1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/CodeGenPrepare.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/CodeGenTypes/MachineValueType.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/Argument.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfo.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/GlobalVariable.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/IntrinsicsAArch64.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/MDBuilder.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/ProfDataUtils.h" 72 #include "llvm/IR/Statepoint.h" 73 #include "llvm/IR/Type.h" 74 #include "llvm/IR/Use.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/IR/ValueHandle.h" 78 #include "llvm/IR/ValueMap.h" 79 #include "llvm/InitializePasses.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/BlockFrequency.h" 82 #include "llvm/Support/BranchProbability.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/CommandLine.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Target/TargetMachine.h" 91 #include "llvm/Target/TargetOptions.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 96 #include "llvm/Transforms/Utils/SizeOpts.h" 97 #include <algorithm> 98 #include <cassert> 99 #include <cstdint> 100 #include <iterator> 101 #include <limits> 102 #include <memory> 103 #include <optional> 104 #include <utility> 105 #include <vector> 106 107 using namespace llvm; 108 using namespace llvm::PatternMatch; 109 110 #define DEBUG_TYPE "codegenprepare" 111 112 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 113 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 114 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 115 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 116 "sunken Cmps"); 117 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 118 "of sunken Casts"); 119 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 120 "computations were sunk"); 121 STATISTIC(NumMemoryInstsPhiCreated, 122 "Number of phis created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumMemoryInstsSelectCreated, 125 "Number of select created when address " 126 "computations were sunk to memory instructions"); 127 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 128 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 129 STATISTIC(NumAndsAdded, 130 "Number of and mask instructions added to form ext loads"); 131 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 132 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 133 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 134 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 135 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 136 137 static cl::opt<bool> DisableBranchOpts( 138 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable branch optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> 142 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 143 cl::desc("Disable GC optimizations in CodeGenPrepare")); 144 145 static cl::opt<bool> 146 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, 147 cl::init(false), 148 cl::desc("Disable select to branch conversion.")); 149 150 static cl::opt<bool> 151 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), 152 cl::desc("Address sinking in CGP using GEPs.")); 153 154 static cl::opt<bool> 155 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), 156 cl::desc("Enable sinkinig and/cmp into branches.")); 157 158 static cl::opt<bool> DisableStoreExtract( 159 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> StressStoreExtract( 163 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 164 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 165 166 static cl::opt<bool> DisableExtLdPromotion( 167 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 169 "CodeGenPrepare")); 170 171 static cl::opt<bool> StressExtLdPromotion( 172 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 173 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 174 "optimization in CodeGenPrepare")); 175 176 static cl::opt<bool> DisablePreheaderProtect( 177 "disable-preheader-prot", cl::Hidden, cl::init(false), 178 cl::desc("Disable protection against removing loop preheaders")); 179 180 static cl::opt<bool> ProfileGuidedSectionPrefix( 181 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 182 cl::desc("Use profile info to add section prefix for hot/cold functions")); 183 184 static cl::opt<bool> ProfileUnknownInSpecialSection( 185 "profile-unknown-in-special-section", cl::Hidden, 186 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 187 "profile, we cannot tell the function is cold for sure because " 188 "it may be a function newly added without ever being sampled. " 189 "With the flag enabled, compiler can put such profile unknown " 190 "functions into a special section, so runtime system can choose " 191 "to handle it in a different way than .text section, to save " 192 "RAM for example. ")); 193 194 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 195 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 196 cl::desc("Use the basic-block-sections profile to determine the text " 197 "section prefix for hot functions. Functions with " 198 "basic-block-sections profile will be placed in `.text.hot` " 199 "regardless of their FDO profile info. Other functions won't be " 200 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 201 "profiles.")); 202 203 static cl::opt<uint64_t> FreqRatioToSkipMerge( 204 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 205 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 206 "(frequency of destination block) is greater than this ratio")); 207 208 static cl::opt<bool> ForceSplitStore( 209 "force-split-store", cl::Hidden, cl::init(false), 210 cl::desc("Force store splitting no matter what the target query says.")); 211 212 static cl::opt<bool> EnableTypePromotionMerge( 213 "cgp-type-promotion-merge", cl::Hidden, 214 cl::desc("Enable merging of redundant sexts when one is dominating" 215 " the other."), 216 cl::init(true)); 217 218 static cl::opt<bool> DisableComplexAddrModes( 219 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 220 cl::desc("Disables combining addressing modes with different parts " 221 "in optimizeMemoryInst.")); 222 223 static cl::opt<bool> 224 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 225 cl::desc("Allow creation of Phis in Address sinking.")); 226 227 static cl::opt<bool> AddrSinkNewSelects( 228 "addr-sink-new-select", cl::Hidden, cl::init(true), 229 cl::desc("Allow creation of selects in Address sinking.")); 230 231 static cl::opt<bool> AddrSinkCombineBaseReg( 232 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 233 cl::desc("Allow combining of BaseReg field in Address sinking.")); 234 235 static cl::opt<bool> AddrSinkCombineBaseGV( 236 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 237 cl::desc("Allow combining of BaseGV field in Address sinking.")); 238 239 static cl::opt<bool> AddrSinkCombineBaseOffs( 240 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 241 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 242 243 static cl::opt<bool> AddrSinkCombineScaledReg( 244 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 245 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 246 247 static cl::opt<bool> 248 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 249 cl::init(true), 250 cl::desc("Enable splitting large offset of GEP.")); 251 252 static cl::opt<bool> EnableICMP_EQToICMP_ST( 253 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 254 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 255 256 static cl::opt<bool> 257 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 258 cl::desc("Enable BFI update verification for " 259 "CodeGenPrepare.")); 260 261 static cl::opt<bool> 262 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), 263 cl::desc("Enable converting phi types in CodeGenPrepare")); 264 265 static cl::opt<unsigned> 266 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, 267 cl::desc("Least BB number of huge function.")); 268 269 static cl::opt<unsigned> 270 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), 271 cl::Hidden, 272 cl::desc("Max number of address users to look at")); 273 274 static cl::opt<bool> 275 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false), 276 cl::desc("Disable elimination of dead PHI nodes.")); 277 278 namespace { 279 280 enum ExtType { 281 ZeroExtension, // Zero extension has been seen. 282 SignExtension, // Sign extension has been seen. 283 BothExtension // This extension type is used if we saw sext after 284 // ZeroExtension had been set, or if we saw zext after 285 // SignExtension had been set. It makes the type 286 // information of a promoted instruction invalid. 287 }; 288 289 enum ModifyDT { 290 NotModifyDT, // Not Modify any DT. 291 ModifyBBDT, // Modify the Basic Block Dominator Tree. 292 ModifyInstDT // Modify the Instruction Dominator in a Basic Block, 293 // This usually means we move/delete/insert instruction 294 // in a Basic Block. So we should re-iterate instructions 295 // in such Basic Block. 296 }; 297 298 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 299 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 300 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 301 using SExts = SmallVector<Instruction *, 16>; 302 using ValueToSExts = MapVector<Value *, SExts>; 303 304 class TypePromotionTransaction; 305 306 class CodeGenPrepare { 307 friend class CodeGenPrepareLegacyPass; 308 const TargetMachine *TM = nullptr; 309 const TargetSubtargetInfo *SubtargetInfo = nullptr; 310 const TargetLowering *TLI = nullptr; 311 const TargetRegisterInfo *TRI = nullptr; 312 const TargetTransformInfo *TTI = nullptr; 313 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 314 const TargetLibraryInfo *TLInfo = nullptr; 315 LoopInfo *LI = nullptr; 316 std::unique_ptr<BlockFrequencyInfo> BFI; 317 std::unique_ptr<BranchProbabilityInfo> BPI; 318 ProfileSummaryInfo *PSI = nullptr; 319 320 /// As we scan instructions optimizing them, this is the next instruction 321 /// to optimize. Transforms that can invalidate this should update it. 322 BasicBlock::iterator CurInstIterator; 323 324 /// Keeps track of non-local addresses that have been sunk into a block. 325 /// This allows us to avoid inserting duplicate code for blocks with 326 /// multiple load/stores of the same address. The usage of WeakTrackingVH 327 /// enables SunkAddrs to be treated as a cache whose entries can be 328 /// invalidated if a sunken address computation has been erased. 329 ValueMap<Value *, WeakTrackingVH> SunkAddrs; 330 331 /// Keeps track of all instructions inserted for the current function. 332 SetOfInstrs InsertedInsts; 333 334 /// Keeps track of the type of the related instruction before their 335 /// promotion for the current function. 336 InstrToOrigTy PromotedInsts; 337 338 /// Keep track of instructions removed during promotion. 339 SetOfInstrs RemovedInsts; 340 341 /// Keep track of sext chains based on their initial value. 342 DenseMap<Value *, Instruction *> SeenChainsForSExt; 343 344 /// Keep track of GEPs accessing the same data structures such as structs or 345 /// arrays that are candidates to be split later because of their large 346 /// size. 347 MapVector<AssertingVH<Value>, 348 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 349 LargeOffsetGEPMap; 350 351 /// Keep track of new GEP base after splitting the GEPs having large offset. 352 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 353 354 /// Map serial numbers to Large offset GEPs. 355 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 356 357 /// Keep track of SExt promoted. 358 ValueToSExts ValToSExtendedUses; 359 360 /// True if the function has the OptSize attribute. 361 bool OptSize; 362 363 /// DataLayout for the Function being processed. 364 const DataLayout *DL = nullptr; 365 366 /// Building the dominator tree can be expensive, so we only build it 367 /// lazily and update it when required. 368 std::unique_ptr<DominatorTree> DT; 369 370 public: 371 CodeGenPrepare(){}; 372 CodeGenPrepare(const TargetMachine *TM) : TM(TM){}; 373 /// If encounter huge function, we need to limit the build time. 374 bool IsHugeFunc = false; 375 376 /// FreshBBs is like worklist, it collected the updated BBs which need 377 /// to be optimized again. 378 /// Note: Consider building time in this pass, when a BB updated, we need 379 /// to insert such BB into FreshBBs for huge function. 380 SmallSet<BasicBlock *, 32> FreshBBs; 381 382 void releaseMemory() { 383 // Clear per function information. 384 InsertedInsts.clear(); 385 PromotedInsts.clear(); 386 FreshBBs.clear(); 387 BPI.reset(); 388 BFI.reset(); 389 } 390 391 bool run(Function &F, FunctionAnalysisManager &AM); 392 393 private: 394 template <typename F> 395 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 396 // Substituting can cause recursive simplifications, which can invalidate 397 // our iterator. Use a WeakTrackingVH to hold onto it in case this 398 // happens. 399 Value *CurValue = &*CurInstIterator; 400 WeakTrackingVH IterHandle(CurValue); 401 402 f(); 403 404 // If the iterator instruction was recursively deleted, start over at the 405 // start of the block. 406 if (IterHandle != CurValue) { 407 CurInstIterator = BB->begin(); 408 SunkAddrs.clear(); 409 } 410 } 411 412 // Get the DominatorTree, building if necessary. 413 DominatorTree &getDT(Function &F) { 414 if (!DT) 415 DT = std::make_unique<DominatorTree>(F); 416 return *DT; 417 } 418 419 void removeAllAssertingVHReferences(Value *V); 420 bool eliminateAssumptions(Function &F); 421 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); 422 bool eliminateMostlyEmptyBlocks(Function &F); 423 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 424 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 425 void eliminateMostlyEmptyBlock(BasicBlock *BB); 426 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 427 bool isPreheader); 428 bool makeBitReverse(Instruction &I); 429 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); 430 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); 431 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, 432 unsigned AddrSpace); 433 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 434 bool optimizeInlineAsmInst(CallInst *CS); 435 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); 436 bool optimizeExt(Instruction *&I); 437 bool optimizeExtUses(Instruction *I); 438 bool optimizeLoadExt(LoadInst *Load); 439 bool optimizeShiftInst(BinaryOperator *BO); 440 bool optimizeFunnelShift(IntrinsicInst *Fsh); 441 bool optimizeSelectInst(SelectInst *SI); 442 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 443 bool optimizeSwitchType(SwitchInst *SI); 444 bool optimizeSwitchPhiConstants(SwitchInst *SI); 445 bool optimizeSwitchInst(SwitchInst *SI); 446 bool optimizeExtractElementInst(Instruction *Inst); 447 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); 448 bool fixupDbgValue(Instruction *I); 449 bool fixupDbgVariableRecord(DbgVariableRecord &I); 450 bool fixupDbgVariableRecordsOnInst(Instruction &I); 451 bool placeDbgValues(Function &F); 452 bool placePseudoProbes(Function &F); 453 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 454 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 455 bool tryToPromoteExts(TypePromotionTransaction &TPT, 456 const SmallVectorImpl<Instruction *> &Exts, 457 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 458 unsigned CreatedInstsCost = 0); 459 bool mergeSExts(Function &F); 460 bool splitLargeGEPOffsets(); 461 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 462 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 463 bool optimizePhiTypes(Function &F); 464 bool performAddressTypePromotion( 465 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 466 bool HasPromoted, TypePromotionTransaction &TPT, 467 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 468 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); 469 bool simplifyOffsetableRelocate(GCStatepointInst &I); 470 471 bool tryToSinkFreeOperands(Instruction *I); 472 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, 473 CmpInst *Cmp, Intrinsic::ID IID); 474 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); 475 bool optimizeURem(Instruction *Rem); 476 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 477 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 478 void verifyBFIUpdates(Function &F); 479 bool _run(Function &F); 480 }; 481 482 class CodeGenPrepareLegacyPass : public FunctionPass { 483 public: 484 static char ID; // Pass identification, replacement for typeid 485 486 CodeGenPrepareLegacyPass() : FunctionPass(ID) { 487 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry()); 488 } 489 490 bool runOnFunction(Function &F) override; 491 492 StringRef getPassName() const override { return "CodeGen Prepare"; } 493 494 void getAnalysisUsage(AnalysisUsage &AU) const override { 495 // FIXME: When we can selectively preserve passes, preserve the domtree. 496 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 497 AU.addRequired<TargetLibraryInfoWrapperPass>(); 498 AU.addRequired<TargetPassConfig>(); 499 AU.addRequired<TargetTransformInfoWrapperPass>(); 500 AU.addRequired<LoopInfoWrapperPass>(); 501 AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 502 } 503 }; 504 505 } // end anonymous namespace 506 507 char CodeGenPrepareLegacyPass::ID = 0; 508 509 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) { 510 if (skipFunction(F)) 511 return false; 512 auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 513 CodeGenPrepare CGP(TM); 514 CGP.DL = &F.getDataLayout(); 515 CGP.SubtargetInfo = TM->getSubtargetImpl(F); 516 CGP.TLI = CGP.SubtargetInfo->getTargetLowering(); 517 CGP.TRI = CGP.SubtargetInfo->getRegisterInfo(); 518 CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 519 CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 520 CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 521 CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI)); 522 CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI)); 523 CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 524 auto BBSPRWP = 525 getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 526 CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr; 527 528 return CGP._run(F); 529 } 530 531 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE, 532 "Optimize for code generation", false, false) 533 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass) 534 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 535 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 536 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 537 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 538 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 539 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE, 540 "Optimize for code generation", false, false) 541 542 FunctionPass *llvm::createCodeGenPrepareLegacyPass() { 543 return new CodeGenPrepareLegacyPass(); 544 } 545 546 PreservedAnalyses CodeGenPreparePass::run(Function &F, 547 FunctionAnalysisManager &AM) { 548 CodeGenPrepare CGP(TM); 549 550 bool Changed = CGP.run(F, AM); 551 if (!Changed) 552 return PreservedAnalyses::all(); 553 554 PreservedAnalyses PA; 555 PA.preserve<TargetLibraryAnalysis>(); 556 PA.preserve<TargetIRAnalysis>(); 557 PA.preserve<LoopAnalysis>(); 558 return PA; 559 } 560 561 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) { 562 DL = &F.getDataLayout(); 563 SubtargetInfo = TM->getSubtargetImpl(F); 564 TLI = SubtargetInfo->getTargetLowering(); 565 TRI = SubtargetInfo->getRegisterInfo(); 566 TLInfo = &AM.getResult<TargetLibraryAnalysis>(F); 567 TTI = &AM.getResult<TargetIRAnalysis>(F); 568 LI = &AM.getResult<LoopAnalysis>(F); 569 BPI.reset(new BranchProbabilityInfo(F, *LI)); 570 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 571 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 572 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 573 BBSectionsProfileReader = 574 AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F); 575 return _run(F); 576 } 577 578 bool CodeGenPrepare::_run(Function &F) { 579 bool EverMadeChange = false; 580 581 OptSize = F.hasOptSize(); 582 // Use the basic-block-sections profile to promote hot functions to .text.hot 583 // if requested. 584 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 585 BBSectionsProfileReader->isFunctionHot(F.getName())) { 586 F.setSectionPrefix("hot"); 587 } else if (ProfileGuidedSectionPrefix) { 588 // The hot attribute overwrites profile count based hotness while profile 589 // counts based hotness overwrite the cold attribute. 590 // This is a conservative behabvior. 591 if (F.hasFnAttribute(Attribute::Hot) || 592 PSI->isFunctionHotInCallGraph(&F, *BFI)) 593 F.setSectionPrefix("hot"); 594 // If PSI shows this function is not hot, we will placed the function 595 // into unlikely section if (1) PSI shows this is a cold function, or 596 // (2) the function has a attribute of cold. 597 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 598 F.hasFnAttribute(Attribute::Cold)) 599 F.setSectionPrefix("unlikely"); 600 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 601 PSI->isFunctionHotnessUnknown(F)) 602 F.setSectionPrefix("unknown"); 603 } 604 605 /// This optimization identifies DIV instructions that can be 606 /// profitably bypassed and carried out with a shorter, faster divide. 607 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 608 const DenseMap<unsigned int, unsigned int> &BypassWidths = 609 TLI->getBypassSlowDivWidths(); 610 BasicBlock *BB = &*F.begin(); 611 while (BB != nullptr) { 612 // bypassSlowDivision may create new BBs, but we don't want to reapply the 613 // optimization to those blocks. 614 BasicBlock *Next = BB->getNextNode(); 615 // F.hasOptSize is already checked in the outer if statement. 616 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 617 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 618 BB = Next; 619 } 620 } 621 622 // Get rid of @llvm.assume builtins before attempting to eliminate empty 623 // blocks, since there might be blocks that only contain @llvm.assume calls 624 // (plus arguments that we can get rid of). 625 EverMadeChange |= eliminateAssumptions(F); 626 627 // Eliminate blocks that contain only PHI nodes and an 628 // unconditional branch. 629 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 630 631 ModifyDT ModifiedDT = ModifyDT::NotModifyDT; 632 if (!DisableBranchOpts) 633 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 634 635 // Split some critical edges where one of the sources is an indirect branch, 636 // to help generate sane code for PHIs involving such edges. 637 EverMadeChange |= 638 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 639 640 // If we are optimzing huge function, we need to consider the build time. 641 // Because the basic algorithm's complex is near O(N!). 642 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; 643 644 // Transformations above may invalidate dominator tree and/or loop info. 645 DT.reset(); 646 LI->releaseMemory(); 647 LI->analyze(getDT(F)); 648 649 bool MadeChange = true; 650 bool FuncIterated = false; 651 while (MadeChange) { 652 MadeChange = false; 653 654 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 655 if (FuncIterated && !FreshBBs.contains(&BB)) 656 continue; 657 658 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; 659 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); 660 661 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) 662 DT.reset(); 663 664 MadeChange |= Changed; 665 if (IsHugeFunc) { 666 // If the BB is updated, it may still has chance to be optimized. 667 // This usually happen at sink optimization. 668 // For example: 669 // 670 // bb0: 671 // %and = and i32 %a, 4 672 // %cmp = icmp eq i32 %and, 0 673 // 674 // If the %cmp sink to other BB, the %and will has chance to sink. 675 if (Changed) 676 FreshBBs.insert(&BB); 677 else if (FuncIterated) 678 FreshBBs.erase(&BB); 679 } else { 680 // For small/normal functions, we restart BB iteration if the dominator 681 // tree of the Function was changed. 682 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) 683 break; 684 } 685 } 686 // We have iterated all the BB in the (only work for huge) function. 687 FuncIterated = IsHugeFunc; 688 689 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 690 MadeChange |= mergeSExts(F); 691 if (!LargeOffsetGEPMap.empty()) 692 MadeChange |= splitLargeGEPOffsets(); 693 MadeChange |= optimizePhiTypes(F); 694 695 if (MadeChange) 696 eliminateFallThrough(F, DT.get()); 697 698 #ifndef NDEBUG 699 if (MadeChange && VerifyLoopInfo) 700 LI->verify(getDT(F)); 701 #endif 702 703 // Really free removed instructions during promotion. 704 for (Instruction *I : RemovedInsts) 705 I->deleteValue(); 706 707 EverMadeChange |= MadeChange; 708 SeenChainsForSExt.clear(); 709 ValToSExtendedUses.clear(); 710 RemovedInsts.clear(); 711 LargeOffsetGEPMap.clear(); 712 LargeOffsetGEPID.clear(); 713 } 714 715 NewGEPBases.clear(); 716 SunkAddrs.clear(); 717 718 if (!DisableBranchOpts) { 719 MadeChange = false; 720 // Use a set vector to get deterministic iteration order. The order the 721 // blocks are removed may affect whether or not PHI nodes in successors 722 // are removed. 723 SmallSetVector<BasicBlock *, 8> WorkList; 724 for (BasicBlock &BB : F) { 725 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 726 MadeChange |= ConstantFoldTerminator(&BB, true); 727 if (!MadeChange) 728 continue; 729 730 for (BasicBlock *Succ : Successors) 731 if (pred_empty(Succ)) 732 WorkList.insert(Succ); 733 } 734 735 // Delete the dead blocks and any of their dead successors. 736 MadeChange |= !WorkList.empty(); 737 while (!WorkList.empty()) { 738 BasicBlock *BB = WorkList.pop_back_val(); 739 SmallVector<BasicBlock *, 2> Successors(successors(BB)); 740 741 DeleteDeadBlock(BB); 742 743 for (BasicBlock *Succ : Successors) 744 if (pred_empty(Succ)) 745 WorkList.insert(Succ); 746 } 747 748 // Merge pairs of basic blocks with unconditional branches, connected by 749 // a single edge. 750 if (EverMadeChange || MadeChange) 751 MadeChange |= eliminateFallThrough(F); 752 753 EverMadeChange |= MadeChange; 754 } 755 756 if (!DisableGCOpts) { 757 SmallVector<GCStatepointInst *, 2> Statepoints; 758 for (BasicBlock &BB : F) 759 for (Instruction &I : BB) 760 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 761 Statepoints.push_back(SP); 762 for (auto &I : Statepoints) 763 EverMadeChange |= simplifyOffsetableRelocate(*I); 764 } 765 766 // Do this last to clean up use-before-def scenarios introduced by other 767 // preparatory transforms. 768 EverMadeChange |= placeDbgValues(F); 769 EverMadeChange |= placePseudoProbes(F); 770 771 #ifndef NDEBUG 772 if (VerifyBFIUpdates) 773 verifyBFIUpdates(F); 774 #endif 775 776 return EverMadeChange; 777 } 778 779 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 780 bool MadeChange = false; 781 for (BasicBlock &BB : F) { 782 CurInstIterator = BB.begin(); 783 while (CurInstIterator != BB.end()) { 784 Instruction *I = &*(CurInstIterator++); 785 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 786 MadeChange = true; 787 Value *Operand = Assume->getOperand(0); 788 Assume->eraseFromParent(); 789 790 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 791 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 792 }); 793 } 794 } 795 } 796 return MadeChange; 797 } 798 799 /// An instruction is about to be deleted, so remove all references to it in our 800 /// GEP-tracking data strcutures. 801 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 802 LargeOffsetGEPMap.erase(V); 803 NewGEPBases.erase(V); 804 805 auto GEP = dyn_cast<GetElementPtrInst>(V); 806 if (!GEP) 807 return; 808 809 LargeOffsetGEPID.erase(GEP); 810 811 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 812 if (VecI == LargeOffsetGEPMap.end()) 813 return; 814 815 auto &GEPVector = VecI->second; 816 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 817 818 if (GEPVector.empty()) 819 LargeOffsetGEPMap.erase(VecI); 820 } 821 822 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 823 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 824 DominatorTree NewDT(F); 825 LoopInfo NewLI(NewDT); 826 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 827 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 828 NewBFI.verifyMatch(*BFI); 829 } 830 831 /// Merge basic blocks which are connected by a single edge, where one of the 832 /// basic blocks has a single successor pointing to the other basic block, 833 /// which has a single predecessor. 834 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { 835 bool Changed = false; 836 // Scan all of the blocks in the function, except for the entry block. 837 // Use a temporary array to avoid iterator being invalidated when 838 // deleting blocks. 839 SmallVector<WeakTrackingVH, 16> Blocks; 840 for (auto &Block : llvm::drop_begin(F)) 841 Blocks.push_back(&Block); 842 843 SmallSet<WeakTrackingVH, 16> Preds; 844 for (auto &Block : Blocks) { 845 auto *BB = cast_or_null<BasicBlock>(Block); 846 if (!BB) 847 continue; 848 // If the destination block has a single pred, then this is a trivial 849 // edge, just collapse it. 850 BasicBlock *SinglePred = BB->getSinglePredecessor(); 851 852 // Don't merge if BB's address is taken. 853 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) 854 continue; 855 856 // Make an effort to skip unreachable blocks. 857 if (DT && !DT->isReachableFromEntry(BB)) 858 continue; 859 860 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 861 if (Term && !Term->isConditional()) { 862 Changed = true; 863 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 864 865 // Merge BB into SinglePred and delete it. 866 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, 867 /* MemDep */ nullptr, 868 /* PredecessorWithTwoSuccessors */ false, DT); 869 Preds.insert(SinglePred); 870 871 if (IsHugeFunc) { 872 // Update FreshBBs to optimize the merged BB. 873 FreshBBs.insert(SinglePred); 874 FreshBBs.erase(BB); 875 } 876 } 877 } 878 879 // (Repeatedly) merging blocks into their predecessors can create redundant 880 // debug intrinsics. 881 for (const auto &Pred : Preds) 882 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 883 RemoveRedundantDbgInstrs(BB); 884 885 return Changed; 886 } 887 888 /// Find a destination block from BB if BB is mergeable empty block. 889 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 890 // If this block doesn't end with an uncond branch, ignore it. 891 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 892 if (!BI || !BI->isUnconditional()) 893 return nullptr; 894 895 // If the instruction before the branch (skipping debug info) isn't a phi 896 // node, then other stuff is happening here. 897 BasicBlock::iterator BBI = BI->getIterator(); 898 if (BBI != BB->begin()) { 899 --BBI; 900 while (isa<DbgInfoIntrinsic>(BBI)) { 901 if (BBI == BB->begin()) 902 break; 903 --BBI; 904 } 905 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 906 return nullptr; 907 } 908 909 // Do not break infinite loops. 910 BasicBlock *DestBB = BI->getSuccessor(0); 911 if (DestBB == BB) 912 return nullptr; 913 914 if (!canMergeBlocks(BB, DestBB)) 915 DestBB = nullptr; 916 917 return DestBB; 918 } 919 920 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 921 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 922 /// edges in ways that are non-optimal for isel. Start by eliminating these 923 /// blocks so we can split them the way we want them. 924 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 925 SmallPtrSet<BasicBlock *, 16> Preheaders; 926 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 927 while (!LoopList.empty()) { 928 Loop *L = LoopList.pop_back_val(); 929 llvm::append_range(LoopList, *L); 930 if (BasicBlock *Preheader = L->getLoopPreheader()) 931 Preheaders.insert(Preheader); 932 } 933 934 bool MadeChange = false; 935 // Copy blocks into a temporary array to avoid iterator invalidation issues 936 // as we remove them. 937 // Note that this intentionally skips the entry block. 938 SmallVector<WeakTrackingVH, 16> Blocks; 939 for (auto &Block : llvm::drop_begin(F)) { 940 // Delete phi nodes that could block deleting other empty blocks. 