1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/CodeGenPrepare.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/CodeGenTypes/MachineValueType.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/Argument.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfo.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/GlobalVariable.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/IntrinsicsAArch64.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/MDBuilder.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/ProfDataUtils.h" 72 #include "llvm/IR/Statepoint.h" 73 #include "llvm/IR/Type.h" 74 #include "llvm/IR/Use.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/IR/ValueHandle.h" 78 #include "llvm/IR/ValueMap.h" 79 #include "llvm/InitializePasses.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/BlockFrequency.h" 82 #include "llvm/Support/BranchProbability.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/CommandLine.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Target/TargetMachine.h" 91 #include "llvm/Target/TargetOptions.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 96 #include "llvm/Transforms/Utils/SizeOpts.h" 97 #include <algorithm> 98 #include <cassert> 99 #include <cstdint> 100 #include <iterator> 101 #include <limits> 102 #include <memory> 103 #include <optional> 104 #include <utility> 105 #include <vector> 106 107 using namespace llvm; 108 using namespace llvm::PatternMatch; 109 110 #define DEBUG_TYPE "codegenprepare" 111 112 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 113 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 114 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 115 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 116 "sunken Cmps"); 117 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 118 "of sunken Casts"); 119 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 120 "computations were sunk"); 121 STATISTIC(NumMemoryInstsPhiCreated, 122 "Number of phis created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumMemoryInstsSelectCreated, 125 "Number of select created when address " 126 "computations were sunk to memory instructions"); 127 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 128 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 129 STATISTIC(NumAndsAdded, 130 "Number of and mask instructions added to form ext loads"); 131 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 132 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 133 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 134 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 135 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 136 137 static cl::opt<bool> DisableBranchOpts( 138 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable branch optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> 142 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 143 cl::desc("Disable GC optimizations in CodeGenPrepare")); 144 145 static cl::opt<bool> 146 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, 147 cl::init(false), 148 cl::desc("Disable select to branch conversion.")); 149 150 static cl::opt<bool> 151 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), 152 cl::desc("Address sinking in CGP using GEPs.")); 153 154 static cl::opt<bool> 155 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), 156 cl::desc("Enable sinkinig and/cmp into branches.")); 157 158 static cl::opt<bool> DisableStoreExtract( 159 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> StressStoreExtract( 163 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 164 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 165 166 static cl::opt<bool> DisableExtLdPromotion( 167 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 169 "CodeGenPrepare")); 170 171 static cl::opt<bool> StressExtLdPromotion( 172 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 173 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 174 "optimization in CodeGenPrepare")); 175 176 static cl::opt<bool> DisablePreheaderProtect( 177 "disable-preheader-prot", cl::Hidden, cl::init(false), 178 cl::desc("Disable protection against removing loop preheaders")); 179 180 static cl::opt<bool> ProfileGuidedSectionPrefix( 181 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 182 cl::desc("Use profile info to add section prefix for hot/cold functions")); 183 184 static cl::opt<bool> ProfileUnknownInSpecialSection( 185 "profile-unknown-in-special-section", cl::Hidden, 186 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 187 "profile, we cannot tell the function is cold for sure because " 188 "it may be a function newly added without ever being sampled. " 189 "With the flag enabled, compiler can put such profile unknown " 190 "functions into a special section, so runtime system can choose " 191 "to handle it in a different way than .text section, to save " 192 "RAM for example. ")); 193 194 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 195 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 196 cl::desc("Use the basic-block-sections profile to determine the text " 197 "section prefix for hot functions. Functions with " 198 "basic-block-sections profile will be placed in `.text.hot` " 199 "regardless of their FDO profile info. Other functions won't be " 200 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 201 "profiles.")); 202 203 static cl::opt<uint64_t> FreqRatioToSkipMerge( 204 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 205 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 206 "(frequency of destination block) is greater than this ratio")); 207 208 static cl::opt<bool> ForceSplitStore( 209 "force-split-store", cl::Hidden, cl::init(false), 210 cl::desc("Force store splitting no matter what the target query says.")); 211 212 static cl::opt<bool> EnableTypePromotionMerge( 213 "cgp-type-promotion-merge", cl::Hidden, 214 cl::desc("Enable merging of redundant sexts when one is dominating" 215 " the other."), 216 cl::init(true)); 217 218 static cl::opt<bool> DisableComplexAddrModes( 219 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 220 cl::desc("Disables combining addressing modes with different parts " 221 "in optimizeMemoryInst.")); 222 223 static cl::opt<bool> 224 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 225 cl::desc("Allow creation of Phis in Address sinking.")); 226 227 static cl::opt<bool> AddrSinkNewSelects( 228 "addr-sink-new-select", cl::Hidden, cl::init(true), 229 cl::desc("Allow creation of selects in Address sinking.")); 230 231 static cl::opt<bool> AddrSinkCombineBaseReg( 232 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 233 cl::desc("Allow combining of BaseReg field in Address sinking.")); 234 235 static cl::opt<bool> AddrSinkCombineBaseGV( 236 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 237 cl::desc("Allow combining of BaseGV field in Address sinking.")); 238 239 static cl::opt<bool> AddrSinkCombineBaseOffs( 240 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 241 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 242 243 static cl::opt<bool> AddrSinkCombineScaledReg( 244 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 245 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 246 247 static cl::opt<bool> 248 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 249 cl::init(true), 250 cl::desc("Enable splitting large offset of GEP.")); 251 252 static cl::opt<bool> EnableICMP_EQToICMP_ST( 253 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 254 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 255 256 static cl::opt<bool> 257 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 258 cl::desc("Enable BFI update verification for " 259 "CodeGenPrepare.")); 260 261 static cl::opt<bool> 262 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), 263 cl::desc("Enable converting phi types in CodeGenPrepare")); 264 265 static cl::opt<unsigned> 266 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, 267 cl::desc("Least BB number of huge function.")); 268 269 static cl::opt<unsigned> 270 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), 271 cl::Hidden, 272 cl::desc("Max number of address users to look at")); 273 274 static cl::opt<bool> 275 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false), 276 cl::desc("Disable elimination of dead PHI nodes.")); 277 278 namespace { 279 280 enum ExtType { 281 ZeroExtension, // Zero extension has been seen. 282 SignExtension, // Sign extension has been seen. 283 BothExtension // This extension type is used if we saw sext after 284 // ZeroExtension had been set, or if we saw zext after 285 // SignExtension had been set. It makes the type 286 // information of a promoted instruction invalid. 287 }; 288 289 enum ModifyDT { 290 NotModifyDT, // Not Modify any DT. 291 ModifyBBDT, // Modify the Basic Block Dominator Tree. 292 ModifyInstDT // Modify the Instruction Dominator in a Basic Block, 293 // This usually means we move/delete/insert instruction 294 // in a Basic Block. So we should re-iterate instructions 295 // in such Basic Block. 296 }; 297 298 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 299 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 300 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 301 using SExts = SmallVector<Instruction *, 16>; 302 using ValueToSExts = MapVector<Value *, SExts>; 303 304 class TypePromotionTransaction; 305 306 class CodeGenPrepare { 307 friend class CodeGenPrepareLegacyPass; 308 const TargetMachine *TM = nullptr; 309 const TargetSubtargetInfo *SubtargetInfo = nullptr; 310 const TargetLowering *TLI = nullptr; 311 const TargetRegisterInfo *TRI = nullptr; 312 const TargetTransformInfo *TTI = nullptr; 313 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 314 const TargetLibraryInfo *TLInfo = nullptr; 315 LoopInfo *LI = nullptr; 316 std::unique_ptr<BlockFrequencyInfo> BFI; 317 std::unique_ptr<BranchProbabilityInfo> BPI; 318 ProfileSummaryInfo *PSI = nullptr; 319 320 /// As we scan instructions optimizing them, this is the next instruction 321 /// to optimize. Transforms that can invalidate this should update it. 322 BasicBlock::iterator CurInstIterator; 323 324 /// Keeps track of non-local addresses that have been sunk into a block. 325 /// This allows us to avoid inserting duplicate code for blocks with 326 /// multiple load/stores of the same address. The usage of WeakTrackingVH 327 /// enables SunkAddrs to be treated as a cache whose entries can be 328 /// invalidated if a sunken address computation has been erased. 329 ValueMap<Value *, WeakTrackingVH> SunkAddrs; 330 331 /// Keeps track of all instructions inserted for the current function. 332 SetOfInstrs InsertedInsts; 333 334 /// Keeps track of the type of the related instruction before their 335 /// promotion for the current function. 336 InstrToOrigTy PromotedInsts; 337 338 /// Keep track of instructions removed during promotion. 339 SetOfInstrs RemovedInsts; 340 341 /// Keep track of sext chains based on their initial value. 342 DenseMap<Value *, Instruction *> SeenChainsForSExt; 343 344 /// Keep track of GEPs accessing the same data structures such as structs or 345 /// arrays that are candidates to be split later because of their large 346 /// size. 347 MapVector<AssertingVH<Value>, 348 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 349 LargeOffsetGEPMap; 350 351 /// Keep track of new GEP base after splitting the GEPs having large offset. 352 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 353 354 /// Map serial numbers to Large offset GEPs. 355 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 356 357 /// Keep track of SExt promoted. 358 ValueToSExts ValToSExtendedUses; 359 360 /// True if the function has the OptSize attribute. 361 bool OptSize; 362 363 /// DataLayout for the Function being processed. 364 const DataLayout *DL = nullptr; 365 366 /// Building the dominator tree can be expensive, so we only build it 367 /// lazily and update it when required. 368 std::unique_ptr<DominatorTree> DT; 369 370 public: 371 CodeGenPrepare(){}; 372 CodeGenPrepare(const TargetMachine *TM) : TM(TM){}; 373 /// If encounter huge function, we need to limit the build time. 374 bool IsHugeFunc = false; 375 376 /// FreshBBs is like worklist, it collected the updated BBs which need 377 /// to be optimized again. 378 /// Note: Consider building time in this pass, when a BB updated, we need 379 /// to insert such BB into FreshBBs for huge function. 380 SmallSet<BasicBlock *, 32> FreshBBs; 381 382 void releaseMemory() { 383 // Clear per function information. 384 InsertedInsts.clear(); 385 PromotedInsts.clear(); 386 FreshBBs.clear(); 387 BPI.reset(); 388 BFI.reset(); 389 } 390 391 bool run(Function &F, FunctionAnalysisManager &AM); 392 393 private: 394 template <typename F> 395 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 396 // Substituting can cause recursive simplifications, which can invalidate 397 // our iterator. Use a WeakTrackingVH to hold onto it in case this 398 // happens. 399 Value *CurValue = &*CurInstIterator; 400 WeakTrackingVH IterHandle(CurValue); 401 402 f(); 403 404 // If the iterator instruction was recursively deleted, start over at the 405 // start of the block. 406 if (IterHandle != CurValue) { 407 CurInstIterator = BB->begin(); 408 SunkAddrs.clear(); 409 } 410 } 411 412 // Get the DominatorTree, building if necessary. 413 DominatorTree &getDT(Function &F) { 414 if (!DT) 415 DT = std::make_unique<DominatorTree>(F); 416 return *DT; 417 } 418 419 void removeAllAssertingVHReferences(Value *V); 420 bool eliminateAssumptions(Function &F); 421 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); 422 bool eliminateMostlyEmptyBlocks(Function &F); 423 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 424 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 425 void eliminateMostlyEmptyBlock(BasicBlock *BB); 426 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 427 bool isPreheader); 428 bool makeBitReverse(Instruction &I); 429 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); 430 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); 431 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, 432 unsigned AddrSpace); 433 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 434 bool optimizeInlineAsmInst(CallInst *CS); 435 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); 436 bool optimizeExt(Instruction *&I); 437 bool optimizeExtUses(Instruction *I); 438 bool optimizeLoadExt(LoadInst *Load); 439 bool optimizeShiftInst(BinaryOperator *BO); 440 bool optimizeFunnelShift(IntrinsicInst *Fsh); 441 bool optimizeSelectInst(SelectInst *SI); 442 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 443 bool optimizeSwitchType(SwitchInst *SI); 444 bool optimizeSwitchPhiConstants(SwitchInst *SI); 445 bool optimizeSwitchInst(SwitchInst *SI); 446 bool optimizeExtractElementInst(Instruction *Inst); 447 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); 448 bool fixupDbgValue(Instruction *I); 449 bool fixupDbgVariableRecord(DbgVariableRecord &I); 450 bool fixupDbgVariableRecordsOnInst(Instruction &I); 451 bool placeDbgValues(Function &F); 452 bool placePseudoProbes(Function &F); 453 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 454 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 455 bool tryToPromoteExts(TypePromotionTransaction &TPT, 456 const SmallVectorImpl<Instruction *> &Exts, 457 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 458 unsigned CreatedInstsCost = 0); 459 bool mergeSExts(Function &F); 460 bool splitLargeGEPOffsets(); 461 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 462 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 463 bool optimizePhiTypes(Function &F); 464 bool performAddressTypePromotion( 465 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 466 bool HasPromoted, TypePromotionTransaction &TPT, 467 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 468 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); 469 bool simplifyOffsetableRelocate(GCStatepointInst &I); 470 471 bool tryToSinkFreeOperands(Instruction *I); 472 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, 473 CmpInst *Cmp, Intrinsic::ID IID); 474 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); 475 bool optimizeURem(Instruction *Rem); 476 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 477 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 478 void verifyBFIUpdates(Function &F); 479 bool _run(Function &F); 480 }; 481 482 class CodeGenPrepareLegacyPass : public FunctionPass { 483 public: 484 static char ID; // Pass identification, replacement for typeid 485 486 CodeGenPrepareLegacyPass() : FunctionPass(ID) { 487 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry()); 488 } 489 490 bool runOnFunction(Function &F) override; 491 492 StringRef getPassName() const override { return "CodeGen Prepare"; } 493 494 void getAnalysisUsage(AnalysisUsage &AU) const override { 495 // FIXME: When we can selectively preserve passes, preserve the domtree. 496 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 497 AU.addRequired<TargetLibraryInfoWrapperPass>(); 498 AU.addRequired<TargetPassConfig>(); 499 AU.addRequired<TargetTransformInfoWrapperPass>(); 500 AU.addRequired<LoopInfoWrapperPass>(); 501 AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 502 } 503 }; 504 505 } // end anonymous namespace 506 507 char CodeGenPrepareLegacyPass::ID = 0; 508 509 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) { 510 if (skipFunction(F)) 511 return false; 512 auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 513 CodeGenPrepare CGP(TM); 514 CGP.DL = &F.getDataLayout(); 515 CGP.SubtargetInfo = TM->getSubtargetImpl(F); 516 CGP.TLI = CGP.SubtargetInfo->getTargetLowering(); 517 CGP.TRI = CGP.SubtargetInfo->getRegisterInfo(); 518 CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 519 CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 520 CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 521 CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI)); 522 CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI)); 523 CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 524 auto BBSPRWP = 525 getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 526 CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr; 527 528 return CGP._run(F); 529 } 530 531 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE, 532 "Optimize for code generation", false, false) 533 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass) 534 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 535 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 536 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 537 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 538 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 539 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE, 540 "Optimize for code generation", false, false) 541 542 FunctionPass *llvm::createCodeGenPrepareLegacyPass() { 543 return new CodeGenPrepareLegacyPass(); 544 } 545 546 PreservedAnalyses CodeGenPreparePass::run(Function &F, 547 FunctionAnalysisManager &AM) { 548 CodeGenPrepare CGP(TM); 549 550 bool Changed = CGP.run(F, AM); 551 if (!Changed) 552 return PreservedAnalyses::all(); 553 554 PreservedAnalyses PA; 555 PA.preserve<TargetLibraryAnalysis>(); 556 PA.preserve<TargetIRAnalysis>(); 557 PA.preserve<LoopAnalysis>(); 558 return PA; 559 } 560 561 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) { 562 DL = &F.getDataLayout(); 563 SubtargetInfo = TM->getSubtargetImpl(F); 564 TLI = SubtargetInfo->getTargetLowering(); 565 TRI = SubtargetInfo->getRegisterInfo(); 566 TLInfo = &AM.getResult<TargetLibraryAnalysis>(F); 567 TTI = &AM.getResult<TargetIRAnalysis>(F); 568 LI = &AM.getResult<LoopAnalysis>(F); 569 BPI.reset(new BranchProbabilityInfo(F, *LI)); 570 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 571 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 572 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 573 BBSectionsProfileReader = 574 AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F); 575 return _run(F); 576 } 577 578 bool CodeGenPrepare::_run(Function &F) { 579 bool EverMadeChange = false; 580 581 OptSize = F.hasOptSize(); 582 // Use the basic-block-sections profile to promote hot functions to .text.hot 583 // if requested. 584 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 585 BBSectionsProfileReader->isFunctionHot(F.getName())) { 586 F.setSectionPrefix("hot"); 587 } else if (ProfileGuidedSectionPrefix) { 588 // The hot attribute overwrites profile count based hotness while profile 589 // counts based hotness overwrite the cold attribute. 590 // This is a conservative behabvior. 591 if (F.hasFnAttribute(Attribute::Hot) || 592 PSI->isFunctionHotInCallGraph(&F, *BFI)) 593 F.setSectionPrefix("hot"); 594 // If PSI shows this function is not hot, we will placed the function 595 // into unlikely section if (1) PSI shows this is a cold function, or 596 // (2) the function has a attribute of cold. 597 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 598 F.hasFnAttribute(Attribute::Cold)) 599 F.setSectionPrefix("unlikely"); 600 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 601 PSI->isFunctionHotnessUnknown(F)) 602 F.setSectionPrefix("unknown"); 603 } 604 605 /// This optimization identifies DIV instructions that can be 606 /// profitably bypassed and carried out with a shorter, faster divide. 607 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 608 const DenseMap<unsigned int, unsigned int> &BypassWidths = 609 TLI->getBypassSlowDivWidths(); 610 BasicBlock *BB = &*F.begin(); 611 while (BB != nullptr) { 612 // bypassSlowDivision may create new BBs, but we don't want to reapply the 613 // optimization to those blocks. 614 BasicBlock *Next = BB->getNextNode(); 615 // F.hasOptSize is already checked in the outer if statement. 616 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 617 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 618 BB = Next; 619 } 620 } 621 622 // Get rid of @llvm.assume builtins before attempting to eliminate empty 623 // blocks, since there might be blocks that only contain @llvm.assume calls 624 // (plus arguments that we can get rid of). 625 EverMadeChange |= eliminateAssumptions(F); 626 627 // Eliminate blocks that contain only PHI nodes and an 628 // unconditional branch. 629 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 630 631 ModifyDT ModifiedDT = ModifyDT::NotModifyDT; 632 if (!DisableBranchOpts) 633 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 634 635 // Split some critical edges where one of the sources is an indirect branch, 636 // to help generate sane code for PHIs involving such edges. 637 EverMadeChange |= 638 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 639 640 // If we are optimzing huge function, we need to consider the build time. 641 // Because the basic algorithm's complex is near O(N!). 642 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; 643 644 // Transformations above may invalidate dominator tree and/or loop info. 645 DT.reset(); 646 LI->releaseMemory(); 647 LI->analyze(getDT(F)); 648 649 bool MadeChange = true; 650 bool FuncIterated = false; 651 while (MadeChange) { 652 MadeChange = false; 653 654 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 655 if (FuncIterated && !FreshBBs.contains(&BB)) 656 continue; 657 658 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; 659 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); 660 661 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) 662 DT.reset(); 663 664 MadeChange |= Changed; 665 if (IsHugeFunc) { 666 // If the BB is updated, it may still has chance to be optimized. 667 // This usually happen at sink optimization. 668 // For example: 669 // 670 // bb0: 671 // %and = and i32 %a, 4 672 // %cmp = icmp eq i32 %and, 0 673 // 674 // If the %cmp sink to other BB, the %and will has chance to sink. 675 if (Changed) 676 FreshBBs.insert(&BB); 677 else if (FuncIterated) 678 FreshBBs.erase(&BB); 679 } else { 680 // For small/normal functions, we restart BB iteration if the dominator 681 // tree of the Function was changed. 682 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) 683 break; 684 } 685 } 686 // We have iterated all the BB in the (only work for huge) function. 687 FuncIterated = IsHugeFunc; 688 689 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 690 MadeChange |= mergeSExts(F); 691 if (!LargeOffsetGEPMap.empty()) 692 MadeChange |= splitLargeGEPOffsets(); 693 MadeChange |= optimizePhiTypes(F); 694 695 if (MadeChange) 696 eliminateFallThrough(F, DT.get()); 697 698 #ifndef NDEBUG 699 if (MadeChange && VerifyLoopInfo) 700 LI->verify(getDT(F)); 701 #endif 702 703 // Really free removed instructions during promotion. 704 for (Instruction *I : RemovedInsts) 705 I->deleteValue(); 706 707 EverMadeChange |= MadeChange; 708 SeenChainsForSExt.clear(); 709 ValToSExtendedUses.clear(); 710 RemovedInsts.clear(); 711 LargeOffsetGEPMap.clear(); 712 LargeOffsetGEPID.clear(); 713 } 714 715 NewGEPBases.clear(); 716 SunkAddrs.clear(); 717 718 if (!DisableBranchOpts) { 719 MadeChange = false; 720 // Use a set vector to get deterministic iteration order. The order the 721 // blocks are removed may affect whether or not PHI nodes in successors 722 // are removed. 723 SmallSetVector<BasicBlock *, 8> WorkList; 724 for (BasicBlock &BB : F) { 725 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 726 MadeChange |= ConstantFoldTerminator(&BB, true); 727 if (!MadeChange) 728 continue; 729 730 for (BasicBlock *Succ : Successors) 731 if (pred_empty(Succ)) 732 WorkList.insert(Succ); 733 } 734 735 // Delete the dead blocks and any of their dead successors. 736 MadeChange |= !WorkList.empty(); 737 while (!WorkList.empty()) { 738 BasicBlock *BB = WorkList.pop_back_val(); 739 SmallVector<BasicBlock *, 2> Successors(successors(BB)); 740 741 DeleteDeadBlock(BB); 742 743 for (BasicBlock *Succ : Successors) 744 if (pred_empty(Succ)) 745 WorkList.insert(Succ); 746 } 747 748 // Merge pairs of basic blocks with unconditional branches, connected by 749 // a single edge. 750 if (EverMadeChange || MadeChange) 751 MadeChange |= eliminateFallThrough(F); 752 753 EverMadeChange |= MadeChange; 754 } 755 756 if (!DisableGCOpts) { 757 SmallVector<GCStatepointInst *, 2> Statepoints; 758 for (BasicBlock &BB : F) 759 for (Instruction &I : BB) 760 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 761 Statepoints.push_back(SP); 762 for (auto &I : Statepoints) 763 EverMadeChange |= simplifyOffsetableRelocate(*I); 764 } 765 766 // Do this last to clean up use-before-def scenarios introduced by other 767 // preparatory transforms. 768 EverMadeChange |= placeDbgValues(F); 769 EverMadeChange |= placePseudoProbes(F); 770 771 #ifndef NDEBUG 772 if (VerifyBFIUpdates) 773 verifyBFIUpdates(F); 774 #endif 775 776 return EverMadeChange; 777 } 778 779 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 780 bool MadeChange = false; 781 for (BasicBlock &BB : F) { 782 CurInstIterator = BB.begin(); 783 while (CurInstIterator != BB.end()) { 784 Instruction *I = &*(CurInstIterator++); 785 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 786 MadeChange = true; 787 Value *Operand = Assume->getOperand(0); 788 Assume->eraseFromParent(); 789 790 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 791 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 792 }); 793 } 794 } 795 } 796 return MadeChange; 797 } 798 799 /// An instruction is about to be deleted, so remove all references to it in our 800 /// GEP-tracking data strcutures. 801 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 802 LargeOffsetGEPMap.erase(V); 803 NewGEPBases.erase(V); 804 805 auto GEP = dyn_cast<GetElementPtrInst>(V); 806 if (!GEP) 807 return; 808 809 LargeOffsetGEPID.erase(GEP); 810 811 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 812 if (VecI == LargeOffsetGEPMap.end()) 813 return; 814 815 auto &GEPVector = VecI->second; 816 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 817 818 if (GEPVector.empty()) 819 LargeOffsetGEPMap.erase(VecI); 820 } 821 822 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 823 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 824 DominatorTree NewDT(F); 825 LoopInfo NewLI(NewDT); 826 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 827 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 828 NewBFI.verifyMatch(*BFI); 829 } 830 831 /// Merge basic blocks which are connected by a single edge, where one of the 832 /// basic blocks has a single successor pointing to the other basic block, 833 /// which has a single predecessor. 834 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { 835 bool Changed = false; 836 // Scan all of the blocks in the function, except for the entry block. 837 // Use a temporary array to avoid iterator being invalidated when 838 // deleting blocks. 839 SmallVector<WeakTrackingVH, 16> Blocks; 840 for (auto &Block : llvm::drop_begin(F)) 841 Blocks.push_back(&Block); 842 843 SmallSet<WeakTrackingVH, 16> Preds; 844 for (auto &Block : Blocks) { 845 auto *BB = cast_or_null<BasicBlock>(Block); 846 if (!BB) 847 continue; 848 // If the destination block has a single pred, then this is a trivial 849 // edge, just collapse it. 850 BasicBlock *SinglePred = BB->getSinglePredecessor(); 851 852 // Don't merge if BB's address is taken. 853 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) 854 continue; 855 856 // Make an effort to skip unreachable blocks. 857 if (DT && !DT->isReachableFromEntry(BB)) 858 continue; 859 860 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 861 if (Term && !Term->isConditional()) { 862 Changed = true; 863 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 864 865 // Merge BB into SinglePred and delete it. 866 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, 867 /* MemDep */ nullptr, 868 /* PredecessorWithTwoSuccessors */ false, DT); 869 Preds.insert(SinglePred); 870 871 if (IsHugeFunc) { 872 // Update FreshBBs to optimize the merged BB. 873 FreshBBs.insert(SinglePred); 874 FreshBBs.erase(BB); 875 } 876 } 877 } 878 879 // (Repeatedly) merging blocks into their predecessors can create redundant 880 // debug intrinsics. 881 for (const auto &Pred : Preds) 882 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 883 RemoveRedundantDbgInstrs(BB); 884 885 return Changed; 886 } 887 888 /// Find a destination block from BB if BB is mergeable empty block. 889 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 890 // If this block doesn't end with an uncond branch, ignore it. 891 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 892 if (!BI || !BI->isUnconditional()) 893 return nullptr; 894 895 // If the instruction before the branch (skipping debug info) isn't a phi 896 // node, then other stuff is happening here. 897 BasicBlock::iterator BBI = BI->getIterator(); 898 if (BBI != BB->begin()) { 899 --BBI; 900 while (isa<DbgInfoIntrinsic>(BBI)) { 901 if (BBI == BB->begin()) 902 break; 903 --BBI; 904 } 905 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 906 return nullptr; 907 } 908 909 // Do not break infinite loops. 910 BasicBlock *DestBB = BI->getSuccessor(0); 911 if (DestBB == BB) 912 return nullptr; 913 914 if (!canMergeBlocks(BB, DestBB)) 915 DestBB = nullptr; 916 917 return DestBB; 918 } 919 920 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 921 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 922 /// edges in ways that are non-optimal for isel. Start by eliminating these 923 /// blocks so we can split them the way we want them. 924 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 925 SmallPtrSet<BasicBlock *, 16> Preheaders; 926 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 927 while (!LoopList.empty()) { 928 Loop *L = LoopList.pop_back_val(); 929 llvm::append_range(LoopList, *L); 930 if (BasicBlock *Preheader = L->getLoopPreheader()) 931 Preheaders.insert(Preheader); 932 } 933 934 bool MadeChange = false; 935 // Copy blocks into a temporary array to avoid iterator invalidation issues 936 // as we remove them. 937 // Note that this intentionally skips the entry block. 938 SmallVector<WeakTrackingVH, 16> Blocks; 939 for (auto &Block : llvm::drop_begin(F)) { 940 // Delete phi nodes that could block deleting other empty blocks. 941 if (!DisableDeletePHIs) 942 MadeChange |= DeleteDeadPHIs(&Block, TLInfo); 943 Blocks.push_back(&Block); 944 } 945 946 for (auto &Block : Blocks) { 947 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 948 if (!BB) 949 continue; 950 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 951 if (!DestBB || 952 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 953 continue; 954 955 eliminateMostlyEmptyBlock(BB); 956 MadeChange = true; 957 } 958 return MadeChange; 959 } 960 961 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 962 BasicBlock *DestBB, 963 bool isPreheader) { 964 // Do not delete loop preheaders if doing so would create a critical edge. 965 // Loop preheaders can be good locations to spill registers. If the 966 // preheader is deleted and we create a critical edge, registers may be 967 // spilled in the loop body instead. 968 if (!DisablePreheaderProtect && isPreheader && 969 !(BB->getSinglePredecessor() && 970 BB->getSinglePredecessor()->getSingleSuccessor())) 971 return false; 972 973 // Skip merging if the block's successor is also a successor to any callbr 974 // that leads to this block. 975 // FIXME: Is this really needed? Is this a correctness issue? 976 for (BasicBlock *Pred : predecessors(BB)) { 977 if (isa<CallBrInst>(Pred->getTerminator()) && 978 llvm::is_contained(successors(Pred), DestBB)) 979 return false; 980 } 981 982 // Try to skip merging if the unique predecessor of BB is terminated by a 983 // switch or indirect branch instruction, and BB is used as an incoming block 984 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 985 // add COPY instructions in the predecessor of BB instead of BB (if it is not 986 // merged). Note that the critical edge created by merging such blocks wont be 987 // split in MachineSink because the jump table is not analyzable. By keeping 988 // such empty block (BB), ISel will place COPY instructions in BB, not in the 989 // predecessor of BB. 990 BasicBlock *Pred = BB->getUniquePredecessor(); 991 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || 992 isa<IndirectBrInst>(Pred->getTerminator()))) 993 return true; 994 995 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 996 return true; 997 998 // We use a simple cost heuristic which determine skipping merging is 999 // profitable if the cost of skipping merging is less than the cost of 1000 // merging : Cost(skipping merging) < Cost(merging BB), where the 1001 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 1002 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 1003 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 1004 // Freq(Pred) / Freq(BB) > 2. 1005 // Note that if there are multiple empty blocks sharing the same incoming 1006 // value for the PHIs in the DestBB, we consider them together. In such 1007 // case, Cost(merging BB) will be the sum of their frequencies. 1008 1009 if (!isa<PHINode>(DestBB->begin())) 1010 return true; 1011 1012 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 1013 1014 // Find all other incoming blocks from which incoming values of all PHIs in 1015 // DestBB are the same as the ones from BB. 1016 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 1017 if (DestBBPred == BB) 1018 continue; 1019 1020 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 1021 return DestPN.getIncomingValueForBlock(BB) == 1022 DestPN.getIncomingValueForBlock(DestBBPred); 1023 })) 1024 SameIncomingValueBBs.insert(DestBBPred); 1025 } 1026 1027 // See if all BB's incoming values are same as the value from Pred. In this 1028 // case, no reason to skip merging because COPYs are expected to be place in 1029 // Pred already. 1030 if (SameIncomingValueBBs.count(Pred)) 1031 return true; 1032 1033 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 1034 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 1035 1036 for (auto *SameValueBB : SameIncomingValueBBs) 1037 if (SameValueBB->getUniquePredecessor() == Pred && 1038 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 1039 BBFreq += BFI->getBlockFreq(SameValueBB); 1040 1041 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge); 1042 return !Limit || PredFreq <= *Limit; 1043 } 1044 1045 /// Return true if we can merge BB into DestBB if there is a single 1046 /// unconditional branch between them, and BB contains no other non-phi 1047 /// instructions. 1048 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 1049 const BasicBlock *DestBB) const { 1050 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 1051 // the successor. If there are more complex condition (e.g. preheaders), 1052 // don't mess around with them. 1053 for (const PHINode &PN : BB->phis()) { 1054 for (const User *U : PN.users()) { 1055 const Instruction *UI = cast<Instruction>(U); 1056 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 1057 return false; 1058 // If User is inside DestBB block and it is a PHINode then check 1059 // incoming value. If incoming value is not from BB then this is 1060 // a complex condition (e.g. preheaders) we want to avoid here. 1061 if (UI->getParent() == DestBB) { 1062 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 1063 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 1064 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 1065 if (Insn && Insn->getParent() == BB && 1066 Insn->getParent() != UPN->getIncomingBlock(I)) 1067 return false; 1068 } 1069 } 1070 } 1071 } 1072 1073 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 1074 // and DestBB may have conflicting incoming values for the block. If so, we 1075 // can't merge the block. 1076 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 1077 if (!DestBBPN) 1078 return true; // no conflict. 1079 1080 // Collect the preds of BB. 1081 SmallPtrSet<const BasicBlock *, 16> BBPreds; 1082 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1083 // It is faster to get preds from a PHI than with pred_iterator. 1084 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1085 BBPreds.insert(BBPN->getIncomingBlock(i)); 1086 } else { 1087 BBPreds.insert(pred_begin(BB), pred_end(BB)); 1088 } 1089 1090 // Walk the preds of DestBB. 1091 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 1092 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 1093 if (BBPreds.count(Pred)) { // Common predecessor? 1094 for (const PHINode &PN : DestBB->phis()) { 1095 const Value *V1 = PN.getIncomingValueForBlock(Pred); 1096 const Value *V2 = PN.getIncomingValueForBlock(BB); 1097 1098 // If V2 is a phi node in BB, look up what the mapped value will be. 1099 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 1100 if (V2PN->getParent() == BB) 1101 V2 = V2PN->getIncomingValueForBlock(Pred); 1102 1103 // If there is a conflict, bail out. 1104 if (V1 != V2) 1105 return false; 1106 } 1107 } 1108 } 1109 1110 return true; 1111 } 1112 1113 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. 1114 static void replaceAllUsesWith(Value *Old, Value *New, 1115 SmallSet<BasicBlock *, 32> &FreshBBs, 1116 bool IsHuge) { 1117 auto *OldI = dyn_cast<Instruction>(Old); 1118 if (OldI) { 1119 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); 1120 UI != E; ++UI) { 1121 Instruction *User = cast<Instruction>(*UI); 1122 if (IsHuge) 1123 FreshBBs.insert(User->getParent()); 1124 } 1125 } 1126 Old->replaceAllUsesWith(New); 1127 } 1128 1129 /// Eliminate a basic block that has only phi's and an unconditional branch in 1130 /// it. 1131 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 1132 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1133 BasicBlock *DestBB = BI->getSuccessor(0); 1134 1135 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 1136 << *BB << *DestBB); 1137 1138 // If the destination block has a single pred, then this is a trivial edge, 1139 // just collapse it. 1140 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 1141 if (SinglePred != DestBB) { 1142 assert(SinglePred == BB && 1143 "Single predecessor not the same as predecessor"); 1144 // Merge DestBB into SinglePred/BB and delete it. 1145 MergeBlockIntoPredecessor(DestBB); 1146 // Note: BB(=SinglePred) will not be deleted on this path. 1147 // DestBB(=its single successor) is the one that was deleted. 1148 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 1149 1150 if (IsHugeFunc) { 1151 // Update FreshBBs to optimize the merged BB. 1152 FreshBBs.insert(SinglePred); 1153 FreshBBs.erase(DestBB); 1154 } 1155 return; 1156 } 1157 } 1158 1159 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 1160 // to handle the new incoming edges it is about to have. 1161 for (PHINode &PN : DestBB->phis()) { 1162 // Remove the incoming value for BB, and remember it. 1163 Value *InVal = PN.removeIncomingValue(BB, false); 1164 1165 // Two options: either the InVal is a phi node defined in BB or it is some 1166 // value that dominates BB. 1167 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 1168 if (InValPhi && InValPhi->getParent() == BB) { 1169 // Add all of the input values of the input PHI as inputs of this phi. 1170 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 1171 PN.addIncoming(InValPhi->getIncomingValue(i), 1172 InValPhi->getIncomingBlock(i)); 1173 } else { 1174 // Otherwise, add one instance of the dominating value for each edge that 1175 // we will be adding. 1176 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1177 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1178 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1179 } else { 1180 for (BasicBlock *Pred : predecessors(BB)) 1181 PN.addIncoming(InVal, Pred); 1182 } 1183 } 1184 } 1185 1186 // Preserve loop Metadata. 