1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/CodeGenPrepare.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/CodeGenTypes/MachineValueType.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/Argument.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfo.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/GlobalVariable.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/IntrinsicsAArch64.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/MDBuilder.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/ProfDataUtils.h" 72 #include "llvm/IR/Statepoint.h" 73 #include "llvm/IR/Type.h" 74 #include "llvm/IR/Use.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/IR/ValueHandle.h" 78 #include "llvm/IR/ValueMap.h" 79 #include "llvm/InitializePasses.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/BlockFrequency.h" 82 #include "llvm/Support/BranchProbability.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/CommandLine.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Target/TargetMachine.h" 91 #include "llvm/Target/TargetOptions.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 96 #include "llvm/Transforms/Utils/SizeOpts.h" 97 #include <algorithm> 98 #include <cassert> 99 #include <cstdint> 100 #include <iterator> 101 #include <limits> 102 #include <memory> 103 #include <optional> 104 #include <utility> 105 #include <vector> 106 107 using namespace llvm; 108 using namespace llvm::PatternMatch; 109 110 #define DEBUG_TYPE "codegenprepare" 111 112 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 113 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 114 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 115 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 116 "sunken Cmps"); 117 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 118 "of sunken Casts"); 119 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 120 "computations were sunk"); 121 STATISTIC(NumMemoryInstsPhiCreated, 122 "Number of phis created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumMemoryInstsSelectCreated, 125 "Number of select created when address " 126 "computations were sunk to memory instructions"); 127 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 128 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 129 STATISTIC(NumAndsAdded, 130 "Number of and mask instructions added to form ext loads"); 131 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 132 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 133 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 134 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 135 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 136 137 static cl::opt<bool> DisableBranchOpts( 138 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable branch optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> 142 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 143 cl::desc("Disable GC optimizations in CodeGenPrepare")); 144 145 static cl::opt<bool> 146 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, 147 cl::init(false), 148 cl::desc("Disable select to branch conversion.")); 149 150 static cl::opt<bool> 151 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), 152 cl::desc("Address sinking in CGP using GEPs.")); 153 154 static cl::opt<bool> 155 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), 156 cl::desc("Enable sinkinig and/cmp into branches.")); 157 158 static cl::opt<bool> DisableStoreExtract( 159 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> StressStoreExtract( 163 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 164 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 165 166 static cl::opt<bool> DisableExtLdPromotion( 167 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 169 "CodeGenPrepare")); 170 171 static cl::opt<bool> StressExtLdPromotion( 172 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 173 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 174 "optimization in CodeGenPrepare")); 175 176 static cl::opt<bool> DisablePreheaderProtect( 177 "disable-preheader-prot", cl::Hidden, cl::init(false), 178 cl::desc("Disable protection against removing loop preheaders")); 179 180 static cl::opt<bool> ProfileGuidedSectionPrefix( 181 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 182 cl::desc("Use profile info to add section prefix for hot/cold functions")); 183 184 static cl::opt<bool> ProfileUnknownInSpecialSection( 185 "profile-unknown-in-special-section", cl::Hidden, 186 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 187 "profile, we cannot tell the function is cold for sure because " 188 "it may be a function newly added without ever being sampled. " 189 "With the flag enabled, compiler can put such profile unknown " 190 "functions into a special section, so runtime system can choose " 191 "to handle it in a different way than .text section, to save " 192 "RAM for example. ")); 193 194 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 195 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 196 cl::desc("Use the basic-block-sections profile to determine the text " 197 "section prefix for hot functions. Functions with " 198 "basic-block-sections profile will be placed in `.text.hot` " 199 "regardless of their FDO profile info. Other functions won't be " 200 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 201 "profiles.")); 202 203 static cl::opt<uint64_t> FreqRatioToSkipMerge( 204 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 205 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 206 "(frequency of destination block) is greater than this ratio")); 207 208 static cl::opt<bool> ForceSplitStore( 209 "force-split-store", cl::Hidden, cl::init(false), 210 cl::desc("Force store splitting no matter what the target query says.")); 211 212 static cl::opt<bool> EnableTypePromotionMerge( 213 "cgp-type-promotion-merge", cl::Hidden, 214 cl::desc("Enable merging of redundant sexts when one is dominating" 215 " the other."), 216 cl::init(true)); 217 218 static cl::opt<bool> DisableComplexAddrModes( 219 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 220 cl::desc("Disables combining addressing modes with different parts " 221 "in optimizeMemoryInst.")); 222 223 static cl::opt<bool> 224 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 225 cl::desc("Allow creation of Phis in Address sinking.")); 226 227 static cl::opt<bool> AddrSinkNewSelects( 228 "addr-sink-new-select", cl::Hidden, cl::init(true), 229 cl::desc("Allow creation of selects in Address sinking.")); 230 231 static cl::opt<bool> AddrSinkCombineBaseReg( 232 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 233 cl::desc("Allow combining of BaseReg field in Address sinking.")); 234 235 static cl::opt<bool> AddrSinkCombineBaseGV( 236 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 237 cl::desc("Allow combining of BaseGV field in Address sinking.")); 238 239 static cl::opt<bool> AddrSinkCombineBaseOffs( 240 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 241 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 242 243 static cl::opt<bool> AddrSinkCombineScaledReg( 244 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 245 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 246 247 static cl::opt<bool> 248 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 249 cl::init(true), 250 cl::desc("Enable splitting large offset of GEP.")); 251 252 static cl::opt<bool> EnableICMP_EQToICMP_ST( 253 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 254 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 255 256 static cl::opt<bool> 257 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 258 cl::desc("Enable BFI update verification for " 259 "CodeGenPrepare.")); 260 261 static cl::opt<bool> 262 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), 263 cl::desc("Enable converting phi types in CodeGenPrepare")); 264 265 static cl::opt<unsigned> 266 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, 267 cl::desc("Least BB number of huge function.")); 268 269 static cl::opt<unsigned> 270 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), 271 cl::Hidden, 272 cl::desc("Max number of address users to look at")); 273 274 static cl::opt<bool> 275 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false), 276 cl::desc("Disable elimination of dead PHI nodes.")); 277 278 namespace { 279 280 enum ExtType { 281 ZeroExtension, // Zero extension has been seen. 282 SignExtension, // Sign extension has been seen. 283 BothExtension // This extension type is used if we saw sext after 284 // ZeroExtension had been set, or if we saw zext after 285 // SignExtension had been set. It makes the type 286 // information of a promoted instruction invalid. 287 }; 288 289 enum ModifyDT { 290 NotModifyDT, // Not Modify any DT. 291 ModifyBBDT, // Modify the Basic Block Dominator Tree. 292 ModifyInstDT // Modify the Instruction Dominator in a Basic Block, 293 // This usually means we move/delete/insert instruction 294 // in a Basic Block. So we should re-iterate instructions 295 // in such Basic Block. 296 }; 297 298 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 299 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 300 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 301 using SExts = SmallVector<Instruction *, 16>; 302 using ValueToSExts = MapVector<Value *, SExts>; 303 304 class TypePromotionTransaction; 305 306 class CodeGenPrepare { 307 friend class CodeGenPrepareLegacyPass; 308 const TargetMachine *TM = nullptr; 309 const TargetSubtargetInfo *SubtargetInfo = nullptr; 310 const TargetLowering *TLI = nullptr; 311 const TargetRegisterInfo *TRI = nullptr; 312 const TargetTransformInfo *TTI = nullptr; 313 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 314 const TargetLibraryInfo *TLInfo = nullptr; 315 LoopInfo *LI = nullptr; 316 std::unique_ptr<BlockFrequencyInfo> BFI; 317 std::unique_ptr<BranchProbabilityInfo> BPI; 318 ProfileSummaryInfo *PSI = nullptr; 319 320 /// As we scan instructions optimizing them, this is the next instruction 321 /// to optimize. Transforms that can invalidate this should update it. 322 BasicBlock::iterator CurInstIterator; 323 324 /// Keeps track of non-local addresses that have been sunk into a block. 325 /// This allows us to avoid inserting duplicate code for blocks with 326 /// multiple load/stores of the same address. The usage of WeakTrackingVH 327 /// enables SunkAddrs to be treated as a cache whose entries can be 328 /// invalidated if a sunken address computation has been erased. 329 ValueMap<Value *, WeakTrackingVH> SunkAddrs; 330 331 /// Keeps track of all instructions inserted for the current function. 332 SetOfInstrs InsertedInsts; 333 334 /// Keeps track of the type of the related instruction before their 335 /// promotion for the current function. 336 InstrToOrigTy PromotedInsts; 337 338 /// Keep track of instructions removed during promotion. 339 SetOfInstrs RemovedInsts; 340 341 /// Keep track of sext chains based on their initial value. 342 DenseMap<Value *, Instruction *> SeenChainsForSExt; 343 344 /// Keep track of GEPs accessing the same data structures such as structs or 345 /// arrays that are candidates to be split later because of their large 346 /// size. 347 MapVector<AssertingVH<Value>, 348 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 349 LargeOffsetGEPMap; 350 351 /// Keep track of new GEP base after splitting the GEPs having large offset. 352 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 353 354 /// Map serial numbers to Large offset GEPs. 355 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 356 357 /// Keep track of SExt promoted. 358 ValueToSExts ValToSExtendedUses; 359 360 /// True if the function has the OptSize attribute. 361 bool OptSize; 362 363 /// DataLayout for the Function being processed. 364 const DataLayout *DL = nullptr; 365 366 /// Building the dominator tree can be expensive, so we only build it 367 /// lazily and update it when required. 368 std::unique_ptr<DominatorTree> DT; 369 370 public: 371 CodeGenPrepare(){}; 372 CodeGenPrepare(const TargetMachine *TM) : TM(TM){}; 373 /// If encounter huge function, we need to limit the build time. 374 bool IsHugeFunc = false; 375 376 /// FreshBBs is like worklist, it collected the updated BBs which need 377 /// to be optimized again. 378 /// Note: Consider building time in this pass, when a BB updated, we need 379 /// to insert such BB into FreshBBs for huge function. 380 SmallSet<BasicBlock *, 32> FreshBBs; 381 382 void releaseMemory() { 383 // Clear per function information. 384 InsertedInsts.clear(); 385 PromotedInsts.clear(); 386 FreshBBs.clear(); 387 BPI.reset(); 388 BFI.reset(); 389 } 390 391 bool run(Function &F, FunctionAnalysisManager &AM); 392 393 private: 394 template <typename F> 395 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 396 // Substituting can cause recursive simplifications, which can invalidate 397 // our iterator. Use a WeakTrackingVH to hold onto it in case this 398 // happens. 399 Value *CurValue = &*CurInstIterator; 400 WeakTrackingVH IterHandle(CurValue); 401 402 f(); 403 404 // If the iterator instruction was recursively deleted, start over at the 405 // start of the block. 406 if (IterHandle != CurValue) { 407 CurInstIterator = BB->begin(); 408 SunkAddrs.clear(); 409 } 410 } 411 412 // Get the DominatorTree, building if necessary. 413 DominatorTree &getDT(Function &F) { 414 if (!DT) 415 DT = std::make_unique<DominatorTree>(F); 416 return *DT; 417 } 418 419 void removeAllAssertingVHReferences(Value *V); 420 bool eliminateAssumptions(Function &F); 421 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); 422 bool eliminateMostlyEmptyBlocks(Function &F); 423 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 424 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 425 void eliminateMostlyEmptyBlock(BasicBlock *BB); 426 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 427 bool isPreheader); 428 bool makeBitReverse(Instruction &I); 429 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); 430 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); 431 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, 432 unsigned AddrSpace); 433 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 434 bool optimizeInlineAsmInst(CallInst *CS); 435 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); 436 bool optimizeExt(Instruction *&I); 437 bool optimizeExtUses(Instruction *I); 438 bool optimizeLoadExt(LoadInst *Load); 439 bool optimizeShiftInst(BinaryOperator *BO); 440 bool optimizeFunnelShift(IntrinsicInst *Fsh); 441 bool optimizeSelectInst(SelectInst *SI); 442 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 443 bool optimizeSwitchType(SwitchInst *SI); 444 bool optimizeSwitchPhiConstants(SwitchInst *SI); 445 bool optimizeSwitchInst(SwitchInst *SI); 446 bool optimizeExtractElementInst(Instruction *Inst); 447 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); 448 bool fixupDbgValue(Instruction *I); 449 bool fixupDbgVariableRecord(DbgVariableRecord &I); 450 bool fixupDbgVariableRecordsOnInst(Instruction &I); 451 bool placeDbgValues(Function &F); 452 bool placePseudoProbes(Function &F); 453 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 454 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 455 bool tryToPromoteExts(TypePromotionTransaction &TPT, 456 const SmallVectorImpl<Instruction *> &Exts, 457 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 458 unsigned CreatedInstsCost = 0); 459 bool mergeSExts(Function &F); 460 bool splitLargeGEPOffsets(); 461 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 462 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 463 bool optimizePhiTypes(Function &F); 464 bool performAddressTypePromotion( 465 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 466 bool HasPromoted, TypePromotionTransaction &TPT, 467 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 468 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); 469 bool simplifyOffsetableRelocate(GCStatepointInst &I); 470 471 bool tryToSinkFreeOperands(Instruction *I); 472 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, 473 CmpInst *Cmp, Intrinsic::ID IID); 474 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); 475 bool optimizeURem(Instruction *Rem); 476 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 477 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 478 void verifyBFIUpdates(Function &F); 479 bool _run(Function &F); 480 }; 481 482 class CodeGenPrepareLegacyPass : public FunctionPass { 483 public: 484 static char ID; // Pass identification, replacement for typeid 485 486 CodeGenPrepareLegacyPass() : FunctionPass(ID) { 487 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry()); 488 } 489 490 bool runOnFunction(Function &F) override; 491 492 StringRef getPassName() const override { return "CodeGen Prepare"; } 493 494 void getAnalysisUsage(AnalysisUsage &AU) const override { 495 // FIXME: When we can selectively preserve passes, preserve the domtree. 496 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 497 AU.addRequired<TargetLibraryInfoWrapperPass>(); 498 AU.addRequired<TargetPassConfig>(); 499 AU.addRequired<TargetTransformInfoWrapperPass>(); 500 AU.addRequired<LoopInfoWrapperPass>(); 501 AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 502 } 503 }; 504 505 } // end anonymous namespace 506 507 char CodeGenPrepareLegacyPass::ID = 0; 508 509 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) { 510 if (skipFunction(F)) 511 return false; 512 auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 513 CodeGenPrepare CGP(TM); 514 CGP.DL = &F.getDataLayout(); 515 CGP.SubtargetInfo = TM->getSubtargetImpl(F); 516 CGP.TLI = CGP.SubtargetInfo->getTargetLowering(); 517 CGP.TRI = CGP.SubtargetInfo->getRegisterInfo(); 518 CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 519 CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 520 CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 521 CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI)); 522 CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI)); 523 CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 524 auto BBSPRWP = 525 getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 526 CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr; 527 528 return CGP._run(F); 529 } 530 531 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE, 532 "Optimize for code generation", false, false) 533 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass) 534 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 535 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 536 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 537 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 538 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 539 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE, 540 "Optimize for code generation", false, false) 541 542 FunctionPass *llvm::createCodeGenPrepareLegacyPass() { 543 return new CodeGenPrepareLegacyPass(); 544 } 545 546 PreservedAnalyses CodeGenPreparePass::run(Function &F, 547 FunctionAnalysisManager &AM) { 548 CodeGenPrepare CGP(TM); 549 550 bool Changed = CGP.run(F, AM); 551 if (!Changed) 552 return PreservedAnalyses::all(); 553 554 PreservedAnalyses PA; 555 PA.preserve<TargetLibraryAnalysis>(); 556 PA.preserve<TargetIRAnalysis>(); 557 PA.preserve<LoopAnalysis>(); 558 return PA; 559 } 560 561 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) { 562 DL = &F.getDataLayout(); 563 SubtargetInfo = TM->getSubtargetImpl(F); 564 TLI = SubtargetInfo->getTargetLowering(); 565 TRI = SubtargetInfo->getRegisterInfo(); 566 TLInfo = &AM.getResult<TargetLibraryAnalysis>(F); 567 TTI = &AM.getResult<TargetIRAnalysis>(F); 568 LI = &AM.getResult<LoopAnalysis>(F); 569 BPI.reset(new BranchProbabilityInfo(F, *LI)); 570 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 571 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 572 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 573 BBSectionsProfileReader = 574 AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F); 575 return _run(F); 576 } 577 578 bool CodeGenPrepare::_run(Function &F) { 579 bool EverMadeChange = false; 580 581 OptSize = F.hasOptSize(); 582 // Use the basic-block-sections profile to promote hot functions to .text.hot 583 // if requested. 584 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 585 BBSectionsProfileReader->isFunctionHot(F.getName())) { 586 F.setSectionPrefix("hot"); 587 } else if (ProfileGuidedSectionPrefix) { 588 // The hot attribute overwrites profile count based hotness while profile 589 // counts based hotness overwrite the cold attribute. 590 // This is a conservative behabvior. 591 if (F.hasFnAttribute(Attribute::Hot) || 592 PSI->isFunctionHotInCallGraph(&F, *BFI)) 593 F.setSectionPrefix("hot"); 594 // If PSI shows this function is not hot, we will placed the function 595 // into unlikely section if (1) PSI shows this is a cold function, or 596 // (2) the function has a attribute of cold. 597 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 598 F.hasFnAttribute(Attribute::Cold)) 599 F.setSectionPrefix("unlikely"); 600 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 601 PSI->isFunctionHotnessUnknown(F)) 602 F.setSectionPrefix("unknown"); 603 } 604 605 /// This optimization identifies DIV instructions that can be 606 /// profitably bypassed and carried out with a shorter, faster divide. 607 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 608 const DenseMap<unsigned int, unsigned int> &BypassWidths = 609 TLI->getBypassSlowDivWidths(); 610 BasicBlock *BB = &*F.begin(); 611 while (BB != nullptr) { 612 // bypassSlowDivision may create new BBs, but we don't want to reapply the 613 // optimization to those blocks. 614 BasicBlock *Next = BB->getNextNode(); 615 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 616 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 617 BB = Next; 618 } 619 } 620 621 // Get rid of @llvm.assume builtins before attempting to eliminate empty 622 // blocks, since there might be blocks that only contain @llvm.assume calls 623 // (plus arguments that we can get rid of). 624 EverMadeChange |= eliminateAssumptions(F); 625 626 // Eliminate blocks that contain only PHI nodes and an 627 // unconditional branch. 628 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 629 630 ModifyDT ModifiedDT = ModifyDT::NotModifyDT; 631 if (!DisableBranchOpts) 632 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 633 634 // Split some critical edges where one of the sources is an indirect branch, 635 // to help generate sane code for PHIs involving such edges. 636 EverMadeChange |= 637 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 638 639 // If we are optimzing huge function, we need to consider the build time. 640 // Because the basic algorithm's complex is near O(N!). 641 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; 642 643 // Transformations above may invalidate dominator tree and/or loop info. 644 DT.reset(); 645 LI->releaseMemory(); 646 LI->analyze(getDT(F)); 647 648 bool MadeChange = true; 649 bool FuncIterated = false; 650 while (MadeChange) { 651 MadeChange = false; 652 653 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 654 if (FuncIterated && !FreshBBs.contains(&BB)) 655 continue; 656 657 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; 658 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); 659 660 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) 661 DT.reset(); 662 663 MadeChange |= Changed; 664 if (IsHugeFunc) { 665 // If the BB is updated, it may still has chance to be optimized. 666 // This usually happen at sink optimization. 667 // For example: 668 // 669 // bb0: 670 // %and = and i32 %a, 4 671 // %cmp = icmp eq i32 %and, 0 672 // 673 // If the %cmp sink to other BB, the %and will has chance to sink. 674 if (Changed) 675 FreshBBs.insert(&BB); 676 else if (FuncIterated) 677 FreshBBs.erase(&BB); 678 } else { 679 // For small/normal functions, we restart BB iteration if the dominator 680 // tree of the Function was changed. 681 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) 682 break; 683 } 684 } 685 // We have iterated all the BB in the (only work for huge) function. 686 FuncIterated = IsHugeFunc; 687 688 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 689 MadeChange |= mergeSExts(F); 690 if (!LargeOffsetGEPMap.empty()) 691 MadeChange |= splitLargeGEPOffsets(); 692 MadeChange |= optimizePhiTypes(F); 693 694 if (MadeChange) 695 eliminateFallThrough(F, DT.get()); 696 697 #ifndef NDEBUG 698 if (MadeChange && VerifyLoopInfo) 699 LI->verify(getDT(F)); 700 #endif 701 702 // Really free removed instructions during promotion. 703 for (Instruction *I : RemovedInsts) 704 I->deleteValue(); 705 706 EverMadeChange |= MadeChange; 707 SeenChainsForSExt.clear(); 708 ValToSExtendedUses.clear(); 709 RemovedInsts.clear(); 710 LargeOffsetGEPMap.clear(); 711 LargeOffsetGEPID.clear(); 712 } 713 714 NewGEPBases.clear(); 715 SunkAddrs.clear(); 716 717 if (!DisableBranchOpts) { 718 MadeChange = false; 719 // Use a set vector to get deterministic iteration order. The order the 720 // blocks are removed may affect whether or not PHI nodes in successors 721 // are removed. 722 SmallSetVector<BasicBlock *, 8> WorkList; 723 for (BasicBlock &BB : F) { 724 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 725 MadeChange |= ConstantFoldTerminator(&BB, true); 726 if (!MadeChange) 727 continue; 728 729 for (BasicBlock *Succ : Successors) 730 if (pred_empty(Succ)) 731 WorkList.insert(Succ); 732 } 733 734 // Delete the dead blocks and any of their dead successors. 735 MadeChange |= !WorkList.empty(); 736 while (!WorkList.empty()) { 737 BasicBlock *BB = WorkList.pop_back_val(); 738 SmallVector<BasicBlock *, 2> Successors(successors(BB)); 739 740 DeleteDeadBlock(BB); 741 742 for (BasicBlock *Succ : Successors) 743 if (pred_empty(Succ)) 744 WorkList.insert(Succ); 745 } 746 747 // Merge pairs of basic blocks with unconditional branches, connected by 748 // a single edge. 749 if (EverMadeChange || MadeChange) 750 MadeChange |= eliminateFallThrough(F); 751 752 EverMadeChange |= MadeChange; 753 } 754 755 if (!DisableGCOpts) { 756 SmallVector<GCStatepointInst *, 2> Statepoints; 757 for (BasicBlock &BB : F) 758 for (Instruction &I : BB) 759 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 760 Statepoints.push_back(SP); 761 for (auto &I : Statepoints) 762 EverMadeChange |= simplifyOffsetableRelocate(*I); 763 } 764 765 // Do this last to clean up use-before-def scenarios introduced by other 766 // preparatory transforms. 767 EverMadeChange |= placeDbgValues(F); 768 EverMadeChange |= placePseudoProbes(F); 769 770 #ifndef NDEBUG 771 if (VerifyBFIUpdates) 772 verifyBFIUpdates(F); 773 #endif 774 775 return EverMadeChange; 776 } 777 778 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 779 bool MadeChange = false; 780 for (BasicBlock &BB : F) { 781 CurInstIterator = BB.begin(); 782 while (CurInstIterator != BB.end()) { 783 Instruction *I = &*(CurInstIterator++); 784 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 785 MadeChange = true; 786 Value *Operand = Assume->getOperand(0); 787 Assume->eraseFromParent(); 788 789 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 790 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 791 }); 792 } 793 } 794 } 795 return MadeChange; 796 } 797 798 /// An instruction is about to be deleted, so remove all references to it in our 799 /// GEP-tracking data strcutures. 800 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 801 LargeOffsetGEPMap.erase(V); 802 NewGEPBases.erase(V); 803 804 auto GEP = dyn_cast<GetElementPtrInst>(V); 805 if (!GEP) 806 return; 807 808 LargeOffsetGEPID.erase(GEP); 809 810 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 811 if (VecI == LargeOffsetGEPMap.end()) 812 return; 813 814 auto &GEPVector = VecI->second; 815 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 816 817 if (GEPVector.empty()) 818 LargeOffsetGEPMap.erase(VecI); 819 } 820 821 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 822 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 823 DominatorTree NewDT(F); 824 LoopInfo NewLI(NewDT); 825 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 826 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 827 NewBFI.verifyMatch(*BFI); 828 } 829 830 /// Merge basic blocks which are connected by a single edge, where one of the 831 /// basic blocks has a single successor pointing to the other basic block, 832 /// which has a single predecessor. 833 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { 834 bool Changed = false; 835 // Scan all of the blocks in the function, except for the entry block. 836 // Use a temporary array to avoid iterator being invalidated when 837 // deleting blocks. 838 SmallVector<WeakTrackingVH, 16> Blocks; 839 for (auto &Block : llvm::drop_begin(F)) 840 Blocks.push_back(&Block); 841 842 SmallSet<WeakTrackingVH, 16> Preds; 843 for (auto &Block : Blocks) { 844 auto *BB = cast_or_null<BasicBlock>(Block); 845 if (!BB) 846 continue; 847 // If the destination block has a single pred, then this is a trivial 848 // edge, just collapse it. 849 BasicBlock *SinglePred = BB->getSinglePredecessor(); 850 851 // Don't merge if BB's address is taken. 852 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) 853 continue; 854 855 // Make an effort to skip unreachable blocks. 856 if (DT && !DT->isReachableFromEntry(BB)) 857 continue; 858 859 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 860 if (Term && !Term->isConditional()) { 861 Changed = true; 862 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 863 864 // Merge BB into SinglePred and delete it. 865 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, 866 /* MemDep */ nullptr, 867 /* PredecessorWithTwoSuccessors */ false, DT); 868 Preds.insert(SinglePred); 869 870 if (IsHugeFunc) { 871 // Update FreshBBs to optimize the merged BB. 872 FreshBBs.insert(SinglePred); 873 FreshBBs.erase(BB); 874 } 875 } 876 } 877 878 // (Repeatedly) merging blocks into their predecessors can create redundant 879 // debug intrinsics. 880 for (const auto &Pred : Preds) 881 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 882 RemoveRedundantDbgInstrs(BB); 883 884 return Changed; 885 } 886 887 /// Find a destination block from BB if BB is mergeable empty block. 888 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 889 // If this block doesn't end with an uncond branch, ignore it. 890 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 891 if (!BI || !BI->isUnconditional()) 892 return nullptr; 893 894 // If the instruction before the branch (skipping debug info) isn't a phi 895 // node, then other stuff is happening here. 896 BasicBlock::iterator BBI = BI->getIterator(); 897 if (BBI != BB->begin()) { 898 --BBI; 899 while (isa<DbgInfoIntrinsic>(BBI)) { 900 if (BBI == BB->begin()) 901 break; 902 --BBI; 903 } 904 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 905 return nullptr; 906 } 907 908 // Do not break infinite loops. 909 BasicBlock *DestBB = BI->getSuccessor(0); 910 if (DestBB == BB) 911 return nullptr; 912 913 if (!canMergeBlocks(BB, DestBB)) 914 DestBB = nullptr; 915 916 return DestBB; 917 } 918 919 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 920 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 921 /// edges in ways that are non-optimal for isel. Start by eliminating these 922 /// blocks so we can split them the way we want them. 923 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 924 SmallPtrSet<BasicBlock *, 16> Preheaders; 925 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 926 while (!LoopList.empty()) { 927 Loop *L = LoopList.pop_back_val(); 928 llvm::append_range(LoopList, *L); 929 if (BasicBlock *Preheader = L->getLoopPreheader()) 930 Preheaders.insert(Preheader); 931 } 932 933 bool MadeChange = false; 934 // Copy blocks into a temporary array to avoid iterator invalidation issues 935 // as we remove them. 936 // Note that this intentionally skips the entry block. 937 SmallVector<WeakTrackingVH, 16> Blocks; 938 for (auto &Block : llvm::drop_begin(F)) { 939 // Delete phi nodes that could block deleting other empty blocks. 940 if (!DisableDeletePHIs) 941 MadeChange |= DeleteDeadPHIs(&Block, TLInfo); 942 Blocks.push_back(&Block); 943 } 944 945 for (auto &Block : Blocks) { 946 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 947 if (!BB) 948 continue; 949 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 950 if (!DestBB || 951 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 952 continue; 953 954 eliminateMostlyEmptyBlock(BB); 955 MadeChange = true; 956 } 957 return MadeChange; 958 } 959 960 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 961 BasicBlock *DestBB, 962 bool isPreheader) { 963 // Do not delete loop preheaders if doing so would create a critical edge. 964 // Loop preheaders can be good locations to spill registers. If the 965 // preheader is deleted and we create a critical edge, registers may be 966 // spilled in the loop body instead. 967 if (!DisablePreheaderProtect && isPreheader && 968 !(BB->getSinglePredecessor() && 969 BB->getSinglePredecessor()->getSingleSuccessor())) 970 return false; 971 972 // Skip merging if the block's successor is also a successor to any callbr 973 // that leads to this block. 974 // FIXME: Is this really needed? Is this a correctness issue? 975 for (BasicBlock *Pred : predecessors(BB)) { 976 if (isa<CallBrInst>(Pred->getTerminator()) && 977 llvm::is_contained(successors(Pred), DestBB)) 978 return false; 979 } 980 981 // Try to skip merging if the unique predecessor of BB is terminated by a 982 // switch or indirect branch instruction, and BB is used as an incoming block 983 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 984 // add COPY instructions in the predecessor of BB instead of BB (if it is not 985 // merged). Note that the critical edge created by merging such blocks wont be 986 // split in MachineSink because the jump table is not analyzable. By keeping 987 // such empty block (BB), ISel will place COPY instructions in BB, not in the 988 // predecessor of BB. 989 BasicBlock *Pred = BB->getUniquePredecessor(); 990 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || 991 isa<IndirectBrInst>(Pred->getTerminator()))) 992 return true; 993 994 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 995 return true; 996 997 // We use a simple cost heuristic which determine skipping merging is 998 // profitable if the cost of skipping merging is less than the cost of 999 // merging : Cost(skipping merging) < Cost(merging BB), where the 1000 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 1001 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 1002 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 1003 // Freq(Pred) / Freq(BB) > 2. 1004 // Note that if there are multiple empty blocks sharing the same incoming 1005 // value for the PHIs in the DestBB, we consider them together. In such 1006 // case, Cost(merging BB) will be the sum of their frequencies. 1007 1008 if (!isa<PHINode>(DestBB->begin())) 1009 return true; 1010 1011 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 1012 1013 // Find all other incoming blocks from which incoming values of all PHIs in 1014 // DestBB are the same as the ones from BB. 1015 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 1016 if (DestBBPred == BB) 1017 continue; 1018 1019 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 1020 return DestPN.getIncomingValueForBlock(BB) == 1021 DestPN.getIncomingValueForBlock(DestBBPred); 1022 })) 1023 SameIncomingValueBBs.insert(DestBBPred); 1024 } 1025 1026 // See if all BB's incoming values are same as the value from Pred. In this 1027 // case, no reason to skip merging because COPYs are expected to be place in 1028 // Pred already. 1029 if (SameIncomingValueBBs.count(Pred)) 1030 return true; 1031 1032 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 1033 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 1034 1035 for (auto *SameValueBB : SameIncomingValueBBs) 1036 if (SameValueBB->getUniquePredecessor() == Pred && 1037 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 1038 BBFreq += BFI->getBlockFreq(SameValueBB); 1039 1040 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge); 1041 return !Limit || PredFreq <= *Limit; 1042 } 1043 1044 /// Return true if we can merge BB into DestBB if there is a single 1045 /// unconditional branch between them, and BB contains no other non-phi 1046 /// instructions. 1047 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 1048 const BasicBlock *DestBB) const { 1049 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 1050 // the successor. If there are more complex condition (e.g. preheaders), 1051 // don't mess around with them. 1052 for (const PHINode &PN : BB->phis()) { 1053 for (const User *U : PN.users()) { 1054 const Instruction *UI = cast<Instruction>(U); 1055 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 1056 return false; 1057 // If User is inside DestBB block and it is a PHINode then check 1058 // incoming value. If incoming value is not from BB then this is 1059 // a complex condition (e.g. preheaders) we want to avoid here. 1060 if (UI->getParent() == DestBB) { 1061 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 1062 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 1063 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 1064 if (Insn && Insn->getParent() == BB && 1065 Insn->getParent() != UPN->getIncomingBlock(I)) 1066 return false; 1067 } 1068 } 1069 } 1070 } 1071 1072 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 1073 // and DestBB may have conflicting incoming values for the block. If so, we 1074 // can't merge the block. 1075 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 1076 if (!DestBBPN) 1077 return true; // no conflict. 1078 1079 // Collect the preds of BB. 1080 SmallPtrSet<const BasicBlock *, 16> BBPreds; 1081 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1082 // It is faster to get preds from a PHI than with pred_iterator. 1083 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1084 BBPreds.insert(BBPN->getIncomingBlock(i)); 1085 } else { 1086 BBPreds.insert(pred_begin(BB), pred_end(BB)); 1087 } 1088 1089 // Walk the preds of DestBB. 1090 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 1091 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 1092 if (BBPreds.count(Pred)) { // Common predecessor? 1093 for (const PHINode &PN : DestBB->phis()) { 1094 const Value *V1 = PN.getIncomingValueForBlock(Pred); 1095 const Value *V2 = PN.getIncomingValueForBlock(BB); 1096 1097 // If V2 is a phi node in BB, look up what the mapped value will be. 1098 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 1099 if (V2PN->getParent() == BB) 1100 V2 = V2PN->getIncomingValueForBlock(Pred); 1101 1102 // If there is a conflict, bail out. 1103 if (V1 != V2) 1104 return false; 1105 } 1106 } 1107 } 1108 1109 return true; 1110 } 1111 1112 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. 1113 static void replaceAllUsesWith(Value *Old, Value *New, 1114 SmallSet<BasicBlock *, 32> &FreshBBs, 1115 bool IsHuge) { 1116 auto *OldI = dyn_cast<Instruction>(Old); 1117 if (OldI) { 1118 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); 1119 UI != E; ++UI) { 1120 Instruction *User = cast<Instruction>(*UI); 1121 if (IsHuge) 1122 FreshBBs.insert(User->getParent()); 1123 } 1124 } 1125 Old->replaceAllUsesWith(New); 1126 } 1127 1128 /// Eliminate a basic block that has only phi's and an unconditional branch in 1129 /// it. 1130 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 1131 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1132 BasicBlock *DestBB = BI->getSuccessor(0); 1133 1134 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 1135 << *BB << *DestBB); 1136 1137 // If the destination block has a single pred, then this is a trivial edge, 1138 // just collapse it. 1139 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 1140 if (SinglePred != DestBB) { 1141 assert(SinglePred == BB && 1142 "Single predecessor not the same as predecessor"); 1143 // Merge DestBB into SinglePred/BB and delete it. 1144 MergeBlockIntoPredecessor(DestBB); 1145 // Note: BB(=SinglePred) will not be deleted on this path. 1146 // DestBB(=its single successor) is the one that was deleted. 1147 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 1148 1149 if (IsHugeFunc) { 1150 // Update FreshBBs to optimize the merged BB. 1151 FreshBBs.insert(SinglePred); 1152 FreshBBs.erase(DestBB); 1153 } 1154 return; 1155 } 1156 } 1157 1158 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 1159 // to handle the new incoming edges it is about to have. 1160 for (PHINode &PN : DestBB->phis()) { 1161 // Remove the incoming value for BB, and remember it. 1162 Value *InVal = PN.removeIncomingValue(BB, false); 1163 1164 // Two options: either the InVal is a phi node defined in BB or it is some 1165 // value that dominates BB. 1166 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 1167 if (InValPhi && InValPhi->getParent() == BB) { 1168 // Add all of the input values of the input PHI as inputs of this phi. 1169 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 1170 PN.addIncoming(InValPhi->getIncomingValue(i), 1171 InValPhi->getIncomingBlock(i)); 1172 } else { 1173 // Otherwise, add one instance of the dominating value for each edge that 1174 // we will be adding. 1175 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1176 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1177 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1178 } else { 1179 for (BasicBlock *Pred : predecessors(BB)) 1180 PN.addIncoming(InVal, Pred); 1181 } 1182 } 1183 } 1184 1185 // Preserve loop Metadata. 