941 if (!DisableDeletePHIs) 942 MadeChange |= DeleteDeadPHIs(&Block, TLInfo); 943 Blocks.push_back(&Block); 944 } 945 946 for (auto &Block : Blocks) { 947 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 948 if (!BB) 949 continue; 950 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 951 if (!DestBB || 952 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 953 continue; 954 955 eliminateMostlyEmptyBlock(BB); 956 MadeChange = true; 957 } 958 return MadeChange; 959 } 960 961 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 962 BasicBlock *DestBB, 963 bool isPreheader) { 964 // Do not delete loop preheaders if doing so would create a critical edge. 965 // Loop preheaders can be good locations to spill registers. If the 966 // preheader is deleted and we create a critical edge, registers may be 967 // spilled in the loop body instead. 968 if (!DisablePreheaderProtect && isPreheader && 969 !(BB->getSinglePredecessor() && 970 BB->getSinglePredecessor()->getSingleSuccessor())) 971 return false; 972 973 // Skip merging if the block's successor is also a successor to any callbr 974 // that leads to this block. 975 // FIXME: Is this really needed? Is this a correctness issue? 976 for (BasicBlock *Pred : predecessors(BB)) { 977 if (isa<CallBrInst>(Pred->getTerminator()) && 978 llvm::is_contained(successors(Pred), DestBB)) 979 return false; 980 } 981 982 // Try to skip merging if the unique predecessor of BB is terminated by a 983 // switch or indirect branch instruction, and BB is used as an incoming block 984 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 985 // add COPY instructions in the predecessor of BB instead of BB (if it is not 986 // merged). Note that the critical edge created by merging such blocks wont be 987 // split in MachineSink because the jump table is not analyzable. By keeping 988 // such empty block (BB), ISel will place COPY instructions in BB, not in the 989 // predecessor of BB. 990 BasicBlock *Pred = BB->getUniquePredecessor(); 991 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || 992 isa<IndirectBrInst>(Pred->getTerminator()))) 993 return true; 994 995 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 996 return true; 997 998 // We use a simple cost heuristic which determine skipping merging is 999 // profitable if the cost of skipping merging is less than the cost of 1000 // merging : Cost(skipping merging) < Cost(merging BB), where the 1001 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 1002 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 1003 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 1004 // Freq(Pred) / Freq(BB) > 2. 1005 // Note that if there are multiple empty blocks sharing the same incoming 1006 // value for the PHIs in the DestBB, we consider them together. In such 1007 // case, Cost(merging BB) will be the sum of their frequencies. 1008 1009 if (!isa<PHINode>(DestBB->begin())) 1010 return true; 1011 1012 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 1013 1014 // Find all other incoming blocks from which incoming values of all PHIs in 1015 // DestBB are the same as the ones from BB. 1016 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 1017 if (DestBBPred == BB) 1018 continue; 1019 1020 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 1021 return DestPN.getIncomingValueForBlock(BB) == 1022 DestPN.getIncomingValueForBlock(DestBBPred); 1023 })) 1024 SameIncomingValueBBs.insert(DestBBPred); 1025 } 1026 1027 // See if all BB's incoming values are same as the value from Pred. In this 1028 // case, no reason to skip merging because COPYs are expected to be place in 1029 // Pred already. 1030 if (SameIncomingValueBBs.count(Pred)) 1031 return true; 1032 1033 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 1034 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 1035 1036 for (auto *SameValueBB : SameIncomingValueBBs) 1037 if (SameValueBB->getUniquePredecessor() == Pred && 1038 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 1039 BBFreq += BFI->getBlockFreq(SameValueBB); 1040 1041 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge); 1042 return !Limit || PredFreq <= *Limit; 1043 } 1044 1045 /// Return true if we can merge BB into DestBB if there is a single 1046 /// unconditional branch between them, and BB contains no other non-phi 1047 /// instructions. 1048 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 1049 const BasicBlock *DestBB) const { 1050 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 1051 // the successor. If there are more complex condition (e.g. preheaders), 1052 // don't mess around with them. 1053 for (const PHINode &PN : BB->phis()) { 1054 for (const User *U : PN.users()) { 1055 const Instruction *UI = cast<Instruction>(U); 1056 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 1057 return false; 1058 // If User is inside DestBB block and it is a PHINode then check 1059 // incoming value. If incoming value is not from BB then this is 1060 // a complex condition (e.g. preheaders) we want to avoid here. 1061 if (UI->getParent() == DestBB) { 1062 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 1063 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 1064 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 1065 if (Insn && Insn->getParent() == BB && 1066 Insn->getParent() != UPN->getIncomingBlock(I)) 1067 return false; 1068 } 1069 } 1070 } 1071 } 1072 1073 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 1074 // and DestBB may have conflicting incoming values for the block. If so, we 1075 // can't merge the block. 1076 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 1077 if (!DestBBPN) 1078 return true; // no conflict. 1079 1080 // Collect the preds of BB. 1081 SmallPtrSet<const BasicBlock *, 16> BBPreds; 1082 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1083 // It is faster to get preds from a PHI than with pred_iterator. 1084 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1085 BBPreds.insert(BBPN->getIncomingBlock(i)); 1086 } else { 1087 BBPreds.insert(pred_begin(BB), pred_end(BB)); 1088 } 1089 1090 // Walk the preds of DestBB. 1091 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 1092 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 1093 if (BBPreds.count(Pred)) { // Common predecessor? 1094 for (const PHINode &PN : DestBB->phis()) { 1095 const Value *V1 = PN.getIncomingValueForBlock(Pred); 1096 const Value *V2 = PN.getIncomingValueForBlock(BB); 1097 1098 // If V2 is a phi node in BB, look up what the mapped value will be. 1099 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 1100 if (V2PN->getParent() == BB) 1101 V2 = V2PN->getIncomingValueForBlock(Pred); 1102 1103 // If there is a conflict, bail out. 1104 if (V1 != V2) 1105 return false; 1106 } 1107 } 1108 } 1109 1110 return true; 1111 } 1112 1113 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. 1114 static void replaceAllUsesWith(Value *Old, Value *New, 1115 SmallSet<BasicBlock *, 32> &FreshBBs, 1116 bool IsHuge) { 1117 auto *OldI = dyn_cast<Instruction>(Old); 1118 if (OldI) { 1119 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); 1120 UI != E; ++UI) { 1121 Instruction *User = cast<Instruction>(*UI); 1122 if (IsHuge) 1123 FreshBBs.insert(User->getParent()); 1124 } 1125 } 1126 Old->replaceAllUsesWith(New); 1127 } 1128 1129 /// Eliminate a basic block that has only phi's and an unconditional branch in 1130 /// it. 1131 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 1132 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1133 BasicBlock *DestBB = BI->getSuccessor(0); 1134 1135 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 1136 << *BB << *DestBB); 1137 1138 // If the destination block has a single pred, then this is a trivial edge, 1139 // just collapse it. 1140 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 1141 if (SinglePred != DestBB) { 1142 assert(SinglePred == BB && 1143 "Single predecessor not the same as predecessor"); 1144 // Merge DestBB into SinglePred/BB and delete it. 1145 MergeBlockIntoPredecessor(DestBB); 1146 // Note: BB(=SinglePred) will not be deleted on this path. 1147 // DestBB(=its single successor) is the one that was deleted. 1148 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 1149 1150 if (IsHugeFunc) { 1151 // Update FreshBBs to optimize the merged BB. 1152 FreshBBs.insert(SinglePred); 1153 FreshBBs.erase(DestBB); 1154 } 1155 return; 1156 } 1157 } 1158 1159 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 1160 // to handle the new incoming edges it is about to have. 1161 for (PHINode &PN : DestBB->phis()) { 1162 // Remove the incoming value for BB, and remember it. 1163 Value *InVal = PN.removeIncomingValue(BB, false); 1164 1165 // Two options: either the InVal is a phi node defined in BB or it is some 1166 // value that dominates BB. 1167 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 1168 if (InValPhi && InValPhi->getParent() == BB) { 1169 // Add all of the input values of the input PHI as inputs of this phi. 1170 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 1171 PN.addIncoming(InValPhi->getIncomingValue(i), 1172 InValPhi->getIncomingBlock(i)); 1173 } else { 1174 // Otherwise, add one instance of the dominating value for each edge that 1175 // we will be adding. 1176 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1177 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1178 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1179 } else { 1180 for (BasicBlock *Pred : predecessors(BB)) 1181 PN.addIncoming(InVal, Pred); 1182 } 1183 } 1184 } 1185 1186 // Preserve loop Metadata. 1187 if (BI->hasMetadata(LLVMContext::MD_loop)) { 1188 for (auto *Pred : predecessors(BB)) 1189 Pred->getTerminator()->copyMetadata(*BI, LLVMContext::MD_loop); 1190 } 1191 1192 // The PHIs are now updated, change everything that refers to BB to use 1193 // DestBB and remove BB. 1194 BB->replaceAllUsesWith(DestBB); 1195 BB->eraseFromParent(); 1196 ++NumBlocksElim; 1197 1198 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1199 } 1200 1201 // Computes a map of base pointer relocation instructions to corresponding 1202 // derived pointer relocation instructions given a vector of all relocate calls 1203 static void computeBaseDerivedRelocateMap( 1204 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1205 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> 1206 &RelocateInstMap) { 1207 // Collect information in two maps: one primarily for locating the base object 1208 // while filling the second map; the second map is the final structure holding 1209 // a mapping between Base and corresponding Derived relocate calls 1210 MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1211 for (auto *ThisRelocate : AllRelocateCalls) { 1212 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1213 ThisRelocate->getDerivedPtrIndex()); 1214 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1215 } 1216 for (auto &Item : RelocateIdxMap) { 1217 std::pair<unsigned, unsigned> Key = Item.first; 1218 if (Key.first == Key.second) 1219 // Base relocation: nothing to insert 1220 continue; 1221 1222 GCRelocateInst *I = Item.second; 1223 auto BaseKey = std::make_pair(Key.first, Key.first); 1224 1225 // We're iterating over RelocateIdxMap so we cannot modify it. 1226 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1227 if (MaybeBase == RelocateIdxMap.end()) 1228 // TODO: We might want to insert a new base object relocate and gep off 1229 // that, if there are enough derived object relocates. 1230 continue; 1231 1232 RelocateInstMap[MaybeBase->second].push_back(I); 1233 } 1234 } 1235 1236 // Accepts a GEP and extracts the operands into a vector provided they're all 1237 // small integer constants 1238 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1239 SmallVectorImpl<Value *> &OffsetV) { 1240 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1241 // Only accept small constant integer operands 1242 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1243 if (!Op || Op->getZExtValue() > 20) 1244 return false; 1245 } 1246 1247 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1248 OffsetV.push_back(GEP->getOperand(i)); 1249 return true; 1250 } 1251 1252 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1253 // replace, computes a replacement, and affects it. 1254 static bool 1255 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1256 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1257 bool MadeChange = false; 1258 // We must ensure the relocation of derived pointer is defined after 1259 // relocation of base pointer. If we find a relocation corresponding to base 1260 // defined earlier than relocation of base then we move relocation of base 1261 // right before found relocation. We consider only relocation in the same 1262 // basic block as relocation of base. Relocations from other basic block will 1263 // be skipped by optimization and we do not care about them. 1264 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1265 &*R != RelocatedBase; ++R) 1266 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1267 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1268 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1269 RelocatedBase->moveBefore(RI); 1270 MadeChange = true; 1271 break; 1272 } 1273 1274 for (GCRelocateInst *ToReplace : Targets) { 1275 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1276 "Not relocating a derived object of the original base object"); 1277 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1278 // A duplicate relocate call. TODO: coalesce duplicates. 1279 continue; 1280 } 1281 1282 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1283 // Base and derived relocates are in different basic blocks. 1284 // In this case transform is only valid when base dominates derived 1285 // relocate. However it would be too expensive to check dominance 1286 // for each such relocate, so we skip the whole transformation. 1287 continue; 1288 } 1289 1290 Value *Base = ToReplace->getBasePtr(); 1291 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1292 if (!Derived || Derived->getPointerOperand() != Base) 1293 continue; 1294 1295 SmallVector<Value *, 2> OffsetV; 1296 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1297 continue; 1298 1299 // Create a Builder and replace the target callsite with a gep 1300 assert(RelocatedBase->getNextNode() && 1301 "Should always have one since it's not a terminator"); 1302 1303 // Insert after RelocatedBase 1304 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1305 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1306 1307 // If gc_relocate does not match the actual type, cast it to the right type. 1308 // In theory, there must be a bitcast after gc_relocate if the type does not 1309 // match, and we should reuse it to get the derived pointer. But it could be 1310 // cases like this: 1311 // bb1: 1312 // ... 1313 // %g1 = call coldcc i8 addrspace(1)* 1314 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1315 // 1316 // bb2: 1317 // ... 1318 // %g2 = call coldcc i8 addrspace(1)* 1319 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1320 // 1321 // merge: 1322 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1323 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1324 // 1325 // In this case, we can not find the bitcast any more. So we insert a new 1326 // bitcast no matter there is already one or not. In this way, we can handle 1327 // all cases, and the extra bitcast should be optimized away in later 1328 // passes. 1329 Value *ActualRelocatedBase = RelocatedBase; 1330 if (RelocatedBase->getType() != Base->getType()) { 1331 ActualRelocatedBase = 1332 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1333 } 1334 Value *Replacement = 1335 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, 1336 ArrayRef(OffsetV)); 1337 Replacement->takeName(ToReplace); 1338 // If the newly generated derived pointer's type does not match the original 1339 // derived pointer's type, cast the new derived pointer to match it. Same 1340 // reasoning as above. 1341 Value *ActualReplacement = Replacement; 1342 if (Replacement->getType() != ToReplace->getType()) { 1343 ActualReplacement = 1344 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1345 } 1346 ToReplace->replaceAllUsesWith(ActualReplacement); 1347 ToReplace->eraseFromParent(); 1348 1349 MadeChange = true; 1350 } 1351 return MadeChange; 1352 } 1353 1354 // Turns this: 1355 // 1356 // %base = ... 1357 // %ptr = gep %base + 15 1358 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1359 // %base' = relocate(%tok, i32 4, i32 4) 1360 // %ptr' = relocate(%tok, i32 4, i32 5) 1361 // %val = load %ptr' 1362 // 1363 // into this: 1364 // 1365 // %base = ... 1366 // %ptr = gep %base + 15 1367 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1368 // %base' = gc.relocate(%tok, i32 4, i32 4) 1369 // %ptr' = gep %base' + 15 1370 // %val = load %ptr' 1371 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1372 bool MadeChange = false; 1373 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1374 for (auto *U : I.users()) 1375 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1376 // Collect all the relocate calls associated with a statepoint 1377 AllRelocateCalls.push_back(Relocate); 1378 1379 // We need at least one base pointer relocation + one derived pointer 1380 // relocation to mangle 1381 if (AllRelocateCalls.size() < 2) 1382 return false; 1383 1384 // RelocateInstMap is a mapping from the base relocate instruction to the 1385 // corresponding derived relocate instructions 1386 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap; 1387 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1388 if (RelocateInstMap.empty()) 1389 return false; 1390 1391 for (auto &Item : RelocateInstMap) 1392 // Item.first is the RelocatedBase to offset against 1393 // Item.second is the vector of Targets to replace 1394 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1395 return MadeChange; 1396 } 1397 1398 /// Sink the specified cast instruction into its user blocks. 1399 static bool SinkCast(CastInst *CI) { 1400 BasicBlock *DefBB = CI->getParent(); 1401 1402 /// InsertedCasts - Only insert a cast in each block once. 1403 DenseMap<BasicBlock *, CastInst *> InsertedCasts; 1404 1405 bool MadeChange = false; 1406 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1407 UI != E;) { 1408 Use &TheUse = UI.getUse(); 1409 Instruction *User = cast<Instruction>(*UI); 1410 1411 // Figure out which BB this cast is used in. For PHI's this is the 1412 // appropriate predecessor block. 1413 BasicBlock *UserBB = User->getParent(); 1414 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1415 UserBB = PN->getIncomingBlock(TheUse); 1416 } 1417 1418 // Preincrement use iterator so we don't invalidate it. 1419 ++UI; 1420 1421 // The first insertion point of a block containing an EH pad is after the 1422 // pad. If the pad is the user, we cannot sink the cast past the pad. 1423 if (User->isEHPad()) 1424 continue; 1425 1426 // If the block selected to receive the cast is an EH pad that does not 1427 // allow non-PHI instructions before the terminator, we can't sink the 1428 // cast. 1429 if (UserBB->getTerminator()->isEHPad()) 1430 continue; 1431 1432 // If this user is in the same block as the cast, don't change the cast. 1433 if (UserBB == DefBB) 1434 continue; 1435 1436 // If we have already inserted a cast into this block, use it. 1437 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1438 1439 if (!InsertedCast) { 1440 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1441 assert(InsertPt != UserBB->end()); 1442 InsertedCast = cast<CastInst>(CI->clone()); 1443 InsertedCast->insertBefore(*UserBB, InsertPt); 1444 } 1445 1446 // Replace a use of the cast with a use of the new cast. 1447 TheUse = InsertedCast; 1448 MadeChange = true; 1449 ++NumCastUses; 1450 } 1451 1452 // If we removed all uses, nuke the cast. 1453 if (CI->use_empty()) { 1454 salvageDebugInfo(*CI); 1455 CI->eraseFromParent(); 1456 MadeChange = true; 1457 } 1458 1459 return MadeChange; 1460 } 1461 1462 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1463 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1464 /// reduce the number of virtual registers that must be created and coalesced. 1465 /// 1466 /// Return true if any changes are made. 1467 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1468 const DataLayout &DL) { 1469 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1470 // than sinking only nop casts, but is helpful on some platforms. 1471 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1472 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1473 ASC->getDestAddressSpace())) 1474 return false; 1475 } 1476 1477 // If this is a noop copy, 1478 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1479 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1480 1481 // This is an fp<->int conversion? 1482 if (SrcVT.isInteger() != DstVT.isInteger()) 1483 return false; 1484 1485 // If this is an extension, it will be a zero or sign extension, which 1486 // isn't a noop. 1487 if (SrcVT.bitsLT(DstVT)) 1488 return false; 1489 1490 // If these values will be promoted, find out what they will be promoted 1491 // to. This helps us consider truncates on PPC as noop copies when they 1492 // are. 1493 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1494 TargetLowering::TypePromoteInteger) 1495 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1496 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1497 TargetLowering::TypePromoteInteger) 1498 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1499 1500 // If, after promotion, these are the same types, this is a noop copy. 1501 if (SrcVT != DstVT) 1502 return false; 1503 1504 return SinkCast(CI); 1505 } 1506 1507 // Match a simple increment by constant operation. Note that if a sub is 1508 // matched, the step is negated (as if the step had been canonicalized to 1509 // an add, even though we leave the instruction alone.) 1510 static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, 1511 Constant *&Step) { 1512 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1513 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1514 m_Instruction(LHS), m_Constant(Step))))) 1515 return true; 1516 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1517 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1518 m_Instruction(LHS), m_Constant(Step))))) { 1519 Step = ConstantExpr::getNeg(Step); 1520 return true; 1521 } 1522 return false; 1523 } 1524 1525 /// If given \p PN is an inductive variable with value IVInc coming from the 1526 /// backedge, and on each iteration it gets increased by Step, return pair 1527 /// <IVInc, Step>. Otherwise, return std::nullopt. 1528 static std::optional<std::pair<Instruction *, Constant *>> 1529 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1530 const Loop *L = LI->getLoopFor(PN->getParent()); 1531 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1532 return std::nullopt; 1533 auto *IVInc = 1534 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1535 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1536 return std::nullopt; 1537 Instruction *LHS = nullptr; 1538 Constant *Step = nullptr; 1539 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1540 return std::make_pair(IVInc, Step); 1541 return std::nullopt; 1542 } 1543 1544 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1545 auto *I = dyn_cast<Instruction>(V); 1546 if (!I) 1547 return false; 1548 Instruction *LHS = nullptr; 1549 Constant *Step = nullptr; 1550 if (!matchIncrement(I, LHS, Step)) 1551 return false; 1552 if (auto *PN = dyn_cast<PHINode>(LHS)) 1553 if (auto IVInc = getIVIncrement(PN, LI)) 1554 return IVInc->first == I; 1555 return false; 1556 } 1557 1558 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1559 Value *Arg0, Value *Arg1, 1560 CmpInst *Cmp, 1561 Intrinsic::ID IID) { 1562 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1563 if (!isIVIncrement(BO, LI)) 1564 return false; 1565 const Loop *L = LI->getLoopFor(BO->getParent()); 1566 assert(L && "L should not be null after isIVIncrement()"); 1567 // Do not risk on moving increment into a child loop. 1568 if (LI->getLoopFor(Cmp->getParent()) != L) 1569 return false; 1570 1571 // Finally, we need to ensure that the insert point will dominate all 1572 // existing uses of the increment. 1573 1574 auto &DT = getDT(*BO->getParent()->getParent()); 1575 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1576 // If we're moving up the dom tree, all uses are trivially dominated. 1577 // (This is the common case for code produced by LSR.) 1578 return true; 1579 1580 // Otherwise, special case the single use in the phi recurrence. 1581 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1582 }; 1583 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1584 // We used to use a dominator tree here to allow multi-block optimization. 1585 // But that was problematic because: 1586 // 1. It could cause a perf regression by hoisting the math op into the 1587 // critical path. 1588 // 2. It could cause a perf regression by creating a value that was live 1589 // across multiple blocks and increasing register pressure. 1590 // 3. Use of a dominator tree could cause large compile-time regression. 1591 // This is because we recompute the DT on every change in the main CGP 1592 // run-loop. The recomputing is probably unnecessary in many cases, so if 1593 // that was fixed, using a DT here would be ok. 1594 // 1595 // There is one important particular case we still want to handle: if BO is 1596 // the IV increment. Important properties that make it profitable: 1597 // - We can speculate IV increment anywhere in the loop (as long as the 1598 // indvar Phi is its only user); 1599 // - Upon computing Cmp, we effectively compute something equivalent to the 1600 // IV increment (despite it loops differently in the IR). So moving it up 1601 // to the cmp point does not really increase register pressure. 1602 return false; 1603 } 1604 1605 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1606 if (BO->getOpcode() == Instruction::Add && 1607 IID == Intrinsic::usub_with_overflow) { 1608 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1609 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1610 } 1611 1612 // Insert at the first instruction of the pair. 1613 Instruction *InsertPt = nullptr; 1614 for (Instruction &Iter : *Cmp->getParent()) { 1615 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1616 // the overflow intrinsic are defined. 1617 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1618 InsertPt = &Iter; 1619 break; 1620 } 1621 } 1622 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1623 1624 IRBuilder<> Builder(InsertPt); 1625 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1626 if (BO->getOpcode() != Instruction::Xor) { 1627 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1628 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); 1629 } else 1630 assert(BO->hasOneUse() && 1631 "Patterns with XOr should use the BO only in the compare"); 1632 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1633 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); 1634 Cmp->eraseFromParent(); 1635 BO->eraseFromParent(); 1636 return true; 1637 } 1638 1639 /// Match special-case patterns that check for unsigned add overflow. 1640 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1641 BinaryOperator *&Add) { 1642 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1643 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1644 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1645 1646 // We are not expecting non-canonical/degenerate code. Just bail out. 1647 if (isa<Constant>(A)) 1648 return false; 1649 1650 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1651 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1652 B = ConstantInt::get(B->getType(), 1); 1653 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1654 B = Constant::getAllOnesValue(B->getType()); 1655 else 1656 return false; 1657 1658 // Check the users of the variable operand of the compare looking for an add 1659 // with the adjusted constant. 1660 for (User *U : A->users()) { 1661 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1662 Add = cast<BinaryOperator>(U); 1663 return true; 1664 } 1665 } 1666 return false; 1667 } 1668 1669 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1670 /// intrinsic. Return true if any changes were made. 1671 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1672 ModifyDT &ModifiedDT) { 1673 bool EdgeCase = false; 1674 Value *A, *B; 1675 BinaryOperator *Add; 1676 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1677 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1678 return false; 1679 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1680 A = Add->getOperand(0); 1681 B = Add->getOperand(1); 1682 EdgeCase = true; 1683 } 1684 1685 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1686 TLI->getValueType(*DL, Add->getType()), 1687 Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) 1688 return false; 1689 1690 // We don't want to move around uses of condition values this late, so we 1691 // check if it is legal to create the call to the intrinsic in the basic 1692 // block containing the icmp. 1693 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1694 return false; 1695 1696 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1697 Intrinsic::uadd_with_overflow)) 1698 return false; 1699 1700 // Reset callers - do not crash by iterating over a dead instruction. 1701 ModifiedDT = ModifyDT::ModifyInstDT; 1702 return true; 1703 } 1704 1705 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1706 ModifyDT &ModifiedDT) { 1707 // We are not expecting non-canonical/degenerate code. Just bail out. 1708 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1709 if (isa<Constant>(A) && isa<Constant>(B)) 1710 return false; 1711 1712 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1713 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1714 if (Pred == ICmpInst::ICMP_UGT) { 1715 std::swap(A, B); 1716 Pred = ICmpInst::ICMP_ULT; 1717 } 1718 // Convert special-case: (A == 0) is the same as (A u< 1). 1719 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1720 B = ConstantInt::get(B->getType(), 1); 1721 Pred = ICmpInst::ICMP_ULT; 1722 } 1723 // Convert special-case: (A != 0) is the same as (0 u< A). 1724 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1725 std::swap(A, B); 1726 Pred = ICmpInst::ICMP_ULT; 1727 } 1728 if (Pred != ICmpInst::ICMP_ULT) 1729 return false; 1730 1731 // Walk the users of a variable operand of a compare looking for a subtract or 1732 // add with that same operand. Also match the 2nd operand of the compare to 1733 // the add/sub, but that may be a negated constant operand of an add. 1734 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1735 BinaryOperator *Sub = nullptr; 1736 for (User *U : CmpVariableOperand->users()) { 1737 // A - B, A u< B --> usubo(A, B) 1738 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1739 Sub = cast<BinaryOperator>(U); 1740 break; 1741 } 1742 1743 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1744 const APInt *CmpC, *AddC; 1745 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1746 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1747 Sub = cast<BinaryOperator>(U); 1748 break; 1749 } 1750 } 1751 if (!Sub) 1752 return false; 1753 1754 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1755 TLI->getValueType(*DL, Sub->getType()), 1756 Sub->hasNUsesOrMore(1))) 1757 return false; 1758 1759 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1760 Cmp, Intrinsic::usub_with_overflow)) 1761 return false; 1762 1763 // Reset callers - do not crash by iterating over a dead instruction. 1764 ModifiedDT = ModifyDT::ModifyInstDT; 1765 return true; 1766 } 1767 1768 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1769 /// registers that must be created and coalesced. This is a clear win except on 1770 /// targets with multiple condition code registers (PowerPC), where it might 1771 /// lose; some adjustment may be wanted there. 1772 /// 1773 /// Return true if any changes are made. 1774 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1775 if (TLI.hasMultipleConditionRegisters()) 1776 return false; 1777 1778 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1779 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1780 return false; 1781 1782 // Only insert a cmp in each block once. 1783 DenseMap<BasicBlock *, CmpInst *> InsertedCmps; 1784 1785 bool MadeChange = false; 1786 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1787 UI != E;) { 1788 Use &TheUse = UI.getUse(); 1789 Instruction *User = cast<Instruction>(*UI); 1790 1791 // Preincrement use iterator so we don't invalidate it. 1792 ++UI; 1793 1794 // Don't bother for PHI nodes. 