1187 if (BI->hasMetadata(LLVMContext::MD_loop)) { 1188 for (auto *Pred : predecessors(BB)) 1189 Pred->getTerminator()->copyMetadata(*BI, LLVMContext::MD_loop); 1190 } 1191 1192 // The PHIs are now updated, change everything that refers to BB to use 1193 // DestBB and remove BB. 1194 BB->replaceAllUsesWith(DestBB); 1195 BB->eraseFromParent(); 1196 ++NumBlocksElim; 1197 1198 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1199 } 1200 1201 // Computes a map of base pointer relocation instructions to corresponding 1202 // derived pointer relocation instructions given a vector of all relocate calls 1203 static void computeBaseDerivedRelocateMap( 1204 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1205 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> 1206 &RelocateInstMap) { 1207 // Collect information in two maps: one primarily for locating the base object 1208 // while filling the second map; the second map is the final structure holding 1209 // a mapping between Base and corresponding Derived relocate calls 1210 MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1211 for (auto *ThisRelocate : AllRelocateCalls) { 1212 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1213 ThisRelocate->getDerivedPtrIndex()); 1214 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1215 } 1216 for (auto &Item : RelocateIdxMap) { 1217 std::pair<unsigned, unsigned> Key = Item.first; 1218 if (Key.first == Key.second) 1219 // Base relocation: nothing to insert 1220 continue; 1221 1222 GCRelocateInst *I = Item.second; 1223 auto BaseKey = std::make_pair(Key.first, Key.first); 1224 1225 // We're iterating over RelocateIdxMap so we cannot modify it. 1226 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1227 if (MaybeBase == RelocateIdxMap.end()) 1228 // TODO: We might want to insert a new base object relocate and gep off 1229 // that, if there are enough derived object relocates. 1230 continue; 1231 1232 RelocateInstMap[MaybeBase->second].push_back(I); 1233 } 1234 } 1235 1236 // Accepts a GEP and extracts the operands into a vector provided they're all 1237 // small integer constants 1238 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1239 SmallVectorImpl<Value *> &OffsetV) { 1240 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1241 // Only accept small constant integer operands 1242 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1243 if (!Op || Op->getZExtValue() > 20) 1244 return false; 1245 } 1246 1247 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1248 OffsetV.push_back(GEP->getOperand(i)); 1249 return true; 1250 } 1251 1252 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1253 // replace, computes a replacement, and affects it. 1254 static bool 1255 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1256 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1257 bool MadeChange = false; 1258 // We must ensure the relocation of derived pointer is defined after 1259 // relocation of base pointer. If we find a relocation corresponding to base 1260 // defined earlier than relocation of base then we move relocation of base 1261 // right before found relocation. We consider only relocation in the same 1262 // basic block as relocation of base. Relocations from other basic block will 1263 // be skipped by optimization and we do not care about them. 1264 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1265 &*R != RelocatedBase; ++R) 1266 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1267 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1268 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1269 RelocatedBase->moveBefore(RI); 1270 MadeChange = true; 1271 break; 1272 } 1273 1274 for (GCRelocateInst *ToReplace : Targets) { 1275 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1276 "Not relocating a derived object of the original base object"); 1277 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1278 // A duplicate relocate call. TODO: coalesce duplicates. 1279 continue; 1280 } 1281 1282 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1283 // Base and derived relocates are in different basic blocks. 1284 // In this case transform is only valid when base dominates derived 1285 // relocate. However it would be too expensive to check dominance 1286 // for each such relocate, so we skip the whole transformation. 1287 continue; 1288 } 1289 1290 Value *Base = ToReplace->getBasePtr(); 1291 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1292 if (!Derived || Derived->getPointerOperand() != Base) 1293 continue; 1294 1295 SmallVector<Value *, 2> OffsetV; 1296 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1297 continue; 1298 1299 // Create a Builder and replace the target callsite with a gep 1300 assert(RelocatedBase->getNextNode() && 1301 "Should always have one since it's not a terminator"); 1302 1303 // Insert after RelocatedBase 1304 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1305 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1306 1307 // If gc_relocate does not match the actual type, cast it to the right type. 1308 // In theory, there must be a bitcast after gc_relocate if the type does not 1309 // match, and we should reuse it to get the derived pointer. But it could be 1310 // cases like this: 1311 // bb1: 1312 // ... 1313 // %g1 = call coldcc i8 addrspace(1)* 1314 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1315 // 1316 // bb2: 1317 // ... 1318 // %g2 = call coldcc i8 addrspace(1)* 1319 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1320 // 1321 // merge: 1322 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1323 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1324 // 1325 // In this case, we can not find the bitcast any more. So we insert a new 1326 // bitcast no matter there is already one or not. In this way, we can handle 1327 // all cases, and the extra bitcast should be optimized away in later 1328 // passes. 1329 Value *ActualRelocatedBase = RelocatedBase; 1330 if (RelocatedBase->getType() != Base->getType()) { 1331 ActualRelocatedBase = 1332 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1333 } 1334 Value *Replacement = 1335 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, 1336 ArrayRef(OffsetV)); 1337 Replacement->takeName(ToReplace); 1338 // If the newly generated derived pointer's type does not match the original 1339 // derived pointer's type, cast the new derived pointer to match it. Same 1340 // reasoning as above. 1341 Value *ActualReplacement = Replacement; 1342 if (Replacement->getType() != ToReplace->getType()) { 1343 ActualReplacement = 1344 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1345 } 1346 ToReplace->replaceAllUsesWith(ActualReplacement); 1347 ToReplace->eraseFromParent(); 1348 1349 MadeChange = true; 1350 } 1351 return MadeChange; 1352 } 1353 1354 // Turns this: 1355 // 1356 // %base = ... 1357 // %ptr = gep %base + 15 1358 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1359 // %base' = relocate(%tok, i32 4, i32 4) 1360 // %ptr' = relocate(%tok, i32 4, i32 5) 1361 // %val = load %ptr' 1362 // 1363 // into this: 1364 // 1365 // %base = ... 1366 // %ptr = gep %base + 15 1367 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1368 // %base' = gc.relocate(%tok, i32 4, i32 4) 1369 // %ptr' = gep %base' + 15 1370 // %val = load %ptr' 1371 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1372 bool MadeChange = false; 1373 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1374 for (auto *U : I.users()) 1375 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1376 // Collect all the relocate calls associated with a statepoint 1377 AllRelocateCalls.push_back(Relocate); 1378 1379 // We need at least one base pointer relocation + one derived pointer 1380 // relocation to mangle 1381 if (AllRelocateCalls.size() < 2) 1382 return false; 1383 1384 // RelocateInstMap is a mapping from the base relocate instruction to the 1385 // corresponding derived relocate instructions 1386 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap; 1387 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1388 if (RelocateInstMap.empty()) 1389 return false; 1390 1391 for (auto &Item : RelocateInstMap) 1392 // Item.first is the RelocatedBase to offset against 1393 // Item.second is the vector of Targets to replace 1394 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1395 return MadeChange; 1396 } 1397 1398 /// Sink the specified cast instruction into its user blocks. 1399 static bool SinkCast(CastInst *CI) { 1400 BasicBlock *DefBB = CI->getParent(); 1401 1402 /// InsertedCasts - Only insert a cast in each block once. 1403 DenseMap<BasicBlock *, CastInst *> InsertedCasts; 1404 1405 bool MadeChange = false; 1406 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1407 UI != E;) { 1408 Use &TheUse = UI.getUse(); 1409 Instruction *User = cast<Instruction>(*UI); 1410 1411 // Figure out which BB this cast is used in. For PHI's this is the 1412 // appropriate predecessor block. 1413 BasicBlock *UserBB = User->getParent(); 1414 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1415 UserBB = PN->getIncomingBlock(TheUse); 1416 } 1417 1418 // Preincrement use iterator so we don't invalidate it. 1419 ++UI; 1420 1421 // The first insertion point of a block containing an EH pad is after the 1422 // pad. If the pad is the user, we cannot sink the cast past the pad. 1423 if (User->isEHPad()) 1424 continue; 1425 1426 // If the block selected to receive the cast is an EH pad that does not 1427 // allow non-PHI instructions before the terminator, we can't sink the 1428 // cast. 1429 if (UserBB->getTerminator()->isEHPad()) 1430 continue; 1431 1432 // If this user is in the same block as the cast, don't change the cast. 1433 if (UserBB == DefBB) 1434 continue; 1435 1436 // If we have already inserted a cast into this block, use it. 1437 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1438 1439 if (!InsertedCast) { 1440 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1441 assert(InsertPt != UserBB->end()); 1442 InsertedCast = cast<CastInst>(CI->clone()); 1443 InsertedCast->insertBefore(*UserBB, InsertPt); 1444 } 1445 1446 // Replace a use of the cast with a use of the new cast. 1447 TheUse = InsertedCast; 1448 MadeChange = true; 1449 ++NumCastUses; 1450 } 1451 1452 // If we removed all uses, nuke the cast. 1453 if (CI->use_empty()) { 1454 salvageDebugInfo(*CI); 1455 CI->eraseFromParent(); 1456 MadeChange = true; 1457 } 1458 1459 return MadeChange; 1460 } 1461 1462 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1463 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1464 /// reduce the number of virtual registers that must be created and coalesced. 1465 /// 1466 /// Return true if any changes are made. 1467 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1468 const DataLayout &DL) { 1469 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1470 // than sinking only nop casts, but is helpful on some platforms. 1471 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1472 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1473 ASC->getDestAddressSpace())) 1474 return false; 1475 } 1476 1477 // If this is a noop copy, 1478 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1479 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1480 1481 // This is an fp<->int conversion? 1482 if (SrcVT.isInteger() != DstVT.isInteger()) 1483 return false; 1484 1485 // If this is an extension, it will be a zero or sign extension, which 1486 // isn't a noop. 1487 if (SrcVT.bitsLT(DstVT)) 1488 return false; 1489 1490 // If these values will be promoted, find out what they will be promoted 1491 // to. This helps us consider truncates on PPC as noop copies when they 1492 // are. 1493 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1494 TargetLowering::TypePromoteInteger) 1495 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1496 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1497 TargetLowering::TypePromoteInteger) 1498 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1499 1500 // If, after promotion, these are the same types, this is a noop copy. 1501 if (SrcVT != DstVT) 1502 return false; 1503 1504 return SinkCast(CI); 1505 } 1506 1507 // Match a simple increment by constant operation. Note that if a sub is 1508 // matched, the step is negated (as if the step had been canonicalized to 1509 // an add, even though we leave the instruction alone.) 1510 static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, 1511 Constant *&Step) { 1512 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1513 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1514 m_Instruction(LHS), m_Constant(Step))))) 1515 return true; 1516 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1517 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1518 m_Instruction(LHS), m_Constant(Step))))) { 1519 Step = ConstantExpr::getNeg(Step); 1520 return true; 1521 } 1522 return false; 1523 } 1524 1525 /// If given \p PN is an inductive variable with value IVInc coming from the 1526 /// backedge, and on each iteration it gets increased by Step, return pair 1527 /// <IVInc, Step>. Otherwise, return std::nullopt. 1528 static std::optional<std::pair<Instruction *, Constant *>> 1529 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1530 const Loop *L = LI->getLoopFor(PN->getParent()); 1531 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1532 return std::nullopt; 1533 auto *IVInc = 1534 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1535 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1536 return std::nullopt; 1537 Instruction *LHS = nullptr; 1538 Constant *Step = nullptr; 1539 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1540 return std::make_pair(IVInc, Step); 1541 return std::nullopt; 1542 } 1543 1544 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1545 auto *I = dyn_cast<Instruction>(V); 1546 if (!I) 1547 return false; 1548 Instruction *LHS = nullptr; 1549 Constant *Step = nullptr; 1550 if (!matchIncrement(I, LHS, Step)) 1551 return false; 1552 if (auto *PN = dyn_cast<PHINode>(LHS)) 1553 if (auto IVInc = getIVIncrement(PN, LI)) 1554 return IVInc->first == I; 1555 return false; 1556 } 1557 1558 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1559 Value *Arg0, Value *Arg1, 1560 CmpInst *Cmp, 1561 Intrinsic::ID IID) { 1562 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1563 if (!isIVIncrement(BO, LI)) 1564 return false; 1565 const Loop *L = LI->getLoopFor(BO->getParent()); 1566 assert(L && "L should not be null after isIVIncrement()"); 1567 // Do not risk on moving increment into a child loop. 1568 if (LI->getLoopFor(Cmp->getParent()) != L) 1569 return false; 1570 1571 // Finally, we need to ensure that the insert point will dominate all 1572 // existing uses of the increment. 1573 1574 auto &DT = getDT(*BO->getParent()->getParent()); 1575 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1576 // If we're moving up the dom tree, all uses are trivially dominated. 1577 // (This is the common case for code produced by LSR.) 1578 return true; 1579 1580 // Otherwise, special case the single use in the phi recurrence. 1581 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1582 }; 1583 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1584 // We used to use a dominator tree here to allow multi-block optimization. 1585 // But that was problematic because: 1586 // 1. It could cause a perf regression by hoisting the math op into the 1587 // critical path. 1588 // 2. It could cause a perf regression by creating a value that was live 1589 // across multiple blocks and increasing register pressure. 1590 // 3. Use of a dominator tree could cause large compile-time regression. 1591 // This is because we recompute the DT on every change in the main CGP 1592 // run-loop. The recomputing is probably unnecessary in many cases, so if 1593 // that was fixed, using a DT here would be ok. 1594 // 1595 // There is one important particular case we still want to handle: if BO is 1596 // the IV increment. Important properties that make it profitable: 1597 // - We can speculate IV increment anywhere in the loop (as long as the 1598 // indvar Phi is its only user); 1599 // - Upon computing Cmp, we effectively compute something equivalent to the 1600 // IV increment (despite it loops differently in the IR). So moving it up 1601 // to the cmp point does not really increase register pressure. 1602 return false; 1603 } 1604 1605 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1606 if (BO->getOpcode() == Instruction::Add && 1607 IID == Intrinsic::usub_with_overflow) { 1608 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1609 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1610 } 1611 1612 // Insert at the first instruction of the pair. 1613 Instruction *InsertPt = nullptr; 1614 for (Instruction &Iter : *Cmp->getParent()) { 1615 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1616 // the overflow intrinsic are defined. 1617 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1618 InsertPt = &Iter; 1619 break; 1620 } 1621 } 1622 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1623 1624 IRBuilder<> Builder(InsertPt); 1625 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1626 if (BO->getOpcode() != Instruction::Xor) { 1627 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1628 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); 1629 } else 1630 assert(BO->hasOneUse() && 1631 "Patterns with XOr should use the BO only in the compare"); 1632 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1633 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); 1634 Cmp->eraseFromParent(); 1635 BO->eraseFromParent(); 1636 return true; 1637 } 1638 1639 /// Match special-case patterns that check for unsigned add overflow. 1640 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1641 BinaryOperator *&Add) { 1642 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1643 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1644 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1645 1646 // We are not expecting non-canonical/degenerate code. Just bail out. 1647 if (isa<Constant>(A)) 1648 return false; 1649 1650 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1651 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1652 B = ConstantInt::get(B->getType(), 1); 1653 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1654 B = Constant::getAllOnesValue(B->getType()); 1655 else 1656 return false; 1657 1658 // Check the users of the variable operand of the compare looking for an add 1659 // with the adjusted constant. 1660 for (User *U : A->users()) { 1661 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1662 Add = cast<BinaryOperator>(U); 1663 return true; 1664 } 1665 } 1666 return false; 1667 } 1668 1669 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1670 /// intrinsic. Return true if any changes were made. 1671 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1672 ModifyDT &ModifiedDT) { 1673 bool EdgeCase = false; 1674 Value *A, *B; 1675 BinaryOperator *Add; 1676 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1677 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1678 return false; 1679 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1680 A = Add->getOperand(0); 1681 B = Add->getOperand(1); 1682 EdgeCase = true; 1683 } 1684 1685 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1686 TLI->getValueType(*DL, Add->getType()), 1687 Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) 1688 return false; 1689 1690 // We don't want to move around uses of condition values this late, so we 1691 // check if it is legal to create the call to the intrinsic in the basic 1692 // block containing the icmp. 1693 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1694 return false; 1695 1696 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1697 Intrinsic::uadd_with_overflow)) 1698 return false; 1699 1700 // Reset callers - do not crash by iterating over a dead instruction. 1701 ModifiedDT = ModifyDT::ModifyInstDT; 1702 return true; 1703 } 1704 1705 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1706 ModifyDT &ModifiedDT) { 1707 // We are not expecting non-canonical/degenerate code. Just bail out. 1708 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1709 if (isa<Constant>(A) && isa<Constant>(B)) 1710 return false; 1711 1712 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1713 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1714 if (Pred == ICmpInst::ICMP_UGT) { 1715 std::swap(A, B); 1716 Pred = ICmpInst::ICMP_ULT; 1717 } 1718 // Convert special-case: (A == 0) is the same as (A u< 1). 1719 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1720 B = ConstantInt::get(B->getType(), 1); 1721 Pred = ICmpInst::ICMP_ULT; 1722 } 1723 // Convert special-case: (A != 0) is the same as (0 u< A). 1724 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1725 std::swap(A, B); 1726 Pred = ICmpInst::ICMP_ULT; 1727 } 1728 if (Pred != ICmpInst::ICMP_ULT) 1729 return false; 1730 1731 // Walk the users of a variable operand of a compare looking for a subtract or 1732 // add with that same operand. Also match the 2nd operand of the compare to 1733 // the add/sub, but that may be a negated constant operand of an add. 1734 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1735 BinaryOperator *Sub = nullptr; 1736 for (User *U : CmpVariableOperand->users()) { 1737 // A - B, A u< B --> usubo(A, B) 1738 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1739 Sub = cast<BinaryOperator>(U); 1740 break; 1741 } 1742 1743 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1744 const APInt *CmpC, *AddC; 1745 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1746 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1747 Sub = cast<BinaryOperator>(U); 1748 break; 1749 } 1750 } 1751 if (!Sub) 1752 return false; 1753 1754 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1755 TLI->getValueType(*DL, Sub->getType()), 1756 Sub->hasNUsesOrMore(1))) 1757 return false; 1758 1759 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1760 Cmp, Intrinsic::usub_with_overflow)) 1761 return false; 1762 1763 // Reset callers - do not crash by iterating over a dead instruction. 1764 ModifiedDT = ModifyDT::ModifyInstDT; 1765 return true; 1766 } 1767 1768 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1769 /// registers that must be created and coalesced. This is a clear win except on 1770 /// targets with multiple condition code registers (PowerPC), where it might 1771 /// lose; some adjustment may be wanted there. 1772 /// 1773 /// Return true if any changes are made. 1774 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1775 if (TLI.hasMultipleConditionRegisters()) 1776 return false; 1777 1778 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1779 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1780 return false; 1781 1782 // Only insert a cmp in each block once. 1783 DenseMap<BasicBlock *, CmpInst *> InsertedCmps; 1784 1785 bool MadeChange = false; 1786 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1787 UI != E;) { 1788 Use &TheUse = UI.getUse(); 1789 Instruction *User = cast<Instruction>(*UI); 1790 1791 // Preincrement use iterator so we don't invalidate it. 1792 ++UI; 1793 1794 // Don't bother for PHI nodes. 1795 if (isa<PHINode>(User)) 1796 continue; 1797 1798 // Figure out which BB this cmp is used in. 1799 BasicBlock *UserBB = User->getParent(); 1800 BasicBlock *DefBB = Cmp->getParent(); 1801 1802 // If this user is in the same block as the cmp, don't change the cmp. 1803 if (UserBB == DefBB) 1804 continue; 1805 1806 // If we have already inserted a cmp into this block, use it. 1807 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1808 1809 if (!InsertedCmp) { 1810 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1811 assert(InsertPt != UserBB->end()); 1812 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1813 Cmp->getOperand(0), Cmp->getOperand(1), ""); 1814 InsertedCmp->insertBefore(*UserBB, InsertPt); 1815 // Propagate the debug info. 1816 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1817 } 1818 1819 // Replace a use of the cmp with a use of the new cmp. 1820 TheUse = InsertedCmp; 1821 MadeChange = true; 1822 ++NumCmpUses; 1823 } 1824 1825 // If we removed all uses, nuke the cmp. 1826 if (Cmp->use_empty()) { 1827 Cmp->eraseFromParent(); 1828 MadeChange = true; 1829 } 1830 1831 return MadeChange; 1832 } 1833 1834 /// For pattern like: 1835 /// 1836 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1837 /// ... 1838 /// DomBB: 1839 /// ... 1840 /// br DomCond, TrueBB, CmpBB 1841 /// CmpBB: (with DomBB being the single predecessor) 1842 /// ... 1843 /// Cmp = icmp eq CmpOp0, CmpOp1 1844 /// ... 1845 /// 1846 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1847 /// different from lowering of icmp eq (PowerPC). This function try to convert 1848 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1849 /// After that, DomCond and Cmp can use the same comparison so reduce one 1850 /// comparison. 1851 /// 1852 /// Return true if any changes are made. 1853 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1854 const TargetLowering &TLI) { 1855 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1856 return false; 1857 1858 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1859 if (Pred != ICmpInst::ICMP_EQ) 1860 return false; 1861 1862 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1863 // icmp slt/sgt would introduce more redundant LLVM IR. 1864 for (User *U : Cmp->users()) { 1865 if (isa<BranchInst>(U)) 1866 continue; 1867 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1868 continue; 1869 return false; 1870 } 1871 1872 // This is a cheap/incomplete check for dominance - just match a single 1873 // predecessor with a conditional branch. 1874 BasicBlock *CmpBB = Cmp->getParent(); 1875 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1876 if (!DomBB) 1877 return false; 1878 1879 // We want to ensure that the only way control gets to the comparison of 1880 // interest is that a less/greater than comparison on the same operands is 1881 // false. 1882 Value *DomCond; 1883 BasicBlock *TrueBB, *FalseBB; 1884 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1885 return false; 1886 if (CmpBB != FalseBB) 1887 return false; 1888 1889 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1890 ICmpInst::Predicate DomPred; 1891 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1892 return false; 1893 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1894 return false; 1895 1896 // Convert the equality comparison to the opposite of the dominating 1897 // comparison and swap the direction for all branch/select users. 1898 // We have conceptually converted: 1899 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1900 // to 1901 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1902 // And similarly for branches. 1903 for (User *U : Cmp->users()) { 1904 if (auto *BI = dyn_cast<BranchInst>(U)) { 1905 assert(BI->isConditional() && "Must be conditional"); 1906 BI->swapSuccessors(); 1907 continue; 1908 } 1909 if (auto *SI = dyn_cast<SelectInst>(U)) { 1910 // Swap operands 1911 SI->swapValues(); 1912 SI->swapProfMetadata(); 1913 continue; 1914 } 1915 llvm_unreachable("Must be a branch or a select"); 1916 } 1917 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1918 return true; 1919 } 1920 1921 /// Many architectures use the same instruction for both subtract and cmp. Try 1922 /// to swap cmp operands to match subtract operations to allow for CSE. 1923 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { 1924 Value *Op0 = Cmp->getOperand(0); 1925 Value *Op1 = Cmp->getOperand(1); 1926 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) || 1927 isa<Constant>(Op1) || Op0 == Op1) 1928 return false; 1929 1930 // If a subtract already has the same operands as a compare, swapping would be 1931 // bad. If a subtract has the same operands as a compare but in reverse order, 1932 // then swapping is good. 1933 int GoodToSwap = 0; 1934 unsigned NumInspected = 0; 1935 for (const User *U : Op0->users()) { 1936 // Avoid walking many users. 1937 if (++NumInspected > 128) 1938 return false; 1939 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 1940 GoodToSwap++; 1941 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 1942 GoodToSwap--; 1943 } 1944 1945 if (GoodToSwap > 0) { 1946 Cmp->swapOperands(); 1947 return true; 1948 } 1949 return false; 1950 } 1951 1952 static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI, 1953 const DataLayout &DL) { 1954 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp); 1955 if (!FCmp) 1956 return false; 1957 1958 // Don't fold if the target offers free fabs and the predicate is legal. 1959 EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType()); 1960 if (TLI.isFAbsFree(VT) && 1961 TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()), 1962 VT.getSimpleVT())) 1963 return false; 1964 1965 // Reverse the canonicalization if it is a FP class test 1966 auto ShouldReverseTransform = [](FPClassTest ClassTest) { 1967 return ClassTest == fcInf || ClassTest == (fcInf | fcNan); 1968 }; 1969 auto [ClassVal, ClassTest] = 1970 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), 1971 FCmp->getOperand(0), FCmp->getOperand(1)); 1972 if (!ClassVal) 1973 return false; 1974 1975 if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest)) 1976 return false; 1977 1978 IRBuilder<> Builder(Cmp); 1979 Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest); 1980 Cmp->replaceAllUsesWith(IsFPClass); 1981 RecursivelyDeleteTriviallyDeadInstructions(Cmp); 1982 return true; 1983 } 1984 1985 static bool isRemOfLoopIncrementWithLoopInvariant(Instruction *Rem, 1986 const LoopInfo *LI, 1987 Value *&RemAmtOut, 1988 PHINode *&LoopIncrPNOut) { 1989 Value *Incr, *RemAmt; 1990 // NB: If RemAmt is a power of 2 it *should* have been transformed by now. 1991 if (!match(Rem, m_URem(m_Value(Incr), m_Value(RemAmt)))) 1992 return false; 1993 1994 // Find out loop increment PHI. 1995 auto *PN = dyn_cast<PHINode>(Incr); 1996 if (!PN) 1997 return false; 1998 1999 // This isn't strictly necessary, what we really need is one increment and any 2000 // amount of initial values all being the same. 2001 if (PN->getNumIncomingValues() != 2) 2002 return false; 2003 2004 // Only trivially analyzable loops. 2005 Loop *L = LI->getLoopFor(PN->getParent()); 2006 if (!L || !L->getLoopPreheader() || !L->getLoopLatch()) 2007 return false; 2008 2009 // Req that the remainder is in the loop 2010 if (!L->contains(Rem)) 2011 return false; 2012 2013 // Only works if the remainder amount is a loop invaraint 2014 if (!L->isLoopInvariant(RemAmt)) 2015 return false; 2016 2017 // Is the PHI a loop increment? 2018 auto LoopIncrInfo = getIVIncrement(PN, LI); 2019 if (!LoopIncrInfo) 2020 return false; 2021 2022 // We need remainder_amount % increment_amount to be zero. Increment of one 2023 // satisfies that without any special logic and is overwhelmingly the common 2024 // case. 2025 if (!match(LoopIncrInfo->second, m_One())) 2026 return false; 2027 2028 // Need the increment to not overflow. 2029 if (!match(LoopIncrInfo->first, m_c_NUWAdd(m_Specific(PN), m_Value()))) 2030 return false; 2031 2032 // Set output variables. 2033 RemAmtOut = RemAmt; 2034 LoopIncrPNOut = PN; 2035 2036 return true; 2037 } 2038 2039 // Try to transform: 2040 // 2041 // for(i = Start; i < End; ++i) 2042 // Rem = (i nuw+ IncrLoopInvariant) u% RemAmtLoopInvariant; 2043 // 2044 // -> 2045 // 2046 // Rem = (Start nuw+ IncrLoopInvariant) % RemAmtLoopInvariant; 2047 // for(i = Start; i < End; ++i, ++rem) 2048 // Rem = rem == RemAmtLoopInvariant ? 0 : Rem; 2049 // 2050 // Currently only implemented for `IncrLoopInvariant` being zero. 2051 static bool foldURemOfLoopIncrement(Instruction *Rem, const DataLayout *DL, 2052 const LoopInfo *LI, 2053 SmallSet<BasicBlock *, 32> &FreshBBs, 2054 bool IsHuge) { 2055 Value *RemAmt; 2056 PHINode *LoopIncrPN; 2057 if (!isRemOfLoopIncrementWithLoopInvariant(Rem, LI, RemAmt, LoopIncrPN)) 2058 return false; 2059 2060 // Only non-constant remainder as the extra IV is probably not profitable 2061 // in that case. 2062 // 2063 // Potential TODO(1): `urem` of a const ends up as `mul` + `shift` + `add`. If 2064 // we can rule out register pressure and ensure this `urem` is executed each 2065 // iteration, its probably profitable to handle the const case as well. 2066 // 2067 // Potential TODO(2): Should we have a check for how "nested" this remainder 2068 // operation is? The new code runs every iteration so if the remainder is 2069 // guarded behind unlikely conditions this might not be worth it. 2070 if (match(RemAmt, m_ImmConstant())) 2071 return false; 2072 2073 Loop *L = LI->getLoopFor(LoopIncrPN->getParent()); 2074 Value *Start = LoopIncrPN->getIncomingValueForBlock(L->getLoopPreheader()); 2075 // If we can't fully optimize out the `rem`, skip this transform. 2076 Start = simplifyURemInst(Start, RemAmt, *DL); 2077 if (!Start) 2078 return false; 2079 2080 // Create new remainder with induction variable. 2081 Type *Ty = Rem->getType(); 2082 IRBuilder<> Builder(Rem->getContext()); 2083 2084 Builder.SetInsertPoint(LoopIncrPN); 2085 PHINode *NewRem = Builder.CreatePHI(Ty, 2); 2086 2087 Builder.SetInsertPoint(cast<Instruction>( 2088 LoopIncrPN->getIncomingValueForBlock(L->getLoopLatch()))); 2089 // `(add (urem x, y), 1)` is always nuw. 2090 Value *RemAdd = Builder.CreateNUWAdd(NewRem, ConstantInt::get(Ty, 1)); 2091 Value *RemCmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, RemAdd, RemAmt); 2092 Value *RemSel = 2093 Builder.CreateSelect(RemCmp, Constant::getNullValue(Ty), RemAdd); 2094 2095 NewRem->addIncoming(Start, L->getLoopPreheader()); 2096 NewRem->addIncoming(RemSel, L->getLoopLatch()); 2097 2098 // Insert all touched BBs. 2099 FreshBBs.insert(LoopIncrPN->getParent()); 2100 FreshBBs.insert(L->getLoopLatch()); 2101 FreshBBs.insert(Rem->getParent()); 2102 2103 replaceAllUsesWith(Rem, NewRem, FreshBBs, IsHuge); 2104 Rem->eraseFromParent(); 2105 return true; 2106 } 2107 2108 bool CodeGenPrepare::optimizeURem(Instruction *Rem) { 2109 if (foldURemOfLoopIncrement(Rem, DL, LI, FreshBBs, IsHugeFunc)) 2110 return true; 2111 return false; 2112 } 2113 2114 /// Some targets have better codegen for `ctpop(X) u< 2` than `ctpop(X) == 1`. 2115 /// This function converts `ctpop(X) ==/!= 1` into `ctpop(X) u</u> 2/1` if the 2116 /// result cannot be zero. 2117 static bool adjustIsPower2Test(CmpInst *Cmp, const TargetLowering &TLI, 2118 const TargetTransformInfo &TTI, 2119 const DataLayout &DL) { 2120 ICmpInst::Predicate Pred; 2121 if (!match(Cmp, m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(), m_One()))) 2122 return false; 2123 if (!ICmpInst::isEquality(Pred)) 2124 return false; 2125 auto *II = cast<IntrinsicInst>(Cmp->getOperand(0)); 2126 2127 if (isKnownNonZero(II, DL)) { 2128 if (Pred == ICmpInst::ICMP_EQ) { 2129 Cmp->setOperand(1, ConstantInt::get(II->getType(), 2)); 2130 Cmp->setPredicate(ICmpInst::ICMP_ULT); 2131 } else { 2132 Cmp->setPredicate(ICmpInst::ICMP_UGT); 2133 } 2134 return true; 2135 } 2136 return false; 2137 } 2138 2139 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { 2140 if (sinkCmpExpression(Cmp, *TLI)) 2141 return true; 2142 2143 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 2144 return true; 2145 2146 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 2147 return true; 2148 2149 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 2150 return true; 2151 2152 if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) 2153 return true; 2154 2155 if (foldFCmpToFPClassTest(Cmp, *TLI, *DL)) 2156 return true; 2157 2158 if (adjustIsPower2Test(Cmp, *TLI, *TTI, *DL)) 2159 return true; 2160 2161 return false; 2162 } 2163 2164 /// Duplicate and sink the given 'and' instruction into user blocks where it is 2165 /// used in a compare to allow isel to generate better code for targets where 2166 /// this operation can be combined. 2167 /// 2168 /// Return true if any changes are made. 2169 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, 2170 SetOfInstrs &InsertedInsts) { 2171 // Double-check that we're not trying to optimize an instruction that was 2172 // already optimized by some other part of this pass. 2173 assert(!InsertedInsts.count(AndI) && 2174 "Attempting to optimize already optimized and instruction"); 2175 (void)InsertedInsts; 2176 2177 // Nothing to do for single use in same basic block. 2178 if (AndI->hasOneUse() && 2179 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 2180 return false; 2181 2182 // Try to avoid cases where sinking/duplicating is likely to increase register 2183 // pressure. 2184 if (!isa<ConstantInt>(AndI->getOperand(0)) && 2185 !isa<ConstantInt>(AndI->getOperand(1)) && 2186 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 2187 return false; 2188 2189 for (auto *U : AndI->users()) { 2190 Instruction *User = cast<Instruction>(U); 2191 2192 // Only sink 'and' feeding icmp with 0. 2193 if (!isa<ICmpInst>(User)) 2194 return false; 2195 2196 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 2197 if (!CmpC || !CmpC->isZero()) 2198 return false; 2199 } 2200 2201 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 2202 return false; 2203 2204 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 2205 LLVM_DEBUG(AndI->getParent()->dump()); 2206 2207 // Push the 'and' into the same block as the icmp 0. There should only be 2208 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 2209 // others, so we don't need to keep track of which BBs we insert into. 2210 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 2211 UI != E;) { 2212 Use &TheUse = UI.getUse(); 2213 Instruction *User = cast<Instruction>(*UI); 2214 2215 // Preincrement use iterator so we don't invalidate it. 2216 ++UI; 2217 2218 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 2219 2220 // Keep the 'and' in the same place if the use is already in the same block. 2221 Instruction *InsertPt = 2222 User->getParent() == AndI->getParent() ? AndI : User; 2223 Instruction *InsertedAnd = BinaryOperator::Create( 2224 Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "", 2225 InsertPt->getIterator()); 2226 // Propagate the debug info. 2227 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 2228 2229 // Replace a use of the 'and' with a use of the new 'and'. 2230 TheUse = InsertedAnd; 2231 ++NumAndUses; 2232 LLVM_DEBUG(User->getParent()->dump()); 2233 } 2234 2235 // We removed all uses, nuke the and. 2236 AndI->eraseFromParent(); 2237 return true; 2238 } 2239 2240 /// Check if the candidates could be combined with a shift instruction, which 2241 /// includes: 2242 /// 1. Truncate instruction 2243 /// 2. And instruction and the imm is a mask of the low bits: 2244 /// imm & (imm+1) == 0 2245 static bool isExtractBitsCandidateUse(Instruction *User) { 2246 if (!isa<TruncInst>(User)) { 2247 if (User->getOpcode() != Instruction::And || 2248 !isa<ConstantInt>(User->getOperand(1))) 2249 return false; 2250 2251 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 2252 2253 if ((Cimm & (Cimm + 1)).getBoolValue()) 2254 return false; 2255 } 2256 return true; 2257 } 2258 2259 /// Sink both shift and truncate instruction to the use of truncate's BB. 2260 static bool 2261 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 2262 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 2263 const TargetLowering &TLI, const DataLayout &DL) { 2264 BasicBlock *UserBB = User->getParent(); 2265 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 2266 auto *TruncI = cast<TruncInst>(User); 2267 bool MadeChange = false; 2268 2269 for (Value::user_iterator TruncUI = TruncI->user_begin(), 2270 TruncE = TruncI->user_end(); 2271 TruncUI != TruncE;) { 2272 2273 Use &TruncTheUse = TruncUI.getUse(); 2274 Instruction *TruncUser = cast<Instruction>(*TruncUI); 2275 // Preincrement use iterator so we don't invalidate it. 2276 2277 ++TruncUI; 2278 2279 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 2280 if (!ISDOpcode) 2281 continue; 2282 2283 // If the use is actually a legal node, there will not be an 2284 // implicit truncate. 2285 // FIXME: always querying the result type is just an 2286 // approximation; some nodes' legality is determined by the 2287 // operand or other means. There's no good way to find out though. 2288 if (TLI.isOperationLegalOrCustom( 2289 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 2290 continue; 2291 2292 // Don't bother for PHI nodes. 2293 if (isa<PHINode>(TruncUser)) 2294 continue; 2295 2296 BasicBlock *TruncUserBB = TruncUser->getParent(); 2297 2298 if (UserBB == TruncUserBB) 2299 continue; 2300 2301 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 2302 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 2303 2304 if (!InsertedShift && !InsertedTrunc) { 2305 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 2306 assert(InsertPt != TruncUserBB->end()); 2307 // Sink the shift 2308 if (ShiftI->getOpcode() == Instruction::AShr) 2309 InsertedShift = 2310 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2311 else 2312 InsertedShift = 2313 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2314 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2315 InsertedShift->insertBefore(*TruncUserBB, InsertPt); 2316 2317 // Sink the trunc 2318 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 2319 TruncInsertPt++; 2320 // It will go ahead of any debug-info. 2321 TruncInsertPt.setHeadBit(true); 2322 assert(TruncInsertPt != TruncUserBB->end()); 2323 2324 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 2325 TruncI->getType(), ""); 2326 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt); 2327 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 2328 2329 MadeChange = true; 2330 2331 TruncTheUse = InsertedTrunc; 2332 } 2333 } 2334 return MadeChange; 2335 } 2336 2337 /// Sink the shift *right* instruction into user blocks if the uses could 2338 /// potentially be combined with this shift instruction and generate BitExtract 2339 /// instruction. It will only be applied if the architecture supports BitExtract 2340 /// instruction. Here is an example: 2341 /// BB1: 2342 /// %x.extract.shift = lshr i64 %arg1, 32 2343 /// BB2: 2344 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 2345 /// ==> 2346 /// 2347 /// BB2: 2348 /// %x.extract.shift.1 = lshr i64 %arg1, 32 2349 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 2350 /// 2351 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 2352 /// instruction. 