1186 if (BI->hasMetadata(LLVMContext::MD_loop)) { 1187 for (auto *Pred : predecessors(BB)) 1188 Pred->getTerminator()->copyMetadata(*BI, LLVMContext::MD_loop); 1189 } 1190 1191 // The PHIs are now updated, change everything that refers to BB to use 1192 // DestBB and remove BB. 1193 BB->replaceAllUsesWith(DestBB); 1194 BB->eraseFromParent(); 1195 ++NumBlocksElim; 1196 1197 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1198 } 1199 1200 // Computes a map of base pointer relocation instructions to corresponding 1201 // derived pointer relocation instructions given a vector of all relocate calls 1202 static void computeBaseDerivedRelocateMap( 1203 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1204 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> 1205 &RelocateInstMap) { 1206 // Collect information in two maps: one primarily for locating the base object 1207 // while filling the second map; the second map is the final structure holding 1208 // a mapping between Base and corresponding Derived relocate calls 1209 MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1210 for (auto *ThisRelocate : AllRelocateCalls) { 1211 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1212 ThisRelocate->getDerivedPtrIndex()); 1213 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1214 } 1215 for (auto &Item : RelocateIdxMap) { 1216 std::pair<unsigned, unsigned> Key = Item.first; 1217 if (Key.first == Key.second) 1218 // Base relocation: nothing to insert 1219 continue; 1220 1221 GCRelocateInst *I = Item.second; 1222 auto BaseKey = std::make_pair(Key.first, Key.first); 1223 1224 // We're iterating over RelocateIdxMap so we cannot modify it. 1225 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1226 if (MaybeBase == RelocateIdxMap.end()) 1227 // TODO: We might want to insert a new base object relocate and gep off 1228 // that, if there are enough derived object relocates. 1229 continue; 1230 1231 RelocateInstMap[MaybeBase->second].push_back(I); 1232 } 1233 } 1234 1235 // Accepts a GEP and extracts the operands into a vector provided they're all 1236 // small integer constants 1237 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1238 SmallVectorImpl<Value *> &OffsetV) { 1239 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1240 // Only accept small constant integer operands 1241 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1242 if (!Op || Op->getZExtValue() > 20) 1243 return false; 1244 } 1245 1246 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1247 OffsetV.push_back(GEP->getOperand(i)); 1248 return true; 1249 } 1250 1251 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1252 // replace, computes a replacement, and affects it. 1253 static bool 1254 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1255 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1256 bool MadeChange = false; 1257 // We must ensure the relocation of derived pointer is defined after 1258 // relocation of base pointer. If we find a relocation corresponding to base 1259 // defined earlier than relocation of base then we move relocation of base 1260 // right before found relocation. We consider only relocation in the same 1261 // basic block as relocation of base. Relocations from other basic block will 1262 // be skipped by optimization and we do not care about them. 1263 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1264 &*R != RelocatedBase; ++R) 1265 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1266 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1267 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1268 RelocatedBase->moveBefore(RI); 1269 MadeChange = true; 1270 break; 1271 } 1272 1273 for (GCRelocateInst *ToReplace : Targets) { 1274 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1275 "Not relocating a derived object of the original base object"); 1276 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1277 // A duplicate relocate call. TODO: coalesce duplicates. 1278 continue; 1279 } 1280 1281 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1282 // Base and derived relocates are in different basic blocks. 1283 // In this case transform is only valid when base dominates derived 1284 // relocate. However it would be too expensive to check dominance 1285 // for each such relocate, so we skip the whole transformation. 1286 continue; 1287 } 1288 1289 Value *Base = ToReplace->getBasePtr(); 1290 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1291 if (!Derived || Derived->getPointerOperand() != Base) 1292 continue; 1293 1294 SmallVector<Value *, 2> OffsetV; 1295 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1296 continue; 1297 1298 // Create a Builder and replace the target callsite with a gep 1299 assert(RelocatedBase->getNextNode() && 1300 "Should always have one since it's not a terminator"); 1301 1302 // Insert after RelocatedBase 1303 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1304 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1305 1306 // If gc_relocate does not match the actual type, cast it to the right type. 1307 // In theory, there must be a bitcast after gc_relocate if the type does not 1308 // match, and we should reuse it to get the derived pointer. But it could be 1309 // cases like this: 1310 // bb1: 1311 // ... 1312 // %g1 = call coldcc i8 addrspace(1)* 1313 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1314 // 1315 // bb2: 1316 // ... 1317 // %g2 = call coldcc i8 addrspace(1)* 1318 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1319 // 1320 // merge: 1321 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1322 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1323 // 1324 // In this case, we can not find the bitcast any more. So we insert a new 1325 // bitcast no matter there is already one or not. In this way, we can handle 1326 // all cases, and the extra bitcast should be optimized away in later 1327 // passes. 1328 Value *ActualRelocatedBase = RelocatedBase; 1329 if (RelocatedBase->getType() != Base->getType()) { 1330 ActualRelocatedBase = 1331 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1332 } 1333 Value *Replacement = 1334 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, 1335 ArrayRef(OffsetV)); 1336 Replacement->takeName(ToReplace); 1337 // If the newly generated derived pointer's type does not match the original 1338 // derived pointer's type, cast the new derived pointer to match it. Same 1339 // reasoning as above. 1340 Value *ActualReplacement = Replacement; 1341 if (Replacement->getType() != ToReplace->getType()) { 1342 ActualReplacement = 1343 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1344 } 1345 ToReplace->replaceAllUsesWith(ActualReplacement); 1346 ToReplace->eraseFromParent(); 1347 1348 MadeChange = true; 1349 } 1350 return MadeChange; 1351 } 1352 1353 // Turns this: 1354 // 1355 // %base = ... 1356 // %ptr = gep %base + 15 1357 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1358 // %base' = relocate(%tok, i32 4, i32 4) 1359 // %ptr' = relocate(%tok, i32 4, i32 5) 1360 // %val = load %ptr' 1361 // 1362 // into this: 1363 // 1364 // %base = ... 1365 // %ptr = gep %base + 15 1366 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1367 // %base' = gc.relocate(%tok, i32 4, i32 4) 1368 // %ptr' = gep %base' + 15 1369 // %val = load %ptr' 1370 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1371 bool MadeChange = false; 1372 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1373 for (auto *U : I.users()) 1374 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1375 // Collect all the relocate calls associated with a statepoint 1376 AllRelocateCalls.push_back(Relocate); 1377 1378 // We need at least one base pointer relocation + one derived pointer 1379 // relocation to mangle 1380 if (AllRelocateCalls.size() < 2) 1381 return false; 1382 1383 // RelocateInstMap is a mapping from the base relocate instruction to the 1384 // corresponding derived relocate instructions 1385 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap; 1386 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1387 if (RelocateInstMap.empty()) 1388 return false; 1389 1390 for (auto &Item : RelocateInstMap) 1391 // Item.first is the RelocatedBase to offset against 1392 // Item.second is the vector of Targets to replace 1393 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1394 return MadeChange; 1395 } 1396 1397 /// Sink the specified cast instruction into its user blocks. 1398 static bool SinkCast(CastInst *CI) { 1399 BasicBlock *DefBB = CI->getParent(); 1400 1401 /// InsertedCasts - Only insert a cast in each block once. 1402 DenseMap<BasicBlock *, CastInst *> InsertedCasts; 1403 1404 bool MadeChange = false; 1405 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1406 UI != E;) { 1407 Use &TheUse = UI.getUse(); 1408 Instruction *User = cast<Instruction>(*UI); 1409 1410 // Figure out which BB this cast is used in. For PHI's this is the 1411 // appropriate predecessor block. 1412 BasicBlock *UserBB = User->getParent(); 1413 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1414 UserBB = PN->getIncomingBlock(TheUse); 1415 } 1416 1417 // Preincrement use iterator so we don't invalidate it. 1418 ++UI; 1419 1420 // The first insertion point of a block containing an EH pad is after the 1421 // pad. If the pad is the user, we cannot sink the cast past the pad. 1422 if (User->isEHPad()) 1423 continue; 1424 1425 // If the block selected to receive the cast is an EH pad that does not 1426 // allow non-PHI instructions before the terminator, we can't sink the 1427 // cast. 1428 if (UserBB->getTerminator()->isEHPad()) 1429 continue; 1430 1431 // If this user is in the same block as the cast, don't change the cast. 1432 if (UserBB == DefBB) 1433 continue; 1434 1435 // If we have already inserted a cast into this block, use it. 1436 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1437 1438 if (!InsertedCast) { 1439 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1440 assert(InsertPt != UserBB->end()); 1441 InsertedCast = cast<CastInst>(CI->clone()); 1442 InsertedCast->insertBefore(*UserBB, InsertPt); 1443 } 1444 1445 // Replace a use of the cast with a use of the new cast. 1446 TheUse = InsertedCast; 1447 MadeChange = true; 1448 ++NumCastUses; 1449 } 1450 1451 // If we removed all uses, nuke the cast. 1452 if (CI->use_empty()) { 1453 salvageDebugInfo(*CI); 1454 CI->eraseFromParent(); 1455 MadeChange = true; 1456 } 1457 1458 return MadeChange; 1459 } 1460 1461 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1462 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1463 /// reduce the number of virtual registers that must be created and coalesced. 1464 /// 1465 /// Return true if any changes are made. 1466 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1467 const DataLayout &DL) { 1468 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1469 // than sinking only nop casts, but is helpful on some platforms. 1470 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1471 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1472 ASC->getDestAddressSpace())) 1473 return false; 1474 } 1475 1476 // If this is a noop copy, 1477 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1478 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1479 1480 // This is an fp<->int conversion? 1481 if (SrcVT.isInteger() != DstVT.isInteger()) 1482 return false; 1483 1484 // If this is an extension, it will be a zero or sign extension, which 1485 // isn't a noop. 1486 if (SrcVT.bitsLT(DstVT)) 1487 return false; 1488 1489 // If these values will be promoted, find out what they will be promoted 1490 // to. This helps us consider truncates on PPC as noop copies when they 1491 // are. 1492 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1493 TargetLowering::TypePromoteInteger) 1494 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1495 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1496 TargetLowering::TypePromoteInteger) 1497 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1498 1499 // If, after promotion, these are the same types, this is a noop copy. 1500 if (SrcVT != DstVT) 1501 return false; 1502 1503 return SinkCast(CI); 1504 } 1505 1506 // Match a simple increment by constant operation. Note that if a sub is 1507 // matched, the step is negated (as if the step had been canonicalized to 1508 // an add, even though we leave the instruction alone.) 1509 static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, 1510 Constant *&Step) { 1511 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1512 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1513 m_Instruction(LHS), m_Constant(Step))))) 1514 return true; 1515 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1516 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1517 m_Instruction(LHS), m_Constant(Step))))) { 1518 Step = ConstantExpr::getNeg(Step); 1519 return true; 1520 } 1521 return false; 1522 } 1523 1524 /// If given \p PN is an inductive variable with value IVInc coming from the 1525 /// backedge, and on each iteration it gets increased by Step, return pair 1526 /// <IVInc, Step>. Otherwise, return std::nullopt. 1527 static std::optional<std::pair<Instruction *, Constant *>> 1528 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1529 const Loop *L = LI->getLoopFor(PN->getParent()); 1530 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1531 return std::nullopt; 1532 auto *IVInc = 1533 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1534 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1535 return std::nullopt; 1536 Instruction *LHS = nullptr; 1537 Constant *Step = nullptr; 1538 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1539 return std::make_pair(IVInc, Step); 1540 return std::nullopt; 1541 } 1542 1543 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1544 auto *I = dyn_cast<Instruction>(V); 1545 if (!I) 1546 return false; 1547 Instruction *LHS = nullptr; 1548 Constant *Step = nullptr; 1549 if (!matchIncrement(I, LHS, Step)) 1550 return false; 1551 if (auto *PN = dyn_cast<PHINode>(LHS)) 1552 if (auto IVInc = getIVIncrement(PN, LI)) 1553 return IVInc->first == I; 1554 return false; 1555 } 1556 1557 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1558 Value *Arg0, Value *Arg1, 1559 CmpInst *Cmp, 1560 Intrinsic::ID IID) { 1561 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1562 if (!isIVIncrement(BO, LI)) 1563 return false; 1564 const Loop *L = LI->getLoopFor(BO->getParent()); 1565 assert(L && "L should not be null after isIVIncrement()"); 1566 // Do not risk on moving increment into a child loop. 1567 if (LI->getLoopFor(Cmp->getParent()) != L) 1568 return false; 1569 1570 // Finally, we need to ensure that the insert point will dominate all 1571 // existing uses of the increment. 1572 1573 auto &DT = getDT(*BO->getParent()->getParent()); 1574 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1575 // If we're moving up the dom tree, all uses are trivially dominated. 1576 // (This is the common case for code produced by LSR.) 1577 return true; 1578 1579 // Otherwise, special case the single use in the phi recurrence. 1580 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1581 }; 1582 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1583 // We used to use a dominator tree here to allow multi-block optimization. 1584 // But that was problematic because: 1585 // 1. It could cause a perf regression by hoisting the math op into the 1586 // critical path. 1587 // 2. It could cause a perf regression by creating a value that was live 1588 // across multiple blocks and increasing register pressure. 1589 // 3. Use of a dominator tree could cause large compile-time regression. 1590 // This is because we recompute the DT on every change in the main CGP 1591 // run-loop. The recomputing is probably unnecessary in many cases, so if 1592 // that was fixed, using a DT here would be ok. 1593 // 1594 // There is one important particular case we still want to handle: if BO is 1595 // the IV increment. Important properties that make it profitable: 1596 // - We can speculate IV increment anywhere in the loop (as long as the 1597 // indvar Phi is its only user); 1598 // - Upon computing Cmp, we effectively compute something equivalent to the 1599 // IV increment (despite it loops differently in the IR). So moving it up 1600 // to the cmp point does not really increase register pressure. 1601 return false; 1602 } 1603 1604 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1605 if (BO->getOpcode() == Instruction::Add && 1606 IID == Intrinsic::usub_with_overflow) { 1607 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1608 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1609 } 1610 1611 // Insert at the first instruction of the pair. 1612 Instruction *InsertPt = nullptr; 1613 for (Instruction &Iter : *Cmp->getParent()) { 1614 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1615 // the overflow intrinsic are defined. 1616 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1617 InsertPt = &Iter; 1618 break; 1619 } 1620 } 1621 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1622 1623 IRBuilder<> Builder(InsertPt); 1624 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1625 if (BO->getOpcode() != Instruction::Xor) { 1626 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1627 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); 1628 } else 1629 assert(BO->hasOneUse() && 1630 "Patterns with XOr should use the BO only in the compare"); 1631 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1632 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); 1633 Cmp->eraseFromParent(); 1634 BO->eraseFromParent(); 1635 return true; 1636 } 1637 1638 /// Match special-case patterns that check for unsigned add overflow. 1639 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1640 BinaryOperator *&Add) { 1641 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1642 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1643 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1644 1645 // We are not expecting non-canonical/degenerate code. Just bail out. 1646 if (isa<Constant>(A)) 1647 return false; 1648 1649 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1650 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1651 B = ConstantInt::get(B->getType(), 1); 1652 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1653 B = Constant::getAllOnesValue(B->getType()); 1654 else 1655 return false; 1656 1657 // Check the users of the variable operand of the compare looking for an add 1658 // with the adjusted constant. 1659 for (User *U : A->users()) { 1660 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1661 Add = cast<BinaryOperator>(U); 1662 return true; 1663 } 1664 } 1665 return false; 1666 } 1667 1668 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1669 /// intrinsic. Return true if any changes were made. 1670 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1671 ModifyDT &ModifiedDT) { 1672 bool EdgeCase = false; 1673 Value *A, *B; 1674 BinaryOperator *Add; 1675 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1676 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1677 return false; 1678 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1679 A = Add->getOperand(0); 1680 B = Add->getOperand(1); 1681 EdgeCase = true; 1682 } 1683 1684 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1685 TLI->getValueType(*DL, Add->getType()), 1686 Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) 1687 return false; 1688 1689 // We don't want to move around uses of condition values this late, so we 1690 // check if it is legal to create the call to the intrinsic in the basic 1691 // block containing the icmp. 1692 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1693 return false; 1694 1695 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1696 Intrinsic::uadd_with_overflow)) 1697 return false; 1698 1699 // Reset callers - do not crash by iterating over a dead instruction. 1700 ModifiedDT = ModifyDT::ModifyInstDT; 1701 return true; 1702 } 1703 1704 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1705 ModifyDT &ModifiedDT) { 1706 // We are not expecting non-canonical/degenerate code. Just bail out. 1707 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1708 if (isa<Constant>(A) && isa<Constant>(B)) 1709 return false; 1710 1711 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1712 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1713 if (Pred == ICmpInst::ICMP_UGT) { 1714 std::swap(A, B); 1715 Pred = ICmpInst::ICMP_ULT; 1716 } 1717 // Convert special-case: (A == 0) is the same as (A u< 1). 1718 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1719 B = ConstantInt::get(B->getType(), 1); 1720 Pred = ICmpInst::ICMP_ULT; 1721 } 1722 // Convert special-case: (A != 0) is the same as (0 u< A). 1723 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1724 std::swap(A, B); 1725 Pred = ICmpInst::ICMP_ULT; 1726 } 1727 if (Pred != ICmpInst::ICMP_ULT) 1728 return false; 1729 1730 // Walk the users of a variable operand of a compare looking for a subtract or 1731 // add with that same operand. Also match the 2nd operand of the compare to 1732 // the add/sub, but that may be a negated constant operand of an add. 1733 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1734 BinaryOperator *Sub = nullptr; 1735 for (User *U : CmpVariableOperand->users()) { 1736 // A - B, A u< B --> usubo(A, B) 1737 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1738 Sub = cast<BinaryOperator>(U); 1739 break; 1740 } 1741 1742 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1743 const APInt *CmpC, *AddC; 1744 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1745 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1746 Sub = cast<BinaryOperator>(U); 1747 break; 1748 } 1749 } 1750 if (!Sub) 1751 return false; 1752 1753 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1754 TLI->getValueType(*DL, Sub->getType()), 1755 Sub->hasNUsesOrMore(1))) 1756 return false; 1757 1758 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1759 Cmp, Intrinsic::usub_with_overflow)) 1760 return false; 1761 1762 // Reset callers - do not crash by iterating over a dead instruction. 1763 ModifiedDT = ModifyDT::ModifyInstDT; 1764 return true; 1765 } 1766 1767 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1768 /// registers that must be created and coalesced. This is a clear win except on 1769 /// targets with multiple condition code registers (PowerPC), where it might 1770 /// lose; some adjustment may be wanted there. 1771 /// 1772 /// Return true if any changes are made. 1773 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1774 if (TLI.hasMultipleConditionRegisters()) 1775 return false; 1776 1777 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1778 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1779 return false; 1780 1781 // Only insert a cmp in each block once. 1782 DenseMap<BasicBlock *, CmpInst *> InsertedCmps; 1783 1784 bool MadeChange = false; 1785 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1786 UI != E;) { 1787 Use &TheUse = UI.getUse(); 1788 Instruction *User = cast<Instruction>(*UI); 1789 1790 // Preincrement use iterator so we don't invalidate it. 1791 ++UI; 1792 1793 // Don't bother for PHI nodes. 1794 if (isa<PHINode>(User)) 1795 continue; 1796 1797 // Figure out which BB this cmp is used in. 1798 BasicBlock *UserBB = User->getParent(); 1799 BasicBlock *DefBB = Cmp->getParent(); 1800 1801 // If this user is in the same block as the cmp, don't change the cmp. 1802 if (UserBB == DefBB) 1803 continue; 1804 1805 // If we have already inserted a cmp into this block, use it. 1806 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1807 1808 if (!InsertedCmp) { 1809 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1810 assert(InsertPt != UserBB->end()); 1811 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1812 Cmp->getOperand(0), Cmp->getOperand(1), ""); 1813 InsertedCmp->insertBefore(*UserBB, InsertPt); 1814 // Propagate the debug info. 1815 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1816 } 1817 1818 // Replace a use of the cmp with a use of the new cmp. 1819 TheUse = InsertedCmp; 1820 MadeChange = true; 1821 ++NumCmpUses; 1822 } 1823 1824 // If we removed all uses, nuke the cmp. 1825 if (Cmp->use_empty()) { 1826 Cmp->eraseFromParent(); 1827 MadeChange = true; 1828 } 1829 1830 return MadeChange; 1831 } 1832 1833 /// For pattern like: 1834 /// 1835 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1836 /// ... 1837 /// DomBB: 1838 /// ... 1839 /// br DomCond, TrueBB, CmpBB 1840 /// CmpBB: (with DomBB being the single predecessor) 1841 /// ... 1842 /// Cmp = icmp eq CmpOp0, CmpOp1 1843 /// ... 1844 /// 1845 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1846 /// different from lowering of icmp eq (PowerPC). This function try to convert 1847 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1848 /// After that, DomCond and Cmp can use the same comparison so reduce one 1849 /// comparison. 1850 /// 1851 /// Return true if any changes are made. 1852 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1853 const TargetLowering &TLI) { 1854 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1855 return false; 1856 1857 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1858 if (Pred != ICmpInst::ICMP_EQ) 1859 return false; 1860 1861 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1862 // icmp slt/sgt would introduce more redundant LLVM IR. 1863 for (User *U : Cmp->users()) { 1864 if (isa<BranchInst>(U)) 1865 continue; 1866 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1867 continue; 1868 return false; 1869 } 1870 1871 // This is a cheap/incomplete check for dominance - just match a single 1872 // predecessor with a conditional branch. 1873 BasicBlock *CmpBB = Cmp->getParent(); 1874 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1875 if (!DomBB) 1876 return false; 1877 1878 // We want to ensure that the only way control gets to the comparison of 1879 // interest is that a less/greater than comparison on the same operands is 1880 // false. 1881 Value *DomCond; 1882 BasicBlock *TrueBB, *FalseBB; 1883 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1884 return false; 1885 if (CmpBB != FalseBB) 1886 return false; 1887 1888 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1889 ICmpInst::Predicate DomPred; 1890 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1891 return false; 1892 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1893 return false; 1894 1895 // Convert the equality comparison to the opposite of the dominating 1896 // comparison and swap the direction for all branch/select users. 1897 // We have conceptually converted: 1898 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1899 // to 1900 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1901 // And similarly for branches. 1902 for (User *U : Cmp->users()) { 1903 if (auto *BI = dyn_cast<BranchInst>(U)) { 1904 assert(BI->isConditional() && "Must be conditional"); 1905 BI->swapSuccessors(); 1906 continue; 1907 } 1908 if (auto *SI = dyn_cast<SelectInst>(U)) { 1909 // Swap operands 1910 SI->swapValues(); 1911 SI->swapProfMetadata(); 1912 continue; 1913 } 1914 llvm_unreachable("Must be a branch or a select"); 1915 } 1916 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1917 return true; 1918 } 1919 1920 /// Many architectures use the same instruction for both subtract and cmp. Try 1921 /// to swap cmp operands to match subtract operations to allow for CSE. 1922 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { 1923 Value *Op0 = Cmp->getOperand(0); 1924 Value *Op1 = Cmp->getOperand(1); 1925 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) || 1926 isa<Constant>(Op1) || Op0 == Op1) 1927 return false; 1928 1929 // If a subtract already has the same operands as a compare, swapping would be 1930 // bad. If a subtract has the same operands as a compare but in reverse order, 1931 // then swapping is good. 1932 int GoodToSwap = 0; 1933 unsigned NumInspected = 0; 1934 for (const User *U : Op0->users()) { 1935 // Avoid walking many users. 1936 if (++NumInspected > 128) 1937 return false; 1938 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 1939 GoodToSwap++; 1940 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 1941 GoodToSwap--; 1942 } 1943 1944 if (GoodToSwap > 0) { 1945 Cmp->swapOperands(); 1946 return true; 1947 } 1948 return false; 1949 } 1950 1951 static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI, 1952 const DataLayout &DL) { 1953 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp); 1954 if (!FCmp) 1955 return false; 1956 1957 // Don't fold if the target offers free fabs and the predicate is legal. 1958 EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType()); 1959 if (TLI.isFAbsFree(VT) && 1960 TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()), 1961 VT.getSimpleVT())) 1962 return false; 1963 1964 // Reverse the canonicalization if it is a FP class test 1965 auto ShouldReverseTransform = [](FPClassTest ClassTest) { 1966 return ClassTest == fcInf || ClassTest == (fcInf | fcNan); 1967 }; 1968 auto [ClassVal, ClassTest] = 1969 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), 1970 FCmp->getOperand(0), FCmp->getOperand(1)); 1971 if (!ClassVal) 1972 return false; 1973 1974 if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest)) 1975 return false; 1976 1977 IRBuilder<> Builder(Cmp); 1978 Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest); 1979 Cmp->replaceAllUsesWith(IsFPClass); 1980 RecursivelyDeleteTriviallyDeadInstructions(Cmp); 1981 return true; 1982 } 1983 1984 static bool isRemOfLoopIncrementWithLoopInvariant(Instruction *Rem, 1985 const LoopInfo *LI, 1986 Value *&RemAmtOut, 1987 PHINode *&LoopIncrPNOut) { 1988 Value *Incr, *RemAmt; 1989 // NB: If RemAmt is a power of 2 it *should* have been transformed by now. 1990 if (!match(Rem, m_URem(m_Value(Incr), m_Value(RemAmt)))) 1991 return false; 1992 1993 // Find out loop increment PHI. 1994 auto *PN = dyn_cast<PHINode>(Incr); 1995 if (!PN) 1996 return false; 1997 1998 // This isn't strictly necessary, what we really need is one increment and any 1999 // amount of initial values all being the same. 2000 if (PN->getNumIncomingValues() != 2) 2001 return false; 2002 2003 // Only trivially analyzable loops. 2004 Loop *L = LI->getLoopFor(PN->getParent()); 2005 if (!L || !L->getLoopPreheader() || !L->getLoopLatch()) 2006 return false; 2007 2008 // Req that the remainder is in the loop 2009 if (!L->contains(Rem)) 2010 return false; 2011 2012 // Only works if the remainder amount is a loop invaraint 2013 if (!L->isLoopInvariant(RemAmt)) 2014 return false; 2015 2016 // Is the PHI a loop increment? 2017 auto LoopIncrInfo = getIVIncrement(PN, LI); 2018 if (!LoopIncrInfo) 2019 return false; 2020 2021 // We need remainder_amount % increment_amount to be zero. Increment of one 2022 // satisfies that without any special logic and is overwhelmingly the common 2023 // case. 2024 if (!match(LoopIncrInfo->second, m_One())) 2025 return false; 2026 2027 // Need the increment to not overflow. 2028 if (!match(LoopIncrInfo->first, m_c_NUWAdd(m_Specific(PN), m_Value()))) 2029 return false; 2030 2031 // Set output variables. 2032 RemAmtOut = RemAmt; 2033 LoopIncrPNOut = PN; 2034 2035 return true; 2036 } 2037 2038 // Try to transform: 2039 // 2040 // for(i = Start; i < End; ++i) 2041 // Rem = (i nuw+ IncrLoopInvariant) u% RemAmtLoopInvariant; 2042 // 2043 // -> 2044 // 2045 // Rem = (Start nuw+ IncrLoopInvariant) % RemAmtLoopInvariant; 2046 // for(i = Start; i < End; ++i, ++rem) 2047 // Rem = rem == RemAmtLoopInvariant ? 0 : Rem; 2048 // 2049 // Currently only implemented for `IncrLoopInvariant` being zero. 2050 static bool foldURemOfLoopIncrement(Instruction *Rem, const DataLayout *DL, 2051 const LoopInfo *LI, 2052 SmallSet<BasicBlock *, 32> &FreshBBs, 2053 bool IsHuge) { 2054 Value *RemAmt; 2055 PHINode *LoopIncrPN; 2056 if (!isRemOfLoopIncrementWithLoopInvariant(Rem, LI, RemAmt, LoopIncrPN)) 2057 return false; 2058 2059 // Only non-constant remainder as the extra IV is probably not profitable 2060 // in that case. 2061 // 2062 // Potential TODO(1): `urem` of a const ends up as `mul` + `shift` + `add`. If 2063 // we can rule out register pressure and ensure this `urem` is executed each 2064 // iteration, its probably profitable to handle the const case as well. 2065 // 2066 // Potential TODO(2): Should we have a check for how "nested" this remainder 2067 // operation is? The new code runs every iteration so if the remainder is 2068 // guarded behind unlikely conditions this might not be worth it. 2069 if (match(RemAmt, m_ImmConstant())) 2070 return false; 2071 2072 Loop *L = LI->getLoopFor(LoopIncrPN->getParent()); 2073 Value *Start = LoopIncrPN->getIncomingValueForBlock(L->getLoopPreheader()); 2074 // If we can't fully optimize out the `rem`, skip this transform. 2075 Start = simplifyURemInst(Start, RemAmt, *DL); 2076 if (!Start) 2077 return false; 2078 2079 // Create new remainder with induction variable. 2080 Type *Ty = Rem->getType(); 2081 IRBuilder<> Builder(Rem->getContext()); 2082 2083 Builder.SetInsertPoint(LoopIncrPN); 2084 PHINode *NewRem = Builder.CreatePHI(Ty, 2); 2085 2086 Builder.SetInsertPoint(cast<Instruction>( 2087 LoopIncrPN->getIncomingValueForBlock(L->getLoopLatch()))); 2088 // `(add (urem x, y), 1)` is always nuw. 2089 Value *RemAdd = Builder.CreateNUWAdd(NewRem, ConstantInt::get(Ty, 1)); 2090 Value *RemCmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, RemAdd, RemAmt); 2091 Value *RemSel = 2092 Builder.CreateSelect(RemCmp, Constant::getNullValue(Ty), RemAdd); 2093 2094 NewRem->addIncoming(Start, L->getLoopPreheader()); 2095 NewRem->addIncoming(RemSel, L->getLoopLatch()); 2096 2097 // Insert all touched BBs. 2098 FreshBBs.insert(LoopIncrPN->getParent()); 2099 FreshBBs.insert(L->getLoopLatch()); 2100 FreshBBs.insert(Rem->getParent()); 2101 2102 replaceAllUsesWith(Rem, NewRem, FreshBBs, IsHuge); 2103 Rem->eraseFromParent(); 2104 return true; 2105 } 2106 2107 bool CodeGenPrepare::optimizeURem(Instruction *Rem) { 2108 if (foldURemOfLoopIncrement(Rem, DL, LI, FreshBBs, IsHugeFunc)) 2109 return true; 2110 return false; 2111 } 2112 2113 /// Some targets have better codegen for `ctpop(X) u< 2` than `ctpop(X) == 1`. 2114 /// This function converts `ctpop(X) ==/!= 1` into `ctpop(X) u</u> 2/1` if the 2115 /// result cannot be zero. 2116 static bool adjustIsPower2Test(CmpInst *Cmp, const TargetLowering &TLI, 2117 const TargetTransformInfo &TTI, 2118 const DataLayout &DL) { 2119 ICmpInst::Predicate Pred; 2120 if (!match(Cmp, m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(), m_One()))) 2121 return false; 2122 if (!ICmpInst::isEquality(Pred)) 2123 return false; 2124 auto *II = cast<IntrinsicInst>(Cmp->getOperand(0)); 2125 2126 if (isKnownNonZero(II, DL)) { 2127 if (Pred == ICmpInst::ICMP_EQ) { 2128 Cmp->setOperand(1, ConstantInt::get(II->getType(), 2)); 2129 Cmp->setPredicate(ICmpInst::ICMP_ULT); 2130 } else { 2131 Cmp->setPredicate(ICmpInst::ICMP_UGT); 2132 } 2133 return true; 2134 } 2135 return false; 2136 } 2137 2138 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { 2139 if (sinkCmpExpression(Cmp, *TLI)) 2140 return true; 2141 2142 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 2143 return true; 2144 2145 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 2146 return true; 2147 2148 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 2149 return true; 2150 2151 if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) 2152 return true; 2153 2154 if (foldFCmpToFPClassTest(Cmp, *TLI, *DL)) 2155 return true; 2156 2157 if (adjustIsPower2Test(Cmp, *TLI, *TTI, *DL)) 2158 return true; 2159 2160 return false; 2161 } 2162 2163 /// Duplicate and sink the given 'and' instruction into user blocks where it is 2164 /// used in a compare to allow isel to generate better code for targets where 2165 /// this operation can be combined. 2166 /// 2167 /// Return true if any changes are made. 2168 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, 2169 SetOfInstrs &InsertedInsts) { 2170 // Double-check that we're not trying to optimize an instruction that was 2171 // already optimized by some other part of this pass. 2172 assert(!InsertedInsts.count(AndI) && 2173 "Attempting to optimize already optimized and instruction"); 2174 (void)InsertedInsts; 2175 2176 // Nothing to do for single use in same basic block. 2177 if (AndI->hasOneUse() && 2178 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 2179 return false; 2180 2181 // Try to avoid cases where sinking/duplicating is likely to increase register 2182 // pressure. 2183 if (!isa<ConstantInt>(AndI->getOperand(0)) && 2184 !isa<ConstantInt>(AndI->getOperand(1)) && 2185 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 2186 return false; 2187 2188 for (auto *U : AndI->users()) { 2189 Instruction *User = cast<Instruction>(U); 2190 2191 // Only sink 'and' feeding icmp with 0. 2192 if (!isa<ICmpInst>(User)) 2193 return false; 2194 2195 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 2196 if (!CmpC || !CmpC->isZero()) 2197 return false; 2198 } 2199 2200 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 2201 return false; 2202 2203 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 2204 LLVM_DEBUG(AndI->getParent()->dump()); 2205 2206 // Push the 'and' into the same block as the icmp 0. There should only be 2207 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 2208 // others, so we don't need to keep track of which BBs we insert into. 2209 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 2210 UI != E;) { 2211 Use &TheUse = UI.getUse(); 2212 Instruction *User = cast<Instruction>(*UI); 2213 2214 // Preincrement use iterator so we don't invalidate it. 2215 ++UI; 2216 2217 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 2218 2219 // Keep the 'and' in the same place if the use is already in the same block. 2220 Instruction *InsertPt = 2221 User->getParent() == AndI->getParent() ? AndI : User; 2222 Instruction *InsertedAnd = BinaryOperator::Create( 2223 Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "", 2224 InsertPt->getIterator()); 2225 // Propagate the debug info. 2226 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 2227 2228 // Replace a use of the 'and' with a use of the new 'and'. 2229 TheUse = InsertedAnd; 2230 ++NumAndUses; 2231 LLVM_DEBUG(User->getParent()->dump()); 2232 } 2233 2234 // We removed all uses, nuke the and. 2235 AndI->eraseFromParent(); 2236 return true; 2237 } 2238 2239 /// Check if the candidates could be combined with a shift instruction, which 2240 /// includes: 2241 /// 1. Truncate instruction 2242 /// 2. And instruction and the imm is a mask of the low bits: 2243 /// imm & (imm+1) == 0 2244 static bool isExtractBitsCandidateUse(Instruction *User) { 2245 if (!isa<TruncInst>(User)) { 2246 if (User->getOpcode() != Instruction::And || 2247 !isa<ConstantInt>(User->getOperand(1))) 2248 return false; 2249 2250 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 2251 2252 if ((Cimm & (Cimm + 1)).getBoolValue()) 2253 return false; 2254 } 2255 return true; 2256 } 2257 2258 /// Sink both shift and truncate instruction to the use of truncate's BB. 2259 static bool 2260 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 2261 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 2262 const TargetLowering &TLI, const DataLayout &DL) { 2263 BasicBlock *UserBB = User->getParent(); 2264 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 2265 auto *TruncI = cast<TruncInst>(User); 2266 bool MadeChange = false; 2267 2268 for (Value::user_iterator TruncUI = TruncI->user_begin(), 2269 TruncE = TruncI->user_end(); 2270 TruncUI != TruncE;) { 2271 2272 Use &TruncTheUse = TruncUI.getUse(); 2273 Instruction *TruncUser = cast<Instruction>(*TruncUI); 2274 // Preincrement use iterator so we don't invalidate it. 2275 2276 ++TruncUI; 2277 2278 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 2279 if (!ISDOpcode) 2280 continue; 2281 2282 // If the use is actually a legal node, there will not be an 2283 // implicit truncate. 2284 // FIXME: always querying the result type is just an 2285 // approximation; some nodes' legality is determined by the 2286 // operand or other means. There's no good way to find out though. 2287 if (TLI.isOperationLegalOrCustom( 2288 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 2289 continue; 2290 2291 // Don't bother for PHI nodes. 2292 if (isa<PHINode>(TruncUser)) 2293 continue; 2294 2295 BasicBlock *TruncUserBB = TruncUser->getParent(); 2296 2297 if (UserBB == TruncUserBB) 2298 continue; 2299 2300 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 2301 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 2302 2303 if (!InsertedShift && !InsertedTrunc) { 2304 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 2305 assert(InsertPt != TruncUserBB->end()); 2306 // Sink the shift 2307 if (ShiftI->getOpcode() == Instruction::AShr) 2308 InsertedShift = 2309 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2310 else 2311 InsertedShift = 2312 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2313 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2314 InsertedShift->insertBefore(*TruncUserBB, InsertPt); 2315 2316 // Sink the trunc 2317 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 2318 TruncInsertPt++; 2319 // It will go ahead of any debug-info. 2320 TruncInsertPt.setHeadBit(true); 2321 assert(TruncInsertPt != TruncUserBB->end()); 2322 2323 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 2324 TruncI->getType(), ""); 2325 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt); 2326 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 2327 2328 MadeChange = true; 2329 2330 TruncTheUse = InsertedTrunc; 2331 } 2332 } 2333 return MadeChange; 2334 } 2335 2336 /// Sink the shift *right* instruction into user blocks if the uses could 2337 /// potentially be combined with this shift instruction and generate BitExtract 2338 /// instruction. It will only be applied if the architecture supports BitExtract 2339 /// instruction. Here is an example: 2340 /// BB1: 2341 /// %x.extract.shift = lshr i64 %arg1, 32 2342 /// BB2: 2343 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 2344 /// ==> 2345 /// 2346 /// BB2: 2347 /// %x.extract.shift.1 = lshr i64 %arg1, 32 2348 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 2349 /// 2350 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 2351 /// instruction. 2352 /// Return true if any changes are made. 2353 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 2354 const TargetLowering &TLI, 2355 const DataLayout &DL) { 2356 BasicBlock *DefBB = ShiftI->getParent(); 2357 2358 /// Only insert instructions in each block once. 2359 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 2360 2361 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 2362 2363 bool MadeChange = false; 2364 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 2365 UI != E;) { 2366 Use &TheUse = UI.getUse(); 2367 Instruction *User = cast<Instruction>(*UI); 2368 // Preincrement use iterator so we don't invalidate it. 2369 ++UI; 2370 2371 // Don't bother for PHI nodes. 