructions( 8412 GEPI, TLInfo, nullptr, 8413 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8414 ++NumGEPsElim; 8415 optimizeInst(NC, ModifiedDT); 8416 return true; 8417 } 8418 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8419 return true; 8420 } 8421 } 8422 8423 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8424 // freeze(icmp a, const)) -> icmp (freeze a), const 8425 // This helps generate efficient conditional jumps. 8426 Instruction *CmpI = nullptr; 8427 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8428 CmpI = II; 8429 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8430 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8431 8432 if (CmpI && CmpI->hasOneUse()) { 8433 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8434 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8435 isa<ConstantPointerNull>(Op0); 8436 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8437 isa<ConstantPointerNull>(Op1); 8438 if (Const0 || Const1) { 8439 if (!Const0 || !Const1) { 8440 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator()); 8441 F->takeName(FI); 8442 CmpI->setOperand(Const0 ? 1 : 0, F); 8443 } 8444 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); 8445 FI->eraseFromParent(); 8446 return true; 8447 } 8448 } 8449 return AnyChange; 8450 } 8451 8452 if (tryToSinkFreeOperands(I)) 8453 return true; 8454 8455 switch (I->getOpcode()) { 8456 case Instruction::Shl: 8457 case Instruction::LShr: 8458 case Instruction::AShr: 8459 return optimizeShiftInst(cast<BinaryOperator>(I)); 8460 case Instruction::Call: 8461 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8462 case Instruction::Select: 8463 return optimizeSelectInst(cast<SelectInst>(I)); 8464 case Instruction::ShuffleVector: 8465 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8466 case Instruction::Switch: 8467 return optimizeSwitchInst(cast<SwitchInst>(I)); 8468 case Instruction::ExtractElement: 8469 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8470 case Instruction::Br: 8471 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); 8472 } 8473 8474 return AnyChange; 8475 } 8476 8477 /// Given an OR instruction, check to see if this is a bitreverse 8478 /// idiom. If so, insert the new intrinsic and return true. 8479 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8480 if (!I.getType()->isIntegerTy() || 8481 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8482 TLI->getValueType(*DL, I.getType(), true))) 8483 return false; 8484 8485 SmallVector<Instruction *, 4> Insts; 8486 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8487 return false; 8488 Instruction *LastInst = Insts.back(); 8489 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); 8490 RecursivelyDeleteTriviallyDeadInstructions( 8491 &I, TLInfo, nullptr, 8492 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8493 return true; 8494 } 8495 8496 // In this pass we look for GEP and cast instructions that are used 8497 // across basic blocks and rewrite them to improve basic-block-at-a-time 8498 // selection. 8499 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { 8500 SunkAddrs.clear(); 8501 bool MadeChange = false; 8502 8503 do { 8504 CurInstIterator = BB.begin(); 8505 ModifiedDT = ModifyDT::NotModifyDT; 8506 while (CurInstIterator != BB.end()) { 8507 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8508 if (ModifiedDT != ModifyDT::NotModifyDT) { 8509 // For huge function we tend to quickly go though the inner optmization 8510 // opportunities in the BB. So we go back to the BB head to re-optimize 8511 // each instruction instead of go back to the function head. 8512 if (IsHugeFunc) { 8513 DT.reset(); 8514 getDT(*BB.getParent()); 8515 break; 8516 } else { 8517 return true; 8518 } 8519 } 8520 } 8521 } while (ModifiedDT == ModifyDT::ModifyInstDT); 8522 8523 bool MadeBitReverse = true; 8524 while (MadeBitReverse) { 8525 MadeBitReverse = false; 8526 for (auto &I : reverse(BB)) { 8527 if (makeBitReverse(I)) { 8528 MadeBitReverse = MadeChange = true; 8529 break; 8530 } 8531 } 8532 } 8533 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8534 8535 return MadeChange; 8536 } 8537 8538 // Some CGP optimizations may move or alter what's computed in a block. Check 8539 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8540 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8541 assert(isa<DbgValueInst>(I)); 8542 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8543 8544 // Does this dbg.value refer to a sunk address calculation? 