2353 /// Return true if any changes are made. 2354 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 2355 const TargetLowering &TLI, 2356 const DataLayout &DL) { 2357 BasicBlock *DefBB = ShiftI->getParent(); 2358 2359 /// Only insert instructions in each block once. 2360 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 2361 2362 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 2363 2364 bool MadeChange = false; 2365 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 2366 UI != E;) { 2367 Use &TheUse = UI.getUse(); 2368 Instruction *User = cast<Instruction>(*UI); 2369 // Preincrement use iterator so we don't invalidate it. 2370 ++UI; 2371 2372 // Don't bother for PHI nodes. 2373 if (isa<PHINode>(User)) 2374 continue; 2375 2376 if (!isExtractBitsCandidateUse(User)) 2377 continue; 2378 2379 BasicBlock *UserBB = User->getParent(); 2380 2381 if (UserBB == DefBB) { 2382 // If the shift and truncate instruction are in the same BB. The use of 2383 // the truncate(TruncUse) may still introduce another truncate if not 2384 // legal. In this case, we would like to sink both shift and truncate 2385 // instruction to the BB of TruncUse. 2386 // for example: 2387 // BB1: 2388 // i64 shift.result = lshr i64 opnd, imm 2389 // trunc.result = trunc shift.result to i16 2390 // 2391 // BB2: 2392 // ----> We will have an implicit truncate here if the architecture does 2393 // not have i16 compare. 2394 // cmp i16 trunc.result, opnd2 2395 // 2396 if (isa<TruncInst>(User) && 2397 shiftIsLegal 2398 // If the type of the truncate is legal, no truncate will be 2399 // introduced in other basic blocks. 2400 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 2401 MadeChange = 2402 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 2403 2404 continue; 2405 } 2406 // If we have already inserted a shift into this block, use it. 2407 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 2408 2409 if (!InsertedShift) { 2410 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2411 assert(InsertPt != UserBB->end()); 2412 2413 if (ShiftI->getOpcode() == Instruction::AShr) 2414 InsertedShift = 2415 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2416 else 2417 InsertedShift = 2418 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2419 InsertedShift->insertBefore(*UserBB, InsertPt); 2420 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2421 2422 MadeChange = true; 2423 } 2424 2425 // Replace a use of the shift with a use of the new shift. 2426 TheUse = InsertedShift; 2427 } 2428 2429 // If we removed all uses, or there are none, nuke the shift. 2430 if (ShiftI->use_empty()) { 2431 salvageDebugInfo(*ShiftI); 2432 ShiftI->eraseFromParent(); 2433 MadeChange = true; 2434 } 2435 2436 return MadeChange; 2437 } 2438 2439 /// If counting leading or trailing zeros is an expensive operation and a zero 2440 /// input is defined, add a check for zero to avoid calling the intrinsic. 2441 /// 2442 /// We want to transform: 2443 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2444 /// 2445 /// into: 2446 /// entry: 2447 /// %cmpz = icmp eq i64 %A, 0 2448 /// br i1 %cmpz, label %cond.end, label %cond.false 2449 /// cond.false: 2450 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2451 /// br label %cond.end 2452 /// cond.end: 2453 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2454 /// 2455 /// If the transform is performed, return true and set ModifiedDT to true. 2456 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2457 LoopInfo &LI, 2458 const TargetLowering *TLI, 2459 const DataLayout *DL, ModifyDT &ModifiedDT, 2460 SmallSet<BasicBlock *, 32> &FreshBBs, 2461 bool IsHugeFunc) { 2462 // If a zero input is undefined, it doesn't make sense to despeculate that. 2463 if (match(CountZeros->getOperand(1), m_One())) 2464 return false; 2465 2466 // If it's cheap to speculate, there's nothing to do. 2467 Type *Ty = CountZeros->getType(); 2468 auto IntrinsicID = CountZeros->getIntrinsicID(); 2469 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || 2470 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) 2471 return false; 2472 2473 // Only handle legal scalar cases. Anything else requires too much work. 2474 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2475 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2476 return false; 2477 2478 // Bail if the value is never zero. 2479 Use &Op = CountZeros->getOperandUse(0); 2480 if (isKnownNonZero(Op, *DL)) 2481 return false; 2482 2483 // The intrinsic will be sunk behind a compare against zero and branch. 2484 BasicBlock *StartBlock = CountZeros->getParent(); 2485 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2486 if (IsHugeFunc) 2487 FreshBBs.insert(CallBlock); 2488 2489 // Create another block after the count zero intrinsic. A PHI will be added 2490 // in this block to select the result of the intrinsic or the bit-width 2491 // constant if the input to the intrinsic is zero. 2492 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros)); 2493 // Any debug-info after CountZeros should not be included. 2494 SplitPt.setHeadBit(true); 2495 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2496 if (IsHugeFunc) 2497 FreshBBs.insert(EndBlock); 2498 2499 // Update the LoopInfo. The new blocks are in the same loop as the start 2500 // block. 2501 if (Loop *L = LI.getLoopFor(StartBlock)) { 2502 L->addBasicBlockToLoop(CallBlock, LI); 2503 L->addBasicBlockToLoop(EndBlock, LI); 2504 } 2505 2506 // Set up a builder to create a compare, conditional branch, and PHI. 2507 IRBuilder<> Builder(CountZeros->getContext()); 2508 Builder.SetInsertPoint(StartBlock->getTerminator()); 2509 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2510 2511 // Replace the unconditional branch that was created by the first split with 2512 // a compare against zero and a conditional branch. 2513 Value *Zero = Constant::getNullValue(Ty); 2514 // Avoid introducing branch on poison. This also replaces the ctz operand. 2515 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2516 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2517 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2518 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2519 StartBlock->getTerminator()->eraseFromParent(); 2520 2521 // Create a PHI in the end block to select either the output of the intrinsic 2522 // or the bit width of the operand. 2523 Builder.SetInsertPoint(EndBlock, EndBlock->begin()); 2524 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2525 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); 2526 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2527 PN->addIncoming(BitWidth, StartBlock); 2528 PN->addIncoming(CountZeros, CallBlock); 2529 2530 // We are explicitly handling the zero case, so we can set the intrinsic's 2531 // undefined zero argument to 'true'. This will also prevent reprocessing the 2532 // intrinsic; we only despeculate when a zero input is defined. 2533 CountZeros->setArgOperand(1, Builder.getTrue()); 2534 ModifiedDT = ModifyDT::ModifyBBDT; 2535 return true; 2536 } 2537 2538 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { 2539 BasicBlock *BB = CI->getParent(); 2540 2541 // Lower inline assembly if we can. 2542 // If we found an inline asm expession, and if the target knows how to 2543 // lower it to normal LLVM code, do so now. 2544 if (CI->isInlineAsm()) { 2545 if (TLI->ExpandInlineAsm(CI)) { 2546 // Avoid invalidating the iterator. 2547 CurInstIterator = BB->begin(); 2548 // Avoid processing instructions out of order, which could cause 2549 // reuse before a value is defined. 2550 SunkAddrs.clear(); 2551 return true; 2552 } 2553 // Sink address computing for memory operands into the block. 2554 if (optimizeInlineAsmInst(CI)) 2555 return true; 2556 } 2557 2558 // Align the pointer arguments to this call if the target thinks it's a good 2559 // idea 2560 unsigned MinSize; 2561 Align PrefAlign; 2562 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2563 for (auto &Arg : CI->args()) { 2564 // We want to align both objects whose address is used directly and 2565 // objects whose address is used in casts and GEPs, though it only makes 2566 // sense for GEPs if the offset is a multiple of the desired alignment and 2567 // if size - offset meets the size threshold. 2568 if (!Arg->getType()->isPointerTy()) 2569 continue; 2570 APInt Offset(DL->getIndexSizeInBits( 2571 cast<PointerType>(Arg->getType())->getAddressSpace()), 2572 0); 2573 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2574 uint64_t Offset2 = Offset.getLimitedValue(); 2575 if (!isAligned(PrefAlign, Offset2)) 2576 continue; 2577 AllocaInst *AI; 2578 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2579 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2580 AI->setAlignment(PrefAlign); 2581 // Global variables can only be aligned if they are defined in this 2582 // object (i.e. they are uniquely initialized in this object), and 2583 // over-aligning global variables that have an explicit section is 2584 // forbidden. 2585 GlobalVariable *GV; 2586 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2587 GV->getPointerAlignment(*DL) < PrefAlign && 2588 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) 2589 GV->setAlignment(PrefAlign); 2590 } 2591 } 2592 // If this is a memcpy (or similar) then we may be able to improve the 2593 // alignment. 2594 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2595 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2596 MaybeAlign MIDestAlign = MI->getDestAlign(); 2597 if (!MIDestAlign || DestAlign > *MIDestAlign) 2598 MI->setDestAlignment(DestAlign); 2599 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2600 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2601 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2602 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2603 MTI->setSourceAlignment(SrcAlign); 2604 } 2605 } 2606 2607 // If we have a cold call site, try to sink addressing computation into the 2608 // cold block. This interacts with our handling for loads and stores to 2609 // ensure that we can fold all uses of a potential addressing computation 2610 // into their uses. TODO: generalize this to work over profiling data 2611 if (CI->hasFnAttr(Attribute::Cold) && !OptSize && 2612 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2613 for (auto &Arg : CI->args()) { 2614 if (!Arg->getType()->isPointerTy()) 2615 continue; 2616 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2617 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) 2618 return true; 2619 } 2620 2621 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2622 if (II) { 2623 switch (II->getIntrinsicID()) { 2624 default: 2625 break; 2626 case Intrinsic::assume: 2627 llvm_unreachable("llvm.assume should have been removed already"); 2628 case Intrinsic::allow_runtime_check: 2629 case Intrinsic::allow_ubsan_check: 2630 case Intrinsic::experimental_widenable_condition: { 2631 // Give up on future widening opportunities so that we can fold away dead 2632 // paths and merge blocks before going into block-local instruction 2633 // selection. 2634 if (II->use_empty()) { 2635 II->eraseFromParent(); 2636 return true; 2637 } 2638 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2639 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2640 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2641 }); 2642 return true; 2643 } 2644 case Intrinsic::objectsize: 2645 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2646 case Intrinsic::is_constant: 2647 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2648 case Intrinsic::aarch64_stlxr: 2649 case Intrinsic::aarch64_stxr: { 2650 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2651 if (!ExtVal || !ExtVal->hasOneUse() || 2652 ExtVal->getParent() == CI->getParent()) 2653 return false; 2654 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2655 ExtVal->moveBefore(CI); 2656 // Mark this instruction as "inserted by CGP", so that other 2657 // optimizations don't touch it. 2658 InsertedInsts.insert(ExtVal); 2659 return true; 2660 } 2661 2662 case Intrinsic::launder_invariant_group: 2663 case Intrinsic::strip_invariant_group: { 2664 Value *ArgVal = II->getArgOperand(0); 2665 auto it = LargeOffsetGEPMap.find(II); 2666 if (it != LargeOffsetGEPMap.end()) { 2667 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2668 // Make sure not to have to deal with iterator invalidation 2669 // after possibly adding ArgVal to LargeOffsetGEPMap. 2670 auto GEPs = std::move(it->second); 2671 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2672 LargeOffsetGEPMap.erase(II); 2673 } 2674 2675 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); 2676 II->eraseFromParent(); 2677 return true; 2678 } 2679 case Intrinsic::cttz: 2680 case Intrinsic::ctlz: 2681 // If counting zeros is expensive, try to avoid it. 2682 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs, 2683 IsHugeFunc); 2684 case Intrinsic::fshl: 2685 case Intrinsic::fshr: 2686 return optimizeFunnelShift(II); 2687 case Intrinsic::dbg_assign: 2688 case Intrinsic::dbg_value: 2689 return fixupDbgValue(II); 2690 case Intrinsic::masked_gather: 2691 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2692 case Intrinsic::masked_scatter: 2693 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2694 } 2695 2696 SmallVector<Value *, 2> PtrOps; 2697 Type *AccessTy; 2698 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2699 while (!PtrOps.empty()) { 2700 Value *PtrVal = PtrOps.pop_back_val(); 2701 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2702 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2703 return true; 2704 } 2705 } 2706 2707 // From here on out we're working with named functions. 2708 auto *Callee = CI->getCalledFunction(); 2709 if (!Callee) 2710 return false; 2711 2712 // Lower all default uses of _chk calls. This is very similar 2713 // to what InstCombineCalls does, but here we are only lowering calls 2714 // to fortified library functions (e.g. __memcpy_chk) that have the default 2715 // "don't know" as the objectsize. Anything else should be left alone. 2716 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2717 IRBuilder<> Builder(CI); 2718 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2719 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); 2720 CI->eraseFromParent(); 2721 return true; 2722 } 2723 2724 // SCCP may have propagated, among other things, C++ static variables across 2725 // calls. If this happens to be the case, we may want to undo it in order to 2726 // avoid redundant pointer computation of the constant, as the function method 2727 // returning the constant needs to be executed anyways. 2728 auto GetUniformReturnValue = [](const Function *F) -> GlobalVariable * { 2729 if (!F->getReturnType()->isPointerTy()) 2730 return nullptr; 2731 2732 GlobalVariable *UniformValue = nullptr; 2733 for (auto &BB : *F) { 2734 if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { 2735 if (auto *V = dyn_cast<GlobalVariable>(RI->getReturnValue())) { 2736 if (!UniformValue) 2737 UniformValue = V; 2738 else if (V != UniformValue) 2739 return nullptr; 2740 } else { 2741 return nullptr; 2742 } 2743 } 2744 } 2745 2746 return UniformValue; 2747 }; 2748 2749 if (Callee->hasExactDefinition()) { 2750 if (GlobalVariable *RV = GetUniformReturnValue(Callee)) { 2751 bool MadeChange = false; 2752 for (Use &U : make_early_inc_range(RV->uses())) { 2753 auto *I = dyn_cast<Instruction>(U.getUser()); 2754 if (!I || I->getParent() != CI->getParent()) { 2755 // Limit to the same basic block to avoid extending the call-site live 2756 // range, which otherwise could increase register pressure. 2757 continue; 2758 } 2759 if (CI->comesBefore(I)) { 2760 U.set(CI); 2761 MadeChange = true; 2762 } 2763 } 2764 2765 return MadeChange; 2766 } 2767 } 2768 2769 return false; 2770 } 2771 2772 static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo, 2773 const CallInst *CI) { 2774 assert(CI && CI->use_empty()); 2775 2776 if (const auto *II = dyn_cast<IntrinsicInst>(CI)) 2777 switch (II->getIntrinsicID()) { 2778 case Intrinsic::memset: 2779 case Intrinsic::memcpy: 2780 case Intrinsic::memmove: 2781 return true; 2782 default: 2783 return false; 2784 } 2785 2786 LibFunc LF; 2787 Function *Callee = CI->getCalledFunction(); 2788 if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF)) 2789 switch (LF) { 2790 case LibFunc_strcpy: 2791 case LibFunc_strncpy: 2792 case LibFunc_strcat: 2793 case LibFunc_strncat: 2794 return true; 2795 default: 2796 return false; 2797 } 2798 2799 return false; 2800 } 2801 2802 /// Look for opportunities to duplicate return instructions to the predecessor 2803 /// to enable tail call optimizations. The case it is currently looking for is 2804 /// the following one. Known intrinsics or library function that may be tail 2805 /// called are taken into account as well. 2806 /// @code 2807 /// bb0: 2808 /// %tmp0 = tail call i32 @f0() 2809 /// br label %return 2810 /// bb1: 2811 /// %tmp1 = tail call i32 @f1() 2812 /// br label %return 2813 /// bb2: 2814 /// %tmp2 = tail call i32 @f2() 2815 /// br label %return 2816 /// return: 2817 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2818 /// ret i32 %retval 2819 /// @endcode 2820 /// 2821 /// => 2822 /// 2823 /// @code 2824 /// bb0: 2825 /// %tmp0 = tail call i32 @f0() 2826 /// ret i32 %tmp0 2827 /// bb1: 2828 /// %tmp1 = tail call i32 @f1() 2829 /// ret i32 %tmp1 2830 /// bb2: 2831 /// %tmp2 = tail call i32 @f2() 2832 /// ret i32 %tmp2 2833 /// @endcode 2834 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, 2835 ModifyDT &ModifiedDT) { 2836 if (!BB->getTerminator()) 2837 return false; 2838 2839 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2840 if (!RetI) 2841 return false; 2842 2843 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop"); 2844 2845 PHINode *PN = nullptr; 2846 ExtractValueInst *EVI = nullptr; 2847 BitCastInst *BCI = nullptr; 2848 Value *V = RetI->getReturnValue(); 2849 if (V) { 2850 BCI = dyn_cast<BitCastInst>(V); 2851 if (BCI) 2852 V = BCI->getOperand(0); 2853 2854 EVI = dyn_cast<ExtractValueInst>(V); 2855 if (EVI) { 2856 V = EVI->getOperand(0); 2857 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2858 return false; 2859 } 2860 2861 PN = dyn_cast<PHINode>(V); 2862 } 2863 2864 if (PN && PN->getParent() != BB) 2865 return false; 2866 2867 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2868 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2869 if (BC && BC->hasOneUse()) 2870 Inst = BC->user_back(); 2871 2872 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2873 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2874 return false; 2875 }; 2876 2877 SmallVector<const IntrinsicInst *, 4> FakeUses; 2878 2879 auto isFakeUse = [&FakeUses](const Instruction *Inst) { 2880 if (auto *II = dyn_cast<IntrinsicInst>(Inst); 2881 II && II->getIntrinsicID() == Intrinsic::fake_use) { 2882 // Record the instruction so it can be preserved when the exit block is 2883 // removed. Do not preserve the fake use that uses the result of the 2884 // PHI instruction. 2885 // Do not copy fake uses that use the result of a PHI node. 2886 // FIXME: If we do want to copy the fake use into the return blocks, we 2887 // have to figure out which of the PHI node operands to use for each 2888 // copy. 2889 if (!isa<PHINode>(II->getOperand(0))) { 2890 FakeUses.push_back(II); 2891 } 2892 return true; 2893 } 2894 2895 return false; 2896 }; 2897 2898 // Make sure there are no instructions between the first instruction 2899 // and return. 2900 const Instruction *BI = BB->getFirstNonPHI(); 2901 // Skip over debug and the bitcast. 2902 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2903 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI) || 2904 isFakeUse(BI)) 2905 BI = BI->getNextNode(); 2906 if (BI != RetI) 2907 return false; 2908 2909 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2910 /// call. 2911 const Function *F = BB->getParent(); 2912 SmallVector<BasicBlock *, 4> TailCallBBs; 2913 // Record the call instructions so we can insert any fake uses 2914 // that need to be preserved before them. 2915 SmallVector<CallInst *, 4> CallInsts; 2916 if (PN) { 2917 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2918 // Look through bitcasts. 2919 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2920 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2921 BasicBlock *PredBB = PN->getIncomingBlock(I); 2922 // Make sure the phi value is indeed produced by the tail call. 2923 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2924 TLI->mayBeEmittedAsTailCall(CI) && 2925 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2926 TailCallBBs.push_back(PredBB); 2927 CallInsts.push_back(CI); 2928 } else { 2929 // Consider the cases in which the phi value is indirectly produced by 2930 // the tail call, for example when encountering memset(), memmove(), 2931 // strcpy(), whose return value may have been optimized out. In such 2932 // cases, the value needs to be the first function argument. 2933 // 2934 // bb0: 2935 // tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1) 2936 // br label %return 2937 // return: 2938 // %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ] 2939 if (PredBB && PredBB->getSingleSuccessor() == BB) 2940 CI = dyn_cast_or_null<CallInst>( 2941 PredBB->getTerminator()->getPrevNonDebugInstruction(true)); 2942 2943 if (CI && CI->use_empty() && 2944 isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2945 IncomingVal == CI->getArgOperand(0) && 2946 TLI->mayBeEmittedAsTailCall(CI) && 2947 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2948 TailCallBBs.push_back(PredBB); 2949 CallInsts.push_back(CI); 2950 } 2951 } 2952 } 2953 } else { 2954 SmallPtrSet<BasicBlock *, 4> VisitedBBs; 2955 for (BasicBlock *Pred : predecessors(BB)) { 2956 if (!VisitedBBs.insert(Pred).second) 2957 continue; 2958 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2959 CallInst *CI = dyn_cast<CallInst>(I); 2960 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2961 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2962 // Either we return void or the return value must be the first 2963 // argument of a known intrinsic or library function. 2964 if (!V || isa<UndefValue>(V) || 2965 (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2966 V == CI->getArgOperand(0))) { 2967 TailCallBBs.push_back(Pred); 2968 CallInsts.push_back(CI); 2969 } 2970 } 2971 } 2972 } 2973 } 2974 2975 bool Changed = false; 2976 for (auto const &TailCallBB : TailCallBBs) { 2977 // Make sure the call instruction is followed by an unconditional branch to 2978 // the return block. 2979 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2980 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2981 continue; 2982 2983 // Duplicate the return into TailCallBB. 2984 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2985 assert(!VerifyBFIUpdates || 2986 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2987 BFI->setBlockFreq(BB, 2988 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB))); 2989 ModifiedDT = ModifyDT::ModifyBBDT; 2990 Changed = true; 2991 ++NumRetsDup; 2992 } 2993 2994 // If we eliminated all predecessors of the block, delete the block now. 2995 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) { 2996 // Copy the fake uses found in the original return block to all blocks 2997 // that contain tail calls. 2998 for (auto *CI : CallInsts) { 2999 for (auto const *FakeUse : FakeUses) { 3000 auto *ClonedInst = FakeUse->clone(); 3001 ClonedInst->insertBefore(CI); 3002 } 3003 } 3004 BB->eraseFromParent(); 3005 } 3006 3007 return Changed; 3008 } 3009 3010 //===----------------------------------------------------------------------===// 3011 // Memory Optimization 3012 //===----------------------------------------------------------------------===// 3013 3014 namespace { 3015 3016 /// This is an extended version of TargetLowering::AddrMode 3017 /// which holds actual Value*'s for register values. 3018 struct ExtAddrMode : public TargetLowering::AddrMode { 3019 Value *BaseReg = nullptr; 3020 Value *ScaledReg = nullptr; 3021 Value *OriginalValue = nullptr; 3022 bool InBounds = true; 3023 3024 enum FieldName { 3025 NoField = 0x00, 3026 BaseRegField = 0x01, 3027 BaseGVField = 0x02, 3028 BaseOffsField = 0x04, 3029 ScaledRegField = 0x08, 3030 ScaleField = 0x10, 3031 MultipleFields = 0xff 3032 }; 3033 3034 ExtAddrMode() = default; 3035 3036 void print(raw_ostream &OS) const; 3037 void dump() const; 3038 3039 FieldName compare(const ExtAddrMode &other) { 3040 // First check that the types are the same on each field, as differing types 3041 // is something we can't cope with later on. 3042 if (BaseReg && other.BaseReg && 3043 BaseReg->getType() != other.BaseReg->getType()) 3044 return MultipleFields; 3045 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) 3046 return MultipleFields; 3047 if (ScaledReg && other.ScaledReg && 3048 ScaledReg->getType() != other.ScaledReg->getType()) 3049 return MultipleFields; 3050 3051 // Conservatively reject 'inbounds' mismatches. 3052 if (InBounds != other.InBounds) 3053 return MultipleFields; 3054 3055 // Check each field to see if it differs. 3056 unsigned Result = NoField; 3057 if (BaseReg != other.BaseReg) 3058 Result |= BaseRegField; 3059 if (BaseGV != other.BaseGV) 3060 Result |= BaseGVField; 3061 if (BaseOffs != other.BaseOffs) 3062 Result |= BaseOffsField; 3063 if (ScaledReg != other.ScaledReg) 3064 Result |= ScaledRegField; 3065 // Don't count 0 as being a different scale, because that actually means 3066 // unscaled (which will already be counted by having no ScaledReg). 3067 if (Scale && other.Scale && Scale != other.Scale) 3068 Result |= ScaleField; 3069 3070 if (llvm::popcount(Result) > 1) 3071 return MultipleFields; 3072 else 3073 return static_cast<FieldName>(Result); 3074 } 3075 3076 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 3077 // with no offset. 3078 bool isTrivial() { 3079 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 3080 // trivial if at most one of these terms is nonzero, except that BaseGV and 3081 // BaseReg both being zero actually means a null pointer value, which we 3082 // consider to be 'non-zero' here. 3083 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 3084 } 3085 3086 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 3087 switch (Field) { 3088 default: 3089 return nullptr; 3090 case BaseRegField: 3091 return BaseReg; 3092 case BaseGVField: 3093 return BaseGV; 3094 case ScaledRegField: 3095 return ScaledReg; 3096 case BaseOffsField: 3097 return ConstantInt::get(IntPtrTy, BaseOffs); 3098 } 3099 } 3100 3101 void SetCombinedField(FieldName Field, Value *V, 3102 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 3103 switch (Field) { 3104 default: 3105 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 3106 break; 3107 case ExtAddrMode::BaseRegField: 3108 BaseReg = V; 3109 break; 3110 case ExtAddrMode::BaseGVField: 3111 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 3112 // in the BaseReg field. 3113 assert(BaseReg == nullptr); 3114 BaseReg = V; 3115 BaseGV = nullptr; 3116 break; 3117 case ExtAddrMode::ScaledRegField: 3118 ScaledReg = V; 3119 // If we have a mix of scaled and unscaled addrmodes then we want scale 3120 // to be the scale and not zero. 3121 if (!Scale) 3122 for (const ExtAddrMode &AM : AddrModes) 3123 if (AM.Scale) { 3124 Scale = AM.Scale; 3125 break; 3126 } 3127 break; 3128 case ExtAddrMode::BaseOffsField: 3129 // The offset is no longer a constant, so it goes in ScaledReg with a 3130 // scale of 1. 3131 assert(ScaledReg == nullptr); 3132 ScaledReg = V; 3133 Scale = 1; 3134 BaseOffs = 0; 3135 break; 3136 } 3137 } 3138 }; 3139 3140 #ifndef NDEBUG 3141 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 3142 AM.print(OS); 3143 return OS; 3144 } 3145 #endif 3146 3147 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3148 void ExtAddrMode::print(raw_ostream &OS) const { 3149 bool NeedPlus = false; 3150 OS << "["; 3151 if (InBounds) 3152 OS << "inbounds "; 3153 if (BaseGV) { 3154 OS << "GV:"; 3155 BaseGV->printAsOperand(OS, /*PrintType=*/false); 3156 NeedPlus = true; 3157 } 3158 3159 if (BaseOffs) { 3160 OS << (NeedPlus ? " + " : "") << BaseOffs; 3161 NeedPlus = true; 3162 } 3163 3164 if (BaseReg) { 3165 OS << (NeedPlus ? " + " : "") << "Base:"; 3166 BaseReg->printAsOperand(OS, /*PrintType=*/false); 3167 NeedPlus = true; 3168 } 3169 if (Scale) { 3170 OS << (NeedPlus ? " + " : "") << Scale << "*"; 3171 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 3172 } 3173 3174 OS << ']'; 3175 } 3176 3177 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 3178 print(dbgs()); 3179 dbgs() << '\n'; 3180 } 3181 #endif 3182 3183 } // end anonymous namespace 3184 3185 namespace { 3186 3187 /// This class provides transaction based operation on the IR. 3188 /// Every change made through this class is recorded in the internal state and 3189 /// can be undone (rollback) until commit is called. 3190 /// CGP does not check if instructions could be speculatively executed when 3191 /// moved. Preserving the original location would pessimize the debugging 3192 /// experience, as well as negatively impact the quality of sample PGO. 3193 class TypePromotionTransaction { 3194 /// This represents the common interface of the individual transaction. 3195 /// Each class implements the logic for doing one specific modification on 3196 /// the IR via the TypePromotionTransaction. 3197 class TypePromotionAction { 3198 protected: 3199 /// The Instruction modified. 3200 Instruction *Inst; 3201 3202 public: 3203 /// Constructor of the action. 3204 /// The constructor performs the related action on the IR. 3205 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 3206 3207 virtual ~TypePromotionAction() = default; 3208 3209 /// Undo the modification done by this action. 3210 /// When this method is called, the IR must be in the same state as it was 3211 /// before this action was applied. 3212 /// \pre Undoing the action works if and only if the IR is in the exact same 3213 /// state as it was directly after this action was applied. 3214 virtual void undo() = 0; 3215 3216 /// Advocate every change made by this action. 3217 /// When the results on the IR of the action are to be kept, it is important 3218 /// to call this function, otherwise hidden information may be kept forever. 3219 virtual void commit() { 3220 // Nothing to be done, this action is not doing anything. 3221 } 3222 }; 3223 3224 /// Utility to remember the position of an instruction. 3225 class InsertionHandler { 3226 /// Position of an instruction. 3227 /// Either an instruction: 3228 /// - Is the first in a basic block: BB is used. 3229 /// - Has a previous instruction: PrevInst is used. 3230 union { 3231 Instruction *PrevInst; 3232 BasicBlock *BB; 3233 } Point; 3234 std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt; 3235 3236 /// Remember whether or not the instruction had a previous instruction. 3237 bool HasPrevInstruction; 3238 3239 public: 3240 /// Record the position of \p Inst. 3241 InsertionHandler(Instruction *Inst) { 3242 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin())); 3243 BasicBlock *BB = Inst->getParent(); 3244 3245 // Record where we would have to re-insert the instruction in the sequence 3246 // of DbgRecords, if we ended up reinserting. 3247 if (BB->IsNewDbgInfoFormat) 3248 BeforeDbgRecord = Inst->getDbgReinsertionPosition(); 3249 3250 if (HasPrevInstruction) { 3251 Point.PrevInst = &*std::prev(Inst->getIterator()); 3252 } else { 3253 Point.BB = BB; 3254 } 3255 } 3256 3257 /// Insert \p Inst at the recorded position. 3258 void insert(Instruction *Inst) { 3259 if (HasPrevInstruction) { 3260 if (Inst->getParent()) 3261 Inst->removeFromParent(); 3262 Inst->insertAfter(&*Point.PrevInst); 3263 } else { 3264 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt(); 3265 if (Inst->getParent()) 3266 Inst->moveBefore(*Point.BB, Position); 3267 else 3268 Inst->insertBefore(*Point.BB, Position); 3269 } 3270 3271 Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord); 3272 } 3273 }; 3274 3275 /// Move an instruction before another. 3276 class InstructionMoveBefore : public TypePromotionAction { 3277 /// Original position of the instruction. 3278 InsertionHandler Position; 3279 3280 public: 3281 /// Move \p Inst before \p Before. 3282 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 3283 : TypePromotionAction(Inst), Position(Inst) { 3284 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 3285 << "\n"); 3286 Inst->moveBefore(Before); 3287 } 3288 3289 /// Move the instruction back to its original position. 3290 void undo() override { 3291 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 3292 Position.insert(Inst); 3293 } 3294 }; 3295 3296 /// Set the operand of an instruction with a new value. 3297 class OperandSetter : public TypePromotionAction { 3298 /// Original operand of the instruction. 3299 Value *Origin; 3300 3301 /// Index of the modified instruction. 3302 unsigned Idx; 3303 3304 public: 3305 /// Set \p Idx operand of \p Inst with \p NewVal. 3306 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 3307 : TypePromotionAction(Inst), Idx(Idx) { 3308 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 3309 << "for:" << *Inst << "\n" 3310 << "with:" << *NewVal << "\n"); 3311 Origin = Inst->getOperand(Idx); 3312 Inst->setOperand(Idx, NewVal); 3313 } 3314 3315 /// Restore the original value of the instruction. 3316 void undo() override { 3317 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 3318 << "for: " << *Inst << "\n" 3319 << "with: " << *Origin << "\n"); 3320 Inst->setOperand(Idx, Origin); 3321 } 3322 }; 3323 3324 /// Hide the operands of an instruction. 3325 /// Do as if this instruction was not using any of its operands. 3326 class OperandsHider : public TypePromotionAction { 3327 /// The list of original operands. 3328 SmallVector<Value *, 4> OriginalValues; 3329 3330 public: 3331 /// Remove \p Inst from the uses of the operands of \p Inst. 3332 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 3333 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 3334 unsigned NumOpnds = Inst->getNumOperands(); 3335 OriginalValues.reserve(NumOpnds); 3336 for (unsigned It = 0; It < NumOpnds; ++It) { 3337 // Save the current operand. 3338 Value *Val = Inst->getOperand(It); 3339 OriginalValues.push_back(Val); 3340 // Set a dummy one. 3341 // We could use OperandSetter here, but that would imply an overhead 3342 // that we are not willing to pay. 3343 Inst->setOperand(It, PoisonValue::get(Val->getType())); 3344 } 3345 } 3346 3347 /// Restore the original list of uses. 3348 void undo() override { 3349 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 3350 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 3351 Inst->setOperand(It, OriginalValues[It]); 3352 } 3353 }; 3354 3355 /// Build a truncate instruction. 3356 class TruncBuilder : public TypePromotionAction { 3357 Value *Val; 3358 3359 public: 3360 /// Build a truncate instruction of \p Opnd producing a \p Ty 3361 /// result. 3362 /// trunc Opnd to Ty. 3363 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 3364 IRBuilder<> Builder(Opnd); 3365 Builder.SetCurrentDebugLocation(DebugLoc()); 3366 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 3367 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 3368 } 3369 3370 /// Get the built value. 3371 Value *getBuiltValue() { return Val; } 3372 3373 /// Remove the built instruction. 3374 void undo() override { 3375 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 3376 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3377 IVal->eraseFromParent(); 3378 } 3379 }; 3380 3381 /// Build a sign extension instruction. 3382 class SExtBuilder : public TypePromotionAction { 3383 Value *Val; 3384 3385 public: 3386 /// Build a sign extension instruction of \p Opnd producing a \p Ty 3387 /// result. 3388 /// sext Opnd to Ty. 3389 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3390 : TypePromotionAction(InsertPt) { 3391 IRBuilder<> Builder(InsertPt); 3392 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 3393 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 3394 } 3395 3396 /// Get the built value. 3397 Value *getBuiltValue() { return Val; } 3398 3399 /// Remove the built instruction. 3400 void undo() override { 3401 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 3402 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3403 IVal->eraseFromParent(); 3404 } 3405 }; 3406 3407 /// Build a zero extension instruction. 3408 class ZExtBuilder : public TypePromotionAction { 3409 Value *Val; 3410 3411 public: 3412 /// Build a zero extension instruction of \p Opnd producing a \p Ty 3413 /// result. 3414 /// zext Opnd to Ty. 3415 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3416 : TypePromotionAction(InsertPt) { 3417 IRBuilder<> Builder(InsertPt); 3418 Builder.SetCurrentDebugLocation(DebugLoc()); 3419 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 3420 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 3421 } 3422 3423 /// Get the built value. 3424 Value *getBuiltValue() { return Val; } 3425 3426 /// Remove the built instruction. 3427 void undo() override { 3428 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 3429 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3430 IVal->eraseFromParent(); 3431 } 3432 }; 3433 3434 /// Mutate an instruction to another type. 3435 class TypeMutator : public TypePromotionAction { 3436 /// Record the original type. 3437 Type *OrigTy; 3438 3439 public: 3440 /// Mutate the type of \p Inst into \p NewTy. 3441 TypeMutator(Instruction *Inst, Type *NewTy) 3442 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 3443 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 3444 << "\n"); 3445 Inst->mutateType(NewTy); 3446 } 3447 3448 /// Mutate the instruction back to its original type. 3449 void undo() override { 3450 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 3451 << "\n"); 3452 Inst->mutateType(OrigTy); 3453 } 3454 }; 3455 3456 /// Replace the uses of an instruction by another instruction. 3457 class UsesReplacer : public TypePromotionAction { 3458 /// Helper structure to keep track of the replaced uses. 3459 struct InstructionAndIdx { 3460 /// The instruction using the instruction. 3461 Instruction *Inst; 3462 3463 /// The index where this instruction is used for Inst. 3464 unsigned Idx; 3465 3466 InstructionAndIdx(Instruction *Inst, unsigned Idx) 3467 : Inst(Inst), Idx(Idx) {} 3468 }; 3469 3470 /// Keep track of the original uses (pair Instruction, Index). 3471 SmallVector<InstructionAndIdx, 4> OriginalUses; 3472 /// Keep track of the debug users. 3473 SmallVector<DbgValueInst *, 1> DbgValues; 3474 /// And non-instruction debug-users too. 3475 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 3476 3477 /// Keep track of the new value so that we can undo it by replacing 3478 /// instances of the new value with the original value. 3479 Value *New; 3480 3481 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3482 3483 public: 3484 /// Replace all the use of \p Inst by \p New. 3485 UsesReplacer(Instruction *Inst, Value *New) 3486 : TypePromotionAction(Inst), New(New) { 3487 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3488 << "\n"); 3489 // Record the original uses. 3490 for (Use &U : Inst->uses()) { 3491 Instruction *UserI = cast<Instruction>(U.getUser()); 3492 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3493 } 3494 // Record the debug uses separately. They are not in the instruction's 3495 // use list, but they are replaced by RAUW. 3496 findDbgValues(DbgValues, Inst, &DbgVariableRecords); 3497 3498 // Now, we can replace the uses. 3499 Inst->replaceAllUsesWith(New); 3500 } 3501 3502 /// Reassign the original uses of Inst to Inst. 3503 void undo() override { 3504 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3505 for (InstructionAndIdx &Use : OriginalUses) 3506 Use.Inst->setOperand(Use.Idx, Inst); 3507 // RAUW has replaced all original uses with references to the new value, 3508 // including the debug uses. Since we are undoing the replacements, 3509 // the original debug uses must also be reinstated to maintain the 3510 // correctness and utility of debug value instructions. 3511 for (auto *DVI : DbgValues) 3512 DVI->replaceVariableLocationOp(New, Inst); 3513 // Similar story with DbgVariableRecords, the non-instruction 3514 // representation of dbg.values. 3515 for (DbgVariableRecord *DVR : DbgVariableRecords) 3516 DVR->replaceVariableLocationOp(New, Inst); 3517 } 3518 }; 3519 3520 /// Remove an instruction from the IR. 3521 class InstructionRemover : public TypePromotionAction { 3522 /// Original position of the instruction. 3523 InsertionHandler Inserter; 3524 3525 /// Helper structure to hide all the link to the instruction. In other 3526 /// words, this helps to do as if the instruction was removed. 3527 OperandsHider Hider; 3528 3529 /// Keep track of the uses replaced, if any. 3530 UsesReplacer *Replacer = nullptr; 3531 3532 /// Keep track of instructions removed. 3533 SetOfInstrs &RemovedInsts; 3534 3535 public: 3536 /// Remove all reference of \p Inst and optionally replace all its 3537 /// uses with New. 3538 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3539 /// \pre If !Inst->use_empty(), then New != nullptr 3540 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3541 Value *New = nullptr) 3542 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3543 RemovedInsts(RemovedInsts) { 3544 if (New) 3545 Replacer = new UsesReplacer(Inst, New); 3546 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3547 RemovedInsts.insert(Inst); 3548 /// The instructions removed here will be freed after completing 3549 /// optimizeBlock() for all blocks as we need to keep track of the 3550 /// removed instructions during promotion. 3551 Inst->removeFromParent(); 3552 } 3553 3554 ~InstructionRemover() override { delete Replacer; } 3555 3556 InstructionRemover &operator=(const InstructionRemover &other) = delete; 3557 InstructionRemover(const InstructionRemover &other) = delete; 3558 3559 /// Resurrect the instruction and reassign it to the proper uses if 3560 /// new value was provided when build this action. 3561 void undo() override { 3562 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3563 Inserter.insert(Inst); 3564 if (Replacer) 3565 Replacer->undo(); 3566 Hider.undo(); 3567 RemovedInsts.erase(Inst); 3568 } 3569 }; 3570 3571 public: 3572 /// Restoration point. 3573 /// The restoration point is a pointer to an action instead of an iterator 3574 /// because the iterator may be invalidated but not the pointer. 