2372 if (isa<PHINode>(User)) 2373 continue; 2374 2375 if (!isExtractBitsCandidateUse(User)) 2376 continue; 2377 2378 BasicBlock *UserBB = User->getParent(); 2379 2380 if (UserBB == DefBB) { 2381 // If the shift and truncate instruction are in the same BB. The use of 2382 // the truncate(TruncUse) may still introduce another truncate if not 2383 // legal. In this case, we would like to sink both shift and truncate 2384 // instruction to the BB of TruncUse. 2385 // for example: 2386 // BB1: 2387 // i64 shift.result = lshr i64 opnd, imm 2388 // trunc.result = trunc shift.result to i16 2389 // 2390 // BB2: 2391 // ----> We will have an implicit truncate here if the architecture does 2392 // not have i16 compare. 2393 // cmp i16 trunc.result, opnd2 2394 // 2395 if (isa<TruncInst>(User) && 2396 shiftIsLegal 2397 // If the type of the truncate is legal, no truncate will be 2398 // introduced in other basic blocks. 2399 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 2400 MadeChange = 2401 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 2402 2403 continue; 2404 } 2405 // If we have already inserted a shift into this block, use it. 2406 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 2407 2408 if (!InsertedShift) { 2409 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2410 assert(InsertPt != UserBB->end()); 2411 2412 if (ShiftI->getOpcode() == Instruction::AShr) 2413 InsertedShift = 2414 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2415 else 2416 InsertedShift = 2417 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2418 InsertedShift->insertBefore(*UserBB, InsertPt); 2419 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2420 2421 MadeChange = true; 2422 } 2423 2424 // Replace a use of the shift with a use of the new shift. 2425 TheUse = InsertedShift; 2426 } 2427 2428 // If we removed all uses, or there are none, nuke the shift. 2429 if (ShiftI->use_empty()) { 2430 salvageDebugInfo(*ShiftI); 2431 ShiftI->eraseFromParent(); 2432 MadeChange = true; 2433 } 2434 2435 return MadeChange; 2436 } 2437 2438 /// If counting leading or trailing zeros is an expensive operation and a zero 2439 /// input is defined, add a check for zero to avoid calling the intrinsic. 2440 /// 2441 /// We want to transform: 2442 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2443 /// 2444 /// into: 2445 /// entry: 2446 /// %cmpz = icmp eq i64 %A, 0 2447 /// br i1 %cmpz, label %cond.end, label %cond.false 2448 /// cond.false: 2449 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2450 /// br label %cond.end 2451 /// cond.end: 2452 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2453 /// 2454 /// If the transform is performed, return true and set ModifiedDT to true. 2455 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2456 LoopInfo &LI, 2457 const TargetLowering *TLI, 2458 const DataLayout *DL, ModifyDT &ModifiedDT, 2459 SmallSet<BasicBlock *, 32> &FreshBBs, 2460 bool IsHugeFunc) { 2461 // If a zero input is undefined, it doesn't make sense to despeculate that. 2462 if (match(CountZeros->getOperand(1), m_One())) 2463 return false; 2464 2465 // If it's cheap to speculate, there's nothing to do. 2466 Type *Ty = CountZeros->getType(); 2467 auto IntrinsicID = CountZeros->getIntrinsicID(); 2468 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || 2469 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) 2470 return false; 2471 2472 // Only handle legal scalar cases. Anything else requires too much work. 2473 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2474 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2475 return false; 2476 2477 // Bail if the value is never zero. 2478 Use &Op = CountZeros->getOperandUse(0); 2479 if (isKnownNonZero(Op, *DL)) 2480 return false; 2481 2482 // The intrinsic will be sunk behind a compare against zero and branch. 2483 BasicBlock *StartBlock = CountZeros->getParent(); 2484 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2485 if (IsHugeFunc) 2486 FreshBBs.insert(CallBlock); 2487 2488 // Create another block after the count zero intrinsic. A PHI will be added 2489 // in this block to select the result of the intrinsic or the bit-width 2490 // constant if the input to the intrinsic is zero. 2491 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros)); 2492 // Any debug-info after CountZeros should not be included. 2493 SplitPt.setHeadBit(true); 2494 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2495 if (IsHugeFunc) 2496 FreshBBs.insert(EndBlock); 2497 2498 // Update the LoopInfo. The new blocks are in the same loop as the start 2499 // block. 2500 if (Loop *L = LI.getLoopFor(StartBlock)) { 2501 L->addBasicBlockToLoop(CallBlock, LI); 2502 L->addBasicBlockToLoop(EndBlock, LI); 2503 } 2504 2505 // Set up a builder to create a compare, conditional branch, and PHI. 2506 IRBuilder<> Builder(CountZeros->getContext()); 2507 Builder.SetInsertPoint(StartBlock->getTerminator()); 2508 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2509 2510 // Replace the unconditional branch that was created by the first split with 2511 // a compare against zero and a conditional branch. 2512 Value *Zero = Constant::getNullValue(Ty); 2513 // Avoid introducing branch on poison. This also replaces the ctz operand. 2514 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2515 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2516 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2517 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2518 StartBlock->getTerminator()->eraseFromParent(); 2519 2520 // Create a PHI in the end block to select either the output of the intrinsic 2521 // or the bit width of the operand. 2522 Builder.SetInsertPoint(EndBlock, EndBlock->begin()); 2523 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2524 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); 2525 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2526 PN->addIncoming(BitWidth, StartBlock); 2527 PN->addIncoming(CountZeros, CallBlock); 2528 2529 // We are explicitly handling the zero case, so we can set the intrinsic's 2530 // undefined zero argument to 'true'. This will also prevent reprocessing the 2531 // intrinsic; we only despeculate when a zero input is defined. 2532 CountZeros->setArgOperand(1, Builder.getTrue()); 2533 ModifiedDT = ModifyDT::ModifyBBDT; 2534 return true; 2535 } 2536 2537 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { 2538 BasicBlock *BB = CI->getParent(); 2539 2540 // Lower inline assembly if we can. 2541 // If we found an inline asm expession, and if the target knows how to 2542 // lower it to normal LLVM code, do so now. 2543 if (CI->isInlineAsm()) { 2544 if (TLI->ExpandInlineAsm(CI)) { 2545 // Avoid invalidating the iterator. 2546 CurInstIterator = BB->begin(); 2547 // Avoid processing instructions out of order, which could cause 2548 // reuse before a value is defined. 2549 SunkAddrs.clear(); 2550 return true; 2551 } 2552 // Sink address computing for memory operands into the block. 2553 if (optimizeInlineAsmInst(CI)) 2554 return true; 2555 } 2556 2557 // Align the pointer arguments to this call if the target thinks it's a good 2558 // idea 2559 unsigned MinSize; 2560 Align PrefAlign; 2561 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2562 for (auto &Arg : CI->args()) { 2563 // We want to align both objects whose address is used directly and 2564 // objects whose address is used in casts and GEPs, though it only makes 2565 // sense for GEPs if the offset is a multiple of the desired alignment and 2566 // if size - offset meets the size threshold. 2567 if (!Arg->getType()->isPointerTy()) 2568 continue; 2569 APInt Offset(DL->getIndexSizeInBits( 2570 cast<PointerType>(Arg->getType())->getAddressSpace()), 2571 0); 2572 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2573 uint64_t Offset2 = Offset.getLimitedValue(); 2574 if (!isAligned(PrefAlign, Offset2)) 2575 continue; 2576 AllocaInst *AI; 2577 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2578 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2579 AI->setAlignment(PrefAlign); 2580 // Global variables can only be aligned if they are defined in this 2581 // object (i.e. they are uniquely initialized in this object), and 2582 // over-aligning global variables that have an explicit section is 2583 // forbidden. 2584 GlobalVariable *GV; 2585 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2586 GV->getPointerAlignment(*DL) < PrefAlign && 2587 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) 2588 GV->setAlignment(PrefAlign); 2589 } 2590 } 2591 // If this is a memcpy (or similar) then we may be able to improve the 2592 // alignment. 2593 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2594 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2595 MaybeAlign MIDestAlign = MI->getDestAlign(); 2596 if (!MIDestAlign || DestAlign > *MIDestAlign) 2597 MI->setDestAlignment(DestAlign); 2598 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2599 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2600 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2601 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2602 MTI->setSourceAlignment(SrcAlign); 2603 } 2604 } 2605 2606 // If we have a cold call site, try to sink addressing computation into the 2607 // cold block. This interacts with our handling for loads and stores to 2608 // ensure that we can fold all uses of a potential addressing computation 2609 // into their uses. TODO: generalize this to work over profiling data 2610 if (CI->hasFnAttr(Attribute::Cold) && 2611 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2612 for (auto &Arg : CI->args()) { 2613 if (!Arg->getType()->isPointerTy()) 2614 continue; 2615 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2616 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) 2617 return true; 2618 } 2619 2620 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2621 if (II) { 2622 switch (II->getIntrinsicID()) { 2623 default: 2624 break; 2625 case Intrinsic::assume: 2626 llvm_unreachable("llvm.assume should have been removed already"); 2627 case Intrinsic::allow_runtime_check: 2628 case Intrinsic::allow_ubsan_check: 2629 case Intrinsic::experimental_widenable_condition: { 2630 // Give up on future widening opportunities so that we can fold away dead 2631 // paths and merge blocks before going into block-local instruction 2632 // selection. 2633 if (II->use_empty()) { 2634 II->eraseFromParent(); 2635 return true; 2636 } 2637 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2638 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2639 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2640 }); 2641 return true; 2642 } 2643 case Intrinsic::objectsize: 2644 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2645 case Intrinsic::is_constant: 2646 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2647 case Intrinsic::aarch64_stlxr: 2648 case Intrinsic::aarch64_stxr: { 2649 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2650 if (!ExtVal || !ExtVal->hasOneUse() || 2651 ExtVal->getParent() == CI->getParent()) 2652 return false; 2653 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2654 ExtVal->moveBefore(CI); 2655 // Mark this instruction as "inserted by CGP", so that other 2656 // optimizations don't touch it. 2657 InsertedInsts.insert(ExtVal); 2658 return true; 2659 } 2660 2661 case Intrinsic::launder_invariant_group: 2662 case Intrinsic::strip_invariant_group: { 2663 Value *ArgVal = II->getArgOperand(0); 2664 auto it = LargeOffsetGEPMap.find(II); 2665 if (it != LargeOffsetGEPMap.end()) { 2666 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2667 // Make sure not to have to deal with iterator invalidation 2668 // after possibly adding ArgVal to LargeOffsetGEPMap. 2669 auto GEPs = std::move(it->second); 2670 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2671 LargeOffsetGEPMap.erase(II); 2672 } 2673 2674 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); 2675 II->eraseFromParent(); 2676 return true; 2677 } 2678 case Intrinsic::cttz: 2679 case Intrinsic::ctlz: 2680 // If counting zeros is expensive, try to avoid it. 2681 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs, 2682 IsHugeFunc); 2683 case Intrinsic::fshl: 2684 case Intrinsic::fshr: 2685 return optimizeFunnelShift(II); 2686 case Intrinsic::dbg_assign: 2687 case Intrinsic::dbg_value: 2688 return fixupDbgValue(II); 2689 case Intrinsic::masked_gather: 2690 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2691 case Intrinsic::masked_scatter: 2692 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2693 } 2694 2695 SmallVector<Value *, 2> PtrOps; 2696 Type *AccessTy; 2697 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2698 while (!PtrOps.empty()) { 2699 Value *PtrVal = PtrOps.pop_back_val(); 2700 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2701 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2702 return true; 2703 } 2704 } 2705 2706 // From here on out we're working with named functions. 2707 auto *Callee = CI->getCalledFunction(); 2708 if (!Callee) 2709 return false; 2710 2711 // Lower all default uses of _chk calls. This is very similar 2712 // to what InstCombineCalls does, but here we are only lowering calls 2713 // to fortified library functions (e.g. __memcpy_chk) that have the default 2714 // "don't know" as the objectsize. Anything else should be left alone. 2715 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2716 IRBuilder<> Builder(CI); 2717 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2718 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); 2719 CI->eraseFromParent(); 2720 return true; 2721 } 2722 2723 // SCCP may have propagated, among other things, C++ static variables across 2724 // calls. If this happens to be the case, we may want to undo it in order to 2725 // avoid redundant pointer computation of the constant, as the function method 2726 // returning the constant needs to be executed anyways. 2727 auto GetUniformReturnValue = [](const Function *F) -> GlobalVariable * { 2728 if (!F->getReturnType()->isPointerTy()) 2729 return nullptr; 2730 2731 GlobalVariable *UniformValue = nullptr; 2732 for (auto &BB : *F) { 2733 if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { 2734 if (auto *V = dyn_cast<GlobalVariable>(RI->getReturnValue())) { 2735 if (!UniformValue) 2736 UniformValue = V; 2737 else if (V != UniformValue) 2738 return nullptr; 2739 } else { 2740 return nullptr; 2741 } 2742 } 2743 } 2744 2745 return UniformValue; 2746 }; 2747 2748 if (Callee->hasExactDefinition()) { 2749 if (GlobalVariable *RV = GetUniformReturnValue(Callee)) { 2750 bool MadeChange = false; 2751 for (Use &U : make_early_inc_range(RV->uses())) { 2752 auto *I = dyn_cast<Instruction>(U.getUser()); 2753 if (!I || I->getParent() != CI->getParent()) { 2754 // Limit to the same basic block to avoid extending the call-site live 2755 // range, which otherwise could increase register pressure. 2756 continue; 2757 } 2758 if (CI->comesBefore(I)) { 2759 U.set(CI); 2760 MadeChange = true; 2761 } 2762 } 2763 2764 return MadeChange; 2765 } 2766 } 2767 2768 return false; 2769 } 2770 2771 static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo, 2772 const CallInst *CI) { 2773 assert(CI && CI->use_empty()); 2774 2775 if (const auto *II = dyn_cast<IntrinsicInst>(CI)) 2776 switch (II->getIntrinsicID()) { 2777 case Intrinsic::memset: 2778 case Intrinsic::memcpy: 2779 case Intrinsic::memmove: 2780 return true; 2781 default: 2782 return false; 2783 } 2784 2785 LibFunc LF; 2786 Function *Callee = CI->getCalledFunction(); 2787 if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF)) 2788 switch (LF) { 2789 case LibFunc_strcpy: 2790 case LibFunc_strncpy: 2791 case LibFunc_strcat: 2792 case LibFunc_strncat: 2793 return true; 2794 default: 2795 return false; 2796 } 2797 2798 return false; 2799 } 2800 2801 /// Look for opportunities to duplicate return instructions to the predecessor 2802 /// to enable tail call optimizations. The case it is currently looking for is 2803 /// the following one. Known intrinsics or library function that may be tail 2804 /// called are taken into account as well. 2805 /// @code 2806 /// bb0: 2807 /// %tmp0 = tail call i32 @f0() 2808 /// br label %return 2809 /// bb1: 2810 /// %tmp1 = tail call i32 @f1() 2811 /// br label %return 2812 /// bb2: 2813 /// %tmp2 = tail call i32 @f2() 2814 /// br label %return 2815 /// return: 2816 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2817 /// ret i32 %retval 2818 /// @endcode 2819 /// 2820 /// => 2821 /// 2822 /// @code 2823 /// bb0: 2824 /// %tmp0 = tail call i32 @f0() 2825 /// ret i32 %tmp0 2826 /// bb1: 2827 /// %tmp1 = tail call i32 @f1() 2828 /// ret i32 %tmp1 2829 /// bb2: 2830 /// %tmp2 = tail call i32 @f2() 2831 /// ret i32 %tmp2 2832 /// @endcode 2833 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, 2834 ModifyDT &ModifiedDT) { 2835 if (!BB->getTerminator()) 2836 return false; 2837 2838 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2839 if (!RetI) 2840 return false; 2841 2842 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop"); 2843 2844 PHINode *PN = nullptr; 2845 ExtractValueInst *EVI = nullptr; 2846 BitCastInst *BCI = nullptr; 2847 Value *V = RetI->getReturnValue(); 2848 if (V) { 2849 BCI = dyn_cast<BitCastInst>(V); 2850 if (BCI) 2851 V = BCI->getOperand(0); 2852 2853 EVI = dyn_cast<ExtractValueInst>(V); 2854 if (EVI) { 2855 V = EVI->getOperand(0); 2856 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2857 return false; 2858 } 2859 2860 PN = dyn_cast<PHINode>(V); 2861 } 2862 2863 if (PN && PN->getParent() != BB) 2864 return false; 2865 2866 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2867 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2868 if (BC && BC->hasOneUse()) 2869 Inst = BC->user_back(); 2870 2871 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2872 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2873 return false; 2874 }; 2875 2876 SmallVector<const IntrinsicInst *, 4> FakeUses; 2877 2878 auto isFakeUse = [&FakeUses](const Instruction *Inst) { 2879 if (auto *II = dyn_cast<IntrinsicInst>(Inst); 2880 II && II->getIntrinsicID() == Intrinsic::fake_use) { 2881 // Record the instruction so it can be preserved when the exit block is 2882 // removed. Do not preserve the fake use that uses the result of the 2883 // PHI instruction. 2884 // Do not copy fake uses that use the result of a PHI node. 2885 // FIXME: If we do want to copy the fake use into the return blocks, we 2886 // have to figure out which of the PHI node operands to use for each 2887 // copy. 2888 if (!isa<PHINode>(II->getOperand(0))) { 2889 FakeUses.push_back(II); 2890 } 2891 return true; 2892 } 2893 2894 return false; 2895 }; 2896 2897 // Make sure there are no instructions between the first instruction 2898 // and return. 2899 const Instruction *BI = BB->getFirstNonPHI(); 2900 // Skip over debug and the bitcast. 2901 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2902 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI) || 2903 isFakeUse(BI)) 2904 BI = BI->getNextNode(); 2905 if (BI != RetI) 2906 return false; 2907 2908 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2909 /// call. 2910 const Function *F = BB->getParent(); 2911 SmallVector<BasicBlock *, 4> TailCallBBs; 2912 // Record the call instructions so we can insert any fake uses 2913 // that need to be preserved before them. 2914 SmallVector<CallInst *, 4> CallInsts; 2915 if (PN) { 2916 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2917 // Look through bitcasts. 2918 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2919 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2920 BasicBlock *PredBB = PN->getIncomingBlock(I); 2921 // Make sure the phi value is indeed produced by the tail call. 2922 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2923 TLI->mayBeEmittedAsTailCall(CI) && 2924 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2925 TailCallBBs.push_back(PredBB); 2926 CallInsts.push_back(CI); 2927 } else { 2928 // Consider the cases in which the phi value is indirectly produced by 2929 // the tail call, for example when encountering memset(), memmove(), 2930 // strcpy(), whose return value may have been optimized out. In such 2931 // cases, the value needs to be the first function argument. 2932 // 2933 // bb0: 2934 // tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1) 2935 // br label %return 2936 // return: 2937 // %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ] 2938 if (PredBB && PredBB->getSingleSuccessor() == BB) 2939 CI = dyn_cast_or_null<CallInst>( 2940 PredBB->getTerminator()->getPrevNonDebugInstruction(true)); 2941 2942 if (CI && CI->use_empty() && 2943 isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2944 IncomingVal == CI->getArgOperand(0) && 2945 TLI->mayBeEmittedAsTailCall(CI) && 2946 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2947 TailCallBBs.push_back(PredBB); 2948 CallInsts.push_back(CI); 2949 } 2950 } 2951 } 2952 } else { 2953 SmallPtrSet<BasicBlock *, 4> VisitedBBs; 2954 for (BasicBlock *Pred : predecessors(BB)) { 2955 if (!VisitedBBs.insert(Pred).second) 2956 continue; 2957 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2958 CallInst *CI = dyn_cast<CallInst>(I); 2959 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2960 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2961 // Either we return void or the return value must be the first 2962 // argument of a known intrinsic or library function. 2963 if (!V || isa<UndefValue>(V) || 2964 (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2965 V == CI->getArgOperand(0))) { 2966 TailCallBBs.push_back(Pred); 2967 CallInsts.push_back(CI); 2968 } 2969 } 2970 } 2971 } 2972 } 2973 2974 bool Changed = false; 2975 for (auto const &TailCallBB : TailCallBBs) { 2976 // Make sure the call instruction is followed by an unconditional branch to 2977 // the return block. 2978 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2979 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2980 continue; 2981 2982 // Duplicate the return into TailCallBB. 2983 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2984 assert(!VerifyBFIUpdates || 2985 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2986 BFI->setBlockFreq(BB, 2987 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB))); 2988 ModifiedDT = ModifyDT::ModifyBBDT; 2989 Changed = true; 2990 ++NumRetsDup; 2991 } 2992 2993 // If we eliminated all predecessors of the block, delete the block now. 2994 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) { 2995 // Copy the fake uses found in the original return block to all blocks 2996 // that contain tail calls. 2997 for (auto *CI : CallInsts) { 2998 for (auto const *FakeUse : FakeUses) { 2999 auto *ClonedInst = FakeUse->clone(); 3000 ClonedInst->insertBefore(CI); 3001 } 3002 } 3003 BB->eraseFromParent(); 3004 } 3005 3006 return Changed; 3007 } 3008 3009 //===----------------------------------------------------------------------===// 3010 // Memory Optimization 3011 //===----------------------------------------------------------------------===// 3012 3013 namespace { 3014 3015 /// This is an extended version of TargetLowering::AddrMode 3016 /// which holds actual Value*'s for register values. 3017 struct ExtAddrMode : public TargetLowering::AddrMode { 3018 Value *BaseReg = nullptr; 3019 Value *ScaledReg = nullptr; 3020 Value *OriginalValue = nullptr; 3021 bool InBounds = true; 3022 3023 enum FieldName { 3024 NoField = 0x00, 3025 BaseRegField = 0x01, 3026 BaseGVField = 0x02, 3027 BaseOffsField = 0x04, 3028 ScaledRegField = 0x08, 3029 ScaleField = 0x10, 3030 MultipleFields = 0xff 3031 }; 3032 3033 ExtAddrMode() = default; 3034 3035 void print(raw_ostream &OS) const; 3036 void dump() const; 3037 3038 FieldName compare(const ExtAddrMode &other) { 3039 // First check that the types are the same on each field, as differing types 3040 // is something we can't cope with later on. 3041 if (BaseReg && other.BaseReg && 3042 BaseReg->getType() != other.BaseReg->getType()) 3043 return MultipleFields; 3044 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) 3045 return MultipleFields; 3046 if (ScaledReg && other.ScaledReg && 3047 ScaledReg->getType() != other.ScaledReg->getType()) 3048 return MultipleFields; 3049 3050 // Conservatively reject 'inbounds' mismatches. 3051 if (InBounds != other.InBounds) 3052 return MultipleFields; 3053 3054 // Check each field to see if it differs. 3055 unsigned Result = NoField; 3056 if (BaseReg != other.BaseReg) 3057 Result |= BaseRegField; 3058 if (BaseGV != other.BaseGV) 3059 Result |= BaseGVField; 3060 if (BaseOffs != other.BaseOffs) 3061 Result |= BaseOffsField; 3062 if (ScaledReg != other.ScaledReg) 3063 Result |= ScaledRegField; 3064 // Don't count 0 as being a different scale, because that actually means 3065 // unscaled (which will already be counted by having no ScaledReg). 3066 if (Scale && other.Scale && Scale != other.Scale) 3067 Result |= ScaleField; 3068 3069 if (llvm::popcount(Result) > 1) 3070 return MultipleFields; 3071 else 3072 return static_cast<FieldName>(Result); 3073 } 3074 3075 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 3076 // with no offset. 3077 bool isTrivial() { 3078 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 3079 // trivial if at most one of these terms is nonzero, except that BaseGV and 3080 // BaseReg both being zero actually means a null pointer value, which we 3081 // consider to be 'non-zero' here. 3082 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 3083 } 3084 3085 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 3086 switch (Field) { 3087 default: 3088 return nullptr; 3089 case BaseRegField: 3090 return BaseReg; 3091 case BaseGVField: 3092 return BaseGV; 3093 case ScaledRegField: 3094 return ScaledReg; 3095 case BaseOffsField: 3096 return ConstantInt::get(IntPtrTy, BaseOffs); 3097 } 3098 } 3099 3100 void SetCombinedField(FieldName Field, Value *V, 3101 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 3102 switch (Field) { 3103 default: 3104 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 3105 break; 3106 case ExtAddrMode::BaseRegField: 3107 BaseReg = V; 3108 break; 3109 case ExtAddrMode::BaseGVField: 3110 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 3111 // in the BaseReg field. 3112 assert(BaseReg == nullptr); 3113 BaseReg = V; 3114 BaseGV = nullptr; 3115 break; 3116 case ExtAddrMode::ScaledRegField: 3117 ScaledReg = V; 3118 // If we have a mix of scaled and unscaled addrmodes then we want scale 3119 // to be the scale and not zero. 3120 if (!Scale) 3121 for (const ExtAddrMode &AM : AddrModes) 3122 if (AM.Scale) { 3123 Scale = AM.Scale; 3124 break; 3125 } 3126 break; 3127 case ExtAddrMode::BaseOffsField: 3128 // The offset is no longer a constant, so it goes in ScaledReg with a 3129 // scale of 1. 3130 assert(ScaledReg == nullptr); 3131 ScaledReg = V; 3132 Scale = 1; 3133 BaseOffs = 0; 3134 break; 3135 } 3136 } 3137 }; 3138 3139 #ifndef NDEBUG 3140 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 3141 AM.print(OS); 3142 return OS; 3143 } 3144 #endif 3145 3146 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3147 void ExtAddrMode::print(raw_ostream &OS) const { 3148 bool NeedPlus = false; 3149 OS << "["; 3150 if (InBounds) 3151 OS << "inbounds "; 3152 if (BaseGV) { 3153 OS << "GV:"; 3154 BaseGV->printAsOperand(OS, /*PrintType=*/false); 3155 NeedPlus = true; 3156 } 3157 3158 if (BaseOffs) { 3159 OS << (NeedPlus ? " + " : "") << BaseOffs; 3160 NeedPlus = true; 3161 } 3162 3163 if (BaseReg) { 3164 OS << (NeedPlus ? " + " : "") << "Base:"; 3165 BaseReg->printAsOperand(OS, /*PrintType=*/false); 3166 NeedPlus = true; 3167 } 3168 if (Scale) { 3169 OS << (NeedPlus ? " + " : "") << Scale << "*"; 3170 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 3171 } 3172 3173 OS << ']'; 3174 } 3175 3176 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 3177 print(dbgs()); 3178 dbgs() << '\n'; 3179 } 3180 #endif 3181 3182 } // end anonymous namespace 3183 3184 namespace { 3185 3186 /// This class provides transaction based operation on the IR. 3187 /// Every change made through this class is recorded in the internal state and 3188 /// can be undone (rollback) until commit is called. 3189 /// CGP does not check if instructions could be speculatively executed when 3190 /// moved. Preserving the original location would pessimize the debugging 3191 /// experience, as well as negatively impact the quality of sample PGO. 3192 class TypePromotionTransaction { 3193 /// This represents the common interface of the individual transaction. 3194 /// Each class implements the logic for doing one specific modification on 3195 /// the IR via the TypePromotionTransaction. 3196 class TypePromotionAction { 3197 protected: 3198 /// The Instruction modified. 3199 Instruction *Inst; 3200 3201 public: 3202 /// Constructor of the action. 3203 /// The constructor performs the related action on the IR. 3204 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 3205 3206 virtual ~TypePromotionAction() = default; 3207 3208 /// Undo the modification done by this action. 3209 /// When this method is called, the IR must be in the same state as it was 3210 /// before this action was applied. 3211 /// \pre Undoing the action works if and only if the IR is in the exact same 3212 /// state as it was directly after this action was applied. 3213 virtual void undo() = 0; 3214 3215 /// Advocate every change made by this action. 3216 /// When the results on the IR of the action are to be kept, it is important 3217 /// to call this function, otherwise hidden information may be kept forever. 3218 virtual void commit() { 3219 // Nothing to be done, this action is not doing anything. 3220 } 3221 }; 3222 3223 /// Utility to remember the position of an instruction. 3224 class InsertionHandler { 3225 /// Position of an instruction. 3226 /// Either an instruction: 3227 /// - Is the first in a basic block: BB is used. 3228 /// - Has a previous instruction: PrevInst is used. 3229 union { 3230 Instruction *PrevInst; 3231 BasicBlock *BB; 3232 } Point; 3233 std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt; 3234 3235 /// Remember whether or not the instruction had a previous instruction. 3236 bool HasPrevInstruction; 3237 3238 public: 3239 /// Record the position of \p Inst. 3240 InsertionHandler(Instruction *Inst) { 3241 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin())); 3242 BasicBlock *BB = Inst->getParent(); 3243 3244 // Record where we would have to re-insert the instruction in the sequence 3245 // of DbgRecords, if we ended up reinserting. 3246 if (BB->IsNewDbgInfoFormat) 3247 BeforeDbgRecord = Inst->getDbgReinsertionPosition(); 3248 3249 if (HasPrevInstruction) { 3250 Point.PrevInst = &*std::prev(Inst->getIterator()); 3251 } else { 3252 Point.BB = BB; 3253 } 3254 } 3255 3256 /// Insert \p Inst at the recorded position. 3257 void insert(Instruction *Inst) { 3258 if (HasPrevInstruction) { 3259 if (Inst->getParent()) 3260 Inst->removeFromParent(); 3261 Inst->insertAfter(&*Point.PrevInst); 3262 } else { 3263 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt(); 3264 if (Inst->getParent()) 3265 Inst->moveBefore(*Point.BB, Position); 3266 else 3267 Inst->insertBefore(*Point.BB, Position); 3268 } 3269 3270 Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord); 3271 } 3272 }; 3273 3274 /// Move an instruction before another. 3275 class InstructionMoveBefore : public TypePromotionAction { 3276 /// Original position of the instruction. 3277 InsertionHandler Position; 3278 3279 public: 3280 /// Move \p Inst before \p Before. 3281 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 3282 : TypePromotionAction(Inst), Position(Inst) { 3283 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 3284 << "\n"); 3285 Inst->moveBefore(Before); 3286 } 3287 3288 /// Move the instruction back to its original position. 3289 void undo() override { 3290 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 3291 Position.insert(Inst); 3292 } 3293 }; 3294 3295 /// Set the operand of an instruction with a new value. 3296 class OperandSetter : public TypePromotionAction { 3297 /// Original operand of the instruction. 3298 Value *Origin; 3299 3300 /// Index of the modified instruction. 3301 unsigned Idx; 3302 3303 public: 3304 /// Set \p Idx operand of \p Inst with \p NewVal. 3305 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 3306 : TypePromotionAction(Inst), Idx(Idx) { 3307 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 3308 << "for:" << *Inst << "\n" 3309 << "with:" << *NewVal << "\n"); 3310 Origin = Inst->getOperand(Idx); 3311 Inst->setOperand(Idx, NewVal); 3312 } 3313 3314 /// Restore the original value of the instruction. 3315 void undo() override { 3316 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 3317 << "for: " << *Inst << "\n" 3318 << "with: " << *Origin << "\n"); 3319 Inst->setOperand(Idx, Origin); 3320 } 3321 }; 3322 3323 /// Hide the operands of an instruction. 3324 /// Do as if this instruction was not using any of its operands. 3325 class OperandsHider : public TypePromotionAction { 3326 /// The list of original operands. 3327 SmallVector<Value *, 4> OriginalValues; 3328 3329 public: 3330 /// Remove \p Inst from the uses of the operands of \p Inst. 3331 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 3332 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 3333 unsigned NumOpnds = Inst->getNumOperands(); 3334 OriginalValues.reserve(NumOpnds); 3335 for (unsigned It = 0; It < NumOpnds; ++It) { 3336 // Save the current operand. 3337 Value *Val = Inst->getOperand(It); 3338 OriginalValues.push_back(Val); 3339 // Set a dummy one. 3340 // We could use OperandSetter here, but that would imply an overhead 3341 // that we are not willing to pay. 3342 Inst->setOperand(It, PoisonValue::get(Val->getType())); 3343 } 3344 } 3345 3346 /// Restore the original list of uses. 3347 void undo() override { 3348 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 3349 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 3350 Inst->setOperand(It, OriginalValues[It]); 3351 } 3352 }; 3353 3354 /// Build a truncate instruction. 3355 class TruncBuilder : public TypePromotionAction { 3356 Value *Val; 3357 3358 public: 3359 /// Build a truncate instruction of \p Opnd producing a \p Ty 3360 /// result. 3361 /// trunc Opnd to Ty. 3362 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 3363 IRBuilder<> Builder(Opnd); 3364 Builder.SetCurrentDebugLocation(DebugLoc()); 3365 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 3366 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 3367 } 3368 3369 /// Get the built value. 3370 Value *getBuiltValue() { return Val; } 3371 3372 /// Remove the built instruction. 3373 void undo() override { 3374 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 3375 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3376 IVal->eraseFromParent(); 3377 } 3378 }; 3379 3380 /// Build a sign extension instruction. 3381 class SExtBuilder : public TypePromotionAction { 3382 Value *Val; 3383 3384 public: 3385 /// Build a sign extension instruction of \p Opnd producing a \p Ty 3386 /// result. 3387 /// sext Opnd to Ty. 3388 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3389 : TypePromotionAction(InsertPt) { 3390 IRBuilder<> Builder(InsertPt); 3391 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 3392 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 3393 } 3394 3395 /// Get the built value. 3396 Value *getBuiltValue() { return Val; } 3397 3398 /// Remove the built instruction. 3399 void undo() override { 3400 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 3401 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3402 IVal->eraseFromParent(); 3403 } 3404 }; 3405 3406 /// Build a zero extension instruction. 3407 class ZExtBuilder : public TypePromotionAction { 3408 Value *Val; 3409 3410 public: 3411 /// Build a zero extension instruction of \p Opnd producing a \p Ty 3412 /// result. 3413 /// zext Opnd to Ty. 3414 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3415 : TypePromotionAction(InsertPt) { 3416 IRBuilder<> Builder(InsertPt); 3417 Builder.SetCurrentDebugLocation(DebugLoc()); 3418 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 3419 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 3420 } 3421 3422 /// Get the built value. 3423 Value *getBuiltValue() { return Val; } 3424 3425 /// Remove the built instruction. 3426 void undo() override { 3427 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 3428 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3429 IVal->eraseFromParent(); 3430 } 3431 }; 3432 3433 /// Mutate an instruction to another type. 3434 class TypeMutator : public TypePromotionAction { 3435 /// Record the original type. 3436 Type *OrigTy; 3437 3438 public: 3439 /// Mutate the type of \p Inst into \p NewTy. 3440 TypeMutator(Instruction *Inst, Type *NewTy) 3441 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 3442 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 3443 << "\n"); 3444 Inst->mutateType(NewTy); 3445 } 3446 3447 /// Mutate the instruction back to its original type. 3448 void undo() override { 3449 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 3450 << "\n"); 3451 Inst->mutateType(OrigTy); 3452 } 3453 }; 3454 3455 /// Replace the uses of an instruction by another instruction. 3456 class UsesReplacer : public TypePromotionAction { 3457 /// Helper structure to keep track of the replaced uses. 3458 struct InstructionAndIdx { 3459 /// The instruction using the instruction. 3460 Instruction *Inst; 3461 3462 /// The index where this instruction is used for Inst. 3463 unsigned Idx; 3464 3465 InstructionAndIdx(Instruction *Inst, unsigned Idx) 3466 : Inst(Inst), Idx(Idx) {} 3467 }; 3468 3469 /// Keep track of the original uses (pair Instruction, Index). 3470 SmallVector<InstructionAndIdx, 4> OriginalUses; 3471 /// Keep track of the debug users. 3472 SmallVector<DbgValueInst *, 1> DbgValues; 3473 /// And non-instruction debug-users too. 3474 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 3475 3476 /// Keep track of the new value so that we can undo it by replacing 3477 /// instances of the new value with the original value. 3478 Value *New; 3479 3480 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3481 3482 public: 3483 /// Replace all the use of \p Inst by \p New. 3484 UsesReplacer(Instruction *Inst, Value *New) 3485 : TypePromotionAction(Inst), New(New) { 3486 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3487 << "\n"); 3488 // Record the original uses. 3489 for (Use &U : Inst->uses()) { 3490 Instruction *UserI = cast<Instruction>(U.getUser()); 3491 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3492 } 3493 // Record the debug uses separately. They are not in the instruction's 3494 // use list, but they are replaced by RAUW. 3495 findDbgValues(DbgValues, Inst, &DbgVariableRecords); 3496 3497 // Now, we can replace the uses. 3498 Inst->replaceAllUsesWith(New); 3499 } 3500 3501 /// Reassign the original uses of Inst to Inst. 3502 void undo() override { 3503 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3504 for (InstructionAndIdx &Use : OriginalUses) 3505 Use.Inst->setOperand(Use.Idx, Inst); 3506 // RAUW has replaced all original uses with references to the new value, 3507 // including the debug uses. Since we are undoing the replacements, 3508 // the original debug uses must also be reinstated to maintain the 3509 // correctness and utility of debug value instructions. 3510 for (auto *DVI : DbgValues) 3511 DVI->replaceVariableLocationOp(New, Inst); 3512 // Similar story with DbgVariableRecords, the non-instruction 3513 // representation of dbg.values. 3514 for (DbgVariableRecord *DVR : DbgVariableRecords) 3515 DVR->replaceVariableLocationOp(New, Inst); 3516 } 3517 }; 3518 3519 /// Remove an instruction from the IR. 3520 class InstructionRemover : public TypePromotionAction { 3521 /// Original position of the instruction. 3522 InsertionHandler Inserter; 3523 3524 /// Helper structure to hide all the link to the instruction. In other 3525 /// words, this helps to do as if the instruction was removed. 3526 OperandsHider Hider; 3527 3528 /// Keep track of the uses replaced, if any. 3529 UsesReplacer *Replacer = nullptr; 3530 3531 /// Keep track of instructions removed. 3532 SetOfInstrs &RemovedInsts; 3533 3534 public: 3535 /// Remove all reference of \p Inst and optionally replace all its 3536 /// uses with New. 3537 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3538 /// \pre If !Inst->use_empty(), then New != nullptr 3539 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3540 Value *New = nullptr) 3541 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3542 RemovedInsts(RemovedInsts) { 3543 if (New) 3544 Replacer = new UsesReplacer(Inst, New); 3545 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3546 RemovedInsts.insert(Inst); 3547 /// The instructions removed here will be freed after completing 3548 /// optimizeBlock() for all blocks as we need to keep track of the 3549 /// removed instructions during promotion. 3550 Inst->removeFromParent(); 3551 } 3552 3553 ~InstructionRemover() override { delete Replacer; } 3554 3555 InstructionRemover &operator=(const InstructionRemover &other) = delete; 3556 InstructionRemover(const InstructionRemover &other) = delete; 3557 3558 /// Resurrect the instruction and reassign it to the proper uses if 3559 /// new value was provided when build this action. 3560 void undo() override { 3561 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3562 Inserter.insert(Inst); 3563 if (Replacer) 3564 Replacer->undo(); 3565 Hider.undo(); 3566 RemovedInsts.erase(Inst); 3567 } 3568 }; 3569 3570 public: 3571 /// Restoration point. 3572 /// The restoration point is a pointer to an action instead of an iterator 3573 /// because the iterator may be invalidated but not the pointer. 