1795 if (isa<PHINode>(User)) 1796 continue; 1797 1798 // Figure out which BB this cmp is used in. 1799 BasicBlock *UserBB = User->getParent(); 1800 BasicBlock *DefBB = Cmp->getParent(); 1801 1802 // If this user is in the same block as the cmp, don't change the cmp. 1803 if (UserBB == DefBB) 1804 continue; 1805 1806 // If we have already inserted a cmp into this block, use it. 1807 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1808 1809 if (!InsertedCmp) { 1810 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1811 assert(InsertPt != UserBB->end()); 1812 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1813 Cmp->getOperand(0), Cmp->getOperand(1), ""); 1814 InsertedCmp->insertBefore(*UserBB, InsertPt); 1815 // Propagate the debug info. 1816 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1817 } 1818 1819 // Replace a use of the cmp with a use of the new cmp. 1820 TheUse = InsertedCmp; 1821 MadeChange = true; 1822 ++NumCmpUses; 1823 } 1824 1825 // If we removed all uses, nuke the cmp. 1826 if (Cmp->use_empty()) { 1827 Cmp->eraseFromParent(); 1828 MadeChange = true; 1829 } 1830 1831 return MadeChange; 1832 } 1833 1834 /// For pattern like: 1835 /// 1836 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1837 /// ... 1838 /// DomBB: 1839 /// ... 1840 /// br DomCond, TrueBB, CmpBB 1841 /// CmpBB: (with DomBB being the single predecessor) 1842 /// ... 1843 /// Cmp = icmp eq CmpOp0, CmpOp1 1844 /// ... 1845 /// 1846 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1847 /// different from lowering of icmp eq (PowerPC). This function try to convert 1848 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1849 /// After that, DomCond and Cmp can use the same comparison so reduce one 1850 /// comparison. 1851 /// 1852 /// Return true if any changes are made. 1853 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1854 const TargetLowering &TLI) { 1855 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1856 return false; 1857 1858 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1859 if (Pred != ICmpInst::ICMP_EQ) 1860 return false; 1861 1862 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1863 // icmp slt/sgt would introduce more redundant LLVM IR. 1864 for (User *U : Cmp->users()) { 1865 if (isa<BranchInst>(U)) 1866 continue; 1867 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1868 continue; 1869 return false; 1870 } 1871 1872 // This is a cheap/incomplete check for dominance - just match a single 1873 // predecessor with a conditional branch. 1874 BasicBlock *CmpBB = Cmp->getParent(); 1875 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1876 if (!DomBB) 1877 return false; 1878 1879 // We want to ensure that the only way control gets to the comparison of 1880 // interest is that a less/greater than comparison on the same operands is 1881 // false. 1882 Value *DomCond; 1883 BasicBlock *TrueBB, *FalseBB; 1884 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1885 return false; 1886 if (CmpBB != FalseBB) 1887 return false; 1888 1889 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1890 ICmpInst::Predicate DomPred; 1891 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1892 return false; 1893 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1894 return false; 1895 1896 // Convert the equality comparison to the opposite of the dominating 1897 // comparison and swap the direction for all branch/select users. 1898 // We have conceptually converted: 1899 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1900 // to 1901 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1902 // And similarly for branches. 1903 for (User *U : Cmp->users()) { 1904 if (auto *BI = dyn_cast<BranchInst>(U)) { 1905 assert(BI->isConditional() && "Must be conditional"); 1906 BI->swapSuccessors(); 1907 continue; 1908 } 1909 if (auto *SI = dyn_cast<SelectInst>(U)) { 1910 // Swap operands 1911 SI->swapValues(); 1912 SI->swapProfMetadata(); 1913 continue; 1914 } 1915 llvm_unreachable("Must be a branch or a select"); 1916 } 1917 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1918 return true; 1919 } 1920 1921 /// Many architectures use the same instruction for both subtract and cmp. Try 1922 /// to swap cmp operands to match subtract operations to allow for CSE. 1923 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { 1924 Value *Op0 = Cmp->getOperand(0); 1925 Value *Op1 = Cmp->getOperand(1); 1926 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) || 1927 isa<Constant>(Op1) || Op0 == Op1) 1928 return false; 1929 1930 // If a subtract already has the same operands as a compare, swapping would be 1931 // bad. If a subtract has the same operands as a compare but in reverse order, 1932 // then swapping is good. 1933 int GoodToSwap = 0; 1934 unsigned NumInspected = 0; 1935 for (const User *U : Op0->users()) { 1936 // Avoid walking many users. 1937 if (++NumInspected > 128) 1938 return false; 1939 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 1940 GoodToSwap++; 1941 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 1942 GoodToSwap--; 1943 } 1944 1945 if (GoodToSwap > 0) { 1946 Cmp->swapOperands(); 1947 return true; 1948 } 1949 return false; 1950 } 1951 1952 static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI, 1953 const DataLayout &DL) { 1954 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp); 1955 if (!FCmp) 1956 return false; 1957 1958 // Don't fold if the target offers free fabs and the predicate is legal. 1959 EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType()); 1960 if (TLI.isFAbsFree(VT) && 1961 TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()), 1962 VT.getSimpleVT())) 1963 return false; 1964 1965 // Reverse the canonicalization if it is a FP class test 1966 auto ShouldReverseTransform = [](FPClassTest ClassTest) { 1967 return ClassTest == fcInf || ClassTest == (fcInf | fcNan); 1968 }; 1969 auto [ClassVal, ClassTest] = 1970 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), 1971 FCmp->getOperand(0), FCmp->getOperand(1)); 1972 if (!ClassVal) 1973 return false; 1974 1975 if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest)) 1976 return false; 1977 1978 IRBuilder<> Builder(Cmp); 1979 Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest); 1980 Cmp->replaceAllUsesWith(IsFPClass); 1981 RecursivelyDeleteTriviallyDeadInstructions(Cmp); 1982 return true; 1983 } 1984 1985 static bool isRemOfLoopIncrementWithLoopInvariant(Instruction *Rem, 1986 const LoopInfo *LI, 1987 Value *&RemAmtOut, 1988 PHINode *&LoopIncrPNOut) { 1989 Value *Incr, *RemAmt; 1990 // NB: If RemAmt is a power of 2 it *should* have been transformed by now. 1991 if (!match(Rem, m_URem(m_Value(Incr), m_Value(RemAmt)))) 1992 return false; 1993 1994 // Find out loop increment PHI. 1995 auto *PN = dyn_cast<PHINode>(Incr); 1996 if (!PN) 1997 return false; 1998 1999 // This isn't strictly necessary, what we really need is one increment and any 2000 // amount of initial values all being the same. 2001 if (PN->getNumIncomingValues() != 2) 2002 return false; 2003 2004 // Only trivially analyzable loops. 2005 Loop *L = LI->getLoopFor(PN->getParent()); 2006 if (!L || !L->getLoopPreheader() || !L->getLoopLatch()) 2007 return false; 2008 2009 // Req that the remainder is in the loop 2010 if (!L->contains(Rem)) 2011 return false; 2012 2013 // Only works if the remainder amount is a loop invaraint 2014 if (!L->isLoopInvariant(RemAmt)) 2015 return false; 2016 2017 // Is the PHI a loop increment? 2018 auto LoopIncrInfo = getIVIncrement(PN, LI); 2019 if (!LoopIncrInfo) 2020 return false; 2021 2022 // We need remainder_amount % increment_amount to be zero. Increment of one 2023 // satisfies that without any special logic and is overwhelmingly the common 2024 // case. 2025 if (!match(LoopIncrInfo->second, m_One())) 2026 return false; 2027 2028 // Need the increment to not overflow. 2029 if (!match(LoopIncrInfo->first, m_c_NUWAdd(m_Specific(PN), m_Value()))) 2030 return false; 2031 2032 // Set output variables. 2033 RemAmtOut = RemAmt; 2034 LoopIncrPNOut = PN; 2035 2036 return true; 2037 } 2038 2039 // Try to transform: 2040 // 2041 // for(i = Start; i < End; ++i) 2042 // Rem = (i nuw+ IncrLoopInvariant) u% RemAmtLoopInvariant; 2043 // 2044 // -> 2045 // 2046 // Rem = (Start nuw+ IncrLoopInvariant) % RemAmtLoopInvariant; 2047 // for(i = Start; i < End; ++i, ++rem) 2048 // Rem = rem == RemAmtLoopInvariant ? 0 : Rem; 2049 // 2050 // Currently only implemented for `IncrLoopInvariant` being zero. 2051 static bool foldURemOfLoopIncrement(Instruction *Rem, const DataLayout *DL, 2052 const LoopInfo *LI, 2053 SmallSet<BasicBlock *, 32> &FreshBBs, 2054 bool IsHuge) { 2055 Value *RemAmt; 2056 PHINode *LoopIncrPN; 2057 if (!isRemOfLoopIncrementWithLoopInvariant(Rem, LI, RemAmt, LoopIncrPN)) 2058 return false; 2059 2060 // Only non-constant remainder as the extra IV is probably not profitable 2061 // in that case. 2062 // 2063 // Potential TODO(1): `urem` of a const ends up as `mul` + `shift` + `add`. If 2064 // we can rule out register pressure and ensure this `urem` is executed each 2065 // iteration, its probably profitable to handle the const case as well. 2066 // 2067 // Potential TODO(2): Should we have a check for how "nested" this remainder 2068 // operation is? The new code runs every iteration so if the remainder is 2069 // guarded behind unlikely conditions this might not be worth it. 2070 if (match(RemAmt, m_ImmConstant())) 2071 return false; 2072 2073 Loop *L = LI->getLoopFor(LoopIncrPN->getParent()); 2074 Value *Start = LoopIncrPN->getIncomingValueForBlock(L->getLoopPreheader()); 2075 // If we can't fully optimize out the `rem`, skip this transform. 2076 Start = simplifyURemInst(Start, RemAmt, *DL); 2077 if (!Start) 2078 return false; 2079 2080 // Create new remainder with induction variable. 2081 Type *Ty = Rem->getType(); 2082 IRBuilder<> Builder(Rem->getContext()); 2083 2084 Builder.SetInsertPoint(LoopIncrPN); 2085 PHINode *NewRem = Builder.CreatePHI(Ty, 2); 2086 2087 Builder.SetInsertPoint(cast<Instruction>( 2088 LoopIncrPN->getIncomingValueForBlock(L->getLoopLatch()))); 2089 // `(add (urem x, y), 1)` is always nuw. 2090 Value *RemAdd = Builder.CreateNUWAdd(NewRem, ConstantInt::get(Ty, 1)); 2091 Value *RemCmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, RemAdd, RemAmt); 2092 Value *RemSel = 2093 Builder.CreateSelect(RemCmp, Constant::getNullValue(Ty), RemAdd); 2094 2095 NewRem->addIncoming(Start, L->getLoopPreheader()); 2096 NewRem->addIncoming(RemSel, L->getLoopLatch()); 2097 2098 // Insert all touched BBs. 2099 FreshBBs.insert(LoopIncrPN->getParent()); 2100 FreshBBs.insert(L->getLoopLatch()); 2101 FreshBBs.insert(Rem->getParent()); 2102 2103 replaceAllUsesWith(Rem, NewRem, FreshBBs, IsHuge); 2104 Rem->eraseFromParent(); 2105 return true; 2106 } 2107 2108 bool CodeGenPrepare::optimizeURem(Instruction *Rem) { 2109 if (foldURemOfLoopIncrement(Rem, DL, LI, FreshBBs, IsHugeFunc)) 2110 return true; 2111 return false; 2112 } 2113 2114 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { 2115 if (sinkCmpExpression(Cmp, *TLI)) 2116 return true; 2117 2118 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 2119 return true; 2120 2121 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 2122 return true; 2123 2124 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 2125 return true; 2126 2127 if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) 2128 return true; 2129 2130 if (foldFCmpToFPClassTest(Cmp, *TLI, *DL)) 2131 return true; 2132 2133 return false; 2134 } 2135 2136 /// Duplicate and sink the given 'and' instruction into user blocks where it is 2137 /// used in a compare to allow isel to generate better code for targets where 2138 /// this operation can be combined. 2139 /// 2140 /// Return true if any changes are made. 2141 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, 2142 SetOfInstrs &InsertedInsts) { 2143 // Double-check that we're not trying to optimize an instruction that was 2144 // already optimized by some other part of this pass. 2145 assert(!InsertedInsts.count(AndI) && 2146 "Attempting to optimize already optimized and instruction"); 2147 (void)InsertedInsts; 2148 2149 // Nothing to do for single use in same basic block. 2150 if (AndI->hasOneUse() && 2151 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 2152 return false; 2153 2154 // Try to avoid cases where sinking/duplicating is likely to increase register 2155 // pressure. 2156 if (!isa<ConstantInt>(AndI->getOperand(0)) && 2157 !isa<ConstantInt>(AndI->getOperand(1)) && 2158 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 2159 return false; 2160 2161 for (auto *U : AndI->users()) { 2162 Instruction *User = cast<Instruction>(U); 2163 2164 // Only sink 'and' feeding icmp with 0. 2165 if (!isa<ICmpInst>(User)) 2166 return false; 2167 2168 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 2169 if (!CmpC || !CmpC->isZero()) 2170 return false; 2171 } 2172 2173 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 2174 return false; 2175 2176 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 2177 LLVM_DEBUG(AndI->getParent()->dump()); 2178 2179 // Push the 'and' into the same block as the icmp 0. There should only be 2180 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 2181 // others, so we don't need to keep track of which BBs we insert into. 2182 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 2183 UI != E;) { 2184 Use &TheUse = UI.getUse(); 2185 Instruction *User = cast<Instruction>(*UI); 2186 2187 // Preincrement use iterator so we don't invalidate it. 2188 ++UI; 2189 2190 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 2191 2192 // Keep the 'and' in the same place if the use is already in the same block. 2193 Instruction *InsertPt = 2194 User->getParent() == AndI->getParent() ? AndI : User; 2195 Instruction *InsertedAnd = BinaryOperator::Create( 2196 Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "", 2197 InsertPt->getIterator()); 2198 // Propagate the debug info. 2199 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 2200 2201 // Replace a use of the 'and' with a use of the new 'and'. 2202 TheUse = InsertedAnd; 2203 ++NumAndUses; 2204 LLVM_DEBUG(User->getParent()->dump()); 2205 } 2206 2207 // We removed all uses, nuke the and. 2208 AndI->eraseFromParent(); 2209 return true; 2210 } 2211 2212 /// Check if the candidates could be combined with a shift instruction, which 2213 /// includes: 2214 /// 1. Truncate instruction 2215 /// 2. And instruction and the imm is a mask of the low bits: 2216 /// imm & (imm+1) == 0 2217 static bool isExtractBitsCandidateUse(Instruction *User) { 2218 if (!isa<TruncInst>(User)) { 2219 if (User->getOpcode() != Instruction::And || 2220 !isa<ConstantInt>(User->getOperand(1))) 2221 return false; 2222 2223 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 2224 2225 if ((Cimm & (Cimm + 1)).getBoolValue()) 2226 return false; 2227 } 2228 return true; 2229 } 2230 2231 /// Sink both shift and truncate instruction to the use of truncate's BB. 2232 static bool 2233 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 2234 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 2235 const TargetLowering &TLI, const DataLayout &DL) { 2236 BasicBlock *UserBB = User->getParent(); 2237 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 2238 auto *TruncI = cast<TruncInst>(User); 2239 bool MadeChange = false; 2240 2241 for (Value::user_iterator TruncUI = TruncI->user_begin(), 2242 TruncE = TruncI->user_end(); 2243 TruncUI != TruncE;) { 2244 2245 Use &TruncTheUse = TruncUI.getUse(); 2246 Instruction *TruncUser = cast<Instruction>(*TruncUI); 2247 // Preincrement use iterator so we don't invalidate it. 2248 2249 ++TruncUI; 2250 2251 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 2252 if (!ISDOpcode) 2253 continue; 2254 2255 // If the use is actually a legal node, there will not be an 2256 // implicit truncate. 2257 // FIXME: always querying the result type is just an 2258 // approximation; some nodes' legality is determined by the 2259 // operand or other means. There's no good way to find out though. 2260 if (TLI.isOperationLegalOrCustom( 2261 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 2262 continue; 2263 2264 // Don't bother for PHI nodes. 2265 if (isa<PHINode>(TruncUser)) 2266 continue; 2267 2268 BasicBlock *TruncUserBB = TruncUser->getParent(); 2269 2270 if (UserBB == TruncUserBB) 2271 continue; 2272 2273 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 2274 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 2275 2276 if (!InsertedShift && !InsertedTrunc) { 2277 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 2278 assert(InsertPt != TruncUserBB->end()); 2279 // Sink the shift 2280 if (ShiftI->getOpcode() == Instruction::AShr) 2281 InsertedShift = 2282 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2283 else 2284 InsertedShift = 2285 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2286 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2287 InsertedShift->insertBefore(*TruncUserBB, InsertPt); 2288 2289 // Sink the trunc 2290 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 2291 TruncInsertPt++; 2292 // It will go ahead of any debug-info. 2293 TruncInsertPt.setHeadBit(true); 2294 assert(TruncInsertPt != TruncUserBB->end()); 2295 2296 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 2297 TruncI->getType(), ""); 2298 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt); 2299 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 2300 2301 MadeChange = true; 2302 2303 TruncTheUse = InsertedTrunc; 2304 } 2305 } 2306 return MadeChange; 2307 } 2308 2309 /// Sink the shift *right* instruction into user blocks if the uses could 2310 /// potentially be combined with this shift instruction and generate BitExtract 2311 /// instruction. It will only be applied if the architecture supports BitExtract 2312 /// instruction. Here is an example: 2313 /// BB1: 2314 /// %x.extract.shift = lshr i64 %arg1, 32 2315 /// BB2: 2316 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 2317 /// ==> 2318 /// 2319 /// BB2: 2320 /// %x.extract.shift.1 = lshr i64 %arg1, 32 2321 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 2322 /// 2323 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 2324 /// instruction. 2325 /// Return true if any changes are made. 2326 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 2327 const TargetLowering &TLI, 2328 const DataLayout &DL) { 2329 BasicBlock *DefBB = ShiftI->getParent(); 2330 2331 /// Only insert instructions in each block once. 2332 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 2333 2334 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 2335 2336 bool MadeChange = false; 2337 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 2338 UI != E;) { 2339 Use &TheUse = UI.getUse(); 2340 Instruction *User = cast<Instruction>(*UI); 2341 // Preincrement use iterator so we don't invalidate it. 2342 ++UI; 2343 2344 // Don't bother for PHI nodes. 2345 if (isa<PHINode>(User)) 2346 continue; 2347 2348 if (!isExtractBitsCandidateUse(User)) 2349 continue; 2350 2351 BasicBlock *UserBB = User->getParent(); 2352 2353 if (UserBB == DefBB) { 2354 // If the shift and truncate instruction are in the same BB. The use of 2355 // the truncate(TruncUse) may still introduce another truncate if not 2356 // legal. In this case, we would like to sink both shift and truncate 2357 // instruction to the BB of TruncUse. 2358 // for example: 2359 // BB1: 2360 // i64 shift.result = lshr i64 opnd, imm 2361 // trunc.result = trunc shift.result to i16 2362 // 2363 // BB2: 2364 // ----> We will have an implicit truncate here if the architecture does 2365 // not have i16 compare. 2366 // cmp i16 trunc.result, opnd2 2367 // 2368 if (isa<TruncInst>(User) && 2369 shiftIsLegal 2370 // If the type of the truncate is legal, no truncate will be 2371 // introduced in other basic blocks. 2372 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 2373 MadeChange = 2374 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 2375 2376 continue; 2377 } 2378 // If we have already inserted a shift into this block, use it. 2379 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 2380 2381 if (!InsertedShift) { 2382 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2383 assert(InsertPt != UserBB->end()); 2384 2385 if (ShiftI->getOpcode() == Instruction::AShr) 2386 InsertedShift = 2387 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2388 else 2389 InsertedShift = 2390 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2391 InsertedShift->insertBefore(*UserBB, InsertPt); 2392 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2393 2394 MadeChange = true; 2395 } 2396 2397 // Replace a use of the shift with a use of the new shift. 2398 TheUse = InsertedShift; 2399 } 2400 2401 // If we removed all uses, or there are none, nuke the shift. 2402 if (ShiftI->use_empty()) { 2403 salvageDebugInfo(*ShiftI); 2404 ShiftI->eraseFromParent(); 2405 MadeChange = true; 2406 } 2407 2408 return MadeChange; 2409 } 2410 2411 /// If counting leading or trailing zeros is an expensive operation and a zero 2412 /// input is defined, add a check for zero to avoid calling the intrinsic. 2413 /// 2414 /// We want to transform: 2415 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2416 /// 2417 /// into: 2418 /// entry: 2419 /// %cmpz = icmp eq i64 %A, 0 2420 /// br i1 %cmpz, label %cond.end, label %cond.false 2421 /// cond.false: 2422 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2423 /// br label %cond.end 2424 /// cond.end: 2425 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2426 /// 2427 /// If the transform is performed, return true and set ModifiedDT to true. 2428 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2429 LoopInfo &LI, 2430 const TargetLowering *TLI, 2431 const DataLayout *DL, ModifyDT &ModifiedDT, 2432 SmallSet<BasicBlock *, 32> &FreshBBs, 2433 bool IsHugeFunc) { 2434 // If a zero input is undefined, it doesn't make sense to despeculate that. 2435 if (match(CountZeros->getOperand(1), m_One())) 2436 return false; 2437 2438 // If it's cheap to speculate, there's nothing to do. 2439 Type *Ty = CountZeros->getType(); 2440 auto IntrinsicID = CountZeros->getIntrinsicID(); 2441 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || 2442 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) 2443 return false; 2444 2445 // Only handle legal scalar cases. Anything else requires too much work. 2446 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2447 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2448 return false; 2449 2450 // Bail if the value is never zero. 2451 Use &Op = CountZeros->getOperandUse(0); 2452 if (isKnownNonZero(Op, *DL)) 2453 return false; 2454 2455 // The intrinsic will be sunk behind a compare against zero and branch. 2456 BasicBlock *StartBlock = CountZeros->getParent(); 2457 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2458 if (IsHugeFunc) 2459 FreshBBs.insert(CallBlock); 2460 2461 // Create another block after the count zero intrinsic. A PHI will be added 2462 // in this block to select the result of the intrinsic or the bit-width 2463 // constant if the input to the intrinsic is zero. 2464 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros)); 2465 // Any debug-info after CountZeros should not be included. 2466 SplitPt.setHeadBit(true); 2467 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2468 if (IsHugeFunc) 2469 FreshBBs.insert(EndBlock); 2470 2471 // Update the LoopInfo. The new blocks are in the same loop as the start 2472 // block. 2473 if (Loop *L = LI.getLoopFor(StartBlock)) { 2474 L->addBasicBlockToLoop(CallBlock, LI); 2475 L->addBasicBlockToLoop(EndBlock, LI); 2476 } 2477 2478 // Set up a builder to create a compare, conditional branch, and PHI. 2479 IRBuilder<> Builder(CountZeros->getContext()); 2480 Builder.SetInsertPoint(StartBlock->getTerminator()); 2481 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2482 2483 // Replace the unconditional branch that was created by the first split with 2484 // a compare against zero and a conditional branch. 2485 Value *Zero = Constant::getNullValue(Ty); 2486 // Avoid introducing branch on poison. This also replaces the ctz operand. 2487 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2488 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2489 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2490 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2491 StartBlock->getTerminator()->eraseFromParent(); 2492 2493 // Create a PHI in the end block to select either the output of the intrinsic 2494 // or the bit width of the operand. 2495 Builder.SetInsertPoint(EndBlock, EndBlock->begin()); 2496 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2497 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); 2498 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2499 PN->addIncoming(BitWidth, StartBlock); 2500 PN->addIncoming(CountZeros, CallBlock); 2501 2502 // We are explicitly handling the zero case, so we can set the intrinsic's 2503 // undefined zero argument to 'true'. This will also prevent reprocessing the 2504 // intrinsic; we only despeculate when a zero input is defined. 2505 CountZeros->setArgOperand(1, Builder.getTrue()); 2506 ModifiedDT = ModifyDT::ModifyBBDT; 2507 return true; 2508 } 2509 2510 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { 2511 BasicBlock *BB = CI->getParent(); 2512 2513 // Lower inline assembly if we can. 2514 // If we found an inline asm expession, and if the target knows how to 2515 // lower it to normal LLVM code, do so now. 2516 if (CI->isInlineAsm()) { 2517 if (TLI->ExpandInlineAsm(CI)) { 2518 // Avoid invalidating the iterator. 2519 CurInstIterator = BB->begin(); 2520 // Avoid processing instructions out of order, which could cause 2521 // reuse before a value is defined. 2522 SunkAddrs.clear(); 2523 return true; 2524 } 2525 // Sink address computing for memory operands into the block. 2526 if (optimizeInlineAsmInst(CI)) 2527 return true; 2528 } 2529 2530 // Align the pointer arguments to this call if the target thinks it's a good 2531 // idea 2532 unsigned MinSize; 2533 Align PrefAlign; 2534 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2535 for (auto &Arg : CI->args()) { 2536 // We want to align both objects whose address is used directly and 2537 // objects whose address is used in casts and GEPs, though it only makes 2538 // sense for GEPs if the offset is a multiple of the desired alignment and 2539 // if size - offset meets the size threshold. 2540 if (!Arg->getType()->isPointerTy()) 2541 continue; 2542 APInt Offset(DL->getIndexSizeInBits( 2543 cast<PointerType>(Arg->getType())->getAddressSpace()), 2544 0); 2545 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2546 uint64_t Offset2 = Offset.getLimitedValue(); 2547 if (!isAligned(PrefAlign, Offset2)) 2548 continue; 2549 AllocaInst *AI; 2550 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2551 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2552 AI->setAlignment(PrefAlign); 2553 // Global variables can only be aligned if they are defined in this 2554 // object (i.e. they are uniquely initialized in this object), and 2555 // over-aligning global variables that have an explicit section is 2556 // forbidden. 2557 GlobalVariable *GV; 2558 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2559 GV->getPointerAlignment(*DL) < PrefAlign && 2560 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) 2561 GV->setAlignment(PrefAlign); 2562 } 2563 } 2564 // If this is a memcpy (or similar) then we may be able to improve the 2565 // alignment. 2566 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2567 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2568 MaybeAlign MIDestAlign = MI->getDestAlign(); 2569 if (!MIDestAlign || DestAlign > *MIDestAlign) 2570 MI->setDestAlignment(DestAlign); 2571 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2572 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2573 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2574 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2575 MTI->setSourceAlignment(SrcAlign); 2576 } 2577 } 2578 2579 // If we have a cold call site, try to sink addressing computation into the 2580 // cold block. This interacts with our handling for loads and stores to 2581 // ensure that we can fold all uses of a potential addressing computation 2582 // into their uses. TODO: generalize this to work over profiling data 2583 if (CI->hasFnAttr(Attribute::Cold) && !OptSize && 2584 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2585 for (auto &Arg : CI->args()) { 2586 if (!Arg->getType()->isPointerTy()) 2587 continue; 2588 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2589 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) 2590 return true; 2591 } 2592 2593 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2594 if (II) { 2595 switch (II->getIntrinsicID()) { 2596 default: 2597 break; 2598 case Intrinsic::assume: 2599 llvm_unreachable("llvm.assume should have been removed already"); 2600 case Intrinsic::allow_runtime_check: 2601 case Intrinsic::allow_ubsan_check: 2602 case Intrinsic::experimental_widenable_condition: { 2603 // Give up on future widening opportunities so that we can fold away dead 2604 // paths and merge blocks before going into block-local instruction 2605 // selection. 2606 if (II->use_empty()) { 2607 II->eraseFromParent(); 2608 return true; 2609 } 2610 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2611 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2612 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2613 }); 2614 return true; 2615 } 2616 case Intrinsic::objectsize: 2617 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2618 case Intrinsic::is_constant: 2619 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2620 case Intrinsic::aarch64_stlxr: 2621 case Intrinsic::aarch64_stxr: { 2622 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2623 if (!ExtVal || !ExtVal->hasOneUse() || 2624 ExtVal->getParent() == CI->getParent()) 2625 return false; 2626 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2627 ExtVal->moveBefore(CI); 2628 // Mark this instruction as "inserted by CGP", so that other 2629 // optimizations don't touch it. 2630 InsertedInsts.insert(ExtVal); 2631 return true; 2632 } 2633 2634 case Intrinsic::launder_invariant_group: 2635 case Intrinsic::strip_invariant_group: { 2636 Value *ArgVal = II->getArgOperand(0); 2637 auto it = LargeOffsetGEPMap.find(II); 2638 if (it != LargeOffsetGEPMap.end()) { 2639 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2640 // Make sure not to have to deal with iterator invalidation 2641 // after possibly adding ArgVal to LargeOffsetGEPMap. 2642 auto GEPs = std::move(it->second); 2643 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2644 LargeOffsetGEPMap.erase(II); 2645 } 2646 2647 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); 2648 II->eraseFromParent(); 2649 return true; 2650 } 2651 case Intrinsic::cttz: 2652 case Intrinsic::ctlz: 2653 // If counting zeros is expensive, try to avoid it. 2654 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs, 2655 IsHugeFunc); 2656 case Intrinsic::fshl: 2657 case Intrinsic::fshr: 2658 return optimizeFunnelShift(II); 2659 case Intrinsic::dbg_assign: 2660 case Intrinsic::dbg_value: 2661 return fixupDbgValue(II); 2662 case Intrinsic::masked_gather: 2663 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2664 case Intrinsic::masked_scatter: 2665 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2666 } 2667 2668 SmallVector<Value *, 2> PtrOps; 2669 Type *AccessTy; 2670 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2671 while (!PtrOps.empty()) { 2672 Value *PtrVal = PtrOps.pop_back_val(); 2673 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2674 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2675 return true; 2676 } 2677 } 2678 2679 // From here on out we're working with named functions. 2680 if (!CI->getCalledFunction()) 2681 return false; 2682 2683 // Lower all default uses of _chk calls. This is very similar 2684 // to what InstCombineCalls does, but here we are only lowering calls 2685 // to fortified library functions (e.g. __memcpy_chk) that have the default 2686 // "don't know" as the objectsize. Anything else should be left alone. 