8545 bool AnyChange = false; 8546 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8547 DVI.location_ops().end()); 8548 for (Value *Location : LocationOps) { 8549 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8550 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8551 if (SunkAddr) { 8552 // Point dbg.value at locally computed address, which should give the best 8553 // opportunity to be accurately lowered. This update may change the type 8554 // of pointer being referred to; however this makes no difference to 8555 // debugging information, and we can't generate bitcasts that may affect 8556 // codegen. 8557 DVI.replaceVariableLocationOp(Location, SunkAddr); 8558 AnyChange = true; 8559 } 8560 } 8561 return AnyChange; 8562 } 8563 8564 bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) { 8565 bool AnyChange = false; 8566 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 8567 AnyChange |= fixupDbgVariableRecord(DVR); 8568 return AnyChange; 8569 } 8570 8571 // FIXME: should updating debug-info really cause the "changed" flag to fire, 8572 // which can cause a function to be reprocessed? 8573 bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) { 8574 if (DVR.Type != DbgVariableRecord::LocationType::Value && 8575 DVR.Type != DbgVariableRecord::LocationType::Assign) 8576 return false; 8577 8578 // Does this DbgVariableRecord refer to a sunk address calculation? 8579 bool AnyChange = false; 8580 SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(), 8581 DVR.location_ops().end()); 8582 for (Value *Location : LocationOps) { 8583 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8584 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8585 if (SunkAddr) { 8586 // Point dbg.value at locally computed address, which should give the best 8587 // opportunity to be accurately lowered. This update may change the type 8588 // of pointer being referred to; however this makes no difference to 8589 // debugging information, and we can't generate bitcasts that may affect 8590 // codegen. 8591 DVR.replaceVariableLocationOp(Location, SunkAddr); 8592 AnyChange = true; 8593 } 8594 } 8595 return AnyChange; 8596 } 8597 8598 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) { 8599 DVI->removeFromParent(); 8600 if (isa<PHINode>(VI)) 8601 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8602 else 8603 DVI->insertAfter(VI); 8604 } 8605 8606 static void DbgInserterHelper(DbgVariableRecord *DVR, Instruction *VI) { 8607 DVR->removeFromParent(); 8608 BasicBlock *VIBB = VI->getParent(); 8609 if (isa<PHINode>(VI)) 8610 VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt()); 8611 else 8612 VIBB->insertDbgRecordAfter(DVR, VI); 8613 } 8614 8615 // A llvm.dbg.value may be using a value before its definition, due to 8616 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8617 // them by moving the dbg.value to immediately after the value definition. 8618 // FIXME: Ideally this should never be necessary, and this has the potential 8619 // to re-order dbg.value intrinsics. 8620 bool CodeGenPrepare::placeDbgValues(Function &F) { 8621 bool MadeChange = false; 8622 DominatorTree DT(F); 8623 8624 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) { 8625 SmallVector<Instruction *, 4> VIs; 8626 for (Value *V : DbgItem->location_ops()) 8627 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8628 VIs.push_back(VI); 8629 8630 // This item may depend on multiple instructions, complicating any 8631 // potential sink. This block takes the defensive approach, opting to 8632 // "undef" the item if it has more than one instruction and any of them do 8633 // not dominate iem. 8634 for (Instruction *VI : VIs) { 8635 if (VI->isTerminator()) 8636 continue; 8637 8638 // If VI is a phi in a block with an EHPad terminator, we can't insert 8639 // after it. 8640 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8641 continue; 8642 8643 // If the defining instruction dominates the dbg.value, we do not need 8644 // to move the dbg.value. 8645 if (DT.dominates(VI, Position)) 8646 continue; 8647 8648 // If we depend on multiple instructions and any of them doesn't 8649 // dominate this DVI, we probably can't salvage it: moving it to 8650 // after any of the instructions could cause us to lose the others. 