3574 using ConstRestorationPt = const TypePromotionAction *; 3575 3576 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3577 : RemovedInsts(RemovedInsts) {} 3578 3579 /// Advocate every changes made in that transaction. Return true if any change 3580 /// happen. 3581 bool commit(); 3582 3583 /// Undo all the changes made after the given point. 3584 void rollback(ConstRestorationPt Point); 3585 3586 /// Get the current restoration point. 3587 ConstRestorationPt getRestorationPoint() const; 3588 3589 /// \name API for IR modification with state keeping to support rollback. 3590 /// @{ 3591 /// Same as Instruction::setOperand. 3592 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3593 3594 /// Same as Instruction::eraseFromParent. 3595 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3596 3597 /// Same as Value::replaceAllUsesWith. 3598 void replaceAllUsesWith(Instruction *Inst, Value *New); 3599 3600 /// Same as Value::mutateType. 3601 void mutateType(Instruction *Inst, Type *NewTy); 3602 3603 /// Same as IRBuilder::createTrunc. 3604 Value *createTrunc(Instruction *Opnd, Type *Ty); 3605 3606 /// Same as IRBuilder::createSExt. 3607 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3608 3609 /// Same as IRBuilder::createZExt. 3610 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3611 3612 private: 3613 /// The ordered list of actions made so far. 3614 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3615 3616 using CommitPt = 3617 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3618 3619 SetOfInstrs &RemovedInsts; 3620 }; 3621 3622 } // end anonymous namespace 3623 3624 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3625 Value *NewVal) { 3626 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3627 Inst, Idx, NewVal)); 3628 } 3629 3630 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3631 Value *NewVal) { 3632 Actions.push_back( 3633 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3634 Inst, RemovedInsts, NewVal)); 3635 } 3636 3637 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3638 Value *New) { 3639 Actions.push_back( 3640 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3641 } 3642 3643 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3644 Actions.push_back( 3645 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3646 } 3647 3648 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { 3649 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3650 Value *Val = Ptr->getBuiltValue(); 3651 Actions.push_back(std::move(Ptr)); 3652 return Val; 3653 } 3654 3655 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, 3656 Type *Ty) { 3657 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3658 Value *Val = Ptr->getBuiltValue(); 3659 Actions.push_back(std::move(Ptr)); 3660 return Val; 3661 } 3662 3663 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, 3664 Type *Ty) { 3665 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3666 Value *Val = Ptr->getBuiltValue(); 3667 Actions.push_back(std::move(Ptr)); 3668 return Val; 3669 } 3670 3671 TypePromotionTransaction::ConstRestorationPt 3672 TypePromotionTransaction::getRestorationPoint() const { 3673 return !Actions.empty() ? Actions.back().get() : nullptr; 3674 } 3675 3676 bool TypePromotionTransaction::commit() { 3677 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3678 Action->commit(); 3679 bool Modified = !Actions.empty(); 3680 Actions.clear(); 3681 return Modified; 3682 } 3683 3684 void TypePromotionTransaction::rollback( 3685 TypePromotionTransaction::ConstRestorationPt Point) { 3686 while (!Actions.empty() && Point != Actions.back().get()) { 3687 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3688 Curr->undo(); 3689 } 3690 } 3691 3692 namespace { 3693 3694 /// A helper class for matching addressing modes. 3695 /// 3696 /// This encapsulates the logic for matching the target-legal addressing modes. 3697 class AddressingModeMatcher { 3698 SmallVectorImpl<Instruction *> &AddrModeInsts; 3699 const TargetLowering &TLI; 3700 const TargetRegisterInfo &TRI; 3701 const DataLayout &DL; 3702 const LoopInfo &LI; 3703 const std::function<const DominatorTree &()> getDTFn; 3704 3705 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3706 /// the memory instruction that we're computing this address for. 3707 Type *AccessTy; 3708 unsigned AddrSpace; 3709 Instruction *MemoryInst; 3710 3711 /// This is the addressing mode that we're building up. This is 3712 /// part of the return value of this addressing mode matching stuff. 3713 ExtAddrMode &AddrMode; 3714 3715 /// The instructions inserted by other CodeGenPrepare optimizations. 3716 const SetOfInstrs &InsertedInsts; 3717 3718 /// A map from the instructions to their type before promotion. 3719 InstrToOrigTy &PromotedInsts; 3720 3721 /// The ongoing transaction where every action should be registered. 3722 TypePromotionTransaction &TPT; 3723 3724 // A GEP which has too large offset to be folded into the addressing mode. 3725 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3726 3727 /// This is set to true when we should not do profitability checks. 3728 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3729 bool IgnoreProfitability; 3730 3731 /// True if we are optimizing for size. 3732 bool OptSize = false; 3733 3734 ProfileSummaryInfo *PSI; 3735 BlockFrequencyInfo *BFI; 3736 3737 AddressingModeMatcher( 3738 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3739 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3740 const std::function<const DominatorTree &()> getDTFn, Type *AT, 3741 unsigned AS, Instruction *MI, ExtAddrMode &AM, 3742 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3743 TypePromotionTransaction &TPT, 3744 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3745 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3746 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3747 DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn), 3748 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3749 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3750 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3751 IgnoreProfitability = false; 3752 } 3753 3754 public: 3755 /// Find the maximal addressing mode that a load/store of V can fold, 3756 /// give an access type of AccessTy. This returns a list of involved 3757 /// instructions in AddrModeInsts. 3758 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3759 /// optimizations. 3760 /// \p PromotedInsts maps the instructions to their type before promotion. 3761 /// \p The ongoing transaction where every action should be registered. 3762 static ExtAddrMode 3763 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3764 SmallVectorImpl<Instruction *> &AddrModeInsts, 3765 const TargetLowering &TLI, const LoopInfo &LI, 3766 const std::function<const DominatorTree &()> getDTFn, 3767 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3768 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3769 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3770 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3771 ExtAddrMode Result; 3772 3773 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, 3774 AccessTy, AS, MemoryInst, Result, 3775 InsertedInsts, PromotedInsts, TPT, 3776 LargeOffsetGEP, OptSize, PSI, BFI) 3777 .matchAddr(V, 0); 3778 (void)Success; 3779 assert(Success && "Couldn't select *anything*?"); 3780 return Result; 3781 } 3782 3783 private: 3784 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3785 bool matchAddr(Value *Addr, unsigned Depth); 3786 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3787 bool *MovedAway = nullptr); 3788 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3789 ExtAddrMode &AMBefore, 3790 ExtAddrMode &AMAfter); 3791 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3792 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3793 Value *PromotedOperand) const; 3794 }; 3795 3796 class PhiNodeSet; 3797 3798 /// An iterator for PhiNodeSet. 3799 class PhiNodeSetIterator { 3800 PhiNodeSet *const Set; 3801 size_t CurrentIndex = 0; 3802 3803 public: 3804 /// The constructor. Start should point to either a valid element, or be equal 3805 /// to the size of the underlying SmallVector of the PhiNodeSet. 3806 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); 3807 PHINode *operator*() const; 3808 PhiNodeSetIterator &operator++(); 3809 bool operator==(const PhiNodeSetIterator &RHS) const; 3810 bool operator!=(const PhiNodeSetIterator &RHS) const; 3811 }; 3812 3813 /// Keeps a set of PHINodes. 3814 /// 3815 /// This is a minimal set implementation for a specific use case: 3816 /// It is very fast when there are very few elements, but also provides good 3817 /// performance when there are many. It is similar to SmallPtrSet, but also 3818 /// provides iteration by insertion order, which is deterministic and stable 3819 /// across runs. It is also similar to SmallSetVector, but provides removing 3820 /// elements in O(1) time. This is achieved by not actually removing the element 3821 /// from the underlying vector, so comes at the cost of using more memory, but 3822 /// that is fine, since PhiNodeSets are used as short lived objects. 3823 class PhiNodeSet { 3824 friend class PhiNodeSetIterator; 3825 3826 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3827 using iterator = PhiNodeSetIterator; 3828 3829 /// Keeps the elements in the order of their insertion in the underlying 3830 /// vector. To achieve constant time removal, it never deletes any element. 3831 SmallVector<PHINode *, 32> NodeList; 3832 3833 /// Keeps the elements in the underlying set implementation. This (and not the 3834 /// NodeList defined above) is the source of truth on whether an element 3835 /// is actually in the collection. 3836 MapType NodeMap; 3837 3838 /// Points to the first valid (not deleted) element when the set is not empty 3839 /// and the value is not zero. Equals to the size of the underlying vector 3840 /// when the set is empty. When the value is 0, as in the beginning, the 3841 /// first element may or may not be valid. 3842 size_t FirstValidElement = 0; 3843 3844 public: 3845 /// Inserts a new element to the collection. 3846 /// \returns true if the element is actually added, i.e. was not in the 3847 /// collection before the operation. 3848 bool insert(PHINode *Ptr) { 3849 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3850 NodeList.push_back(Ptr); 3851 return true; 3852 } 3853 return false; 3854 } 3855 3856 /// Removes the element from the collection. 3857 /// \returns whether the element is actually removed, i.e. was in the 3858 /// collection before the operation. 3859 bool erase(PHINode *Ptr) { 3860 if (NodeMap.erase(Ptr)) { 3861 SkipRemovedElements(FirstValidElement); 3862 return true; 3863 } 3864 return false; 3865 } 3866 3867 /// Removes all elements and clears the collection. 3868 void clear() { 3869 NodeMap.clear(); 3870 NodeList.clear(); 3871 FirstValidElement = 0; 3872 } 3873 3874 /// \returns an iterator that will iterate the elements in the order of 3875 /// insertion. 3876 iterator begin() { 3877 if (FirstValidElement == 0) 3878 SkipRemovedElements(FirstValidElement); 3879 return PhiNodeSetIterator(this, FirstValidElement); 3880 } 3881 3882 /// \returns an iterator that points to the end of the collection. 3883 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3884 3885 /// Returns the number of elements in the collection. 3886 size_t size() const { return NodeMap.size(); } 3887 3888 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3889 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } 3890 3891 private: 3892 /// Updates the CurrentIndex so that it will point to a valid element. 3893 /// 3894 /// If the element of NodeList at CurrentIndex is valid, it does not 3895 /// change it. If there are no more valid elements, it updates CurrentIndex 3896 /// to point to the end of the NodeList. 3897 void SkipRemovedElements(size_t &CurrentIndex) { 3898 while (CurrentIndex < NodeList.size()) { 3899 auto it = NodeMap.find(NodeList[CurrentIndex]); 3900 // If the element has been deleted and added again later, NodeMap will 3901 // point to a different index, so CurrentIndex will still be invalid. 3902 if (it != NodeMap.end() && it->second == CurrentIndex) 3903 break; 3904 ++CurrentIndex; 3905 } 3906 } 3907 }; 3908 3909 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3910 : Set(Set), CurrentIndex(Start) {} 3911 3912 PHINode *PhiNodeSetIterator::operator*() const { 3913 assert(CurrentIndex < Set->NodeList.size() && 3914 "PhiNodeSet access out of range"); 3915 return Set->NodeList[CurrentIndex]; 3916 } 3917 3918 PhiNodeSetIterator &PhiNodeSetIterator::operator++() { 3919 assert(CurrentIndex < Set->NodeList.size() && 3920 "PhiNodeSet access out of range"); 3921 ++CurrentIndex; 3922 Set->SkipRemovedElements(CurrentIndex); 3923 return *this; 3924 } 3925 3926 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3927 return CurrentIndex == RHS.CurrentIndex; 3928 } 3929 3930 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3931 return !((*this) == RHS); 3932 } 3933 3934 /// Keep track of simplification of Phi nodes. 3935 /// Accept the set of all phi nodes and erase phi node from this set 3936 /// if it is simplified. 3937 class SimplificationTracker { 3938 DenseMap<Value *, Value *> Storage; 3939 const SimplifyQuery &SQ; 3940 // Tracks newly created Phi nodes. The elements are iterated by insertion 3941 // order. 3942 PhiNodeSet AllPhiNodes; 3943 // Tracks newly created Select nodes. 3944 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3945 3946 public: 3947 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} 3948 3949 Value *Get(Value *V) { 3950 do { 3951 auto SV = Storage.find(V); 3952 if (SV == Storage.end()) 3953 return V; 3954 V = SV->second; 3955 } while (true); 3956 } 3957 3958 Value *Simplify(Value *Val) { 3959 SmallVector<Value *, 32> WorkList; 3960 SmallPtrSet<Value *, 32> Visited; 3961 WorkList.push_back(Val); 3962 while (!WorkList.empty()) { 3963 auto *P = WorkList.pop_back_val(); 3964 if (!Visited.insert(P).second) 3965 continue; 3966 if (auto *PI = dyn_cast<Instruction>(P)) 3967 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 3968 for (auto *U : PI->users()) 3969 WorkList.push_back(cast<Value>(U)); 3970 Put(PI, V); 3971 PI->replaceAllUsesWith(V); 3972 if (auto *PHI = dyn_cast<PHINode>(PI)) 3973 AllPhiNodes.erase(PHI); 3974 if (auto *Select = dyn_cast<SelectInst>(PI)) 3975 AllSelectNodes.erase(Select); 3976 PI->eraseFromParent(); 3977 } 3978 } 3979 return Get(Val); 3980 } 3981 3982 void Put(Value *From, Value *To) { Storage.insert({From, To}); } 3983 3984 void ReplacePhi(PHINode *From, PHINode *To) { 3985 Value *OldReplacement = Get(From); 3986 while (OldReplacement != From) { 3987 From = To; 3988 To = dyn_cast<PHINode>(OldReplacement); 3989 OldReplacement = Get(From); 3990 } 3991 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3992 Put(From, To); 3993 From->replaceAllUsesWith(To); 3994 AllPhiNodes.erase(From); 3995 From->eraseFromParent(); 3996 } 3997 3998 PhiNodeSet &newPhiNodes() { return AllPhiNodes; } 3999 4000 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 4001 4002 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 4003 4004 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 4005 4006 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 4007 4008 void destroyNewNodes(Type *CommonType) { 4009 // For safe erasing, replace the uses with dummy value first. 4010 auto *Dummy = PoisonValue::get(CommonType); 4011 for (auto *I : AllPhiNodes) { 4012 I->replaceAllUsesWith(Dummy); 4013 I->eraseFromParent(); 4014 } 4015 AllPhiNodes.clear(); 4016 for (auto *I : AllSelectNodes) { 4017 I->replaceAllUsesWith(Dummy); 4018 I->eraseFromParent(); 4019 } 4020 AllSelectNodes.clear(); 4021 } 4022 }; 4023 4024 /// A helper class for combining addressing modes. 4025 class AddressingModeCombiner { 4026 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 4027 typedef std::pair<PHINode *, PHINode *> PHIPair; 4028 4029 private: 4030 /// The addressing modes we've collected. 4031 SmallVector<ExtAddrMode, 16> AddrModes; 4032 4033 /// The field in which the AddrModes differ, when we have more than one. 4034 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 4035 4036 /// Are the AddrModes that we have all just equal to their original values? 4037 bool AllAddrModesTrivial = true; 4038 4039 /// Common Type for all different fields in addressing modes. 4040 Type *CommonType = nullptr; 4041 4042 /// SimplifyQuery for simplifyInstruction utility. 4043 const SimplifyQuery &SQ; 4044 4045 /// Original Address. 4046 Value *Original; 4047 4048 /// Common value among addresses 4049 Value *CommonValue = nullptr; 4050 4051 public: 4052 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 4053 : SQ(_SQ), Original(OriginalValue) {} 4054 4055 ~AddressingModeCombiner() { eraseCommonValueIfDead(); } 4056 4057 /// Get the combined AddrMode 4058 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } 4059 4060 /// Add a new AddrMode if it's compatible with the AddrModes we already 4061 /// have. 4062 /// \return True iff we succeeded in doing so. 4063 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 4064 // Take note of if we have any non-trivial AddrModes, as we need to detect 4065 // when all AddrModes are trivial as then we would introduce a phi or select 4066 // which just duplicates what's already there. 4067 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 4068 4069 // If this is the first addrmode then everything is fine. 4070 if (AddrModes.empty()) { 4071 AddrModes.emplace_back(NewAddrMode); 4072 return true; 4073 } 4074 4075 // Figure out how different this is from the other address modes, which we 4076 // can do just by comparing against the first one given that we only care 4077 // about the cumulative difference. 4078 ExtAddrMode::FieldName ThisDifferentField = 4079 AddrModes[0].compare(NewAddrMode); 4080 if (DifferentField == ExtAddrMode::NoField) 4081 DifferentField = ThisDifferentField; 4082 else if (DifferentField != ThisDifferentField) 4083 DifferentField = ExtAddrMode::MultipleFields; 4084 4085 // If NewAddrMode differs in more than one dimension we cannot handle it. 4086 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 4087 4088 // If Scale Field is different then we reject. 4089 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 4090 4091 // We also must reject the case when base offset is different and 4092 // scale reg is not null, we cannot handle this case due to merge of 4093 // different offsets will be used as ScaleReg. 4094 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 4095 !NewAddrMode.ScaledReg); 4096 4097 // We also must reject the case when GV is different and BaseReg installed 4098 // due to we want to use base reg as a merge of GV values. 4099 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 4100 !NewAddrMode.HasBaseReg); 4101 4102 // Even if NewAddMode is the same we still need to collect it due to 4103 // original value is different. And later we will need all original values 4104 // as anchors during finding the common Phi node. 4105 if (CanHandle) 4106 AddrModes.emplace_back(NewAddrMode); 4107 else 4108 AddrModes.clear(); 4109 4110 return CanHandle; 4111 } 4112 4113 /// Combine the addressing modes we've collected into a single 4114 /// addressing mode. 4115 /// \return True iff we successfully combined them or we only had one so 4116 /// didn't need to combine them anyway. 4117 bool combineAddrModes() { 4118 // If we have no AddrModes then they can't be combined. 4119 if (AddrModes.size() == 0) 4120 return false; 4121 4122 // A single AddrMode can trivially be combined. 4123 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 4124 return true; 4125 4126 // If the AddrModes we collected are all just equal to the value they are 4127 // derived from then combining them wouldn't do anything useful. 4128 if (AllAddrModesTrivial) 4129 return false; 4130 4131 if (!addrModeCombiningAllowed()) 4132 return false; 4133 4134 // Build a map between <original value, basic block where we saw it> to 4135 // value of base register. 4136 // Bail out if there is no common type. 4137 FoldAddrToValueMapping Map; 4138 if (!initializeMap(Map)) 4139 return false; 4140 4141 CommonValue = findCommon(Map); 4142 if (CommonValue) 4143 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 4144 return CommonValue != nullptr; 4145 } 4146 4147 private: 4148 /// `CommonValue` may be a placeholder inserted by us. 4149 /// If the placeholder is not used, we should remove this dead instruction. 4150 void eraseCommonValueIfDead() { 4151 if (CommonValue && CommonValue->getNumUses() == 0) 4152 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) 4153 CommonInst->eraseFromParent(); 4154 } 4155 4156 /// Initialize Map with anchor values. For address seen 4157 /// we set the value of different field saw in this address. 4158 /// At the same time we find a common type for different field we will 4159 /// use to create new Phi/Select nodes. Keep it in CommonType field. 4160 /// Return false if there is no common type found. 4161 bool initializeMap(FoldAddrToValueMapping &Map) { 4162 // Keep track of keys where the value is null. We will need to replace it 4163 // with constant null when we know the common type. 4164 SmallVector<Value *, 2> NullValue; 4165 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 4166 for (auto &AM : AddrModes) { 4167 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 4168 if (DV) { 4169 auto *Type = DV->getType(); 4170 if (CommonType && CommonType != Type) 4171 return false; 4172 CommonType = Type; 4173 Map[AM.OriginalValue] = DV; 4174 } else { 4175 NullValue.push_back(AM.OriginalValue); 4176 } 4177 } 4178 assert(CommonType && "At least one non-null value must be!"); 4179 for (auto *V : NullValue) 4180 Map[V] = Constant::getNullValue(CommonType); 4181 return true; 4182 } 4183 4184 /// We have mapping between value A and other value B where B was a field in 4185 /// addressing mode represented by A. Also we have an original value C 4186 /// representing an address we start with. Traversing from C through phi and 4187 /// selects we ended up with A's in a map. This utility function tries to find 4188 /// a value V which is a field in addressing mode C and traversing through phi 4189 /// nodes and selects we will end up in corresponded values B in a map. 4190 /// The utility will create a new Phi/Selects if needed. 4191 // The simple example looks as follows: 4192 // BB1: 4193 // p1 = b1 + 40 4194 // br cond BB2, BB3 4195 // BB2: 4196 // p2 = b2 + 40 4197 // br BB3 4198 // BB3: 4199 // p = phi [p1, BB1], [p2, BB2] 4200 // v = load p 4201 // Map is 4202 // p1 -> b1 4203 // p2 -> b2 4204 // Request is 4205 // p -> ? 4206 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 4207 Value *findCommon(FoldAddrToValueMapping &Map) { 4208 // Tracks the simplification of newly created phi nodes. The reason we use 4209 // this mapping is because we will add new created Phi nodes in AddrToBase. 4210 // Simplification of Phi nodes is recursive, so some Phi node may 4211 // be simplified after we added it to AddrToBase. In reality this 4212 // simplification is possible only if original phi/selects were not 4213 // simplified yet. 4214 // Using this mapping we can find the current value in AddrToBase. 4215 SimplificationTracker ST(SQ); 4216 4217 // First step, DFS to create PHI nodes for all intermediate blocks. 4218 // Also fill traverse order for the second step. 4219 SmallVector<Value *, 32> TraverseOrder; 4220 InsertPlaceholders(Map, TraverseOrder, ST); 4221 4222 // Second Step, fill new nodes by merged values and simplify if possible. 4223 FillPlaceholders(Map, TraverseOrder, ST); 4224 4225 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 4226 ST.destroyNewNodes(CommonType); 4227 return nullptr; 4228 } 4229 4230 // Now we'd like to match New Phi nodes to existed ones. 4231 unsigned PhiNotMatchedCount = 0; 4232 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 4233 ST.destroyNewNodes(CommonType); 4234 return nullptr; 4235 } 4236 4237 auto *Result = ST.Get(Map.find(Original)->second); 4238 if (Result) { 4239 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 4240 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 4241 } 4242 return Result; 4243 } 4244 4245 /// Try to match PHI node to Candidate. 4246 /// Matcher tracks the matched Phi nodes. 4247 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 4248 SmallSetVector<PHIPair, 8> &Matcher, 4249 PhiNodeSet &PhiNodesToMatch) { 4250 SmallVector<PHIPair, 8> WorkList; 4251 Matcher.insert({PHI, Candidate}); 4252 SmallSet<PHINode *, 8> MatchedPHIs; 4253 MatchedPHIs.insert(PHI); 4254 WorkList.push_back({PHI, Candidate}); 4255 SmallSet<PHIPair, 8> Visited; 4256 while (!WorkList.empty()) { 4257 auto Item = WorkList.pop_back_val(); 4258 if (!Visited.insert(Item).second) 4259 continue; 4260 // We iterate over all incoming values to Phi to compare them. 4261 // If values are different and both of them Phi and the first one is a 4262 // Phi we added (subject to match) and both of them is in the same basic 4263 // block then we can match our pair if values match. So we state that 4264 // these values match and add it to work list to verify that. 4265 for (auto *B : Item.first->blocks()) { 4266 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 4267 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 4268 if (FirstValue == SecondValue) 4269 continue; 4270 4271 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 4272 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 4273 4274 // One of them is not Phi or 4275 // The first one is not Phi node from the set we'd like to match or 4276 // Phi nodes from different basic blocks then 4277 // we will not be able to match. 4278 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 4279 FirstPhi->getParent() != SecondPhi->getParent()) 4280 return false; 4281 4282 // If we already matched them then continue. 4283 if (Matcher.count({FirstPhi, SecondPhi})) 4284 continue; 4285 // So the values are different and does not match. So we need them to 4286 // match. (But we register no more than one match per PHI node, so that 4287 // we won't later try to replace them twice.) 4288 if (MatchedPHIs.insert(FirstPhi).second) 4289 Matcher.insert({FirstPhi, SecondPhi}); 4290 // But me must check it. 4291 WorkList.push_back({FirstPhi, SecondPhi}); 4292 } 4293 } 4294 return true; 4295 } 4296 4297 /// For the given set of PHI nodes (in the SimplificationTracker) try 4298 /// to find their equivalents. 4299 /// Returns false if this matching fails and creation of new Phi is disabled. 4300 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 4301 unsigned &PhiNotMatchedCount) { 4302 // Matched and PhiNodesToMatch iterate their elements in a deterministic 4303 // order, so the replacements (ReplacePhi) are also done in a deterministic 4304 // order. 4305 SmallSetVector<PHIPair, 8> Matched; 4306 SmallPtrSet<PHINode *, 8> WillNotMatch; 4307 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 4308 while (PhiNodesToMatch.size()) { 4309 PHINode *PHI = *PhiNodesToMatch.begin(); 4310 4311 // Add us, if no Phi nodes in the basic block we do not match. 4312 WillNotMatch.clear(); 4313 WillNotMatch.insert(PHI); 4314 4315 // Traverse all Phis until we found equivalent or fail to do that. 4316 bool IsMatched = false; 4317 for (auto &P : PHI->getParent()->phis()) { 4318 // Skip new Phi nodes. 4319 if (PhiNodesToMatch.count(&P)) 4320 continue; 4321 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 4322 break; 4323 // If it does not match, collect all Phi nodes from matcher. 4324 // if we end up with no match, them all these Phi nodes will not match 4325 // later. 4326 for (auto M : Matched) 4327 WillNotMatch.insert(M.first); 4328 Matched.clear(); 4329 } 4330 if (IsMatched) { 4331 // Replace all matched values and erase them. 4332 for (auto MV : Matched) 4333 ST.ReplacePhi(MV.first, MV.second); 4334 Matched.clear(); 4335 continue; 4336 } 4337 // If we are not allowed to create new nodes then bail out. 4338 if (!AllowNewPhiNodes) 4339 return false; 4340 // Just remove all seen values in matcher. They will not match anything. 4341 PhiNotMatchedCount += WillNotMatch.size(); 4342 for (auto *P : WillNotMatch) 4343 PhiNodesToMatch.erase(P); 4344 } 4345 return true; 4346 } 4347 /// Fill the placeholders with values from predecessors and simplify them. 4348 void FillPlaceholders(FoldAddrToValueMapping &Map, 4349 SmallVectorImpl<Value *> &TraverseOrder, 4350 SimplificationTracker &ST) { 4351 while (!TraverseOrder.empty()) { 4352 Value *Current = TraverseOrder.pop_back_val(); 4353 assert(Map.contains(Current) && "No node to fill!!!"); 4354 Value *V = Map[Current]; 4355 4356 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 4357 // CurrentValue also must be Select. 4358 auto *CurrentSelect = cast<SelectInst>(Current); 4359 auto *TrueValue = CurrentSelect->getTrueValue(); 4360 assert(Map.contains(TrueValue) && "No True Value!"); 4361 Select->setTrueValue(ST.Get(Map[TrueValue])); 4362 auto *FalseValue = CurrentSelect->getFalseValue(); 4363 assert(Map.contains(FalseValue) && "No False Value!"); 4364 Select->setFalseValue(ST.Get(Map[FalseValue])); 4365 } else { 4366 // Must be a Phi node then. 4367 auto *PHI = cast<PHINode>(V); 4368 // Fill the Phi node with values from predecessors. 4369 for (auto *B : predecessors(PHI->getParent())) { 4370 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 4371 assert(Map.contains(PV) && "No predecessor Value!"); 4372 PHI->addIncoming(ST.Get(Map[PV]), B); 4373 } 4374 } 4375 Map[Current] = ST.Simplify(V); 4376 } 4377 } 4378 4379 /// Starting from original value recursively iterates over def-use chain up to 4380 /// known ending values represented in a map. For each traversed phi/select 4381 /// inserts a placeholder Phi or Select. 4382 /// Reports all new created Phi/Select nodes by adding them to set. 4383 /// Also reports and order in what values have been traversed. 4384 void InsertPlaceholders(FoldAddrToValueMapping &Map, 4385 SmallVectorImpl<Value *> &TraverseOrder, 4386 SimplificationTracker &ST) { 4387 SmallVector<Value *, 32> Worklist; 4388 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 4389 "Address must be a Phi or Select node"); 4390 auto *Dummy = PoisonValue::get(CommonType); 4391 Worklist.push_back(Original); 4392 while (!Worklist.empty()) { 4393 Value *Current = Worklist.pop_back_val(); 4394 // if it is already visited or it is an ending value then skip it. 4395 if (Map.contains(Current)) 4396 continue; 4397 TraverseOrder.push_back(Current); 4398 4399 // CurrentValue must be a Phi node or select. All others must be covered 4400 // by anchors. 4401 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 4402 // Is it OK to get metadata from OrigSelect?! 4403 // Create a Select placeholder with dummy value. 4404 SelectInst *Select = 4405 SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy, 4406 CurrentSelect->getName(), 4407 CurrentSelect->getIterator(), CurrentSelect); 4408 Map[Current] = Select; 4409 ST.insertNewSelect(Select); 4410 // We are interested in True and False values. 4411 Worklist.push_back(CurrentSelect->getTrueValue()); 4412 Worklist.push_back(CurrentSelect->getFalseValue()); 4413 } else { 4414 // It must be a Phi node then. 4415 PHINode *CurrentPhi = cast<PHINode>(Current); 4416 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 4417 PHINode *PHI = 4418 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator()); 4419 Map[Current] = PHI; 4420 ST.insertNewPhi(PHI); 4421 append_range(Worklist, CurrentPhi->incoming_values()); 4422 } 4423 } 4424 } 4425 4426 bool addrModeCombiningAllowed() { 4427 if (DisableComplexAddrModes) 4428 return false; 4429 switch (DifferentField) { 4430 default: 4431 return false; 4432 case ExtAddrMode::BaseRegField: 4433 return AddrSinkCombineBaseReg; 4434 case ExtAddrMode::BaseGVField: 4435 return AddrSinkCombineBaseGV; 4436 case ExtAddrMode::BaseOffsField: 4437 return AddrSinkCombineBaseOffs; 4438 case ExtAddrMode::ScaledRegField: 4439 return AddrSinkCombineScaledReg; 4440 } 4441 } 4442 }; 4443 } // end anonymous namespace 4444 4445 /// Try adding ScaleReg*Scale to the current addressing mode. 4446 /// Return true and update AddrMode if this addr mode is legal for the target, 4447 /// false if not. 4448 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 4449 unsigned Depth) { 4450 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 4451 // mode. Just process that directly. 4452 if (Scale == 1) 4453 return matchAddr(ScaleReg, Depth); 4454 4455 // If the scale is 0, it takes nothing to add this. 4456 if (Scale == 0) 4457 return true; 4458 4459 // If we already have a scale of this value, we can add to it, otherwise, we 4460 // need an available scale field. 4461 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 4462 return false; 4463 4464 ExtAddrMode TestAddrMode = AddrMode; 4465 4466 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 4467 // [A+B + A*7] -> [B+A*8]. 4468 TestAddrMode.Scale += Scale; 4469 TestAddrMode.ScaledReg = ScaleReg; 4470 4471 // If the new address isn't legal, bail out. 4472 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 4473 return false; 4474 4475 // It was legal, so commit it. 4476 AddrMode = TestAddrMode; 4477 4478 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 4479 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 4480 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 4481 // go any further: we can reuse it and cannot eliminate it. 4482 ConstantInt *CI = nullptr; 4483 Value *AddLHS = nullptr; 4484 if (isa<Instruction>(ScaleReg) && // not a constant expr. 4485 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 4486 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 4487 TestAddrMode.InBounds = false; 4488 TestAddrMode.ScaledReg = AddLHS; 4489 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 4490 4491 // If this addressing mode is legal, commit it and remember that we folded 4492 // this instruction. 4493 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 4494 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 4495 AddrMode = TestAddrMode; 4496 return true; 4497 } 4498 // Restore status quo. 4499 TestAddrMode = AddrMode; 4500 } 4501 4502 // If this is an add recurrence with a constant step, return the increment 4503 // instruction and the canonicalized step. 4504 auto GetConstantStep = 4505 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { 4506 auto *PN = dyn_cast<PHINode>(V); 4507 if (!PN) 4508 return std::nullopt; 4509 auto IVInc = getIVIncrement(PN, &LI); 4510 if (!IVInc) 4511 return std::nullopt; 4512 // TODO: The result of the intrinsics above is two-complement. However when 4513 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 4514 // If it has nuw or nsw flags, we need to make sure that these flags are 4515 // inferrable at the point of memory instruction. Otherwise we are replacing 4516 // well-defined two-complement computation with poison. Currently, to avoid 4517 // potentially complex analysis needed to prove this, we reject such cases. 4518 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 4519 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 4520 return std::nullopt; 4521 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 4522 return std::make_pair(IVInc->first, ConstantStep->getValue()); 4523 return std::nullopt; 4524 }; 4525 4526 // Try to account for the following special case: 4527 // 1. ScaleReg is an inductive variable; 4528 // 2. We use it with non-zero offset; 4529 // 3. IV's increment is available at the point of memory instruction. 4530 // 4531 // In this case, we may reuse the IV increment instead of the IV Phi to 4532 // achieve the following advantages: 4533 // 1. If IV step matches the offset, we will have no need in the offset; 4534 // 2. Even if they don't match, we will reduce the overlap of living IV 4535 // and IV increment, that will potentially lead to better register 4536 // assignment. 4537 if (AddrMode.BaseOffs) { 4538 if (auto IVStep = GetConstantStep(ScaleReg)) { 4539 Instruction *IVInc = IVStep->first; 4540 // The following assert is important to ensure a lack of infinite loops. 4541 // This transforms is (intentionally) the inverse of the one just above. 4542 // If they don't agree on the definition of an increment, we'd alternate 4543 // back and forth indefinitely. 4544 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 4545 APInt Step = IVStep->second; 4546 APInt Offset = Step * AddrMode.Scale; 4547 if (Offset.isSignedIntN(64)) { 4548 TestAddrMode.InBounds = false; 4549 TestAddrMode.ScaledReg = IVInc; 4550 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 4551 // If this addressing mode is legal, commit it.. 4552 // (Note that we defer the (expensive) domtree base legality check 4553 // to the very last possible point.) 4554 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 4555 getDTFn().dominates(IVInc, MemoryInst)) { 4556 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 4557 AddrMode = TestAddrMode; 4558 return true; 4559 } 4560 // Restore status quo. 4561 TestAddrMode = AddrMode; 4562 } 4563 } 4564 } 4565 4566 // Otherwise, just return what we have. 4567 return true; 4568 } 4569 4570 /// This is a little filter, which returns true if an addressing computation 4571 /// involving I might be folded into a load/store accessing it. 4572 /// This doesn't need to be perfect, but needs to accept at least 4573 /// the set of instructions that MatchOperationAddr can. 4574 static bool MightBeFoldableInst(Instruction *I) { 4575 switch (I->getOpcode()) { 4576 case Instruction::BitCast: 4577 case Instruction::AddrSpaceCast: 4578 // Don't touch identity bitcasts. 4579 if (I->getType() == I->getOperand(0)->getType()) 4580 return false; 4581 return I->getType()->isIntOrPtrTy(); 4582 case Instruction::PtrToInt: 4583 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4584 return true; 4585 case Instruction::IntToPtr: 4586 // We know the input is intptr_t, so this is foldable. 4587 return true; 4588 case Instruction::Add: 4589 return true; 4590 case Instruction::Mul: 4591 case Instruction::Shl: 4592 // Can only handle X*C and X << C. 4593 return isa<ConstantInt>(I->getOperand(1)); 4594 case Instruction::GetElementPtr: 4595 return true; 4596 default: 4597 return false; 4598 } 4599 } 4600 4601 /// Check whether or not \p Val is a legal instruction for \p TLI. 4602 /// \note \p Val is assumed to be the product of some type promotion. 4603 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4604 /// to be legal, as the non-promoted value would have had the same state. 4605 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4606 const DataLayout &DL, Value *Val) { 4607 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4608 if (!PromotedInst) 4609 return false; 4610 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4611 // If the ISDOpcode is undefined, it was undefined before the promotion. 4612 if (!ISDOpcode) 4613 return true; 4614 // Otherwise, check if the promoted instruction is legal or not. 4615 return TLI.isOperationLegalOrCustom( 4616 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4617 } 4618 4619 namespace { 4620 4621 /// Hepler class to perform type promotion. 4622 class TypePromotionHelper { 4623 /// Utility function to add a promoted instruction \p ExtOpnd to 4624 /// \p PromotedInsts and record the type of extension we have seen. 4625 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4626 Instruction *ExtOpnd, bool IsSExt) { 4627 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4628 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4629 if (It != PromotedInsts.end()) { 4630 // If the new extension is same as original, the information in 4631 // PromotedInsts[ExtOpnd] is still correct. 4632 if (It->second.getInt() == ExtTy) 4633 return; 4634 4635 // Now the new extension is different from old extension, we make 4636 // the type information invalid by setting extension type to 4637 // BothExtension. 4638 ExtTy = BothExtension; 4639 } 4640 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4641 } 4642 4643 /// Utility function to query the original type of instruction \p Opnd 4644 /// with a matched extension type. If the extension doesn't match, we 4645 /// cannot use the information we had on the original type. 4646 /// BothExtension doesn't match any extension type. 4647 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4648 Instruction *Opnd, bool IsSExt) { 4649 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4650 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4651 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4652 return It->second.getPointer(); 4653 return nullptr; 4654 } 4655 4656 /// Utility function to check whether or not a sign or zero extension 4657 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4658 /// either using the operands of \p Inst or promoting \p Inst. 4659 /// The type of the extension is defined by \p IsSExt. 4660 /// In other words, check if: 4661 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4662 /// #1 Promotion applies: 4663 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4664 /// #2 Operand reuses: 4665 /// ext opnd1 to ConsideredExtType. 4666 /// \p PromotedInsts maps the instructions to their type before promotion. 4667 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4668 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4669 4670 /// Utility function to determine if \p OpIdx should be promoted when 4671 /// promoting \p Inst. 4672 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4673 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4674 } 4675 4676 /// Utility function to promote the operand of \p Ext when this 4677 /// operand is a promotable trunc or sext or zext. 4678 /// \p PromotedInsts maps the instructions to their type before promotion. 4679 /// \p CreatedInstsCost[out] contains the cost of all instructions 4680 /// created to promote the operand of Ext. 4681 /// Newly added extensions are inserted in \p Exts. 4682 /// Newly added truncates are inserted in \p Truncs. 4683 /// Should never be called directly. 