3575 using ConstRestorationPt = const TypePromotionAction *; 3576 3577 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3578 : RemovedInsts(RemovedInsts) {} 3579 3580 /// Advocate every changes made in that transaction. Return true if any change 3581 /// happen. 3582 bool commit(); 3583 3584 /// Undo all the changes made after the given point. 3585 void rollback(ConstRestorationPt Point); 3586 3587 /// Get the current restoration point. 3588 ConstRestorationPt getRestorationPoint() const; 3589 3590 /// \name API for IR modification with state keeping to support rollback. 3591 /// @{ 3592 /// Same as Instruction::setOperand. 3593 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3594 3595 /// Same as Instruction::eraseFromParent. 3596 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3597 3598 /// Same as Value::replaceAllUsesWith. 3599 void replaceAllUsesWith(Instruction *Inst, Value *New); 3600 3601 /// Same as Value::mutateType. 3602 void mutateType(Instruction *Inst, Type *NewTy); 3603 3604 /// Same as IRBuilder::createTrunc. 3605 Value *createTrunc(Instruction *Opnd, Type *Ty); 3606 3607 /// Same as IRBuilder::createSExt. 3608 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3609 3610 /// Same as IRBuilder::createZExt. 3611 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3612 3613 private: 3614 /// The ordered list of actions made so far. 3615 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3616 3617 using CommitPt = 3618 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3619 3620 SetOfInstrs &RemovedInsts; 3621 }; 3622 3623 } // end anonymous namespace 3624 3625 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3626 Value *NewVal) { 3627 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3628 Inst, Idx, NewVal)); 3629 } 3630 3631 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3632 Value *NewVal) { 3633 Actions.push_back( 3634 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3635 Inst, RemovedInsts, NewVal)); 3636 } 3637 3638 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3639 Value *New) { 3640 Actions.push_back( 3641 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3642 } 3643 3644 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3645 Actions.push_back( 3646 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3647 } 3648 3649 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { 3650 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3651 Value *Val = Ptr->getBuiltValue(); 3652 Actions.push_back(std::move(Ptr)); 3653 return Val; 3654 } 3655 3656 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, 3657 Type *Ty) { 3658 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3659 Value *Val = Ptr->getBuiltValue(); 3660 Actions.push_back(std::move(Ptr)); 3661 return Val; 3662 } 3663 3664 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, 3665 Type *Ty) { 3666 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3667 Value *Val = Ptr->getBuiltValue(); 3668 Actions.push_back(std::move(Ptr)); 3669 return Val; 3670 } 3671 3672 TypePromotionTransaction::ConstRestorationPt 3673 TypePromotionTransaction::getRestorationPoint() const { 3674 return !Actions.empty() ? Actions.back().get() : nullptr; 3675 } 3676 3677 bool TypePromotionTransaction::commit() { 3678 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3679 Action->commit(); 3680 bool Modified = !Actions.empty(); 3681 Actions.clear(); 3682 return Modified; 3683 } 3684 3685 void TypePromotionTransaction::rollback( 3686 TypePromotionTransaction::ConstRestorationPt Point) { 3687 while (!Actions.empty() && Point != Actions.back().get()) { 3688 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3689 Curr->undo(); 3690 } 3691 } 3692 3693 namespace { 3694 3695 /// A helper class for matching addressing modes. 3696 /// 3697 /// This encapsulates the logic for matching the target-legal addressing modes. 3698 class AddressingModeMatcher { 3699 SmallVectorImpl<Instruction *> &AddrModeInsts; 3700 const TargetLowering &TLI; 3701 const TargetRegisterInfo &TRI; 3702 const DataLayout &DL; 3703 const LoopInfo &LI; 3704 const std::function<const DominatorTree &()> getDTFn; 3705 3706 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3707 /// the memory instruction that we're computing this address for. 3708 Type *AccessTy; 3709 unsigned AddrSpace; 3710 Instruction *MemoryInst; 3711 3712 /// This is the addressing mode that we're building up. This is 3713 /// part of the return value of this addressing mode matching stuff. 3714 ExtAddrMode &AddrMode; 3715 3716 /// The instructions inserted by other CodeGenPrepare optimizations. 3717 const SetOfInstrs &InsertedInsts; 3718 3719 /// A map from the instructions to their type before promotion. 3720 InstrToOrigTy &PromotedInsts; 3721 3722 /// The ongoing transaction where every action should be registered. 3723 TypePromotionTransaction &TPT; 3724 3725 // A GEP which has too large offset to be folded into the addressing mode. 3726 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3727 3728 /// This is set to true when we should not do profitability checks. 3729 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3730 bool IgnoreProfitability; 3731 3732 /// True if we are optimizing for size. 3733 bool OptSize = false; 3734 3735 ProfileSummaryInfo *PSI; 3736 BlockFrequencyInfo *BFI; 3737 3738 AddressingModeMatcher( 3739 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3740 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3741 const std::function<const DominatorTree &()> getDTFn, Type *AT, 3742 unsigned AS, Instruction *MI, ExtAddrMode &AM, 3743 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3744 TypePromotionTransaction &TPT, 3745 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3746 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3747 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3748 DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn), 3749 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3750 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3751 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3752 IgnoreProfitability = false; 3753 } 3754 3755 public: 3756 /// Find the maximal addressing mode that a load/store of V can fold, 3757 /// give an access type of AccessTy. This returns a list of involved 3758 /// instructions in AddrModeInsts. 3759 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3760 /// optimizations. 3761 /// \p PromotedInsts maps the instructions to their type before promotion. 3762 /// \p The ongoing transaction where every action should be registered. 3763 static ExtAddrMode 3764 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3765 SmallVectorImpl<Instruction *> &AddrModeInsts, 3766 const TargetLowering &TLI, const LoopInfo &LI, 3767 const std::function<const DominatorTree &()> getDTFn, 3768 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3769 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3770 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3771 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3772 ExtAddrMode Result; 3773 3774 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, 3775 AccessTy, AS, MemoryInst, Result, 3776 InsertedInsts, PromotedInsts, TPT, 3777 LargeOffsetGEP, OptSize, PSI, BFI) 3778 .matchAddr(V, 0); 3779 (void)Success; 3780 assert(Success && "Couldn't select *anything*?"); 3781 return Result; 3782 } 3783 3784 private: 3785 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3786 bool matchAddr(Value *Addr, unsigned Depth); 3787 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3788 bool *MovedAway = nullptr); 3789 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3790 ExtAddrMode &AMBefore, 3791 ExtAddrMode &AMAfter); 3792 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3793 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3794 Value *PromotedOperand) const; 3795 }; 3796 3797 class PhiNodeSet; 3798 3799 /// An iterator for PhiNodeSet. 3800 class PhiNodeSetIterator { 3801 PhiNodeSet *const Set; 3802 size_t CurrentIndex = 0; 3803 3804 public: 3805 /// The constructor. Start should point to either a valid element, or be equal 3806 /// to the size of the underlying SmallVector of the PhiNodeSet. 3807 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); 3808 PHINode *operator*() const; 3809 PhiNodeSetIterator &operator++(); 3810 bool operator==(const PhiNodeSetIterator &RHS) const; 3811 bool operator!=(const PhiNodeSetIterator &RHS) const; 3812 }; 3813 3814 /// Keeps a set of PHINodes. 3815 /// 3816 /// This is a minimal set implementation for a specific use case: 3817 /// It is very fast when there are very few elements, but also provides good 3818 /// performance when there are many. It is similar to SmallPtrSet, but also 3819 /// provides iteration by insertion order, which is deterministic and stable 3820 /// across runs. It is also similar to SmallSetVector, but provides removing 3821 /// elements in O(1) time. This is achieved by not actually removing the element 3822 /// from the underlying vector, so comes at the cost of using more memory, but 3823 /// that is fine, since PhiNodeSets are used as short lived objects. 3824 class PhiNodeSet { 3825 friend class PhiNodeSetIterator; 3826 3827 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3828 using iterator = PhiNodeSetIterator; 3829 3830 /// Keeps the elements in the order of their insertion in the underlying 3831 /// vector. To achieve constant time removal, it never deletes any element. 3832 SmallVector<PHINode *, 32> NodeList; 3833 3834 /// Keeps the elements in the underlying set implementation. This (and not the 3835 /// NodeList defined above) is the source of truth on whether an element 3836 /// is actually in the collection. 3837 MapType NodeMap; 3838 3839 /// Points to the first valid (not deleted) element when the set is not empty 3840 /// and the value is not zero. Equals to the size of the underlying vector 3841 /// when the set is empty. When the value is 0, as in the beginning, the 3842 /// first element may or may not be valid. 3843 size_t FirstValidElement = 0; 3844 3845 public: 3846 /// Inserts a new element to the collection. 3847 /// \returns true if the element is actually added, i.e. was not in the 3848 /// collection before the operation. 3849 bool insert(PHINode *Ptr) { 3850 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3851 NodeList.push_back(Ptr); 3852 return true; 3853 } 3854 return false; 3855 } 3856 3857 /// Removes the element from the collection. 3858 /// \returns whether the element is actually removed, i.e. was in the 3859 /// collection before the operation. 3860 bool erase(PHINode *Ptr) { 3861 if (NodeMap.erase(Ptr)) { 3862 SkipRemovedElements(FirstValidElement); 3863 return true; 3864 } 3865 return false; 3866 } 3867 3868 /// Removes all elements and clears the collection. 3869 void clear() { 3870 NodeMap.clear(); 3871 NodeList.clear(); 3872 FirstValidElement = 0; 3873 } 3874 3875 /// \returns an iterator that will iterate the elements in the order of 3876 /// insertion. 3877 iterator begin() { 3878 if (FirstValidElement == 0) 3879 SkipRemovedElements(FirstValidElement); 3880 return PhiNodeSetIterator(this, FirstValidElement); 3881 } 3882 3883 /// \returns an iterator that points to the end of the collection. 3884 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3885 3886 /// Returns the number of elements in the collection. 3887 size_t size() const { return NodeMap.size(); } 3888 3889 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3890 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } 3891 3892 private: 3893 /// Updates the CurrentIndex so that it will point to a valid element. 3894 /// 3895 /// If the element of NodeList at CurrentIndex is valid, it does not 3896 /// change it. If there are no more valid elements, it updates CurrentIndex 3897 /// to point to the end of the NodeList. 3898 void SkipRemovedElements(size_t &CurrentIndex) { 3899 while (CurrentIndex < NodeList.size()) { 3900 auto it = NodeMap.find(NodeList[CurrentIndex]); 3901 // If the element has been deleted and added again later, NodeMap will 3902 // point to a different index, so CurrentIndex will still be invalid. 3903 if (it != NodeMap.end() && it->second == CurrentIndex) 3904 break; 3905 ++CurrentIndex; 3906 } 3907 } 3908 }; 3909 3910 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3911 : Set(Set), CurrentIndex(Start) {} 3912 3913 PHINode *PhiNodeSetIterator::operator*() const { 3914 assert(CurrentIndex < Set->NodeList.size() && 3915 "PhiNodeSet access out of range"); 3916 return Set->NodeList[CurrentIndex]; 3917 } 3918 3919 PhiNodeSetIterator &PhiNodeSetIterator::operator++() { 3920 assert(CurrentIndex < Set->NodeList.size() && 3921 "PhiNodeSet access out of range"); 3922 ++CurrentIndex; 3923 Set->SkipRemovedElements(CurrentIndex); 3924 return *this; 3925 } 3926 3927 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3928 return CurrentIndex == RHS.CurrentIndex; 3929 } 3930 3931 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3932 return !((*this) == RHS); 3933 } 3934 3935 /// Keep track of simplification of Phi nodes. 3936 /// Accept the set of all phi nodes and erase phi node from this set 3937 /// if it is simplified. 3938 class SimplificationTracker { 3939 DenseMap<Value *, Value *> Storage; 3940 const SimplifyQuery &SQ; 3941 // Tracks newly created Phi nodes. The elements are iterated by insertion 3942 // order. 3943 PhiNodeSet AllPhiNodes; 3944 // Tracks newly created Select nodes. 3945 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3946 3947 public: 3948 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} 3949 3950 Value *Get(Value *V) { 3951 do { 3952 auto SV = Storage.find(V); 3953 if (SV == Storage.end()) 3954 return V; 3955 V = SV->second; 3956 } while (true); 3957 } 3958 3959 Value *Simplify(Value *Val) { 3960 SmallVector<Value *, 32> WorkList; 3961 SmallPtrSet<Value *, 32> Visited; 3962 WorkList.push_back(Val); 3963 while (!WorkList.empty()) { 3964 auto *P = WorkList.pop_back_val(); 3965 if (!Visited.insert(P).second) 3966 continue; 3967 if (auto *PI = dyn_cast<Instruction>(P)) 3968 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 3969 for (auto *U : PI->users()) 3970 WorkList.push_back(cast<Value>(U)); 3971 Put(PI, V); 3972 PI->replaceAllUsesWith(V); 3973 if (auto *PHI = dyn_cast<PHINode>(PI)) 3974 AllPhiNodes.erase(PHI); 3975 if (auto *Select = dyn_cast<SelectInst>(PI)) 3976 AllSelectNodes.erase(Select); 3977 PI->eraseFromParent(); 3978 } 3979 } 3980 return Get(Val); 3981 } 3982 3983 void Put(Value *From, Value *To) { Storage.insert({From, To}); } 3984 3985 void ReplacePhi(PHINode *From, PHINode *To) { 3986 Value *OldReplacement = Get(From); 3987 while (OldReplacement != From) { 3988 From = To; 3989 To = dyn_cast<PHINode>(OldReplacement); 3990 OldReplacement = Get(From); 3991 } 3992 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3993 Put(From, To); 3994 From->replaceAllUsesWith(To); 3995 AllPhiNodes.erase(From); 3996 From->eraseFromParent(); 3997 } 3998 3999 PhiNodeSet &newPhiNodes() { return AllPhiNodes; } 4000 4001 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 4002 4003 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 4004 4005 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 4006 4007 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 4008 4009 void destroyNewNodes(Type *CommonType) { 4010 // For safe erasing, replace the uses with dummy value first. 4011 auto *Dummy = PoisonValue::get(CommonType); 4012 for (auto *I : AllPhiNodes) { 4013 I->replaceAllUsesWith(Dummy); 4014 I->eraseFromParent(); 4015 } 4016 AllPhiNodes.clear(); 4017 for (auto *I : AllSelectNodes) { 4018 I->replaceAllUsesWith(Dummy); 4019 I->eraseFromParent(); 4020 } 4021 AllSelectNodes.clear(); 4022 } 4023 }; 4024 4025 /// A helper class for combining addressing modes. 4026 class AddressingModeCombiner { 4027 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 4028 typedef std::pair<PHINode *, PHINode *> PHIPair; 4029 4030 private: 4031 /// The addressing modes we've collected. 4032 SmallVector<ExtAddrMode, 16> AddrModes; 4033 4034 /// The field in which the AddrModes differ, when we have more than one. 4035 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 4036 4037 /// Are the AddrModes that we have all just equal to their original values? 4038 bool AllAddrModesTrivial = true; 4039 4040 /// Common Type for all different fields in addressing modes. 4041 Type *CommonType = nullptr; 4042 4043 /// SimplifyQuery for simplifyInstruction utility. 4044 const SimplifyQuery &SQ; 4045 4046 /// Original Address. 4047 Value *Original; 4048 4049 /// Common value among addresses 4050 Value *CommonValue = nullptr; 4051 4052 public: 4053 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 4054 : SQ(_SQ), Original(OriginalValue) {} 4055 4056 ~AddressingModeCombiner() { eraseCommonValueIfDead(); } 4057 4058 /// Get the combined AddrMode 4059 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } 4060 4061 /// Add a new AddrMode if it's compatible with the AddrModes we already 4062 /// have. 4063 /// \return True iff we succeeded in doing so. 4064 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 4065 // Take note of if we have any non-trivial AddrModes, as we need to detect 4066 // when all AddrModes are trivial as then we would introduce a phi or select 4067 // which just duplicates what's already there. 4068 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 4069 4070 // If this is the first addrmode then everything is fine. 4071 if (AddrModes.empty()) { 4072 AddrModes.emplace_back(NewAddrMode); 4073 return true; 4074 } 4075 4076 // Figure out how different this is from the other address modes, which we 4077 // can do just by comparing against the first one given that we only care 4078 // about the cumulative difference. 4079 ExtAddrMode::FieldName ThisDifferentField = 4080 AddrModes[0].compare(NewAddrMode); 4081 if (DifferentField == ExtAddrMode::NoField) 4082 DifferentField = ThisDifferentField; 4083 else if (DifferentField != ThisDifferentField) 4084 DifferentField = ExtAddrMode::MultipleFields; 4085 4086 // If NewAddrMode differs in more than one dimension we cannot handle it. 4087 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 4088 4089 // If Scale Field is different then we reject. 4090 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 4091 4092 // We also must reject the case when base offset is different and 4093 // scale reg is not null, we cannot handle this case due to merge of 4094 // different offsets will be used as ScaleReg. 4095 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 4096 !NewAddrMode.ScaledReg); 4097 4098 // We also must reject the case when GV is different and BaseReg installed 4099 // due to we want to use base reg as a merge of GV values. 4100 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 4101 !NewAddrMode.HasBaseReg); 4102 4103 // Even if NewAddMode is the same we still need to collect it due to 4104 // original value is different. And later we will need all original values 4105 // as anchors during finding the common Phi node. 4106 if (CanHandle) 4107 AddrModes.emplace_back(NewAddrMode); 4108 else 4109 AddrModes.clear(); 4110 4111 return CanHandle; 4112 } 4113 4114 /// Combine the addressing modes we've collected into a single 4115 /// addressing mode. 4116 /// \return True iff we successfully combined them or we only had one so 4117 /// didn't need to combine them anyway. 4118 bool combineAddrModes() { 4119 // If we have no AddrModes then they can't be combined. 4120 if (AddrModes.size() == 0) 4121 return false; 4122 4123 // A single AddrMode can trivially be combined. 4124 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 4125 return true; 4126 4127 // If the AddrModes we collected are all just equal to the value they are 4128 // derived from then combining them wouldn't do anything useful. 4129 if (AllAddrModesTrivial) 4130 return false; 4131 4132 if (!addrModeCombiningAllowed()) 4133 return false; 4134 4135 // Build a map between <original value, basic block where we saw it> to 4136 // value of base register. 4137 // Bail out if there is no common type. 4138 FoldAddrToValueMapping Map; 4139 if (!initializeMap(Map)) 4140 return false; 4141 4142 CommonValue = findCommon(Map); 4143 if (CommonValue) 4144 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 4145 return CommonValue != nullptr; 4146 } 4147 4148 private: 4149 /// `CommonValue` may be a placeholder inserted by us. 4150 /// If the placeholder is not used, we should remove this dead instruction. 4151 void eraseCommonValueIfDead() { 4152 if (CommonValue && CommonValue->getNumUses() == 0) 4153 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) 4154 CommonInst->eraseFromParent(); 4155 } 4156 4157 /// Initialize Map with anchor values. For address seen 4158 /// we set the value of different field saw in this address. 4159 /// At the same time we find a common type for different field we will 4160 /// use to create new Phi/Select nodes. Keep it in CommonType field. 4161 /// Return false if there is no common type found. 4162 bool initializeMap(FoldAddrToValueMapping &Map) { 4163 // Keep track of keys where the value is null. We will need to replace it 4164 // with constant null when we know the common type. 4165 SmallVector<Value *, 2> NullValue; 4166 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 4167 for (auto &AM : AddrModes) { 4168 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 4169 if (DV) { 4170 auto *Type = DV->getType(); 4171 if (CommonType && CommonType != Type) 4172 return false; 4173 CommonType = Type; 4174 Map[AM.OriginalValue] = DV; 4175 } else { 4176 NullValue.push_back(AM.OriginalValue); 4177 } 4178 } 4179 assert(CommonType && "At least one non-null value must be!"); 4180 for (auto *V : NullValue) 4181 Map[V] = Constant::getNullValue(CommonType); 4182 return true; 4183 } 4184 4185 /// We have mapping between value A and other value B where B was a field in 4186 /// addressing mode represented by A. Also we have an original value C 4187 /// representing an address we start with. Traversing from C through phi and 4188 /// selects we ended up with A's in a map. This utility function tries to find 4189 /// a value V which is a field in addressing mode C and traversing through phi 4190 /// nodes and selects we will end up in corresponded values B in a map. 4191 /// The utility will create a new Phi/Selects if needed. 4192 // The simple example looks as follows: 4193 // BB1: 4194 // p1 = b1 + 40 4195 // br cond BB2, BB3 4196 // BB2: 4197 // p2 = b2 + 40 4198 // br BB3 4199 // BB3: 4200 // p = phi [p1, BB1], [p2, BB2] 4201 // v = load p 4202 // Map is 4203 // p1 -> b1 4204 // p2 -> b2 4205 // Request is 4206 // p -> ? 4207 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 4208 Value *findCommon(FoldAddrToValueMapping &Map) { 4209 // Tracks the simplification of newly created phi nodes. The reason we use 4210 // this mapping is because we will add new created Phi nodes in AddrToBase. 4211 // Simplification of Phi nodes is recursive, so some Phi node may 4212 // be simplified after we added it to AddrToBase. In reality this 4213 // simplification is possible only if original phi/selects were not 4214 // simplified yet. 4215 // Using this mapping we can find the current value in AddrToBase. 4216 SimplificationTracker ST(SQ); 4217 4218 // First step, DFS to create PHI nodes for all intermediate blocks. 4219 // Also fill traverse order for the second step. 4220 SmallVector<Value *, 32> TraverseOrder; 4221 InsertPlaceholders(Map, TraverseOrder, ST); 4222 4223 // Second Step, fill new nodes by merged values and simplify if possible. 4224 FillPlaceholders(Map, TraverseOrder, ST); 4225 4226 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 4227 ST.destroyNewNodes(CommonType); 4228 return nullptr; 4229 } 4230 4231 // Now we'd like to match New Phi nodes to existed ones. 4232 unsigned PhiNotMatchedCount = 0; 4233 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 4234 ST.destroyNewNodes(CommonType); 4235 return nullptr; 4236 } 4237 4238 auto *Result = ST.Get(Map.find(Original)->second); 4239 if (Result) { 4240 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 4241 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 4242 } 4243 return Result; 4244 } 4245 4246 /// Try to match PHI node to Candidate. 4247 /// Matcher tracks the matched Phi nodes. 4248 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 4249 SmallSetVector<PHIPair, 8> &Matcher, 4250 PhiNodeSet &PhiNodesToMatch) { 4251 SmallVector<PHIPair, 8> WorkList; 4252 Matcher.insert({PHI, Candidate}); 4253 SmallSet<PHINode *, 8> MatchedPHIs; 4254 MatchedPHIs.insert(PHI); 4255 WorkList.push_back({PHI, Candidate}); 4256 SmallSet<PHIPair, 8> Visited; 4257 while (!WorkList.empty()) { 4258 auto Item = WorkList.pop_back_val(); 4259 if (!Visited.insert(Item).second) 4260 continue; 4261 // We iterate over all incoming values to Phi to compare them. 4262 // If values are different and both of them Phi and the first one is a 4263 // Phi we added (subject to match) and both of them is in the same basic 4264 // block then we can match our pair if values match. So we state that 4265 // these values match and add it to work list to verify that. 4266 for (auto *B : Item.first->blocks()) { 4267 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 4268 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 4269 if (FirstValue == SecondValue) 4270 continue; 4271 4272 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 4273 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 4274 4275 // One of them is not Phi or 4276 // The first one is not Phi node from the set we'd like to match or 4277 // Phi nodes from different basic blocks then 4278 // we will not be able to match. 4279 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 4280 FirstPhi->getParent() != SecondPhi->getParent()) 4281 return false; 4282 4283 // If we already matched them then continue. 4284 if (Matcher.count({FirstPhi, SecondPhi})) 4285 continue; 4286 // So the values are different and does not match. So we need them to 4287 // match. (But we register no more than one match per PHI node, so that 4288 // we won't later try to replace them twice.) 4289 if (MatchedPHIs.insert(FirstPhi).second) 4290 Matcher.insert({FirstPhi, SecondPhi}); 4291 // But me must check it. 4292 WorkList.push_back({FirstPhi, SecondPhi}); 4293 } 4294 } 4295 return true; 4296 } 4297 4298 /// For the given set of PHI nodes (in the SimplificationTracker) try 4299 /// to find their equivalents. 4300 /// Returns false if this matching fails and creation of new Phi is disabled. 4301 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 4302 unsigned &PhiNotMatchedCount) { 4303 // Matched and PhiNodesToMatch iterate their elements in a deterministic 4304 // order, so the replacements (ReplacePhi) are also done in a deterministic 4305 // order. 4306 SmallSetVector<PHIPair, 8> Matched; 4307 SmallPtrSet<PHINode *, 8> WillNotMatch; 4308 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 4309 while (PhiNodesToMatch.size()) { 4310 PHINode *PHI = *PhiNodesToMatch.begin(); 4311 4312 // Add us, if no Phi nodes in the basic block we do not match. 4313 WillNotMatch.clear(); 4314 WillNotMatch.insert(PHI); 4315 4316 // Traverse all Phis until we found equivalent or fail to do that. 4317 bool IsMatched = false; 4318 for (auto &P : PHI->getParent()->phis()) { 4319 // Skip new Phi nodes. 4320 if (PhiNodesToMatch.count(&P)) 4321 continue; 4322 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 4323 break; 4324 // If it does not match, collect all Phi nodes from matcher. 4325 // if we end up with no match, them all these Phi nodes will not match 4326 // later. 4327 for (auto M : Matched) 4328 WillNotMatch.insert(M.first); 4329 Matched.clear(); 4330 } 4331 if (IsMatched) { 4332 // Replace all matched values and erase them. 4333 for (auto MV : Matched) 4334 ST.ReplacePhi(MV.first, MV.second); 4335 Matched.clear(); 4336 continue; 4337 } 4338 // If we are not allowed to create new nodes then bail out. 4339 if (!AllowNewPhiNodes) 4340 return false; 4341 // Just remove all seen values in matcher. They will not match anything. 4342 PhiNotMatchedCount += WillNotMatch.size(); 4343 for (auto *P : WillNotMatch) 4344 PhiNodesToMatch.erase(P); 4345 } 4346 return true; 4347 } 4348 /// Fill the placeholders with values from predecessors and simplify them. 4349 void FillPlaceholders(FoldAddrToValueMapping &Map, 4350 SmallVectorImpl<Value *> &TraverseOrder, 4351 SimplificationTracker &ST) { 4352 while (!TraverseOrder.empty()) { 4353 Value *Current = TraverseOrder.pop_back_val(); 4354 assert(Map.contains(Current) && "No node to fill!!!"); 4355 Value *V = Map[Current]; 4356 4357 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 4358 // CurrentValue also must be Select. 4359 auto *CurrentSelect = cast<SelectInst>(Current); 4360 auto *TrueValue = CurrentSelect->getTrueValue(); 4361 assert(Map.contains(TrueValue) && "No True Value!"); 4362 Select->setTrueValue(ST.Get(Map[TrueValue])); 4363 auto *FalseValue = CurrentSelect->getFalseValue(); 4364 assert(Map.contains(FalseValue) && "No False Value!"); 4365 Select->setFalseValue(ST.Get(Map[FalseValue])); 4366 } else { 4367 // Must be a Phi node then. 4368 auto *PHI = cast<PHINode>(V); 4369 // Fill the Phi node with values from predecessors. 4370 for (auto *B : predecessors(PHI->getParent())) { 4371 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 4372 assert(Map.contains(PV) && "No predecessor Value!"); 4373 PHI->addIncoming(ST.Get(Map[PV]), B); 4374 } 4375 } 4376 Map[Current] = ST.Simplify(V); 4377 } 4378 } 4379 4380 /// Starting from original value recursively iterates over def-use chain up to 4381 /// known ending values represented in a map. For each traversed phi/select 4382 /// inserts a placeholder Phi or Select. 4383 /// Reports all new created Phi/Select nodes by adding them to set. 4384 /// Also reports and order in what values have been traversed. 4385 void InsertPlaceholders(FoldAddrToValueMapping &Map, 4386 SmallVectorImpl<Value *> &TraverseOrder, 4387 SimplificationTracker &ST) { 4388 SmallVector<Value *, 32> Worklist; 4389 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 4390 "Address must be a Phi or Select node"); 4391 auto *Dummy = PoisonValue::get(CommonType); 4392 Worklist.push_back(Original); 4393 while (!Worklist.empty()) { 4394 Value *Current = Worklist.pop_back_val(); 4395 // if it is already visited or it is an ending value then skip it. 4396 if (Map.contains(Current)) 4397 continue; 4398 TraverseOrder.push_back(Current); 4399 4400 // CurrentValue must be a Phi node or select. All others must be covered 4401 // by anchors. 4402 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 4403 // Is it OK to get metadata from OrigSelect?! 4404 // Create a Select placeholder with dummy value. 4405 SelectInst *Select = 4406 SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy, 4407 CurrentSelect->getName(), 4408 CurrentSelect->getIterator(), CurrentSelect); 4409 Map[Current] = Select; 4410 ST.insertNewSelect(Select); 4411 // We are interested in True and False values. 4412 Worklist.push_back(CurrentSelect->getTrueValue()); 4413 Worklist.push_back(CurrentSelect->getFalseValue()); 4414 } else { 4415 // It must be a Phi node then. 4416 PHINode *CurrentPhi = cast<PHINode>(Current); 4417 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 4418 PHINode *PHI = 4419 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator()); 4420 Map[Current] = PHI; 4421 ST.insertNewPhi(PHI); 4422 append_range(Worklist, CurrentPhi->incoming_values()); 4423 } 4424 } 4425 } 4426 4427 bool addrModeCombiningAllowed() { 4428 if (DisableComplexAddrModes) 4429 return false; 4430 switch (DifferentField) { 4431 default: 4432 return false; 4433 case ExtAddrMode::BaseRegField: 4434 return AddrSinkCombineBaseReg; 4435 case ExtAddrMode::BaseGVField: 4436 return AddrSinkCombineBaseGV; 4437 case ExtAddrMode::BaseOffsField: 4438 return AddrSinkCombineBaseOffs; 4439 case ExtAddrMode::ScaledRegField: 4440 return AddrSinkCombineScaledReg; 4441 } 4442 } 4443 }; 4444 } // end anonymous namespace 4445 4446 /// Try adding ScaleReg*Scale to the current addressing mode. 4447 /// Return true and update AddrMode if this addr mode is legal for the target, 4448 /// false if not. 4449 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 4450 unsigned Depth) { 4451 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 4452 // mode. Just process that directly. 4453 if (Scale == 1) 4454 return matchAddr(ScaleReg, Depth); 4455 4456 // If the scale is 0, it takes nothing to add this. 4457 if (Scale == 0) 4458 return true; 4459 4460 // If we already have a scale of this value, we can add to it, otherwise, we 4461 // need an available scale field. 4462 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 4463 return false; 4464 4465 ExtAddrMode TestAddrMode = AddrMode; 4466 4467 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 4468 // [A+B + A*7] -> [B+A*8]. 4469 TestAddrMode.Scale += Scale; 4470 TestAddrMode.ScaledReg = ScaleReg; 4471 4472 // If the new address isn't legal, bail out. 4473 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 4474 return false; 4475 4476 // It was legal, so commit it. 4477 AddrMode = TestAddrMode; 4478 4479 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 4480 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 4481 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 4482 // go any further: we can reuse it and cannot eliminate it. 4483 ConstantInt *CI = nullptr; 4484 Value *AddLHS = nullptr; 4485 if (isa<Instruction>(ScaleReg) && // not a constant expr. 4486 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 4487 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 4488 TestAddrMode.InBounds = false; 4489 TestAddrMode.ScaledReg = AddLHS; 4490 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 4491 4492 // If this addressing mode is legal, commit it and remember that we folded 4493 // this instruction. 4494 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 4495 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 4496 AddrMode = TestAddrMode; 4497 return true; 4498 } 4499 // Restore status quo. 4500 TestAddrMode = AddrMode; 4501 } 4502 4503 // If this is an add recurrence with a constant step, return the increment 4504 // instruction and the canonicalized step. 4505 auto GetConstantStep = 4506 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { 4507 auto *PN = dyn_cast<PHINode>(V); 4508 if (!PN) 4509 return std::nullopt; 4510 auto IVInc = getIVIncrement(PN, &LI); 4511 if (!IVInc) 4512 return std::nullopt; 4513 // TODO: The result of the intrinsics above is two-complement. However when 4514 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 4515 // If it has nuw or nsw flags, we need to make sure that these flags are 4516 // inferrable at the point of memory instruction. Otherwise we are replacing 4517 // well-defined two-complement computation with poison. Currently, to avoid 4518 // potentially complex analysis needed to prove this, we reject such cases. 4519 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 4520 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 4521 return std::nullopt; 4522 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 4523 return std::make_pair(IVInc->first, ConstantStep->getValue()); 4524 return std::nullopt; 4525 }; 4526 4527 // Try to account for the following special case: 4528 // 1. ScaleReg is an inductive variable; 4529 // 2. We use it with non-zero offset; 4530 // 3. IV's increment is available at the point of memory instruction. 4531 // 4532 // In this case, we may reuse the IV increment instead of the IV Phi to 4533 // achieve the following advantages: 4534 // 1. If IV step matches the offset, we will have no need in the offset; 4535 // 2. Even if they don't match, we will reduce the overlap of living IV 4536 // and IV increment, that will potentially lead to better register 4537 // assignment. 4538 if (AddrMode.BaseOffs) { 4539 if (auto IVStep = GetConstantStep(ScaleReg)) { 4540 Instruction *IVInc = IVStep->first; 4541 // The following assert is important to ensure a lack of infinite loops. 4542 // This transforms is (intentionally) the inverse of the one just above. 4543 // If they don't agree on the definition of an increment, we'd alternate 4544 // back and forth indefinitely. 4545 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 4546 APInt Step = IVStep->second; 4547 APInt Offset = Step * AddrMode.Scale; 4548 if (Offset.isSignedIntN(64)) { 4549 TestAddrMode.InBounds = false; 4550 TestAddrMode.ScaledReg = IVInc; 4551 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 4552 // If this addressing mode is legal, commit it.. 4553 // (Note that we defer the (expensive) domtree base legality check 4554 // to the very last possible point.) 4555 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 4556 getDTFn().dominates(IVInc, MemoryInst)) { 4557 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 4558 AddrMode = TestAddrMode; 4559 return true; 4560 } 4561 // Restore status quo. 4562 TestAddrMode = AddrMode; 4563 } 4564 } 4565 } 4566 4567 // Otherwise, just return what we have. 4568 return true; 4569 } 4570 4571 /// This is a little filter, which returns true if an addressing computation 4572 /// involving I might be folded into a load/store accessing it. 4573 /// This doesn't need to be perfect, but needs to accept at least 4574 /// the set of instructions that MatchOperationAddr can. 4575 static bool MightBeFoldableInst(Instruction *I) { 4576 switch (I->getOpcode()) { 4577 case Instruction::BitCast: 4578 case Instruction::AddrSpaceCast: 4579 // Don't touch identity bitcasts. 4580 if (I->getType() == I->getOperand(0)->getType()) 4581 return false; 4582 return I->getType()->isIntOrPtrTy(); 4583 case Instruction::PtrToInt: 4584 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4585 return true; 4586 case Instruction::IntToPtr: 4587 // We know the input is intptr_t, so this is foldable. 4588 return true; 4589 case Instruction::Add: 4590 return true; 4591 case Instruction::Mul: 4592 case Instruction::Shl: 4593 // Can only handle X*C and X << C. 4594 return isa<ConstantInt>(I->getOperand(1)); 4595 case Instruction::GetElementPtr: 4596 return true; 4597 default: 4598 return false; 4599 } 4600 } 4601 4602 /// Check whether or not \p Val is a legal instruction for \p TLI. 4603 /// \note \p Val is assumed to be the product of some type promotion. 4604 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4605 /// to be legal, as the non-promoted value would have had the same state. 4606 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4607 const DataLayout &DL, Value *Val) { 4608 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4609 if (!PromotedInst) 4610 return false; 4611 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4612 // If the ISDOpcode is undefined, it was undefined before the promotion. 4613 if (!ISDOpcode) 4614 return true; 4615 // Otherwise, check if the promoted instruction is legal or not. 4616 return TLI.isOperationLegalOrCustom( 4617 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4618 } 4619 4620 namespace { 4621 4622 /// Hepler class to perform type promotion. 4623 class TypePromotionHelper { 4624 /// Utility function to add a promoted instruction \p ExtOpnd to 4625 /// \p PromotedInsts and record the type of extension we have seen. 4626 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4627 Instruction *ExtOpnd, bool IsSExt) { 4628 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4629 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4630 if (It != PromotedInsts.end()) { 4631 // If the new extension is same as original, the information in 4632 // PromotedInsts[ExtOpnd] is still correct. 4633 if (It->second.getInt() == ExtTy) 4634 return; 4635 4636 // Now the new extension is different from old extension, we make 4637 // the type information invalid by setting extension type to 4638 // BothExtension. 4639 ExtTy = BothExtension; 4640 } 4641 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4642 } 4643 4644 /// Utility function to query the original type of instruction \p Opnd 4645 /// with a matched extension type. If the extension doesn't match, we 4646 /// cannot use the information we had on the original type. 4647 /// BothExtension doesn't match any extension type. 4648 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4649 Instruction *Opnd, bool IsSExt) { 4650 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4651 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4652 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4653 return It->second.getPointer(); 4654 return nullptr; 4655 } 4656 4657 /// Utility function to check whether or not a sign or zero extension 4658 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4659 /// either using the operands of \p Inst or promoting \p Inst. 4660 /// The type of the extension is defined by \p IsSExt. 4661 /// In other words, check if: 4662 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4663 /// #1 Promotion applies: 4664 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4665 /// #2 Operand reuses: 4666 /// ext opnd1 to ConsideredExtType. 4667 /// \p PromotedInsts maps the instructions to their type before promotion. 4668 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4669 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4670 4671 /// Utility function to determine if \p OpIdx should be promoted when 4672 /// promoting \p Inst. 4673 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4674 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4675 } 4676 4677 /// Utility function to promote the operand of \p Ext when this 4678 /// operand is a promotable trunc or sext or zext. 4679 /// \p PromotedInsts maps the instructions to their type before promotion. 4680 /// \p CreatedInstsCost[out] contains the cost of all instructions 4681 /// created to promote the operand of Ext. 4682 /// Newly added extensions are inserted in \p Exts. 4683 /// Newly added truncates are inserted in \p Truncs. 4684 /// Should never be called directly. 