2687 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2688 IRBuilder<> Builder(CI); 2689 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2690 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); 2691 CI->eraseFromParent(); 2692 return true; 2693 } 2694 2695 return false; 2696 } 2697 2698 static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo, 2699 const CallInst *CI) { 2700 assert(CI && CI->use_empty()); 2701 2702 if (const auto *II = dyn_cast<IntrinsicInst>(CI)) 2703 switch (II->getIntrinsicID()) { 2704 case Intrinsic::memset: 2705 case Intrinsic::memcpy: 2706 case Intrinsic::memmove: 2707 return true; 2708 default: 2709 return false; 2710 } 2711 2712 LibFunc LF; 2713 Function *Callee = CI->getCalledFunction(); 2714 if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF)) 2715 switch (LF) { 2716 case LibFunc_strcpy: 2717 case LibFunc_strncpy: 2718 case LibFunc_strcat: 2719 case LibFunc_strncat: 2720 return true; 2721 default: 2722 return false; 2723 } 2724 2725 return false; 2726 } 2727 2728 /// Look for opportunities to duplicate return instructions to the predecessor 2729 /// to enable tail call optimizations. The case it is currently looking for is 2730 /// the following one. Known intrinsics or library function that may be tail 2731 /// called are taken into account as well. 2732 /// @code 2733 /// bb0: 2734 /// %tmp0 = tail call i32 @f0() 2735 /// br label %return 2736 /// bb1: 2737 /// %tmp1 = tail call i32 @f1() 2738 /// br label %return 2739 /// bb2: 2740 /// %tmp2 = tail call i32 @f2() 2741 /// br label %return 2742 /// return: 2743 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2744 /// ret i32 %retval 2745 /// @endcode 2746 /// 2747 /// => 2748 /// 2749 /// @code 2750 /// bb0: 2751 /// %tmp0 = tail call i32 @f0() 2752 /// ret i32 %tmp0 2753 /// bb1: 2754 /// %tmp1 = tail call i32 @f1() 2755 /// ret i32 %tmp1 2756 /// bb2: 2757 /// %tmp2 = tail call i32 @f2() 2758 /// ret i32 %tmp2 2759 /// @endcode 2760 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, 2761 ModifyDT &ModifiedDT) { 2762 if (!BB->getTerminator()) 2763 return false; 2764 2765 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2766 if (!RetI) 2767 return false; 2768 2769 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop"); 2770 2771 PHINode *PN = nullptr; 2772 ExtractValueInst *EVI = nullptr; 2773 BitCastInst *BCI = nullptr; 2774 Value *V = RetI->getReturnValue(); 2775 if (V) { 2776 BCI = dyn_cast<BitCastInst>(V); 2777 if (BCI) 2778 V = BCI->getOperand(0); 2779 2780 EVI = dyn_cast<ExtractValueInst>(V); 2781 if (EVI) { 2782 V = EVI->getOperand(0); 2783 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2784 return false; 2785 } 2786 2787 PN = dyn_cast<PHINode>(V); 2788 } 2789 2790 if (PN && PN->getParent() != BB) 2791 return false; 2792 2793 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2794 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2795 if (BC && BC->hasOneUse()) 2796 Inst = BC->user_back(); 2797 2798 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2799 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2800 return false; 2801 }; 2802 2803 SmallVector<const IntrinsicInst *, 4> FakeUses; 2804 2805 auto isFakeUse = [&FakeUses](const Instruction *Inst) { 2806 if (auto *II = dyn_cast<IntrinsicInst>(Inst); 2807 II && II->getIntrinsicID() == Intrinsic::fake_use) { 2808 // Record the instruction so it can be preserved when the exit block is 2809 // removed. Do not preserve the fake use that uses the result of the 2810 // PHI instruction. 2811 // Do not copy fake uses that use the result of a PHI node. 2812 // FIXME: If we do want to copy the fake use into the return blocks, we 2813 // have to figure out which of the PHI node operands to use for each 2814 // copy. 2815 if (!isa<PHINode>(II->getOperand(0))) { 2816 FakeUses.push_back(II); 2817 } 2818 return true; 2819 } 2820 2821 return false; 2822 }; 2823 2824 // Make sure there are no instructions between the first instruction 2825 // and return. 2826 const Instruction *BI = BB->getFirstNonPHI(); 2827 // Skip over debug and the bitcast. 2828 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2829 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI) || 2830 isFakeUse(BI)) 2831 BI = BI->getNextNode(); 2832 if (BI != RetI) 2833 return false; 2834 2835 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2836 /// call. 2837 const Function *F = BB->getParent(); 2838 SmallVector<BasicBlock *, 4> TailCallBBs; 2839 // Record the call instructions so we can insert any fake uses 2840 // that need to be preserved before them. 2841 SmallVector<CallInst *, 4> CallInsts; 2842 if (PN) { 2843 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2844 // Look through bitcasts. 2845 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2846 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2847 BasicBlock *PredBB = PN->getIncomingBlock(I); 2848 // Make sure the phi value is indeed produced by the tail call. 2849 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2850 TLI->mayBeEmittedAsTailCall(CI) && 2851 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2852 TailCallBBs.push_back(PredBB); 2853 CallInsts.push_back(CI); 2854 } else { 2855 // Consider the cases in which the phi value is indirectly produced by 2856 // the tail call, for example when encountering memset(), memmove(), 2857 // strcpy(), whose return value may have been optimized out. In such 2858 // cases, the value needs to be the first function argument. 2859 // 2860 // bb0: 2861 // tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1) 2862 // br label %return 2863 // return: 2864 // %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ] 2865 if (PredBB && PredBB->getSingleSuccessor() == BB) 2866 CI = dyn_cast_or_null<CallInst>( 2867 PredBB->getTerminator()->getPrevNonDebugInstruction(true)); 2868 2869 if (CI && CI->use_empty() && 2870 isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2871 IncomingVal == CI->getArgOperand(0) && 2872 TLI->mayBeEmittedAsTailCall(CI) && 2873 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2874 TailCallBBs.push_back(PredBB); 2875 CallInsts.push_back(CI); 2876 } 2877 } 2878 } 2879 } else { 2880 SmallPtrSet<BasicBlock *, 4> VisitedBBs; 2881 for (BasicBlock *Pred : predecessors(BB)) { 2882 if (!VisitedBBs.insert(Pred).second) 2883 continue; 2884 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2885 CallInst *CI = dyn_cast<CallInst>(I); 2886 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2887 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2888 // Either we return void or the return value must be the first 2889 // argument of a known intrinsic or library function. 2890 if (!V || isa<UndefValue>(V) || 2891 (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2892 V == CI->getArgOperand(0))) { 2893 TailCallBBs.push_back(Pred); 2894 CallInsts.push_back(CI); 2895 } 2896 } 2897 } 2898 } 2899 } 2900 2901 bool Changed = false; 2902 for (auto const &TailCallBB : TailCallBBs) { 2903 // Make sure the call instruction is followed by an unconditional branch to 2904 // the return block. 2905 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2906 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2907 continue; 2908 2909 // Duplicate the return into TailCallBB. 2910 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2911 assert(!VerifyBFIUpdates || 2912 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2913 BFI->setBlockFreq(BB, 2914 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB))); 2915 ModifiedDT = ModifyDT::ModifyBBDT; 2916 Changed = true; 2917 ++NumRetsDup; 2918 } 2919 2920 // If we eliminated all predecessors of the block, delete the block now. 2921 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) { 2922 // Copy the fake uses found in the original return block to all blocks 2923 // that contain tail calls. 2924 for (auto *CI : CallInsts) { 2925 for (auto const *FakeUse : FakeUses) { 2926 auto *ClonedInst = FakeUse->clone(); 2927 ClonedInst->insertBefore(CI); 2928 } 2929 } 2930 BB->eraseFromParent(); 2931 } 2932 2933 return Changed; 2934 } 2935 2936 //===----------------------------------------------------------------------===// 2937 // Memory Optimization 2938 //===----------------------------------------------------------------------===// 2939 2940 namespace { 2941 2942 /// This is an extended version of TargetLowering::AddrMode 2943 /// which holds actual Value*'s for register values. 2944 struct ExtAddrMode : public TargetLowering::AddrMode { 2945 Value *BaseReg = nullptr; 2946 Value *ScaledReg = nullptr; 2947 Value *OriginalValue = nullptr; 2948 bool InBounds = true; 2949 2950 enum FieldName { 2951 NoField = 0x00, 2952 BaseRegField = 0x01, 2953 BaseGVField = 0x02, 2954 BaseOffsField = 0x04, 2955 ScaledRegField = 0x08, 2956 ScaleField = 0x10, 2957 MultipleFields = 0xff 2958 }; 2959 2960 ExtAddrMode() = default; 2961 2962 void print(raw_ostream &OS) const; 2963 void dump() const; 2964 2965 FieldName compare(const ExtAddrMode &other) { 2966 // First check that the types are the same on each field, as differing types 2967 // is something we can't cope with later on. 2968 if (BaseReg && other.BaseReg && 2969 BaseReg->getType() != other.BaseReg->getType()) 2970 return MultipleFields; 2971 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) 2972 return MultipleFields; 2973 if (ScaledReg && other.ScaledReg && 2974 ScaledReg->getType() != other.ScaledReg->getType()) 2975 return MultipleFields; 2976 2977 // Conservatively reject 'inbounds' mismatches. 2978 if (InBounds != other.InBounds) 2979 return MultipleFields; 2980 2981 // Check each field to see if it differs. 2982 unsigned Result = NoField; 2983 if (BaseReg != other.BaseReg) 2984 Result |= BaseRegField; 2985 if (BaseGV != other.BaseGV) 2986 Result |= BaseGVField; 2987 if (BaseOffs != other.BaseOffs) 2988 Result |= BaseOffsField; 2989 if (ScaledReg != other.ScaledReg) 2990 Result |= ScaledRegField; 2991 // Don't count 0 as being a different scale, because that actually means 2992 // unscaled (which will already be counted by having no ScaledReg). 2993 if (Scale && other.Scale && Scale != other.Scale) 2994 Result |= ScaleField; 2995 2996 if (llvm::popcount(Result) > 1) 2997 return MultipleFields; 2998 else 2999 return static_cast<FieldName>(Result); 3000 } 3001 3002 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 3003 // with no offset. 3004 bool isTrivial() { 3005 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 3006 // trivial if at most one of these terms is nonzero, except that BaseGV and 3007 // BaseReg both being zero actually means a null pointer value, which we 3008 // consider to be 'non-zero' here. 3009 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 3010 } 3011 3012 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 3013 switch (Field) { 3014 default: 3015 return nullptr; 3016 case BaseRegField: 3017 return BaseReg; 3018 case BaseGVField: 3019 return BaseGV; 3020 case ScaledRegField: 3021 return ScaledReg; 3022 case BaseOffsField: 3023 return ConstantInt::get(IntPtrTy, BaseOffs); 3024 } 3025 } 3026 3027 void SetCombinedField(FieldName Field, Value *V, 3028 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 3029 switch (Field) { 3030 default: 3031 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 3032 break; 3033 case ExtAddrMode::BaseRegField: 3034 BaseReg = V; 3035 break; 3036 case ExtAddrMode::BaseGVField: 3037 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 3038 // in the BaseReg field. 3039 assert(BaseReg == nullptr); 3040 BaseReg = V; 3041 BaseGV = nullptr; 3042 break; 3043 case ExtAddrMode::ScaledRegField: 3044 ScaledReg = V; 3045 // If we have a mix of scaled and unscaled addrmodes then we want scale 3046 // to be the scale and not zero. 3047 if (!Scale) 3048 for (const ExtAddrMode &AM : AddrModes) 3049 if (AM.Scale) { 3050 Scale = AM.Scale; 3051 break; 3052 } 3053 break; 3054 case ExtAddrMode::BaseOffsField: 3055 // The offset is no longer a constant, so it goes in ScaledReg with a 3056 // scale of 1. 3057 assert(ScaledReg == nullptr); 3058 ScaledReg = V; 3059 Scale = 1; 3060 BaseOffs = 0; 3061 break; 3062 } 3063 } 3064 }; 3065 3066 #ifndef NDEBUG 3067 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 3068 AM.print(OS); 3069 return OS; 3070 } 3071 #endif 3072 3073 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3074 void ExtAddrMode::print(raw_ostream &OS) const { 3075 bool NeedPlus = false; 3076 OS << "["; 3077 if (InBounds) 3078 OS << "inbounds "; 3079 if (BaseGV) { 3080 OS << "GV:"; 3081 BaseGV->printAsOperand(OS, /*PrintType=*/false); 3082 NeedPlus = true; 3083 } 3084 3085 if (BaseOffs) { 3086 OS << (NeedPlus ? " + " : "") << BaseOffs; 3087 NeedPlus = true; 3088 } 3089 3090 if (BaseReg) { 3091 OS << (NeedPlus ? " + " : "") << "Base:"; 3092 BaseReg->printAsOperand(OS, /*PrintType=*/false); 3093 NeedPlus = true; 3094 } 3095 if (Scale) { 3096 OS << (NeedPlus ? " + " : "") << Scale << "*"; 3097 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 3098 } 3099 3100 OS << ']'; 3101 } 3102 3103 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 3104 print(dbgs()); 3105 dbgs() << '\n'; 3106 } 3107 #endif 3108 3109 } // end anonymous namespace 3110 3111 namespace { 3112 3113 /// This class provides transaction based operation on the IR. 3114 /// Every change made through this class is recorded in the internal state and 3115 /// can be undone (rollback) until commit is called. 3116 /// CGP does not check if instructions could be speculatively executed when 3117 /// moved. Preserving the original location would pessimize the debugging 3118 /// experience, as well as negatively impact the quality of sample PGO. 3119 class TypePromotionTransaction { 3120 /// This represents the common interface of the individual transaction. 3121 /// Each class implements the logic for doing one specific modification on 3122 /// the IR via the TypePromotionTransaction. 3123 class TypePromotionAction { 3124 protected: 3125 /// The Instruction modified. 3126 Instruction *Inst; 3127 3128 public: 3129 /// Constructor of the action. 3130 /// The constructor performs the related action on the IR. 3131 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 3132 3133 virtual ~TypePromotionAction() = default; 3134 3135 /// Undo the modification done by this action. 3136 /// When this method is called, the IR must be in the same state as it was 3137 /// before this action was applied. 3138 /// \pre Undoing the action works if and only if the IR is in the exact same 3139 /// state as it was directly after this action was applied. 3140 virtual void undo() = 0; 3141 3142 /// Advocate every change made by this action. 3143 /// When the results on the IR of the action are to be kept, it is important 3144 /// to call this function, otherwise hidden information may be kept forever. 3145 virtual void commit() { 3146 // Nothing to be done, this action is not doing anything. 3147 } 3148 }; 3149 3150 /// Utility to remember the position of an instruction. 3151 class InsertionHandler { 3152 /// Position of an instruction. 3153 /// Either an instruction: 3154 /// - Is the first in a basic block: BB is used. 3155 /// - Has a previous instruction: PrevInst is used. 3156 union { 3157 Instruction *PrevInst; 3158 BasicBlock *BB; 3159 } Point; 3160 std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt; 3161 3162 /// Remember whether or not the instruction had a previous instruction. 3163 bool HasPrevInstruction; 3164 3165 public: 3166 /// Record the position of \p Inst. 3167 InsertionHandler(Instruction *Inst) { 3168 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin())); 3169 BasicBlock *BB = Inst->getParent(); 3170 3171 // Record where we would have to re-insert the instruction in the sequence 3172 // of DbgRecords, if we ended up reinserting. 3173 if (BB->IsNewDbgInfoFormat) 3174 BeforeDbgRecord = Inst->getDbgReinsertionPosition(); 3175 3176 if (HasPrevInstruction) { 3177 Point.PrevInst = &*std::prev(Inst->getIterator()); 3178 } else { 3179 Point.BB = BB; 3180 } 3181 } 3182 3183 /// Insert \p Inst at the recorded position. 3184 void insert(Instruction *Inst) { 3185 if (HasPrevInstruction) { 3186 if (Inst->getParent()) 3187 Inst->removeFromParent(); 3188 Inst->insertAfter(&*Point.PrevInst); 3189 } else { 3190 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt(); 3191 if (Inst->getParent()) 3192 Inst->moveBefore(*Point.BB, Position); 3193 else 3194 Inst->insertBefore(*Point.BB, Position); 3195 } 3196 3197 Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord); 3198 } 3199 }; 3200 3201 /// Move an instruction before another. 3202 class InstructionMoveBefore : public TypePromotionAction { 3203 /// Original position of the instruction. 3204 InsertionHandler Position; 3205 3206 public: 3207 /// Move \p Inst before \p Before. 3208 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 3209 : TypePromotionAction(Inst), Position(Inst) { 3210 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 3211 << "\n"); 3212 Inst->moveBefore(Before); 3213 } 3214 3215 /// Move the instruction back to its original position. 3216 void undo() override { 3217 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 3218 Position.insert(Inst); 3219 } 3220 }; 3221 3222 /// Set the operand of an instruction with a new value. 3223 class OperandSetter : public TypePromotionAction { 3224 /// Original operand of the instruction. 3225 Value *Origin; 3226 3227 /// Index of the modified instruction. 3228 unsigned Idx; 3229 3230 public: 3231 /// Set \p Idx operand of \p Inst with \p NewVal. 3232 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 3233 : TypePromotionAction(Inst), Idx(Idx) { 3234 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 3235 << "for:" << *Inst << "\n" 3236 << "with:" << *NewVal << "\n"); 3237 Origin = Inst->getOperand(Idx); 3238 Inst->setOperand(Idx, NewVal); 3239 } 3240 3241 /// Restore the original value of the instruction. 3242 void undo() override { 3243 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 3244 << "for: " << *Inst << "\n" 3245 << "with: " << *Origin << "\n"); 3246 Inst->setOperand(Idx, Origin); 3247 } 3248 }; 3249 3250 /// Hide the operands of an instruction. 3251 /// Do as if this instruction was not using any of its operands. 3252 class OperandsHider : public TypePromotionAction { 3253 /// The list of original operands. 3254 SmallVector<Value *, 4> OriginalValues; 3255 3256 public: 3257 /// Remove \p Inst from the uses of the operands of \p Inst. 3258 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 3259 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 3260 unsigned NumOpnds = Inst->getNumOperands(); 3261 OriginalValues.reserve(NumOpnds); 3262 for (unsigned It = 0; It < NumOpnds; ++It) { 3263 // Save the current operand. 3264 Value *Val = Inst->getOperand(It); 3265 OriginalValues.push_back(Val); 3266 // Set a dummy one. 3267 // We could use OperandSetter here, but that would imply an overhead 3268 // that we are not willing to pay. 3269 Inst->setOperand(It, UndefValue::get(Val->getType())); 3270 } 3271 } 3272 3273 /// Restore the original list of uses. 3274 void undo() override { 3275 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 3276 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 3277 Inst->setOperand(It, OriginalValues[It]); 3278 } 3279 }; 3280 3281 /// Build a truncate instruction. 3282 class TruncBuilder : public TypePromotionAction { 3283 Value *Val; 3284 3285 public: 3286 /// Build a truncate instruction of \p Opnd producing a \p Ty 3287 /// result. 3288 /// trunc Opnd to Ty. 3289 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 3290 IRBuilder<> Builder(Opnd); 3291 Builder.SetCurrentDebugLocation(DebugLoc()); 3292 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 3293 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 3294 } 3295 3296 /// Get the built value. 3297 Value *getBuiltValue() { return Val; } 3298 3299 /// Remove the built instruction. 3300 void undo() override { 3301 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 3302 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3303 IVal->eraseFromParent(); 3304 } 3305 }; 3306 3307 /// Build a sign extension instruction. 3308 class SExtBuilder : public TypePromotionAction { 3309 Value *Val; 3310 3311 public: 3312 /// Build a sign extension instruction of \p Opnd producing a \p Ty 3313 /// result. 3314 /// sext Opnd to Ty. 3315 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3316 : TypePromotionAction(InsertPt) { 3317 IRBuilder<> Builder(InsertPt); 3318 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 3319 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 3320 } 3321 3322 /// Get the built value. 3323 Value *getBuiltValue() { return Val; } 3324 3325 /// Remove the built instruction. 3326 void undo() override { 3327 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 3328 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3329 IVal->eraseFromParent(); 3330 } 3331 }; 3332 3333 /// Build a zero extension instruction. 3334 class ZExtBuilder : public TypePromotionAction { 3335 Value *Val; 3336 3337 public: 3338 /// Build a zero extension instruction of \p Opnd producing a \p Ty 3339 /// result. 3340 /// zext Opnd to Ty. 3341 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3342 : TypePromotionAction(InsertPt) { 3343 IRBuilder<> Builder(InsertPt); 3344 Builder.SetCurrentDebugLocation(DebugLoc()); 3345 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 3346 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 3347 } 3348 3349 /// Get the built value. 3350 Value *getBuiltValue() { return Val; } 3351 3352 /// Remove the built instruction. 3353 void undo() override { 3354 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 3355 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3356 IVal->eraseFromParent(); 3357 } 3358 }; 3359 3360 /// Mutate an instruction to another type. 3361 class TypeMutator : public TypePromotionAction { 3362 /// Record the original type. 3363 Type *OrigTy; 3364 3365 public: 3366 /// Mutate the type of \p Inst into \p NewTy. 3367 TypeMutator(Instruction *Inst, Type *NewTy) 3368 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 3369 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 3370 << "\n"); 3371 Inst->mutateType(NewTy); 3372 } 3373 3374 /// Mutate the instruction back to its original type. 3375 void undo() override { 3376 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 3377 << "\n"); 3378 Inst->mutateType(OrigTy); 3379 } 3380 }; 3381 3382 /// Replace the uses of an instruction by another instruction. 3383 class UsesReplacer : public TypePromotionAction { 3384 /// Helper structure to keep track of the replaced uses. 3385 struct InstructionAndIdx { 3386 /// The instruction using the instruction. 3387 Instruction *Inst; 3388 3389 /// The index where this instruction is used for Inst. 3390 unsigned Idx; 3391 3392 InstructionAndIdx(Instruction *Inst, unsigned Idx) 3393 : Inst(Inst), Idx(Idx) {} 3394 }; 3395 3396 /// Keep track of the original uses (pair Instruction, Index). 3397 SmallVector<InstructionAndIdx, 4> OriginalUses; 3398 /// Keep track of the debug users. 3399 SmallVector<DbgValueInst *, 1> DbgValues; 3400 /// And non-instruction debug-users too. 3401 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 3402 3403 /// Keep track of the new value so that we can undo it by replacing 3404 /// instances of the new value with the original value. 3405 Value *New; 3406 3407 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3408 3409 public: 3410 /// Replace all the use of \p Inst by \p New. 3411 UsesReplacer(Instruction *Inst, Value *New) 3412 : TypePromotionAction(Inst), New(New) { 3413 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3414 << "\n"); 3415 // Record the original uses. 3416 for (Use &U : Inst->uses()) { 3417 Instruction *UserI = cast<Instruction>(U.getUser()); 3418 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3419 } 3420 // Record the debug uses separately. They are not in the instruction's 3421 // use list, but they are replaced by RAUW. 3422 findDbgValues(DbgValues, Inst, &DbgVariableRecords); 3423 3424 // Now, we can replace the uses. 3425 Inst->replaceAllUsesWith(New); 3426 } 3427 3428 /// Reassign the original uses of Inst to Inst. 3429 void undo() override { 3430 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3431 for (InstructionAndIdx &Use : OriginalUses) 3432 Use.Inst->setOperand(Use.Idx, Inst); 3433 // RAUW has replaced all original uses with references to the new value, 3434 // including the debug uses. Since we are undoing the replacements, 3435 // the original debug uses must also be reinstated to maintain the 3436 // correctness and utility of debug value instructions. 3437 for (auto *DVI : DbgValues) 3438 DVI->replaceVariableLocationOp(New, Inst); 3439 // Similar story with DbgVariableRecords, the non-instruction 3440 // representation of dbg.values. 3441 for (DbgVariableRecord *DVR : DbgVariableRecords) 3442 DVR->replaceVariableLocationOp(New, Inst); 3443 } 3444 }; 3445 3446 /// Remove an instruction from the IR. 3447 class InstructionRemover : public TypePromotionAction { 3448 /// Original position of the instruction. 3449 InsertionHandler Inserter; 3450 3451 /// Helper structure to hide all the link to the instruction. In other 3452 /// words, this helps to do as if the instruction was removed. 3453 OperandsHider Hider; 3454 3455 /// Keep track of the uses replaced, if any. 3456 UsesReplacer *Replacer = nullptr; 3457 3458 /// Keep track of instructions removed. 3459 SetOfInstrs &RemovedInsts; 3460 3461 public: 3462 /// Remove all reference of \p Inst and optionally replace all its 3463 /// uses with New. 3464 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3465 /// \pre If !Inst->use_empty(), then New != nullptr 3466 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3467 Value *New = nullptr) 3468 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3469 RemovedInsts(RemovedInsts) { 3470 if (New) 3471 Replacer = new UsesReplacer(Inst, New); 3472 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3473 RemovedInsts.insert(Inst); 3474 /// The instructions removed here will be freed after completing 3475 /// optimizeBlock() for all blocks as we need to keep track of the 3476 /// removed instructions during promotion. 3477 Inst->removeFromParent(); 3478 } 3479 3480 ~InstructionRemover() override { delete Replacer; } 3481 3482 InstructionRemover &operator=(const InstructionRemover &other) = delete; 3483 InstructionRemover(const InstructionRemover &other) = delete; 3484 3485 /// Resurrect the instruction and reassign it to the proper uses if 3486 /// new value was provided when build this action. 3487 void undo() override { 3488 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3489 Inserter.insert(Inst); 3490 if (Replacer) 3491 Replacer->undo(); 3492 Hider.undo(); 3493 RemovedInsts.erase(Inst); 3494 } 3495 }; 3496 3497 public: 3498 /// Restoration point. 3499 /// The restoration point is a pointer to an action instead of an iterator 3500 /// because the iterator may be invalidated but not the pointer. 3501 using ConstRestorationPt = const TypePromotionAction *; 3502 3503 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3504 : RemovedInsts(RemovedInsts) {} 3505 3506 /// Advocate every changes made in that transaction. Return true if any change 3507 /// happen. 3508 bool commit(); 3509 3510 /// Undo all the changes made after the given point. 3511 void rollback(ConstRestorationPt Point); 3512 3513 /// Get the current restoration point. 3514 ConstRestorationPt getRestorationPoint() const; 3515 3516 /// \name API for IR modification with state keeping to support rollback. 3517 /// @{ 3518 /// Same as Instruction::setOperand. 3519 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3520 3521 /// Same as Instruction::eraseFromParent. 3522 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3523 3524 /// Same as Value::replaceAllUsesWith. 3525 void replaceAllUsesWith(Instruction *Inst, Value *New); 3526 3527 /// Same as Value::mutateType. 3528 void mutateType(Instruction *Inst, Type *NewTy); 3529 3530 /// Same as IRBuilder::createTrunc. 3531 Value *createTrunc(Instruction *Opnd, Type *Ty); 3532 3533 /// Same as IRBuilder::createSExt. 3534 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3535 3536 /// Same as IRBuilder::createZExt. 3537 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3538 3539 private: 3540 /// The ordered list of actions made so far. 3541 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3542 3543 using CommitPt = 3544 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3545 3546 SetOfInstrs &RemovedInsts; 3547 }; 3548 3549 } // end anonymous namespace 3550 3551 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3552 Value *NewVal) { 3553 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3554 Inst, Idx, NewVal)); 3555 } 3556 3557 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3558 Value *NewVal) { 3559 Actions.push_back( 3560 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3561 Inst, RemovedInsts, NewVal)); 3562 } 3563 3564 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3565 Value *New) { 3566 Actions.push_back( 3567 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3568 } 3569 3570 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3571 Actions.push_back( 3572 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3573 } 3574 3575 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { 3576 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3577 Value *Val = Ptr->getBuiltValue(); 3578 Actions.push_back(std::move(Ptr)); 3579 return Val; 3580 } 3581 3582 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, 3583 Type *Ty) { 3584 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3585 Value *Val = Ptr->getBuiltValue(); 3586 Actions.push_back(std::move(Ptr)); 3587 return Val; 3588 } 3589 3590 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, 3591 Type *Ty) { 3592 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3593 Value *Val = Ptr->getBuiltValue(); 3594 Actions.push_back(std::move(Ptr)); 3595 return Val; 3596 } 3597 3598 TypePromotionTransaction::ConstRestorationPt 3599 TypePromotionTransaction::getRestorationPoint() const { 3600 return !Actions.empty() ? Actions.back().get() : nullptr; 3601 } 3602 3603 bool TypePromotionTransaction::commit() { 3604 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3605 Action->commit(); 3606 bool Modified = !Actions.empty(); 3607 Actions.clear(); 3608 return Modified; 3609 } 3610 3611 void TypePromotionTransaction::rollback( 3612 TypePromotionTransaction::ConstRestorationPt Point) { 3613 while (!Actions.empty() && Point != Actions.back().get()) { 3614 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3615 Curr->undo(); 3616 } 3617 } 3618 3619 namespace { 3620 3621 /// A helper class for matching addressing modes. 3622 /// 3623 /// This encapsulates the logic for matching the target-legal addressing modes. 3624 class AddressingModeMatcher { 3625 SmallVectorImpl<Instruction *> &AddrModeInsts; 3626 const TargetLowering &TLI; 3627 const TargetRegisterInfo &TRI; 3628 const DataLayout &DL; 3629 const LoopInfo &LI; 3630 const std::function<const DominatorTree &()> getDTFn; 3631 3632 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3633 /// the memory instruction that we're computing this address for. 3634 Type *AccessTy; 3635 unsigned AddrSpace; 3636 Instruction *MemoryInst; 3637 3638 /// This is the addressing mode that we're building up. This is 3639 /// part of the return value of this addressing mode matching stuff. 3640 ExtAddrMode &AddrMode; 3641 3642 /// The instructions inserted by other CodeGenPrepare optimizations. 3643 const SetOfInstrs &InsertedInsts; 3644 3645 /// A map from the instructions to their type before promotion. 3646 InstrToOrigTy &PromotedInsts; 3647 3648 /// The ongoing transaction where every action should be registered. 3649 TypePromotionTransaction &TPT; 3650 3651 // A GEP which has too large offset to be folded into the addressing mode. 3652 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3653 3654 /// This is set to true when we should not do profitability checks. 