4684 /// \return The promoted value which is used instead of Ext. 4685 static Value *promoteOperandForTruncAndAnyExt( 4686 Instruction *Ext, TypePromotionTransaction &TPT, 4687 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4688 SmallVectorImpl<Instruction *> *Exts, 4689 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4690 4691 /// Utility function to promote the operand of \p Ext when this 4692 /// operand is promotable and is not a supported trunc or sext. 4693 /// \p PromotedInsts maps the instructions to their type before promotion. 4694 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4695 /// created to promote the operand of Ext. 4696 /// Newly added extensions are inserted in \p Exts. 4697 /// Newly added truncates are inserted in \p Truncs. 4698 /// Should never be called directly. 4699 /// \return The promoted value which is used instead of Ext. 4700 static Value *promoteOperandForOther(Instruction *Ext, 4701 TypePromotionTransaction &TPT, 4702 InstrToOrigTy &PromotedInsts, 4703 unsigned &CreatedInstsCost, 4704 SmallVectorImpl<Instruction *> *Exts, 4705 SmallVectorImpl<Instruction *> *Truncs, 4706 const TargetLowering &TLI, bool IsSExt); 4707 4708 /// \see promoteOperandForOther. 4709 static Value *signExtendOperandForOther( 4710 Instruction *Ext, TypePromotionTransaction &TPT, 4711 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4712 SmallVectorImpl<Instruction *> *Exts, 4713 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4714 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4715 Exts, Truncs, TLI, true); 4716 } 4717 4718 /// \see promoteOperandForOther. 4719 static Value *zeroExtendOperandForOther( 4720 Instruction *Ext, TypePromotionTransaction &TPT, 4721 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4722 SmallVectorImpl<Instruction *> *Exts, 4723 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4724 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4725 Exts, Truncs, TLI, false); 4726 } 4727 4728 public: 4729 /// Type for the utility function that promotes the operand of Ext. 4730 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4731 InstrToOrigTy &PromotedInsts, 4732 unsigned &CreatedInstsCost, 4733 SmallVectorImpl<Instruction *> *Exts, 4734 SmallVectorImpl<Instruction *> *Truncs, 4735 const TargetLowering &TLI); 4736 4737 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4738 /// action to promote the operand of \p Ext instead of using Ext. 4739 /// \return NULL if no promotable action is possible with the current 4740 /// sign extension. 4741 /// \p InsertedInsts keeps track of all the instructions inserted by the 4742 /// other CodeGenPrepare optimizations. This information is important 4743 /// because we do not want to promote these instructions as CodeGenPrepare 4744 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4745 /// \p PromotedInsts maps the instructions to their type before promotion. 4746 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4747 const TargetLowering &TLI, 4748 const InstrToOrigTy &PromotedInsts); 4749 }; 4750 4751 } // end anonymous namespace 4752 4753 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4754 Type *ConsideredExtType, 4755 const InstrToOrigTy &PromotedInsts, 4756 bool IsSExt) { 4757 // The promotion helper does not know how to deal with vector types yet. 4758 // To be able to fix that, we would need to fix the places where we 4759 // statically extend, e.g., constants and such. 4760 if (Inst->getType()->isVectorTy()) 4761 return false; 4762 4763 // We can always get through zext. 4764 if (isa<ZExtInst>(Inst)) 4765 return true; 4766 4767 // sext(sext) is ok too. 4768 if (IsSExt && isa<SExtInst>(Inst)) 4769 return true; 4770 4771 // We can get through binary operator, if it is legal. In other words, the 4772 // binary operator must have a nuw or nsw flag. 4773 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4774 if (isa<OverflowingBinaryOperator>(BinOp) && 4775 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4776 (IsSExt && BinOp->hasNoSignedWrap()))) 4777 return true; 4778 4779 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4780 if ((Inst->getOpcode() == Instruction::And || 4781 Inst->getOpcode() == Instruction::Or)) 4782 return true; 4783 4784 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4785 if (Inst->getOpcode() == Instruction::Xor) { 4786 // Make sure it is not a NOT. 4787 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4788 if (!Cst->getValue().isAllOnes()) 4789 return true; 4790 } 4791 4792 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4793 // It may change a poisoned value into a regular value, like 4794 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4795 // poisoned value regular value 4796 // It should be OK since undef covers valid value. 4797 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4798 return true; 4799 4800 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4801 // It may change a poisoned value into a regular value, like 4802 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4803 // poisoned value regular value 4804 // It should be OK since undef covers valid value. 4805 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4806 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4807 if (ExtInst->hasOneUse()) { 4808 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4809 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4810 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4811 if (Cst && 4812 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4813 return true; 4814 } 4815 } 4816 } 4817 4818 // Check if we can do the following simplification. 4819 // ext(trunc(opnd)) --> ext(opnd) 4820 if (!isa<TruncInst>(Inst)) 4821 return false; 4822 4823 Value *OpndVal = Inst->getOperand(0); 4824 // Check if we can use this operand in the extension. 4825 // If the type is larger than the result type of the extension, we cannot. 4826 if (!OpndVal->getType()->isIntegerTy() || 4827 OpndVal->getType()->getIntegerBitWidth() > 4828 ConsideredExtType->getIntegerBitWidth()) 4829 return false; 4830 4831 // If the operand of the truncate is not an instruction, we will not have 4832 // any information on the dropped bits. 4833 // (Actually we could for constant but it is not worth the extra logic). 4834 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4835 if (!Opnd) 4836 return false; 4837 4838 // Check if the source of the type is narrow enough. 4839 // I.e., check that trunc just drops extended bits of the same kind of 4840 // the extension. 4841 // #1 get the type of the operand and check the kind of the extended bits. 4842 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4843 if (OpndType) 4844 ; 4845 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4846 OpndType = Opnd->getOperand(0)->getType(); 4847 else 4848 return false; 4849 4850 // #2 check that the truncate just drops extended bits. 4851 return Inst->getType()->getIntegerBitWidth() >= 4852 OpndType->getIntegerBitWidth(); 4853 } 4854 4855 TypePromotionHelper::Action TypePromotionHelper::getAction( 4856 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4857 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4858 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4859 "Unexpected instruction type"); 4860 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4861 Type *ExtTy = Ext->getType(); 4862 bool IsSExt = isa<SExtInst>(Ext); 4863 // If the operand of the extension is not an instruction, we cannot 4864 // get through. 4865 // If it, check we can get through. 4866 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4867 return nullptr; 4868 4869 // Do not promote if the operand has been added by codegenprepare. 4870 // Otherwise, it means we are undoing an optimization that is likely to be 4871 // redone, thus causing potential infinite loop. 4872 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4873 return nullptr; 4874 4875 // SExt or Trunc instructions. 4876 // Return the related handler. 4877 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4878 isa<ZExtInst>(ExtOpnd)) 4879 return promoteOperandForTruncAndAnyExt; 4880 4881 // Regular instruction. 4882 // Abort early if we will have to insert non-free instructions. 4883 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4884 return nullptr; 4885 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4886 } 4887 4888 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4889 Instruction *SExt, TypePromotionTransaction &TPT, 4890 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4891 SmallVectorImpl<Instruction *> *Exts, 4892 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4893 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4894 // get through it and this method should not be called. 4895 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4896 Value *ExtVal = SExt; 4897 bool HasMergedNonFreeExt = false; 4898 if (isa<ZExtInst>(SExtOpnd)) { 4899 // Replace s|zext(zext(opnd)) 4900 // => zext(opnd). 4901 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4902 Value *ZExt = 4903 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4904 TPT.replaceAllUsesWith(SExt, ZExt); 4905 TPT.eraseInstruction(SExt); 4906 ExtVal = ZExt; 4907 } else { 4908 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4909 // => z|sext(opnd). 4910 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4911 } 4912 CreatedInstsCost = 0; 4913 4914 // Remove dead code. 4915 if (SExtOpnd->use_empty()) 4916 TPT.eraseInstruction(SExtOpnd); 4917 4918 // Check if the extension is still needed. 4919 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4920 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4921 if (ExtInst) { 4922 if (Exts) 4923 Exts->push_back(ExtInst); 4924 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4925 } 4926 return ExtVal; 4927 } 4928 4929 // At this point we have: ext ty opnd to ty. 4930 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4931 Value *NextVal = ExtInst->getOperand(0); 4932 TPT.eraseInstruction(ExtInst, NextVal); 4933 return NextVal; 4934 } 4935 4936 Value *TypePromotionHelper::promoteOperandForOther( 4937 Instruction *Ext, TypePromotionTransaction &TPT, 4938 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4939 SmallVectorImpl<Instruction *> *Exts, 4940 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4941 bool IsSExt) { 4942 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4943 // get through it and this method should not be called. 4944 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4945 CreatedInstsCost = 0; 4946 if (!ExtOpnd->hasOneUse()) { 4947 // ExtOpnd will be promoted. 4948 // All its uses, but Ext, will need to use a truncated value of the 4949 // promoted version. 4950 // Create the truncate now. 4951 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4952 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4953 // Insert it just after the definition. 4954 ITrunc->moveAfter(ExtOpnd); 4955 if (Truncs) 4956 Truncs->push_back(ITrunc); 4957 } 4958 4959 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4960 // Restore the operand of Ext (which has been replaced by the previous call 4961 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4962 TPT.setOperand(Ext, 0, ExtOpnd); 4963 } 4964 4965 // Get through the Instruction: 4966 // 1. Update its type. 4967 // 2. Replace the uses of Ext by Inst. 4968 // 3. Extend each operand that needs to be extended. 4969 4970 // Remember the original type of the instruction before promotion. 4971 // This is useful to know that the high bits are sign extended bits. 4972 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4973 // Step #1. 4974 TPT.mutateType(ExtOpnd, Ext->getType()); 4975 // Step #2. 4976 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4977 // Step #3. 4978 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4979 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4980 ++OpIdx) { 4981 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4982 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4983 !shouldExtOperand(ExtOpnd, OpIdx)) { 4984 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4985 continue; 4986 } 4987 // Check if we can statically extend the operand. 4988 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4989 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4990 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4991 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4992 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4993 : Cst->getValue().zext(BitWidth); 4994 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4995 continue; 4996 } 4997 // UndefValue are typed, so we have to statically sign extend them. 4998 if (isa<UndefValue>(Opnd)) { 4999 LLVM_DEBUG(dbgs() << "Statically extend\n"); 5000 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 5001 continue; 5002 } 5003 5004 // Otherwise we have to explicitly sign extend the operand. 5005 Value *ValForExtOpnd = IsSExt 5006 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType()) 5007 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType()); 5008 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 5009 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd); 5010 if (!InstForExtOpnd) 5011 continue; 5012 5013 if (Exts) 5014 Exts->push_back(InstForExtOpnd); 5015 5016 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd); 5017 } 5018 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 5019 TPT.eraseInstruction(Ext); 5020 return ExtOpnd; 5021 } 5022 5023 /// Check whether or not promoting an instruction to a wider type is profitable. 5024 /// \p NewCost gives the cost of extension instructions created by the 5025 /// promotion. 5026 /// \p OldCost gives the cost of extension instructions before the promotion 5027 /// plus the number of instructions that have been 5028 /// matched in the addressing mode the promotion. 5029 /// \p PromotedOperand is the value that has been promoted. 5030 /// \return True if the promotion is profitable, false otherwise. 5031 bool AddressingModeMatcher::isPromotionProfitable( 5032 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 5033 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 5034 << '\n'); 5035 // The cost of the new extensions is greater than the cost of the 5036 // old extension plus what we folded. 5037 // This is not profitable. 5038 if (NewCost > OldCost) 5039 return false; 5040 if (NewCost < OldCost) 5041 return true; 5042 // The promotion is neutral but it may help folding the sign extension in 5043 // loads for instance. 5044 // Check that we did not create an illegal instruction. 5045 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 5046 } 5047 5048 /// Given an instruction or constant expr, see if we can fold the operation 5049 /// into the addressing mode. If so, update the addressing mode and return 5050 /// true, otherwise return false without modifying AddrMode. 5051 /// If \p MovedAway is not NULL, it contains the information of whether or 5052 /// not AddrInst has to be folded into the addressing mode on success. 5053 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 5054 /// because it has been moved away. 5055 /// Thus AddrInst must not be added in the matched instructions. 5056 /// This state can happen when AddrInst is a sext, since it may be moved away. 5057 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 5058 /// not be referenced anymore. 5059 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 5060 unsigned Depth, 5061 bool *MovedAway) { 5062 // Avoid exponential behavior on extremely deep expression trees. 5063 if (Depth >= 5) 5064 return false; 5065 5066 // By default, all matched instructions stay in place. 5067 if (MovedAway) 5068 *MovedAway = false; 5069 5070 switch (Opcode) { 5071 case Instruction::PtrToInt: 5072 // PtrToInt is always a noop, as we know that the int type is pointer sized. 5073 return matchAddr(AddrInst->getOperand(0), Depth); 5074 case Instruction::IntToPtr: { 5075 auto AS = AddrInst->getType()->getPointerAddressSpace(); 5076 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 5077 // This inttoptr is a no-op if the integer type is pointer sized. 5078 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 5079 return matchAddr(AddrInst->getOperand(0), Depth); 5080 return false; 5081 } 5082 case Instruction::BitCast: 5083 // BitCast is always a noop, and we can handle it as long as it is 5084 // int->int or pointer->pointer (we don't want int<->fp or something). 5085 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 5086 // Don't touch identity bitcasts. These were probably put here by LSR, 5087 // and we don't want to mess around with them. Assume it knows what it 5088 // is doing. 5089 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 5090 return matchAddr(AddrInst->getOperand(0), Depth); 5091 return false; 5092 case Instruction::AddrSpaceCast: { 5093 unsigned SrcAS = 5094 AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 5095 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 5096 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 5097 return matchAddr(AddrInst->getOperand(0), Depth); 5098 return false; 5099 } 5100 case Instruction::Add: { 5101 // Check to see if we can merge in one operand, then the other. If so, we 5102 // win. 5103 ExtAddrMode BackupAddrMode = AddrMode; 5104 unsigned OldSize = AddrModeInsts.size(); 5105 // Start a transaction at this point. 5106 // The LHS may match but not the RHS. 5107 // Therefore, we need a higher level restoration point to undo partially 5108 // matched operation. 5109 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5110 TPT.getRestorationPoint(); 5111 5112 // Try to match an integer constant second to increase its chance of ending 5113 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. 5114 int First = 0, Second = 1; 5115 if (isa<ConstantInt>(AddrInst->getOperand(First)) 5116 && !isa<ConstantInt>(AddrInst->getOperand(Second))) 5117 std::swap(First, Second); 5118 AddrMode.InBounds = false; 5119 if (matchAddr(AddrInst->getOperand(First), Depth + 1) && 5120 matchAddr(AddrInst->getOperand(Second), Depth + 1)) 5121 return true; 5122 5123 // Restore the old addr mode info. 5124 AddrMode = BackupAddrMode; 5125 AddrModeInsts.resize(OldSize); 5126 TPT.rollback(LastKnownGood); 5127 5128 // Otherwise this was over-aggressive. Try merging operands in the opposite 5129 // order. 5130 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && 5131 matchAddr(AddrInst->getOperand(First), Depth + 1)) 5132 return true; 5133 5134 // Otherwise we definitely can't merge the ADD in. 5135 AddrMode = BackupAddrMode; 5136 AddrModeInsts.resize(OldSize); 5137 TPT.rollback(LastKnownGood); 5138 break; 5139 } 5140 // case Instruction::Or: 5141 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 5142 // break; 5143 case Instruction::Mul: 5144 case Instruction::Shl: { 5145 // Can only handle X*C and X << C. 5146 AddrMode.InBounds = false; 5147 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 5148 if (!RHS || RHS->getBitWidth() > 64) 5149 return false; 5150 int64_t Scale = Opcode == Instruction::Shl 5151 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 5152 : RHS->getSExtValue(); 5153 5154 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 5155 } 5156 case Instruction::GetElementPtr: { 5157 // Scan the GEP. We check it if it contains constant offsets and at most 5158 // one variable offset. 5159 int VariableOperand = -1; 5160 unsigned VariableScale = 0; 5161 5162 int64_t ConstantOffset = 0; 5163 gep_type_iterator GTI = gep_type_begin(AddrInst); 5164 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 5165 if (StructType *STy = GTI.getStructTypeOrNull()) { 5166 const StructLayout *SL = DL.getStructLayout(STy); 5167 unsigned Idx = 5168 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 5169 ConstantOffset += SL->getElementOffset(Idx); 5170 } else { 5171 TypeSize TS = GTI.getSequentialElementStride(DL); 5172 if (TS.isNonZero()) { 5173 // The optimisations below currently only work for fixed offsets. 5174 if (TS.isScalable()) 5175 return false; 5176 int64_t TypeSize = TS.getFixedValue(); 5177 if (ConstantInt *CI = 5178 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 5179 const APInt &CVal = CI->getValue(); 5180 if (CVal.getSignificantBits() <= 64) { 5181 ConstantOffset += CVal.getSExtValue() * TypeSize; 5182 continue; 5183 } 5184 } 5185 // We only allow one variable index at the moment. 5186 if (VariableOperand != -1) 5187 return false; 5188 5189 // Remember the variable index. 5190 VariableOperand = i; 5191 VariableScale = TypeSize; 5192 } 5193 } 5194 } 5195 5196 // A common case is for the GEP to only do a constant offset. In this case, 5197 // just add it to the disp field and check validity. 5198 if (VariableOperand == -1) { 5199 AddrMode.BaseOffs += ConstantOffset; 5200 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { 5201 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 5202 AddrMode.InBounds = false; 5203 return true; 5204 } 5205 AddrMode.BaseOffs -= ConstantOffset; 5206 5207 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 5208 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 5209 ConstantOffset > 0) { 5210 // Record GEPs with non-zero offsets as candidates for splitting in 5211 // the event that the offset cannot fit into the r+i addressing mode. 5212 // Simple and common case that only one GEP is used in calculating the 5213 // address for the memory access. 5214 Value *Base = AddrInst->getOperand(0); 5215 auto *BaseI = dyn_cast<Instruction>(Base); 5216 auto *GEP = cast<GetElementPtrInst>(AddrInst); 5217 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 5218 (BaseI && !isa<CastInst>(BaseI) && 5219 !isa<GetElementPtrInst>(BaseI))) { 5220 // Make sure the parent block allows inserting non-PHI instructions 5221 // before the terminator. 5222 BasicBlock *Parent = BaseI ? BaseI->getParent() 5223 : &GEP->getFunction()->getEntryBlock(); 5224 if (!Parent->getTerminator()->isEHPad()) 5225 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 5226 } 5227 } 5228 5229 return false; 5230 } 5231 5232 // Save the valid addressing mode in case we can't match. 5233 ExtAddrMode BackupAddrMode = AddrMode; 5234 unsigned OldSize = AddrModeInsts.size(); 5235 5236 // See if the scale and offset amount is valid for this target. 5237 AddrMode.BaseOffs += ConstantOffset; 5238 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 5239 AddrMode.InBounds = false; 5240 5241 // Match the base operand of the GEP. 5242 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { 5243 // If it couldn't be matched, just stuff the value in a register. 5244 if (AddrMode.HasBaseReg) { 5245 AddrMode = BackupAddrMode; 5246 AddrModeInsts.resize(OldSize); 5247 return false; 5248 } 5249 AddrMode.HasBaseReg = true; 5250 AddrMode.BaseReg = AddrInst->getOperand(0); 5251 } 5252 5253 // Match the remaining variable portion of the GEP. 5254 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 5255 Depth)) { 5256 // If it couldn't be matched, try stuffing the base into a register 5257 // instead of matching it, and retrying the match of the scale. 5258 AddrMode = BackupAddrMode; 5259 AddrModeInsts.resize(OldSize); 5260 if (AddrMode.HasBaseReg) 5261 return false; 5262 AddrMode.HasBaseReg = true; 5263 AddrMode.BaseReg = AddrInst->getOperand(0); 5264 AddrMode.BaseOffs += ConstantOffset; 5265 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 5266 VariableScale, Depth)) { 5267 // If even that didn't work, bail. 5268 AddrMode = BackupAddrMode; 5269 AddrModeInsts.resize(OldSize); 5270 return false; 5271 } 5272 } 5273 5274 return true; 5275 } 5276 case Instruction::SExt: 5277 case Instruction::ZExt: { 5278 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 5279 if (!Ext) 5280 return false; 5281 5282 // Try to move this ext out of the way of the addressing mode. 5283 // Ask for a method for doing so. 5284 TypePromotionHelper::Action TPH = 5285 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 5286 if (!TPH) 5287 return false; 5288 5289 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5290 TPT.getRestorationPoint(); 5291 unsigned CreatedInstsCost = 0; 5292 unsigned ExtCost = !TLI.isExtFree(Ext); 5293 Value *PromotedOperand = 5294 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 5295 // SExt has been moved away. 5296 // Thus either it will be rematched later in the recursive calls or it is 5297 // gone. Anyway, we must not fold it into the addressing mode at this point. 5298 // E.g., 5299 // op = add opnd, 1 5300 // idx = ext op 5301 // addr = gep base, idx 5302 // is now: 5303 // promotedOpnd = ext opnd <- no match here 5304 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 5305 // addr = gep base, op <- match 5306 if (MovedAway) 5307 *MovedAway = true; 5308 5309 assert(PromotedOperand && 5310 "TypePromotionHelper should have filtered out those cases"); 5311 5312 ExtAddrMode BackupAddrMode = AddrMode; 5313 unsigned OldSize = AddrModeInsts.size(); 5314 5315 if (!matchAddr(PromotedOperand, Depth) || 5316 // The total of the new cost is equal to the cost of the created 5317 // instructions. 5318 // The total of the old cost is equal to the cost of the extension plus 5319 // what we have saved in the addressing mode. 5320 !isPromotionProfitable(CreatedInstsCost, 5321 ExtCost + (AddrModeInsts.size() - OldSize), 5322 PromotedOperand)) { 5323 AddrMode = BackupAddrMode; 5324 AddrModeInsts.resize(OldSize); 5325 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 5326 TPT.rollback(LastKnownGood); 5327 return false; 5328 } 5329 return true; 5330 } 5331 case Instruction::Call: 5332 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) { 5333 if (II->getIntrinsicID() == Intrinsic::threadlocal_address) { 5334 GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0)); 5335 if (TLI.addressingModeSupportsTLS(GV)) 5336 return matchAddr(AddrInst->getOperand(0), Depth); 5337 } 5338 } 5339 break; 5340 } 5341 return false; 5342 } 5343 5344 /// If we can, try to add the value of 'Addr' into the current addressing mode. 5345 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 5346 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 5347 /// for the target. 5348 /// 5349 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 5350 // Start a transaction at this point that we will rollback if the matching 5351 // fails. 5352 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5353 TPT.getRestorationPoint(); 5354 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 5355 if (CI->getValue().isSignedIntN(64)) { 5356 // Fold in immediates if legal for the target. 5357 AddrMode.BaseOffs += CI->getSExtValue(); 5358 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5359 return true; 5360 AddrMode.BaseOffs -= CI->getSExtValue(); 5361 } 5362 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 5363 // If this is a global variable, try to fold it into the addressing mode. 5364 if (!AddrMode.BaseGV) { 5365 AddrMode.BaseGV = GV; 5366 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5367 return true; 5368 AddrMode.BaseGV = nullptr; 5369 } 5370 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 5371 ExtAddrMode BackupAddrMode = AddrMode; 5372 unsigned OldSize = AddrModeInsts.size(); 5373 5374 // Check to see if it is possible to fold this operation. 5375 bool MovedAway = false; 5376 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 5377 // This instruction may have been moved away. If so, there is nothing 5378 // to check here. 5379 if (MovedAway) 5380 return true; 5381 // Okay, it's possible to fold this. Check to see if it is actually 5382 // *profitable* to do so. We use a simple cost model to avoid increasing 5383 // register pressure too much. 5384 if (I->hasOneUse() || 5385 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 5386 AddrModeInsts.push_back(I); 5387 return true; 5388 } 5389 5390 // It isn't profitable to do this, roll back. 5391 AddrMode = BackupAddrMode; 5392 AddrModeInsts.resize(OldSize); 5393 TPT.rollback(LastKnownGood); 5394 } 5395 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 5396 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 5397 return true; 5398 TPT.rollback(LastKnownGood); 5399 } else if (isa<ConstantPointerNull>(Addr)) { 5400 // Null pointer gets folded without affecting the addressing mode. 5401 return true; 5402 } 5403 5404 // Worse case, the target should support [reg] addressing modes. :) 5405 if (!AddrMode.HasBaseReg) { 5406 AddrMode.HasBaseReg = true; 5407 AddrMode.BaseReg = Addr; 5408 // Still check for legality in case the target supports [imm] but not [i+r]. 5409 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5410 return true; 5411 AddrMode.HasBaseReg = false; 5412 AddrMode.BaseReg = nullptr; 5413 } 5414 5415 // If the base register is already taken, see if we can do [r+r]. 5416 if (AddrMode.Scale == 0) { 5417 AddrMode.Scale = 1; 5418 AddrMode.ScaledReg = Addr; 5419 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5420 return true; 5421 AddrMode.Scale = 0; 5422 AddrMode.ScaledReg = nullptr; 5423 } 5424 // Couldn't match. 5425 TPT.rollback(LastKnownGood); 5426 return false; 5427 } 5428 5429 /// Check to see if all uses of OpVal by the specified inline asm call are due 5430 /// to memory operands. If so, return true, otherwise return false. 5431 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 5432 const TargetLowering &TLI, 5433 const TargetRegisterInfo &TRI) { 5434 const Function *F = CI->getFunction(); 5435 TargetLowering::AsmOperandInfoVector TargetConstraints = 5436 TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI); 5437 5438 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5439 // Compute the constraint code and ConstraintType to use. 5440 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5441 5442 // If this asm operand is our Value*, and if it isn't an indirect memory 5443 // operand, we can't fold it! TODO: Also handle C_Address? 5444 if (OpInfo.CallOperandVal == OpVal && 5445 (OpInfo.ConstraintType != TargetLowering::C_Memory || 5446 !OpInfo.isIndirect)) 5447 return false; 5448 } 5449 5450 return true; 5451 } 5452 5453 /// Recursively walk all the uses of I until we find a memory use. 5454 /// If we find an obviously non-foldable instruction, return true. 5455 /// Add accessed addresses and types to MemoryUses. 5456 static bool FindAllMemoryUses( 5457 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5458 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 5459 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 5460 BlockFrequencyInfo *BFI, unsigned &SeenInsts) { 5461 // If we already considered this instruction, we're done. 5462 if (!ConsideredInsts.insert(I).second) 5463 return false; 5464 5465 // If this is an obviously unfoldable instruction, bail out. 5466 if (!MightBeFoldableInst(I)) 5467 return true; 5468 5469 // Loop over all the uses, recursively processing them. 5470 for (Use &U : I->uses()) { 5471 // Conservatively return true if we're seeing a large number or a deep chain 5472 // of users. This avoids excessive compilation times in pathological cases. 5473 if (SeenInsts++ >= MaxAddressUsersToScan) 5474 return true; 5475 5476 Instruction *UserI = cast<Instruction>(U.getUser()); 5477 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 5478 MemoryUses.push_back({&U, LI->getType()}); 5479 continue; 5480 } 5481 5482 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 5483 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 5484 return true; // Storing addr, not into addr. 5485 MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); 5486 continue; 5487 } 5488 5489 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 5490 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 5491 return true; // Storing addr, not into addr. 5492 MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); 5493 continue; 5494 } 5495 5496 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 5497 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 5498 return true; // Storing addr, not into addr. 5499 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); 5500 continue; 5501 } 5502 5503 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 5504 if (CI->hasFnAttr(Attribute::Cold)) { 5505 // If this is a cold call, we can sink the addressing calculation into 5506 // the cold path. See optimizeCallInst 5507 if (!llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI)) 5508 continue; 5509 } 5510 5511 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 5512 if (!IA) 5513 return true; 5514 5515 // If this is a memory operand, we're cool, otherwise bail out. 5516 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 5517 return true; 5518 continue; 5519 } 5520 5521 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5522 PSI, BFI, SeenInsts)) 5523 return true; 5524 } 5525 5526 return false; 5527 } 5528 5529 static bool FindAllMemoryUses( 5530 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5531 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, 5532 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 5533 unsigned SeenInsts = 0; 5534 SmallPtrSet<Instruction *, 16> ConsideredInsts; 5535 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5536 PSI, BFI, SeenInsts); 5537 } 5538 5539 5540 /// Return true if Val is already known to be live at the use site that we're 5541 /// folding it into. If so, there is no cost to include it in the addressing 5542 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 5543 /// instruction already. 5544 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, 5545 Value *KnownLive1, 5546 Value *KnownLive2) { 5547 // If Val is either of the known-live values, we know it is live! 5548 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 5549 return true; 5550 5551 // All values other than instructions and arguments (e.g. constants) are live. 5552 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) 5553 return true; 5554 5555 // If Val is a constant sized alloca in the entry block, it is live, this is 5556 // true because it is just a reference to the stack/frame pointer, which is 5557 // live for the whole function. 5558 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 5559 if (AI->isStaticAlloca()) 5560 return true; 5561 5562 // Check to see if this value is already used in the memory instruction's 5563 // block. If so, it's already live into the block at the very least, so we 5564 // can reasonably fold it. 5565 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 5566 } 5567 5568 /// It is possible for the addressing mode of the machine to fold the specified 5569 /// instruction into a load or store that ultimately uses it. 5570 /// However, the specified instruction has multiple uses. 5571 /// Given this, it may actually increase register pressure to fold it 5572 /// into the load. For example, consider this code: 5573 /// 5574 /// X = ... 5575 /// Y = X+1 5576 /// use(Y) -> nonload/store 5577 /// Z = Y+1 5578 /// load Z 5579 /// 5580 /// In this case, Y has multiple uses, and can be folded into the load of Z 5581 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 5582 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 5583 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 5584 /// number of computations either. 5585 /// 5586 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 5587 /// X was live across 'load Z' for other reasons, we actually *would* want to 5588 /// fold the addressing mode in the Z case. This would make Y die earlier. 5589 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( 5590 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { 5591 if (IgnoreProfitability) 5592 return true; 5593 5594 // AMBefore is the addressing mode before this instruction was folded into it, 5595 // and AMAfter is the addressing mode after the instruction was folded. Get 5596 // the set of registers referenced by AMAfter and subtract out those 5597 // referenced by AMBefore: this is the set of values which folding in this 5598 // address extends the lifetime of. 5599 // 5600 // Note that there are only two potential values being referenced here, 5601 // BaseReg and ScaleReg (global addresses are always available, as are any 5602 // folded immediates). 5603 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5604 5605 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5606 // lifetime wasn't extended by adding this instruction. 5607 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5608 BaseReg = nullptr; 5609 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5610 ScaledReg = nullptr; 5611 5612 // If folding this instruction (and it's subexprs) didn't extend any live 5613 // ranges, we're ok with it. 5614 if (!BaseReg && !ScaledReg) 5615 return true; 5616 5617 // If all uses of this instruction can have the address mode sunk into them, 5618 // we can remove the addressing mode and effectively trade one live register 5619 // for another (at worst.) In this context, folding an addressing mode into 5620 // the use is just a particularly nice way of sinking it. 5621 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; 5622 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) 5623 return false; // Has a non-memory, non-foldable use! 5624 5625 // Now that we know that all uses of this instruction are part of a chain of 5626 // computation involving only operations that could theoretically be folded 5627 // into a memory use, loop over each of these memory operation uses and see 5628 // if they could *actually* fold the instruction. The assumption is that 5629 // addressing modes are cheap and that duplicating the computation involved 5630 // many times is worthwhile, even on a fastpath. For sinking candidates 5631 // (i.e. cold call sites), this serves as a way to prevent excessive code 5632 // growth since most architectures have some reasonable small and fast way to 5633 // compute an effective address. (i.e LEA on x86) 5634 SmallVector<Instruction *, 32> MatchedAddrModeInsts; 5635 for (const std::pair<Use *, Type *> &Pair : MemoryUses) { 5636 Value *Address = Pair.first->get(); 5637 Instruction *UserI = cast<Instruction>(Pair.first->getUser()); 5638 Type *AddressAccessTy = Pair.second; 5639 unsigned AS = Address->getType()->getPointerAddressSpace(); 5640 5641 // Do a match against the root of this address, ignoring profitability. This 5642 // will tell us if the addressing mode for the memory operation will 5643 // *actually* cover the shared instruction. 5644 ExtAddrMode Result; 5645 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5646 0); 5647 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5648 TPT.getRestorationPoint(); 5649 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5650 AddressAccessTy, AS, UserI, Result, 5651 InsertedInsts, PromotedInsts, TPT, 5652 LargeOffsetGEP, OptSize, PSI, BFI); 5653 Matcher.IgnoreProfitability = true; 5654 bool Success = Matcher.matchAddr(Address, 0); 5655 (void)Success; 5656 assert(Success && "Couldn't select *anything*?"); 5657 5658 // The match was to check the profitability, the changes made are not 5659 // part of the original matcher. Therefore, they should be dropped 5660 // otherwise the original matcher will not present the right state. 5661 TPT.rollback(LastKnownGood); 5662 5663 // If the match didn't cover I, then it won't be shared by it. 5664 if (!is_contained(MatchedAddrModeInsts, I)) 5665 return false; 5666 5667 MatchedAddrModeInsts.clear(); 5668 } 5669 5670 return true; 5671 } 5672 5673 /// Return true if the specified values are defined in a 5674 /// different basic block than BB. 5675 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5676 if (Instruction *I = dyn_cast<Instruction>(V)) 5677 return I->getParent() != BB; 5678 return false; 5679 } 5680 5681 /// Sink addressing mode computation immediate before MemoryInst if doing so 5682 /// can be done without increasing register pressure. The need for the 5683 /// register pressure constraint means this can end up being an all or nothing 5684 /// decision for all uses of the same addressing computation. 5685 /// 5686 /// Load and Store Instructions often have addressing modes that can do 5687 /// significant amounts of computation. As such, instruction selection will try 5688 /// to get the load or store to do as much computation as possible for the 5689 /// program. The problem is that isel can only see within a single block. As 5690 /// such, we sink as much legal addressing mode work into the block as possible. 5691 /// 5692 /// This method is used to optimize both load/store and inline asms with memory 5693 /// operands. It's also used to sink addressing computations feeding into cold 5694 /// call sites into their (cold) basic block. 5695 /// 5696 /// The motivation for handling sinking into cold blocks is that doing so can 5697 /// both enable other address mode sinking (by satisfying the register pressure 5698 /// constraint above), and reduce register pressure globally (by removing the 5699 /// addressing mode computation from the fast path entirely.). 5700 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5701 Type *AccessTy, unsigned AddrSpace) { 5702 Value *Repl = Addr; 5703 5704 // Try to collapse single-value PHI nodes. This is necessary to undo 5705 // unprofitable PRE transformations. 5706 SmallVector<Value *, 8> worklist; 5707 SmallPtrSet<Value *, 16> Visited; 5708 worklist.push_back(Addr); 5709 5710 // Use a worklist to iteratively look through PHI and select nodes, and 5711 // ensure that the addressing mode obtained from the non-PHI/select roots of 5712 // the graph are compatible. 5713 bool PhiOrSelectSeen = false; 5714 SmallVector<Instruction *, 16> AddrModeInsts; 5715 const SimplifyQuery SQ(*DL, TLInfo); 5716 AddressingModeCombiner AddrModes(SQ, Addr); 5717 TypePromotionTransaction TPT(RemovedInsts); 5718 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5719 TPT.getRestorationPoint(); 5720 while (!worklist.empty()) { 5721 Value *V = worklist.pop_back_val(); 5722 5723 // We allow traversing cyclic Phi nodes. 5724 // In case of success after this loop we ensure that traversing through 5725 // Phi nodes ends up with all cases to compute address of the form 5726 // BaseGV + Base + Scale * Index + Offset 5727 // where Scale and Offset are constans and BaseGV, Base and Index 5728 // are exactly the same Values in all cases. 5729 // It means that BaseGV, Scale and Offset dominate our memory instruction 5730 // and have the same value as they had in address computation represented 5731 // as Phi. So we can safely sink address computation to memory instruction. 