4685 /// \return The promoted value which is used instead of Ext. 4686 static Value *promoteOperandForTruncAndAnyExt( 4687 Instruction *Ext, TypePromotionTransaction &TPT, 4688 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4689 SmallVectorImpl<Instruction *> *Exts, 4690 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4691 4692 /// Utility function to promote the operand of \p Ext when this 4693 /// operand is promotable and is not a supported trunc or sext. 4694 /// \p PromotedInsts maps the instructions to their type before promotion. 4695 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4696 /// created to promote the operand of Ext. 4697 /// Newly added extensions are inserted in \p Exts. 4698 /// Newly added truncates are inserted in \p Truncs. 4699 /// Should never be called directly. 4700 /// \return The promoted value which is used instead of Ext. 4701 static Value *promoteOperandForOther(Instruction *Ext, 4702 TypePromotionTransaction &TPT, 4703 InstrToOrigTy &PromotedInsts, 4704 unsigned &CreatedInstsCost, 4705 SmallVectorImpl<Instruction *> *Exts, 4706 SmallVectorImpl<Instruction *> *Truncs, 4707 const TargetLowering &TLI, bool IsSExt); 4708 4709 /// \see promoteOperandForOther. 4710 static Value *signExtendOperandForOther( 4711 Instruction *Ext, TypePromotionTransaction &TPT, 4712 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4713 SmallVectorImpl<Instruction *> *Exts, 4714 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4715 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4716 Exts, Truncs, TLI, true); 4717 } 4718 4719 /// \see promoteOperandForOther. 4720 static Value *zeroExtendOperandForOther( 4721 Instruction *Ext, TypePromotionTransaction &TPT, 4722 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4723 SmallVectorImpl<Instruction *> *Exts, 4724 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4725 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4726 Exts, Truncs, TLI, false); 4727 } 4728 4729 public: 4730 /// Type for the utility function that promotes the operand of Ext. 4731 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4732 InstrToOrigTy &PromotedInsts, 4733 unsigned &CreatedInstsCost, 4734 SmallVectorImpl<Instruction *> *Exts, 4735 SmallVectorImpl<Instruction *> *Truncs, 4736 const TargetLowering &TLI); 4737 4738 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4739 /// action to promote the operand of \p Ext instead of using Ext. 4740 /// \return NULL if no promotable action is possible with the current 4741 /// sign extension. 4742 /// \p InsertedInsts keeps track of all the instructions inserted by the 4743 /// other CodeGenPrepare optimizations. This information is important 4744 /// because we do not want to promote these instructions as CodeGenPrepare 4745 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4746 /// \p PromotedInsts maps the instructions to their type before promotion. 4747 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4748 const TargetLowering &TLI, 4749 const InstrToOrigTy &PromotedInsts); 4750 }; 4751 4752 } // end anonymous namespace 4753 4754 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4755 Type *ConsideredExtType, 4756 const InstrToOrigTy &PromotedInsts, 4757 bool IsSExt) { 4758 // The promotion helper does not know how to deal with vector types yet. 4759 // To be able to fix that, we would need to fix the places where we 4760 // statically extend, e.g., constants and such. 4761 if (Inst->getType()->isVectorTy()) 4762 return false; 4763 4764 // We can always get through zext. 4765 if (isa<ZExtInst>(Inst)) 4766 return true; 4767 4768 // sext(sext) is ok too. 4769 if (IsSExt && isa<SExtInst>(Inst)) 4770 return true; 4771 4772 // We can get through binary operator, if it is legal. In other words, the 4773 // binary operator must have a nuw or nsw flag. 4774 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4775 if (isa<OverflowingBinaryOperator>(BinOp) && 4776 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4777 (IsSExt && BinOp->hasNoSignedWrap()))) 4778 return true; 4779 4780 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4781 if ((Inst->getOpcode() == Instruction::And || 4782 Inst->getOpcode() == Instruction::Or)) 4783 return true; 4784 4785 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4786 if (Inst->getOpcode() == Instruction::Xor) { 4787 // Make sure it is not a NOT. 4788 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4789 if (!Cst->getValue().isAllOnes()) 4790 return true; 4791 } 4792 4793 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4794 // It may change a poisoned value into a regular value, like 4795 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4796 // poisoned value regular value 4797 // It should be OK since undef covers valid value. 4798 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4799 return true; 4800 4801 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4802 // It may change a poisoned value into a regular value, like 4803 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4804 // poisoned value regular value 4805 // It should be OK since undef covers valid value. 4806 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4807 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4808 if (ExtInst->hasOneUse()) { 4809 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4810 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4811 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4812 if (Cst && 4813 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4814 return true; 4815 } 4816 } 4817 } 4818 4819 // Check if we can do the following simplification. 4820 // ext(trunc(opnd)) --> ext(opnd) 4821 if (!isa<TruncInst>(Inst)) 4822 return false; 4823 4824 Value *OpndVal = Inst->getOperand(0); 4825 // Check if we can use this operand in the extension. 4826 // If the type is larger than the result type of the extension, we cannot. 4827 if (!OpndVal->getType()->isIntegerTy() || 4828 OpndVal->getType()->getIntegerBitWidth() > 4829 ConsideredExtType->getIntegerBitWidth()) 4830 return false; 4831 4832 // If the operand of the truncate is not an instruction, we will not have 4833 // any information on the dropped bits. 4834 // (Actually we could for constant but it is not worth the extra logic). 4835 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4836 if (!Opnd) 4837 return false; 4838 4839 // Check if the source of the type is narrow enough. 4840 // I.e., check that trunc just drops extended bits of the same kind of 4841 // the extension. 4842 // #1 get the type of the operand and check the kind of the extended bits. 4843 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4844 if (OpndType) 4845 ; 4846 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4847 OpndType = Opnd->getOperand(0)->getType(); 4848 else 4849 return false; 4850 4851 // #2 check that the truncate just drops extended bits. 4852 return Inst->getType()->getIntegerBitWidth() >= 4853 OpndType->getIntegerBitWidth(); 4854 } 4855 4856 TypePromotionHelper::Action TypePromotionHelper::getAction( 4857 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4858 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4859 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4860 "Unexpected instruction type"); 4861 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4862 Type *ExtTy = Ext->getType(); 4863 bool IsSExt = isa<SExtInst>(Ext); 4864 // If the operand of the extension is not an instruction, we cannot 4865 // get through. 4866 // If it, check we can get through. 4867 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4868 return nullptr; 4869 4870 // Do not promote if the operand has been added by codegenprepare. 4871 // Otherwise, it means we are undoing an optimization that is likely to be 4872 // redone, thus causing potential infinite loop. 4873 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4874 return nullptr; 4875 4876 // SExt or Trunc instructions. 4877 // Return the related handler. 4878 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4879 isa<ZExtInst>(ExtOpnd)) 4880 return promoteOperandForTruncAndAnyExt; 4881 4882 // Regular instruction. 4883 // Abort early if we will have to insert non-free instructions. 4884 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4885 return nullptr; 4886 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4887 } 4888 4889 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4890 Instruction *SExt, TypePromotionTransaction &TPT, 4891 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4892 SmallVectorImpl<Instruction *> *Exts, 4893 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4894 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4895 // get through it and this method should not be called. 4896 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4897 Value *ExtVal = SExt; 4898 bool HasMergedNonFreeExt = false; 4899 if (isa<ZExtInst>(SExtOpnd)) { 4900 // Replace s|zext(zext(opnd)) 4901 // => zext(opnd). 4902 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4903 Value *ZExt = 4904 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4905 TPT.replaceAllUsesWith(SExt, ZExt); 4906 TPT.eraseInstruction(SExt); 4907 ExtVal = ZExt; 4908 } else { 4909 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4910 // => z|sext(opnd). 4911 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4912 } 4913 CreatedInstsCost = 0; 4914 4915 // Remove dead code. 4916 if (SExtOpnd->use_empty()) 4917 TPT.eraseInstruction(SExtOpnd); 4918 4919 // Check if the extension is still needed. 4920 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4921 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4922 if (ExtInst) { 4923 if (Exts) 4924 Exts->push_back(ExtInst); 4925 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4926 } 4927 return ExtVal; 4928 } 4929 4930 // At this point we have: ext ty opnd to ty. 4931 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4932 Value *NextVal = ExtInst->getOperand(0); 4933 TPT.eraseInstruction(ExtInst, NextVal); 4934 return NextVal; 4935 } 4936 4937 Value *TypePromotionHelper::promoteOperandForOther( 4938 Instruction *Ext, TypePromotionTransaction &TPT, 4939 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4940 SmallVectorImpl<Instruction *> *Exts, 4941 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4942 bool IsSExt) { 4943 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4944 // get through it and this method should not be called. 4945 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4946 CreatedInstsCost = 0; 4947 if (!ExtOpnd->hasOneUse()) { 4948 // ExtOpnd will be promoted. 4949 // All its uses, but Ext, will need to use a truncated value of the 4950 // promoted version. 4951 // Create the truncate now. 4952 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4953 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4954 // Insert it just after the definition. 4955 ITrunc->moveAfter(ExtOpnd); 4956 if (Truncs) 4957 Truncs->push_back(ITrunc); 4958 } 4959 4960 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4961 // Restore the operand of Ext (which has been replaced by the previous call 4962 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4963 TPT.setOperand(Ext, 0, ExtOpnd); 4964 } 4965 4966 // Get through the Instruction: 4967 // 1. Update its type. 4968 // 2. Replace the uses of Ext by Inst. 4969 // 3. Extend each operand that needs to be extended. 4970 4971 // Remember the original type of the instruction before promotion. 4972 // This is useful to know that the high bits are sign extended bits. 4973 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4974 // Step #1. 4975 TPT.mutateType(ExtOpnd, Ext->getType()); 4976 // Step #2. 4977 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4978 // Step #3. 4979 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4980 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4981 ++OpIdx) { 4982 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4983 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4984 !shouldExtOperand(ExtOpnd, OpIdx)) { 4985 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4986 continue; 4987 } 4988 // Check if we can statically extend the operand. 4989 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4990 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4991 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4992 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4993 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4994 : Cst->getValue().zext(BitWidth); 4995 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4996 continue; 4997 } 4998 // UndefValue are typed, so we have to statically sign extend them. 4999 if (isa<UndefValue>(Opnd)) { 5000 LLVM_DEBUG(dbgs() << "Statically extend\n"); 5001 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 5002 continue; 5003 } 5004 5005 // Otherwise we have to explicitly sign extend the operand. 5006 Value *ValForExtOpnd = IsSExt 5007 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType()) 5008 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType()); 5009 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 5010 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd); 5011 if (!InstForExtOpnd) 5012 continue; 5013 5014 if (Exts) 5015 Exts->push_back(InstForExtOpnd); 5016 5017 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd); 5018 } 5019 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 5020 TPT.eraseInstruction(Ext); 5021 return ExtOpnd; 5022 } 5023 5024 /// Check whether or not promoting an instruction to a wider type is profitable. 5025 /// \p NewCost gives the cost of extension instructions created by the 5026 /// promotion. 5027 /// \p OldCost gives the cost of extension instructions before the promotion 5028 /// plus the number of instructions that have been 5029 /// matched in the addressing mode the promotion. 5030 /// \p PromotedOperand is the value that has been promoted. 5031 /// \return True if the promotion is profitable, false otherwise. 5032 bool AddressingModeMatcher::isPromotionProfitable( 5033 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 5034 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 5035 << '\n'); 5036 // The cost of the new extensions is greater than the cost of the 5037 // old extension plus what we folded. 5038 // This is not profitable. 5039 if (NewCost > OldCost) 5040 return false; 5041 if (NewCost < OldCost) 5042 return true; 5043 // The promotion is neutral but it may help folding the sign extension in 5044 // loads for instance. 5045 // Check that we did not create an illegal instruction. 5046 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 5047 } 5048 5049 /// Given an instruction or constant expr, see if we can fold the operation 5050 /// into the addressing mode. If so, update the addressing mode and return 5051 /// true, otherwise return false without modifying AddrMode. 5052 /// If \p MovedAway is not NULL, it contains the information of whether or 5053 /// not AddrInst has to be folded into the addressing mode on success. 5054 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 5055 /// because it has been moved away. 5056 /// Thus AddrInst must not be added in the matched instructions. 5057 /// This state can happen when AddrInst is a sext, since it may be moved away. 5058 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 5059 /// not be referenced anymore. 5060 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 5061 unsigned Depth, 5062 bool *MovedAway) { 5063 // Avoid exponential behavior on extremely deep expression trees. 5064 if (Depth >= 5) 5065 return false; 5066 5067 // By default, all matched instructions stay in place. 5068 if (MovedAway) 5069 *MovedAway = false; 5070 5071 switch (Opcode) { 5072 case Instruction::PtrToInt: 5073 // PtrToInt is always a noop, as we know that the int type is pointer sized. 5074 return matchAddr(AddrInst->getOperand(0), Depth); 5075 case Instruction::IntToPtr: { 5076 auto AS = AddrInst->getType()->getPointerAddressSpace(); 5077 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 5078 // This inttoptr is a no-op if the integer type is pointer sized. 5079 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 5080 return matchAddr(AddrInst->getOperand(0), Depth); 5081 return false; 5082 } 5083 case Instruction::BitCast: 5084 // BitCast is always a noop, and we can handle it as long as it is 5085 // int->int or pointer->pointer (we don't want int<->fp or something). 5086 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 5087 // Don't touch identity bitcasts. These were probably put here by LSR, 5088 // and we don't want to mess around with them. Assume it knows what it 5089 // is doing. 5090 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 5091 return matchAddr(AddrInst->getOperand(0), Depth); 5092 return false; 5093 case Instruction::AddrSpaceCast: { 5094 unsigned SrcAS = 5095 AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 5096 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 5097 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 5098 return matchAddr(AddrInst->getOperand(0), Depth); 5099 return false; 5100 } 5101 case Instruction::Add: { 5102 // Check to see if we can merge in one operand, then the other. If so, we 5103 // win. 5104 ExtAddrMode BackupAddrMode = AddrMode; 5105 unsigned OldSize = AddrModeInsts.size(); 5106 // Start a transaction at this point. 5107 // The LHS may match but not the RHS. 5108 // Therefore, we need a higher level restoration point to undo partially 5109 // matched operation. 5110 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5111 TPT.getRestorationPoint(); 5112 5113 // Try to match an integer constant second to increase its chance of ending 5114 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. 5115 int First = 0, Second = 1; 5116 if (isa<ConstantInt>(AddrInst->getOperand(First)) 5117 && !isa<ConstantInt>(AddrInst->getOperand(Second))) 5118 std::swap(First, Second); 5119 AddrMode.InBounds = false; 5120 if (matchAddr(AddrInst->getOperand(First), Depth + 1) && 5121 matchAddr(AddrInst->getOperand(Second), Depth + 1)) 5122 return true; 5123 5124 // Restore the old addr mode info. 5125 AddrMode = BackupAddrMode; 5126 AddrModeInsts.resize(OldSize); 5127 TPT.rollback(LastKnownGood); 5128 5129 // Otherwise this was over-aggressive. Try merging operands in the opposite 5130 // order. 5131 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && 5132 matchAddr(AddrInst->getOperand(First), Depth + 1)) 5133 return true; 5134 5135 // Otherwise we definitely can't merge the ADD in. 5136 AddrMode = BackupAddrMode; 5137 AddrModeInsts.resize(OldSize); 5138 TPT.rollback(LastKnownGood); 5139 break; 5140 } 5141 // case Instruction::Or: 5142 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 5143 // break; 5144 case Instruction::Mul: 5145 case Instruction::Shl: { 5146 // Can only handle X*C and X << C. 5147 AddrMode.InBounds = false; 5148 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 5149 if (!RHS || RHS->getBitWidth() > 64) 5150 return false; 5151 int64_t Scale = Opcode == Instruction::Shl 5152 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 5153 : RHS->getSExtValue(); 5154 5155 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 5156 } 5157 case Instruction::GetElementPtr: { 5158 // Scan the GEP. We check it if it contains constant offsets and at most 5159 // one variable offset. 5160 int VariableOperand = -1; 5161 unsigned VariableScale = 0; 5162 5163 int64_t ConstantOffset = 0; 5164 gep_type_iterator GTI = gep_type_begin(AddrInst); 5165 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 5166 if (StructType *STy = GTI.getStructTypeOrNull()) { 5167 const StructLayout *SL = DL.getStructLayout(STy); 5168 unsigned Idx = 5169 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 5170 ConstantOffset += SL->getElementOffset(Idx); 5171 } else { 5172 TypeSize TS = GTI.getSequentialElementStride(DL); 5173 if (TS.isNonZero()) { 5174 // The optimisations below currently only work for fixed offsets. 5175 if (TS.isScalable()) 5176 return false; 5177 int64_t TypeSize = TS.getFixedValue(); 5178 if (ConstantInt *CI = 5179 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 5180 const APInt &CVal = CI->getValue(); 5181 if (CVal.getSignificantBits() <= 64) { 5182 ConstantOffset += CVal.getSExtValue() * TypeSize; 5183 continue; 5184 } 5185 } 5186 // We only allow one variable index at the moment. 5187 if (VariableOperand != -1) 5188 return false; 5189 5190 // Remember the variable index. 5191 VariableOperand = i; 5192 VariableScale = TypeSize; 5193 } 5194 } 5195 } 5196 5197 // A common case is for the GEP to only do a constant offset. In this case, 5198 // just add it to the disp field and check validity. 5199 if (VariableOperand == -1) { 5200 AddrMode.BaseOffs += ConstantOffset; 5201 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { 5202 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 5203 AddrMode.InBounds = false; 5204 return true; 5205 } 5206 AddrMode.BaseOffs -= ConstantOffset; 5207 5208 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 5209 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 5210 ConstantOffset > 0) { 5211 // Record GEPs with non-zero offsets as candidates for splitting in 5212 // the event that the offset cannot fit into the r+i addressing mode. 5213 // Simple and common case that only one GEP is used in calculating the 5214 // address for the memory access. 5215 Value *Base = AddrInst->getOperand(0); 5216 auto *BaseI = dyn_cast<Instruction>(Base); 5217 auto *GEP = cast<GetElementPtrInst>(AddrInst); 5218 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 5219 (BaseI && !isa<CastInst>(BaseI) && 5220 !isa<GetElementPtrInst>(BaseI))) { 5221 // Make sure the parent block allows inserting non-PHI instructions 5222 // before the terminator. 5223 BasicBlock *Parent = BaseI ? BaseI->getParent() 5224 : &GEP->getFunction()->getEntryBlock(); 5225 if (!Parent->getTerminator()->isEHPad()) 5226 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 5227 } 5228 } 5229 5230 return false; 5231 } 5232 5233 // Save the valid addressing mode in case we can't match. 5234 ExtAddrMode BackupAddrMode = AddrMode; 5235 unsigned OldSize = AddrModeInsts.size(); 5236 5237 // See if the scale and offset amount is valid for this target. 5238 AddrMode.BaseOffs += ConstantOffset; 5239 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 5240 AddrMode.InBounds = false; 5241 5242 // Match the base operand of the GEP. 5243 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { 5244 // If it couldn't be matched, just stuff the value in a register. 5245 if (AddrMode.HasBaseReg) { 5246 AddrMode = BackupAddrMode; 5247 AddrModeInsts.resize(OldSize); 5248 return false; 5249 } 5250 AddrMode.HasBaseReg = true; 5251 AddrMode.BaseReg = AddrInst->getOperand(0); 5252 } 5253 5254 // Match the remaining variable portion of the GEP. 5255 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 5256 Depth)) { 5257 // If it couldn't be matched, try stuffing the base into a register 5258 // instead of matching it, and retrying the match of the scale. 5259 AddrMode = BackupAddrMode; 5260 AddrModeInsts.resize(OldSize); 5261 if (AddrMode.HasBaseReg) 5262 return false; 5263 AddrMode.HasBaseReg = true; 5264 AddrMode.BaseReg = AddrInst->getOperand(0); 5265 AddrMode.BaseOffs += ConstantOffset; 5266 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 5267 VariableScale, Depth)) { 5268 // If even that didn't work, bail. 5269 AddrMode = BackupAddrMode; 5270 AddrModeInsts.resize(OldSize); 5271 return false; 5272 } 5273 } 5274 5275 return true; 5276 } 5277 case Instruction::SExt: 5278 case Instruction::ZExt: { 5279 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 5280 if (!Ext) 5281 return false; 5282 5283 // Try to move this ext out of the way of the addressing mode. 5284 // Ask for a method for doing so. 5285 TypePromotionHelper::Action TPH = 5286 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 5287 if (!TPH) 5288 return false; 5289 5290 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5291 TPT.getRestorationPoint(); 5292 unsigned CreatedInstsCost = 0; 5293 unsigned ExtCost = !TLI.isExtFree(Ext); 5294 Value *PromotedOperand = 5295 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 5296 // SExt has been moved away. 5297 // Thus either it will be rematched later in the recursive calls or it is 5298 // gone. Anyway, we must not fold it into the addressing mode at this point. 5299 // E.g., 5300 // op = add opnd, 1 5301 // idx = ext op 5302 // addr = gep base, idx 5303 // is now: 5304 // promotedOpnd = ext opnd <- no match here 5305 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 5306 // addr = gep base, op <- match 5307 if (MovedAway) 5308 *MovedAway = true; 5309 5310 assert(PromotedOperand && 5311 "TypePromotionHelper should have filtered out those cases"); 5312 5313 ExtAddrMode BackupAddrMode = AddrMode; 5314 unsigned OldSize = AddrModeInsts.size(); 5315 5316 if (!matchAddr(PromotedOperand, Depth) || 5317 // The total of the new cost is equal to the cost of the created 5318 // instructions. 5319 // The total of the old cost is equal to the cost of the extension plus 5320 // what we have saved in the addressing mode. 5321 !isPromotionProfitable(CreatedInstsCost, 5322 ExtCost + (AddrModeInsts.size() - OldSize), 5323 PromotedOperand)) { 5324 AddrMode = BackupAddrMode; 5325 AddrModeInsts.resize(OldSize); 5326 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 5327 TPT.rollback(LastKnownGood); 5328 return false; 5329 } 5330 return true; 5331 } 5332 case Instruction::Call: 5333 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) { 5334 if (II->getIntrinsicID() == Intrinsic::threadlocal_address) { 5335 GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0)); 5336 if (TLI.addressingModeSupportsTLS(GV)) 5337 return matchAddr(AddrInst->getOperand(0), Depth); 5338 } 5339 } 5340 break; 5341 } 5342 return false; 5343 } 5344 5345 /// If we can, try to add the value of 'Addr' into the current addressing mode. 5346 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 5347 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 5348 /// for the target. 5349 /// 5350 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 5351 // Start a transaction at this point that we will rollback if the matching 5352 // fails. 5353 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5354 TPT.getRestorationPoint(); 5355 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 5356 if (CI->getValue().isSignedIntN(64)) { 5357 // Fold in immediates if legal for the target. 5358 AddrMode.BaseOffs += CI->getSExtValue(); 5359 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5360 return true; 5361 AddrMode.BaseOffs -= CI->getSExtValue(); 5362 } 5363 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 5364 // If this is a global variable, try to fold it into the addressing mode. 5365 if (!AddrMode.BaseGV) { 5366 AddrMode.BaseGV = GV; 5367 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5368 return true; 5369 AddrMode.BaseGV = nullptr; 5370 } 5371 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 5372 ExtAddrMode BackupAddrMode = AddrMode; 5373 unsigned OldSize = AddrModeInsts.size(); 5374 5375 // Check to see if it is possible to fold this operation. 5376 bool MovedAway = false; 5377 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 5378 // This instruction may have been moved away. If so, there is nothing 5379 // to check here. 5380 if (MovedAway) 5381 return true; 5382 // Okay, it's possible to fold this. Check to see if it is actually 5383 // *profitable* to do so. We use a simple cost model to avoid increasing 5384 // register pressure too much. 5385 if (I->hasOneUse() || 5386 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 5387 AddrModeInsts.push_back(I); 5388 return true; 5389 } 5390 5391 // It isn't profitable to do this, roll back. 5392 AddrMode = BackupAddrMode; 5393 AddrModeInsts.resize(OldSize); 5394 TPT.rollback(LastKnownGood); 5395 } 5396 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 5397 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 5398 return true; 5399 TPT.rollback(LastKnownGood); 5400 } else if (isa<ConstantPointerNull>(Addr)) { 5401 // Null pointer gets folded without affecting the addressing mode. 5402 return true; 5403 } 5404 5405 // Worse case, the target should support [reg] addressing modes. :) 5406 if (!AddrMode.HasBaseReg) { 5407 AddrMode.HasBaseReg = true; 5408 AddrMode.BaseReg = Addr; 5409 // Still check for legality in case the target supports [imm] but not [i+r]. 5410 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5411 return true; 5412 AddrMode.HasBaseReg = false; 5413 AddrMode.BaseReg = nullptr; 5414 } 5415 5416 // If the base register is already taken, see if we can do [r+r]. 5417 if (AddrMode.Scale == 0) { 5418 AddrMode.Scale = 1; 5419 AddrMode.ScaledReg = Addr; 5420 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5421 return true; 5422 AddrMode.Scale = 0; 5423 AddrMode.ScaledReg = nullptr; 5424 } 5425 // Couldn't match. 5426 TPT.rollback(LastKnownGood); 5427 return false; 5428 } 5429 5430 /// Check to see if all uses of OpVal by the specified inline asm call are due 5431 /// to memory operands. If so, return true, otherwise return false. 5432 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 5433 const TargetLowering &TLI, 5434 const TargetRegisterInfo &TRI) { 5435 const Function *F = CI->getFunction(); 5436 TargetLowering::AsmOperandInfoVector TargetConstraints = 5437 TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI); 5438 5439 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5440 // Compute the constraint code and ConstraintType to use. 5441 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5442 5443 // If this asm operand is our Value*, and if it isn't an indirect memory 5444 // operand, we can't fold it! TODO: Also handle C_Address? 5445 if (OpInfo.CallOperandVal == OpVal && 5446 (OpInfo.ConstraintType != TargetLowering::C_Memory || 5447 !OpInfo.isIndirect)) 5448 return false; 5449 } 5450 5451 return true; 5452 } 5453 5454 /// Recursively walk all the uses of I until we find a memory use. 5455 /// If we find an obviously non-foldable instruction, return true. 5456 /// Add accessed addresses and types to MemoryUses. 5457 static bool FindAllMemoryUses( 5458 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5459 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 5460 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 5461 BlockFrequencyInfo *BFI, unsigned &SeenInsts) { 5462 // If we already considered this instruction, we're done. 5463 if (!ConsideredInsts.insert(I).second) 5464 return false; 5465 5466 // If this is an obviously unfoldable instruction, bail out. 5467 if (!MightBeFoldableInst(I)) 5468 return true; 5469 5470 // Loop over all the uses, recursively processing them. 5471 for (Use &U : I->uses()) { 5472 // Conservatively return true if we're seeing a large number or a deep chain 5473 // of users. This avoids excessive compilation times in pathological cases. 5474 if (SeenInsts++ >= MaxAddressUsersToScan) 5475 return true; 5476 5477 Instruction *UserI = cast<Instruction>(U.getUser()); 5478 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 5479 MemoryUses.push_back({&U, LI->getType()}); 5480 continue; 5481 } 5482 5483 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 5484 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 5485 return true; // Storing addr, not into addr. 5486 MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); 5487 continue; 5488 } 5489 5490 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 5491 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 5492 return true; // Storing addr, not into addr. 5493 MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); 5494 continue; 5495 } 5496 5497 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 5498 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 5499 return true; // Storing addr, not into addr. 5500 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); 5501 continue; 5502 } 5503 5504 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 5505 if (CI->hasFnAttr(Attribute::Cold)) { 5506 // If this is a cold call, we can sink the addressing calculation into 5507 // the cold path. See optimizeCallInst 5508 bool OptForSize = 5509 OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 5510 if (!OptForSize) 5511 continue; 5512 } 5513 5514 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 5515 if (!IA) 5516 return true; 5517 5518 // If this is a memory operand, we're cool, otherwise bail out. 5519 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 5520 return true; 5521 continue; 5522 } 5523 5524 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5525 PSI, BFI, SeenInsts)) 5526 return true; 5527 } 5528 5529 return false; 5530 } 5531 5532 static bool FindAllMemoryUses( 5533 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5534 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, 5535 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 5536 unsigned SeenInsts = 0; 5537 SmallPtrSet<Instruction *, 16> ConsideredInsts; 5538 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5539 PSI, BFI, SeenInsts); 5540 } 5541 5542 5543 /// Return true if Val is already known to be live at the use site that we're 5544 /// folding it into. If so, there is no cost to include it in the addressing 5545 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 5546 /// instruction already. 5547 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, 5548 Value *KnownLive1, 5549 Value *KnownLive2) { 5550 // If Val is either of the known-live values, we know it is live! 5551 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 5552 return true; 5553 5554 // All values other than instructions and arguments (e.g. constants) are live. 5555 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) 5556 return true; 5557 5558 // If Val is a constant sized alloca in the entry block, it is live, this is 5559 // true because it is just a reference to the stack/frame pointer, which is 5560 // live for the whole function. 5561 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 5562 if (AI->isStaticAlloca()) 5563 return true; 5564 5565 // Check to see if this value is already used in the memory instruction's 5566 // block. If so, it's already live into the block at the very least, so we 5567 // can reasonably fold it. 5568 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 5569 } 5570 5571 /// It is possible for the addressing mode of the machine to fold the specified 5572 /// instruction into a load or store that ultimately uses it. 5573 /// However, the specified instruction has multiple uses. 5574 /// Given this, it may actually increase register pressure to fold it 5575 /// into the load. For example, consider this code: 5576 /// 5577 /// X = ... 5578 /// Y = X+1 5579 /// use(Y) -> nonload/store 5580 /// Z = Y+1 5581 /// load Z 5582 /// 5583 /// In this case, Y has multiple uses, and can be folded into the load of Z 5584 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 5585 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 5586 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 5587 /// number of computations either. 5588 /// 5589 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 5590 /// X was live across 'load Z' for other reasons, we actually *would* want to 5591 /// fold the addressing mode in the Z case. This would make Y die earlier. 5592 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( 5593 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { 5594 if (IgnoreProfitability) 5595 return true; 5596 5597 // AMBefore is the addressing mode before this instruction was folded into it, 5598 // and AMAfter is the addressing mode after the instruction was folded. Get 5599 // the set of registers referenced by AMAfter and subtract out those 5600 // referenced by AMBefore: this is the set of values which folding in this 5601 // address extends the lifetime of. 5602 // 5603 // Note that there are only two potential values being referenced here, 5604 // BaseReg and ScaleReg (global addresses are always available, as are any 5605 // folded immediates). 5606 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5607 5608 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5609 // lifetime wasn't extended by adding this instruction. 5610 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5611 BaseReg = nullptr; 5612 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5613 ScaledReg = nullptr; 5614 5615 // If folding this instruction (and it's subexprs) didn't extend any live 5616 // ranges, we're ok with it. 5617 if (!BaseReg && !ScaledReg) 5618 return true; 5619 5620 // If all uses of this instruction can have the address mode sunk into them, 5621 // we can remove the addressing mode and effectively trade one live register 5622 // for another (at worst.) In this context, folding an addressing mode into 5623 // the use is just a particularly nice way of sinking it. 5624 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; 5625 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) 5626 return false; // Has a non-memory, non-foldable use! 5627 5628 // Now that we know that all uses of this instruction are part of a chain of 5629 // computation involving only operations that could theoretically be folded 5630 // into a memory use, loop over each of these memory operation uses and see 5631 // if they could *actually* fold the instruction. The assumption is that 5632 // addressing modes are cheap and that duplicating the computation involved 5633 // many times is worthwhile, even on a fastpath. For sinking candidates 5634 // (i.e. cold call sites), this serves as a way to prevent excessive code 5635 // growth since most architectures have some reasonable small and fast way to 5636 // compute an effective address. (i.e LEA on x86) 5637 SmallVector<Instruction *, 32> MatchedAddrModeInsts; 5638 for (const std::pair<Use *, Type *> &Pair : MemoryUses) { 5639 Value *Address = Pair.first->get(); 5640 Instruction *UserI = cast<Instruction>(Pair.first->getUser()); 5641 Type *AddressAccessTy = Pair.second; 5642 unsigned AS = Address->getType()->getPointerAddressSpace(); 5643 5644 // Do a match against the root of this address, ignoring profitability. This 5645 // will tell us if the addressing mode for the memory operation will 5646 // *actually* cover the shared instruction. 5647 ExtAddrMode Result; 5648 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5649 0); 5650 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5651 TPT.getRestorationPoint(); 5652 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5653 AddressAccessTy, AS, UserI, Result, 5654 InsertedInsts, PromotedInsts, TPT, 5655 LargeOffsetGEP, OptSize, PSI, BFI); 5656 Matcher.IgnoreProfitability = true; 5657 bool Success = Matcher.matchAddr(Address, 0); 5658 (void)Success; 5659 assert(Success && "Couldn't select *anything*?"); 5660 5661 // The match was to check the profitability, the changes made are not 5662 // part of the original matcher. Therefore, they should be dropped 5663 // otherwise the original matcher will not present the right state. 5664 TPT.rollback(LastKnownGood); 5665 5666 // If the match didn't cover I, then it won't be shared by it. 5667 if (!is_contained(MatchedAddrModeInsts, I)) 5668 return false; 5669 5670 MatchedAddrModeInsts.clear(); 5671 } 5672 5673 return true; 5674 } 5675 5676 /// Return true if the specified values are defined in a 5677 /// different basic block than BB. 5678 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5679 if (Instruction *I = dyn_cast<Instruction>(V)) 5680 return I->getParent() != BB; 5681 return false; 5682 } 5683 5684 /// Sink addressing mode computation immediate before MemoryInst if doing so 5685 /// can be done without increasing register pressure. The need for the 5686 /// register pressure constraint means this can end up being an all or nothing 5687 /// decision for all uses of the same addressing computation. 5688 /// 5689 /// Load and Store Instructions often have addressing modes that can do 5690 /// significant amounts of computation. As such, instruction selection will try 5691 /// to get the load or store to do as much computation as possible for the 5692 /// program. The problem is that isel can only see within a single block. As 5693 /// such, we sink as much legal addressing mode work into the block as possible. 5694 /// 5695 /// This method is used to optimize both load/store and inline asms with memory 5696 /// operands. It's also used to sink addressing computations feeding into cold 5697 /// call sites into their (cold) basic block. 5698 /// 5699 /// The motivation for handling sinking into cold blocks is that doing so can 5700 /// both enable other address mode sinking (by satisfying the register pressure 5701 /// constraint above), and reduce register pressure globally (by removing the 5702 /// addressing mode computation from the fast path entirely.). 5703 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5704 Type *AccessTy, unsigned AddrSpace) { 5705 Value *Repl = Addr; 5706 5707 // Try to collapse single-value PHI nodes. This is necessary to undo 5708 // unprofitable PRE transformations. 5709 SmallVector<Value *, 8> worklist; 5710 SmallPtrSet<Value *, 16> Visited; 5711 worklist.push_back(Addr); 5712 5713 // Use a worklist to iteratively look through PHI and select nodes, and 5714 // ensure that the addressing mode obtained from the non-PHI/select roots of 5715 // the graph are compatible. 5716 bool PhiOrSelectSeen = false; 5717 SmallVector<Instruction *, 16> AddrModeInsts; 5718 const SimplifyQuery SQ(*DL, TLInfo); 5719 AddressingModeCombiner AddrModes(SQ, Addr); 5720 TypePromotionTransaction TPT(RemovedInsts); 5721 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5722 TPT.getRestorationPoint(); 5723 while (!worklist.empty()) { 5724 Value *V = worklist.pop_back_val(); 5725 5726 // We allow traversing cyclic Phi nodes. 5727 // In case of success after this loop we ensure that traversing through 5728 // Phi nodes ends up with all cases to compute address of the form 5729 // BaseGV + Base + Scale * Index + Offset 5730 // where Scale and Offset are constans and BaseGV, Base and Index 5731 // are exactly the same Values in all cases. 5732 // It means that BaseGV, Scale and Offset dominate our memory instruction 5733 // and have the same value as they had in address computation represented 5734 // as Phi. So we can safely sink address computation to memory instruction. 