3655 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3656 bool IgnoreProfitability; 3657 3658 /// True if we are optimizing for size. 3659 bool OptSize = false; 3660 3661 ProfileSummaryInfo *PSI; 3662 BlockFrequencyInfo *BFI; 3663 3664 AddressingModeMatcher( 3665 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3666 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3667 const std::function<const DominatorTree &()> getDTFn, Type *AT, 3668 unsigned AS, Instruction *MI, ExtAddrMode &AM, 3669 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3670 TypePromotionTransaction &TPT, 3671 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3672 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3673 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3674 DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn), 3675 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3676 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3677 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3678 IgnoreProfitability = false; 3679 } 3680 3681 public: 3682 /// Find the maximal addressing mode that a load/store of V can fold, 3683 /// give an access type of AccessTy. This returns a list of involved 3684 /// instructions in AddrModeInsts. 3685 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3686 /// optimizations. 3687 /// \p PromotedInsts maps the instructions to their type before promotion. 3688 /// \p The ongoing transaction where every action should be registered. 3689 static ExtAddrMode 3690 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3691 SmallVectorImpl<Instruction *> &AddrModeInsts, 3692 const TargetLowering &TLI, const LoopInfo &LI, 3693 const std::function<const DominatorTree &()> getDTFn, 3694 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3695 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3696 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3697 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3698 ExtAddrMode Result; 3699 3700 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, 3701 AccessTy, AS, MemoryInst, Result, 3702 InsertedInsts, PromotedInsts, TPT, 3703 LargeOffsetGEP, OptSize, PSI, BFI) 3704 .matchAddr(V, 0); 3705 (void)Success; 3706 assert(Success && "Couldn't select *anything*?"); 3707 return Result; 3708 } 3709 3710 private: 3711 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3712 bool matchAddr(Value *Addr, unsigned Depth); 3713 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3714 bool *MovedAway = nullptr); 3715 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3716 ExtAddrMode &AMBefore, 3717 ExtAddrMode &AMAfter); 3718 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3719 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3720 Value *PromotedOperand) const; 3721 }; 3722 3723 class PhiNodeSet; 3724 3725 /// An iterator for PhiNodeSet. 3726 class PhiNodeSetIterator { 3727 PhiNodeSet *const Set; 3728 size_t CurrentIndex = 0; 3729 3730 public: 3731 /// The constructor. Start should point to either a valid element, or be equal 3732 /// to the size of the underlying SmallVector of the PhiNodeSet. 3733 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); 3734 PHINode *operator*() const; 3735 PhiNodeSetIterator &operator++(); 3736 bool operator==(const PhiNodeSetIterator &RHS) const; 3737 bool operator!=(const PhiNodeSetIterator &RHS) const; 3738 }; 3739 3740 /// Keeps a set of PHINodes. 3741 /// 3742 /// This is a minimal set implementation for a specific use case: 3743 /// It is very fast when there are very few elements, but also provides good 3744 /// performance when there are many. It is similar to SmallPtrSet, but also 3745 /// provides iteration by insertion order, which is deterministic and stable 3746 /// across runs. It is also similar to SmallSetVector, but provides removing 3747 /// elements in O(1) time. This is achieved by not actually removing the element 3748 /// from the underlying vector, so comes at the cost of using more memory, but 3749 /// that is fine, since PhiNodeSets are used as short lived objects. 3750 class PhiNodeSet { 3751 friend class PhiNodeSetIterator; 3752 3753 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3754 using iterator = PhiNodeSetIterator; 3755 3756 /// Keeps the elements in the order of their insertion in the underlying 3757 /// vector. To achieve constant time removal, it never deletes any element. 3758 SmallVector<PHINode *, 32> NodeList; 3759 3760 /// Keeps the elements in the underlying set implementation. This (and not the 3761 /// NodeList defined above) is the source of truth on whether an element 3762 /// is actually in the collection. 3763 MapType NodeMap; 3764 3765 /// Points to the first valid (not deleted) element when the set is not empty 3766 /// and the value is not zero. Equals to the size of the underlying vector 3767 /// when the set is empty. When the value is 0, as in the beginning, the 3768 /// first element may or may not be valid. 3769 size_t FirstValidElement = 0; 3770 3771 public: 3772 /// Inserts a new element to the collection. 3773 /// \returns true if the element is actually added, i.e. was not in the 3774 /// collection before the operation. 3775 bool insert(PHINode *Ptr) { 3776 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3777 NodeList.push_back(Ptr); 3778 return true; 3779 } 3780 return false; 3781 } 3782 3783 /// Removes the element from the collection. 3784 /// \returns whether the element is actually removed, i.e. was in the 3785 /// collection before the operation. 3786 bool erase(PHINode *Ptr) { 3787 if (NodeMap.erase(Ptr)) { 3788 SkipRemovedElements(FirstValidElement); 3789 return true; 3790 } 3791 return false; 3792 } 3793 3794 /// Removes all elements and clears the collection. 3795 void clear() { 3796 NodeMap.clear(); 3797 NodeList.clear(); 3798 FirstValidElement = 0; 3799 } 3800 3801 /// \returns an iterator that will iterate the elements in the order of 3802 /// insertion. 3803 iterator begin() { 3804 if (FirstValidElement == 0) 3805 SkipRemovedElements(FirstValidElement); 3806 return PhiNodeSetIterator(this, FirstValidElement); 3807 } 3808 3809 /// \returns an iterator that points to the end of the collection. 3810 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3811 3812 /// Returns the number of elements in the collection. 3813 size_t size() const { return NodeMap.size(); } 3814 3815 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3816 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } 3817 3818 private: 3819 /// Updates the CurrentIndex so that it will point to a valid element. 3820 /// 3821 /// If the element of NodeList at CurrentIndex is valid, it does not 3822 /// change it. If there are no more valid elements, it updates CurrentIndex 3823 /// to point to the end of the NodeList. 3824 void SkipRemovedElements(size_t &CurrentIndex) { 3825 while (CurrentIndex < NodeList.size()) { 3826 auto it = NodeMap.find(NodeList[CurrentIndex]); 3827 // If the element has been deleted and added again later, NodeMap will 3828 // point to a different index, so CurrentIndex will still be invalid. 3829 if (it != NodeMap.end() && it->second == CurrentIndex) 3830 break; 3831 ++CurrentIndex; 3832 } 3833 } 3834 }; 3835 3836 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3837 : Set(Set), CurrentIndex(Start) {} 3838 3839 PHINode *PhiNodeSetIterator::operator*() const { 3840 assert(CurrentIndex < Set->NodeList.size() && 3841 "PhiNodeSet access out of range"); 3842 return Set->NodeList[CurrentIndex]; 3843 } 3844 3845 PhiNodeSetIterator &PhiNodeSetIterator::operator++() { 3846 assert(CurrentIndex < Set->NodeList.size() && 3847 "PhiNodeSet access out of range"); 3848 ++CurrentIndex; 3849 Set->SkipRemovedElements(CurrentIndex); 3850 return *this; 3851 } 3852 3853 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3854 return CurrentIndex == RHS.CurrentIndex; 3855 } 3856 3857 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3858 return !((*this) == RHS); 3859 } 3860 3861 /// Keep track of simplification of Phi nodes. 3862 /// Accept the set of all phi nodes and erase phi node from this set 3863 /// if it is simplified. 3864 class SimplificationTracker { 3865 DenseMap<Value *, Value *> Storage; 3866 const SimplifyQuery &SQ; 3867 // Tracks newly created Phi nodes. The elements are iterated by insertion 3868 // order. 3869 PhiNodeSet AllPhiNodes; 3870 // Tracks newly created Select nodes. 3871 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3872 3873 public: 3874 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} 3875 3876 Value *Get(Value *V) { 3877 do { 3878 auto SV = Storage.find(V); 3879 if (SV == Storage.end()) 3880 return V; 3881 V = SV->second; 3882 } while (true); 3883 } 3884 3885 Value *Simplify(Value *Val) { 3886 SmallVector<Value *, 32> WorkList; 3887 SmallPtrSet<Value *, 32> Visited; 3888 WorkList.push_back(Val); 3889 while (!WorkList.empty()) { 3890 auto *P = WorkList.pop_back_val(); 3891 if (!Visited.insert(P).second) 3892 continue; 3893 if (auto *PI = dyn_cast<Instruction>(P)) 3894 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 3895 for (auto *U : PI->users()) 3896 WorkList.push_back(cast<Value>(U)); 3897 Put(PI, V); 3898 PI->replaceAllUsesWith(V); 3899 if (auto *PHI = dyn_cast<PHINode>(PI)) 3900 AllPhiNodes.erase(PHI); 3901 if (auto *Select = dyn_cast<SelectInst>(PI)) 3902 AllSelectNodes.erase(Select); 3903 PI->eraseFromParent(); 3904 } 3905 } 3906 return Get(Val); 3907 } 3908 3909 void Put(Value *From, Value *To) { Storage.insert({From, To}); } 3910 3911 void ReplacePhi(PHINode *From, PHINode *To) { 3912 Value *OldReplacement = Get(From); 3913 while (OldReplacement != From) { 3914 From = To; 3915 To = dyn_cast<PHINode>(OldReplacement); 3916 OldReplacement = Get(From); 3917 } 3918 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3919 Put(From, To); 3920 From->replaceAllUsesWith(To); 3921 AllPhiNodes.erase(From); 3922 From->eraseFromParent(); 3923 } 3924 3925 PhiNodeSet &newPhiNodes() { return AllPhiNodes; } 3926 3927 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3928 3929 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3930 3931 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3932 3933 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3934 3935 void destroyNewNodes(Type *CommonType) { 3936 // For safe erasing, replace the uses with dummy value first. 3937 auto *Dummy = PoisonValue::get(CommonType); 3938 for (auto *I : AllPhiNodes) { 3939 I->replaceAllUsesWith(Dummy); 3940 I->eraseFromParent(); 3941 } 3942 AllPhiNodes.clear(); 3943 for (auto *I : AllSelectNodes) { 3944 I->replaceAllUsesWith(Dummy); 3945 I->eraseFromParent(); 3946 } 3947 AllSelectNodes.clear(); 3948 } 3949 }; 3950 3951 /// A helper class for combining addressing modes. 3952 class AddressingModeCombiner { 3953 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3954 typedef std::pair<PHINode *, PHINode *> PHIPair; 3955 3956 private: 3957 /// The addressing modes we've collected. 3958 SmallVector<ExtAddrMode, 16> AddrModes; 3959 3960 /// The field in which the AddrModes differ, when we have more than one. 3961 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3962 3963 /// Are the AddrModes that we have all just equal to their original values? 3964 bool AllAddrModesTrivial = true; 3965 3966 /// Common Type for all different fields in addressing modes. 3967 Type *CommonType = nullptr; 3968 3969 /// SimplifyQuery for simplifyInstruction utility. 3970 const SimplifyQuery &SQ; 3971 3972 /// Original Address. 3973 Value *Original; 3974 3975 /// Common value among addresses 3976 Value *CommonValue = nullptr; 3977 3978 public: 3979 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3980 : SQ(_SQ), Original(OriginalValue) {} 3981 3982 ~AddressingModeCombiner() { eraseCommonValueIfDead(); } 3983 3984 /// Get the combined AddrMode 3985 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } 3986 3987 /// Add a new AddrMode if it's compatible with the AddrModes we already 3988 /// have. 3989 /// \return True iff we succeeded in doing so. 3990 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3991 // Take note of if we have any non-trivial AddrModes, as we need to detect 3992 // when all AddrModes are trivial as then we would introduce a phi or select 3993 // which just duplicates what's already there. 3994 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3995 3996 // If this is the first addrmode then everything is fine. 3997 if (AddrModes.empty()) { 3998 AddrModes.emplace_back(NewAddrMode); 3999 return true; 4000 } 4001 4002 // Figure out how different this is from the other address modes, which we 4003 // can do just by comparing against the first one given that we only care 4004 // about the cumulative difference. 4005 ExtAddrMode::FieldName ThisDifferentField = 4006 AddrModes[0].compare(NewAddrMode); 4007 if (DifferentField == ExtAddrMode::NoField) 4008 DifferentField = ThisDifferentField; 4009 else if (DifferentField != ThisDifferentField) 4010 DifferentField = ExtAddrMode::MultipleFields; 4011 4012 // If NewAddrMode differs in more than one dimension we cannot handle it. 4013 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 4014 4015 // If Scale Field is different then we reject. 4016 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 4017 4018 // We also must reject the case when base offset is different and 4019 // scale reg is not null, we cannot handle this case due to merge of 4020 // different offsets will be used as ScaleReg. 4021 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 4022 !NewAddrMode.ScaledReg); 4023 4024 // We also must reject the case when GV is different and BaseReg installed 4025 // due to we want to use base reg as a merge of GV values. 4026 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 4027 !NewAddrMode.HasBaseReg); 4028 4029 // Even if NewAddMode is the same we still need to collect it due to 4030 // original value is different. And later we will need all original values 4031 // as anchors during finding the common Phi node. 4032 if (CanHandle) 4033 AddrModes.emplace_back(NewAddrMode); 4034 else 4035 AddrModes.clear(); 4036 4037 return CanHandle; 4038 } 4039 4040 /// Combine the addressing modes we've collected into a single 4041 /// addressing mode. 4042 /// \return True iff we successfully combined them or we only had one so 4043 /// didn't need to combine them anyway. 4044 bool combineAddrModes() { 4045 // If we have no AddrModes then they can't be combined. 4046 if (AddrModes.size() == 0) 4047 return false; 4048 4049 // A single AddrMode can trivially be combined. 4050 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 4051 return true; 4052 4053 // If the AddrModes we collected are all just equal to the value they are 4054 // derived from then combining them wouldn't do anything useful. 4055 if (AllAddrModesTrivial) 4056 return false; 4057 4058 if (!addrModeCombiningAllowed()) 4059 return false; 4060 4061 // Build a map between <original value, basic block where we saw it> to 4062 // value of base register. 4063 // Bail out if there is no common type. 4064 FoldAddrToValueMapping Map; 4065 if (!initializeMap(Map)) 4066 return false; 4067 4068 CommonValue = findCommon(Map); 4069 if (CommonValue) 4070 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 4071 return CommonValue != nullptr; 4072 } 4073 4074 private: 4075 /// `CommonValue` may be a placeholder inserted by us. 4076 /// If the placeholder is not used, we should remove this dead instruction. 4077 void eraseCommonValueIfDead() { 4078 if (CommonValue && CommonValue->getNumUses() == 0) 4079 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) 4080 CommonInst->eraseFromParent(); 4081 } 4082 4083 /// Initialize Map with anchor values. For address seen 4084 /// we set the value of different field saw in this address. 4085 /// At the same time we find a common type for different field we will 4086 /// use to create new Phi/Select nodes. Keep it in CommonType field. 4087 /// Return false if there is no common type found. 4088 bool initializeMap(FoldAddrToValueMapping &Map) { 4089 // Keep track of keys where the value is null. We will need to replace it 4090 // with constant null when we know the common type. 4091 SmallVector<Value *, 2> NullValue; 4092 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 4093 for (auto &AM : AddrModes) { 4094 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 4095 if (DV) { 4096 auto *Type = DV->getType(); 4097 if (CommonType && CommonType != Type) 4098 return false; 4099 CommonType = Type; 4100 Map[AM.OriginalValue] = DV; 4101 } else { 4102 NullValue.push_back(AM.OriginalValue); 4103 } 4104 } 4105 assert(CommonType && "At least one non-null value must be!"); 4106 for (auto *V : NullValue) 4107 Map[V] = Constant::getNullValue(CommonType); 4108 return true; 4109 } 4110 4111 /// We have mapping between value A and other value B where B was a field in 4112 /// addressing mode represented by A. Also we have an original value C 4113 /// representing an address we start with. Traversing from C through phi and 4114 /// selects we ended up with A's in a map. This utility function tries to find 4115 /// a value V which is a field in addressing mode C and traversing through phi 4116 /// nodes and selects we will end up in corresponded values B in a map. 4117 /// The utility will create a new Phi/Selects if needed. 4118 // The simple example looks as follows: 4119 // BB1: 4120 // p1 = b1 + 40 4121 // br cond BB2, BB3 4122 // BB2: 4123 // p2 = b2 + 40 4124 // br BB3 4125 // BB3: 4126 // p = phi [p1, BB1], [p2, BB2] 4127 // v = load p 4128 // Map is 4129 // p1 -> b1 4130 // p2 -> b2 4131 // Request is 4132 // p -> ? 4133 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 4134 Value *findCommon(FoldAddrToValueMapping &Map) { 4135 // Tracks the simplification of newly created phi nodes. The reason we use 4136 // this mapping is because we will add new created Phi nodes in AddrToBase. 4137 // Simplification of Phi nodes is recursive, so some Phi node may 4138 // be simplified after we added it to AddrToBase. In reality this 4139 // simplification is possible only if original phi/selects were not 4140 // simplified yet. 4141 // Using this mapping we can find the current value in AddrToBase. 4142 SimplificationTracker ST(SQ); 4143 4144 // First step, DFS to create PHI nodes for all intermediate blocks. 4145 // Also fill traverse order for the second step. 4146 SmallVector<Value *, 32> TraverseOrder; 4147 InsertPlaceholders(Map, TraverseOrder, ST); 4148 4149 // Second Step, fill new nodes by merged values and simplify if possible. 4150 FillPlaceholders(Map, TraverseOrder, ST); 4151 4152 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 4153 ST.destroyNewNodes(CommonType); 4154 return nullptr; 4155 } 4156 4157 // Now we'd like to match New Phi nodes to existed ones. 4158 unsigned PhiNotMatchedCount = 0; 4159 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 4160 ST.destroyNewNodes(CommonType); 4161 return nullptr; 4162 } 4163 4164 auto *Result = ST.Get(Map.find(Original)->second); 4165 if (Result) { 4166 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 4167 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 4168 } 4169 return Result; 4170 } 4171 4172 /// Try to match PHI node to Candidate. 4173 /// Matcher tracks the matched Phi nodes. 4174 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 4175 SmallSetVector<PHIPair, 8> &Matcher, 4176 PhiNodeSet &PhiNodesToMatch) { 4177 SmallVector<PHIPair, 8> WorkList; 4178 Matcher.insert({PHI, Candidate}); 4179 SmallSet<PHINode *, 8> MatchedPHIs; 4180 MatchedPHIs.insert(PHI); 4181 WorkList.push_back({PHI, Candidate}); 4182 SmallSet<PHIPair, 8> Visited; 4183 while (!WorkList.empty()) { 4184 auto Item = WorkList.pop_back_val(); 4185 if (!Visited.insert(Item).second) 4186 continue; 4187 // We iterate over all incoming values to Phi to compare them. 4188 // If values are different and both of them Phi and the first one is a 4189 // Phi we added (subject to match) and both of them is in the same basic 4190 // block then we can match our pair if values match. So we state that 4191 // these values match and add it to work list to verify that. 4192 for (auto *B : Item.first->blocks()) { 4193 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 4194 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 4195 if (FirstValue == SecondValue) 4196 continue; 4197 4198 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 4199 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 4200 4201 // One of them is not Phi or 4202 // The first one is not Phi node from the set we'd like to match or 4203 // Phi nodes from different basic blocks then 4204 // we will not be able to match. 4205 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 4206 FirstPhi->getParent() != SecondPhi->getParent()) 4207 return false; 4208 4209 // If we already matched them then continue. 4210 if (Matcher.count({FirstPhi, SecondPhi})) 4211 continue; 4212 // So the values are different and does not match. So we need them to 4213 // match. (But we register no more than one match per PHI node, so that 4214 // we won't later try to replace them twice.) 4215 if (MatchedPHIs.insert(FirstPhi).second) 4216 Matcher.insert({FirstPhi, SecondPhi}); 4217 // But me must check it. 4218 WorkList.push_back({FirstPhi, SecondPhi}); 4219 } 4220 } 4221 return true; 4222 } 4223 4224 /// For the given set of PHI nodes (in the SimplificationTracker) try 4225 /// to find their equivalents. 4226 /// Returns false if this matching fails and creation of new Phi is disabled. 4227 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 4228 unsigned &PhiNotMatchedCount) { 4229 // Matched and PhiNodesToMatch iterate their elements in a deterministic 4230 // order, so the replacements (ReplacePhi) are also done in a deterministic 4231 // order. 4232 SmallSetVector<PHIPair, 8> Matched; 4233 SmallPtrSet<PHINode *, 8> WillNotMatch; 4234 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 4235 while (PhiNodesToMatch.size()) { 4236 PHINode *PHI = *PhiNodesToMatch.begin(); 4237 4238 // Add us, if no Phi nodes in the basic block we do not match. 4239 WillNotMatch.clear(); 4240 WillNotMatch.insert(PHI); 4241 4242 // Traverse all Phis until we found equivalent or fail to do that. 4243 bool IsMatched = false; 4244 for (auto &P : PHI->getParent()->phis()) { 4245 // Skip new Phi nodes. 4246 if (PhiNodesToMatch.count(&P)) 4247 continue; 4248 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 4249 break; 4250 // If it does not match, collect all Phi nodes from matcher. 4251 // if we end up with no match, them all these Phi nodes will not match 4252 // later. 4253 for (auto M : Matched) 4254 WillNotMatch.insert(M.first); 4255 Matched.clear(); 4256 } 4257 if (IsMatched) { 4258 // Replace all matched values and erase them. 4259 for (auto MV : Matched) 4260 ST.ReplacePhi(MV.first, MV.second); 4261 Matched.clear(); 4262 continue; 4263 } 4264 // If we are not allowed to create new nodes then bail out. 4265 if (!AllowNewPhiNodes) 4266 return false; 4267 // Just remove all seen values in matcher. They will not match anything. 4268 PhiNotMatchedCount += WillNotMatch.size(); 4269 for (auto *P : WillNotMatch) 4270 PhiNodesToMatch.erase(P); 4271 } 4272 return true; 4273 } 4274 /// Fill the placeholders with values from predecessors and simplify them. 4275 void FillPlaceholders(FoldAddrToValueMapping &Map, 4276 SmallVectorImpl<Value *> &TraverseOrder, 4277 SimplificationTracker &ST) { 4278 while (!TraverseOrder.empty()) { 4279 Value *Current = TraverseOrder.pop_back_val(); 4280 assert(Map.contains(Current) && "No node to fill!!!"); 4281 Value *V = Map[Current]; 4282 4283 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 4284 // CurrentValue also must be Select. 4285 auto *CurrentSelect = cast<SelectInst>(Current); 4286 auto *TrueValue = CurrentSelect->getTrueValue(); 4287 assert(Map.contains(TrueValue) && "No True Value!"); 4288 Select->setTrueValue(ST.Get(Map[TrueValue])); 4289 auto *FalseValue = CurrentSelect->getFalseValue(); 4290 assert(Map.contains(FalseValue) && "No False Value!"); 4291 Select->setFalseValue(ST.Get(Map[FalseValue])); 4292 } else { 4293 // Must be a Phi node then. 4294 auto *PHI = cast<PHINode>(V); 4295 // Fill the Phi node with values from predecessors. 4296 for (auto *B : predecessors(PHI->getParent())) { 4297 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 4298 assert(Map.contains(PV) && "No predecessor Value!"); 4299 PHI->addIncoming(ST.Get(Map[PV]), B); 4300 } 4301 } 4302 Map[Current] = ST.Simplify(V); 4303 } 4304 } 4305 4306 /// Starting from original value recursively iterates over def-use chain up to 4307 /// known ending values represented in a map. For each traversed phi/select 4308 /// inserts a placeholder Phi or Select. 4309 /// Reports all new created Phi/Select nodes by adding them to set. 4310 /// Also reports and order in what values have been traversed. 4311 void InsertPlaceholders(FoldAddrToValueMapping &Map, 4312 SmallVectorImpl<Value *> &TraverseOrder, 4313 SimplificationTracker &ST) { 4314 SmallVector<Value *, 32> Worklist; 4315 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 4316 "Address must be a Phi or Select node"); 4317 auto *Dummy = PoisonValue::get(CommonType); 4318 Worklist.push_back(Original); 4319 while (!Worklist.empty()) { 4320 Value *Current = Worklist.pop_back_val(); 4321 // if it is already visited or it is an ending value then skip it. 4322 if (Map.contains(Current)) 4323 continue; 4324 TraverseOrder.push_back(Current); 4325 4326 // CurrentValue must be a Phi node or select. All others must be covered 4327 // by anchors. 4328 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 4329 // Is it OK to get metadata from OrigSelect?! 4330 // Create a Select placeholder with dummy value. 4331 SelectInst *Select = 4332 SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy, 4333 CurrentSelect->getName(), 4334 CurrentSelect->getIterator(), CurrentSelect); 4335 Map[Current] = Select; 4336 ST.insertNewSelect(Select); 4337 // We are interested in True and False values. 4338 Worklist.push_back(CurrentSelect->getTrueValue()); 4339 Worklist.push_back(CurrentSelect->getFalseValue()); 4340 } else { 4341 // It must be a Phi node then. 4342 PHINode *CurrentPhi = cast<PHINode>(Current); 4343 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 4344 PHINode *PHI = 4345 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator()); 4346 Map[Current] = PHI; 4347 ST.insertNewPhi(PHI); 4348 append_range(Worklist, CurrentPhi->incoming_values()); 4349 } 4350 } 4351 } 4352 4353 bool addrModeCombiningAllowed() { 4354 if (DisableComplexAddrModes) 4355 return false; 4356 switch (DifferentField) { 4357 default: 4358 return false; 4359 case ExtAddrMode::BaseRegField: 4360 return AddrSinkCombineBaseReg; 4361 case ExtAddrMode::BaseGVField: 4362 return AddrSinkCombineBaseGV; 4363 case ExtAddrMode::BaseOffsField: 4364 return AddrSinkCombineBaseOffs; 4365 case ExtAddrMode::ScaledRegField: 4366 return AddrSinkCombineScaledReg; 4367 } 4368 } 4369 }; 4370 } // end anonymous namespace 4371 4372 /// Try adding ScaleReg*Scale to the current addressing mode. 4373 /// Return true and update AddrMode if this addr mode is legal for the target, 4374 /// false if not. 4375 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 4376 unsigned Depth) { 4377 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 4378 // mode. Just process that directly. 4379 if (Scale == 1) 4380 return matchAddr(ScaleReg, Depth); 4381 4382 // If the scale is 0, it takes nothing to add this. 4383 if (Scale == 0) 4384 return true; 4385 4386 // If we already have a scale of this value, we can add to it, otherwise, we 4387 // need an available scale field. 4388 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 4389 return false; 4390 4391 ExtAddrMode TestAddrMode = AddrMode; 4392 4393 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 4394 // [A+B + A*7] -> [B+A*8]. 4395 TestAddrMode.Scale += Scale; 4396 TestAddrMode.ScaledReg = ScaleReg; 4397 4398 // If the new address isn't legal, bail out. 4399 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 4400 return false; 4401 4402 // It was legal, so commit it. 4403 AddrMode = TestAddrMode; 4404 4405 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 4406 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 4407 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 4408 // go any further: we can reuse it and cannot eliminate it. 4409 ConstantInt *CI = nullptr; 4410 Value *AddLHS = nullptr; 4411 if (isa<Instruction>(ScaleReg) && // not a constant expr. 4412 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 4413 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 4414 TestAddrMode.InBounds = false; 4415 TestAddrMode.ScaledReg = AddLHS; 4416 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 4417 4418 // If this addressing mode is legal, commit it and remember that we folded 4419 // this instruction. 4420 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 4421 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 4422 AddrMode = TestAddrMode; 4423 return true; 4424 } 4425 // Restore status quo. 4426 TestAddrMode = AddrMode; 4427 } 4428 4429 // If this is an add recurrence with a constant step, return the increment 4430 // instruction and the canonicalized step. 4431 auto GetConstantStep = 4432 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { 4433 auto *PN = dyn_cast<PHINode>(V); 4434 if (!PN) 4435 return std::nullopt; 4436 auto IVInc = getIVIncrement(PN, &LI); 4437 if (!IVInc) 4438 return std::nullopt; 4439 // TODO: The result of the intrinsics above is two-complement. However when 4440 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 4441 // If it has nuw or nsw flags, we need to make sure that these flags are 4442 // inferrable at the point of memory instruction. Otherwise we are replacing 4443 // well-defined two-complement computation with poison. Currently, to avoid 4444 // potentially complex analysis needed to prove this, we reject such cases. 4445 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 4446 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 4447 return std::nullopt; 4448 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 4449 return std::make_pair(IVInc->first, ConstantStep->getValue()); 4450 return std::nullopt; 4451 }; 4452 4453 // Try to account for the following special case: 4454 // 1. ScaleReg is an inductive variable; 4455 // 2. We use it with non-zero offset; 4456 // 3. IV's increment is available at the point of memory instruction. 4457 // 4458 // In this case, we may reuse the IV increment instead of the IV Phi to 4459 // achieve the following advantages: 4460 // 1. If IV step matches the offset, we will have no need in the offset; 4461 // 2. Even if they don't match, we will reduce the overlap of living IV 4462 // and IV increment, that will potentially lead to better register 4463 // assignment. 4464 if (AddrMode.BaseOffs) { 4465 if (auto IVStep = GetConstantStep(ScaleReg)) { 4466 Instruction *IVInc = IVStep->first; 4467 // The following assert is important to ensure a lack of infinite loops. 4468 // This transforms is (intentionally) the inverse of the one just above. 4469 // If they don't agree on the definition of an increment, we'd alternate 4470 // back and forth indefinitely. 4471 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 4472 APInt Step = IVStep->second; 4473 APInt Offset = Step * AddrMode.Scale; 4474 if (Offset.isSignedIntN(64)) { 4475 TestAddrMode.InBounds = false; 4476 TestAddrMode.ScaledReg = IVInc; 4477 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 4478 // If this addressing mode is legal, commit it.. 4479 // (Note that we defer the (expensive) domtree base legality check 4480 // to the very last possible point.) 4481 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 4482 getDTFn().dominates(IVInc, MemoryInst)) { 4483 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 4484 AddrMode = TestAddrMode; 4485 return true; 4486 } 4487 // Restore status quo. 4488 TestAddrMode = AddrMode; 4489 } 4490 } 4491 } 4492 4493 // Otherwise, just return what we have. 4494 return true; 4495 } 4496 4497 /// This is a little filter, which returns true if an addressing computation 4498 /// involving I might be folded into a load/store accessing it. 4499 /// This doesn't need to be perfect, but needs to accept at least 4500 /// the set of instructions that MatchOperationAddr can. 4501 static bool MightBeFoldableInst(Instruction *I) { 4502 switch (I->getOpcode()) { 4503 case Instruction::BitCast: 4504 case Instruction::AddrSpaceCast: 4505 // Don't touch identity bitcasts. 4506 if (I->getType() == I->getOperand(0)->getType()) 4507 return false; 4508 return I->getType()->isIntOrPtrTy(); 4509 case Instruction::PtrToInt: 4510 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4511 return true; 4512 case Instruction::IntToPtr: 4513 // We know the input is intptr_t, so this is foldable. 