5732 if (!Visited.insert(V).second) 5733 continue; 5734 5735 // For a PHI node, push all of its incoming values. 5736 if (PHINode *P = dyn_cast<PHINode>(V)) { 5737 append_range(worklist, P->incoming_values()); 5738 PhiOrSelectSeen = true; 5739 continue; 5740 } 5741 // Similar for select. 5742 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5743 worklist.push_back(SI->getFalseValue()); 5744 worklist.push_back(SI->getTrueValue()); 5745 PhiOrSelectSeen = true; 5746 continue; 5747 } 5748 5749 // For non-PHIs, determine the addressing mode being computed. Note that 5750 // the result may differ depending on what other uses our candidate 5751 // addressing instructions might have. 5752 AddrModeInsts.clear(); 5753 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5754 0); 5755 // Defer the query (and possible computation of) the dom tree to point of 5756 // actual use. It's expected that most address matches don't actually need 5757 // the domtree. 5758 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5759 Function *F = MemoryInst->getParent()->getParent(); 5760 return this->getDT(*F); 5761 }; 5762 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5763 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5764 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5765 BFI.get()); 5766 5767 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5768 if (GEP && !NewGEPBases.count(GEP)) { 5769 // If splitting the underlying data structure can reduce the offset of a 5770 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5771 // previously split data structures. 5772 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5773 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5774 } 5775 5776 NewAddrMode.OriginalValue = V; 5777 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5778 break; 5779 } 5780 5781 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5782 // or we have multiple but either couldn't combine them or combining them 5783 // wouldn't do anything useful, bail out now. 5784 if (!AddrModes.combineAddrModes()) { 5785 TPT.rollback(LastKnownGood); 5786 return false; 5787 } 5788 bool Modified = TPT.commit(); 5789 5790 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5791 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5792 5793 // If all the instructions matched are already in this BB, don't do anything. 5794 // If we saw a Phi node then it is not local definitely, and if we saw a 5795 // select then we want to push the address calculation past it even if it's 5796 // already in this BB. 5797 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5798 return IsNonLocalValue(V, MemoryInst->getParent()); 5799 })) { 5800 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5801 << "\n"); 5802 return Modified; 5803 } 5804 5805 // Insert this computation right after this user. Since our caller is 5806 // scanning from the top of the BB to the bottom, reuse of the expr are 5807 // guaranteed to happen later. 5808 IRBuilder<> Builder(MemoryInst); 5809 5810 // Now that we determined the addressing expression we want to use and know 5811 // that we have to sink it into this block. Check to see if we have already 5812 // done this for some other load/store instr in this block. If so, reuse 5813 // the computation. Before attempting reuse, check if the address is valid 5814 // as it may have been erased. 5815 5816 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5817 5818 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5819 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5820 if (SunkAddr) { 5821 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5822 << " for " << *MemoryInst << "\n"); 5823 if (SunkAddr->getType() != Addr->getType()) { 5824 if (SunkAddr->getType()->getPointerAddressSpace() != 5825 Addr->getType()->getPointerAddressSpace() && 5826 !DL->isNonIntegralPointerType(Addr->getType())) { 5827 // There are two reasons the address spaces might not match: a no-op 5828 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5829 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5830 // TODO: allow bitcast between different address space pointers with the 5831 // same size. 5832 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5833 SunkAddr = 5834 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5835 } else 5836 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5837 } 5838 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5839 SubtargetInfo->addrSinkUsingGEPs())) { 5840 // By default, we use the GEP-based method when AA is used later. This 5841 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5842 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5843 << " for " << *MemoryInst << "\n"); 5844 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5845 5846 // First, find the pointer. 5847 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5848 ResultPtr = AddrMode.BaseReg; 5849 AddrMode.BaseReg = nullptr; 5850 } 5851 5852 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5853 // We can't add more than one pointer together, nor can we scale a 5854 // pointer (both of which seem meaningless). 5855 if (ResultPtr || AddrMode.Scale != 1) 5856 return Modified; 5857 5858 ResultPtr = AddrMode.ScaledReg; 5859 AddrMode.Scale = 0; 5860 } 5861 5862 // It is only safe to sign extend the BaseReg if we know that the math 5863 // required to create it did not overflow before we extend it. Since 5864 // the original IR value was tossed in favor of a constant back when 5865 // the AddrMode was created we need to bail out gracefully if widths 5866 // do not match instead of extending it. 5867 // 5868 // (See below for code to add the scale.) 5869 if (AddrMode.Scale) { 5870 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5871 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5872 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5873 return Modified; 5874 } 5875 5876 GlobalValue *BaseGV = AddrMode.BaseGV; 5877 if (BaseGV != nullptr) { 5878 if (ResultPtr) 5879 return Modified; 5880 5881 if (BaseGV->isThreadLocal()) { 5882 ResultPtr = Builder.CreateThreadLocalAddress(BaseGV); 5883 } else { 5884 ResultPtr = BaseGV; 5885 } 5886 } 5887 5888 // If the real base value actually came from an inttoptr, then the matcher 5889 // will look through it and provide only the integer value. In that case, 5890 // use it here. 5891 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5892 if (!ResultPtr && AddrMode.BaseReg) { 5893 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5894 "sunkaddr"); 5895 AddrMode.BaseReg = nullptr; 5896 } else if (!ResultPtr && AddrMode.Scale == 1) { 5897 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5898 "sunkaddr"); 5899 AddrMode.Scale = 0; 5900 } 5901 } 5902 5903 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && 5904 !AddrMode.BaseOffs) { 5905 SunkAddr = Constant::getNullValue(Addr->getType()); 5906 } else if (!ResultPtr) { 5907 return Modified; 5908 } else { 5909 Type *I8PtrTy = 5910 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace()); 5911 5912 // Start with the base register. Do this first so that subsequent address 5913 // matching finds it last, which will prevent it from trying to match it 5914 // as the scaled value in case it happens to be a mul. That would be 5915 // problematic if we've sunk a different mul for the scale, because then 5916 // we'd end up sinking both muls. 5917 if (AddrMode.BaseReg) { 5918 Value *V = AddrMode.BaseReg; 5919 if (V->getType() != IntPtrTy) 5920 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5921 5922 ResultIndex = V; 5923 } 5924 5925 // Add the scale value. 5926 if (AddrMode.Scale) { 5927 Value *V = AddrMode.ScaledReg; 5928 if (V->getType() == IntPtrTy) { 5929 // done. 5930 } else { 5931 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5932 cast<IntegerType>(V->getType())->getBitWidth() && 5933 "We can't transform if ScaledReg is too narrow"); 5934 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5935 } 5936 5937 if (AddrMode.Scale != 1) 5938 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5939 "sunkaddr"); 5940 if (ResultIndex) 5941 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5942 else 5943 ResultIndex = V; 5944 } 5945 5946 // Add in the Base Offset if present. 5947 if (AddrMode.BaseOffs) { 5948 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5949 if (ResultIndex) { 5950 // We need to add this separately from the scale above to help with 5951 // SDAG consecutive load/store merging. 5952 if (ResultPtr->getType() != I8PtrTy) 5953 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5954 ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5955 AddrMode.InBounds); 5956 } 5957 5958 ResultIndex = V; 5959 } 5960 5961 if (!ResultIndex) { 5962 SunkAddr = ResultPtr; 5963 } else { 5964 if (ResultPtr->getType() != I8PtrTy) 5965 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5966 SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5967 AddrMode.InBounds); 5968 } 5969 5970 if (SunkAddr->getType() != Addr->getType()) { 5971 if (SunkAddr->getType()->getPointerAddressSpace() != 5972 Addr->getType()->getPointerAddressSpace() && 5973 !DL->isNonIntegralPointerType(Addr->getType())) { 5974 // There are two reasons the address spaces might not match: a no-op 5975 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5976 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5977 // TODO: allow bitcast between different address space pointers with 5978 // the same size. 5979 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5980 SunkAddr = 5981 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5982 } else 5983 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5984 } 5985 } 5986 } else { 5987 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5988 // non-integral pointers, so in that case bail out now. 5989 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5990 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5991 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5992 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5993 if (DL->isNonIntegralPointerType(Addr->getType()) || 5994 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5995 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5996 (AddrMode.BaseGV && 5997 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5998 return Modified; 5999 6000 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 6001 << " for " << *MemoryInst << "\n"); 6002 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 6003 Value *Result = nullptr; 6004 6005 // Start with the base register. Do this first so that subsequent address 6006 // matching finds it last, which will prevent it from trying to match it 6007 // as the scaled value in case it happens to be a mul. That would be 6008 // problematic if we've sunk a different mul for the scale, because then 6009 // we'd end up sinking both muls. 6010 if (AddrMode.BaseReg) { 6011 Value *V = AddrMode.BaseReg; 6012 if (V->getType()->isPointerTy()) 6013 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 6014 if (V->getType() != IntPtrTy) 6015 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 6016 Result = V; 6017 } 6018 6019 // Add the scale value. 6020 if (AddrMode.Scale) { 6021 Value *V = AddrMode.ScaledReg; 6022 if (V->getType() == IntPtrTy) { 6023 // done. 6024 } else if (V->getType()->isPointerTy()) { 6025 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 6026 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 6027 cast<IntegerType>(V->getType())->getBitWidth()) { 6028 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 6029 } else { 6030 // It is only safe to sign extend the BaseReg if we know that the math 6031 // required to create it did not overflow before we extend it. Since 6032 // the original IR value was tossed in favor of a constant back when 6033 // the AddrMode was created we need to bail out gracefully if widths 6034 // do not match instead of extending it. 6035 Instruction *I = dyn_cast_or_null<Instruction>(Result); 6036 if (I && (Result != AddrMode.BaseReg)) 6037 I->eraseFromParent(); 6038 return Modified; 6039 } 6040 if (AddrMode.Scale != 1) 6041 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 6042 "sunkaddr"); 6043 if (Result) 6044 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 6045 else 6046 Result = V; 6047 } 6048 6049 // Add in the BaseGV if present. 6050 GlobalValue *BaseGV = AddrMode.BaseGV; 6051 if (BaseGV != nullptr) { 6052 Value *BaseGVPtr; 6053 if (BaseGV->isThreadLocal()) { 6054 BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV); 6055 } else { 6056 BaseGVPtr = BaseGV; 6057 } 6058 Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr"); 6059 if (Result) 6060 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 6061 else 6062 Result = V; 6063 } 6064 6065 // Add in the Base Offset if present. 6066 if (AddrMode.BaseOffs) { 6067 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 6068 if (Result) 6069 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 6070 else 6071 Result = V; 6072 } 6073 6074 if (!Result) 6075 SunkAddr = Constant::getNullValue(Addr->getType()); 6076 else 6077 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 6078 } 6079 6080 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 6081 // Store the newly computed address into the cache. In the case we reused a 6082 // value, this should be idempotent. 6083 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 6084 6085 // If we have no uses, recursively delete the value and all dead instructions 6086 // using it. 6087 if (Repl->use_empty()) { 6088 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 6089 RecursivelyDeleteTriviallyDeadInstructions( 6090 Repl, TLInfo, nullptr, 6091 [&](Value *V) { removeAllAssertingVHReferences(V); }); 6092 }); 6093 } 6094 ++NumMemoryInsts; 6095 return true; 6096 } 6097 6098 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 6099 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 6100 /// only handle a 2 operand GEP in the same basic block or a splat constant 6101 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 6102 /// index. 6103 /// 6104 /// If the existing GEP has a vector base pointer that is splat, we can look 6105 /// through the splat to find the scalar pointer. If we can't find a scalar 6106 /// pointer there's nothing we can do. 6107 /// 6108 /// If we have a GEP with more than 2 indices where the middle indices are all 6109 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 6110 /// 6111 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 6112 /// followed by a GEP with an all zeroes vector index. This will enable 6113 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 6114 /// zero index. 6115 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 6116 Value *Ptr) { 6117 Value *NewAddr; 6118 6119 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 6120 // Don't optimize GEPs that don't have indices. 6121 if (!GEP->hasIndices()) 6122 return false; 6123 6124 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 6125 // FIXME: We should support this by sinking the GEP. 6126 if (MemoryInst->getParent() != GEP->getParent()) 6127 return false; 6128 6129 SmallVector<Value *, 2> Ops(GEP->operands()); 6130 6131 bool RewriteGEP = false; 6132 6133 if (Ops[0]->getType()->isVectorTy()) { 6134 Ops[0] = getSplatValue(Ops[0]); 6135 if (!Ops[0]) 6136 return false; 6137 RewriteGEP = true; 6138 } 6139 6140 unsigned FinalIndex = Ops.size() - 1; 6141 6142 // Ensure all but the last index is 0. 6143 // FIXME: This isn't strictly required. All that's required is that they are 6144 // all scalars or splats. 6145 for (unsigned i = 1; i < FinalIndex; ++i) { 6146 auto *C = dyn_cast<Constant>(Ops[i]); 6147 if (!C) 6148 return false; 6149 if (isa<VectorType>(C->getType())) 6150 C = C->getSplatValue(); 6151 auto *CI = dyn_cast_or_null<ConstantInt>(C); 6152 if (!CI || !CI->isZero()) 6153 return false; 6154 // Scalarize the index if needed. 6155 Ops[i] = CI; 6156 } 6157 6158 // Try to scalarize the final index. 6159 if (Ops[FinalIndex]->getType()->isVectorTy()) { 6160 if (Value *V = getSplatValue(Ops[FinalIndex])) { 6161 auto *C = dyn_cast<ConstantInt>(V); 6162 // Don't scalarize all zeros vector. 6163 if (!C || !C->isZero()) { 6164 Ops[FinalIndex] = V; 6165 RewriteGEP = true; 6166 } 6167 } 6168 } 6169 6170 // If we made any changes or the we have extra operands, we need to generate 6171 // new instructions. 6172 if (!RewriteGEP && Ops.size() == 2) 6173 return false; 6174 6175 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 6176 6177 IRBuilder<> Builder(MemoryInst); 6178 6179 Type *SourceTy = GEP->getSourceElementType(); 6180 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 6181 6182 // If the final index isn't a vector, emit a scalar GEP containing all ops 6183 // and a vector GEP with all zeroes final index. 6184 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 6185 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); 6186 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 6187 auto *SecondTy = GetElementPtrInst::getIndexedType( 6188 SourceTy, ArrayRef(Ops).drop_front()); 6189 NewAddr = 6190 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 6191 } else { 6192 Value *Base = Ops[0]; 6193 Value *Index = Ops[FinalIndex]; 6194 6195 // Create a scalar GEP if there are more than 2 operands. 6196 if (Ops.size() != 2) { 6197 // Replace the last index with 0. 6198 Ops[FinalIndex] = 6199 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType()); 6200 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); 6201 SourceTy = GetElementPtrInst::getIndexedType( 6202 SourceTy, ArrayRef(Ops).drop_front()); 6203 } 6204 6205 // Now create the GEP with scalar pointer and vector index. 6206 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 6207 } 6208 } else if (!isa<Constant>(Ptr)) { 6209 // Not a GEP, maybe its a splat and we can create a GEP to enable 6210 // SelectionDAGBuilder to use it as a uniform base. 6211 Value *V = getSplatValue(Ptr); 6212 if (!V) 6213 return false; 6214 6215 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 6216 6217 IRBuilder<> Builder(MemoryInst); 6218 6219 // Emit a vector GEP with a scalar pointer and all 0s vector index. 6220 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 6221 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 6222 Type *ScalarTy; 6223 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 6224 Intrinsic::masked_gather) { 6225 ScalarTy = MemoryInst->getType()->getScalarType(); 6226 } else { 6227 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 6228 Intrinsic::masked_scatter); 6229 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 6230 } 6231 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 6232 } else { 6233 // Constant, SelectionDAGBuilder knows to check if its a splat. 6234 return false; 6235 } 6236 6237 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 6238 6239 // If we have no uses, recursively delete the value and all dead instructions 6240 // using it. 6241 if (Ptr->use_empty()) 6242 RecursivelyDeleteTriviallyDeadInstructions( 6243 Ptr, TLInfo, nullptr, 6244 [&](Value *V) { removeAllAssertingVHReferences(V); }); 6245 6246 return true; 6247 } 6248 6249 /// If there are any memory operands, use OptimizeMemoryInst to sink their 6250 /// address computing into the block when possible / profitable. 6251 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 6252 bool MadeChange = false; 6253 6254 const TargetRegisterInfo *TRI = 6255 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 6256 TargetLowering::AsmOperandInfoVector TargetConstraints = 6257 TLI->ParseConstraints(*DL, TRI, *CS); 6258 unsigned ArgNo = 0; 6259 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 6260 // Compute the constraint code and ConstraintType to use. 6261 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6262 6263 // TODO: Also handle C_Address? 6264 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6265 OpInfo.isIndirect) { 6266 Value *OpVal = CS->getArgOperand(ArgNo++); 6267 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 6268 } else if (OpInfo.Type == InlineAsm::isInput) 6269 ArgNo++; 6270 } 6271 6272 return MadeChange; 6273 } 6274 6275 /// Check if all the uses of \p Val are equivalent (or free) zero or 6276 /// sign extensions. 6277 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 6278 assert(!Val->use_empty() && "Input must have at least one use"); 6279 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 6280 bool IsSExt = isa<SExtInst>(FirstUser); 6281 Type *ExtTy = FirstUser->getType(); 6282 for (const User *U : Val->users()) { 6283 const Instruction *UI = cast<Instruction>(U); 6284 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 6285 return false; 6286 Type *CurTy = UI->getType(); 6287 // Same input and output types: Same instruction after CSE. 6288 if (CurTy == ExtTy) 6289 continue; 6290 6291 // If IsSExt is true, we are in this situation: 6292 // a = Val 6293 // b = sext ty1 a to ty2 6294 // c = sext ty1 a to ty3 6295 // Assuming ty2 is shorter than ty3, this could be turned into: 6296 // a = Val 6297 // b = sext ty1 a to ty2 6298 // c = sext ty2 b to ty3 6299 // However, the last sext is not free. 6300 if (IsSExt) 6301 return false; 6302 6303 // This is a ZExt, maybe this is free to extend from one type to another. 6304 // In that case, we would not account for a different use. 6305 Type *NarrowTy; 6306 Type *LargeTy; 6307 if (ExtTy->getScalarType()->getIntegerBitWidth() > 6308 CurTy->getScalarType()->getIntegerBitWidth()) { 6309 NarrowTy = CurTy; 6310 LargeTy = ExtTy; 6311 } else { 6312 NarrowTy = ExtTy; 6313 LargeTy = CurTy; 6314 } 6315 6316 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 6317 return false; 6318 } 6319 // All uses are the same or can be derived from one another for free. 6320 return true; 6321 } 6322 6323 /// Try to speculatively promote extensions in \p Exts and continue 6324 /// promoting through newly promoted operands recursively as far as doing so is 6325 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 6326 /// When some promotion happened, \p TPT contains the proper state to revert 6327 /// them. 6328 /// 6329 /// \return true if some promotion happened, false otherwise. 6330 bool CodeGenPrepare::tryToPromoteExts( 6331 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 6332 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 6333 unsigned CreatedInstsCost) { 6334 bool Promoted = false; 6335 6336 // Iterate over all the extensions to try to promote them. 6337 for (auto *I : Exts) { 6338 // Early check if we directly have ext(load). 6339 if (isa<LoadInst>(I->getOperand(0))) { 6340 ProfitablyMovedExts.push_back(I); 6341 continue; 6342 } 6343 6344 // Check whether or not we want to do any promotion. The reason we have 6345 // this check inside the for loop is to catch the case where an extension 6346 // is directly fed by a load because in such case the extension can be moved 6347 // up without any promotion on its operands. 6348 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 6349 return false; 6350 6351 // Get the action to perform the promotion. 6352 TypePromotionHelper::Action TPH = 6353 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 6354 // Check if we can promote. 6355 if (!TPH) { 6356 // Save the current extension as we cannot move up through its operand. 6357 ProfitablyMovedExts.push_back(I); 6358 continue; 6359 } 6360 6361 // Save the current state. 6362 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6363 TPT.getRestorationPoint(); 6364 SmallVector<Instruction *, 4> NewExts; 6365 unsigned NewCreatedInstsCost = 0; 6366 unsigned ExtCost = !TLI->isExtFree(I); 6367 // Promote. 6368 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 6369 &NewExts, nullptr, *TLI); 6370 assert(PromotedVal && 6371 "TypePromotionHelper should have filtered out those cases"); 6372 6373 // We would be able to merge only one extension in a load. 6374 // Therefore, if we have more than 1 new extension we heuristically 6375 // cut this search path, because it means we degrade the code quality. 6376 // With exactly 2, the transformation is neutral, because we will merge 6377 // one extension but leave one. However, we optimistically keep going, 6378 // because the new extension may be removed too. Also avoid replacing a 6379 // single free extension with multiple extensions, as this increases the 6380 // number of IR instructions while not providing any savings. 6381 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 6382 // FIXME: It would be possible to propagate a negative value instead of 6383 // conservatively ceiling it to 0. 6384 TotalCreatedInstsCost = 6385 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 6386 if (!StressExtLdPromotion && 6387 (TotalCreatedInstsCost > 1 || 6388 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) || 6389 (ExtCost == 0 && NewExts.size() > 1))) { 6390 // This promotion is not profitable, rollback to the previous state, and 6391 // save the current extension in ProfitablyMovedExts as the latest 6392 // speculative promotion turned out to be unprofitable. 6393 TPT.rollback(LastKnownGood); 6394 ProfitablyMovedExts.push_back(I); 6395 continue; 6396 } 6397 // Continue promoting NewExts as far as doing so is profitable. 6398 SmallVector<Instruction *, 2> NewlyMovedExts; 6399 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 6400 bool NewPromoted = false; 6401 for (auto *ExtInst : NewlyMovedExts) { 6402 Instruction *MovedExt = cast<Instruction>(ExtInst); 6403 Value *ExtOperand = MovedExt->getOperand(0); 6404 // If we have reached to a load, we need this extra profitability check 6405 // as it could potentially be merged into an ext(load). 6406 if (isa<LoadInst>(ExtOperand) && 6407 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 6408 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 6409 continue; 6410 6411 ProfitablyMovedExts.push_back(MovedExt); 6412 NewPromoted = true; 6413 } 6414 6415 // If none of speculative promotions for NewExts is profitable, rollback 6416 // and save the current extension (I) as the last profitable extension. 6417 if (!NewPromoted) { 6418 TPT.rollback(LastKnownGood); 6419 ProfitablyMovedExts.push_back(I); 6420 continue; 6421 } 6422 // The promotion is profitable. 6423 Promoted = true; 6424 } 6425 return Promoted; 6426 } 6427 6428 /// Merging redundant sexts when one is dominating the other. 6429 bool CodeGenPrepare::mergeSExts(Function &F) { 6430 bool Changed = false; 6431 for (auto &Entry : ValToSExtendedUses) { 6432 SExts &Insts = Entry.second; 6433 SExts CurPts; 6434 for (Instruction *Inst : Insts) { 6435 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 6436 Inst->getOperand(0) != Entry.first) 6437 continue; 6438 bool inserted = false; 6439 for (auto &Pt : CurPts) { 6440 if (getDT(F).dominates(Inst, Pt)) { 6441 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); 6442 RemovedInsts.insert(Pt); 6443 Pt->removeFromParent(); 6444 Pt = Inst; 6445 inserted = true; 6446 Changed = true; 6447 break; 6448 } 6449 if (!getDT(F).dominates(Pt, Inst)) 6450 // Give up if we need to merge in a common dominator as the 6451 // experiments show it is not profitable. 6452 continue; 6453 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); 6454 RemovedInsts.insert(Inst); 6455 Inst->removeFromParent(); 6456 inserted = true; 6457 Changed = true; 6458 break; 6459 } 6460 if (!inserted) 6461 CurPts.push_back(Inst); 6462 } 6463 } 6464 return Changed; 6465 } 6466 6467 // Splitting large data structures so that the GEPs accessing them can have 6468 // smaller offsets so that they can be sunk to the same blocks as their users. 6469 // For example, a large struct starting from %base is split into two parts 6470 // where the second part starts from %new_base. 6471 // 6472 // Before: 6473 // BB0: 6474 // %base = 6475 // 6476 // BB1: 6477 // %gep0 = gep %base, off0 6478 // %gep1 = gep %base, off1 6479 // %gep2 = gep %base, off2 6480 // 6481 // BB2: 6482 // %load1 = load %gep0 6483 // %load2 = load %gep1 6484 // %load3 = load %gep2 6485 // 6486 // After: 6487 // BB0: 6488 // %base = 6489 // %new_base = gep %base, off0 6490 // 6491 // BB1: 6492 // %new_gep0 = %new_base 6493 // %new_gep1 = gep %new_base, off1 - off0 6494 // %new_gep2 = gep %new_base, off2 - off0 6495 // 6496 // BB2: 6497 // %load1 = load i32, i32* %new_gep0 6498 // %load2 = load i32, i32* %new_gep1 6499 // %load3 = load i32, i32* %new_gep2 6500 // 6501 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 6502 // their offsets are smaller enough to fit into the addressing mode. 6503 bool CodeGenPrepare::splitLargeGEPOffsets() { 6504 bool Changed = false; 6505 for (auto &Entry : LargeOffsetGEPMap) { 6506 Value *OldBase = Entry.first; 6507 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 6508 &LargeOffsetGEPs = Entry.second; 6509 auto compareGEPOffset = 6510 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 6511 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 6512 if (LHS.first == RHS.first) 6513 return false; 6514 if (LHS.second != RHS.second) 6515 return LHS.second < RHS.second; 6516 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 6517 }; 6518 // Sorting all the GEPs of the same data structures based on the offsets. 6519 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 6520 LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end()); 6521 // Skip if all the GEPs have the same offsets. 6522 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 6523 continue; 6524 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 6525 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 6526 Value *NewBaseGEP = nullptr; 6527 6528 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase, 6529 GetElementPtrInst *GEP) { 6530 LLVMContext &Ctx = GEP->getContext(); 6531 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6532 Type *I8PtrTy = 6533 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace()); 6534 6535 BasicBlock::iterator NewBaseInsertPt; 6536 BasicBlock *NewBaseInsertBB; 6537 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 6538 // If the base of the struct is an instruction, the new base will be 6539 // inserted close to it. 6540 NewBaseInsertBB = BaseI->getParent(); 6541 if (isa<PHINode>(BaseI)) 6542 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6543 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 6544 NewBaseInsertBB = 6545 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI); 6546 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6547 } else 6548 NewBaseInsertPt = std::next(BaseI->getIterator()); 6549 } else { 6550 // If the current base is an argument or global value, the new base 6551 // will be inserted to the entry block. 6552 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 6553 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6554 } 6555 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 6556 // Create a new base. 6557 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset); 6558 NewBaseGEP = OldBase; 6559 if (NewBaseGEP->getType() != I8PtrTy) 6560 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 6561 NewBaseGEP = 6562 NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep"); 6563 NewGEPBases.insert(NewBaseGEP); 6564 return; 6565 }; 6566 6567 // Check whether all the offsets can be encoded with prefered common base. 6568 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset( 6569 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) { 6570 BaseOffset = PreferBase; 6571 // Create a new base if the offset of the BaseGEP can be decoded with one 6572 // instruction. 6573 createNewBase(BaseOffset, OldBase, BaseGEP); 6574 } 6575 6576 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 6577 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 6578 GetElementPtrInst *GEP = LargeOffsetGEP->first; 6579 int64_t Offset = LargeOffsetGEP->second; 6580 if (Offset != BaseOffset) { 6581 TargetLowering::AddrMode AddrMode; 6582 AddrMode.HasBaseReg = true; 6583 AddrMode.BaseOffs = Offset - BaseOffset; 6584 // The result type of the GEP might not be the type of the memory 6585 // access. 6586 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 6587 GEP->getResultElementType(), 6588 GEP->getAddressSpace())) { 6589 // We need to create a new base if the offset to the current base is 6590 // too large to fit into the addressing mode. So, a very large struct 6591 // may be split into several parts. 6592 BaseGEP = GEP; 6593 BaseOffset = Offset; 6594 NewBaseGEP = nullptr; 6595 } 6596 } 6597 6598 // Generate a new GEP to replace the current one. 6599 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6600 6601 if (!NewBaseGEP) { 6602 // Create a new base if we don't have one yet. Find the insertion 6603 // pointer for the new base first. 6604 createNewBase(BaseOffset, OldBase, GEP); 6605 } 6606 6607 IRBuilder<> Builder(GEP); 6608 Value *NewGEP = NewBaseGEP; 6609 if (Offset != BaseOffset) { 6610 // Calculate the new offset for the new GEP. 6611 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset); 6612 NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index); 6613 } 6614 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); 6615 LargeOffsetGEPID.erase(GEP); 6616 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6617 GEP->eraseFromParent(); 6618 Changed = true; 6619 } 6620 } 6621 return Changed; 6622 } 6623 6624 bool CodeGenPrepare::optimizePhiType( 6625 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6626 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6627 // We are looking for a collection on interconnected phi nodes that together 6628 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6629 // are of the same type. Convert the whole set of nodes to the type of the 6630 // bitcast. 6631 Type *PhiTy = I->getType(); 6632 Type *ConvertTy = nullptr; 6633 if (Visited.count(I) || 6634 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6635 return false; 6636 6637 SmallVector<Instruction *, 4> Worklist; 6638 Worklist.push_back(cast<Instruction>(I)); 6639 SmallPtrSet<PHINode *, 4> PhiNodes; 6640 SmallPtrSet<ConstantData *, 4> Constants; 6641 PhiNodes.insert(I); 6642 Visited.insert(I); 6643 SmallPtrSet<Instruction *, 4> Defs; 6644 SmallPtrSet<Instruction *, 4> Uses; 6645 // This works by adding extra bitcasts between load/stores and removing 6646 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6647 // we can get in the situation where we remove a bitcast in one iteration 6648 // just to add it again in the next. We need to ensure that at least one 6649 // bitcast we remove are anchored to something that will not change back. 6650 bool AnyAnchored = false; 6651 6652 while (!Worklist.empty()) { 6653 Instruction *II = Worklist.pop_back_val(); 6654 6655 if (auto *Phi = dyn_cast<PHINode>(II)) { 6656 // Handle Defs, which might also be PHI's 6657 for (Value *V : Phi->incoming_values()) { 6658 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6659 if (!PhiNodes.count(OpPhi)) { 6660 if (!Visited.insert(OpPhi).second) 6661 return false; 6662 PhiNodes.insert(OpPhi); 6663 Worklist.push_back(OpPhi); 6664 } 6665 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6666 if (!OpLoad->isSimple()) 6667 return false; 6668 if (Defs.insert(OpLoad).second) 6669 Worklist.push_back(OpLoad); 6670 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6671 if (Defs.insert(OpEx).second) 6672 Worklist.push_back(OpEx); 6673 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6674 if (!ConvertTy) 6675 ConvertTy = OpBC->getOperand(0)->getType(); 6676 if (OpBC->getOperand(0)->getType() != ConvertTy) 6677 return false; 6678 if (Defs.insert(OpBC).second) { 6679 Worklist.push_back(OpBC); 6680 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6681 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6682 } 6683 } else if (auto *OpC = dyn_cast<ConstantData>(V)) 6684 Constants.insert(OpC); 6685 else 6686 return false; 6687 } 6688 } 6689 6690 // Handle uses which might also be phi's 6691 for (User *V : II->users()) { 6692 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6693 if (!PhiNodes.count(OpPhi)) { 6694 if (Visited.count(OpPhi)) 6695 return false; 6696 PhiNodes.insert(OpPhi); 6697 Visited.insert(OpPhi); 6698 Worklist.push_back(OpPhi); 6699 } 6700 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6701 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6702 return false; 6703 Uses.insert(OpStore); 6704 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6705 if (!ConvertTy) 6706 ConvertTy = OpBC->getType(); 6707 if (OpBC->getType() != ConvertTy) 6708 return false; 6709 Uses.insert(OpBC); 6710 AnyAnchored |= 6711 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6712 } else { 6713 return false; 6714 } 6715 } 6716 } 6717 6718 if (!ConvertTy || !AnyAnchored || 6719 !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6720 return false; 6721 6722 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6723 << *ConvertTy << "\n"); 6724 6725 // Create all the new phi nodes of the new type, and bitcast any loads to the 6726 // correct type. 6727 ValueToValueMap ValMap; 6728 for (ConstantData *C : Constants) 6729 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy); 6730 for (Instruction *D : Defs) { 6731 if (isa<BitCastInst>(D)) { 6732 ValMap[D] = D->getOperand(0); 6733 DeletedInstrs.insert(D); 6734 } else { 6735 BasicBlock::iterator insertPt = std::next(D->getIterator()); 6736 ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt); 6737 } 6738 } 6739 for (PHINode *Phi : PhiNodes) 6740 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6741 Phi->getName() + ".tc", Phi->getIterator()); 6742 // Pipe together all the PhiNodes. 6743 for (PHINode *Phi : PhiNodes) { 6744 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6745 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6746 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6747 Phi->getIncomingBlock(i)); 6748 Visited.insert(NewPhi); 6749 } 6750 // And finally pipe up the stores and bitcasts 6751 for (Instruction *U : Uses) { 6752 if (isa<BitCastInst>(U)) { 6753 DeletedInstrs.insert(U); 6754 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); 6755 } else { 6756 U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", 6757 U->getIterator())); 6758 } 6759 } 6760 6761 // Save the removed phis to be deleted later. 6762 for (PHINode *Phi : PhiNodes) 6763 DeletedInstrs.insert(Phi); 6764 return true; 6765 } 6766 6767 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6768 if (!OptimizePhiTypes) 6769 return false; 6770 6771 bool Changed = false; 6772 SmallPtrSet<PHINode *, 4> Visited; 6773 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6774 6775 // Attempt to optimize all the phis in the functions to the correct type. 6776 for (auto &BB : F) 6777 for (auto &Phi : BB.phis()) 6778 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6779 6780 // Remove any old phi's that have been converted. 6781 for (auto *I : DeletedInstrs) { 6782 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); 6783 I->eraseFromParent(); 6784 } 6785 6786 return Changed; 6787 } 6788 6789 /// Return true, if an ext(load) can be formed from an extension in 6790 /// \p MovedExts. 6791 bool CodeGenPrepare::canFormExtLd( 6792 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6793 Instruction *&Inst, bool HasPromoted) { 6794 for (auto *MovedExtInst : MovedExts) { 6795 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6796 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6797 Inst = MovedExtInst; 6798 break; 6799 } 6800 } 6801 if (!LI) 6802 return false; 6803 6804 // If they're already in the same block, there's nothing to do. 6805 // Make the cheap checks first if we did not promote. 6806 // If we promoted, we need to check if it is indeed profitable. 6807 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6808 return false; 6809 6810 return TLI->isExtLoad(LI, Inst, *DL); 6811 } 6812 6813 /// Move a zext or sext fed by a load into the same basic block as the load, 6814 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6815 /// extend into the load. 6816 /// 6817 /// E.g., 6818 /// \code 6819 /// %ld = load i32* %addr 6820 /// %add = add nuw i32 %ld, 4 6821 /// %zext = zext i32 %add to i64 6822 // \endcode 6823 /// => 6824 /// \code 6825 /// %ld = load i32* %addr 6826 /// %zext = zext i32 %ld to i64 6827 /// %add = add nuw i64 %zext, 4 6828 /// \encode 6829 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6830 /// allow us to match zext(load i32*) to i64. 6831 /// 6832 /// Also, try to promote the computations used to obtain a sign extended 6833 /// value used into memory accesses. 6834 /// E.g., 6835 /// \code 6836 /// a = add nsw i32 b, 3 6837 /// d = sext i32 a to i64 6838 /// e = getelementptr ..., i64 d 6839 /// \endcode 6840 /// => 6841 /// \code 6842 /// f = sext i32 b to i64 6843 /// a = add nsw i64 f, 3 6844 /// e = getelementptr ..., i64 a 6845 /// \endcode 6846 /// 6847 /// \p Inst[in/out] the extension may be modified during the process if some 6848 /// promotions apply. 6849 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6850 bool AllowPromotionWithoutCommonHeader = false; 6851 /// See if it is an interesting sext operations for the address type 6852 /// promotion before trying to promote it, e.g., the ones with the right 6853 /// type and used in memory accesses. 6854 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6855 *Inst, AllowPromotionWithoutCommonHeader); 6856 TypePromotionTransaction TPT(RemovedInsts); 6857 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6858 TPT.getRestorationPoint(); 6859 SmallVector<Instruction *, 1> Exts; 6860 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6861 Exts.push_back(Inst); 6862 6863 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6864 6865 // Look for a load being extended. 6866 LoadInst *LI = nullptr; 6867 Instruction *ExtFedByLoad; 6868 6869 // Try to promote a chain of computation if it allows to form an extended 6870 // load. 6871 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6872 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6873 TPT.commit(); 6874 // Move the extend into the same block as the load. 6875 ExtFedByLoad->moveAfter(LI); 6876 ++NumExtsMoved; 6877 Inst = ExtFedByLoad; 6878 return true; 6879 } 6880 6881 // Continue promoting SExts if known as considerable depending on targets. 