5735 if (!Visited.insert(V).second) 5736 continue; 5737 5738 // For a PHI node, push all of its incoming values. 5739 if (PHINode *P = dyn_cast<PHINode>(V)) { 5740 append_range(worklist, P->incoming_values()); 5741 PhiOrSelectSeen = true; 5742 continue; 5743 } 5744 // Similar for select. 5745 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5746 worklist.push_back(SI->getFalseValue()); 5747 worklist.push_back(SI->getTrueValue()); 5748 PhiOrSelectSeen = true; 5749 continue; 5750 } 5751 5752 // For non-PHIs, determine the addressing mode being computed. Note that 5753 // the result may differ depending on what other uses our candidate 5754 // addressing instructions might have. 5755 AddrModeInsts.clear(); 5756 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5757 0); 5758 // Defer the query (and possible computation of) the dom tree to point of 5759 // actual use. It's expected that most address matches don't actually need 5760 // the domtree. 5761 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5762 Function *F = MemoryInst->getParent()->getParent(); 5763 return this->getDT(*F); 5764 }; 5765 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5766 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5767 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5768 BFI.get()); 5769 5770 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5771 if (GEP && !NewGEPBases.count(GEP)) { 5772 // If splitting the underlying data structure can reduce the offset of a 5773 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5774 // previously split data structures. 5775 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5776 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5777 } 5778 5779 NewAddrMode.OriginalValue = V; 5780 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5781 break; 5782 } 5783 5784 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5785 // or we have multiple but either couldn't combine them or combining them 5786 // wouldn't do anything useful, bail out now. 5787 if (!AddrModes.combineAddrModes()) { 5788 TPT.rollback(LastKnownGood); 5789 return false; 5790 } 5791 bool Modified = TPT.commit(); 5792 5793 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5794 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5795 5796 // If all the instructions matched are already in this BB, don't do anything. 5797 // If we saw a Phi node then it is not local definitely, and if we saw a 5798 // select then we want to push the address calculation past it even if it's 5799 // already in this BB. 5800 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5801 return IsNonLocalValue(V, MemoryInst->getParent()); 5802 })) { 5803 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5804 << "\n"); 5805 return Modified; 5806 } 5807 5808 // Insert this computation right after this user. Since our caller is 5809 // scanning from the top of the BB to the bottom, reuse of the expr are 5810 // guaranteed to happen later. 5811 IRBuilder<> Builder(MemoryInst); 5812 5813 // Now that we determined the addressing expression we want to use and know 5814 // that we have to sink it into this block. Check to see if we have already 5815 // done this for some other load/store instr in this block. If so, reuse 5816 // the computation. Before attempting reuse, check if the address is valid 5817 // as it may have been erased. 5818 5819 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5820 5821 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5822 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5823 if (SunkAddr) { 5824 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5825 << " for " << *MemoryInst << "\n"); 5826 if (SunkAddr->getType() != Addr->getType()) { 5827 if (SunkAddr->getType()->getPointerAddressSpace() != 5828 Addr->getType()->getPointerAddressSpace() && 5829 !DL->isNonIntegralPointerType(Addr->getType())) { 5830 // There are two reasons the address spaces might not match: a no-op 5831 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5832 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5833 // TODO: allow bitcast between different address space pointers with the 5834 // same size. 5835 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5836 SunkAddr = 5837 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5838 } else 5839 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5840 } 5841 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5842 SubtargetInfo->addrSinkUsingGEPs())) { 5843 // By default, we use the GEP-based method when AA is used later. This 5844 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5845 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5846 << " for " << *MemoryInst << "\n"); 5847 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5848 5849 // First, find the pointer. 5850 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5851 ResultPtr = AddrMode.BaseReg; 5852 AddrMode.BaseReg = nullptr; 5853 } 5854 5855 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5856 // We can't add more than one pointer together, nor can we scale a 5857 // pointer (both of which seem meaningless). 5858 if (ResultPtr || AddrMode.Scale != 1) 5859 return Modified; 5860 5861 ResultPtr = AddrMode.ScaledReg; 5862 AddrMode.Scale = 0; 5863 } 5864 5865 // It is only safe to sign extend the BaseReg if we know that the math 5866 // required to create it did not overflow before we extend it. Since 5867 // the original IR value was tossed in favor of a constant back when 5868 // the AddrMode was created we need to bail out gracefully if widths 5869 // do not match instead of extending it. 5870 // 5871 // (See below for code to add the scale.) 5872 if (AddrMode.Scale) { 5873 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5874 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5875 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5876 return Modified; 5877 } 5878 5879 GlobalValue *BaseGV = AddrMode.BaseGV; 5880 if (BaseGV != nullptr) { 5881 if (ResultPtr) 5882 return Modified; 5883 5884 if (BaseGV->isThreadLocal()) { 5885 ResultPtr = Builder.CreateThreadLocalAddress(BaseGV); 5886 } else { 5887 ResultPtr = BaseGV; 5888 } 5889 } 5890 5891 // If the real base value actually came from an inttoptr, then the matcher 5892 // will look through it and provide only the integer value. In that case, 5893 // use it here. 5894 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5895 if (!ResultPtr && AddrMode.BaseReg) { 5896 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5897 "sunkaddr"); 5898 AddrMode.BaseReg = nullptr; 5899 } else if (!ResultPtr && AddrMode.Scale == 1) { 5900 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5901 "sunkaddr"); 5902 AddrMode.Scale = 0; 5903 } 5904 } 5905 5906 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && 5907 !AddrMode.BaseOffs) { 5908 SunkAddr = Constant::getNullValue(Addr->getType()); 5909 } else if (!ResultPtr) { 5910 return Modified; 5911 } else { 5912 Type *I8PtrTy = 5913 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace()); 5914 5915 // Start with the base register. Do this first so that subsequent address 5916 // matching finds it last, which will prevent it from trying to match it 5917 // as the scaled value in case it happens to be a mul. That would be 5918 // problematic if we've sunk a different mul for the scale, because then 5919 // we'd end up sinking both muls. 5920 if (AddrMode.BaseReg) { 5921 Value *V = AddrMode.BaseReg; 5922 if (V->getType() != IntPtrTy) 5923 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5924 5925 ResultIndex = V; 5926 } 5927 5928 // Add the scale value. 5929 if (AddrMode.Scale) { 5930 Value *V = AddrMode.ScaledReg; 5931 if (V->getType() == IntPtrTy) { 5932 // done. 5933 } else { 5934 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5935 cast<IntegerType>(V->getType())->getBitWidth() && 5936 "We can't transform if ScaledReg is too narrow"); 5937 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5938 } 5939 5940 if (AddrMode.Scale != 1) 5941 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5942 "sunkaddr"); 5943 if (ResultIndex) 5944 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5945 else 5946 ResultIndex = V; 5947 } 5948 5949 // Add in the Base Offset if present. 5950 if (AddrMode.BaseOffs) { 5951 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5952 if (ResultIndex) { 5953 // We need to add this separately from the scale above to help with 5954 // SDAG consecutive load/store merging. 5955 if (ResultPtr->getType() != I8PtrTy) 5956 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5957 ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5958 AddrMode.InBounds); 5959 } 5960 5961 ResultIndex = V; 5962 } 5963 5964 if (!ResultIndex) { 5965 SunkAddr = ResultPtr; 5966 } else { 5967 if (ResultPtr->getType() != I8PtrTy) 5968 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5969 SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5970 AddrMode.InBounds); 5971 } 5972 5973 if (SunkAddr->getType() != Addr->getType()) { 5974 if (SunkAddr->getType()->getPointerAddressSpace() != 5975 Addr->getType()->getPointerAddressSpace() && 5976 !DL->isNonIntegralPointerType(Addr->getType())) { 5977 // There are two reasons the address spaces might not match: a no-op 5978 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5979 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5980 // TODO: allow bitcast between different address space pointers with 5981 // the same size. 5982 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5983 SunkAddr = 5984 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5985 } else 5986 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5987 } 5988 } 5989 } else { 5990 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5991 // non-integral pointers, so in that case bail out now. 5992 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5993 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5994 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5995 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5996 if (DL->isNonIntegralPointerType(Addr->getType()) || 5997 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5998 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5999 (AddrMode.BaseGV && 6000 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 6001 return Modified; 6002 6003 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 6004 << " for " << *MemoryInst << "\n"); 6005 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 6006 Value *Result = nullptr; 6007 6008 // Start with the base register. Do this first so that subsequent address 6009 // matching finds it last, which will prevent it from trying to match it 6010 // as the scaled value in case it happens to be a mul. That would be 6011 // problematic if we've sunk a different mul for the scale, because then 6012 // we'd end up sinking both muls. 6013 if (AddrMode.BaseReg) { 6014 Value *V = AddrMode.BaseReg; 6015 if (V->getType()->isPointerTy()) 6016 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 6017 if (V->getType() != IntPtrTy) 6018 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 6019 Result = V; 6020 } 6021 6022 // Add the scale value. 6023 if (AddrMode.Scale) { 6024 Value *V = AddrMode.ScaledReg; 6025 if (V->getType() == IntPtrTy) { 6026 // done. 6027 } else if (V->getType()->isPointerTy()) { 6028 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 6029 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 6030 cast<IntegerType>(V->getType())->getBitWidth()) { 6031 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 6032 } else { 6033 // It is only safe to sign extend the BaseReg if we know that the math 6034 // required to create it did not overflow before we extend it. Since 6035 // the original IR value was tossed in favor of a constant back when 6036 // the AddrMode was created we need to bail out gracefully if widths 6037 // do not match instead of extending it. 6038 Instruction *I = dyn_cast_or_null<Instruction>(Result); 6039 if (I && (Result != AddrMode.BaseReg)) 6040 I->eraseFromParent(); 6041 return Modified; 6042 } 6043 if (AddrMode.Scale != 1) 6044 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 6045 "sunkaddr"); 6046 if (Result) 6047 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 6048 else 6049 Result = V; 6050 } 6051 6052 // Add in the BaseGV if present. 6053 GlobalValue *BaseGV = AddrMode.BaseGV; 6054 if (BaseGV != nullptr) { 6055 Value *BaseGVPtr; 6056 if (BaseGV->isThreadLocal()) { 6057 BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV); 6058 } else { 6059 BaseGVPtr = BaseGV; 6060 } 6061 Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr"); 6062 if (Result) 6063 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 6064 else 6065 Result = V; 6066 } 6067 6068 // Add in the Base Offset if present. 6069 if (AddrMode.BaseOffs) { 6070 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 6071 if (Result) 6072 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 6073 else 6074 Result = V; 6075 } 6076 6077 if (!Result) 6078 SunkAddr = Constant::getNullValue(Addr->getType()); 6079 else 6080 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 6081 } 6082 6083 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 6084 // Store the newly computed address into the cache. In the case we reused a 6085 // value, this should be idempotent. 6086 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 6087 6088 // If we have no uses, recursively delete the value and all dead instructions 6089 // using it. 6090 if (Repl->use_empty()) { 6091 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 6092 RecursivelyDeleteTriviallyDeadInstructions( 6093 Repl, TLInfo, nullptr, 6094 [&](Value *V) { removeAllAssertingVHReferences(V); }); 6095 }); 6096 } 6097 ++NumMemoryInsts; 6098 return true; 6099 } 6100 6101 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 6102 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 6103 /// only handle a 2 operand GEP in the same basic block or a splat constant 6104 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 6105 /// index. 6106 /// 6107 /// If the existing GEP has a vector base pointer that is splat, we can look 6108 /// through the splat to find the scalar pointer. If we can't find a scalar 6109 /// pointer there's nothing we can do. 6110 /// 6111 /// If we have a GEP with more than 2 indices where the middle indices are all 6112 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 6113 /// 6114 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 6115 /// followed by a GEP with an all zeroes vector index. This will enable 6116 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 6117 /// zero index. 6118 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 6119 Value *Ptr) { 6120 Value *NewAddr; 6121 6122 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 6123 // Don't optimize GEPs that don't have indices. 6124 if (!GEP->hasIndices()) 6125 return false; 6126 6127 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 6128 // FIXME: We should support this by sinking the GEP. 6129 if (MemoryInst->getParent() != GEP->getParent()) 6130 return false; 6131 6132 SmallVector<Value *, 2> Ops(GEP->operands()); 6133 6134 bool RewriteGEP = false; 6135 6136 if (Ops[0]->getType()->isVectorTy()) { 6137 Ops[0] = getSplatValue(Ops[0]); 6138 if (!Ops[0]) 6139 return false; 6140 RewriteGEP = true; 6141 } 6142 6143 unsigned FinalIndex = Ops.size() - 1; 6144 6145 // Ensure all but the last index is 0. 6146 // FIXME: This isn't strictly required. All that's required is that they are 6147 // all scalars or splats. 6148 for (unsigned i = 1; i < FinalIndex; ++i) { 6149 auto *C = dyn_cast<Constant>(Ops[i]); 6150 if (!C) 6151 return false; 6152 if (isa<VectorType>(C->getType())) 6153 C = C->getSplatValue(); 6154 auto *CI = dyn_cast_or_null<ConstantInt>(C); 6155 if (!CI || !CI->isZero()) 6156 return false; 6157 // Scalarize the index if needed. 6158 Ops[i] = CI; 6159 } 6160 6161 // Try to scalarize the final index. 6162 if (Ops[FinalIndex]->getType()->isVectorTy()) { 6163 if (Value *V = getSplatValue(Ops[FinalIndex])) { 6164 auto *C = dyn_cast<ConstantInt>(V); 6165 // Don't scalarize all zeros vector. 6166 if (!C || !C->isZero()) { 6167 Ops[FinalIndex] = V; 6168 RewriteGEP = true; 6169 } 6170 } 6171 } 6172 6173 // If we made any changes or the we have extra operands, we need to generate 6174 // new instructions. 6175 if (!RewriteGEP && Ops.size() == 2) 6176 return false; 6177 6178 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 6179 6180 IRBuilder<> Builder(MemoryInst); 6181 6182 Type *SourceTy = GEP->getSourceElementType(); 6183 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 6184 6185 // If the final index isn't a vector, emit a scalar GEP containing all ops 6186 // and a vector GEP with all zeroes final index. 6187 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 6188 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); 6189 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 6190 auto *SecondTy = GetElementPtrInst::getIndexedType( 6191 SourceTy, ArrayRef(Ops).drop_front()); 6192 NewAddr = 6193 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 6194 } else { 6195 Value *Base = Ops[0]; 6196 Value *Index = Ops[FinalIndex]; 6197 6198 // Create a scalar GEP if there are more than 2 operands. 6199 if (Ops.size() != 2) { 6200 // Replace the last index with 0. 6201 Ops[FinalIndex] = 6202 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType()); 6203 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); 6204 SourceTy = GetElementPtrInst::getIndexedType( 6205 SourceTy, ArrayRef(Ops).drop_front()); 6206 } 6207 6208 // Now create the GEP with scalar pointer and vector index. 6209 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 6210 } 6211 } else if (!isa<Constant>(Ptr)) { 6212 // Not a GEP, maybe its a splat and we can create a GEP to enable 6213 // SelectionDAGBuilder to use it as a uniform base. 6214 Value *V = getSplatValue(Ptr); 6215 if (!V) 6216 return false; 6217 6218 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 6219 6220 IRBuilder<> Builder(MemoryInst); 6221 6222 // Emit a vector GEP with a scalar pointer and all 0s vector index. 6223 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 6224 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 6225 Type *ScalarTy; 6226 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 6227 Intrinsic::masked_gather) { 6228 ScalarTy = MemoryInst->getType()->getScalarType(); 6229 } else { 6230 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 6231 Intrinsic::masked_scatter); 6232 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 6233 } 6234 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 6235 } else { 6236 // Constant, SelectionDAGBuilder knows to check if its a splat. 6237 return false; 6238 } 6239 6240 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 6241 6242 // If we have no uses, recursively delete the value and all dead instructions 6243 // using it. 6244 if (Ptr->use_empty()) 6245 RecursivelyDeleteTriviallyDeadInstructions( 6246 Ptr, TLInfo, nullptr, 6247 [&](Value *V) { removeAllAssertingVHReferences(V); }); 6248 6249 return true; 6250 } 6251 6252 /// If there are any memory operands, use OptimizeMemoryInst to sink their 6253 /// address computing into the block when possible / profitable. 6254 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 6255 bool MadeChange = false; 6256 6257 const TargetRegisterInfo *TRI = 6258 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 6259 TargetLowering::AsmOperandInfoVector TargetConstraints = 6260 TLI->ParseConstraints(*DL, TRI, *CS); 6261 unsigned ArgNo = 0; 6262 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 6263 // Compute the constraint code and ConstraintType to use. 6264 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6265 6266 // TODO: Also handle C_Address? 6267 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6268 OpInfo.isIndirect) { 6269 Value *OpVal = CS->getArgOperand(ArgNo++); 6270 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 6271 } else if (OpInfo.Type == InlineAsm::isInput) 6272 ArgNo++; 6273 } 6274 6275 return MadeChange; 6276 } 6277 6278 /// Check if all the uses of \p Val are equivalent (or free) zero or 6279 /// sign extensions. 6280 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 6281 assert(!Val->use_empty() && "Input must have at least one use"); 6282 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 6283 bool IsSExt = isa<SExtInst>(FirstUser); 6284 Type *ExtTy = FirstUser->getType(); 6285 for (const User *U : Val->users()) { 6286 const Instruction *UI = cast<Instruction>(U); 6287 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 6288 return false; 6289 Type *CurTy = UI->getType(); 6290 // Same input and output types: Same instruction after CSE. 6291 if (CurTy == ExtTy) 6292 continue; 6293 6294 // If IsSExt is true, we are in this situation: 6295 // a = Val 6296 // b = sext ty1 a to ty2 6297 // c = sext ty1 a to ty3 6298 // Assuming ty2 is shorter than ty3, this could be turned into: 6299 // a = Val 6300 // b = sext ty1 a to ty2 6301 // c = sext ty2 b to ty3 6302 // However, the last sext is not free. 6303 if (IsSExt) 6304 return false; 6305 6306 // This is a ZExt, maybe this is free to extend from one type to another. 6307 // In that case, we would not account for a different use. 6308 Type *NarrowTy; 6309 Type *LargeTy; 6310 if (ExtTy->getScalarType()->getIntegerBitWidth() > 6311 CurTy->getScalarType()->getIntegerBitWidth()) { 6312 NarrowTy = CurTy; 6313 LargeTy = ExtTy; 6314 } else { 6315 NarrowTy = ExtTy; 6316 LargeTy = CurTy; 6317 } 6318 6319 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 6320 return false; 6321 } 6322 // All uses are the same or can be derived from one another for free. 6323 return true; 6324 } 6325 6326 /// Try to speculatively promote extensions in \p Exts and continue 6327 /// promoting through newly promoted operands recursively as far as doing so is 6328 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 6329 /// When some promotion happened, \p TPT contains the proper state to revert 6330 /// them. 6331 /// 6332 /// \return true if some promotion happened, false otherwise. 6333 bool CodeGenPrepare::tryToPromoteExts( 6334 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 6335 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 6336 unsigned CreatedInstsCost) { 6337 bool Promoted = false; 6338 6339 // Iterate over all the extensions to try to promote them. 6340 for (auto *I : Exts) { 6341 // Early check if we directly have ext(load). 6342 if (isa<LoadInst>(I->getOperand(0))) { 6343 ProfitablyMovedExts.push_back(I); 6344 continue; 6345 } 6346 6347 // Check whether or not we want to do any promotion. The reason we have 6348 // this check inside the for loop is to catch the case where an extension 6349 // is directly fed by a load because in such case the extension can be moved 6350 // up without any promotion on its operands. 6351 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 6352 return false; 6353 6354 // Get the action to perform the promotion. 6355 TypePromotionHelper::Action TPH = 6356 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 6357 // Check if we can promote. 6358 if (!TPH) { 6359 // Save the current extension as we cannot move up through its operand. 6360 ProfitablyMovedExts.push_back(I); 6361 continue; 6362 } 6363 6364 // Save the current state. 6365 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6366 TPT.getRestorationPoint(); 6367 SmallVector<Instruction *, 4> NewExts; 6368 unsigned NewCreatedInstsCost = 0; 6369 unsigned ExtCost = !TLI->isExtFree(I); 6370 // Promote. 6371 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 6372 &NewExts, nullptr, *TLI); 6373 assert(PromotedVal && 6374 "TypePromotionHelper should have filtered out those cases"); 6375 6376 // We would be able to merge only one extension in a load. 6377 // Therefore, if we have more than 1 new extension we heuristically 6378 // cut this search path, because it means we degrade the code quality. 6379 // With exactly 2, the transformation is neutral, because we will merge 6380 // one extension but leave one. However, we optimistically keep going, 6381 // because the new extension may be removed too. Also avoid replacing a 6382 // single free extension with multiple extensions, as this increases the 6383 // number of IR instructions while not providing any savings. 6384 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 6385 // FIXME: It would be possible to propagate a negative value instead of 6386 // conservatively ceiling it to 0. 6387 TotalCreatedInstsCost = 6388 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 6389 if (!StressExtLdPromotion && 6390 (TotalCreatedInstsCost > 1 || 6391 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) || 6392 (ExtCost == 0 && NewExts.size() > 1))) { 6393 // This promotion is not profitable, rollback to the previous state, and 6394 // save the current extension in ProfitablyMovedExts as the latest 6395 // speculative promotion turned out to be unprofitable. 6396 TPT.rollback(LastKnownGood); 6397 ProfitablyMovedExts.push_back(I); 6398 continue; 6399 } 6400 // Continue promoting NewExts as far as doing so is profitable. 6401 SmallVector<Instruction *, 2> NewlyMovedExts; 6402 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 6403 bool NewPromoted = false; 6404 for (auto *ExtInst : NewlyMovedExts) { 6405 Instruction *MovedExt = cast<Instruction>(ExtInst); 6406 Value *ExtOperand = MovedExt->getOperand(0); 6407 // If we have reached to a load, we need this extra profitability check 6408 // as it could potentially be merged into an ext(load). 6409 if (isa<LoadInst>(ExtOperand) && 6410 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 6411 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 6412 continue; 6413 6414 ProfitablyMovedExts.push_back(MovedExt); 6415 NewPromoted = true; 6416 } 6417 6418 // If none of speculative promotions for NewExts is profitable, rollback 6419 // and save the current extension (I) as the last profitable extension. 6420 if (!NewPromoted) { 6421 TPT.rollback(LastKnownGood); 6422 ProfitablyMovedExts.push_back(I); 6423 continue; 6424 } 6425 // The promotion is profitable. 6426 Promoted = true; 6427 } 6428 return Promoted; 6429 } 6430 6431 /// Merging redundant sexts when one is dominating the other. 6432 bool CodeGenPrepare::mergeSExts(Function &F) { 6433 bool Changed = false; 6434 for (auto &Entry : ValToSExtendedUses) { 6435 SExts &Insts = Entry.second; 6436 SExts CurPts; 6437 for (Instruction *Inst : Insts) { 6438 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 6439 Inst->getOperand(0) != Entry.first) 6440 continue; 6441 bool inserted = false; 6442 for (auto &Pt : CurPts) { 6443 if (getDT(F).dominates(Inst, Pt)) { 6444 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); 6445 RemovedInsts.insert(Pt); 6446 Pt->removeFromParent(); 6447 Pt = Inst; 6448 inserted = true; 6449 Changed = true; 6450 break; 6451 } 6452 if (!getDT(F).dominates(Pt, Inst)) 6453 // Give up if we need to merge in a common dominator as the 6454 // experiments show it is not profitable. 6455 continue; 6456 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); 6457 RemovedInsts.insert(Inst); 6458 Inst->removeFromParent(); 6459 inserted = true; 6460 Changed = true; 6461 break; 6462 } 6463 if (!inserted) 6464 CurPts.push_back(Inst); 6465 } 6466 } 6467 return Changed; 6468 } 6469 6470 // Splitting large data structures so that the GEPs accessing them can have 6471 // smaller offsets so that they can be sunk to the same blocks as their users. 6472 // For example, a large struct starting from %base is split into two parts 6473 // where the second part starts from %new_base. 6474 // 6475 // Before: 6476 // BB0: 6477 // %base = 6478 // 6479 // BB1: 6480 // %gep0 = gep %base, off0 6481 // %gep1 = gep %base, off1 6482 // %gep2 = gep %base, off2 6483 // 6484 // BB2: 6485 // %load1 = load %gep0 6486 // %load2 = load %gep1 6487 // %load3 = load %gep2 6488 // 6489 // After: 6490 // BB0: 6491 // %base = 6492 // %new_base = gep %base, off0 6493 // 6494 // BB1: 6495 // %new_gep0 = %new_base 6496 // %new_gep1 = gep %new_base, off1 - off0 6497 // %new_gep2 = gep %new_base, off2 - off0 6498 // 6499 // BB2: 6500 // %load1 = load i32, i32* %new_gep0 6501 // %load2 = load i32, i32* %new_gep1 6502 // %load3 = load i32, i32* %new_gep2 6503 // 6504 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 6505 // their offsets are smaller enough to fit into the addressing mode. 6506 bool CodeGenPrepare::splitLargeGEPOffsets() { 6507 bool Changed = false; 6508 for (auto &Entry : LargeOffsetGEPMap) { 6509 Value *OldBase = Entry.first; 6510 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 6511 &LargeOffsetGEPs = Entry.second; 6512 auto compareGEPOffset = 6513 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 6514 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 6515 if (LHS.first == RHS.first) 6516 return false; 6517 if (LHS.second != RHS.second) 6518 return LHS.second < RHS.second; 6519 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 6520 }; 6521 // Sorting all the GEPs of the same data structures based on the offsets. 6522 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 6523 LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end()); 6524 // Skip if all the GEPs have the same offsets. 6525 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 6526 continue; 6527 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 6528 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 6529 Value *NewBaseGEP = nullptr; 6530 6531 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase, 6532 GetElementPtrInst *GEP) { 6533 LLVMContext &Ctx = GEP->getContext(); 6534 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6535 Type *I8PtrTy = 6536 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace()); 6537 6538 BasicBlock::iterator NewBaseInsertPt; 6539 BasicBlock *NewBaseInsertBB; 6540 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 6541 // If the base of the struct is an instruction, the new base will be 6542 // inserted close to it. 6543 NewBaseInsertBB = BaseI->getParent(); 6544 if (isa<PHINode>(BaseI)) 6545 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6546 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 6547 NewBaseInsertBB = 6548 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI); 6549 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6550 } else 6551 NewBaseInsertPt = std::next(BaseI->getIterator()); 6552 } else { 6553 // If the current base is an argument or global value, the new base 6554 // will be inserted to the entry block. 6555 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 6556 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6557 } 6558 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 6559 // Create a new base. 6560 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset); 6561 NewBaseGEP = OldBase; 6562 if (NewBaseGEP->getType() != I8PtrTy) 6563 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 6564 NewBaseGEP = 6565 NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep"); 6566 NewGEPBases.insert(NewBaseGEP); 6567 return; 6568 }; 6569 6570 // Check whether all the offsets can be encoded with prefered common base. 6571 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset( 6572 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) { 6573 BaseOffset = PreferBase; 6574 // Create a new base if the offset of the BaseGEP can be decoded with one 6575 // instruction. 6576 createNewBase(BaseOffset, OldBase, BaseGEP); 6577 } 6578 6579 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 6580 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 6581 GetElementPtrInst *GEP = LargeOffsetGEP->first; 6582 int64_t Offset = LargeOffsetGEP->second; 6583 if (Offset != BaseOffset) { 6584 TargetLowering::AddrMode AddrMode; 6585 AddrMode.HasBaseReg = true; 6586 AddrMode.BaseOffs = Offset - BaseOffset; 6587 // The result type of the GEP might not be the type of the memory 6588 // access. 6589 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 6590 GEP->getResultElementType(), 6591 GEP->getAddressSpace())) { 6592 // We need to create a new base if the offset to the current base is 6593 // too large to fit into the addressing mode. So, a very large struct 6594 // may be split into several parts. 6595 BaseGEP = GEP; 6596 BaseOffset = Offset; 6597 NewBaseGEP = nullptr; 6598 } 6599 } 6600 6601 // Generate a new GEP to replace the current one. 6602 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6603 6604 if (!NewBaseGEP) { 6605 // Create a new base if we don't have one yet. Find the insertion 6606 // pointer for the new base first. 6607 createNewBase(BaseOffset, OldBase, GEP); 6608 } 6609 6610 IRBuilder<> Builder(GEP); 6611 Value *NewGEP = NewBaseGEP; 6612 if (Offset != BaseOffset) { 6613 // Calculate the new offset for the new GEP. 6614 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset); 6615 NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index); 6616 } 6617 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); 6618 LargeOffsetGEPID.erase(GEP); 6619 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6620 GEP->eraseFromParent(); 6621 Changed = true; 6622 } 6623 } 6624 return Changed; 6625 } 6626 6627 bool CodeGenPrepare::optimizePhiType( 6628 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6629 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6630 // We are looking for a collection on interconnected phi nodes that together 6631 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6632 // are of the same type. Convert the whole set of nodes to the type of the 6633 // bitcast. 6634 Type *PhiTy = I->getType(); 6635 Type *ConvertTy = nullptr; 6636 if (Visited.count(I) || 6637 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6638 return false; 6639 6640 SmallVector<Instruction *, 4> Worklist; 6641 Worklist.push_back(cast<Instruction>(I)); 6642 SmallPtrSet<PHINode *, 4> PhiNodes; 6643 SmallPtrSet<ConstantData *, 4> Constants; 6644 PhiNodes.insert(I); 6645 Visited.insert(I); 6646 SmallPtrSet<Instruction *, 4> Defs; 6647 SmallPtrSet<Instruction *, 4> Uses; 6648 // This works by adding extra bitcasts between load/stores and removing 6649 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6650 // we can get in the situation where we remove a bitcast in one iteration 6651 // just to add it again in the next. We need to ensure that at least one 6652 // bitcast we remove are anchored to something that will not change back. 6653 bool AnyAnchored = false; 6654 6655 while (!Worklist.empty()) { 6656 Instruction *II = Worklist.pop_back_val(); 6657 6658 if (auto *Phi = dyn_cast<PHINode>(II)) { 6659 // Handle Defs, which might also be PHI's 6660 for (Value *V : Phi->incoming_values()) { 6661 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6662 if (!PhiNodes.count(OpPhi)) { 6663 if (!Visited.insert(OpPhi).second) 6664 return false; 6665 PhiNodes.insert(OpPhi); 6666 Worklist.push_back(OpPhi); 6667 } 6668 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6669 if (!OpLoad->isSimple()) 6670 return false; 6671 if (Defs.insert(OpLoad).second) 6672 Worklist.push_back(OpLoad); 6673 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6674 if (Defs.insert(OpEx).second) 6675 Worklist.push_back(OpEx); 6676 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6677 if (!ConvertTy) 6678 ConvertTy = OpBC->getOperand(0)->getType(); 6679 if (OpBC->getOperand(0)->getType() != ConvertTy) 6680 return false; 6681 if (Defs.insert(OpBC).second) { 6682 Worklist.push_back(OpBC); 6683 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6684 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6685 } 6686 } else if (auto *OpC = dyn_cast<ConstantData>(V)) 6687 Constants.insert(OpC); 6688 else 6689 return false; 6690 } 6691 } 6692 6693 // Handle uses which might also be phi's 6694 for (User *V : II->users()) { 6695 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6696 if (!PhiNodes.count(OpPhi)) { 6697 if (Visited.count(OpPhi)) 6698 return false; 6699 PhiNodes.insert(OpPhi); 6700 Visited.insert(OpPhi); 6701 Worklist.push_back(OpPhi); 6702 } 6703 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6704 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6705 return false; 6706 Uses.insert(OpStore); 6707 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6708 if (!ConvertTy) 6709 ConvertTy = OpBC->getType(); 6710 if (OpBC->getType() != ConvertTy) 6711 return false; 6712 Uses.insert(OpBC); 6713 AnyAnchored |= 6714 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6715 } else { 6716 return false; 6717 } 6718 } 6719 } 6720 6721 if (!ConvertTy || !AnyAnchored || 6722 !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6723 return false; 6724 6725 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6726 << *ConvertTy << "\n"); 6727 6728 // Create all the new phi nodes of the new type, and bitcast any loads to the 6729 // correct type. 6730 ValueToValueMap ValMap; 6731 for (ConstantData *C : Constants) 6732 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy); 6733 for (Instruction *D : Defs) { 6734 if (isa<BitCastInst>(D)) { 6735 ValMap[D] = D->getOperand(0); 6736 DeletedInstrs.insert(D); 6737 } else { 6738 BasicBlock::iterator insertPt = std::next(D->getIterator()); 6739 ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt); 6740 } 6741 } 6742 for (PHINode *Phi : PhiNodes) 6743 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6744 Phi->getName() + ".tc", Phi->getIterator()); 6745 // Pipe together all the PhiNodes. 6746 for (PHINode *Phi : PhiNodes) { 6747 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6748 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6749 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6750 Phi->getIncomingBlock(i)); 6751 Visited.insert(NewPhi); 6752 } 6753 // And finally pipe up the stores and bitcasts 6754 for (Instruction *U : Uses) { 6755 if (isa<BitCastInst>(U)) { 6756 DeletedInstrs.insert(U); 6757 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); 6758 } else { 6759 U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", 6760 U->getIterator())); 6761 } 6762 } 6763 6764 // Save the removed phis to be deleted later. 6765 for (PHINode *Phi : PhiNodes) 6766 DeletedInstrs.insert(Phi); 6767 return true; 6768 } 6769 6770 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6771 if (!OptimizePhiTypes) 6772 return false; 6773 6774 bool Changed = false; 6775 SmallPtrSet<PHINode *, 4> Visited; 6776 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6777 6778 // Attempt to optimize all the phis in the functions to the correct type. 6779 for (auto &BB : F) 6780 for (auto &Phi : BB.phis()) 6781 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6782 6783 // Remove any old phi's that have been converted. 6784 for (auto *I : DeletedInstrs) { 6785 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); 6786 I->eraseFromParent(); 6787 } 6788 6789 return Changed; 6790 } 6791 6792 /// Return true, if an ext(load) can be formed from an extension in 6793 /// \p MovedExts. 6794 bool CodeGenPrepare::canFormExtLd( 6795 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6796 Instruction *&Inst, bool HasPromoted) { 6797 for (auto *MovedExtInst : MovedExts) { 6798 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6799 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6800 Inst = MovedExtInst; 6801 break; 6802 } 6803 } 6804 if (!LI) 6805 return false; 6806 6807 // If they're already in the same block, there's nothing to do. 6808 // Make the cheap checks first if we did not promote. 6809 // If we promoted, we need to check if it is indeed profitable. 6810 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6811 return false; 6812 6813 return TLI->isExtLoad(LI, Inst, *DL); 6814 } 6815 6816 /// Move a zext or sext fed by a load into the same basic block as the load, 6817 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6818 /// extend into the load. 6819 /// 6820 /// E.g., 6821 /// \code 6822 /// %ld = load i32* %addr 6823 /// %add = add nuw i32 %ld, 4 6824 /// %zext = zext i32 %add to i64 6825 // \endcode 6826 /// => 6827 /// \code 6828 /// %ld = load i32* %addr 6829 /// %zext = zext i32 %ld to i64 6830 /// %add = add nuw i64 %zext, 4 6831 /// \encode 6832 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6833 /// allow us to match zext(load i32*) to i64. 6834 /// 6835 /// Also, try to promote the computations used to obtain a sign extended 6836 /// value used into memory accesses. 6837 /// E.g., 6838 /// \code 6839 /// a = add nsw i32 b, 3 6840 /// d = sext i32 a to i64 6841 /// e = getelementptr ..., i64 d 6842 /// \endcode 6843 /// => 6844 /// \code 6845 /// f = sext i32 b to i64 6846 /// a = add nsw i64 f, 3 6847 /// e = getelementptr ..., i64 a 6848 /// \endcode 6849 /// 6850 /// \p Inst[in/out] the extension may be modified during the process if some 6851 /// promotions apply. 6852 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6853 bool AllowPromotionWithoutCommonHeader = false; 6854 /// See if it is an interesting sext operations for the address type 6855 /// promotion before trying to promote it, e.g., the ones with the right 6856 /// type and used in memory accesses. 6857 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6858 *Inst, AllowPromotionWithoutCommonHeader); 6859 TypePromotionTransaction TPT(RemovedInsts); 6860 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6861 TPT.getRestorationPoint(); 6862 SmallVector<Instruction *, 1> Exts; 6863 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6864 Exts.push_back(Inst); 6865 6866 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6867 6868 // Look for a load being extended. 6869 LoadInst *LI = nullptr; 6870 Instruction *ExtFedByLoad; 6871 6872 // Try to promote a chain of computation if it allows to form an extended 6873 // load. 6874 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6875 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6876 TPT.commit(); 6877 // Move the extend into the same block as the load. 6878 ExtFedByLoad->moveAfter(LI); 6879 ++NumExtsMoved; 6880 Inst = ExtFedByLoad; 6881 return true; 6882 } 6883 6884 // Continue promoting SExts if known as considerable depending on targets. 