8651 if (VIs.size() > 1) { 8652 LLVM_DEBUG( 8653 dbgs() 8654 << "Unable to find valid location for Debug Value, undefing:\n" 8655 << *DbgItem); 8656 DbgItem->setKillLocation(); 8657 break; 8658 } 8659 8660 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8661 << *DbgItem << ' ' << *VI); 8662 DbgInserterHelper(DbgItem, VI); 8663 MadeChange = true; 8664 ++NumDbgValueMoved; 8665 } 8666 }; 8667 8668 for (BasicBlock &BB : F) { 8669 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8670 // Process dbg.value intrinsics. 8671 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8672 if (DVI) { 8673 DbgProcessor(DVI, DVI); 8674 continue; 8675 } 8676 8677 // If this isn't a dbg.value, process any attached DbgVariableRecord 8678 // records attached to this instruction. 8679 for (DbgVariableRecord &DVR : llvm::make_early_inc_range( 8680 filterDbgVars(Insn.getDbgRecordRange()))) { 8681 if (DVR.Type != DbgVariableRecord::LocationType::Value) 8682 continue; 8683 DbgProcessor(&DVR, &Insn); 8684 } 8685 } 8686 } 8687 8688 return MadeChange; 8689 } 8690 8691 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8692 // probes can be chained dependencies of other regular DAG nodes and block DAG 8693 // combine optimizations. 8694 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8695 bool MadeChange = false; 8696 for (auto &Block : F) { 8697 // Move the rest probes to the beginning of the block. 8698 auto FirstInst = Block.getFirstInsertionPt(); 8699 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8700 ++FirstInst; 8701 BasicBlock::iterator I(FirstInst); 8702 I++; 8703 while (I != Block.end()) { 8704 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8705 II->moveBefore(&*FirstInst); 8706 MadeChange = true; 8707 } 8708 } 8709 } 8710 return MadeChange; 8711 } 8712 8713 /// Scale down both weights to fit into uint32_t. 8714 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8715 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8716 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8717 NewTrue = NewTrue / Scale; 8718 NewFalse = NewFalse / Scale; 8719 } 8720 8721 /// Some targets prefer to split a conditional branch like: 8722 /// \code 8723 /// %0 = icmp ne i32 %a, 0 8724 /// %1 = icmp ne i32 %b, 0 8725 /// %or.cond = or i1 %0, %1 8726 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8727 /// \endcode 8728 /// into multiple branch instructions like: 8729 /// \code 8730 /// bb1: 8731 /// %0 = icmp ne i32 %a, 0 8732 /// br i1 %0, label %TrueBB, label %bb2 8733 /// bb2: 8734 /// %1 = icmp ne i32 %b, 0 8735 /// br i1 %1, label %TrueBB, label %FalseBB 8736 /// \endcode 8737 /// This usually allows instruction selection to do even further optimizations 8738 /// and combine the compare with the branch instruction. Currently this is 8739 /// applied for targets which have "cheap" jump instructions. 8740 /// 8741 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8742 /// 8743 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { 8744 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8745 return false; 8746 8747 bool MadeChange = false; 8748 for (auto &BB : F) { 8749 // Does this BB end with the following? 8750 // %cond1 = icmp|fcmp|binary instruction ... 8751 // %cond2 = icmp|fcmp|binary instruction ... 8752 // %cond.or = or|and i1 %cond1, cond2 8753 // br i1 %cond.or label %dest1, label %dest2" 8754 Instruction *LogicOp; 8755 BasicBlock *TBB, *FBB; 8756 if (!match(BB.getTerminator(), 8757 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8758 continue; 8759 8760 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8761 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8762 continue; 8763 8764 // The merging of mostly empty BB can cause a degenerate branch. 8765 if (TBB == FBB) 8766 continue; 8767 8768 unsigned Opc; 8769 Value *Cond1, *Cond2; 8770 if (match(LogicOp, 8771 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8772 Opc = Instruction::And; 8773 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8774 m_OneUse(m_Value(Cond2))))) 8775 Opc = Instruction::Or; 8776 else 8777 continue; 8778 8779 auto IsGoodCond = [](Value *Cond) { 8780 return match( 8781 Cond, 8782 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8783 m_LogicalOr(m_Value(), m_Value())))); 8784 }; 8785 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8786 continue; 8787 8788 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8789 8790 // Create a new BB. 8791 auto *TmpBB = 8792 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8793 BB.getParent(), BB.getNextNode()); 8794 if (IsHugeFunc) 8795 FreshBBs.insert(TmpBB); 8796 8797 // Update original basic block by using the first condition directly by the 8798 // branch instruction and removing the no longer needed and/or instruction. 