6882 if (ATPConsiderable && 6883 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6884 HasPromoted, TPT, SpeculativelyMovedExts)) 6885 return true; 6886 6887 TPT.rollback(LastKnownGood); 6888 return false; 6889 } 6890 6891 // Perform address type promotion if doing so is profitable. 6892 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6893 // instructions that sign extended the same initial value. However, if 6894 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6895 // extension is just profitable. 6896 bool CodeGenPrepare::performAddressTypePromotion( 6897 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6898 bool HasPromoted, TypePromotionTransaction &TPT, 6899 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6900 bool Promoted = false; 6901 SmallPtrSet<Instruction *, 1> UnhandledExts; 6902 bool AllSeenFirst = true; 6903 for (auto *I : SpeculativelyMovedExts) { 6904 Value *HeadOfChain = I->getOperand(0); 6905 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6906 SeenChainsForSExt.find(HeadOfChain); 6907 // If there is an unhandled SExt which has the same header, try to promote 6908 // it as well. 6909 if (AlreadySeen != SeenChainsForSExt.end()) { 6910 if (AlreadySeen->second != nullptr) 6911 UnhandledExts.insert(AlreadySeen->second); 6912 AllSeenFirst = false; 6913 } 6914 } 6915 6916 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6917 SpeculativelyMovedExts.size() == 1)) { 6918 TPT.commit(); 6919 if (HasPromoted) 6920 Promoted = true; 6921 for (auto *I : SpeculativelyMovedExts) { 6922 Value *HeadOfChain = I->getOperand(0); 6923 SeenChainsForSExt[HeadOfChain] = nullptr; 6924 ValToSExtendedUses[HeadOfChain].push_back(I); 6925 } 6926 // Update Inst as promotion happen. 6927 Inst = SpeculativelyMovedExts.pop_back_val(); 6928 } else { 6929 // This is the first chain visited from the header, keep the current chain 6930 // as unhandled. Defer to promote this until we encounter another SExt 6931 // chain derived from the same header. 6932 for (auto *I : SpeculativelyMovedExts) { 6933 Value *HeadOfChain = I->getOperand(0); 6934 SeenChainsForSExt[HeadOfChain] = Inst; 6935 } 6936 return false; 6937 } 6938 6939 if (!AllSeenFirst && !UnhandledExts.empty()) 6940 for (auto *VisitedSExt : UnhandledExts) { 6941 if (RemovedInsts.count(VisitedSExt)) 6942 continue; 6943 TypePromotionTransaction TPT(RemovedInsts); 6944 SmallVector<Instruction *, 1> Exts; 6945 SmallVector<Instruction *, 2> Chains; 6946 Exts.push_back(VisitedSExt); 6947 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6948 TPT.commit(); 6949 if (HasPromoted) 6950 Promoted = true; 6951 for (auto *I : Chains) { 6952 Value *HeadOfChain = I->getOperand(0); 6953 // Mark this as handled. 6954 SeenChainsForSExt[HeadOfChain] = nullptr; 6955 ValToSExtendedUses[HeadOfChain].push_back(I); 6956 } 6957 } 6958 return Promoted; 6959 } 6960 6961 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6962 BasicBlock *DefBB = I->getParent(); 6963 6964 // If the result of a {s|z}ext and its source are both live out, rewrite all 6965 // other uses of the source with result of extension. 6966 Value *Src = I->getOperand(0); 6967 if (Src->hasOneUse()) 6968 return false; 6969 6970 // Only do this xform if truncating is free. 6971 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6972 return false; 6973 6974 // Only safe to perform the optimization if the source is also defined in 6975 // this block. 6976 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6977 return false; 6978 6979 bool DefIsLiveOut = false; 6980 for (User *U : I->users()) { 6981 Instruction *UI = cast<Instruction>(U); 6982 6983 // Figure out which BB this ext is used in. 6984 BasicBlock *UserBB = UI->getParent(); 6985 if (UserBB == DefBB) 6986 continue; 6987 DefIsLiveOut = true; 6988 break; 6989 } 6990 if (!DefIsLiveOut) 6991 return false; 6992 6993 // Make sure none of the uses are PHI nodes. 6994 for (User *U : Src->users()) { 6995 Instruction *UI = cast<Instruction>(U); 6996 BasicBlock *UserBB = UI->getParent(); 6997 if (UserBB == DefBB) 6998 continue; 6999 // Be conservative. We don't want this xform to end up introducing 7000 // reloads just before load / store instructions. 7001 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 7002 return false; 7003 } 7004 7005 // InsertedTruncs - Only insert one trunc in each block once. 7006 DenseMap<BasicBlock *, Instruction *> InsertedTruncs; 7007 7008 bool MadeChange = false; 7009 for (Use &U : Src->uses()) { 7010 Instruction *User = cast<Instruction>(U.getUser()); 7011 7012 // Figure out which BB this ext is used in. 7013 BasicBlock *UserBB = User->getParent(); 7014 if (UserBB == DefBB) 7015 continue; 7016 7017 // Both src and def are live in this block. Rewrite the use. 7018 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 7019 7020 if (!InsertedTrunc) { 7021 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 7022 assert(InsertPt != UserBB->end()); 7023 InsertedTrunc = new TruncInst(I, Src->getType(), ""); 7024 InsertedTrunc->insertBefore(*UserBB, InsertPt); 7025 InsertedInsts.insert(InsertedTrunc); 7026 } 7027 7028 // Replace a use of the {s|z}ext source with a use of the result. 7029 U = InsertedTrunc; 7030 ++NumExtUses; 7031 MadeChange = true; 7032 } 7033 7034 return MadeChange; 7035 } 7036 7037 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 7038 // just after the load if the target can fold this into one extload instruction, 7039 // with the hope of eliminating some of the other later "and" instructions using 7040 // the loaded value. "and"s that are made trivially redundant by the insertion 7041 // of the new "and" are removed by this function, while others (e.g. those whose 7042 // path from the load goes through a phi) are left for isel to potentially 7043 // remove. 7044 // 7045 // For example: 7046 // 7047 // b0: 7048 // x = load i32 7049 // ... 7050 // b1: 7051 // y = and x, 0xff 7052 // z = use y 7053 // 7054 // becomes: 7055 // 7056 // b0: 7057 // x = load i32 7058 // x' = and x, 0xff 7059 // ... 7060 // b1: 7061 // z = use x' 7062 // 7063 // whereas: 7064 // 7065 // b0: 7066 // x1 = load i32 7067 // ... 7068 // b1: 7069 // x2 = load i32 7070 // ... 7071 // b2: 7072 // x = phi x1, x2 7073 // y = and x, 0xff 7074 // 7075 // becomes (after a call to optimizeLoadExt for each load): 7076 // 7077 // b0: 7078 // x1 = load i32 7079 // x1' = and x1, 0xff 7080 // ... 7081 // b1: 7082 // x2 = load i32 7083 // x2' = and x2, 0xff 7084 // ... 7085 // b2: 7086 // x = phi x1', x2' 7087 // y = and x, 0xff 7088 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 7089 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 7090 return false; 7091 7092 // Skip loads we've already transformed. 7093 if (Load->hasOneUse() && 7094 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 7095 return false; 7096 7097 // Look at all uses of Load, looking through phis, to determine how many bits 7098 // of the loaded value are needed. 7099 SmallVector<Instruction *, 8> WorkList; 7100 SmallPtrSet<Instruction *, 16> Visited; 7101 SmallVector<Instruction *, 8> AndsToMaybeRemove; 7102 for (auto *U : Load->users()) 7103 WorkList.push_back(cast<Instruction>(U)); 7104 7105 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 7106 unsigned BitWidth = LoadResultVT.getSizeInBits(); 7107 // If the BitWidth is 0, do not try to optimize the type 7108 if (BitWidth == 0) 7109 return false; 7110 7111 APInt DemandBits(BitWidth, 0); 7112 APInt WidestAndBits(BitWidth, 0); 7113 7114 while (!WorkList.empty()) { 7115 Instruction *I = WorkList.pop_back_val(); 7116 7117 // Break use-def graph loops. 7118 if (!Visited.insert(I).second) 7119 continue; 7120 7121 // For a PHI node, push all of its users. 7122 if (auto *Phi = dyn_cast<PHINode>(I)) { 7123 for (auto *U : Phi->users()) 7124 WorkList.push_back(cast<Instruction>(U)); 7125 continue; 7126 } 7127 7128 switch (I->getOpcode()) { 7129 case Instruction::And: { 7130 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 7131 if (!AndC) 7132 return false; 7133 APInt AndBits = AndC->getValue(); 7134 DemandBits |= AndBits; 7135 // Keep track of the widest and mask we see. 7136 if (AndBits.ugt(WidestAndBits)) 7137 WidestAndBits = AndBits; 7138 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 7139 AndsToMaybeRemove.push_back(I); 7140 break; 7141 } 7142 7143 case Instruction::Shl: { 7144 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 7145 if (!ShlC) 7146 return false; 7147 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 7148 DemandBits.setLowBits(BitWidth - ShiftAmt); 7149 break; 7150 } 7151 7152 case Instruction::Trunc: { 7153 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 7154 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 7155 DemandBits.setLowBits(TruncBitWidth); 7156 break; 7157 } 7158 7159 default: 7160 return false; 7161 } 7162 } 7163 7164 uint32_t ActiveBits = DemandBits.getActiveBits(); 7165 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 7166 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 7167 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 7168 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 7169 // followed by an AND. 7170 // TODO: Look into removing this restriction by fixing backends to either 7171 // return false for isLoadExtLegal for i1 or have them select this pattern to 7172 // a single instruction. 7173 // 7174 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 7175 // mask, since these are the only ands that will be removed by isel. 7176 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 7177 WidestAndBits != DemandBits) 7178 return false; 7179 7180 LLVMContext &Ctx = Load->getType()->getContext(); 7181 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 7182 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 7183 7184 // Reject cases that won't be matched as extloads. 7185 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 7186 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 7187 return false; 7188 7189 IRBuilder<> Builder(Load->getNextNonDebugInstruction()); 7190 auto *NewAnd = cast<Instruction>( 7191 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 7192 // Mark this instruction as "inserted by CGP", so that other 7193 // optimizations don't touch it. 7194 InsertedInsts.insert(NewAnd); 7195 7196 // Replace all uses of load with new and (except for the use of load in the 7197 // new and itself). 7198 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); 7199 NewAnd->setOperand(0, Load); 7200 7201 // Remove any and instructions that are now redundant. 7202 for (auto *And : AndsToMaybeRemove) 7203 // Check that the and mask is the same as the one we decided to put on the 7204 // new and. 7205 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 7206 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); 7207 if (&*CurInstIterator == And) 7208 CurInstIterator = std::next(And->getIterator()); 7209 And->eraseFromParent(); 7210 ++NumAndUses; 7211 } 7212 7213 ++NumAndsAdded; 7214 return true; 7215 } 7216 7217 /// Check if V (an operand of a select instruction) is an expensive instruction 7218 /// that is only used once. 7219 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 7220 auto *I = dyn_cast<Instruction>(V); 7221 // If it's safe to speculatively execute, then it should not have side 7222 // effects; therefore, it's safe to sink and possibly *not* execute. 7223 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 7224 TTI->isExpensiveToSpeculativelyExecute(I); 7225 } 7226 7227 /// Returns true if a SelectInst should be turned into an explicit branch. 7228 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 7229 const TargetLowering *TLI, 7230 SelectInst *SI) { 7231 // If even a predictable select is cheap, then a branch can't be cheaper. 7232 if (!TLI->isPredictableSelectExpensive()) 7233 return false; 7234 7235 // FIXME: This should use the same heuristics as IfConversion to determine 7236 // whether a select is better represented as a branch. 7237 7238 // If metadata tells us that the select condition is obviously predictable, 7239 // then we want to replace the select with a branch. 7240 uint64_t TrueWeight, FalseWeight; 7241 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { 7242 uint64_t Max = std::max(TrueWeight, FalseWeight); 7243 uint64_t Sum = TrueWeight + FalseWeight; 7244 if (Sum != 0) { 7245 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 7246 if (Probability > TTI->getPredictableBranchThreshold()) 7247 return true; 7248 } 7249 } 7250 7251 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 7252 7253 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 7254 // comparison condition. If the compare has more than one use, there's 7255 // probably another cmov or setcc around, so it's not worth emitting a branch. 7256 if (!Cmp || !Cmp->hasOneUse()) 7257 return false; 7258 7259 // If either operand of the select is expensive and only needed on one side 7260 // of the select, we should form a branch. 7261 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 7262 sinkSelectOperand(TTI, SI->getFalseValue())) 7263 return true; 7264 7265 return false; 7266 } 7267 7268 /// If \p isTrue is true, return the true value of \p SI, otherwise return 7269 /// false value of \p SI. If the true/false value of \p SI is defined by any 7270 /// select instructions in \p Selects, look through the defining select 7271 /// instruction until the true/false value is not defined in \p Selects. 7272 static Value * 7273 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 7274 const SmallPtrSet<const Instruction *, 2> &Selects) { 7275 Value *V = nullptr; 7276 7277 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 7278 DefSI = dyn_cast<SelectInst>(V)) { 7279 assert(DefSI->getCondition() == SI->getCondition() && 7280 "The condition of DefSI does not match with SI"); 7281 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 7282 } 7283 7284 assert(V && "Failed to get select true/false value"); 7285 return V; 7286 } 7287 7288 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 7289 assert(Shift->isShift() && "Expected a shift"); 7290 7291 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 7292 // general vector shifts, and (3) the shift amount is a select-of-splatted 7293 // values, hoist the shifts before the select: 7294 // shift Op0, (select Cond, TVal, FVal) --> 7295 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 7296 // 7297 // This is inverting a generic IR transform when we know that the cost of a 7298 // general vector shift is more than the cost of 2 shift-by-scalars. 7299 // We can't do this effectively in SDAG because we may not be able to 7300 // determine if the select operands are splats from within a basic block. 7301 Type *Ty = Shift->getType(); 7302 if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty)) 7303 return false; 7304 Value *Cond, *TVal, *FVal; 7305 if (!match(Shift->getOperand(1), 7306 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7307 return false; 7308 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7309 return false; 7310 7311 IRBuilder<> Builder(Shift); 7312 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 7313 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 7314 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 7315 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7316 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); 7317 Shift->eraseFromParent(); 7318 return true; 7319 } 7320 7321 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 7322 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 7323 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 7324 "Expected a funnel shift"); 7325 7326 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 7327 // than general vector shifts, and (3) the shift amount is select-of-splatted 7328 // values, hoist the funnel shifts before the select: 7329 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 7330 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 7331 // 7332 // This is inverting a generic IR transform when we know that the cost of a 7333 // general vector shift is more than the cost of 2 shift-by-scalars. 7334 // We can't do this effectively in SDAG because we may not be able to 7335 // determine if the select operands are splats from within a basic block. 7336 Type *Ty = Fsh->getType(); 7337 if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty)) 7338 return false; 7339 Value *Cond, *TVal, *FVal; 7340 if (!match(Fsh->getOperand(2), 7341 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7342 return false; 7343 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7344 return false; 7345 7346 IRBuilder<> Builder(Fsh); 7347 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 7348 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); 7349 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); 7350 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7351 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); 7352 Fsh->eraseFromParent(); 7353 return true; 7354 } 7355 7356 /// If we have a SelectInst that will likely profit from branch prediction, 7357 /// turn it into a branch. 7358 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 7359 if (DisableSelectToBranch) 7360 return false; 7361 7362 // If the SelectOptimize pass is enabled, selects have already been optimized. 7363 if (!getCGPassBuilderOption().DisableSelectOptimize) 7364 return false; 7365 7366 // Find all consecutive select instructions that share the same condition. 7367 SmallVector<SelectInst *, 2> ASI; 7368 ASI.push_back(SI); 7369 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 7370 It != SI->getParent()->end(); ++It) { 7371 SelectInst *I = dyn_cast<SelectInst>(&*It); 7372 if (I && SI->getCondition() == I->getCondition()) { 7373 ASI.push_back(I); 7374 } else { 7375 break; 7376 } 7377 } 7378 7379 SelectInst *LastSI = ASI.back(); 7380 // Increment the current iterator to skip all the rest of select instructions 7381 // because they will be either "not lowered" or "all lowered" to branch. 7382 CurInstIterator = std::next(LastSI->getIterator()); 7383 // Examine debug-info attached to the consecutive select instructions. They 7384 // won't be individually optimised by optimizeInst, so we need to perform 7385 // DbgVariableRecord maintenence here instead. 7386 for (SelectInst *SI : ArrayRef(ASI).drop_front()) 7387 fixupDbgVariableRecordsOnInst(*SI); 7388 7389 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 7390 7391 // Can we convert the 'select' to CF ? 7392 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 7393 return false; 7394 7395 TargetLowering::SelectSupportKind SelectKind; 7396 if (SI->getType()->isVectorTy()) 7397 SelectKind = TargetLowering::ScalarCondVectorVal; 7398 else 7399 SelectKind = TargetLowering::ScalarValSelect; 7400 7401 if (TLI->isSelectSupported(SelectKind) && 7402 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || 7403 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 7404 return false; 7405 7406 // The DominatorTree needs to be rebuilt by any consumers after this 7407 // transformation. We simply reset here rather than setting the ModifiedDT 7408 // flag to avoid restarting the function walk in runOnFunction for each 7409 // select optimized. 7410 DT.reset(); 7411 7412 // Transform a sequence like this: 7413 // start: 7414 // %cmp = cmp uge i32 %a, %b 7415 // %sel = select i1 %cmp, i32 %c, i32 %d 7416 // 7417 // Into: 7418 // start: 7419 // %cmp = cmp uge i32 %a, %b 7420 // %cmp.frozen = freeze %cmp 7421 // br i1 %cmp.frozen, label %select.true, label %select.false 7422 // select.true: 7423 // br label %select.end 7424 // select.false: 7425 // br label %select.end 7426 // select.end: 7427 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 7428 // 7429 // %cmp should be frozen, otherwise it may introduce undefined behavior. 7430 // In addition, we may sink instructions that produce %c or %d from 7431 // the entry block into the destination(s) of the new branch. 7432 // If the true or false blocks do not contain a sunken instruction, that 7433 // block and its branch may be optimized away. In that case, one side of the 7434 // first branch will point directly to select.end, and the corresponding PHI 7435 // predecessor block will be the start block. 7436 7437 // Collect values that go on the true side and the values that go on the false 7438 // side. 7439 SmallVector<Instruction *> TrueInstrs, FalseInstrs; 7440 for (SelectInst *SI : ASI) { 7441 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) 7442 TrueInstrs.push_back(cast<Instruction>(V)); 7443 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) 7444 FalseInstrs.push_back(cast<Instruction>(V)); 7445 } 7446 7447 // Split the select block, according to how many (if any) values go on each 7448 // side. 7449 BasicBlock *StartBlock = SI->getParent(); 7450 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI)); 7451 // We should split before any debug-info. 7452 SplitPt.setHeadBit(true); 7453 7454 IRBuilder<> IB(SI); 7455 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 7456 7457 BasicBlock *TrueBlock = nullptr; 7458 BasicBlock *FalseBlock = nullptr; 7459 BasicBlock *EndBlock = nullptr; 7460 BranchInst *TrueBranch = nullptr; 7461 BranchInst *FalseBranch = nullptr; 7462 if (TrueInstrs.size() == 0) { 7463 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse( 7464 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7465 FalseBlock = FalseBranch->getParent(); 7466 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0)); 7467 } else if (FalseInstrs.size() == 0) { 7468 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen( 7469 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7470 TrueBlock = TrueBranch->getParent(); 7471 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7472 } else { 7473 Instruction *ThenTerm = nullptr; 7474 Instruction *ElseTerm = nullptr; 7475 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm, 7476 nullptr, nullptr, LI); 7477 TrueBranch = cast<BranchInst>(ThenTerm); 7478 FalseBranch = cast<BranchInst>(ElseTerm); 7479 TrueBlock = TrueBranch->getParent(); 7480 FalseBlock = FalseBranch->getParent(); 7481 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7482 } 7483 7484 EndBlock->setName("select.end"); 7485 if (TrueBlock) 7486 TrueBlock->setName("select.true.sink"); 7487 if (FalseBlock) 7488 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" 7489 : "select.false.sink"); 7490 7491 if (IsHugeFunc) { 7492 if (TrueBlock) 7493 FreshBBs.insert(TrueBlock); 7494 if (FalseBlock) 7495 FreshBBs.insert(FalseBlock); 7496 FreshBBs.insert(EndBlock); 7497 } 7498 7499 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); 7500 7501 static const unsigned MD[] = { 7502 LLVMContext::MD_prof, LLVMContext::MD_unpredictable, 7503 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; 7504 StartBlock->getTerminator()->copyMetadata(*SI, MD); 7505 7506 // Sink expensive instructions into the conditional blocks to avoid executing 7507 // them speculatively. 7508 for (Instruction *I : TrueInstrs) 7509 I->moveBefore(TrueBranch); 7510 for (Instruction *I : FalseInstrs) 7511 I->moveBefore(FalseBranch); 7512 7513 // If we did not create a new block for one of the 'true' or 'false' paths 7514 // of the condition, it means that side of the branch goes to the end block 7515 // directly and the path originates from the start block from the point of 7516 // view of the new PHI. 7517 if (TrueBlock == nullptr) 7518 TrueBlock = StartBlock; 7519 else if (FalseBlock == nullptr) 7520 FalseBlock = StartBlock; 7521 7522 SmallPtrSet<const Instruction *, 2> INS; 7523 INS.insert(ASI.begin(), ASI.end()); 7524 // Use reverse iterator because later select may use the value of the 7525 // earlier select, and we need to propagate value through earlier select 7526 // to get the PHI operand. 7527 for (SelectInst *SI : llvm::reverse(ASI)) { 7528 // The select itself is replaced with a PHI Node. 7529 PHINode *PN = PHINode::Create(SI->getType(), 2, ""); 7530 PN->insertBefore(EndBlock->begin()); 7531 PN->takeName(SI); 7532 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 7533 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 7534 PN->setDebugLoc(SI->getDebugLoc()); 7535 7536 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); 7537 SI->eraseFromParent(); 7538 INS.erase(SI); 7539 ++NumSelectsExpanded; 7540 } 7541 7542 // Instruct OptimizeBlock to skip to the next block. 7543 CurInstIterator = StartBlock->end(); 7544 return true; 7545 } 7546 7547 /// Some targets only accept certain types for splat inputs. For example a VDUP 7548 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 7549 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 7550 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 7551 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 7552 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 7553 m_Undef(), m_ZeroMask()))) 7554 return false; 7555 Type *NewType = TLI->shouldConvertSplatType(SVI); 7556 if (!NewType) 7557 return false; 7558 7559 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 7560 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 7561 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 7562 "Expected a type of the same size!"); 7563 auto *NewVecType = 7564 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 7565 7566 // Create a bitcast (shuffle (insert (bitcast(..)))) 7567 IRBuilder<> Builder(SVI->getContext()); 7568 Builder.SetInsertPoint(SVI); 7569 Value *BC1 = Builder.CreateBitCast( 7570 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 7571 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 7572 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 7573 7574 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); 7575 RecursivelyDeleteTriviallyDeadInstructions( 7576 SVI, TLInfo, nullptr, 7577 [&](Value *V) { removeAllAssertingVHReferences(V); }); 7578 7579 // Also hoist the bitcast up to its operand if it they are not in the same 7580 // block. 7581 if (auto *BCI = dyn_cast<Instruction>(BC1)) 7582 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 7583 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 7584 !Op->isTerminator() && !Op->isEHPad()) 7585 BCI->moveAfter(Op); 7586 7587 return true; 7588 } 7589 7590 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 7591 // If the operands of I can be folded into a target instruction together with 7592 // I, duplicate and sink them. 7593 SmallVector<Use *, 4> OpsToSink; 7594 if (!TTI->isProfitableToSinkOperands(I, OpsToSink)) 7595 return false; 7596 7597 // OpsToSink can contain multiple uses in a use chain (e.g. 7598 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 7599 // uses must come first, so we process the ops in reverse order so as to not 7600 // create invalid IR. 7601 BasicBlock *TargetBB = I->getParent(); 7602 bool Changed = false; 7603 SmallVector<Use *, 4> ToReplace; 7604 Instruction *InsertPoint = I; 7605 DenseMap<const Instruction *, unsigned long> InstOrdering; 7606 unsigned long InstNumber = 0; 7607 for (const auto &I : *TargetBB) 7608 InstOrdering[&I] = InstNumber++; 7609 7610 for (Use *U : reverse(OpsToSink)) { 7611 auto *UI = cast<Instruction>(U->get()); 7612 if (isa<PHINode>(UI)) 7613 continue; 7614 if (UI->getParent() == TargetBB) { 7615 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 7616 InsertPoint = UI; 7617 continue; 7618 } 7619 ToReplace.push_back(U); 7620 } 7621 7622 SetVector<Instruction *> MaybeDead; 7623 DenseMap<Instruction *, Instruction *> NewInstructions; 7624 for (Use *U : ToReplace) { 7625 auto *UI = cast<Instruction>(U->get()); 7626 Instruction *NI = UI->clone(); 7627 7628 if (IsHugeFunc) { 7629 // Now we clone an instruction, its operands' defs may sink to this BB 7630 // now. So we put the operands defs' BBs into FreshBBs to do optimization. 7631 for (Value *Op : NI->operands()) 7632 if (auto *OpDef = dyn_cast<Instruction>(Op)) 7633 FreshBBs.insert(OpDef->getParent()); 7634 } 7635 7636 NewInstructions[UI] = NI; 7637 MaybeDead.insert(UI); 7638 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 7639 NI->insertBefore(InsertPoint); 7640 InsertPoint = NI; 7641 InsertedInsts.insert(NI); 7642 7643 // Update the use for the new instruction, making sure that we update the 7644 // sunk instruction uses, if it is part of a chain that has already been 7645 // sunk. 7646 Instruction *OldI = cast<Instruction>(U->getUser()); 7647 if (NewInstructions.count(OldI)) 7648 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 7649 else 7650 U->set(NI); 7651 Changed = true; 7652 } 7653 7654 // Remove instructions that are dead after sinking. 7655 for (auto *I : MaybeDead) { 7656 if (!I->hasNUsesOrMore(1)) { 7657 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7658 I->eraseFromParent(); 7659 } 7660 } 7661 7662 return Changed; 7663 } 7664 7665 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7666 Value *Cond = SI->getCondition(); 7667 Type *OldType = Cond->getType(); 7668 LLVMContext &Context = Cond->getContext(); 7669 EVT OldVT = TLI->getValueType(*DL, OldType); 7670 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7671 unsigned RegWidth = RegType.getSizeInBits(); 7672 7673 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7674 return false; 7675 7676 // If the register width is greater than the type width, expand the condition 7677 // of the switch instruction and each case constant to the width of the 7678 // register. By widening the type of the switch condition, subsequent 7679 // comparisons (for case comparisons) will not need to be extended to the 7680 // preferred register width, so we will potentially eliminate N-1 extends, 7681 // where N is the number of cases in the switch. 7682 auto *NewType = Type::getIntNTy(Context, RegWidth); 7683 7684 // Extend the switch condition and case constants using the target preferred 7685 // extend unless the switch condition is a function argument with an extend 7686 // attribute. In that case, we can avoid an unnecessary mask/extension by 7687 // matching the argument extension instead. 7688 Instruction::CastOps ExtType = Instruction::ZExt; 7689 // Some targets prefer SExt over ZExt. 7690 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7691 ExtType = Instruction::SExt; 7692 7693 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7694 if (Arg->hasSExtAttr()) 7695 ExtType = Instruction::SExt; 7696 if (Arg->hasZExtAttr()) 7697 ExtType = Instruction::ZExt; 7698 } 7699 7700 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7701 ExtInst->insertBefore(SI); 7702 ExtInst->setDebugLoc(SI->getDebugLoc()); 7703 SI->setCondition(ExtInst); 7704 for (auto Case : SI->cases()) { 7705 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7706 APInt WideConst = (ExtType == Instruction::ZExt) 7707 ? NarrowConst.zext(RegWidth) 7708 : NarrowConst.sext(RegWidth); 7709 Case.setValue(ConstantInt::get(Context, WideConst)); 7710 } 7711 7712 return true; 7713 } 7714 7715 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7716 // The SCCP optimization tends to produce code like this: 7717 // switch(x) { case 42: phi(42, ...) } 7718 // Materializing the constant for the phi-argument needs instructions; So we 7719 // change the code to: 7720 // switch(x) { case 42: phi(x, ...) } 7721 7722 Value *Condition = SI->getCondition(); 7723 // Avoid endless loop in degenerate case. 7724 if (isa<ConstantInt>(*Condition)) 7725 return false; 7726 7727 bool Changed = false; 7728 BasicBlock *SwitchBB = SI->getParent(); 7729 Type *ConditionType = Condition->getType(); 7730 7731 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7732 ConstantInt *CaseValue = Case.getCaseValue(); 7733 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7734 // Set to true if we previously checked that `CaseBB` is only reached by 7735 // a single case from this switch. 7736 bool CheckedForSinglePred = false; 7737 for (PHINode &PHI : CaseBB->phis()) { 7738 Type *PHIType = PHI.getType(); 7739 // If ZExt is free then we can also catch patterns like this: 7740 // switch((i32)x) { case 42: phi((i64)42, ...); } 7741 // and replace `(i64)42` with `zext i32 %x to i64`. 7742 bool TryZExt = 7743 PHIType->isIntegerTy() && 7744 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7745 TLI->isZExtFree(ConditionType, PHIType); 7746 if (PHIType == ConditionType || TryZExt) { 7747 // Set to true to skip this case because of multiple preds. 7748 bool SkipCase = false; 7749 Value *Replacement = nullptr; 7750 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7751 Value *PHIValue = PHI.getIncomingValue(I); 7752 if (PHIValue != CaseValue) { 7753 if (!TryZExt) 7754 continue; 7755 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7756 if (!PHIValueInt || 7757 PHIValueInt->getValue() != 7758 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7759 continue; 7760 } 7761 if (PHI.getIncomingBlock(I) != SwitchBB) 7762 continue; 7763 // We cannot optimize if there are multiple case labels jumping to 7764 // this block. This check may get expensive when there are many 7765 // case labels so we test for it last. 7766 if (!CheckedForSinglePred) { 7767 CheckedForSinglePred = true; 7768 if (SI->findCaseDest(CaseBB) == nullptr) { 7769 SkipCase = true; 7770 break; 7771 } 7772 } 7773 7774 if (Replacement == nullptr) { 7775 if (PHIValue == CaseValue) { 7776 Replacement = Condition; 7777 } else { 7778 IRBuilder<> Builder(SI); 7779 Replacement = Builder.CreateZExt(Condition, PHIType); 7780 } 7781 } 7782 PHI.setIncomingValue(I, Replacement); 7783 Changed = true; 7784 } 7785 if (SkipCase) 7786 break; 7787 } 7788 } 7789 } 7790 return Changed; 7791 } 7792 7793 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7794 bool Changed = optimizeSwitchType(SI); 7795 Changed |= optimizeSwitchPhiConstants(SI); 7796 return Changed; 7797 } 7798 7799 namespace { 7800 7801 /// Helper class to promote a scalar operation to a vector one. 7802 /// This class is used to move downward extractelement transition. 7803 /// E.g., 7804 /// a = vector_op <2 x i32> 7805 /// b = extractelement <2 x i32> a, i32 0 7806 /// c = scalar_op b 7807 /// store c 7808 /// 7809 /// => 7810 /// a = vector_op <2 x i32> 7811 /// c = vector_op a (equivalent to scalar_op on the related lane) 7812 /// * d = extractelement <2 x i32> c, i32 0 7813 /// * store d 7814 /// Assuming both extractelement and store can be combine, we get rid of the 7815 /// transition. 7816 class VectorPromoteHelper { 7817 /// DataLayout associated with the current module. 7818 const DataLayout &DL; 7819 7820 /// Used to perform some checks on the legality of vector operations. 7821 const TargetLowering &TLI; 7822 7823 /// Used to estimated the cost of the promoted chain. 7824 const TargetTransformInfo &TTI; 7825 7826 /// The transition being moved downwards. 7827 Instruction *Transition; 7828 7829 /// The sequence of instructions to be promoted. 7830 SmallVector<Instruction *, 4> InstsToBePromoted; 7831 7832 /// Cost of combining a store and an extract. 7833 unsigned StoreExtractCombineCost; 7834 7835 /// Instruction that will be combined with the transition. 7836 Instruction *CombineInst = nullptr; 7837 7838 /// The instruction that represents the current end of the transition. 7839 /// Since we are faking the promotion until we reach the end of the chain 7840 /// of computation, we need a way to get the current end of the transition. 7841 Instruction *getEndOfTransition() const { 7842 if (InstsToBePromoted.empty()) 7843 return Transition; 7844 return InstsToBePromoted.back(); 7845 } 7846 7847 /// Return the index of the original value in the transition. 7848 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7849 /// c, is at index 0. 7850 unsigned getTransitionOriginalValueIdx() const { 7851 assert(isa<ExtractElementInst>(Transition) && 7852 "Other kind of transitions are not supported yet"); 7853 return 0; 7854 } 7855 7856 /// Return the index of the index in the transition. 7857 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7858 /// is at index 1. 7859 unsigned getTransitionIdx() const { 7860 assert(isa<ExtractElementInst>(Transition) && 7861 "Other kind of transitions are not supported yet"); 7862 return 1; 7863 } 7864 7865 /// Get the type of the transition. 7866 /// This is the type of the original value. 7867 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7868 /// transition is <2 x i32>. 7869 Type *getTransitionType() const { 7870 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7871 } 7872 7873 /// Promote \p ToBePromoted by moving \p Def downward through. 7874 /// I.e., we have the following sequence: 7875 /// Def = Transition <ty1> a to <ty2> 7876 /// b = ToBePromoted <ty2> Def, ... 7877 /// => 7878 /// b = ToBePromoted <ty1> a, ... 7879 /// Def = Transition <ty1> ToBePromoted to <ty2> 7880 void promoteImpl(Instruction *ToBePromoted); 7881 7882 /// Check whether or not it is profitable to promote all the 7883 /// instructions enqueued to be promoted. 7884 bool isProfitableToPromote() { 7885 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7886 unsigned Index = isa<ConstantInt>(ValIdx) 7887 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7888 : -1; 7889 Type *PromotedType = getTransitionType(); 7890 7891 StoreInst *ST = cast<StoreInst>(CombineInst); 7892 unsigned AS = ST->getPointerAddressSpace(); 7893 // Check if this store is supported. 7894 if (!TLI.allowsMisalignedMemoryAccesses( 7895 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7896 ST->getAlign())) { 7897 // If this is not supported, there is no way we can combine 7898 // the extract with the store. 7899 return false; 7900 } 7901 7902 // The scalar chain of computation has to pay for the transition 7903 // scalar to vector. 7904 // The vector chain has to account for the combining cost. 7905 enum TargetTransformInfo::TargetCostKind CostKind = 7906 TargetTransformInfo::TCK_RecipThroughput; 7907 InstructionCost ScalarCost = 7908 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); 7909 InstructionCost VectorCost = StoreExtractCombineCost; 7910 for (const auto &Inst : InstsToBePromoted) { 7911 // Compute the cost. 7912 // By construction, all instructions being promoted are arithmetic ones. 7913 // Moreover, one argument is a constant that can be viewed as a splat 7914 // constant. 7915 Value *Arg0 = Inst->getOperand(0); 7916 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7917 isa<ConstantFP>(Arg0); 7918 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; 7919 if (IsArg0Constant) 7920 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7921 else 7922 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7923 7924 ScalarCost += TTI.getArithmeticInstrCost( 7925 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); 7926 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7927 CostKind, Arg0Info, Arg1Info); 7928 } 7929 LLVM_DEBUG( 7930 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7931 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7932 return ScalarCost > VectorCost; 7933 } 7934 7935 /// Generate a constant vector with \p Val with the same 7936 /// number of elements as the transition. 7937 /// \p UseSplat defines whether or not \p Val should be replicated 7938 /// across the whole vector. 7939 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7940 /// otherwise we generate a vector with as many undef as possible: 7941 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7942 /// used at the index of the extract. 7943 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7944 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7945 if (!UseSplat) { 7946 // If we cannot determine where the constant must be, we have to 7947 // use a splat constant. 7948 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7949 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7950 ExtractIdx = CstVal->getSExtValue(); 7951 else 7952 UseSplat = true; 7953 } 7954 7955 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7956 if (UseSplat) 7957 return ConstantVector::getSplat(EC, Val); 7958 7959 if (!EC.isScalable()) { 7960 SmallVector<Constant *, 4> ConstVec; 7961 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7962 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7963 if (Idx == ExtractIdx) 7964 ConstVec.push_back(Val); 7965 else 7966 ConstVec.push_back(UndefVal); 7967 } 7968 return ConstantVector::get(ConstVec); 7969 } else 7970 llvm_unreachable( 7971 "Generate scalable vector for non-splat is unimplemented"); 7972 } 7973 7974 /// Check if promoting to a vector type an operand at \p OperandIdx 7975 /// in \p Use can trigger undefined behavior. 7976 static bool canCauseUndefinedBehavior(const Instruction *Use, 7977 unsigned OperandIdx) { 7978 // This is not safe to introduce undef when the operand is on 7979 // the right hand side of a division-like instruction. 7980 if (OperandIdx != 1) 7981 return false; 7982 switch (Use->getOpcode()) { 7983 default: 7984 return false; 7985 case Instruction::SDiv: 7986 case Instruction::UDiv: 7987 case Instruction::SRem: 7988 case Instruction::URem: 7989 return true; 7990 case Instruction::FDiv: 7991 case Instruction::FRem: 7992 return !Use->hasNoNaNs(); 7993 } 7994 llvm_unreachable(nullptr); 7995 } 7996 7997 public: 7998 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7999 const TargetTransformInfo &TTI, Instruction *Transition, 8000 unsigned CombineCost) 8001 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 8002 StoreExtractCombineCost(CombineCost) { 8003 assert(Transition && "Do not know how to promote null"); 8004 } 8005 8006 /// Check if we can promote \p ToBePromoted to \p Type. 8007 bool canPromote(const Instruction *ToBePromoted) const { 8008 // We could support CastInst too. 8009 return isa<BinaryOperator>(ToBePromoted); 8010 } 8011 8012 /// Check if it is profitable to promote \p ToBePromoted 8013 /// by moving downward the transition through. 8014 bool shouldPromote(const Instruction *ToBePromoted) const { 8015 // Promote only if all the operands can be statically expanded. 8016 // Indeed, we do not want to introduce any new kind of transitions. 8017 for (const Use &U : ToBePromoted->operands()) { 8018 const Value *Val = U.get(); 8019 if (Val == getEndOfTransition()) { 8020 // If the use is a division and the transition is on the rhs, 8021 // we cannot promote the operation, otherwise we may create a 8022 // division by zero. 8023 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 8024 return false; 8025 continue; 8026 } 8027 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 8028 !isa<ConstantFP>(Val)) 8029 return false; 8030 } 8031 // Check that the resulting operation is legal. 