6885 if (ATPConsiderable && 6886 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6887 HasPromoted, TPT, SpeculativelyMovedExts)) 6888 return true; 6889 6890 TPT.rollback(LastKnownGood); 6891 return false; 6892 } 6893 6894 // Perform address type promotion if doing so is profitable. 6895 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6896 // instructions that sign extended the same initial value. However, if 6897 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6898 // extension is just profitable. 6899 bool CodeGenPrepare::performAddressTypePromotion( 6900 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6901 bool HasPromoted, TypePromotionTransaction &TPT, 6902 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6903 bool Promoted = false; 6904 SmallPtrSet<Instruction *, 1> UnhandledExts; 6905 bool AllSeenFirst = true; 6906 for (auto *I : SpeculativelyMovedExts) { 6907 Value *HeadOfChain = I->getOperand(0); 6908 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6909 SeenChainsForSExt.find(HeadOfChain); 6910 // If there is an unhandled SExt which has the same header, try to promote 6911 // it as well. 6912 if (AlreadySeen != SeenChainsForSExt.end()) { 6913 if (AlreadySeen->second != nullptr) 6914 UnhandledExts.insert(AlreadySeen->second); 6915 AllSeenFirst = false; 6916 } 6917 } 6918 6919 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6920 SpeculativelyMovedExts.size() == 1)) { 6921 TPT.commit(); 6922 if (HasPromoted) 6923 Promoted = true; 6924 for (auto *I : SpeculativelyMovedExts) { 6925 Value *HeadOfChain = I->getOperand(0); 6926 SeenChainsForSExt[HeadOfChain] = nullptr; 6927 ValToSExtendedUses[HeadOfChain].push_back(I); 6928 } 6929 // Update Inst as promotion happen. 6930 Inst = SpeculativelyMovedExts.pop_back_val(); 6931 } else { 6932 // This is the first chain visited from the header, keep the current chain 6933 // as unhandled. Defer to promote this until we encounter another SExt 6934 // chain derived from the same header. 6935 for (auto *I : SpeculativelyMovedExts) { 6936 Value *HeadOfChain = I->getOperand(0); 6937 SeenChainsForSExt[HeadOfChain] = Inst; 6938 } 6939 return false; 6940 } 6941 6942 if (!AllSeenFirst && !UnhandledExts.empty()) 6943 for (auto *VisitedSExt : UnhandledExts) { 6944 if (RemovedInsts.count(VisitedSExt)) 6945 continue; 6946 TypePromotionTransaction TPT(RemovedInsts); 6947 SmallVector<Instruction *, 1> Exts; 6948 SmallVector<Instruction *, 2> Chains; 6949 Exts.push_back(VisitedSExt); 6950 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6951 TPT.commit(); 6952 if (HasPromoted) 6953 Promoted = true; 6954 for (auto *I : Chains) { 6955 Value *HeadOfChain = I->getOperand(0); 6956 // Mark this as handled. 6957 SeenChainsForSExt[HeadOfChain] = nullptr; 6958 ValToSExtendedUses[HeadOfChain].push_back(I); 6959 } 6960 } 6961 return Promoted; 6962 } 6963 6964 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6965 BasicBlock *DefBB = I->getParent(); 6966 6967 // If the result of a {s|z}ext and its source are both live out, rewrite all 6968 // other uses of the source with result of extension. 6969 Value *Src = I->getOperand(0); 6970 if (Src->hasOneUse()) 6971 return false; 6972 6973 // Only do this xform if truncating is free. 6974 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6975 return false; 6976 6977 // Only safe to perform the optimization if the source is also defined in 6978 // this block. 6979 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6980 return false; 6981 6982 bool DefIsLiveOut = false; 6983 for (User *U : I->users()) { 6984 Instruction *UI = cast<Instruction>(U); 6985 6986 // Figure out which BB this ext is used in. 6987 BasicBlock *UserBB = UI->getParent(); 6988 if (UserBB == DefBB) 6989 continue; 6990 DefIsLiveOut = true; 6991 break; 6992 } 6993 if (!DefIsLiveOut) 6994 return false; 6995 6996 // Make sure none of the uses are PHI nodes. 6997 for (User *U : Src->users()) { 6998 Instruction *UI = cast<Instruction>(U); 6999 BasicBlock *UserBB = UI->getParent(); 7000 if (UserBB == DefBB) 7001 continue; 7002 // Be conservative. We don't want this xform to end up introducing 7003 // reloads just before load / store instructions. 7004 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 7005 return false; 7006 } 7007 7008 // InsertedTruncs - Only insert one trunc in each block once. 7009 DenseMap<BasicBlock *, Instruction *> InsertedTruncs; 7010 7011 bool MadeChange = false; 7012 for (Use &U : Src->uses()) { 7013 Instruction *User = cast<Instruction>(U.getUser()); 7014 7015 // Figure out which BB this ext is used in. 7016 BasicBlock *UserBB = User->getParent(); 7017 if (UserBB == DefBB) 7018 continue; 7019 7020 // Both src and def are live in this block. Rewrite the use. 7021 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 7022 7023 if (!InsertedTrunc) { 7024 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 7025 assert(InsertPt != UserBB->end()); 7026 InsertedTrunc = new TruncInst(I, Src->getType(), ""); 7027 InsertedTrunc->insertBefore(*UserBB, InsertPt); 7028 InsertedInsts.insert(InsertedTrunc); 7029 } 7030 7031 // Replace a use of the {s|z}ext source with a use of the result. 7032 U = InsertedTrunc; 7033 ++NumExtUses; 7034 MadeChange = true; 7035 } 7036 7037 return MadeChange; 7038 } 7039 7040 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 7041 // just after the load if the target can fold this into one extload instruction, 7042 // with the hope of eliminating some of the other later "and" instructions using 7043 // the loaded value. "and"s that are made trivially redundant by the insertion 7044 // of the new "and" are removed by this function, while others (e.g. those whose 7045 // path from the load goes through a phi) are left for isel to potentially 7046 // remove. 7047 // 7048 // For example: 7049 // 7050 // b0: 7051 // x = load i32 7052 // ... 7053 // b1: 7054 // y = and x, 0xff 7055 // z = use y 7056 // 7057 // becomes: 7058 // 7059 // b0: 7060 // x = load i32 7061 // x' = and x, 0xff 7062 // ... 7063 // b1: 7064 // z = use x' 7065 // 7066 // whereas: 7067 // 7068 // b0: 7069 // x1 = load i32 7070 // ... 7071 // b1: 7072 // x2 = load i32 7073 // ... 7074 // b2: 7075 // x = phi x1, x2 7076 // y = and x, 0xff 7077 // 7078 // becomes (after a call to optimizeLoadExt for each load): 7079 // 7080 // b0: 7081 // x1 = load i32 7082 // x1' = and x1, 0xff 7083 // ... 7084 // b1: 7085 // x2 = load i32 7086 // x2' = and x2, 0xff 7087 // ... 7088 // b2: 7089 // x = phi x1', x2' 7090 // y = and x, 0xff 7091 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 7092 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 7093 return false; 7094 7095 // Skip loads we've already transformed. 7096 if (Load->hasOneUse() && 7097 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 7098 return false; 7099 7100 // Look at all uses of Load, looking through phis, to determine how many bits 7101 // of the loaded value are needed. 7102 SmallVector<Instruction *, 8> WorkList; 7103 SmallPtrSet<Instruction *, 16> Visited; 7104 SmallVector<Instruction *, 8> AndsToMaybeRemove; 7105 for (auto *U : Load->users()) 7106 WorkList.push_back(cast<Instruction>(U)); 7107 7108 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 7109 unsigned BitWidth = LoadResultVT.getSizeInBits(); 7110 // If the BitWidth is 0, do not try to optimize the type 7111 if (BitWidth == 0) 7112 return false; 7113 7114 APInt DemandBits(BitWidth, 0); 7115 APInt WidestAndBits(BitWidth, 0); 7116 7117 while (!WorkList.empty()) { 7118 Instruction *I = WorkList.pop_back_val(); 7119 7120 // Break use-def graph loops. 7121 if (!Visited.insert(I).second) 7122 continue; 7123 7124 // For a PHI node, push all of its users. 7125 if (auto *Phi = dyn_cast<PHINode>(I)) { 7126 for (auto *U : Phi->users()) 7127 WorkList.push_back(cast<Instruction>(U)); 7128 continue; 7129 } 7130 7131 switch (I->getOpcode()) { 7132 case Instruction::And: { 7133 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 7134 if (!AndC) 7135 return false; 7136 APInt AndBits = AndC->getValue(); 7137 DemandBits |= AndBits; 7138 // Keep track of the widest and mask we see. 7139 if (AndBits.ugt(WidestAndBits)) 7140 WidestAndBits = AndBits; 7141 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 7142 AndsToMaybeRemove.push_back(I); 7143 break; 7144 } 7145 7146 case Instruction::Shl: { 7147 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 7148 if (!ShlC) 7149 return false; 7150 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 7151 DemandBits.setLowBits(BitWidth - ShiftAmt); 7152 break; 7153 } 7154 7155 case Instruction::Trunc: { 7156 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 7157 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 7158 DemandBits.setLowBits(TruncBitWidth); 7159 break; 7160 } 7161 7162 default: 7163 return false; 7164 } 7165 } 7166 7167 uint32_t ActiveBits = DemandBits.getActiveBits(); 7168 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 7169 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 7170 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 7171 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 7172 // followed by an AND. 7173 // TODO: Look into removing this restriction by fixing backends to either 7174 // return false for isLoadExtLegal for i1 or have them select this pattern to 7175 // a single instruction. 7176 // 7177 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 7178 // mask, since these are the only ands that will be removed by isel. 7179 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 7180 WidestAndBits != DemandBits) 7181 return false; 7182 7183 LLVMContext &Ctx = Load->getType()->getContext(); 7184 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 7185 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 7186 7187 // Reject cases that won't be matched as extloads. 7188 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 7189 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 7190 return false; 7191 7192 IRBuilder<> Builder(Load->getNextNonDebugInstruction()); 7193 auto *NewAnd = cast<Instruction>( 7194 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 7195 // Mark this instruction as "inserted by CGP", so that other 7196 // optimizations don't touch it. 7197 InsertedInsts.insert(NewAnd); 7198 7199 // Replace all uses of load with new and (except for the use of load in the 7200 // new and itself). 7201 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); 7202 NewAnd->setOperand(0, Load); 7203 7204 // Remove any and instructions that are now redundant. 7205 for (auto *And : AndsToMaybeRemove) 7206 // Check that the and mask is the same as the one we decided to put on the 7207 // new and. 7208 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 7209 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); 7210 if (&*CurInstIterator == And) 7211 CurInstIterator = std::next(And->getIterator()); 7212 And->eraseFromParent(); 7213 ++NumAndUses; 7214 } 7215 7216 ++NumAndsAdded; 7217 return true; 7218 } 7219 7220 /// Check if V (an operand of a select instruction) is an expensive instruction 7221 /// that is only used once. 7222 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 7223 auto *I = dyn_cast<Instruction>(V); 7224 // If it's safe to speculatively execute, then it should not have side 7225 // effects; therefore, it's safe to sink and possibly *not* execute. 7226 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 7227 TTI->isExpensiveToSpeculativelyExecute(I); 7228 } 7229 7230 /// Returns true if a SelectInst should be turned into an explicit branch. 7231 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 7232 const TargetLowering *TLI, 7233 SelectInst *SI) { 7234 // If even a predictable select is cheap, then a branch can't be cheaper. 7235 if (!TLI->isPredictableSelectExpensive()) 7236 return false; 7237 7238 // FIXME: This should use the same heuristics as IfConversion to determine 7239 // whether a select is better represented as a branch. 7240 7241 // If metadata tells us that the select condition is obviously predictable, 7242 // then we want to replace the select with a branch. 7243 uint64_t TrueWeight, FalseWeight; 7244 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { 7245 uint64_t Max = std::max(TrueWeight, FalseWeight); 7246 uint64_t Sum = TrueWeight + FalseWeight; 7247 if (Sum != 0) { 7248 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 7249 if (Probability > TTI->getPredictableBranchThreshold()) 7250 return true; 7251 } 7252 } 7253 7254 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 7255 7256 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 7257 // comparison condition. If the compare has more than one use, there's 7258 // probably another cmov or setcc around, so it's not worth emitting a branch. 7259 if (!Cmp || !Cmp->hasOneUse()) 7260 return false; 7261 7262 // If either operand of the select is expensive and only needed on one side 7263 // of the select, we should form a branch. 7264 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 7265 sinkSelectOperand(TTI, SI->getFalseValue())) 7266 return true; 7267 7268 return false; 7269 } 7270 7271 /// If \p isTrue is true, return the true value of \p SI, otherwise return 7272 /// false value of \p SI. If the true/false value of \p SI is defined by any 7273 /// select instructions in \p Selects, look through the defining select 7274 /// instruction until the true/false value is not defined in \p Selects. 7275 static Value * 7276 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 7277 const SmallPtrSet<const Instruction *, 2> &Selects) { 7278 Value *V = nullptr; 7279 7280 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 7281 DefSI = dyn_cast<SelectInst>(V)) { 7282 assert(DefSI->getCondition() == SI->getCondition() && 7283 "The condition of DefSI does not match with SI"); 7284 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 7285 } 7286 7287 assert(V && "Failed to get select true/false value"); 7288 return V; 7289 } 7290 7291 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 7292 assert(Shift->isShift() && "Expected a shift"); 7293 7294 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 7295 // general vector shifts, and (3) the shift amount is a select-of-splatted 7296 // values, hoist the shifts before the select: 7297 // shift Op0, (select Cond, TVal, FVal) --> 7298 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 7299 // 7300 // This is inverting a generic IR transform when we know that the cost of a 7301 // general vector shift is more than the cost of 2 shift-by-scalars. 7302 // We can't do this effectively in SDAG because we may not be able to 7303 // determine if the select operands are splats from within a basic block. 7304 Type *Ty = Shift->getType(); 7305 if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty)) 7306 return false; 7307 Value *Cond, *TVal, *FVal; 7308 if (!match(Shift->getOperand(1), 7309 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7310 return false; 7311 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7312 return false; 7313 7314 IRBuilder<> Builder(Shift); 7315 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 7316 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 7317 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 7318 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7319 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); 7320 Shift->eraseFromParent(); 7321 return true; 7322 } 7323 7324 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 7325 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 7326 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 7327 "Expected a funnel shift"); 7328 7329 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 7330 // than general vector shifts, and (3) the shift amount is select-of-splatted 7331 // values, hoist the funnel shifts before the select: 7332 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 7333 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 7334 // 7335 // This is inverting a generic IR transform when we know that the cost of a 7336 // general vector shift is more than the cost of 2 shift-by-scalars. 7337 // We can't do this effectively in SDAG because we may not be able to 7338 // determine if the select operands are splats from within a basic block. 7339 Type *Ty = Fsh->getType(); 7340 if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty)) 7341 return false; 7342 Value *Cond, *TVal, *FVal; 7343 if (!match(Fsh->getOperand(2), 7344 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7345 return false; 7346 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7347 return false; 7348 7349 IRBuilder<> Builder(Fsh); 7350 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 7351 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); 7352 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); 7353 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7354 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); 7355 Fsh->eraseFromParent(); 7356 return true; 7357 } 7358 7359 /// If we have a SelectInst that will likely profit from branch prediction, 7360 /// turn it into a branch. 7361 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 7362 if (DisableSelectToBranch) 7363 return false; 7364 7365 // If the SelectOptimize pass is enabled, selects have already been optimized. 7366 if (!getCGPassBuilderOption().DisableSelectOptimize) 7367 return false; 7368 7369 // Find all consecutive select instructions that share the same condition. 7370 SmallVector<SelectInst *, 2> ASI; 7371 ASI.push_back(SI); 7372 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 7373 It != SI->getParent()->end(); ++It) { 7374 SelectInst *I = dyn_cast<SelectInst>(&*It); 7375 if (I && SI->getCondition() == I->getCondition()) { 7376 ASI.push_back(I); 7377 } else { 7378 break; 7379 } 7380 } 7381 7382 SelectInst *LastSI = ASI.back(); 7383 // Increment the current iterator to skip all the rest of select instructions 7384 // because they will be either "not lowered" or "all lowered" to branch. 7385 CurInstIterator = std::next(LastSI->getIterator()); 7386 // Examine debug-info attached to the consecutive select instructions. They 7387 // won't be individually optimised by optimizeInst, so we need to perform 7388 // DbgVariableRecord maintenence here instead. 7389 for (SelectInst *SI : ArrayRef(ASI).drop_front()) 7390 fixupDbgVariableRecordsOnInst(*SI); 7391 7392 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 7393 7394 // Can we convert the 'select' to CF ? 7395 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 7396 return false; 7397 7398 TargetLowering::SelectSupportKind SelectKind; 7399 if (SI->getType()->isVectorTy()) 7400 SelectKind = TargetLowering::ScalarCondVectorVal; 7401 else 7402 SelectKind = TargetLowering::ScalarValSelect; 7403 7404 if (TLI->isSelectSupported(SelectKind) && 7405 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 7406 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 7407 return false; 7408 7409 // The DominatorTree needs to be rebuilt by any consumers after this 7410 // transformation. We simply reset here rather than setting the ModifiedDT 7411 // flag to avoid restarting the function walk in runOnFunction for each 7412 // select optimized. 7413 DT.reset(); 7414 7415 // Transform a sequence like this: 7416 // start: 7417 // %cmp = cmp uge i32 %a, %b 7418 // %sel = select i1 %cmp, i32 %c, i32 %d 7419 // 7420 // Into: 7421 // start: 7422 // %cmp = cmp uge i32 %a, %b 7423 // %cmp.frozen = freeze %cmp 7424 // br i1 %cmp.frozen, label %select.true, label %select.false 7425 // select.true: 7426 // br label %select.end 7427 // select.false: 7428 // br label %select.end 7429 // select.end: 7430 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 7431 // 7432 // %cmp should be frozen, otherwise it may introduce undefined behavior. 7433 // In addition, we may sink instructions that produce %c or %d from 7434 // the entry block into the destination(s) of the new branch. 7435 // If the true or false blocks do not contain a sunken instruction, that 7436 // block and its branch may be optimized away. In that case, one side of the 7437 // first branch will point directly to select.end, and the corresponding PHI 7438 // predecessor block will be the start block. 7439 7440 // Collect values that go on the true side and the values that go on the false 7441 // side. 7442 SmallVector<Instruction *> TrueInstrs, FalseInstrs; 7443 for (SelectInst *SI : ASI) { 7444 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) 7445 TrueInstrs.push_back(cast<Instruction>(V)); 7446 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) 7447 FalseInstrs.push_back(cast<Instruction>(V)); 7448 } 7449 7450 // Split the select block, according to how many (if any) values go on each 7451 // side. 7452 BasicBlock *StartBlock = SI->getParent(); 7453 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI)); 7454 // We should split before any debug-info. 7455 SplitPt.setHeadBit(true); 7456 7457 IRBuilder<> IB(SI); 7458 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 7459 7460 BasicBlock *TrueBlock = nullptr; 7461 BasicBlock *FalseBlock = nullptr; 7462 BasicBlock *EndBlock = nullptr; 7463 BranchInst *TrueBranch = nullptr; 7464 BranchInst *FalseBranch = nullptr; 7465 if (TrueInstrs.size() == 0) { 7466 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse( 7467 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7468 FalseBlock = FalseBranch->getParent(); 7469 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0)); 7470 } else if (FalseInstrs.size() == 0) { 7471 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen( 7472 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7473 TrueBlock = TrueBranch->getParent(); 7474 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7475 } else { 7476 Instruction *ThenTerm = nullptr; 7477 Instruction *ElseTerm = nullptr; 7478 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm, 7479 nullptr, nullptr, LI); 7480 TrueBranch = cast<BranchInst>(ThenTerm); 7481 FalseBranch = cast<BranchInst>(ElseTerm); 7482 TrueBlock = TrueBranch->getParent(); 7483 FalseBlock = FalseBranch->getParent(); 7484 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7485 } 7486 7487 EndBlock->setName("select.end"); 7488 if (TrueBlock) 7489 TrueBlock->setName("select.true.sink"); 7490 if (FalseBlock) 7491 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" 7492 : "select.false.sink"); 7493 7494 if (IsHugeFunc) { 7495 if (TrueBlock) 7496 FreshBBs.insert(TrueBlock); 7497 if (FalseBlock) 7498 FreshBBs.insert(FalseBlock); 7499 FreshBBs.insert(EndBlock); 7500 } 7501 7502 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); 7503 7504 static const unsigned MD[] = { 7505 LLVMContext::MD_prof, LLVMContext::MD_unpredictable, 7506 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; 7507 StartBlock->getTerminator()->copyMetadata(*SI, MD); 7508 7509 // Sink expensive instructions into the conditional blocks to avoid executing 7510 // them speculatively. 7511 for (Instruction *I : TrueInstrs) 7512 I->moveBefore(TrueBranch); 7513 for (Instruction *I : FalseInstrs) 7514 I->moveBefore(FalseBranch); 7515 7516 // If we did not create a new block for one of the 'true' or 'false' paths 7517 // of the condition, it means that side of the branch goes to the end block 7518 // directly and the path originates from the start block from the point of 7519 // view of the new PHI. 7520 if (TrueBlock == nullptr) 7521 TrueBlock = StartBlock; 7522 else if (FalseBlock == nullptr) 7523 FalseBlock = StartBlock; 7524 7525 SmallPtrSet<const Instruction *, 2> INS; 7526 INS.insert(ASI.begin(), ASI.end()); 7527 // Use reverse iterator because later select may use the value of the 7528 // earlier select, and we need to propagate value through earlier select 7529 // to get the PHI operand. 7530 for (SelectInst *SI : llvm::reverse(ASI)) { 7531 // The select itself is replaced with a PHI Node. 7532 PHINode *PN = PHINode::Create(SI->getType(), 2, ""); 7533 PN->insertBefore(EndBlock->begin()); 7534 PN->takeName(SI); 7535 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 7536 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 7537 PN->setDebugLoc(SI->getDebugLoc()); 7538 7539 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); 7540 SI->eraseFromParent(); 7541 INS.erase(SI); 7542 ++NumSelectsExpanded; 7543 } 7544 7545 // Instruct OptimizeBlock to skip to the next block. 7546 CurInstIterator = StartBlock->end(); 7547 return true; 7548 } 7549 7550 /// Some targets only accept certain types for splat inputs. For example a VDUP 7551 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 7552 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 7553 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 7554 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 7555 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 7556 m_Undef(), m_ZeroMask()))) 7557 return false; 7558 Type *NewType = TLI->shouldConvertSplatType(SVI); 7559 if (!NewType) 7560 return false; 7561 7562 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 7563 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 7564 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 7565 "Expected a type of the same size!"); 7566 auto *NewVecType = 7567 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 7568 7569 // Create a bitcast (shuffle (insert (bitcast(..)))) 7570 IRBuilder<> Builder(SVI->getContext()); 7571 Builder.SetInsertPoint(SVI); 7572 Value *BC1 = Builder.CreateBitCast( 7573 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 7574 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 7575 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 7576 7577 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); 7578 RecursivelyDeleteTriviallyDeadInstructions( 7579 SVI, TLInfo, nullptr, 7580 [&](Value *V) { removeAllAssertingVHReferences(V); }); 7581 7582 // Also hoist the bitcast up to its operand if it they are not in the same 7583 // block. 7584 if (auto *BCI = dyn_cast<Instruction>(BC1)) 7585 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 7586 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 7587 !Op->isTerminator() && !Op->isEHPad()) 7588 BCI->moveAfter(Op); 7589 7590 return true; 7591 } 7592 7593 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 7594 // If the operands of I can be folded into a target instruction together with 7595 // I, duplicate and sink them. 7596 SmallVector<Use *, 4> OpsToSink; 7597 if (!TTI->isProfitableToSinkOperands(I, OpsToSink)) 7598 return false; 7599 7600 // OpsToSink can contain multiple uses in a use chain (e.g. 7601 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 7602 // uses must come first, so we process the ops in reverse order so as to not 7603 // create invalid IR. 7604 BasicBlock *TargetBB = I->getParent(); 7605 bool Changed = false; 7606 SmallVector<Use *, 4> ToReplace; 7607 Instruction *InsertPoint = I; 7608 DenseMap<const Instruction *, unsigned long> InstOrdering; 7609 unsigned long InstNumber = 0; 7610 for (const auto &I : *TargetBB) 7611 InstOrdering[&I] = InstNumber++; 7612 7613 for (Use *U : reverse(OpsToSink)) { 7614 auto *UI = cast<Instruction>(U->get()); 7615 if (isa<PHINode>(UI)) 7616 continue; 7617 if (UI->getParent() == TargetBB) { 7618 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 7619 InsertPoint = UI; 7620 continue; 7621 } 7622 ToReplace.push_back(U); 7623 } 7624 7625 SetVector<Instruction *> MaybeDead; 7626 DenseMap<Instruction *, Instruction *> NewInstructions; 7627 for (Use *U : ToReplace) { 7628 auto *UI = cast<Instruction>(U->get()); 7629 Instruction *NI = UI->clone(); 7630 7631 if (IsHugeFunc) { 7632 // Now we clone an instruction, its operands' defs may sink to this BB 7633 // now. So we put the operands defs' BBs into FreshBBs to do optimization. 7634 for (Value *Op : NI->operands()) 7635 if (auto *OpDef = dyn_cast<Instruction>(Op)) 7636 FreshBBs.insert(OpDef->getParent()); 7637 } 7638 7639 NewInstructions[UI] = NI; 7640 MaybeDead.insert(UI); 7641 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 7642 NI->insertBefore(InsertPoint); 7643 InsertPoint = NI; 7644 InsertedInsts.insert(NI); 7645 7646 // Update the use for the new instruction, making sure that we update the 7647 // sunk instruction uses, if it is part of a chain that has already been 7648 // sunk. 7649 Instruction *OldI = cast<Instruction>(U->getUser()); 7650 if (NewInstructions.count(OldI)) 7651 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 7652 else 7653 U->set(NI); 7654 Changed = true; 7655 } 7656 7657 // Remove instructions that are dead after sinking. 7658 for (auto *I : MaybeDead) { 7659 if (!I->hasNUsesOrMore(1)) { 7660 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7661 I->eraseFromParent(); 7662 } 7663 } 7664 7665 return Changed; 7666 } 7667 7668 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7669 Value *Cond = SI->getCondition(); 7670 Type *OldType = Cond->getType(); 7671 LLVMContext &Context = Cond->getContext(); 7672 EVT OldVT = TLI->getValueType(*DL, OldType); 7673 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7674 unsigned RegWidth = RegType.getSizeInBits(); 7675 7676 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7677 return false; 7678 7679 // If the register width is greater than the type width, expand the condition 7680 // of the switch instruction and each case constant to the width of the 7681 // register. By widening the type of the switch condition, subsequent 7682 // comparisons (for case comparisons) will not need to be extended to the 7683 // preferred register width, so we will potentially eliminate N-1 extends, 7684 // where N is the number of cases in the switch. 7685 auto *NewType = Type::getIntNTy(Context, RegWidth); 7686 7687 // Extend the switch condition and case constants using the target preferred 7688 // extend unless the switch condition is a function argument with an extend 7689 // attribute. In that case, we can avoid an unnecessary mask/extension by 7690 // matching the argument extension instead. 7691 Instruction::CastOps ExtType = Instruction::ZExt; 7692 // Some targets prefer SExt over ZExt. 7693 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7694 ExtType = Instruction::SExt; 7695 7696 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7697 if (Arg->hasSExtAttr()) 7698 ExtType = Instruction::SExt; 7699 if (Arg->hasZExtAttr()) 7700 ExtType = Instruction::ZExt; 7701 } 7702 7703 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7704 ExtInst->insertBefore(SI); 7705 ExtInst->setDebugLoc(SI->getDebugLoc()); 7706 SI->setCondition(ExtInst); 7707 for (auto Case : SI->cases()) { 7708 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7709 APInt WideConst = (ExtType == Instruction::ZExt) 7710 ? NarrowConst.zext(RegWidth) 7711 : NarrowConst.sext(RegWidth); 7712 Case.setValue(ConstantInt::get(Context, WideConst)); 7713 } 7714 7715 return true; 7716 } 7717 7718 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7719 // The SCCP optimization tends to produce code like this: 7720 // switch(x) { case 42: phi(42, ...) } 7721 // Materializing the constant for the phi-argument needs instructions; So we 7722 // change the code to: 7723 // switch(x) { case 42: phi(x, ...) } 7724 7725 Value *Condition = SI->getCondition(); 7726 // Avoid endless loop in degenerate case. 7727 if (isa<ConstantInt>(*Condition)) 7728 return false; 7729 7730 bool Changed = false; 7731 BasicBlock *SwitchBB = SI->getParent(); 7732 Type *ConditionType = Condition->getType(); 7733 7734 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7735 ConstantInt *CaseValue = Case.getCaseValue(); 7736 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7737 // Set to true if we previously checked that `CaseBB` is only reached by 7738 // a single case from this switch. 7739 bool CheckedForSinglePred = false; 7740 for (PHINode &PHI : CaseBB->phis()) { 7741 Type *PHIType = PHI.getType(); 7742 // If ZExt is free then we can also catch patterns like this: 7743 // switch((i32)x) { case 42: phi((i64)42, ...); } 7744 // and replace `(i64)42` with `zext i32 %x to i64`. 7745 bool TryZExt = 7746 PHIType->isIntegerTy() && 7747 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7748 TLI->isZExtFree(ConditionType, PHIType); 7749 if (PHIType == ConditionType || TryZExt) { 7750 // Set to true to skip this case because of multiple preds. 7751 bool SkipCase = false; 7752 Value *Replacement = nullptr; 7753 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7754 Value *PHIValue = PHI.getIncomingValue(I); 7755 if (PHIValue != CaseValue) { 7756 if (!TryZExt) 7757 continue; 7758 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7759 if (!PHIValueInt || 7760 PHIValueInt->getValue() != 7761 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7762 continue; 7763 } 7764 if (PHI.getIncomingBlock(I) != SwitchBB) 7765 continue; 7766 // We cannot optimize if there are multiple case labels jumping to 7767 // this block. This check may get expensive when there are many 7768 // case labels so we test for it last. 7769 if (!CheckedForSinglePred) { 7770 CheckedForSinglePred = true; 7771 if (SI->findCaseDest(CaseBB) == nullptr) { 7772 SkipCase = true; 7773 break; 7774 } 7775 } 7776 7777 if (Replacement == nullptr) { 7778 if (PHIValue == CaseValue) { 7779 Replacement = Condition; 7780 } else { 7781 IRBuilder<> Builder(SI); 7782 Replacement = Builder.CreateZExt(Condition, PHIType); 7783 } 7784 } 7785 PHI.setIncomingValue(I, Replacement); 7786 Changed = true; 7787 } 7788 if (SkipCase) 7789 break; 7790 } 7791 } 7792 } 7793 return Changed; 7794 } 7795 7796 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7797 bool Changed = optimizeSwitchType(SI); 7798 Changed |= optimizeSwitchPhiConstants(SI); 7799 return Changed; 7800 } 7801 7802 namespace { 7803 7804 /// Helper class to promote a scalar operation to a vector one. 7805 /// This class is used to move downward extractelement transition. 7806 /// E.g., 7807 /// a = vector_op <2 x i32> 7808 /// b = extractelement <2 x i32> a, i32 0 7809 /// c = scalar_op b 7810 /// store c 7811 /// 7812 /// => 7813 /// a = vector_op <2 x i32> 7814 /// c = vector_op a (equivalent to scalar_op on the related lane) 7815 /// * d = extractelement <2 x i32> c, i32 0 7816 /// * store d 7817 /// Assuming both extractelement and store can be combine, we get rid of the 7818 /// transition. 7819 class VectorPromoteHelper { 7820 /// DataLayout associated with the current module. 7821 const DataLayout &DL; 7822 7823 /// Used to perform some checks on the legality of vector operations. 7824 const TargetLowering &TLI; 7825 7826 /// Used to estimated the cost of the promoted chain. 7827 const TargetTransformInfo &TTI; 7828 7829 /// The transition being moved downwards. 7830 Instruction *Transition; 7831 7832 /// The sequence of instructions to be promoted. 7833 SmallVector<Instruction *, 4> InstsToBePromoted; 7834 7835 /// Cost of combining a store and an extract. 7836 unsigned StoreExtractCombineCost; 7837 7838 /// Instruction that will be combined with the transition. 7839 Instruction *CombineInst = nullptr; 7840 7841 /// The instruction that represents the current end of the transition. 7842 /// Since we are faking the promotion until we reach the end of the chain 7843 /// of computation, we need a way to get the current end of the transition. 7844 Instruction *getEndOfTransition() const { 7845 if (InstsToBePromoted.empty()) 7846 return Transition; 7847 return InstsToBePromoted.back(); 7848 } 7849 7850 /// Return the index of the original value in the transition. 7851 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7852 /// c, is at index 0. 7853 unsigned getTransitionOriginalValueIdx() const { 7854 assert(isa<ExtractElementInst>(Transition) && 7855 "Other kind of transitions are not supported yet"); 7856 return 0; 7857 } 7858 7859 /// Return the index of the index in the transition. 7860 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7861 /// is at index 1. 7862 unsigned getTransitionIdx() const { 7863 assert(isa<ExtractElementInst>(Transition) && 7864 "Other kind of transitions are not supported yet"); 7865 return 1; 7866 } 7867 7868 /// Get the type of the transition. 7869 /// This is the type of the original value. 7870 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7871 /// transition is <2 x i32>. 7872 Type *getTransitionType() const { 7873 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7874 } 7875 7876 /// Promote \p ToBePromoted by moving \p Def downward through. 7877 /// I.e., we have the following sequence: 7878 /// Def = Transition <ty1> a to <ty2> 7879 /// b = ToBePromoted <ty2> Def, ... 7880 /// => 7881 /// b = ToBePromoted <ty1> a, ... 7882 /// Def = Transition <ty1> ToBePromoted to <ty2> 7883 void promoteImpl(Instruction *ToBePromoted); 7884 7885 /// Check whether or not it is profitable to promote all the 7886 /// instructions enqueued to be promoted. 7887 bool isProfitableToPromote() { 7888 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7889 unsigned Index = isa<ConstantInt>(ValIdx) 7890 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7891 : -1; 7892 Type *PromotedType = getTransitionType(); 7893 7894 StoreInst *ST = cast<StoreInst>(CombineInst); 7895 unsigned AS = ST->getPointerAddressSpace(); 7896 // Check if this store is supported. 7897 if (!TLI.allowsMisalignedMemoryAccesses( 7898 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7899 ST->getAlign())) { 7900 // If this is not supported, there is no way we can combine 7901 // the extract with the store. 7902 return false; 7903 } 7904 7905 // The scalar chain of computation has to pay for the transition 7906 // scalar to vector. 7907 // The vector chain has to account for the combining cost. 7908 enum TargetTransformInfo::TargetCostKind CostKind = 7909 TargetTransformInfo::TCK_RecipThroughput; 7910 InstructionCost ScalarCost = 7911 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); 7912 InstructionCost VectorCost = StoreExtractCombineCost; 7913 for (const auto &Inst : InstsToBePromoted) { 7914 // Compute the cost. 7915 // By construction, all instructions being promoted are arithmetic ones. 7916 // Moreover, one argument is a constant that can be viewed as a splat 7917 // constant. 7918 Value *Arg0 = Inst->getOperand(0); 7919 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7920 isa<ConstantFP>(Arg0); 7921 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; 7922 if (IsArg0Constant) 7923 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7924 else 7925 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7926 7927 ScalarCost += TTI.getArithmeticInstrCost( 7928 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); 7929 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7930 CostKind, Arg0Info, Arg1Info); 7931 } 7932 LLVM_DEBUG( 7933 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7934 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7935 return ScalarCost > VectorCost; 7936 } 7937 7938 /// Generate a constant vector with \p Val with the same 7939 /// number of elements as the transition. 7940 /// \p UseSplat defines whether or not \p Val should be replicated 7941 /// across the whole vector. 7942 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7943 /// otherwise we generate a vector with as many undef as possible: 7944 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7945 /// used at the index of the extract. 7946 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7947 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7948 if (!UseSplat) { 7949 // If we cannot determine where the constant must be, we have to 7950 // use a splat constant. 7951 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7952 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7953 ExtractIdx = CstVal->getSExtValue(); 7954 else 7955 UseSplat = true; 7956 } 7957 7958 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7959 if (UseSplat) 7960 return ConstantVector::getSplat(EC, Val); 7961 7962 if (!EC.isScalable()) { 7963 SmallVector<Constant *, 4> ConstVec; 7964 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7965 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7966 if (Idx == ExtractIdx) 7967 ConstVec.push_back(Val); 7968 else 7969 ConstVec.push_back(UndefVal); 7970 } 7971 return ConstantVector::get(ConstVec); 7972 } else 7973 llvm_unreachable( 7974 "Generate scalable vector for non-splat is unimplemented"); 7975 } 7976 7977 /// Check if promoting to a vector type an operand at \p OperandIdx 7978 /// in \p Use can trigger undefined behavior. 7979 static bool canCauseUndefinedBehavior(const Instruction *Use, 7980 unsigned OperandIdx) { 7981 // This is not safe to introduce undef when the operand is on 7982 // the right hand side of a division-like instruction. 7983 if (OperandIdx != 1) 7984 return false; 7985 switch (Use->getOpcode()) { 7986 default: 7987 return false; 7988 case Instruction::SDiv: 7989 case Instruction::UDiv: 7990 case Instruction::SRem: 7991 case Instruction::URem: 7992 return true; 7993 case Instruction::FDiv: 7994 case Instruction::FRem: 7995 return !Use->hasNoNaNs(); 7996 } 7997 llvm_unreachable(nullptr); 7998 } 7999 8000 public: 8001 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 8002 const TargetTransformInfo &TTI, Instruction *Transition, 8003 unsigned CombineCost) 8004 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 8005 StoreExtractCombineCost(CombineCost) { 8006 assert(Transition && "Do not know how to promote null"); 8007 } 8008 8009 /// Check if we can promote \p ToBePromoted to \p Type. 8010 bool canPromote(const Instruction *ToBePromoted) const { 8011 // We could support CastInst too. 8012 return isa<BinaryOperator>(ToBePromoted); 8013 } 8014 8015 /// Check if it is profitable to promote \p ToBePromoted 8016 /// by moving downward the transition through. 8017 bool shouldPromote(const Instruction *ToBePromoted) const { 8018 // Promote only if all the operands can be statically expanded. 8019 // Indeed, we do not want to introduce any new kind of transitions. 8020 for (const Use &U : ToBePromoted->operands()) { 8021 const Value *Val = U.get(); 8022 if (Val == getEndOfTransition()) { 8023 // If the use is a division and the transition is on the rhs, 8024 // we cannot promote the operation, otherwise we may create a 8025 // division by zero. 8026 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 8027 return false; 8028 continue; 8029 } 8030 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 8031 !isa<ConstantFP>(Val)) 8032 return false; 8033 } 8034 // Check that the resulting operation is legal. 