8799 Br1->setCondition(Cond1); 8800 LogicOp->eraseFromParent(); 8801 8802 // Depending on the condition we have to either replace the true or the 8803 // false successor of the original branch instruction. 8804 if (Opc == Instruction::And) 8805 Br1->setSuccessor(0, TmpBB); 8806 else 8807 Br1->setSuccessor(1, TmpBB); 8808 8809 // Fill in the new basic block. 8810 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8811 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8812 I->removeFromParent(); 8813 I->insertBefore(Br2); 8814 } 8815 8816 // Update PHI nodes in both successors. The original BB needs to be 8817 // replaced in one successor's PHI nodes, because the branch comes now from 8818 // the newly generated BB (NewBB). In the other successor we need to add one 8819 // incoming edge to the PHI nodes, because both branch instructions target 8820 // now the same successor. Depending on the original branch condition 8821 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8822 // we perform the correct update for the PHI nodes. 8823 // This doesn't change the successor order of the just created branch 8824 // instruction (or any other instruction). 8825 if (Opc == Instruction::Or) 8826 std::swap(TBB, FBB); 8827 8828 // Replace the old BB with the new BB. 8829 TBB->replacePhiUsesWith(&BB, TmpBB); 8830 8831 // Add another incoming edge from the new BB. 8832 for (PHINode &PN : FBB->phis()) { 8833 auto *Val = PN.getIncomingValueForBlock(&BB); 8834 PN.addIncoming(Val, TmpBB); 8835 } 8836 8837 // Update the branch weights (from SelectionDAGBuilder:: 8838 // FindMergedConditions). 8839 if (Opc == Instruction::Or) { 8840 // Codegen X | Y as: 8841 // BB1: 8842 // jmp_if_X TBB 8843 // jmp TmpBB 8844 // TmpBB: 8845 // jmp_if_Y TBB 8846 // jmp FBB 8847 // 8848 8849 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8850 // The requirement is that 8851 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8852 // = TrueProb for original BB. 8853 // Assuming the original weights are A and B, one choice is to set BB1's 8854 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8855 // assumes that 8856 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8857 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8858 // TmpBB, but the math is more complicated. 8859 uint64_t TrueWeight, FalseWeight; 8860 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8861 uint64_t NewTrueWeight = TrueWeight; 8862 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8863 scaleWeights(NewTrueWeight, NewFalseWeight); 8864 Br1->setMetadata(LLVMContext::MD_prof, 8865 MDBuilder(Br1->getContext()) 8866 .createBranchWeights(TrueWeight, FalseWeight, 8867 hasBranchWeightOrigin(*Br1))); 8868 8869 NewTrueWeight = TrueWeight; 8870 NewFalseWeight = 2 * FalseWeight; 8871 scaleWeights(NewTrueWeight, NewFalseWeight); 8872 Br2->setMetadata(LLVMContext::MD_prof, 8873 MDBuilder(Br2->getContext()) 8874 .createBranchWeights(TrueWeight, FalseWeight)); 8875 } 8876 } else { 8877 // Codegen X & Y as: 8878 // BB1: 8879 // jmp_if_X TmpBB 8880 // jmp FBB 8881 // TmpBB: 8882 // jmp_if_Y TBB 8883 // jmp FBB 8884 // 8885 // This requires creation of TmpBB after CurBB. 8886 8887 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8888 // The requirement is that 8889 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8890 // = FalseProb for original BB. 8891 // Assuming the original weights are A and B, one choice is to set BB1's 8892 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8893 // assumes that 8894 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8895 uint64_t TrueWeight, FalseWeight; 8896 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8897 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8898 uint64_t NewFalseWeight = FalseWeight; 8899 scaleWeights(NewTrueWeight, NewFalseWeight); 8900 Br1->setMetadata(LLVMContext::MD_prof, 8901 MDBuilder(Br1->getContext()) 8902 .createBranchWeights(TrueWeight, FalseWeight)); 8903 8904 NewTrueWeight = 2 * TrueWeight; 8905 NewFalseWeight = FalseWeight; 8906 scaleWeights(NewTrueWeight, NewFalseWeight); 8907 Br2->setMetadata(LLVMContext::MD_prof, 8908 MDBuilder(Br2->getContext()) 8909 .createBranchWeights(TrueWeight, FalseWeight)); 8910 } 8911 } 8912 8913 ModifiedDT = ModifyDT::ModifyBBDT; 8914 MadeChange = true; 8915 8916 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8917 TmpBB->dump()); 8918 } 8919 return MadeChange; 8920 } 8921