8032 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 8033 if (!ISDOpcode) 8034 return false; 8035 return StressStoreExtract || 8036 TLI.isOperationLegalOrCustom( 8037 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 8038 } 8039 8040 /// Check whether or not \p Use can be combined 8041 /// with the transition. 8042 /// I.e., is it possible to do Use(Transition) => AnotherUse? 8043 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 8044 8045 /// Record \p ToBePromoted as part of the chain to be promoted. 8046 void enqueueForPromotion(Instruction *ToBePromoted) { 8047 InstsToBePromoted.push_back(ToBePromoted); 8048 } 8049 8050 /// Set the instruction that will be combined with the transition. 8051 void recordCombineInstruction(Instruction *ToBeCombined) { 8052 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 8053 CombineInst = ToBeCombined; 8054 } 8055 8056 /// Promote all the instructions enqueued for promotion if it is 8057 /// is profitable. 8058 /// \return True if the promotion happened, false otherwise. 8059 bool promote() { 8060 // Check if there is something to promote. 8061 // Right now, if we do not have anything to combine with, 8062 // we assume the promotion is not profitable. 8063 if (InstsToBePromoted.empty() || !CombineInst) 8064 return false; 8065 8066 // Check cost. 8067 if (!StressStoreExtract && !isProfitableToPromote()) 8068 return false; 8069 8070 // Promote. 8071 for (auto &ToBePromoted : InstsToBePromoted) 8072 promoteImpl(ToBePromoted); 8073 InstsToBePromoted.clear(); 8074 return true; 8075 } 8076 }; 8077 8078 } // end anonymous namespace 8079 8080 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 8081 // At this point, we know that all the operands of ToBePromoted but Def 8082 // can be statically promoted. 8083 // For Def, we need to use its parameter in ToBePromoted: 8084 // b = ToBePromoted ty1 a 8085 // Def = Transition ty1 b to ty2 8086 // Move the transition down. 8087 // 1. Replace all uses of the promoted operation by the transition. 8088 // = ... b => = ... Def. 8089 assert(ToBePromoted->getType() == Transition->getType() && 8090 "The type of the result of the transition does not match " 8091 "the final type"); 8092 ToBePromoted->replaceAllUsesWith(Transition); 8093 // 2. Update the type of the uses. 8094 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 8095 Type *TransitionTy = getTransitionType(); 8096 ToBePromoted->mutateType(TransitionTy); 8097 // 3. Update all the operands of the promoted operation with promoted 8098 // operands. 8099 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 8100 for (Use &U : ToBePromoted->operands()) { 8101 Value *Val = U.get(); 8102 Value *NewVal = nullptr; 8103 if (Val == Transition) 8104 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 8105 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 8106 isa<ConstantFP>(Val)) { 8107 // Use a splat constant if it is not safe to use undef. 8108 NewVal = getConstantVector( 8109 cast<Constant>(Val), 8110 isa<UndefValue>(Val) || 8111 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 8112 } else 8113 llvm_unreachable("Did you modified shouldPromote and forgot to update " 8114 "this?"); 8115 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 8116 } 8117 Transition->moveAfter(ToBePromoted); 8118 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 8119 } 8120 8121 /// Some targets can do store(extractelement) with one instruction. 8122 /// Try to push the extractelement towards the stores when the target 8123 /// has this feature and this is profitable. 8124 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 8125 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 8126 if (DisableStoreExtract || 8127 (!StressStoreExtract && 8128 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 8129 Inst->getOperand(1), CombineCost))) 8130 return false; 8131 8132 // At this point we know that Inst is a vector to scalar transition. 8133 // Try to move it down the def-use chain, until: 8134 // - We can combine the transition with its single use 8135 // => we got rid of the transition. 8136 // - We escape the current basic block 8137 // => we would need to check that we are moving it at a cheaper place and 8138 // we do not do that for now. 8139 BasicBlock *Parent = Inst->getParent(); 8140 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 8141 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 8142 // If the transition has more than one use, assume this is not going to be 8143 // beneficial. 8144 while (Inst->hasOneUse()) { 8145 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 8146 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 8147 8148 if (ToBePromoted->getParent() != Parent) { 8149 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 8150 << ToBePromoted->getParent()->getName() 8151 << ") than the transition (" << Parent->getName() 8152 << ").\n"); 8153 return false; 8154 } 8155 8156 if (VPH.canCombine(ToBePromoted)) { 8157 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 8158 << "will be combined with: " << *ToBePromoted << '\n'); 8159 VPH.recordCombineInstruction(ToBePromoted); 8160 bool Changed = VPH.promote(); 8161 NumStoreExtractExposed += Changed; 8162 return Changed; 8163 } 8164 8165 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 8166 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 8167 return false; 8168 8169 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 8170 8171 VPH.enqueueForPromotion(ToBePromoted); 8172 Inst = ToBePromoted; 8173 } 8174 return false; 8175 } 8176 8177 /// For the instruction sequence of store below, F and I values 8178 /// are bundled together as an i64 value before being stored into memory. 8179 /// Sometimes it is more efficient to generate separate stores for F and I, 8180 /// which can remove the bitwise instructions or sink them to colder places. 8181 /// 8182 /// (store (or (zext (bitcast F to i32) to i64), 8183 /// (shl (zext I to i64), 32)), addr) --> 8184 /// (store F, addr) and (store I, addr+4) 8185 /// 8186 /// Similarly, splitting for other merged store can also be beneficial, like: 8187 /// For pair of {i32, i32}, i64 store --> two i32 stores. 8188 /// For pair of {i32, i16}, i64 store --> two i32 stores. 8189 /// For pair of {i16, i16}, i32 store --> two i16 stores. 8190 /// For pair of {i16, i8}, i32 store --> two i16 stores. 8191 /// For pair of {i8, i8}, i16 store --> two i8 stores. 8192 /// 8193 /// We allow each target to determine specifically which kind of splitting is 8194 /// supported. 8195 /// 8196 /// The store patterns are commonly seen from the simple code snippet below 8197 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 8198 /// void goo(const std::pair<int, float> &); 8199 /// hoo() { 8200 /// ... 8201 /// goo(std::make_pair(tmp, ftmp)); 8202 /// ... 8203 /// } 8204 /// 8205 /// Although we already have similar splitting in DAG Combine, we duplicate 8206 /// it in CodeGenPrepare to catch the case in which pattern is across 8207 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 8208 /// during code expansion. 8209 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 8210 const TargetLowering &TLI) { 8211 // Handle simple but common cases only. 8212 Type *StoreType = SI.getValueOperand()->getType(); 8213 8214 // The code below assumes shifting a value by <number of bits>, 8215 // whereas scalable vectors would have to be shifted by 8216 // <2log(vscale) + number of bits> in order to store the 8217 // low/high parts. Bailing out for now. 8218 if (StoreType->isScalableTy()) 8219 return false; 8220 8221 if (!DL.typeSizeEqualsStoreSize(StoreType) || 8222 DL.getTypeSizeInBits(StoreType) == 0) 8223 return false; 8224 8225 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 8226 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 8227 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 8228 return false; 8229 8230 // Don't split the store if it is volatile. 8231 if (SI.isVolatile()) 8232 return false; 8233 8234 // Match the following patterns: 8235 // (store (or (zext LValue to i64), 8236 // (shl (zext HValue to i64), 32)), HalfValBitSize) 8237 // or 8238 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 8239 // (zext LValue to i64), 8240 // Expect both operands of OR and the first operand of SHL have only 8241 // one use. 8242 Value *LValue, *HValue; 8243 if (!match(SI.getValueOperand(), 8244 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 8245 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 8246 m_SpecificInt(HalfValBitSize)))))) 8247 return false; 8248 8249 // Check LValue and HValue are int with size less or equal than 32. 8250 if (!LValue->getType()->isIntegerTy() || 8251 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 8252 !HValue->getType()->isIntegerTy() || 8253 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 8254 return false; 8255 8256 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 8257 // as the input of target query. 8258 auto *LBC = dyn_cast<BitCastInst>(LValue); 8259 auto *HBC = dyn_cast<BitCastInst>(HValue); 8260 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 8261 : EVT::getEVT(LValue->getType()); 8262 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 8263 : EVT::getEVT(HValue->getType()); 8264 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 8265 return false; 8266 8267 // Start to split store. 8268 IRBuilder<> Builder(SI.getContext()); 8269 Builder.SetInsertPoint(&SI); 8270 8271 // If LValue/HValue is a bitcast in another BB, create a new one in current 8272 // BB so it may be merged with the splitted stores by dag combiner. 8273 if (LBC && LBC->getParent() != SI.getParent()) 8274 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 8275 if (HBC && HBC->getParent() != SI.getParent()) 8276 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 8277 8278 bool IsLE = SI.getDataLayout().isLittleEndian(); 8279 auto CreateSplitStore = [&](Value *V, bool Upper) { 8280 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 8281 Value *Addr = SI.getPointerOperand(); 8282 Align Alignment = SI.getAlign(); 8283 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 8284 if (IsOffsetStore) { 8285 Addr = Builder.CreateGEP( 8286 SplitStoreType, Addr, 8287 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 8288 8289 // When splitting the store in half, naturally one half will retain the 8290 // alignment of the original wider store, regardless of whether it was 8291 // over-aligned or not, while the other will require adjustment. 8292 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 8293 } 8294 Builder.CreateAlignedStore(V, Addr, Alignment); 8295 }; 8296 8297 CreateSplitStore(LValue, false); 8298 CreateSplitStore(HValue, true); 8299 8300 // Delete the old store. 8301 SI.eraseFromParent(); 8302 return true; 8303 } 8304 8305 // Return true if the GEP has two operands, the first operand is of a sequential 8306 // type, and the second operand is a constant. 8307 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 8308 gep_type_iterator I = gep_type_begin(*GEP); 8309 return GEP->getNumOperands() == 2 && I.isSequential() && 8310 isa<ConstantInt>(GEP->getOperand(1)); 8311 } 8312 8313 // Try unmerging GEPs to reduce liveness interference (register pressure) across 8314 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 8315 // reducing liveness interference across those edges benefits global register 8316 // allocation. Currently handles only certain cases. 8317 // 8318 // For example, unmerge %GEPI and %UGEPI as below. 8319 // 8320 // ---------- BEFORE ---------- 8321 // SrcBlock: 8322 // ... 8323 // %GEPIOp = ... 8324 // ... 8325 // %GEPI = gep %GEPIOp, Idx 8326 // ... 8327 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 8328 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 8329 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 8330 // %UGEPI) 8331 // 8332 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 8333 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 8334 // ... 8335 // 8336 // DstBi: 8337 // ... 8338 // %UGEPI = gep %GEPIOp, UIdx 8339 // ... 8340 // --------------------------- 8341 // 8342 // ---------- AFTER ---------- 8343 // SrcBlock: 8344 // ... (same as above) 8345 // (* %GEPI is still alive on the indirectbr edges) 8346 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 8347 // unmerging) 8348 // ... 8349 // 8350 // DstBi: 8351 // ... 8352 // %UGEPI = gep %GEPI, (UIdx-Idx) 8353 // ... 8354 // --------------------------- 8355 // 8356 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 8357 // no longer alive on them. 8358 // 8359 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 8360 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 8361 // not to disable further simplications and optimizations as a result of GEP 8362 // merging. 8363 // 8364 // Note this unmerging may increase the length of the data flow critical path 8365 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 8366 // between the register pressure and the length of data-flow critical 8367 // path. Restricting this to the uncommon IndirectBr case would minimize the 8368 // impact of potentially longer critical path, if any, and the impact on compile 8369 // time. 8370 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 8371 const TargetTransformInfo *TTI) { 8372 BasicBlock *SrcBlock = GEPI->getParent(); 8373 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 8374 // (non-IndirectBr) cases exit early here. 8375 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 8376 return false; 8377 // Check that GEPI is a simple gep with a single constant index. 8378 if (!GEPSequentialConstIndexed(GEPI)) 8379 return false; 8380 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 8381 // Check that GEPI is a cheap one. 8382 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 8383 TargetTransformInfo::TCK_SizeAndLatency) > 8384 TargetTransformInfo::TCC_Basic) 8385 return false; 8386 Value *GEPIOp = GEPI->getOperand(0); 8387 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 8388 if (!isa<Instruction>(GEPIOp)) 8389 return false; 8390 auto *GEPIOpI = cast<Instruction>(GEPIOp); 8391 if (GEPIOpI->getParent() != SrcBlock) 8392 return false; 8393 // Check that GEP is used outside the block, meaning it's alive on the 8394 // IndirectBr edge(s). 8395 if (llvm::none_of(GEPI->users(), [&](User *Usr) { 8396 if (auto *I = dyn_cast<Instruction>(Usr)) { 8397 if (I->getParent() != SrcBlock) { 8398 return true; 8399 } 8400 } 8401 return false; 8402 })) 8403 return false; 8404 // The second elements of the GEP chains to be unmerged. 8405 std::vector<GetElementPtrInst *> UGEPIs; 8406 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 8407 // on IndirectBr edges. 8408 for (User *Usr : GEPIOp->users()) { 8409 if (Usr == GEPI) 8410 continue; 8411 // Check if Usr is an Instruction. If not, give up. 8412 if (!isa<Instruction>(Usr)) 8413 return false; 8414 auto *UI = cast<Instruction>(Usr); 8415 // Check if Usr in the same block as GEPIOp, which is fine, skip. 8416 if (UI->getParent() == SrcBlock) 8417 continue; 8418 // Check if Usr is a GEP. If not, give up. 8419 if (!isa<GetElementPtrInst>(Usr)) 8420 return false; 8421 auto *UGEPI = cast<GetElementPtrInst>(Usr); 8422 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 8423 // the pointer operand to it. If so, record it in the vector. If not, give 8424 // up. 8425 if (!GEPSequentialConstIndexed(UGEPI)) 8426 return false; 8427 if (UGEPI->getOperand(0) != GEPIOp) 8428 return false; 8429 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType()) 8430 return false; 8431 if (GEPIIdx->getType() != 8432 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 8433 return false; 8434 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8435 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 8436 TargetTransformInfo::TCK_SizeAndLatency) > 8437 TargetTransformInfo::TCC_Basic) 8438 return false; 8439 UGEPIs.push_back(UGEPI); 8440 } 8441 if (UGEPIs.size() == 0) 8442 return false; 8443 // Check the materializing cost of (Uidx-Idx). 8444 for (GetElementPtrInst *UGEPI : UGEPIs) { 8445 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8446 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 8447 InstructionCost ImmCost = TTI->getIntImmCost( 8448 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 8449 if (ImmCost > TargetTransformInfo::TCC_Basic) 8450 return false; 8451 } 8452 // Now unmerge between GEPI and UGEPIs. 8453 for (GetElementPtrInst *UGEPI : UGEPIs) { 8454 UGEPI->setOperand(0, GEPI); 8455 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8456 Constant *NewUGEPIIdx = ConstantInt::get( 8457 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); 8458 UGEPI->setOperand(1, NewUGEPIIdx); 8459 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 8460 // inbounds to avoid UB. 8461 if (!GEPI->isInBounds()) { 8462 UGEPI->setIsInBounds(false); 8463 } 8464 } 8465 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 8466 // alive on IndirectBr edges). 8467 assert(llvm::none_of(GEPIOp->users(), 8468 [&](User *Usr) { 8469 return cast<Instruction>(Usr)->getParent() != SrcBlock; 8470 }) && 8471 "GEPIOp is used outside SrcBlock"); 8472 return true; 8473 } 8474 8475 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, 8476 SmallSet<BasicBlock *, 32> &FreshBBs, 8477 bool IsHugeFunc) { 8478 // Try and convert 8479 // %c = icmp ult %x, 8 8480 // br %c, bla, blb 8481 // %tc = lshr %x, 3 8482 // to 8483 // %tc = lshr %x, 3 8484 // %c = icmp eq %tc, 0 8485 // br %c, bla, blb 8486 // Creating the cmp to zero can be better for the backend, especially if the 8487 // lshr produces flags that can be used automatically. 8488 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 8489 return false; 8490 8491 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 8492 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 8493 return false; 8494 8495 Value *X = Cmp->getOperand(0); 8496 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 8497 8498 for (auto *U : X->users()) { 8499 Instruction *UI = dyn_cast<Instruction>(U); 8500 // A quick dominance check 8501 if (!UI || 8502 (UI->getParent() != Branch->getParent() && 8503 UI->getParent() != Branch->getSuccessor(0) && 8504 UI->getParent() != Branch->getSuccessor(1)) || 8505 (UI->getParent() != Branch->getParent() && 8506 !UI->getParent()->getSinglePredecessor())) 8507 continue; 8508 8509 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 8510 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 8511 IRBuilder<> Builder(Branch); 8512 if (UI->getParent() != Branch->getParent()) 8513 UI->moveBefore(Branch); 8514 UI->dropPoisonGeneratingFlags(); 8515 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 8516 ConstantInt::get(UI->getType(), 0)); 8517 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8518 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8519 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8520 return true; 8521 } 8522 if (Cmp->isEquality() && 8523 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 8524 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 8525 IRBuilder<> Builder(Branch); 8526 if (UI->getParent() != Branch->getParent()) 8527 UI->moveBefore(Branch); 8528 UI->dropPoisonGeneratingFlags(); 8529 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 8530 ConstantInt::get(UI->getType(), 0)); 8531 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8532 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8533 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8534 return true; 8535 } 8536 } 8537 return false; 8538 } 8539 8540 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { 8541 bool AnyChange = false; 8542 AnyChange = fixupDbgVariableRecordsOnInst(*I); 8543 8544 // Bail out if we inserted the instruction to prevent optimizations from 8545 // stepping on each other's toes. 8546 if (InsertedInsts.count(I)) 8547 return AnyChange; 8548 8549 // TODO: Move into the switch on opcode below here. 8550 if (PHINode *P = dyn_cast<PHINode>(I)) { 8551 // It is possible for very late stage optimizations (such as SimplifyCFG) 8552 // to introduce PHI nodes too late to be cleaned up. If we detect such a 8553 // trivial PHI, go ahead and zap it here. 8554 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 8555 LargeOffsetGEPMap.erase(P); 8556 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); 8557 P->eraseFromParent(); 8558 ++NumPHIsElim; 8559 return true; 8560 } 8561 return AnyChange; 8562 } 8563 8564 if (CastInst *CI = dyn_cast<CastInst>(I)) { 8565 // If the source of the cast is a constant, then this should have 8566 // already been constant folded. The only reason NOT to constant fold 8567 // it is if something (e.g. LSR) was careful to place the constant 8568 // evaluation in a block other than then one that uses it (e.g. to hoist 8569 // the address of globals out of a loop). If this is the case, we don't 8570 // want to forward-subst the cast. 8571 if (isa<Constant>(CI->getOperand(0))) 8572 return AnyChange; 8573 8574 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 8575 return true; 8576 8577 if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) || 8578 isa<TruncInst>(I)) && 8579 TLI->optimizeExtendOrTruncateConversion( 8580 I, LI->getLoopFor(I->getParent()), *TTI)) 8581 return true; 8582 8583 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 8584 /// Sink a zext or sext into its user blocks if the target type doesn't 8585 /// fit in one register 8586 if (TLI->getTypeAction(CI->getContext(), 8587 TLI->getValueType(*DL, CI->getType())) == 8588 TargetLowering::TypeExpandInteger) { 8589 return SinkCast(CI); 8590 } else { 8591 if (TLI->optimizeExtendOrTruncateConversion( 8592 I, LI->getLoopFor(I->getParent()), *TTI)) 8593 return true; 8594 8595 bool MadeChange = optimizeExt(I); 8596 return MadeChange | optimizeExtUses(I); 8597 } 8598 } 8599 return AnyChange; 8600 } 8601 8602 if (auto *Cmp = dyn_cast<CmpInst>(I)) 8603 if (optimizeCmp(Cmp, ModifiedDT)) 8604 return true; 8605 8606 if (match(I, m_URem(m_Value(), m_Value()))) 8607 if (optimizeURem(I)) 8608 return true; 8609 8610 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8611 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8612 bool Modified = optimizeLoadExt(LI); 8613 unsigned AS = LI->getPointerAddressSpace(); 8614 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 8615 return Modified; 8616 } 8617 8618 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 8619 if (splitMergedValStore(*SI, *DL, *TLI)) 8620 return true; 8621 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8622 unsigned AS = SI->getPointerAddressSpace(); 8623 return optimizeMemoryInst(I, SI->getOperand(1), 8624 SI->getOperand(0)->getType(), AS); 8625 } 8626 8627 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 8628 unsigned AS = RMW->getPointerAddressSpace(); 8629 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); 8630 } 8631 8632 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 8633 unsigned AS = CmpX->getPointerAddressSpace(); 8634 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 8635 CmpX->getCompareOperand()->getType(), AS); 8636 } 8637 8638 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 8639 8640 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 8641 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 8642 return true; 8643 8644 // TODO: Move this into the switch on opcode - it handles shifts already. 8645 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 8646 BinOp->getOpcode() == Instruction::LShr)) { 8647 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 8648 if (CI && TLI->hasExtractBitsInsn()) 8649 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 8650 return true; 8651 } 8652 8653 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 8654 if (GEPI->hasAllZeroIndices()) { 8655 /// The GEP operand must be a pointer, so must its result -> BitCast 8656 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 8657 GEPI->getName(), GEPI->getIterator()); 8658 NC->setDebugLoc(GEPI->getDebugLoc()); 8659 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); 8660 RecursivelyDeleteTriviallyDeadInstructions( 8661 GEPI, TLInfo, nullptr, 8662 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8663 ++NumGEPsElim; 8664 optimizeInst(NC, ModifiedDT); 8665 return true; 8666 } 8667 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8668 return true; 8669 } 8670 } 8671 8672 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8673 // freeze(icmp a, const)) -> icmp (freeze a), const 8674 // This helps generate efficient conditional jumps. 8675 Instruction *CmpI = nullptr; 8676 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8677 CmpI = II; 8678 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8679 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8680 8681 if (CmpI && CmpI->hasOneUse()) { 8682 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8683 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8684 isa<ConstantPointerNull>(Op0); 8685 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8686 isa<ConstantPointerNull>(Op1); 8687 if (Const0 || Const1) { 8688 if (!Const0 || !Const1) { 8689 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator()); 8690 F->takeName(FI); 8691 CmpI->setOperand(Const0 ? 1 : 0, F); 8692 } 8693 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); 8694 FI->eraseFromParent(); 8695 return true; 8696 } 8697 } 8698 return AnyChange; 8699 } 8700 8701 if (tryToSinkFreeOperands(I)) 8702 return true; 8703 8704 switch (I->getOpcode()) { 8705 case Instruction::Shl: 8706 case Instruction::LShr: 8707 case Instruction::AShr: 8708 return optimizeShiftInst(cast<BinaryOperator>(I)); 8709 case Instruction::Call: 8710 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8711 case Instruction::Select: 8712 return optimizeSelectInst(cast<SelectInst>(I)); 8713 case Instruction::ShuffleVector: 8714 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8715 case Instruction::Switch: 8716 return optimizeSwitchInst(cast<SwitchInst>(I)); 8717 case Instruction::ExtractElement: 8718 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8719 case Instruction::Br: 8720 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); 8721 } 8722 8723 return AnyChange; 8724 } 8725 8726 /// Given an OR instruction, check to see if this is a bitreverse 8727 /// idiom. If so, insert the new intrinsic and return true. 8728 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8729 if (!I.getType()->isIntegerTy() || 8730 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8731 TLI->getValueType(*DL, I.getType(), true))) 8732 return false; 8733 8734 SmallVector<Instruction *, 4> Insts; 8735 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8736 return false; 8737 Instruction *LastInst = Insts.back(); 8738 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); 8739 RecursivelyDeleteTriviallyDeadInstructions( 8740 &I, TLInfo, nullptr, 8741 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8742 return true; 8743 } 8744 8745 // In this pass we look for GEP and cast instructions that are used 8746 // across basic blocks and rewrite them to improve basic-block-at-a-time 8747 // selection. 8748 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { 8749 SunkAddrs.clear(); 8750 bool MadeChange = false; 8751 8752 do { 8753 CurInstIterator = BB.begin(); 8754 ModifiedDT = ModifyDT::NotModifyDT; 8755 while (CurInstIterator != BB.end()) { 8756 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8757 if (ModifiedDT != ModifyDT::NotModifyDT) { 8758 // For huge function we tend to quickly go though the inner optmization 8759 // opportunities in the BB. So we go back to the BB head to re-optimize 8760 // each instruction instead of go back to the function head. 8761 if (IsHugeFunc) { 8762 DT.reset(); 8763 getDT(*BB.getParent()); 8764 break; 8765 } else { 8766 return true; 8767 } 8768 } 8769 } 8770 } while (ModifiedDT == ModifyDT::ModifyInstDT); 8771 8772 bool MadeBitReverse = true; 8773 while (MadeBitReverse) { 8774 MadeBitReverse = false; 8775 for (auto &I : reverse(BB)) { 8776 if (makeBitReverse(I)) { 8777 MadeBitReverse = MadeChange = true; 8778 break; 8779 } 8780 } 8781 } 8782 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8783 8784 return MadeChange; 8785 } 8786 8787 // Some CGP optimizations may move or alter what's computed in a block. Check 8788 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8789 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8790 assert(isa<DbgValueInst>(I)); 8791 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8792 8793 // Does this dbg.value refer to a sunk address calculation? 8794 bool AnyChange = false; 8795 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8796 DVI.location_ops().end()); 8797 for (Value *Location : LocationOps) { 8798 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8799 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8800 if (SunkAddr) { 8801 // Point dbg.value at locally computed address, which should give the best 8802 // opportunity to be accurately lowered. This update may change the type 8803 // of pointer being referred to; however this makes no difference to 8804 // debugging information, and we can't generate bitcasts that may affect 8805 // codegen. 8806 DVI.replaceVariableLocationOp(Location, SunkAddr); 8807 AnyChange = true; 8808 } 8809 } 8810 return AnyChange; 8811 } 8812 8813 bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) { 8814 bool AnyChange = false; 8815 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 8816 AnyChange |= fixupDbgVariableRecord(DVR); 8817 return AnyChange; 8818 } 8819 8820 // FIXME: should updating debug-info really cause the "changed" flag to fire, 8821 // which can cause a function to be reprocessed? 8822 bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) { 8823 if (DVR.Type != DbgVariableRecord::LocationType::Value && 8824 DVR.Type != DbgVariableRecord::LocationType::Assign) 8825 return false; 8826 8827 // Does this DbgVariableRecord refer to a sunk address calculation? 8828 bool AnyChange = false; 8829 SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(), 8830 DVR.location_ops().end()); 8831 for (Value *Location : LocationOps) { 8832 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8833 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8834 if (SunkAddr) { 8835 // Point dbg.value at locally computed address, which should give the best 8836 // opportunity to be accurately lowered. This update may change the type 8837 // of pointer being referred to; however this makes no difference to 8838 // debugging information, and we can't generate bitcasts that may affect 8839 // codegen. 8840 DVR.replaceVariableLocationOp(Location, SunkAddr); 8841 AnyChange = true; 8842 } 8843 } 8844 return AnyChange; 8845 } 8846 8847 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) { 8848 DVI->removeFromParent(); 8849 if (isa<PHINode>(VI)) 8850 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8851 else 8852 DVI->insertAfter(VI); 8853 } 8854 8855 static void DbgInserterHelper(DbgVariableRecord *DVR, Instruction *VI) { 8856 DVR->removeFromParent(); 8857 BasicBlock *VIBB = VI->getParent(); 8858 if (isa<PHINode>(VI)) 8859 VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt()); 8860 else 8861 VIBB->insertDbgRecordAfter(DVR, VI); 8862 } 8863 8864 // A llvm.dbg.value may be using a value before its definition, due to 8865 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8866 // them by moving the dbg.value to immediately after the value definition. 8867 // FIXME: Ideally this should never be necessary, and this has the potential 8868 // to re-order dbg.value intrinsics. 8869 bool CodeGenPrepare::placeDbgValues(Function &F) { 8870 bool MadeChange = false; 8871 DominatorTree DT(F); 8872 8873 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) { 8874 SmallVector<Instruction *, 4> VIs; 8875 for (Value *V : DbgItem->location_ops()) 8876 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8877 VIs.push_back(VI); 8878 8879 // This item may depend on multiple instructions, complicating any 8880 // potential sink. This block takes the defensive approach, opting to 8881 // "undef" the item if it has more than one instruction and any of them do 8882 // not dominate iem. 8883 for (Instruction *VI : VIs) { 8884 if (VI->isTerminator()) 8885 continue; 8886 8887 // If VI is a phi in a block with an EHPad terminator, we can't insert 8888 // after it. 8889 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8890 continue; 8891 8892 // If the defining instruction dominates the dbg.value, we do not need 8893 // to move the dbg.value. 8894 if (DT.dominates(VI, Position)) 8895 continue; 8896 8897 // If we depend on multiple instructions and any of them doesn't 8898 // dominate this DVI, we probably can't salvage it: moving it to 8899 // after any of the instructions could cause us to lose the others. 8900 if (VIs.size() > 1) { 8901 LLVM_DEBUG( 8902 dbgs() 8903 << "Unable to find valid location for Debug Value, undefing:\n" 8904 << *DbgItem); 8905 DbgItem->setKillLocation(); 8906 break; 8907 } 8908 8909 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8910 << *DbgItem << ' ' << *VI); 8911 DbgInserterHelper(DbgItem, VI); 8912 MadeChange = true; 8913 ++NumDbgValueMoved; 8914 } 8915 }; 8916 8917 for (BasicBlock &BB : F) { 8918 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8919 // Process dbg.value intrinsics. 8920 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8921 if (DVI) { 8922 DbgProcessor(DVI, DVI); 8923 continue; 8924 } 8925 8926 // If this isn't a dbg.value, process any attached DbgVariableRecord 8927 // records attached to this instruction. 8928 for (DbgVariableRecord &DVR : llvm::make_early_inc_range( 8929 filterDbgVars(Insn.getDbgRecordRange()))) { 8930 if (DVR.Type != DbgVariableRecord::LocationType::Value) 8931 continue; 8932 DbgProcessor(&DVR, &Insn); 8933 } 8934 } 8935 } 8936 8937 return MadeChange; 8938 } 8939 8940 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8941 // probes can be chained dependencies of other regular DAG nodes and block DAG 8942 // combine optimizations. 8943 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8944 bool MadeChange = false; 8945 for (auto &Block : F) { 8946 // Move the rest probes to the beginning of the block. 8947 auto FirstInst = Block.getFirstInsertionPt(); 8948 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8949 ++FirstInst; 8950 BasicBlock::iterator I(FirstInst); 8951 I++; 8952 while (I != Block.end()) { 8953 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8954 II->moveBefore(&*FirstInst); 8955 MadeChange = true; 8956 } 8957 } 8958 } 8959 return MadeChange; 8960 } 8961 8962 /// Scale down both weights to fit into uint32_t. 8963 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8964 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8965 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8966 NewTrue = NewTrue / Scale; 8967 NewFalse = NewFalse / Scale; 8968 } 8969 8970 /// Some targets prefer to split a conditional branch like: 8971 /// \code 8972 /// %0 = icmp ne i32 %a, 0 8973 /// %1 = icmp ne i32 %b, 0 8974 /// %or.cond = or i1 %0, %1 8975 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8976 /// \endcode 8977 /// into multiple branch instructions like: 8978 /// \code 8979 /// bb1: 8980 /// %0 = icmp ne i32 %a, 0 8981 /// br i1 %0, label %TrueBB, label %bb2 8982 /// bb2: 8983 /// %1 = icmp ne i32 %b, 0 8984 /// br i1 %1, label %TrueBB, label %FalseBB 8985 /// \endcode 8986 /// This usually allows instruction selection to do even further optimizations 8987 /// and combine the compare with the branch instruction. Currently this is 8988 /// applied for targets which have "cheap" jump instructions. 8989 /// 8990 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8991 /// 8992 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { 8993 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8994 return false; 8995 8996 bool MadeChange = false; 8997 for (auto &BB : F) { 8998 // Does this BB end with the following? 8999 // %cond1 = icmp|fcmp|binary instruction ... 9000 // %cond2 = icmp|fcmp|binary instruction ... 9001 // %cond.or = or|and i1 %cond1, cond2 9002 // br i1 %cond.or label %dest1, label %dest2" 9003 Instruction *LogicOp; 9004 BasicBlock *TBB, *FBB; 9005 if (!match(BB.getTerminator(), 9006 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 9007 continue; 9008 9009 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 9010 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 9011 continue; 9012 9013 // The merging of mostly empty BB can cause a degenerate branch. 9014 if (TBB == FBB) 9015 continue; 9016 9017 unsigned Opc; 9018 Value *Cond1, *Cond2; 9019 if (match(LogicOp, 9020 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 9021 Opc = Instruction::And; 9022 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 9023 m_OneUse(m_Value(Cond2))))) 9024 Opc = Instruction::Or; 9025 else 9026 continue; 9027 9028 auto IsGoodCond = [](Value *Cond) { 9029 return match( 9030 Cond, 9031 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 9032 m_LogicalOr(m_Value(), m_Value())))); 9033 }; 9034 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 9035 continue; 9036 9037 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 9038 9039 // Create a new BB. 9040 auto *TmpBB = 9041 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 9042 BB.getParent(), BB.getNextNode()); 9043 if (IsHugeFunc) 9044 FreshBBs.insert(TmpBB); 9045 9046 // Update original basic block by using the first condition directly by the 9047 // branch instruction and removing the no longer needed and/or instruction. 9048 Br1->setCondition(Cond1); 9049 LogicOp->eraseFromParent(); 9050 9051 // Depending on the condition we have to either replace the true or the 9052 // false successor of the original branch instruction. 9053 if (Opc == Instruction::And) 9054 Br1->setSuccessor(0, TmpBB); 9055 else 9056 Br1->setSuccessor(1, TmpBB); 9057 9058 // Fill in the new basic block. 9059 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 9060 if (auto *I = dyn_cast<Instruction>(Cond2)) { 9061 I->removeFromParent(); 9062 I->insertBefore(Br2); 9063 } 9064 9065 // Update PHI nodes in both successors. The original BB needs to be 9066 // replaced in one successor's PHI nodes, because the branch comes now from 9067 // the newly generated BB (NewBB). In the other successor we need to add one 9068 // incoming edge to the PHI nodes, because both branch instructions target 9069 // now the same successor. Depending on the original branch condition 9070 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 9071 // we perform the correct update for the PHI nodes. 9072 // This doesn't change the successor order of the just created branch 9073 // instruction (or any other instruction). 9074 if (Opc == Instruction::Or) 9075 std::swap(TBB, FBB); 9076 9077 // Replace the old BB with the new BB. 9078 TBB->replacePhiUsesWith(&BB, TmpBB); 9079 9080 // Add another incoming edge from the new BB. 9081 for (PHINode &PN : FBB->phis()) { 9082 auto *Val = PN.getIncomingValueForBlock(&BB); 9083 PN.addIncoming(Val, TmpBB); 9084 } 9085 9086 // Update the branch weights (from SelectionDAGBuilder:: 9087 // FindMergedConditions). 9088 if (Opc == Instruction::Or) { 9089 // Codegen X | Y as: 9090 // BB1: 9091 // jmp_if_X TBB 9092 // jmp TmpBB 9093 // TmpBB: 9094 // jmp_if_Y TBB 9095 // jmp FBB 9096 // 9097 9098 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 9099 // The requirement is that 9100 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 9101 // = TrueProb for original BB. 9102 // Assuming the original weights are A and B, one choice is to set BB1's 9103 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 9104 // assumes that 9105 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 9106 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 9107 // TmpBB, but the math is more complicated. 9108 uint64_t TrueWeight, FalseWeight; 9109 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 9110 uint64_t NewTrueWeight = TrueWeight; 9111 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 9112 scaleWeights(NewTrueWeight, NewFalseWeight); 9113 Br1->setMetadata(LLVMContext::MD_prof, 9114 MDBuilder(Br1->getContext()) 9115 .createBranchWeights(TrueWeight, FalseWeight, 9116 hasBranchWeightOrigin(*Br1))); 9117 9118 NewTrueWeight = TrueWeight; 9119 NewFalseWeight = 2 * FalseWeight; 9120 scaleWeights(NewTrueWeight, NewFalseWeight); 9121 Br2->setMetadata(LLVMContext::MD_prof, 9122 MDBuilder(Br2->getContext()) 9123 .createBranchWeights(TrueWeight, FalseWeight)); 9124 } 9125 } else { 9126 // Codegen X & Y as: 9127 // BB1: 9128 // jmp_if_X TmpBB 9129 // jmp FBB 9130 // TmpBB: 9131 // jmp_if_Y TBB 9132 // jmp FBB 9133 // 9134 // This requires creation of TmpBB after CurBB. 9135 9136 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 9137 // The requirement is that 9138 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 9139 // = FalseProb for original BB. 9140 // Assuming the original weights are A and B, one choice is to set BB1's 9141 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 9142 // assumes that 9143 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 9144 uint64_t TrueWeight, FalseWeight; 9145 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 9146 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 9147 uint64_t NewFalseWeight = FalseWeight; 9148 scaleWeights(NewTrueWeight, NewFalseWeight); 9149 Br1->setMetadata(LLVMContext::MD_prof, 9150 MDBuilder(Br1->getContext()) 9151 .createBranchWeights(TrueWeight, FalseWeight)); 9152 9153 NewTrueWeight = 2 * TrueWeight; 9154 NewFalseWeight = FalseWeight; 9155 scaleWeights(NewTrueWeight, NewFalseWeight); 9156 Br2->setMetadata(LLVMContext::MD_prof, 9157 MDBuilder(Br2->getContext()) 9158 .createBranchWeights(TrueWeight, FalseWeight)); 9159 } 9160 } 9161 9162 ModifiedDT = ModifyDT::ModifyBBDT; 9163 MadeChange = true; 9164 9165 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 9166 TmpBB->dump()); 9167 } 9168 return MadeChange; 9169 } 9170