8035 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 8036 if (!ISDOpcode) 8037 return false; 8038 return StressStoreExtract || 8039 TLI.isOperationLegalOrCustom( 8040 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 8041 } 8042 8043 /// Check whether or not \p Use can be combined 8044 /// with the transition. 8045 /// I.e., is it possible to do Use(Transition) => AnotherUse? 8046 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 8047 8048 /// Record \p ToBePromoted as part of the chain to be promoted. 8049 void enqueueForPromotion(Instruction *ToBePromoted) { 8050 InstsToBePromoted.push_back(ToBePromoted); 8051 } 8052 8053 /// Set the instruction that will be combined with the transition. 8054 void recordCombineInstruction(Instruction *ToBeCombined) { 8055 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 8056 CombineInst = ToBeCombined; 8057 } 8058 8059 /// Promote all the instructions enqueued for promotion if it is 8060 /// is profitable. 8061 /// \return True if the promotion happened, false otherwise. 8062 bool promote() { 8063 // Check if there is something to promote. 8064 // Right now, if we do not have anything to combine with, 8065 // we assume the promotion is not profitable. 8066 if (InstsToBePromoted.empty() || !CombineInst) 8067 return false; 8068 8069 // Check cost. 8070 if (!StressStoreExtract && !isProfitableToPromote()) 8071 return false; 8072 8073 // Promote. 8074 for (auto &ToBePromoted : InstsToBePromoted) 8075 promoteImpl(ToBePromoted); 8076 InstsToBePromoted.clear(); 8077 return true; 8078 } 8079 }; 8080 8081 } // end anonymous namespace 8082 8083 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 8084 // At this point, we know that all the operands of ToBePromoted but Def 8085 // can be statically promoted. 8086 // For Def, we need to use its parameter in ToBePromoted: 8087 // b = ToBePromoted ty1 a 8088 // Def = Transition ty1 b to ty2 8089 // Move the transition down. 8090 // 1. Replace all uses of the promoted operation by the transition. 8091 // = ... b => = ... Def. 8092 assert(ToBePromoted->getType() == Transition->getType() && 8093 "The type of the result of the transition does not match " 8094 "the final type"); 8095 ToBePromoted->replaceAllUsesWith(Transition); 8096 // 2. Update the type of the uses. 8097 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 8098 Type *TransitionTy = getTransitionType(); 8099 ToBePromoted->mutateType(TransitionTy); 8100 // 3. Update all the operands of the promoted operation with promoted 8101 // operands. 8102 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 8103 for (Use &U : ToBePromoted->operands()) { 8104 Value *Val = U.get(); 8105 Value *NewVal = nullptr; 8106 if (Val == Transition) 8107 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 8108 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 8109 isa<ConstantFP>(Val)) { 8110 // Use a splat constant if it is not safe to use undef. 8111 NewVal = getConstantVector( 8112 cast<Constant>(Val), 8113 isa<UndefValue>(Val) || 8114 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 8115 } else 8116 llvm_unreachable("Did you modified shouldPromote and forgot to update " 8117 "this?"); 8118 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 8119 } 8120 Transition->moveAfter(ToBePromoted); 8121 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 8122 } 8123 8124 /// Some targets can do store(extractelement) with one instruction. 8125 /// Try to push the extractelement towards the stores when the target 8126 /// has this feature and this is profitable. 8127 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 8128 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 8129 if (DisableStoreExtract || 8130 (!StressStoreExtract && 8131 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 8132 Inst->getOperand(1), CombineCost))) 8133 return false; 8134 8135 // At this point we know that Inst is a vector to scalar transition. 8136 // Try to move it down the def-use chain, until: 8137 // - We can combine the transition with its single use 8138 // => we got rid of the transition. 8139 // - We escape the current basic block 8140 // => we would need to check that we are moving it at a cheaper place and 8141 // we do not do that for now. 8142 BasicBlock *Parent = Inst->getParent(); 8143 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 8144 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 8145 // If the transition has more than one use, assume this is not going to be 8146 // beneficial. 8147 while (Inst->hasOneUse()) { 8148 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 8149 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 8150 8151 if (ToBePromoted->getParent() != Parent) { 8152 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 8153 << ToBePromoted->getParent()->getName() 8154 << ") than the transition (" << Parent->getName() 8155 << ").\n"); 8156 return false; 8157 } 8158 8159 if (VPH.canCombine(ToBePromoted)) { 8160 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 8161 << "will be combined with: " << *ToBePromoted << '\n'); 8162 VPH.recordCombineInstruction(ToBePromoted); 8163 bool Changed = VPH.promote(); 8164 NumStoreExtractExposed += Changed; 8165 return Changed; 8166 } 8167 8168 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 8169 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 8170 return false; 8171 8172 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 8173 8174 VPH.enqueueForPromotion(ToBePromoted); 8175 Inst = ToBePromoted; 8176 } 8177 return false; 8178 } 8179 8180 /// For the instruction sequence of store below, F and I values 8181 /// are bundled together as an i64 value before being stored into memory. 8182 /// Sometimes it is more efficient to generate separate stores for F and I, 8183 /// which can remove the bitwise instructions or sink them to colder places. 8184 /// 8185 /// (store (or (zext (bitcast F to i32) to i64), 8186 /// (shl (zext I to i64), 32)), addr) --> 8187 /// (store F, addr) and (store I, addr+4) 8188 /// 8189 /// Similarly, splitting for other merged store can also be beneficial, like: 8190 /// For pair of {i32, i32}, i64 store --> two i32 stores. 8191 /// For pair of {i32, i16}, i64 store --> two i32 stores. 8192 /// For pair of {i16, i16}, i32 store --> two i16 stores. 8193 /// For pair of {i16, i8}, i32 store --> two i16 stores. 8194 /// For pair of {i8, i8}, i16 store --> two i8 stores. 8195 /// 8196 /// We allow each target to determine specifically which kind of splitting is 8197 /// supported. 8198 /// 8199 /// The store patterns are commonly seen from the simple code snippet below 8200 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 8201 /// void goo(const std::pair<int, float> &); 8202 /// hoo() { 8203 /// ... 8204 /// goo(std::make_pair(tmp, ftmp)); 8205 /// ... 8206 /// } 8207 /// 8208 /// Although we already have similar splitting in DAG Combine, we duplicate 8209 /// it in CodeGenPrepare to catch the case in which pattern is across 8210 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 8211 /// during code expansion. 8212 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 8213 const TargetLowering &TLI) { 8214 // Handle simple but common cases only. 8215 Type *StoreType = SI.getValueOperand()->getType(); 8216 8217 // The code below assumes shifting a value by <number of bits>, 8218 // whereas scalable vectors would have to be shifted by 8219 // <2log(vscale) + number of bits> in order to store the 8220 // low/high parts. Bailing out for now. 8221 if (StoreType->isScalableTy()) 8222 return false; 8223 8224 if (!DL.typeSizeEqualsStoreSize(StoreType) || 8225 DL.getTypeSizeInBits(StoreType) == 0) 8226 return false; 8227 8228 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 8229 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 8230 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 8231 return false; 8232 8233 // Don't split the store if it is volatile. 8234 if (SI.isVolatile()) 8235 return false; 8236 8237 // Match the following patterns: 8238 // (store (or (zext LValue to i64), 8239 // (shl (zext HValue to i64), 32)), HalfValBitSize) 8240 // or 8241 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 8242 // (zext LValue to i64), 8243 // Expect both operands of OR and the first operand of SHL have only 8244 // one use. 8245 Value *LValue, *HValue; 8246 if (!match(SI.getValueOperand(), 8247 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 8248 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 8249 m_SpecificInt(HalfValBitSize)))))) 8250 return false; 8251 8252 // Check LValue and HValue are int with size less or equal than 32. 8253 if (!LValue->getType()->isIntegerTy() || 8254 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 8255 !HValue->getType()->isIntegerTy() || 8256 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 8257 return false; 8258 8259 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 8260 // as the input of target query. 8261 auto *LBC = dyn_cast<BitCastInst>(LValue); 8262 auto *HBC = dyn_cast<BitCastInst>(HValue); 8263 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 8264 : EVT::getEVT(LValue->getType()); 8265 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 8266 : EVT::getEVT(HValue->getType()); 8267 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 8268 return false; 8269 8270 // Start to split store. 8271 IRBuilder<> Builder(SI.getContext()); 8272 Builder.SetInsertPoint(&SI); 8273 8274 // If LValue/HValue is a bitcast in another BB, create a new one in current 8275 // BB so it may be merged with the splitted stores by dag combiner. 8276 if (LBC && LBC->getParent() != SI.getParent()) 8277 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 8278 if (HBC && HBC->getParent() != SI.getParent()) 8279 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 8280 8281 bool IsLE = SI.getDataLayout().isLittleEndian(); 8282 auto CreateSplitStore = [&](Value *V, bool Upper) { 8283 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 8284 Value *Addr = SI.getPointerOperand(); 8285 Align Alignment = SI.getAlign(); 8286 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 8287 if (IsOffsetStore) { 8288 Addr = Builder.CreateGEP( 8289 SplitStoreType, Addr, 8290 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 8291 8292 // When splitting the store in half, naturally one half will retain the 8293 // alignment of the original wider store, regardless of whether it was 8294 // over-aligned or not, while the other will require adjustment. 8295 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 8296 } 8297 Builder.CreateAlignedStore(V, Addr, Alignment); 8298 }; 8299 8300 CreateSplitStore(LValue, false); 8301 CreateSplitStore(HValue, true); 8302 8303 // Delete the old store. 8304 SI.eraseFromParent(); 8305 return true; 8306 } 8307 8308 // Return true if the GEP has two operands, the first operand is of a sequential 8309 // type, and the second operand is a constant. 8310 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 8311 gep_type_iterator I = gep_type_begin(*GEP); 8312 return GEP->getNumOperands() == 2 && I.isSequential() && 8313 isa<ConstantInt>(GEP->getOperand(1)); 8314 } 8315 8316 // Try unmerging GEPs to reduce liveness interference (register pressure) across 8317 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 8318 // reducing liveness interference across those edges benefits global register 8319 // allocation. Currently handles only certain cases. 8320 // 8321 // For example, unmerge %GEPI and %UGEPI as below. 8322 // 8323 // ---------- BEFORE ---------- 8324 // SrcBlock: 8325 // ... 8326 // %GEPIOp = ... 8327 // ... 8328 // %GEPI = gep %GEPIOp, Idx 8329 // ... 8330 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 8331 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 8332 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 8333 // %UGEPI) 8334 // 8335 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 8336 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 8337 // ... 8338 // 8339 // DstBi: 8340 // ... 8341 // %UGEPI = gep %GEPIOp, UIdx 8342 // ... 8343 // --------------------------- 8344 // 8345 // ---------- AFTER ---------- 8346 // SrcBlock: 8347 // ... (same as above) 8348 // (* %GEPI is still alive on the indirectbr edges) 8349 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 8350 // unmerging) 8351 // ... 8352 // 8353 // DstBi: 8354 // ... 8355 // %UGEPI = gep %GEPI, (UIdx-Idx) 8356 // ... 8357 // --------------------------- 8358 // 8359 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 8360 // no longer alive on them. 8361 // 8362 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 8363 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 8364 // not to disable further simplications and optimizations as a result of GEP 8365 // merging. 8366 // 8367 // Note this unmerging may increase the length of the data flow critical path 8368 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 8369 // between the register pressure and the length of data-flow critical 8370 // path. Restricting this to the uncommon IndirectBr case would minimize the 8371 // impact of potentially longer critical path, if any, and the impact on compile 8372 // time. 8373 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 8374 const TargetTransformInfo *TTI) { 8375 BasicBlock *SrcBlock = GEPI->getParent(); 8376 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 8377 // (non-IndirectBr) cases exit early here. 8378 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 8379 return false; 8380 // Check that GEPI is a simple gep with a single constant index. 8381 if (!GEPSequentialConstIndexed(GEPI)) 8382 return false; 8383 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 8384 // Check that GEPI is a cheap one. 8385 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 8386 TargetTransformInfo::TCK_SizeAndLatency) > 8387 TargetTransformInfo::TCC_Basic) 8388 return false; 8389 Value *GEPIOp = GEPI->getOperand(0); 8390 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 8391 if (!isa<Instruction>(GEPIOp)) 8392 return false; 8393 auto *GEPIOpI = cast<Instruction>(GEPIOp); 8394 if (GEPIOpI->getParent() != SrcBlock) 8395 return false; 8396 // Check that GEP is used outside the block, meaning it's alive on the 8397 // IndirectBr edge(s). 8398 if (llvm::none_of(GEPI->users(), [&](User *Usr) { 8399 if (auto *I = dyn_cast<Instruction>(Usr)) { 8400 if (I->getParent() != SrcBlock) { 8401 return true; 8402 } 8403 } 8404 return false; 8405 })) 8406 return false; 8407 // The second elements of the GEP chains to be unmerged. 8408 std::vector<GetElementPtrInst *> UGEPIs; 8409 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 8410 // on IndirectBr edges. 8411 for (User *Usr : GEPIOp->users()) { 8412 if (Usr == GEPI) 8413 continue; 8414 // Check if Usr is an Instruction. If not, give up. 8415 if (!isa<Instruction>(Usr)) 8416 return false; 8417 auto *UI = cast<Instruction>(Usr); 8418 // Check if Usr in the same block as GEPIOp, which is fine, skip. 8419 if (UI->getParent() == SrcBlock) 8420 continue; 8421 // Check if Usr is a GEP. If not, give up. 8422 if (!isa<GetElementPtrInst>(Usr)) 8423 return false; 8424 auto *UGEPI = cast<GetElementPtrInst>(Usr); 8425 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 8426 // the pointer operand to it. If so, record it in the vector. If not, give 8427 // up. 8428 if (!GEPSequentialConstIndexed(UGEPI)) 8429 return false; 8430 if (UGEPI->getOperand(0) != GEPIOp) 8431 return false; 8432 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType()) 8433 return false; 8434 if (GEPIIdx->getType() != 8435 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 8436 return false; 8437 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8438 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 8439 TargetTransformInfo::TCK_SizeAndLatency) > 8440 TargetTransformInfo::TCC_Basic) 8441 return false; 8442 UGEPIs.push_back(UGEPI); 8443 } 8444 if (UGEPIs.size() == 0) 8445 return false; 8446 // Check the materializing cost of (Uidx-Idx). 8447 for (GetElementPtrInst *UGEPI : UGEPIs) { 8448 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8449 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 8450 InstructionCost ImmCost = TTI->getIntImmCost( 8451 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 8452 if (ImmCost > TargetTransformInfo::TCC_Basic) 8453 return false; 8454 } 8455 // Now unmerge between GEPI and UGEPIs. 8456 for (GetElementPtrInst *UGEPI : UGEPIs) { 8457 UGEPI->setOperand(0, GEPI); 8458 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8459 Constant *NewUGEPIIdx = ConstantInt::get( 8460 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); 8461 UGEPI->setOperand(1, NewUGEPIIdx); 8462 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 8463 // inbounds to avoid UB. 8464 if (!GEPI->isInBounds()) { 8465 UGEPI->setIsInBounds(false); 8466 } 8467 } 8468 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 8469 // alive on IndirectBr edges). 8470 assert(llvm::none_of(GEPIOp->users(), 8471 [&](User *Usr) { 8472 return cast<Instruction>(Usr)->getParent() != SrcBlock; 8473 }) && 8474 "GEPIOp is used outside SrcBlock"); 8475 return true; 8476 } 8477 8478 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, 8479 SmallSet<BasicBlock *, 32> &FreshBBs, 8480 bool IsHugeFunc) { 8481 // Try and convert 8482 // %c = icmp ult %x, 8 8483 // br %c, bla, blb 8484 // %tc = lshr %x, 3 8485 // to 8486 // %tc = lshr %x, 3 8487 // %c = icmp eq %tc, 0 8488 // br %c, bla, blb 8489 // Creating the cmp to zero can be better for the backend, especially if the 8490 // lshr produces flags that can be used automatically. 8491 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 8492 return false; 8493 8494 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 8495 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 8496 return false; 8497 8498 Value *X = Cmp->getOperand(0); 8499 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 8500 8501 for (auto *U : X->users()) { 8502 Instruction *UI = dyn_cast<Instruction>(U); 8503 // A quick dominance check 8504 if (!UI || 8505 (UI->getParent() != Branch->getParent() && 8506 UI->getParent() != Branch->getSuccessor(0) && 8507 UI->getParent() != Branch->getSuccessor(1)) || 8508 (UI->getParent() != Branch->getParent() && 8509 !UI->getParent()->getSinglePredecessor())) 8510 continue; 8511 8512 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 8513 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 8514 IRBuilder<> Builder(Branch); 8515 if (UI->getParent() != Branch->getParent()) 8516 UI->moveBefore(Branch); 8517 UI->dropPoisonGeneratingFlags(); 8518 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 8519 ConstantInt::get(UI->getType(), 0)); 8520 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8521 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8522 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8523 return true; 8524 } 8525 if (Cmp->isEquality() && 8526 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 8527 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 8528 IRBuilder<> Builder(Branch); 8529 if (UI->getParent() != Branch->getParent()) 8530 UI->moveBefore(Branch); 8531 UI->dropPoisonGeneratingFlags(); 8532 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 8533 ConstantInt::get(UI->getType(), 0)); 8534 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8535 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8536 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8537 return true; 8538 } 8539 } 8540 return false; 8541 } 8542 8543 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { 8544 bool AnyChange = false; 8545 AnyChange = fixupDbgVariableRecordsOnInst(*I); 8546 8547 // Bail out if we inserted the instruction to prevent optimizations from 8548 // stepping on each other's toes. 8549 if (InsertedInsts.count(I)) 8550 return AnyChange; 8551 8552 // TODO: Move into the switch on opcode below here. 8553 if (PHINode *P = dyn_cast<PHINode>(I)) { 8554 // It is possible for very late stage optimizations (such as SimplifyCFG) 8555 // to introduce PHI nodes too late to be cleaned up. If we detect such a 8556 // trivial PHI, go ahead and zap it here. 8557 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 8558 LargeOffsetGEPMap.erase(P); 8559 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); 8560 P->eraseFromParent(); 8561 ++NumPHIsElim; 8562 return true; 8563 } 8564 return AnyChange; 8565 } 8566 8567 if (CastInst *CI = dyn_cast<CastInst>(I)) { 8568 // If the source of the cast is a constant, then this should have 8569 // already been constant folded. The only reason NOT to constant fold 8570 // it is if something (e.g. LSR) was careful to place the constant 8571 // evaluation in a block other than then one that uses it (e.g. to hoist 8572 // the address of globals out of a loop). If this is the case, we don't 8573 // want to forward-subst the cast. 8574 if (isa<Constant>(CI->getOperand(0))) 8575 return AnyChange; 8576 8577 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 8578 return true; 8579 8580 if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) || 8581 isa<TruncInst>(I)) && 8582 TLI->optimizeExtendOrTruncateConversion( 8583 I, LI->getLoopFor(I->getParent()), *TTI)) 8584 return true; 8585 8586 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 8587 /// Sink a zext or sext into its user blocks if the target type doesn't 8588 /// fit in one register 8589 if (TLI->getTypeAction(CI->getContext(), 8590 TLI->getValueType(*DL, CI->getType())) == 8591 TargetLowering::TypeExpandInteger) { 8592 return SinkCast(CI); 8593 } else { 8594 if (TLI->optimizeExtendOrTruncateConversion( 8595 I, LI->getLoopFor(I->getParent()), *TTI)) 8596 return true; 8597 8598 bool MadeChange = optimizeExt(I); 8599 return MadeChange | optimizeExtUses(I); 8600 } 8601 } 8602 return AnyChange; 8603 } 8604 8605 if (auto *Cmp = dyn_cast<CmpInst>(I)) 8606 if (optimizeCmp(Cmp, ModifiedDT)) 8607 return true; 8608 8609 if (match(I, m_URem(m_Value(), m_Value()))) 8610 if (optimizeURem(I)) 8611 return true; 8612 8613 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8614 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8615 bool Modified = optimizeLoadExt(LI); 8616 unsigned AS = LI->getPointerAddressSpace(); 8617 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 8618 return Modified; 8619 } 8620 8621 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 8622 if (splitMergedValStore(*SI, *DL, *TLI)) 8623 return true; 8624 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8625 unsigned AS = SI->getPointerAddressSpace(); 8626 return optimizeMemoryInst(I, SI->getOperand(1), 8627 SI->getOperand(0)->getType(), AS); 8628 } 8629 8630 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 8631 unsigned AS = RMW->getPointerAddressSpace(); 8632 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); 8633 } 8634 8635 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 8636 unsigned AS = CmpX->getPointerAddressSpace(); 8637 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 8638 CmpX->getCompareOperand()->getType(), AS); 8639 } 8640 8641 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 8642 8643 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 8644 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 8645 return true; 8646 8647 // TODO: Move this into the switch on opcode - it handles shifts already. 8648 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 8649 BinOp->getOpcode() == Instruction::LShr)) { 8650 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 8651 if (CI && TLI->hasExtractBitsInsn()) 8652 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 8653 return true; 8654 } 8655 8656 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 8657 if (GEPI->hasAllZeroIndices()) { 8658 /// The GEP operand must be a pointer, so must its result -> BitCast 8659 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 8660 GEPI->getName(), GEPI->getIterator()); 8661 NC->setDebugLoc(GEPI->getDebugLoc()); 8662 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); 8663 RecursivelyDeleteTriviallyDeadInstructions( 8664 GEPI, TLInfo, nullptr, 8665 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8666 ++NumGEPsElim; 8667 optimizeInst(NC, ModifiedDT); 8668 return true; 8669 } 8670 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8671 return true; 8672 } 8673 } 8674 8675 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8676 // freeze(icmp a, const)) -> icmp (freeze a), const 8677 // This helps generate efficient conditional jumps. 8678 Instruction *CmpI = nullptr; 8679 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8680 CmpI = II; 8681 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8682 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8683 8684 if (CmpI && CmpI->hasOneUse()) { 8685 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8686 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8687 isa<ConstantPointerNull>(Op0); 8688 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8689 isa<ConstantPointerNull>(Op1); 8690 if (Const0 || Const1) { 8691 if (!Const0 || !Const1) { 8692 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator()); 8693 F->takeName(FI); 8694 CmpI->setOperand(Const0 ? 1 : 0, F); 8695 } 8696 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); 8697 FI->eraseFromParent(); 8698 return true; 8699 } 8700 } 8701 return AnyChange; 8702 } 8703 8704 if (tryToSinkFreeOperands(I)) 8705 return true; 8706 8707 switch (I->getOpcode()) { 8708 case Instruction::Shl: 8709 case Instruction::LShr: 8710 case Instruction::AShr: 8711 return optimizeShiftInst(cast<BinaryOperator>(I)); 8712 case Instruction::Call: 8713 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8714 case Instruction::Select: 8715 return optimizeSelectInst(cast<SelectInst>(I)); 8716 case Instruction::ShuffleVector: 8717 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8718 case Instruction::Switch: 8719 return optimizeSwitchInst(cast<SwitchInst>(I)); 8720 case Instruction::ExtractElement: 8721 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8722 case Instruction::Br: 8723 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); 8724 } 8725 8726 return AnyChange; 8727 } 8728 8729 /// Given an OR instruction, check to see if this is a bitreverse 8730 /// idiom. If so, insert the new intrinsic and return true. 8731 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8732 if (!I.getType()->isIntegerTy() || 8733 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8734 TLI->getValueType(*DL, I.getType(), true))) 8735 return false; 8736 8737 SmallVector<Instruction *, 4> Insts; 8738 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8739 return false; 8740 Instruction *LastInst = Insts.back(); 8741 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); 8742 RecursivelyDeleteTriviallyDeadInstructions( 8743 &I, TLInfo, nullptr, 8744 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8745 return true; 8746 } 8747 8748 // In this pass we look for GEP and cast instructions that are used 8749 // across basic blocks and rewrite them to improve basic-block-at-a-time 8750 // selection. 8751 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { 8752 SunkAddrs.clear(); 8753 bool MadeChange = false; 8754 8755 do { 8756 CurInstIterator = BB.begin(); 8757 ModifiedDT = ModifyDT::NotModifyDT; 8758 while (CurInstIterator != BB.end()) { 8759 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8760 if (ModifiedDT != ModifyDT::NotModifyDT) { 8761 // For huge function we tend to quickly go though the inner optmization 8762 // opportunities in the BB. So we go back to the BB head to re-optimize 8763 // each instruction instead of go back to the function head. 8764 if (IsHugeFunc) { 8765 DT.reset(); 8766 getDT(*BB.getParent()); 8767 break; 8768 } else { 8769 return true; 8770 } 8771 } 8772 } 8773 } while (ModifiedDT == ModifyDT::ModifyInstDT); 8774 8775 bool MadeBitReverse = true; 8776 while (MadeBitReverse) { 8777 MadeBitReverse = false; 8778 for (auto &I : reverse(BB)) { 8779 if (makeBitReverse(I)) { 8780 MadeBitReverse = MadeChange = true; 8781 break; 8782 } 8783 } 8784 } 8785 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8786 8787 return MadeChange; 8788 } 8789 8790 // Some CGP optimizations may move or alter what's computed in a block. Check 8791 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8792 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8793 assert(isa<DbgValueInst>(I)); 8794 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8795 8796 // Does this dbg.value refer to a sunk address calculation? 8797 bool AnyChange = false; 8798 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8799 DVI.location_ops().end()); 8800 for (Value *Location : LocationOps) { 8801 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8802 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8803 if (SunkAddr) { 8804 // Point dbg.value at locally computed address, which should give the best 8805 // opportunity to be accurately lowered. This update may change the type 8806 // of pointer being referred to; however this makes no difference to 8807 // debugging information, and we can't generate bitcasts that may affect 8808 // codegen. 8809 DVI.replaceVariableLocationOp(Location, SunkAddr); 8810 AnyChange = true; 8811 } 8812 } 8813 return AnyChange; 8814 } 8815 8816 bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) { 8817 bool AnyChange = false; 8818 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 8819 AnyChange |= fixupDbgVariableRecord(DVR); 8820 return AnyChange; 8821 } 8822 8823 // FIXME: should updating debug-info really cause the "changed" flag to fire, 8824 // which can cause a function to be reprocessed? 8825 bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) { 8826 if (DVR.Type != DbgVariableRecord::LocationType::Value && 8827 DVR.Type != DbgVariableRecord::LocationType::Assign) 8828 return false; 8829 8830 // Does this DbgVariableRecord refer to a sunk address calculation? 8831 bool AnyChange = false; 8832 SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(), 8833 DVR.location_ops().end()); 8834 for (Value *Location : LocationOps) { 8835 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8836 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8837 if (SunkAddr) { 8838 // Point dbg.value at locally computed address, which should give the best 8839 // opportunity to be accurately lowered. This update may change the type 8840 // of pointer being referred to; however this makes no difference to 8841 // debugging information, and we can't generate bitcasts that may affect 8842 // codegen. 8843 DVR.replaceVariableLocationOp(Location, SunkAddr); 8844 AnyChange = true; 8845 } 8846 } 8847 return AnyChange; 8848 } 8849 8850 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) { 8851 DVI->removeFromParent(); 8852 if (isa<PHINode>(VI)) 8853 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8854 else 8855 DVI->insertAfter(VI); 8856 } 8857 8858 static void DbgInserterHelper(DbgVariableRecord *DVR, Instruction *VI) { 8859 DVR->removeFromParent(); 8860 BasicBlock *VIBB = VI->getParent(); 8861 if (isa<PHINode>(VI)) 8862 VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt()); 8863 else 8864 VIBB->insertDbgRecordAfter(DVR, VI); 8865 } 8866 8867 // A llvm.dbg.value may be using a value before its definition, due to 8868 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8869 // them by moving the dbg.value to immediately after the value definition. 8870 // FIXME: Ideally this should never be necessary, and this has the potential 8871 // to re-order dbg.value intrinsics. 8872 bool CodeGenPrepare::placeDbgValues(Function &F) { 8873 bool MadeChange = false; 8874 DominatorTree DT(F); 8875 8876 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) { 8877 SmallVector<Instruction *, 4> VIs; 8878 for (Value *V : DbgItem->location_ops()) 8879 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8880 VIs.push_back(VI); 8881 8882 // This item may depend on multiple instructions, complicating any 8883 // potential sink. This block takes the defensive approach, opting to 8884 // "undef" the item if it has more than one instruction and any of them do 8885 // not dominate iem. 8886 for (Instruction *VI : VIs) { 8887 if (VI->isTerminator()) 8888 continue; 8889 8890 // If VI is a phi in a block with an EHPad terminator, we can't insert 8891 // after it. 8892 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8893 continue; 8894 8895 // If the defining instruction dominates the dbg.value, we do not need 8896 // to move the dbg.value. 8897 if (DT.dominates(VI, Position)) 8898 continue; 8899 8900 // If we depend on multiple instructions and any of them doesn't 8901 // dominate this DVI, we probably can't salvage it: moving it to 8902 // after any of the instructions could cause us to lose the others. 8903 if (VIs.size() > 1) { 8904 LLVM_DEBUG( 8905 dbgs() 8906 << "Unable to find valid location for Debug Value, undefing:\n" 8907 << *DbgItem); 8908 DbgItem->setKillLocation(); 8909 break; 8910 } 8911 8912 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8913 << *DbgItem << ' ' << *VI); 8914 DbgInserterHelper(DbgItem, VI); 8915 MadeChange = true; 8916 ++NumDbgValueMoved; 8917 } 8918 }; 8919 8920 for (BasicBlock &BB : F) { 8921 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8922 // Process dbg.value intrinsics. 8923 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8924 if (DVI) { 8925 DbgProcessor(DVI, DVI); 8926 continue; 8927 } 8928 8929 // If this isn't a dbg.value, process any attached DbgVariableRecord 8930 // records attached to this instruction. 8931 for (DbgVariableRecord &DVR : llvm::make_early_inc_range( 8932 filterDbgVars(Insn.getDbgRecordRange()))) { 8933 if (DVR.Type != DbgVariableRecord::LocationType::Value) 8934 continue; 8935 DbgProcessor(&DVR, &Insn); 8936 } 8937 } 8938 } 8939 8940 return MadeChange; 8941 } 8942 8943 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8944 // probes can be chained dependencies of other regular DAG nodes and block DAG 8945 // combine optimizations. 8946 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8947 bool MadeChange = false; 8948 for (auto &Block : F) { 8949 // Move the rest probes to the beginning of the block. 8950 auto FirstInst = Block.getFirstInsertionPt(); 8951 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8952 ++FirstInst; 8953 BasicBlock::iterator I(FirstInst); 8954 I++; 8955 while (I != Block.end()) { 8956 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8957 II->moveBefore(&*FirstInst); 8958 MadeChange = true; 8959 } 8960 } 8961 } 8962 return MadeChange; 8963 } 8964 8965 /// Scale down both weights to fit into uint32_t. 8966 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8967 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8968 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8969 NewTrue = NewTrue / Scale; 8970 NewFalse = NewFalse / Scale; 8971 } 8972 8973 /// Some targets prefer to split a conditional branch like: 8974 /// \code 8975 /// %0 = icmp ne i32 %a, 0 8976 /// %1 = icmp ne i32 %b, 0 8977 /// %or.cond = or i1 %0, %1 8978 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8979 /// \endcode 8980 /// into multiple branch instructions like: 8981 /// \code 8982 /// bb1: 8983 /// %0 = icmp ne i32 %a, 0 8984 /// br i1 %0, label %TrueBB, label %bb2 8985 /// bb2: 8986 /// %1 = icmp ne i32 %b, 0 8987 /// br i1 %1, label %TrueBB, label %FalseBB 8988 /// \endcode 8989 /// This usually allows instruction selection to do even further optimizations 8990 /// and combine the compare with the branch instruction. Currently this is 8991 /// applied for targets which have "cheap" jump instructions. 8992 /// 8993 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8994 /// 8995 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { 8996 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8997 return false; 8998 8999 bool MadeChange = false; 9000 for (auto &BB : F) { 9001 // Does this BB end with the following? 9002 // %cond1 = icmp|fcmp|binary instruction ... 9003 // %cond2 = icmp|fcmp|binary instruction ... 9004 // %cond.or = or|and i1 %cond1, cond2 9005 // br i1 %cond.or label %dest1, label %dest2" 9006 Instruction *LogicOp; 9007 BasicBlock *TBB, *FBB; 9008 if (!match(BB.getTerminator(), 9009 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 9010 continue; 9011 9012 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 9013 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 9014 continue; 9015 9016 // The merging of mostly empty BB can cause a degenerate branch. 9017 if (TBB == FBB) 9018 continue; 9019 9020 unsigned Opc; 9021 Value *Cond1, *Cond2; 9022 if (match(LogicOp, 9023 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 9024 Opc = Instruction::And; 9025 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 9026 m_OneUse(m_Value(Cond2))))) 9027 Opc = Instruction::Or; 9028 else 9029 continue; 9030 9031 auto IsGoodCond = [](Value *Cond) { 9032 return match( 9033 Cond, 9034 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 9035 m_LogicalOr(m_Value(), m_Value())))); 9036 }; 9037 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 9038 continue; 9039 9040 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 9041 9042 // Create a new BB. 9043 auto *TmpBB = 9044 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 9045 BB.getParent(), BB.getNextNode()); 9046 if (IsHugeFunc) 9047 FreshBBs.insert(TmpBB); 9048 9049 // Update original basic block by using the first condition directly by the 9050 // branch instruction and removing the no longer needed and/or instruction. 9051 Br1->setCondition(Cond1); 9052 LogicOp->eraseFromParent(); 9053 9054 // Depending on the condition we have to either replace the true or the 9055 // false successor of the original branch instruction. 9056 if (Opc == Instruction::And) 9057 Br1->setSuccessor(0, TmpBB); 9058 else 9059 Br1->setSuccessor(1, TmpBB); 9060 9061 // Fill in the new basic block. 9062 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 9063 if (auto *I = dyn_cast<Instruction>(Cond2)) { 9064 I->removeFromParent(); 9065 I->insertBefore(Br2); 9066 } 9067 9068 // Update PHI nodes in both successors. The original BB needs to be 9069 // replaced in one successor's PHI nodes, because the branch comes now from 9070 // the newly generated BB (NewBB). In the other successor we need to add one 9071 // incoming edge to the PHI nodes, because both branch instructions target 9072 // now the same successor. Depending on the original branch condition 9073 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 9074 // we perform the correct update for the PHI nodes. 9075 // This doesn't change the successor order of the just created branch 9076 // instruction (or any other instruction). 9077 if (Opc == Instruction::Or) 9078 std::swap(TBB, FBB); 9079 9080 // Replace the old BB with the new BB. 9081 TBB->replacePhiUsesWith(&BB, TmpBB); 9082 9083 // Add another incoming edge from the new BB. 9084 for (PHINode &PN : FBB->phis()) { 9085 auto *Val = PN.getIncomingValueForBlock(&BB); 9086 PN.addIncoming(Val, TmpBB); 9087 } 9088 9089 // Update the branch weights (from SelectionDAGBuilder:: 9090 // FindMergedConditions). 9091 if (Opc == Instruction::Or) { 9092 // Codegen X | Y as: 9093 // BB1: 9094 // jmp_if_X TBB 9095 // jmp TmpBB 9096 // TmpBB: 9097 // jmp_if_Y TBB 9098 // jmp FBB 9099 // 9100 9101 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 9102 // The requirement is that 9103 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 9104 // = TrueProb for original BB. 9105 // Assuming the original weights are A and B, one choice is to set BB1's 9106 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 9107 // assumes that 9108 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 9109 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 9110 // TmpBB, but the math is more complicated. 9111 uint64_t TrueWeight, FalseWeight; 9112 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 9113 uint64_t NewTrueWeight = TrueWeight; 9114 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 9115 scaleWeights(NewTrueWeight, NewFalseWeight); 9116 Br1->setMetadata(LLVMContext::MD_prof, 9117 MDBuilder(Br1->getContext()) 9118 .createBranchWeights(TrueWeight, FalseWeight, 9119 hasBranchWeightOrigin(*Br1))); 9120 9121 NewTrueWeight = TrueWeight; 9122 NewFalseWeight = 2 * FalseWeight; 9123 scaleWeights(NewTrueWeight, NewFalseWeight); 9124 Br2->setMetadata(LLVMContext::MD_prof, 9125 MDBuilder(Br2->getContext()) 9126 .createBranchWeights(TrueWeight, FalseWeight)); 9127 } 9128 } else { 9129 // Codegen X & Y as: 9130 // BB1: 9131 // jmp_if_X TmpBB 9132 // jmp FBB 9133 // TmpBB: 9134 // jmp_if_Y TBB 9135 // jmp FBB 9136 // 9137 // This requires creation of TmpBB after CurBB. 9138 9139 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 9140 // The requirement is that 9141 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 9142 // = FalseProb for original BB. 9143 // Assuming the original weights are A and B, one choice is to set BB1's 9144 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 9145 // assumes that 9146 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 9147 uint64_t TrueWeight, FalseWeight; 9148 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 9149 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 9150 uint64_t NewFalseWeight = FalseWeight; 9151 scaleWeights(NewTrueWeight, NewFalseWeight); 9152 Br1->setMetadata(LLVMContext::MD_prof, 9153 MDBuilder(Br1->getContext()) 9154 .createBranchWeights(TrueWeight, FalseWeight)); 9155 9156 NewTrueWeight = 2 * TrueWeight; 9157 NewFalseWeight = FalseWeight; 9158 scaleWeights(NewTrueWeight, NewFalseWeight); 9159 Br2->setMetadata(LLVMContext::MD_prof, 9160 MDBuilder(Br2->getContext()) 9161 .createBranchWeights(TrueWeight, FalseWeight)); 9162 } 9163 } 9164 9165 ModifiedDT = ModifyDT::ModifyBBDT; 9166 MadeChange = true; 9167 9168 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 9169 TmpBB->dump()); 9170 } 9171 return MadeChange; 9172 } 9173