4514 return true; 4515 case Instruction::Add: 4516 return true; 4517 case Instruction::Mul: 4518 case Instruction::Shl: 4519 // Can only handle X*C and X << C. 4520 return isa<ConstantInt>(I->getOperand(1)); 4521 case Instruction::GetElementPtr: 4522 return true; 4523 default: 4524 return false; 4525 } 4526 } 4527 4528 /// Check whether or not \p Val is a legal instruction for \p TLI. 4529 /// \note \p Val is assumed to be the product of some type promotion. 4530 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4531 /// to be legal, as the non-promoted value would have had the same state. 4532 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4533 const DataLayout &DL, Value *Val) { 4534 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4535 if (!PromotedInst) 4536 return false; 4537 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4538 // If the ISDOpcode is undefined, it was undefined before the promotion. 4539 if (!ISDOpcode) 4540 return true; 4541 // Otherwise, check if the promoted instruction is legal or not. 4542 return TLI.isOperationLegalOrCustom( 4543 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4544 } 4545 4546 namespace { 4547 4548 /// Hepler class to perform type promotion. 4549 class TypePromotionHelper { 4550 /// Utility function to add a promoted instruction \p ExtOpnd to 4551 /// \p PromotedInsts and record the type of extension we have seen. 4552 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4553 Instruction *ExtOpnd, bool IsSExt) { 4554 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4555 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4556 if (It != PromotedInsts.end()) { 4557 // If the new extension is same as original, the information in 4558 // PromotedInsts[ExtOpnd] is still correct. 4559 if (It->second.getInt() == ExtTy) 4560 return; 4561 4562 // Now the new extension is different from old extension, we make 4563 // the type information invalid by setting extension type to 4564 // BothExtension. 4565 ExtTy = BothExtension; 4566 } 4567 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4568 } 4569 4570 /// Utility function to query the original type of instruction \p Opnd 4571 /// with a matched extension type. If the extension doesn't match, we 4572 /// cannot use the information we had on the original type. 4573 /// BothExtension doesn't match any extension type. 4574 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4575 Instruction *Opnd, bool IsSExt) { 4576 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4577 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4578 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4579 return It->second.getPointer(); 4580 return nullptr; 4581 } 4582 4583 /// Utility function to check whether or not a sign or zero extension 4584 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4585 /// either using the operands of \p Inst or promoting \p Inst. 4586 /// The type of the extension is defined by \p IsSExt. 4587 /// In other words, check if: 4588 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4589 /// #1 Promotion applies: 4590 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4591 /// #2 Operand reuses: 4592 /// ext opnd1 to ConsideredExtType. 4593 /// \p PromotedInsts maps the instructions to their type before promotion. 4594 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4595 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4596 4597 /// Utility function to determine if \p OpIdx should be promoted when 4598 /// promoting \p Inst. 4599 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4600 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4601 } 4602 4603 /// Utility function to promote the operand of \p Ext when this 4604 /// operand is a promotable trunc or sext or zext. 4605 /// \p PromotedInsts maps the instructions to their type before promotion. 4606 /// \p CreatedInstsCost[out] contains the cost of all instructions 4607 /// created to promote the operand of Ext. 4608 /// Newly added extensions are inserted in \p Exts. 4609 /// Newly added truncates are inserted in \p Truncs. 4610 /// Should never be called directly. 4611 /// \return The promoted value which is used instead of Ext. 4612 static Value *promoteOperandForTruncAndAnyExt( 4613 Instruction *Ext, TypePromotionTransaction &TPT, 4614 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4615 SmallVectorImpl<Instruction *> *Exts, 4616 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4617 4618 /// Utility function to promote the operand of \p Ext when this 4619 /// operand is promotable and is not a supported trunc or sext. 4620 /// \p PromotedInsts maps the instructions to their type before promotion. 4621 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4622 /// created to promote the operand of Ext. 4623 /// Newly added extensions are inserted in \p Exts. 4624 /// Newly added truncates are inserted in \p Truncs. 4625 /// Should never be called directly. 4626 /// \return The promoted value which is used instead of Ext. 4627 static Value *promoteOperandForOther(Instruction *Ext, 4628 TypePromotionTransaction &TPT, 4629 InstrToOrigTy &PromotedInsts, 4630 unsigned &CreatedInstsCost, 4631 SmallVectorImpl<Instruction *> *Exts, 4632 SmallVectorImpl<Instruction *> *Truncs, 4633 const TargetLowering &TLI, bool IsSExt); 4634 4635 /// \see promoteOperandForOther. 4636 static Value *signExtendOperandForOther( 4637 Instruction *Ext, TypePromotionTransaction &TPT, 4638 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4639 SmallVectorImpl<Instruction *> *Exts, 4640 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4641 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4642 Exts, Truncs, TLI, true); 4643 } 4644 4645 /// \see promoteOperandForOther. 4646 static Value *zeroExtendOperandForOther( 4647 Instruction *Ext, TypePromotionTransaction &TPT, 4648 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4649 SmallVectorImpl<Instruction *> *Exts, 4650 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4651 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4652 Exts, Truncs, TLI, false); 4653 } 4654 4655 public: 4656 /// Type for the utility function that promotes the operand of Ext. 4657 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4658 InstrToOrigTy &PromotedInsts, 4659 unsigned &CreatedInstsCost, 4660 SmallVectorImpl<Instruction *> *Exts, 4661 SmallVectorImpl<Instruction *> *Truncs, 4662 const TargetLowering &TLI); 4663 4664 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4665 /// action to promote the operand of \p Ext instead of using Ext. 4666 /// \return NULL if no promotable action is possible with the current 4667 /// sign extension. 4668 /// \p InsertedInsts keeps track of all the instructions inserted by the 4669 /// other CodeGenPrepare optimizations. This information is important 4670 /// because we do not want to promote these instructions as CodeGenPrepare 4671 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4672 /// \p PromotedInsts maps the instructions to their type before promotion. 4673 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4674 const TargetLowering &TLI, 4675 const InstrToOrigTy &PromotedInsts); 4676 }; 4677 4678 } // end anonymous namespace 4679 4680 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4681 Type *ConsideredExtType, 4682 const InstrToOrigTy &PromotedInsts, 4683 bool IsSExt) { 4684 // The promotion helper does not know how to deal with vector types yet. 4685 // To be able to fix that, we would need to fix the places where we 4686 // statically extend, e.g., constants and such. 4687 if (Inst->getType()->isVectorTy()) 4688 return false; 4689 4690 // We can always get through zext. 4691 if (isa<ZExtInst>(Inst)) 4692 return true; 4693 4694 // sext(sext) is ok too. 4695 if (IsSExt && isa<SExtInst>(Inst)) 4696 return true; 4697 4698 // We can get through binary operator, if it is legal. In other words, the 4699 // binary operator must have a nuw or nsw flag. 4700 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4701 if (isa<OverflowingBinaryOperator>(BinOp) && 4702 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4703 (IsSExt && BinOp->hasNoSignedWrap()))) 4704 return true; 4705 4706 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4707 if ((Inst->getOpcode() == Instruction::And || 4708 Inst->getOpcode() == Instruction::Or)) 4709 return true; 4710 4711 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4712 if (Inst->getOpcode() == Instruction::Xor) { 4713 // Make sure it is not a NOT. 4714 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4715 if (!Cst->getValue().isAllOnes()) 4716 return true; 4717 } 4718 4719 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4720 // It may change a poisoned value into a regular value, like 4721 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4722 // poisoned value regular value 4723 // It should be OK since undef covers valid value. 4724 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4725 return true; 4726 4727 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4728 // It may change a poisoned value into a regular value, like 4729 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4730 // poisoned value regular value 4731 // It should be OK since undef covers valid value. 4732 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4733 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4734 if (ExtInst->hasOneUse()) { 4735 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4736 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4737 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4738 if (Cst && 4739 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4740 return true; 4741 } 4742 } 4743 } 4744 4745 // Check if we can do the following simplification. 4746 // ext(trunc(opnd)) --> ext(opnd) 4747 if (!isa<TruncInst>(Inst)) 4748 return false; 4749 4750 Value *OpndVal = Inst->getOperand(0); 4751 // Check if we can use this operand in the extension. 4752 // If the type is larger than the result type of the extension, we cannot. 4753 if (!OpndVal->getType()->isIntegerTy() || 4754 OpndVal->getType()->getIntegerBitWidth() > 4755 ConsideredExtType->getIntegerBitWidth()) 4756 return false; 4757 4758 // If the operand of the truncate is not an instruction, we will not have 4759 // any information on the dropped bits. 4760 // (Actually we could for constant but it is not worth the extra logic). 4761 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4762 if (!Opnd) 4763 return false; 4764 4765 // Check if the source of the type is narrow enough. 4766 // I.e., check that trunc just drops extended bits of the same kind of 4767 // the extension. 4768 // #1 get the type of the operand and check the kind of the extended bits. 4769 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4770 if (OpndType) 4771 ; 4772 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4773 OpndType = Opnd->getOperand(0)->getType(); 4774 else 4775 return false; 4776 4777 // #2 check that the truncate just drops extended bits. 4778 return Inst->getType()->getIntegerBitWidth() >= 4779 OpndType->getIntegerBitWidth(); 4780 } 4781 4782 TypePromotionHelper::Action TypePromotionHelper::getAction( 4783 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4784 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4785 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4786 "Unexpected instruction type"); 4787 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4788 Type *ExtTy = Ext->getType(); 4789 bool IsSExt = isa<SExtInst>(Ext); 4790 // If the operand of the extension is not an instruction, we cannot 4791 // get through. 4792 // If it, check we can get through. 4793 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4794 return nullptr; 4795 4796 // Do not promote if the operand has been added by codegenprepare. 4797 // Otherwise, it means we are undoing an optimization that is likely to be 4798 // redone, thus causing potential infinite loop. 4799 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4800 return nullptr; 4801 4802 // SExt or Trunc instructions. 4803 // Return the related handler. 4804 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4805 isa<ZExtInst>(ExtOpnd)) 4806 return promoteOperandForTruncAndAnyExt; 4807 4808 // Regular instruction. 4809 // Abort early if we will have to insert non-free instructions. 4810 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4811 return nullptr; 4812 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4813 } 4814 4815 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4816 Instruction *SExt, TypePromotionTransaction &TPT, 4817 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4818 SmallVectorImpl<Instruction *> *Exts, 4819 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4820 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4821 // get through it and this method should not be called. 4822 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4823 Value *ExtVal = SExt; 4824 bool HasMergedNonFreeExt = false; 4825 if (isa<ZExtInst>(SExtOpnd)) { 4826 // Replace s|zext(zext(opnd)) 4827 // => zext(opnd). 4828 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4829 Value *ZExt = 4830 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4831 TPT.replaceAllUsesWith(SExt, ZExt); 4832 TPT.eraseInstruction(SExt); 4833 ExtVal = ZExt; 4834 } else { 4835 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4836 // => z|sext(opnd). 4837 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4838 } 4839 CreatedInstsCost = 0; 4840 4841 // Remove dead code. 4842 if (SExtOpnd->use_empty()) 4843 TPT.eraseInstruction(SExtOpnd); 4844 4845 // Check if the extension is still needed. 4846 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4847 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4848 if (ExtInst) { 4849 if (Exts) 4850 Exts->push_back(ExtInst); 4851 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4852 } 4853 return ExtVal; 4854 } 4855 4856 // At this point we have: ext ty opnd to ty. 4857 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4858 Value *NextVal = ExtInst->getOperand(0); 4859 TPT.eraseInstruction(ExtInst, NextVal); 4860 return NextVal; 4861 } 4862 4863 Value *TypePromotionHelper::promoteOperandForOther( 4864 Instruction *Ext, TypePromotionTransaction &TPT, 4865 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4866 SmallVectorImpl<Instruction *> *Exts, 4867 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4868 bool IsSExt) { 4869 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4870 // get through it and this method should not be called. 4871 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4872 CreatedInstsCost = 0; 4873 if (!ExtOpnd->hasOneUse()) { 4874 // ExtOpnd will be promoted. 4875 // All its uses, but Ext, will need to use a truncated value of the 4876 // promoted version. 4877 // Create the truncate now. 4878 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4879 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4880 // Insert it just after the definition. 4881 ITrunc->moveAfter(ExtOpnd); 4882 if (Truncs) 4883 Truncs->push_back(ITrunc); 4884 } 4885 4886 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4887 // Restore the operand of Ext (which has been replaced by the previous call 4888 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4889 TPT.setOperand(Ext, 0, ExtOpnd); 4890 } 4891 4892 // Get through the Instruction: 4893 // 1. Update its type. 4894 // 2. Replace the uses of Ext by Inst. 4895 // 3. Extend each operand that needs to be extended. 4896 4897 // Remember the original type of the instruction before promotion. 4898 // This is useful to know that the high bits are sign extended bits. 4899 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4900 // Step #1. 4901 TPT.mutateType(ExtOpnd, Ext->getType()); 4902 // Step #2. 4903 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4904 // Step #3. 4905 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4906 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4907 ++OpIdx) { 4908 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4909 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4910 !shouldExtOperand(ExtOpnd, OpIdx)) { 4911 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4912 continue; 4913 } 4914 // Check if we can statically extend the operand. 4915 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4916 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4917 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4918 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4919 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4920 : Cst->getValue().zext(BitWidth); 4921 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4922 continue; 4923 } 4924 // UndefValue are typed, so we have to statically sign extend them. 4925 if (isa<UndefValue>(Opnd)) { 4926 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4927 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4928 continue; 4929 } 4930 4931 // Otherwise we have to explicitly sign extend the operand. 4932 Value *ValForExtOpnd = IsSExt 4933 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType()) 4934 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType()); 4935 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4936 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd); 4937 if (!InstForExtOpnd) 4938 continue; 4939 4940 if (Exts) 4941 Exts->push_back(InstForExtOpnd); 4942 4943 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd); 4944 } 4945 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4946 TPT.eraseInstruction(Ext); 4947 return ExtOpnd; 4948 } 4949 4950 /// Check whether or not promoting an instruction to a wider type is profitable. 4951 /// \p NewCost gives the cost of extension instructions created by the 4952 /// promotion. 4953 /// \p OldCost gives the cost of extension instructions before the promotion 4954 /// plus the number of instructions that have been 4955 /// matched in the addressing mode the promotion. 4956 /// \p PromotedOperand is the value that has been promoted. 4957 /// \return True if the promotion is profitable, false otherwise. 4958 bool AddressingModeMatcher::isPromotionProfitable( 4959 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4960 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4961 << '\n'); 4962 // The cost of the new extensions is greater than the cost of the 4963 // old extension plus what we folded. 4964 // This is not profitable. 4965 if (NewCost > OldCost) 4966 return false; 4967 if (NewCost < OldCost) 4968 return true; 4969 // The promotion is neutral but it may help folding the sign extension in 4970 // loads for instance. 4971 // Check that we did not create an illegal instruction. 4972 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4973 } 4974 4975 /// Given an instruction or constant expr, see if we can fold the operation 4976 /// into the addressing mode. If so, update the addressing mode and return 4977 /// true, otherwise return false without modifying AddrMode. 4978 /// If \p MovedAway is not NULL, it contains the information of whether or 4979 /// not AddrInst has to be folded into the addressing mode on success. 4980 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4981 /// because it has been moved away. 4982 /// Thus AddrInst must not be added in the matched instructions. 4983 /// This state can happen when AddrInst is a sext, since it may be moved away. 4984 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4985 /// not be referenced anymore. 4986 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4987 unsigned Depth, 4988 bool *MovedAway) { 4989 // Avoid exponential behavior on extremely deep expression trees. 4990 if (Depth >= 5) 4991 return false; 4992 4993 // By default, all matched instructions stay in place. 4994 if (MovedAway) 4995 *MovedAway = false; 4996 4997 switch (Opcode) { 4998 case Instruction::PtrToInt: 4999 // PtrToInt is always a noop, as we know that the int type is pointer sized. 5000 return matchAddr(AddrInst->getOperand(0), Depth); 5001 case Instruction::IntToPtr: { 5002 auto AS = AddrInst->getType()->getPointerAddressSpace(); 5003 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 5004 // This inttoptr is a no-op if the integer type is pointer sized. 5005 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 5006 return matchAddr(AddrInst->getOperand(0), Depth); 5007 return false; 5008 } 5009 case Instruction::BitCast: 5010 // BitCast is always a noop, and we can handle it as long as it is 5011 // int->int or pointer->pointer (we don't want int<->fp or something). 5012 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 5013 // Don't touch identity bitcasts. These were probably put here by LSR, 5014 // and we don't want to mess around with them. Assume it knows what it 5015 // is doing. 5016 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 5017 return matchAddr(AddrInst->getOperand(0), Depth); 5018 return false; 5019 case Instruction::AddrSpaceCast: { 5020 unsigned SrcAS = 5021 AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 5022 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 5023 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 5024 return matchAddr(AddrInst->getOperand(0), Depth); 5025 return false; 5026 } 5027 case Instruction::Add: { 5028 // Check to see if we can merge in one operand, then the other. If so, we 5029 // win. 5030 ExtAddrMode BackupAddrMode = AddrMode; 5031 unsigned OldSize = AddrModeInsts.size(); 5032 // Start a transaction at this point. 5033 // The LHS may match but not the RHS. 5034 // Therefore, we need a higher level restoration point to undo partially 5035 // matched operation. 5036 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5037 TPT.getRestorationPoint(); 5038 5039 // Try to match an integer constant second to increase its chance of ending 5040 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. 5041 int First = 0, Second = 1; 5042 if (isa<ConstantInt>(AddrInst->getOperand(First)) 5043 && !isa<ConstantInt>(AddrInst->getOperand(Second))) 5044 std::swap(First, Second); 5045 AddrMode.InBounds = false; 5046 if (matchAddr(AddrInst->getOperand(First), Depth + 1) && 5047 matchAddr(AddrInst->getOperand(Second), Depth + 1)) 5048 return true; 5049 5050 // Restore the old addr mode info. 5051 AddrMode = BackupAddrMode; 5052 AddrModeInsts.resize(OldSize); 5053 TPT.rollback(LastKnownGood); 5054 5055 // Otherwise this was over-aggressive. Try merging operands in the opposite 5056 // order. 5057 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && 5058 matchAddr(AddrInst->getOperand(First), Depth + 1)) 5059 return true; 5060 5061 // Otherwise we definitely can't merge the ADD in. 5062 AddrMode = BackupAddrMode; 5063 AddrModeInsts.resize(OldSize); 5064 TPT.rollback(LastKnownGood); 5065 break; 5066 } 5067 // case Instruction::Or: 5068 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 5069 // break; 5070 case Instruction::Mul: 5071 case Instruction::Shl: { 5072 // Can only handle X*C and X << C. 5073 AddrMode.InBounds = false; 5074 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 5075 if (!RHS || RHS->getBitWidth() > 64) 5076 return false; 5077 int64_t Scale = Opcode == Instruction::Shl 5078 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 5079 : RHS->getSExtValue(); 5080 5081 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 5082 } 5083 case Instruction::GetElementPtr: { 5084 // Scan the GEP. We check it if it contains constant offsets and at most 5085 // one variable offset. 5086 int VariableOperand = -1; 5087 unsigned VariableScale = 0; 5088 5089 int64_t ConstantOffset = 0; 5090 gep_type_iterator GTI = gep_type_begin(AddrInst); 5091 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 5092 if (StructType *STy = GTI.getStructTypeOrNull()) { 5093 const StructLayout *SL = DL.getStructLayout(STy); 5094 unsigned Idx = 5095 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 5096 ConstantOffset += SL->getElementOffset(Idx); 5097 } else { 5098 TypeSize TS = GTI.getSequentialElementStride(DL); 5099 if (TS.isNonZero()) { 5100 // The optimisations below currently only work for fixed offsets. 5101 if (TS.isScalable()) 5102 return false; 5103 int64_t TypeSize = TS.getFixedValue(); 5104 if (ConstantInt *CI = 5105 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 5106 const APInt &CVal = CI->getValue(); 5107 if (CVal.getSignificantBits() <= 64) { 5108 ConstantOffset += CVal.getSExtValue() * TypeSize; 5109 continue; 5110 } 5111 } 5112 // We only allow one variable index at the moment. 5113 if (VariableOperand != -1) 5114 return false; 5115 5116 // Remember the variable index. 5117 VariableOperand = i; 5118 VariableScale = TypeSize; 5119 } 5120 } 5121 } 5122 5123 // A common case is for the GEP to only do a constant offset. In this case, 5124 // just add it to the disp field and check validity. 5125 if (VariableOperand == -1) { 5126 AddrMode.BaseOffs += ConstantOffset; 5127 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { 5128 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 5129 AddrMode.InBounds = false; 5130 return true; 5131 } 5132 AddrMode.BaseOffs -= ConstantOffset; 5133 5134 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 5135 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 5136 ConstantOffset > 0) { 5137 // Record GEPs with non-zero offsets as candidates for splitting in 5138 // the event that the offset cannot fit into the r+i addressing mode. 5139 // Simple and common case that only one GEP is used in calculating the 5140 // address for the memory access. 5141 Value *Base = AddrInst->getOperand(0); 5142 auto *BaseI = dyn_cast<Instruction>(Base); 5143 auto *GEP = cast<GetElementPtrInst>(AddrInst); 5144 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 5145 (BaseI && !isa<CastInst>(BaseI) && 5146 !isa<GetElementPtrInst>(BaseI))) { 5147 // Make sure the parent block allows inserting non-PHI instructions 5148 // before the terminator. 5149 BasicBlock *Parent = BaseI ? BaseI->getParent() 5150 : &GEP->getFunction()->getEntryBlock(); 5151 if (!Parent->getTerminator()->isEHPad()) 5152 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 5153 } 5154 } 5155 5156 return false; 5157 } 5158 5159 // Save the valid addressing mode in case we can't match. 5160 ExtAddrMode BackupAddrMode = AddrMode; 5161 unsigned OldSize = AddrModeInsts.size(); 5162 5163 // See if the scale and offset amount is valid for this target. 5164 AddrMode.BaseOffs += ConstantOffset; 5165 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 5166 AddrMode.InBounds = false; 5167 5168 // Match the base operand of the GEP. 5169 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { 5170 // If it couldn't be matched, just stuff the value in a register. 5171 if (AddrMode.HasBaseReg) { 5172 AddrMode = BackupAddrMode; 5173 AddrModeInsts.resize(OldSize); 5174 return false; 5175 } 5176 AddrMode.HasBaseReg = true; 5177 AddrMode.BaseReg = AddrInst->getOperand(0); 5178 } 5179 5180 // Match the remaining variable portion of the GEP. 5181 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 5182 Depth)) { 5183 // If it couldn't be matched, try stuffing the base into a register 5184 // instead of matching it, and retrying the match of the scale. 5185 AddrMode = BackupAddrMode; 5186 AddrModeInsts.resize(OldSize); 5187 if (AddrMode.HasBaseReg) 5188 return false; 5189 AddrMode.HasBaseReg = true; 5190 AddrMode.BaseReg = AddrInst->getOperand(0); 5191 AddrMode.BaseOffs += ConstantOffset; 5192 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 5193 VariableScale, Depth)) { 5194 // If even that didn't work, bail. 5195 AddrMode = BackupAddrMode; 5196 AddrModeInsts.resize(OldSize); 5197 return false; 5198 } 5199 } 5200 5201 return true; 5202 } 5203 case Instruction::SExt: 5204 case Instruction::ZExt: { 5205 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 5206 if (!Ext) 5207 return false; 5208 5209 // Try to move this ext out of the way of the addressing mode. 5210 // Ask for a method for doing so. 5211 TypePromotionHelper::Action TPH = 5212 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 5213 if (!TPH) 5214 return false; 5215 5216 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5217 TPT.getRestorationPoint(); 5218 unsigned CreatedInstsCost = 0; 5219 unsigned ExtCost = !TLI.isExtFree(Ext); 5220 Value *PromotedOperand = 5221 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 5222 // SExt has been moved away. 5223 // Thus either it will be rematched later in the recursive calls or it is 5224 // gone. Anyway, we must not fold it into the addressing mode at this point. 5225 // E.g., 5226 // op = add opnd, 1 5227 // idx = ext op 5228 // addr = gep base, idx 5229 // is now: 5230 // promotedOpnd = ext opnd <- no match here 5231 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 5232 // addr = gep base, op <- match 5233 if (MovedAway) 5234 *MovedAway = true; 5235 5236 assert(PromotedOperand && 5237 "TypePromotionHelper should have filtered out those cases"); 5238 5239 ExtAddrMode BackupAddrMode = AddrMode; 5240 unsigned OldSize = AddrModeInsts.size(); 5241 5242 if (!matchAddr(PromotedOperand, Depth) || 5243 // The total of the new cost is equal to the cost of the created 5244 // instructions. 5245 // The total of the old cost is equal to the cost of the extension plus 5246 // what we have saved in the addressing mode. 5247 !isPromotionProfitable(CreatedInstsCost, 5248 ExtCost + (AddrModeInsts.size() - OldSize), 5249 PromotedOperand)) { 5250 AddrMode = BackupAddrMode; 5251 AddrModeInsts.resize(OldSize); 5252 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 5253 TPT.rollback(LastKnownGood); 5254 return false; 5255 } 5256 return true; 5257 } 5258 case Instruction::Call: 5259 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) { 5260 if (II->getIntrinsicID() == Intrinsic::threadlocal_address) { 5261 GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0)); 5262 if (TLI.addressingModeSupportsTLS(GV)) 5263 return matchAddr(AddrInst->getOperand(0), Depth); 5264 } 5265 } 5266 break; 5267 } 5268 return false; 5269 } 5270 5271 /// If we can, try to add the value of 'Addr' into the current addressing mode. 5272 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 5273 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 5274 /// for the target. 5275 /// 5276 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 5277 // Start a transaction at this point that we will rollback if the matching 5278 // fails. 5279 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5280 TPT.getRestorationPoint(); 5281 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 5282 if (CI->getValue().isSignedIntN(64)) { 5283 // Fold in immediates if legal for the target. 5284 AddrMode.BaseOffs += CI->getSExtValue(); 5285 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5286 return true; 5287 AddrMode.BaseOffs -= CI->getSExtValue(); 5288 } 5289 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 5290 // If this is a global variable, try to fold it into the addressing mode. 5291 if (!AddrMode.BaseGV) { 5292 AddrMode.BaseGV = GV; 5293 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5294 return true; 5295 AddrMode.BaseGV = nullptr; 5296 } 5297 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 5298 ExtAddrMode BackupAddrMode = AddrMode; 5299 unsigned OldSize = AddrModeInsts.size(); 5300 5301 // Check to see if it is possible to fold this operation. 5302 bool MovedAway = false; 5303 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 5304 // This instruction may have been moved away. If so, there is nothing 5305 // to check here. 5306 if (MovedAway) 5307 return true; 5308 // Okay, it's possible to fold this. Check to see if it is actually 5309 // *profitable* to do so. We use a simple cost model to avoid increasing 5310 // register pressure too much. 5311 if (I->hasOneUse() || 5312 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 5313 AddrModeInsts.push_back(I); 5314 return true; 5315 } 5316 5317 // It isn't profitable to do this, roll back. 5318 AddrMode = BackupAddrMode; 5319 AddrModeInsts.resize(OldSize); 5320 TPT.rollback(LastKnownGood); 5321 } 5322 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 5323 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 5324 return true; 5325 TPT.rollback(LastKnownGood); 5326 } else if (isa<ConstantPointerNull>(Addr)) { 5327 // Null pointer gets folded without affecting the addressing mode. 5328 return true; 5329 } 5330 5331 // Worse case, the target should support [reg] addressing modes. :) 5332 if (!AddrMode.HasBaseReg) { 5333 AddrMode.HasBaseReg = true; 5334 AddrMode.BaseReg = Addr; 5335 // Still check for legality in case the target supports [imm] but not [i+r]. 5336 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5337 return true; 5338 AddrMode.HasBaseReg = false; 5339 AddrMode.BaseReg = nullptr; 5340 } 5341 5342 // If the base register is already taken, see if we can do [r+r]. 5343 if (AddrMode.Scale == 0) { 5344 AddrMode.Scale = 1; 5345 AddrMode.ScaledReg = Addr; 5346 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5347 return true; 5348 AddrMode.Scale = 0; 5349 AddrMode.ScaledReg = nullptr; 5350 } 5351 // Couldn't match. 5352 TPT.rollback(LastKnownGood); 5353 return false; 5354 } 5355 5356 /// Check to see if all uses of OpVal by the specified inline asm call are due 5357 /// to memory operands. If so, return true, otherwise return false. 5358 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 5359 const TargetLowering &TLI, 5360 const TargetRegisterInfo &TRI) { 5361 const Function *F = CI->getFunction(); 5362 TargetLowering::AsmOperandInfoVector TargetConstraints = 5363 TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI); 5364 5365 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5366 // Compute the constraint code and ConstraintType to use. 5367 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5368 5369 // If this asm operand is our Value*, and if it isn't an indirect memory 5370 // operand, we can't fold it! TODO: Also handle C_Address? 5371 if (OpInfo.CallOperandVal == OpVal && 5372 (OpInfo.ConstraintType != TargetLowering::C_Memory || 5373 !OpInfo.isIndirect)) 5374 return false; 5375 } 5376 5377 return true; 5378 } 5379 5380 /// Recursively walk all the uses of I until we find a memory use. 5381 /// If we find an obviously non-foldable instruction, return true. 5382 /// Add accessed addresses and types to MemoryUses. 5383 static bool FindAllMemoryUses( 5384 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5385 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 5386 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 5387 BlockFrequencyInfo *BFI, unsigned &SeenInsts) { 5388 // If we already considered this instruction, we're done. 5389 if (!ConsideredInsts.insert(I).second) 5390 return false; 5391 5392 // If this is an obviously unfoldable instruction, bail out. 5393 if (!MightBeFoldableInst(I)) 5394 return true; 5395 5396 // Loop over all the uses, recursively processing them. 5397 for (Use &U : I->uses()) { 5398 // Conservatively return true if we're seeing a large number or a deep chain 5399 // of users. This avoids excessive compilation times in pathological cases. 5400 if (SeenInsts++ >= MaxAddressUsersToScan) 5401 return true; 5402 5403 Instruction *UserI = cast<Instruction>(U.getUser()); 5404 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 5405 MemoryUses.push_back({&U, LI->getType()}); 5406 continue; 5407 } 5408 5409 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 5410 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 5411 return true; // Storing addr, not into addr. 5412 MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); 5413 continue; 5414 } 5415 5416 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 5417 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 5418 return true; // Storing addr, not into addr. 5419 MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); 5420 continue; 5421 } 5422 5423 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 5424 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 5425 return true; // Storing addr, not into addr. 5426 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); 5427 continue; 5428 } 5429 5430 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 5431 if (CI->hasFnAttr(Attribute::Cold)) { 5432 // If this is a cold call, we can sink the addressing calculation into 5433 // the cold path. See optimizeCallInst 5434 bool OptForSize = 5435 OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 5436 if (!OptForSize) 5437 continue; 5438 } 5439 5440 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 5441 if (!IA) 5442 return true; 5443 5444 // If this is a memory operand, we're cool, otherwise bail out. 5445 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 5446 return true; 5447 continue; 5448 } 5449 5450 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5451 PSI, BFI, SeenInsts)) 5452 return true; 5453 } 5454 5455 return false; 5456 } 5457 5458 static bool FindAllMemoryUses( 5459 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5460 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, 5461 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 5462 unsigned SeenInsts = 0; 5463 SmallPtrSet<Instruction *, 16> ConsideredInsts; 5464 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5465 PSI, BFI, SeenInsts); 5466 } 5467 5468 5469 /// Return true if Val is already known to be live at the use site that we're 5470 /// folding it into. If so, there is no cost to include it in the addressing 5471 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 5472 /// instruction already. 5473 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, 5474 Value *KnownLive1, 5475 Value *KnownLive2) { 5476 // If Val is either of the known-live values, we know it is live! 5477 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 5478 return true; 5479 5480 // All values other than instructions and arguments (e.g. constants) are live. 5481 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) 5482 return true; 5483 5484 // If Val is a constant sized alloca in the entry block, it is live, this is 5485 // true because it is just a reference to the stack/frame pointer, which is 5486 // live for the whole function. 5487 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 5488 if (AI->isStaticAlloca()) 5489 return true; 5490 5491 // Check to see if this value is already used in the memory instruction's 5492 // block. If so, it's already live into the block at the very least, so we 5493 // can reasonably fold it. 5494 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 5495 } 5496 5497 /// It is possible for the addressing mode of the machine to fold the specified 5498 /// instruction into a load or store that ultimately uses it. 5499 /// However, the specified instruction has multiple uses. 5500 /// Given this, it may actually increase register pressure to fold it 5501 /// into the load. For example, consider this code: 5502 /// 5503 /// X = ... 5504 /// Y = X+1 5505 /// use(Y) -> nonload/store 5506 /// Z = Y+1 5507 /// load Z 5508 /// 5509 /// In this case, Y has multiple uses, and can be folded into the load of Z 5510 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 5511 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 5512 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 5513 /// number of computations either. 5514 /// 5515 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 5516 /// X was live across 'load Z' for other reasons, we actually *would* want to 5517 /// fold the addressing mode in the Z case. This would make Y die earlier. 5518 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( 5519 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { 5520 if (IgnoreProfitability) 5521 return true; 5522 5523 // AMBefore is the addressing mode before this instruction was folded into it, 5524 // and AMAfter is the addressing mode after the instruction was folded. Get 5525 // the set of registers referenced by AMAfter and subtract out those 5526 // referenced by AMBefore: this is the set of values which folding in this 5527 // address extends the lifetime of. 5528 // 5529 // Note that there are only two potential values being referenced here, 5530 // BaseReg and ScaleReg (global addresses are always available, as are any 5531 // folded immediates). 5532 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5533 5534 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5535 // lifetime wasn't extended by adding this instruction. 5536 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5537 BaseReg = nullptr; 5538 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5539 ScaledReg = nullptr; 5540 5541 // If folding this instruction (and it's subexprs) didn't extend any live 5542 // ranges, we're ok with it. 5543 if (!BaseReg && !ScaledReg) 5544 return true; 5545 5546 // If all uses of this instruction can have the address mode sunk into them, 5547 // we can remove the addressing mode and effectively trade one live register 5548 // for another (at worst.) In this context, folding an addressing mode into 5549 // the use is just a particularly nice way of sinking it. 5550 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; 5551 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) 5552 return false; // Has a non-memory, non-foldable use! 5553 5554 // Now that we know that all uses of this instruction are part of a chain of 5555 // computation involving only operations that could theoretically be folded 5556 // into a memory use, loop over each of these memory operation uses and see 5557 // if they could *actually* fold the instruction. The assumption is that 5558 // addressing modes are cheap and that duplicating the computation involved 5559 // many times is worthwhile, even on a fastpath. For sinking candidates 5560 // (i.e. cold call sites), this serves as a way to prevent excessive code 5561 // growth since most architectures have some reasonable small and fast way to 5562 // compute an effective address. (i.e LEA on x86) 5563 SmallVector<Instruction *, 32> MatchedAddrModeInsts; 5564 for (const std::pair<Use *, Type *> &Pair : MemoryUses) { 5565 Value *Address = Pair.first->get(); 5566 Instruction *UserI = cast<Instruction>(Pair.first->getUser()); 5567 Type *AddressAccessTy = Pair.second; 5568 unsigned AS = Address->getType()->getPointerAddressSpace(); 5569 5570 // Do a match against the root of this address, ignoring profitability. This 5571 // will tell us if the addressing mode for the memory operation will 5572 // *actually* cover the shared instruction. 5573 ExtAddrMode Result; 5574 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5575 0); 5576 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5577 TPT.getRestorationPoint(); 5578 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5579 AddressAccessTy, AS, UserI, Result, 5580 InsertedInsts, PromotedInsts, TPT, 5581 LargeOffsetGEP, OptSize, PSI, BFI); 5582 Matcher.IgnoreProfitability = true; 5583 bool Success = Matcher.matchAddr(Address, 0); 5584 (void)Success; 5585 assert(Success && "Couldn't select *anything*?"); 5586 5587 // The match was to check the profitability, the changes made are not 5588 // part of the original matcher. Therefore, they should be dropped 5589 // otherwise the original matcher will not present the right state. 5590 TPT.rollback(LastKnownGood); 5591 5592 // If the match didn't cover I, then it won't be shared by it. 5593 if (!is_contained(MatchedAddrModeInsts, I)) 5594 return false; 5595 5596 MatchedAddrModeInsts.clear(); 5597 } 5598 5599 return true; 5600 } 5601 5602 /// Return true if the specified values are defined in a 5603 /// different basic block than BB. 5604 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5605 if (Instruction *I = dyn_cast<Instruction>(V)) 5606 return I->getParent() != BB; 5607 return false; 5608 } 5609 5610 /// Sink addressing mode computation immediate before MemoryInst if doing so 5611 /// can be done without increasing register pressure. The need for the 5612 /// register pressure constraint means this can end up being an all or nothing 5613 /// decision for all uses of the same addressing computation. 5614 /// 5615 /// Load and Store Instructions often have addressing modes that can do 5616 /// significant amounts of computation. As such, instruction selection will try 5617 /// to get the load or store to do as much computation as possible for the 5618 /// program. The problem is that isel can only see within a single block. As 5619 /// such, we sink as much legal addressing mode work into the block as possible. 5620 /// 5621 /// This method is used to optimize both load/store and inline asms with memory 5622 /// operands. It's also used to sink addressing computations feeding into cold 5623 /// call sites into their (cold) basic block. 5624 /// 5625 /// The motivation for handling sinking into cold blocks is that doing so can 5626 /// both enable other address mode sinking (by satisfying the register pressure 5627 /// constraint above), and reduce register pressure globally (by removing the 5628 /// addressing mode computation from the fast path entirely.). 5629 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5630 Type *AccessTy, unsigned AddrSpace) { 5631 Value *Repl = Addr; 5632 5633 // Try to collapse single-value PHI nodes. This is necessary to undo 5634 // unprofitable PRE transformations. 5635 SmallVector<Value *, 8> worklist; 5636 SmallPtrSet<Value *, 16> Visited; 5637 worklist.push_back(Addr); 5638 5639 // Use a worklist to iteratively look through PHI and select nodes, and 5640 // ensure that the addressing mode obtained from the non-PHI/select roots of 5641 // the graph are compatible. 5642 bool PhiOrSelectSeen = false; 5643 SmallVector<Instruction *, 16> AddrModeInsts; 5644 const SimplifyQuery SQ(*DL, TLInfo); 5645 AddressingModeCombiner AddrModes(SQ, Addr); 5646 TypePromotionTransaction TPT(RemovedInsts); 5647 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5648 TPT.getRestorationPoint(); 5649 while (!worklist.empty()) { 5650 Value *V = worklist.pop_back_val(); 5651 5652 // We allow traversing cyclic Phi nodes. 5653 // In case of success after this loop we ensure that traversing through 5654 // Phi nodes ends up with all cases to compute address of the form 5655 // BaseGV + Base + Scale * Index + Offset 5656 // where Scale and Offset are constans and BaseGV, Base and Index 5657 // are exactly the same Values in all cases. 5658 // It means that BaseGV, Scale and Offset dominate our memory instruction 5659 // and have the same value as they had in address computation represented 5660 // as Phi. So we can safely sink address computation to memory instruction. 5661 if (!Visited.insert(V).second) 5662 continue; 5663 5664 // For a PHI node, push all of its incoming values. 5665 if (PHINode *P = dyn_cast<PHINode>(V)) { 5666 append_range(worklist, P->incoming_values()); 5667 PhiOrSelectSeen = true; 5668 continue; 5669 } 5670 // Similar for select. 5671 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5672 worklist.push_back(SI->getFalseValue()); 5673 worklist.push_back(SI->getTrueValue()); 5674 PhiOrSelectSeen = true; 5675 continue; 5676 } 5677 5678 // For non-PHIs, determine the addressing mode being computed. Note that 5679 // the result may differ depending on what other uses our candidate 5680 // addressing instructions might have. 5681 AddrModeInsts.clear(); 5682 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5683 0); 5684 // Defer the query (and possible computation of) the dom tree to point of 5685 // actual use. It's expected that most address matches don't actually need 5686 // the domtree. 5687 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5688 Function *F = MemoryInst->getParent()->getParent(); 5689 return this->getDT(*F); 5690 }; 5691 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5692 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5693 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5694 BFI.get()); 5695 5696 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5697 if (GEP && !NewGEPBases.count(GEP)) { 5698 // If splitting the underlying data structure can reduce the offset of a 5699 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5700 // previously split data structures. 5701 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5702 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5703 } 5704 5705 NewAddrMode.OriginalValue = V; 5706 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5707 break; 5708 } 5709 5710 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5711 // or we have multiple but either couldn't combine them or combining them 5712 // wouldn't do anything useful, bail out now. 5713 if (!AddrModes.combineAddrModes()) { 5714 TPT.rollback(LastKnownGood); 5715 return false; 5716 } 5717 bool Modified = TPT.commit(); 5718 5719 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5720 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5721 5722 // If all the instructions matched are already in this BB, don't do anything. 5723 // If we saw a Phi node then it is not local definitely, and if we saw a 5724 // select then we want to push the address calculation past it even if it's 5725 // already in this BB. 5726 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5727 return IsNonLocalValue(V, MemoryInst->getParent()); 5728 })) { 5729 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5730 << "\n"); 5731 return Modified; 5732 } 5733 5734 // Insert this computation right after this user. Since our caller is 5735 // scanning from the top of the BB to the bottom, reuse of the expr are 5736 // guaranteed to happen later. 5737 IRBuilder<> Builder(MemoryInst); 5738 5739 // Now that we determined the addressing expression we want to use and know 5740 // that we have to sink it into this block. Check to see if we have already 5741 // done this for some other load/store instr in this block. If so, reuse 5742 // the computation. Before attempting reuse, check if the address is valid 5743 // as it may have been erased. 5744 5745 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5746 5747 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5748 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5749 if (SunkAddr) { 5750 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5751 << " for " << *MemoryInst << "\n"); 5752 if (SunkAddr->getType() != Addr->getType()) { 5753 if (SunkAddr->getType()->getPointerAddressSpace() != 5754 Addr->getType()->getPointerAddressSpace() && 5755 !DL->isNonIntegralPointerType(Addr->getType())) { 5756 // There are two reasons the address spaces might not match: a no-op 5757 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5758 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5759 // TODO: allow bitcast between different address space pointers with the 5760 // same size. 5761 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5762 SunkAddr = 5763 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5764 } else 5765 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5766 } 5767 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5768 SubtargetInfo->addrSinkUsingGEPs())) { 5769 // By default, we use the GEP-based method when AA is used later. This 5770 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5771 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5772 << " for " << *MemoryInst << "\n"); 5773 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5774 5775 // First, find the pointer. 5776 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5777 ResultPtr = AddrMode.BaseReg; 5778 AddrMode.BaseReg = nullptr; 5779 } 5780 5781 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5782 // We can't add more than one pointer together, nor can we scale a 5783 // pointer (both of which seem meaningless). 5784 if (ResultPtr || AddrMode.Scale != 1) 5785 return Modified; 5786 5787 ResultPtr = AddrMode.ScaledReg; 5788 AddrMode.Scale = 0; 5789 } 5790 5791 // It is only safe to sign extend the BaseReg if we know that the math 5792 // required to create it did not overflow before we extend it. Since 5793 // the original IR value was tossed in favor of a constant back when 5794 // the AddrMode was created we need to bail out gracefully if widths 5795 // do not match instead of extending it. 5796 // 5797 // (See below for code to add the scale.) 5798 if (AddrMode.Scale) { 5799 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5800 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5801 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5802 return Modified; 5803 } 5804 5805 GlobalValue *BaseGV = AddrMode.BaseGV; 5806 if (BaseGV != nullptr) { 5807 if (ResultPtr) 5808 return Modified; 5809 5810 if (BaseGV->isThreadLocal()) { 5811 ResultPtr = Builder.CreateThreadLocalAddress(BaseGV); 5812 } else { 5813 ResultPtr = BaseGV; 5814 } 5815 } 5816 5817 // If the real base value actually came from an inttoptr, then the matcher 5818 // will look through it and provide only the integer value. In that case, 5819 // use it here. 5820 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5821 if (!ResultPtr && AddrMode.BaseReg) { 5822 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5823 "sunkaddr"); 5824 AddrMode.BaseReg = nullptr; 5825 } else if (!ResultPtr && AddrMode.Scale == 1) { 5826 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5827 "sunkaddr"); 5828 AddrMode.Scale = 0; 5829 } 5830 } 5831 5832 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && 5833 !AddrMode.BaseOffs) { 5834 SunkAddr = Constant::getNullValue(Addr->getType()); 5835 } else if (!ResultPtr) { 5836 return Modified; 5837 } else { 5838 Type *I8PtrTy = 5839 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace()); 5840 5841 // Start with the base register. Do this first so that subsequent address 5842 // matching finds it last, which will prevent it from trying to match it 5843 // as the scaled value in case it happens to be a mul. That would be 5844 // problematic if we've sunk a different mul for the scale, because then 5845 // we'd end up sinking both muls. 5846 if (AddrMode.BaseReg) { 5847 Value *V = AddrMode.BaseReg; 5848 if (V->getType() != IntPtrTy) 5849 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5850 5851 ResultIndex = V; 5852 } 5853 5854 // Add the scale value. 5855 if (AddrMode.Scale) { 5856 Value *V = AddrMode.ScaledReg; 5857 if (V->getType() == IntPtrTy) { 5858 // done. 5859 } else { 5860 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5861 cast<IntegerType>(V->getType())->getBitWidth() && 5862 "We can't transform if ScaledReg is too narrow"); 5863 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5864 } 5865 5866 if (AddrMode.Scale != 1) 5867 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5868 "sunkaddr"); 5869 if (ResultIndex) 5870 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5871 else 5872 ResultIndex = V; 5873 } 5874 5875 // Add in the Base Offset if present. 5876 if (AddrMode.BaseOffs) { 5877 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5878 if (ResultIndex) { 5879 // We need to add this separately from the scale above to help with 5880 // SDAG consecutive load/store merging. 5881 if (ResultPtr->getType() != I8PtrTy) 5882 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5883 ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5884 AddrMode.InBounds); 5885 } 5886 5887 ResultIndex = V; 5888 } 5889 5890 if (!ResultIndex) { 5891 SunkAddr = ResultPtr; 5892 } else { 5893 if (ResultPtr->getType() != I8PtrTy) 5894 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5895 SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5896 AddrMode.InBounds); 5897 } 5898 5899 if (SunkAddr->getType() != Addr->getType()) { 5900 if (SunkAddr->getType()->getPointerAddressSpace() != 5901 Addr->getType()->getPointerAddressSpace() && 5902 !DL->isNonIntegralPointerType(Addr->getType())) { 5903 // There are two reasons the address spaces might not match: a no-op 5904 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5905 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5906 // TODO: allow bitcast between different address space pointers with 5907 // the same size. 5908 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5909 SunkAddr = 5910 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5911 } else 5912 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5913 } 5914 } 5915 } else { 5916 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5917 // non-integral pointers, so in that case bail out now. 5918 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5919 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5920 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5921 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5922 if (DL->isNonIntegralPointerType(Addr->getType()) || 5923 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5924 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5925 (AddrMode.BaseGV && 5926 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5927 return Modified; 5928 5929 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5930 << " for " << *MemoryInst << "\n"); 5931 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5932 Value *Result = nullptr; 5933 5934 // Start with the base register. Do this first so that subsequent address 5935 // matching finds it last, which will prevent it from trying to match it 5936 // as the scaled value in case it happens to be a mul. That would be 5937 // problematic if we've sunk a different mul for the scale, because then 5938 // we'd end up sinking both muls. 5939 if (AddrMode.BaseReg) { 5940 Value *V = AddrMode.BaseReg; 5941 if (V->getType()->isPointerTy()) 5942 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5943 if (V->getType() != IntPtrTy) 5944 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5945 Result = V; 5946 } 5947 5948 // Add the scale value. 5949 if (AddrMode.Scale) { 5950 Value *V = AddrMode.ScaledReg; 5951 if (V->getType() == IntPtrTy) { 5952 // done. 5953 } else if (V->getType()->isPointerTy()) { 5954 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5955 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5956 cast<IntegerType>(V->getType())->getBitWidth()) { 5957 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5958 } else { 5959 // It is only safe to sign extend the BaseReg if we know that the math 5960 // required to create it did not overflow before we extend it. Since 5961 // the original IR value was tossed in favor of a constant back when 5962 // the AddrMode was created we need to bail out gracefully if widths 5963 // do not match instead of extending it. 5964 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5965 if (I && (Result != AddrMode.BaseReg)) 5966 I->eraseFromParent(); 5967 return Modified; 5968 } 5969 if (AddrMode.Scale != 1) 5970 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5971 "sunkaddr"); 5972 if (Result) 5973 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5974 else 5975 Result = V; 5976 } 5977 5978 // Add in the BaseGV if present. 5979 GlobalValue *BaseGV = AddrMode.BaseGV; 5980 if (BaseGV != nullptr) { 5981 Value *BaseGVPtr; 5982 if (BaseGV->isThreadLocal()) { 5983 BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV); 5984 } else { 5985 BaseGVPtr = BaseGV; 5986 } 5987 Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr"); 5988 if (Result) 5989 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5990 else 5991 Result = V; 5992 } 5993 5994 // Add in the Base Offset if present. 5995 if (AddrMode.BaseOffs) { 5996 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5997 if (Result) 5998 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5999 else 6000 Result = V; 6001 } 6002 6003 if (!Result) 6004 SunkAddr = Constant::getNullValue(Addr->getType()); 6005 else 6006 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 6007 } 6008 6009 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 6010 // Store the newly computed address into the cache. In the case we reused a 6011 // value, this should be idempotent. 6012 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 6013 6014 // If we have no uses, recursively delete the value and all dead instructions 6015 // using it. 6016 if (Repl->use_empty()) { 6017 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 6018 RecursivelyDeleteTriviallyDeadInstructions( 6019 Repl, TLInfo, nullptr, 6020 [&](Value *V) { removeAllAssertingVHReferences(V); }); 6021 }); 6022 } 6023 ++NumMemoryInsts; 6024 return true; 6025 } 6026 6027 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 6028 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 6029 /// only handle a 2 operand GEP in the same basic block or a splat constant 6030 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 6031 /// index. 6032 /// 6033 /// If the existing GEP has a vector base pointer that is splat, we can look 6034 /// through the splat to find the scalar pointer. If we can't find a scalar 6035 /// pointer there's nothing we can do. 6036 /// 6037 /// If we have a GEP with more than 2 indices where the middle indices are all 6038 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 6039 /// 6040 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 6041 /// followed by a GEP with an all zeroes vector index. This will enable 6042 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 6043 /// zero index. 6044 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 6045 Value *Ptr) { 6046 Value *NewAddr; 6047 6048 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 6049 // Don't optimize GEPs that don't have indices. 6050 if (!GEP->hasIndices()) 6051 return false; 6052 6053 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 6054 // FIXME: We should support this by sinking the GEP. 6055 if (MemoryInst->getParent() != GEP->getParent()) 6056 return false; 6057 6058 SmallVector<Value *, 2> Ops(GEP->operands()); 6059 6060 bool RewriteGEP = false; 6061 6062 if (Ops[0]->getType()->isVectorTy()) { 6063 Ops[0] = getSplatValue(Ops[0]); 6064 if (!Ops[0]) 6065 return false; 6066 RewriteGEP = true; 6067 } 6068 6069 unsigned FinalIndex = Ops.size() - 1; 6070 6071 // Ensure all but the last index is 0. 6072 // FIXME: This isn't strictly required. All that's required is that they are 6073 // all scalars or splats. 6074 for (unsigned i = 1; i < FinalIndex; ++i) { 6075 auto *C = dyn_cast<Constant>(Ops[i]); 6076 if (!C) 6077 return false; 6078 if (isa<VectorType>(C->getType())) 6079 C = C->getSplatValue(); 6080 auto *CI = dyn_cast_or_null<ConstantInt>(C); 6081 if (!CI || !CI->isZero()) 6082 return false; 6083 // Scalarize the index if needed. 6084 Ops[i] = CI; 6085 } 6086 6087 // Try to scalarize the final index. 6088 if (Ops[FinalIndex]->getType()->isVectorTy()) { 6089 if (Value *V = getSplatValue(Ops[FinalIndex])) { 6090 auto *C = dyn_cast<ConstantInt>(V); 6091 // Don't scalarize all zeros vector. 6092 if (!C || !C->isZero()) { 6093 Ops[FinalIndex] = V; 6094 RewriteGEP = true; 6095 } 6096 } 6097 } 6098 6099 // If we made any changes or the we have extra operands, we need to generate 6100 // new instructions. 6101 if (!RewriteGEP && Ops.size() == 2) 6102 return false; 6103 6104 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 6105 6106 IRBuilder<> Builder(MemoryInst); 6107 6108 Type *SourceTy = GEP->getSourceElementType(); 6109 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 6110 6111 // If the final index isn't a vector, emit a scalar GEP containing all ops 6112 // and a vector GEP with all zeroes final index. 6113 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 6114 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); 6115 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 6116 auto *SecondTy = GetElementPtrInst::getIndexedType( 6117 SourceTy, ArrayRef(Ops).drop_front()); 6118 NewAddr = 6119 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 6120 } else { 6121 Value *Base = Ops[0]; 6122 Value *Index = Ops[FinalIndex]; 6123 6124 // Create a scalar GEP if there are more than 2 operands. 6125 if (Ops.size() != 2) { 6126 // Replace the last index with 0. 6127 Ops[FinalIndex] = 6128 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType()); 6129 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); 6130 SourceTy = GetElementPtrInst::getIndexedType( 6131 SourceTy, ArrayRef(Ops).drop_front()); 6132 } 6133 6134 // Now create the GEP with scalar pointer and vector index. 6135 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 6136 } 6137 } else if (!isa<Constant>(Ptr)) { 6138 // Not a GEP, maybe its a splat and we can create a GEP to enable 6139 // SelectionDAGBuilder to use it as a uniform base. 6140 Value *V = getSplatValue(Ptr); 6141 if (!V) 6142 return false; 6143 6144 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 6145 6146 IRBuilder<> Builder(MemoryInst); 6147 6148 // Emit a vector GEP with a scalar pointer and all 0s vector index. 6149 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 6150 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 6151 Type *ScalarTy; 6152 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 6153 Intrinsic::masked_gather) { 6154 ScalarTy = MemoryInst->getType()->getScalarType(); 6155 } else { 6156 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 6157 Intrinsic::masked_scatter); 6158 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 6159 } 6160 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 6161 } else { 6162 // Constant, SelectionDAGBuilder knows to check if its a splat. 6163 return false; 6164 } 6165 6166 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 6167 6168 // If we have no uses, recursively delete the value and all dead instructions 6169 // using it. 6170 if (Ptr->use_empty()) 6171 RecursivelyDeleteTriviallyDeadInstructions( 6172 Ptr, TLInfo, nullptr, 6173 [&](Value *V) { removeAllAssertingVHReferences(V); }); 6174 6175 return true; 6176 } 6177 6178 /// If there are any memory operands, use OptimizeMemoryInst to sink their 6179 /// address computing into the block when possible / profitable. 6180 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 6181 bool MadeChange = false; 6182 6183 const TargetRegisterInfo *TRI = 6184 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 6185 TargetLowering::AsmOperandInfoVector TargetConstraints = 6186 TLI->ParseConstraints(*DL, TRI, *CS); 6187 unsigned ArgNo = 0; 6188 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 6189 // Compute the constraint code and ConstraintType to use. 6190 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6191 6192 // TODO: Also handle C_Address? 6193 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6194 OpInfo.isIndirect) { 6195 Value *OpVal = CS->getArgOperand(ArgNo++); 6196 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 6197 } else if (OpInfo.Type == InlineAsm::isInput) 6198 ArgNo++; 6199 } 6200 6201 return MadeChange; 6202 } 6203 6204 /// Check if all the uses of \p Val are equivalent (or free) zero or 6205 /// sign extensions. 6206 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 6207 assert(!Val->use_empty() && "Input must have at least one use"); 6208 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 6209 bool IsSExt = isa<SExtInst>(FirstUser); 6210 Type *ExtTy = FirstUser->getType(); 6211 for (const User *U : Val->users()) { 6212 const Instruction *UI = cast<Instruction>(U); 6213 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 6214 return false; 6215 Type *CurTy = UI->getType(); 6216 // Same input and output types: Same instruction after CSE. 6217 if (CurTy == ExtTy) 6218 continue; 6219 6220 // If IsSExt is true, we are in this situation: 6221 // a = Val 6222 // b = sext ty1 a to ty2 6223 // c = sext ty1 a to ty3 6224 // Assuming ty2 is shorter than ty3, this could be turned into: 6225 // a = Val 6226 // b = sext ty1 a to ty2 6227 // c = sext ty2 b to ty3 6228 // However, the last sext is not free. 6229 if (IsSExt) 6230 return false; 6231 6232 // This is a ZExt, maybe this is free to extend from one type to another. 6233 // In that case, we would not account for a different use. 6234 Type *NarrowTy; 6235 Type *LargeTy; 6236 if (ExtTy->getScalarType()->getIntegerBitWidth() > 6237 CurTy->getScalarType()->getIntegerBitWidth()) { 6238 NarrowTy = CurTy; 6239 LargeTy = ExtTy; 6240 } else { 6241 NarrowTy = ExtTy; 6242 LargeTy = CurTy; 6243 } 6244 6245 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 6246 return false; 6247 } 6248 // All uses are the same or can be derived from one another for free. 6249 return true; 6250 } 6251 6252 /// Try to speculatively promote extensions in \p Exts and continue 6253 /// promoting through newly promoted operands recursively as far as doing so is 6254 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 6255 /// When some promotion happened, \p TPT contains the proper state to revert 6256 /// them. 6257 /// 6258 /// \return true if some promotion happened, false otherwise. 6259 bool CodeGenPrepare::tryToPromoteExts( 6260 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 6261 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 6262 unsigned CreatedInstsCost) { 6263 bool Promoted = false; 6264 6265 // Iterate over all the extensions to try to promote them. 6266 for (auto *I : Exts) { 6267 // Early check if we directly have ext(load). 6268 if (isa<LoadInst>(I->getOperand(0))) { 6269 ProfitablyMovedExts.push_back(I); 6270 continue; 6271 } 6272 6273 // Check whether or not we want to do any promotion. The reason we have 6274 // this check inside the for loop is to catch the case where an extension 6275 // is directly fed by a load because in such case the extension can be moved 6276 // up without any promotion on its operands. 6277 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 6278 return false; 6279 6280 // Get the action to perform the promotion. 6281 TypePromotionHelper::Action TPH = 6282 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 6283 // Check if we can promote. 6284 if (!TPH) { 6285 // Save the current extension as we cannot move up through its operand. 6286 ProfitablyMovedExts.push_back(I); 6287 continue; 6288 } 6289 6290 // Save the current state. 6291 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6292 TPT.getRestorationPoint(); 6293 SmallVector<Instruction *, 4> NewExts; 6294 unsigned NewCreatedInstsCost = 0; 6295 unsigned ExtCost = !TLI->isExtFree(I); 6296 // Promote. 6297 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 6298 &NewExts, nullptr, *TLI); 6299 assert(PromotedVal && 6300 "TypePromotionHelper should have filtered out those cases"); 6301 6302 // We would be able to merge only one extension in a load. 6303 // Therefore, if we have more than 1 new extension we heuristically 6304 // cut this search path, because it means we degrade the code quality. 6305 // With exactly 2, the transformation is neutral, because we will merge 6306 // one extension but leave one. However, we optimistically keep going, 6307 // because the new extension may be removed too. Also avoid replacing a 6308 // single free extension with multiple extensions, as this increases the 6309 // number of IR instructions while not providing any savings. 6310 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 6311 // FIXME: It would be possible to propagate a negative value instead of 6312 // conservatively ceiling it to 0. 6313 TotalCreatedInstsCost = 6314 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 6315 if (!StressExtLdPromotion && 6316 (TotalCreatedInstsCost > 1 || 6317 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) || 6318 (ExtCost == 0 && NewExts.size() > 1))) { 6319 // This promotion is not profitable, rollback to the previous state, and 6320 // save the current extension in ProfitablyMovedExts as the latest 6321 // speculative promotion turned out to be unprofitable. 6322 TPT.rollback(LastKnownGood); 6323 ProfitablyMovedExts.push_back(I); 6324 continue; 6325 } 6326 // Continue promoting NewExts as far as doing so is profitable. 6327 SmallVector<Instruction *, 2> NewlyMovedExts; 6328 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 6329 bool NewPromoted = false; 6330 for (auto *ExtInst : NewlyMovedExts) { 6331 Instruction *MovedExt = cast<Instruction>(ExtInst); 6332 Value *ExtOperand = MovedExt->getOperand(0); 6333 // If we have reached to a load, we need this extra profitability check 6334 // as it could potentially be merged into an ext(load). 6335 if (isa<LoadInst>(ExtOperand) && 6336 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 6337 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 6338 continue; 6339 6340 ProfitablyMovedExts.push_back(MovedExt); 6341 NewPromoted = true; 6342 } 6343 6344 // If none of speculative promotions for NewExts is profitable, rollback 6345 // and save the current extension (I) as the last profitable extension. 6346 if (!NewPromoted) { 6347 TPT.rollback(LastKnownGood); 6348 ProfitablyMovedExts.push_back(I); 6349 continue; 6350 } 6351 // The promotion is profitable. 6352 Promoted = true; 6353 } 6354 return Promoted; 6355 } 6356 6357 /// Merging redundant sexts when one is dominating the other. 6358 bool CodeGenPrepare::mergeSExts(Function &F) { 6359 bool Changed = false; 6360 for (auto &Entry : ValToSExtendedUses) { 6361 SExts &Insts = Entry.second; 6362 SExts CurPts; 6363 for (Instruction *Inst : Insts) { 6364 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 6365 Inst->getOperand(0) != Entry.first) 6366 continue; 6367 bool inserted = false; 6368 for (auto &Pt : CurPts) { 6369 if (getDT(F).dominates(Inst, Pt)) { 6370 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); 6371 RemovedInsts.insert(Pt); 6372 Pt->removeFromParent(); 6373 Pt = Inst; 6374 inserted = true; 6375 Changed = true; 6376 break; 6377 } 6378 if (!getDT(F).dominates(Pt, Inst)) 6379 // Give up if we need to merge in a common dominator as the 6380 // experiments show it is not profitable. 6381 continue; 6382 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); 6383 RemovedInsts.insert(Inst); 6384 Inst->removeFromParent(); 6385 inserted = true; 6386 Changed = true; 6387 break; 6388 } 6389 if (!inserted) 6390 CurPts.push_back(Inst); 6391 } 6392 } 6393 return Changed; 6394 } 6395 6396 // Splitting large data structures so that the GEPs accessing them can have 6397 // smaller offsets so that they can be sunk to the same blocks as their users. 6398 // For example, a large struct starting from %base is split into two parts 6399 // where the second part starts from %new_base. 6400 // 6401 // Before: 6402 // BB0: 6403 // %base = 6404 // 6405 // BB1: 6406 // %gep0 = gep %base, off0 6407 // %gep1 = gep %base, off1 6408 // %gep2 = gep %base, off2 6409 // 6410 // BB2: 6411 // %load1 = load %gep0 6412 // %load2 = load %gep1 6413 // %load3 = load %gep2 6414 // 6415 // After: 6416 // BB0: 6417 // %base = 6418 // %new_base = gep %base, off0 6419 // 6420 // BB1: 6421 // %new_gep0 = %new_base 6422 // %new_gep1 = gep %new_base, off1 - off0 6423 // %new_gep2 = gep %new_base, off2 - off0 6424 // 6425 // BB2: 6426 // %load1 = load i32, i32* %new_gep0 6427 // %load2 = load i32, i32* %new_gep1 6428 // %load3 = load i32, i32* %new_gep2 6429 // 6430 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 6431 // their offsets are smaller enough to fit into the addressing mode. 6432 bool CodeGenPrepare::splitLargeGEPOffsets() { 6433 bool Changed = false; 6434 for (auto &Entry : LargeOffsetGEPMap) { 6435 Value *OldBase = Entry.first; 6436 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 6437 &LargeOffsetGEPs = Entry.second; 6438 auto compareGEPOffset = 6439 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 6440 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 6441 if (LHS.first == RHS.first) 6442 return false; 6443 if (LHS.second != RHS.second) 6444 return LHS.second < RHS.second; 6445 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 6446 }; 6447 // Sorting all the GEPs of the same data structures based on the offsets. 6448 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 6449 LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end()); 6450 // Skip if all the GEPs have the same offsets. 6451 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 6452 continue; 6453 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 6454 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 6455 Value *NewBaseGEP = nullptr; 6456 6457 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase, 6458 GetElementPtrInst *GEP) { 6459 LLVMContext &Ctx = GEP->getContext(); 6460 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6461 Type *I8PtrTy = 6462 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace()); 6463 6464 BasicBlock::iterator NewBaseInsertPt; 6465 BasicBlock *NewBaseInsertBB; 6466 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 6467 // If the base of the struct is an instruction, the new base will be 6468 // inserted close to it. 6469 NewBaseInsertBB = BaseI->getParent(); 6470 if (isa<PHINode>(BaseI)) 6471 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6472 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 6473 NewBaseInsertBB = 6474 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI); 6475 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6476 } else 6477 NewBaseInsertPt = std::next(BaseI->getIterator()); 6478 } else { 6479 // If the current base is an argument or global value, the new base 6480 // will be inserted to the entry block. 6481 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 6482 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6483 } 6484 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 6485 // Create a new base. 6486 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset); 6487 NewBaseGEP = OldBase; 6488 if (NewBaseGEP->getType() != I8PtrTy) 6489 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 6490 NewBaseGEP = 6491 NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep"); 6492 NewGEPBases.insert(NewBaseGEP); 6493 return; 6494 }; 6495 6496 // Check whether all the offsets can be encoded with prefered common base. 6497 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset( 6498 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) { 6499 BaseOffset = PreferBase; 6500 // Create a new base if the offset of the BaseGEP can be decoded with one 6501 // instruction. 6502 createNewBase(BaseOffset, OldBase, BaseGEP); 6503 } 6504 6505 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 6506 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 6507 GetElementPtrInst *GEP = LargeOffsetGEP->first; 6508 int64_t Offset = LargeOffsetGEP->second; 6509 if (Offset != BaseOffset) { 6510 TargetLowering::AddrMode AddrMode; 6511 AddrMode.HasBaseReg = true; 6512 AddrMode.BaseOffs = Offset - BaseOffset; 6513 // The result type of the GEP might not be the type of the memory 6514 // access. 6515 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 6516 GEP->getResultElementType(), 6517 GEP->getAddressSpace())) { 6518 // We need to create a new base if the offset to the current base is 6519 // too large to fit into the addressing mode. So, a very large struct 6520 // may be split into several parts. 6521 BaseGEP = GEP; 6522 BaseOffset = Offset; 6523 NewBaseGEP = nullptr; 6524 } 6525 } 6526 6527 // Generate a new GEP to replace the current one. 6528 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6529 6530 if (!NewBaseGEP) { 6531 // Create a new base if we don't have one yet. Find the insertion 6532 // pointer for the new base first. 6533 createNewBase(BaseOffset, OldBase, GEP); 6534 } 6535 6536 IRBuilder<> Builder(GEP); 6537 Value *NewGEP = NewBaseGEP; 6538 if (Offset != BaseOffset) { 6539 // Calculate the new offset for the new GEP. 6540 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset); 6541 NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index); 6542 } 6543 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); 6544 LargeOffsetGEPID.erase(GEP); 6545 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6546 GEP->eraseFromParent(); 6547 Changed = true; 6548 } 6549 } 6550 return Changed; 6551 } 6552 6553 bool CodeGenPrepare::optimizePhiType( 6554 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6555 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6556 // We are looking for a collection on interconnected phi nodes that together 6557 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6558 // are of the same type. Convert the whole set of nodes to the type of the 6559 // bitcast. 6560 Type *PhiTy = I->getType(); 6561 Type *ConvertTy = nullptr; 6562 if (Visited.count(I) || 6563 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6564 return false; 6565 6566 SmallVector<Instruction *, 4> Worklist; 6567 Worklist.push_back(cast<Instruction>(I)); 6568 SmallPtrSet<PHINode *, 4> PhiNodes; 6569 SmallPtrSet<ConstantData *, 4> Constants; 6570 PhiNodes.insert(I); 6571 Visited.insert(I); 6572 SmallPtrSet<Instruction *, 4> Defs; 6573 SmallPtrSet<Instruction *, 4> Uses; 6574 // This works by adding extra bitcasts between load/stores and removing 6575 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6576 // we can get in the situation where we remove a bitcast in one iteration 6577 // just to add it again in the next. We need to ensure that at least one 6578 // bitcast we remove are anchored to something that will not change back. 6579 bool AnyAnchored = false; 6580 6581 while (!Worklist.empty()) { 6582 Instruction *II = Worklist.pop_back_val(); 6583 6584 if (auto *Phi = dyn_cast<PHINode>(II)) { 6585 // Handle Defs, which might also be PHI's 6586 for (Value *V : Phi->incoming_values()) { 6587 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6588 if (!PhiNodes.count(OpPhi)) { 6589 if (!Visited.insert(OpPhi).second) 6590 return false; 6591 PhiNodes.insert(OpPhi); 6592 Worklist.push_back(OpPhi); 6593 } 6594 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6595 if (!OpLoad->isSimple()) 6596 return false; 6597 if (Defs.insert(OpLoad).second) 6598 Worklist.push_back(OpLoad); 6599 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6600 if (Defs.insert(OpEx).second) 6601 Worklist.push_back(OpEx); 6602 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6603 if (!ConvertTy) 6604 ConvertTy = OpBC->getOperand(0)->getType(); 6605 if (OpBC->getOperand(0)->getType() != ConvertTy) 6606 return false; 6607 if (Defs.insert(OpBC).second) { 6608 Worklist.push_back(OpBC); 6609 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6610 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6611 } 6612 } else if (auto *OpC = dyn_cast<ConstantData>(V)) 6613 Constants.insert(OpC); 6614 else 6615 return false; 6616 } 6617 } 6618 6619 // Handle uses which might also be phi's 6620 for (User *V : II->users()) { 6621 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6622 if (!PhiNodes.count(OpPhi)) { 6623 if (Visited.count(OpPhi)) 6624 return false; 6625 PhiNodes.insert(OpPhi); 6626 Visited.insert(OpPhi); 6627 Worklist.push_back(OpPhi); 6628 } 6629 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6630 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6631 return false; 6632 Uses.insert(OpStore); 6633 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6634 if (!ConvertTy) 6635 ConvertTy = OpBC->getType(); 6636 if (OpBC->getType() != ConvertTy) 6637 return false; 6638 Uses.insert(OpBC); 6639 AnyAnchored |= 6640 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6641 } else { 6642 return false; 6643 } 6644 } 6645 } 6646 6647 if (!ConvertTy || !AnyAnchored || 6648 !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6649 return false; 6650 6651 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6652 << *ConvertTy << "\n"); 6653 6654 // Create all the new phi nodes of the new type, and bitcast any loads to the 6655 // correct type. 6656 ValueToValueMap ValMap; 6657 for (ConstantData *C : Constants) 6658 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy); 6659 for (Instruction *D : Defs) { 6660 if (isa<BitCastInst>(D)) { 6661 ValMap[D] = D->getOperand(0); 6662 DeletedInstrs.insert(D); 6663 } else { 6664 BasicBlock::iterator insertPt = std::next(D->getIterator()); 6665 ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt); 6666 } 6667 } 6668 for (PHINode *Phi : PhiNodes) 6669 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6670 Phi->getName() + ".tc", Phi->getIterator()); 6671 // Pipe together all the PhiNodes. 6672 for (PHINode *Phi : PhiNodes) { 6673 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6674 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6675 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6676 Phi->getIncomingBlock(i)); 6677 Visited.insert(NewPhi); 6678 } 6679 // And finally pipe up the stores and bitcasts 6680 for (Instruction *U : Uses) { 6681 if (isa<BitCastInst>(U)) { 6682 DeletedInstrs.insert(U); 6683 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); 6684 } else { 6685 U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", 6686 U->getIterator())); 6687 } 6688 } 6689 6690 // Save the removed phis to be deleted later. 6691 for (PHINode *Phi : PhiNodes) 6692 DeletedInstrs.insert(Phi); 6693 return true; 6694 } 6695 6696 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6697 if (!OptimizePhiTypes) 6698 return false; 6699 6700 bool Changed = false; 6701 SmallPtrSet<PHINode *, 4> Visited; 6702 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6703 6704 // Attempt to optimize all the phis in the functions to the correct type. 6705 for (auto &BB : F) 6706 for (auto &Phi : BB.phis()) 6707 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6708 6709 // Remove any old phi's that have been converted. 6710 for (auto *I : DeletedInstrs) { 6711 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); 6712 I->eraseFromParent(); 6713 } 6714 6715 return Changed; 6716 } 6717 6718 /// Return true, if an ext(load) can be formed from an extension in 6719 /// \p MovedExts. 6720 bool CodeGenPrepare::canFormExtLd( 6721 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6722 Instruction *&Inst, bool HasPromoted) { 6723 for (auto *MovedExtInst : MovedExts) { 6724 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6725 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6726 Inst = MovedExtInst; 6727 break; 6728 } 6729 } 6730 if (!LI) 6731 return false; 6732 6733 // If they're already in the same block, there's nothing to do. 6734 // Make the cheap checks first if we did not promote. 6735 // If we promoted, we need to check if it is indeed profitable. 6736 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6737 return false; 6738 6739 return TLI->isExtLoad(LI, Inst, *DL); 6740 } 6741 6742 /// Move a zext or sext fed by a load into the same basic block as the load, 6743 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6744 /// extend into the load. 6745 /// 6746 /// E.g., 6747 /// \code 6748 /// %ld = load i32* %addr 6749 /// %add = add nuw i32 %ld, 4 6750 /// %zext = zext i32 %add to i64 6751 // \endcode 6752 /// => 6753 /// \code 6754 /// %ld = load i32* %addr 6755 /// %zext = zext i32 %ld to i64 6756 /// %add = add nuw i64 %zext, 4 6757 /// \encode 6758 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6759 /// allow us to match zext(load i32*) to i64. 6760 /// 6761 /// Also, try to promote the computations used to obtain a sign extended 6762 /// value used into memory accesses. 6763 /// E.g., 6764 /// \code 6765 /// a = add nsw i32 b, 3 6766 /// d = sext i32 a to i64 6767 /// e = getelementptr ..., i64 d 6768 /// \endcode 6769 /// => 6770 /// \code 6771 /// f = sext i32 b to i64 6772 /// a = add nsw i64 f, 3 6773 /// e = getelementptr ..., i64 a 6774 /// \endcode 6775 /// 6776 /// \p Inst[in/out] the extension may be modified during the process if some 6777 /// promotions apply. 6778 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6779 bool AllowPromotionWithoutCommonHeader = false; 6780 /// See if it is an interesting sext operations for the address type 6781 /// promotion before trying to promote it, e.g., the ones with the right 6782 /// type and used in memory accesses. 6783 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6784 *Inst, AllowPromotionWithoutCommonHeader); 6785 TypePromotionTransaction TPT(RemovedInsts); 6786 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6787 TPT.getRestorationPoint(); 6788 SmallVector<Instruction *, 1> Exts; 6789 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6790 Exts.push_back(Inst); 6791 6792 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6793 6794 // Look for a load being extended. 6795 LoadInst *LI = nullptr; 6796 Instruction *ExtFedByLoad; 6797 6798 // Try to promote a chain of computation if it allows to form an extended 6799 // load. 6800 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6801 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6802 TPT.commit(); 6803 // Move the extend into the same block as the load. 6804 ExtFedByLoad->moveAfter(LI); 6805 ++NumExtsMoved; 6806 Inst = ExtFedByLoad; 6807 return true; 6808 } 6809 6810 // Continue promoting SExts if known as considerable depending on targets. 6811 if (ATPConsiderable && 6812 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6813 HasPromoted, TPT, SpeculativelyMovedExts)) 6814 return true; 6815 6816 TPT.rollback(LastKnownGood); 6817 return false; 6818 } 6819 6820 // Perform address type promotion if doing so is profitable. 6821 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6822 // instructions that sign extended the same initial value. However, if 6823 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6824 // extension is just profitable. 6825 bool CodeGenPrepare::performAddressTypePromotion( 6826 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6827 bool HasPromoted, TypePromotionTransaction &TPT, 6828 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6829 bool Promoted = false; 6830 SmallPtrSet<Instruction *, 1> UnhandledExts; 6831 bool AllSeenFirst = true; 6832 for (auto *I : SpeculativelyMovedExts) { 6833 Value *HeadOfChain = I->getOperand(0); 6834 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6835 SeenChainsForSExt.find(HeadOfChain); 6836 // If there is an unhandled SExt which has the same header, try to promote 6837 // it as well. 6838 if (AlreadySeen != SeenChainsForSExt.end()) { 6839 if (AlreadySeen->second != nullptr) 6840 UnhandledExts.insert(AlreadySeen->second); 6841 AllSeenFirst = false; 6842 } 6843 } 6844 6845 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6846 SpeculativelyMovedExts.size() == 1)) { 6847 TPT.commit(); 6848 if (HasPromoted) 6849 Promoted = true; 6850 for (auto *I : SpeculativelyMovedExts) { 6851 Value *HeadOfChain = I->getOperand(0); 6852 SeenChainsForSExt[HeadOfChain] = nullptr; 6853 ValToSExtendedUses[HeadOfChain].push_back(I); 6854 } 6855 // Update Inst as promotion happen. 6856 Inst = SpeculativelyMovedExts.pop_back_val(); 6857 } else { 6858 // This is the first chain visited from the header, keep the current chain 6859 // as unhandled. Defer to promote this until we encounter another SExt 6860 // chain derived from the same header. 6861 for (auto *I : SpeculativelyMovedExts) { 6862 Value *HeadOfChain = I->getOperand(0); 6863 SeenChainsForSExt[HeadOfChain] = Inst; 6864 } 6865 return false; 6866 } 6867 6868 if (!AllSeenFirst && !UnhandledExts.empty()) 6869 for (auto *VisitedSExt : UnhandledExts) { 6870 if (RemovedInsts.count(VisitedSExt)) 6871 continue; 6872 TypePromotionTransaction TPT(RemovedInsts); 6873 SmallVector<Instruction *, 1> Exts; 6874 SmallVector<Instruction *, 2> Chains; 6875 Exts.push_back(VisitedSExt); 6876 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6877 TPT.commit(); 6878 if (HasPromoted) 6879 Promoted = true; 6880 for (auto *I : Chains) { 6881 Value *HeadOfChain = I->getOperand(0); 6882 // Mark this as handled. 6883 SeenChainsForSExt[HeadOfChain] = nullptr; 6884 ValToSExtendedUses[HeadOfChain].push_back(I); 6885 } 6886 } 6887 return Promoted; 6888 } 6889 6890 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6891 BasicBlock *DefBB = I->getParent(); 6892 6893 // If the result of a {s|z}ext and its source are both live out, rewrite all 6894 // other uses of the source with result of extension. 6895 Value *Src = I->getOperand(0); 6896 if (Src->hasOneUse()) 6897 return false; 6898 6899 // Only do this xform if truncating is free. 6900 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6901 return false; 6902 6903 // Only safe to perform the optimization if the source is also defined in 6904 // this block. 6905 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6906 return false; 6907 6908 bool DefIsLiveOut = false; 6909 for (User *U : I->users()) { 6910 Instruction *UI = cast<Instruction>(U); 6911 6912 // Figure out which BB this ext is used in. 6913 BasicBlock *UserBB = UI->getParent(); 6914 if (UserBB == DefBB) 6915 continue; 6916 DefIsLiveOut = true; 6917 break; 6918 } 6919 if (!DefIsLiveOut) 6920 return false; 6921 6922 // Make sure none of the uses are PHI nodes. 6923 for (User *U : Src->users()) { 6924 Instruction *UI = cast<Instruction>(U); 6925 BasicBlock *UserBB = UI->getParent(); 6926 if (UserBB == DefBB) 6927 continue; 6928 // Be conservative. We don't want this xform to end up introducing 6929 // reloads just before load / store instructions. 6930 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6931 return false; 6932 } 6933 6934 // InsertedTruncs - Only insert one trunc in each block once. 6935 DenseMap<BasicBlock *, Instruction *> InsertedTruncs; 6936 6937 bool MadeChange = false; 6938 for (Use &U : Src->uses()) { 6939 Instruction *User = cast<Instruction>(U.getUser()); 6940 6941 // Figure out which BB this ext is used in. 6942 BasicBlock *UserBB = User->getParent(); 6943 if (UserBB == DefBB) 6944 continue; 6945 6946 // Both src and def are live in this block. Rewrite the use. 6947 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6948 6949 if (!InsertedTrunc) { 6950 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6951 assert(InsertPt != UserBB->end()); 6952 InsertedTrunc = new TruncInst(I, Src->getType(), ""); 6953 InsertedTrunc->insertBefore(*UserBB, InsertPt); 6954 InsertedInsts.insert(InsertedTrunc); 6955 } 6956 6957 // Replace a use of the {s|z}ext source with a use of the result. 6958 U = InsertedTrunc; 6959 ++NumExtUses; 6960 MadeChange = true; 6961 } 6962 6963 return MadeChange; 6964 } 6965 6966 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6967 // just after the load if the target can fold this into one extload instruction, 6968 // with the hope of eliminating some of the other later "and" instructions using 6969 // the loaded value. "and"s that are made trivially redundant by the insertion 6970 // of the new "and" are removed by this function, while others (e.g. those whose 6971 // path from the load goes through a phi) are left for isel to potentially 6972 // remove. 6973 // 6974 // For example: 6975 // 6976 // b0: 6977 // x = load i32 6978 // ... 6979 // b1: 6980 // y = and x, 0xff 6981 // z = use y 6982 // 6983 // becomes: 6984 // 6985 // b0: 6986 // x = load i32 6987 // x' = and x, 0xff 6988 // ... 6989 // b1: 6990 // z = use x' 6991 // 6992 // whereas: 6993 // 6994 // b0: 6995 // x1 = load i32 6996 // ... 6997 // b1: 6998 // x2 = load i32 6999 // ... 7000 // b2: 7001 // x = phi x1, x2 7002 // y = and x, 0xff 7003 // 7004 // becomes (after a call to optimizeLoadExt for each load): 7005 // 7006 // b0: 7007 // x1 = load i32 7008 // x1' = and x1, 0xff 7009 // ... 7010 // b1: 7011 // x2 = load i32 7012 // x2' = and x2, 0xff 7013 // ... 7014 // b2: 7015 // x = phi x1', x2' 7016 // y = and x, 0xff 7017 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 7018 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 7019 return false; 7020 7021 // Skip loads we've already transformed. 7022 if (Load->hasOneUse() && 7023 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 7024 return false; 7025 7026 // Look at all uses of Load, looking through phis, to determine how many bits 7027 // of the loaded value are needed. 7028 SmallVector<Instruction *, 8> WorkList; 7029 SmallPtrSet<Instruction *, 16> Visited; 7030 SmallVector<Instruction *, 8> AndsToMaybeRemove; 7031 for (auto *U : Load->users()) 7032 WorkList.push_back(cast<Instruction>(U)); 7033 7034 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 7035 unsigned BitWidth = LoadResultVT.getSizeInBits(); 7036 // If the BitWidth is 0, do not try to optimize the type 7037 if (BitWidth == 0) 7038 return false; 7039 7040 APInt DemandBits(BitWidth, 0); 7041 APInt WidestAndBits(BitWidth, 0); 7042 7043 while (!WorkList.empty()) { 7044 Instruction *I = WorkList.pop_back_val(); 7045 7046 // Break use-def graph loops. 7047 if (!Visited.insert(I).second) 7048 continue; 7049 7050 // For a PHI node, push all of its users. 7051 if (auto *Phi = dyn_cast<PHINode>(I)) { 7052 for (auto *U : Phi->users()) 7053 WorkList.push_back(cast<Instruction>(U)); 7054 continue; 7055 } 7056 7057 switch (I->getOpcode()) { 7058 case Instruction::And: { 7059 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 7060 if (!AndC) 7061 return false; 7062 APInt AndBits = AndC->getValue(); 7063 DemandBits |= AndBits; 7064 // Keep track of the widest and mask we see. 7065 if (AndBits.ugt(WidestAndBits)) 7066 WidestAndBits = AndBits; 7067 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 7068 AndsToMaybeRemove.push_back(I); 7069 break; 7070 } 7071 7072 case Instruction::Shl: { 7073 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 7074 if (!ShlC) 7075 return false; 7076 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 7077 DemandBits.setLowBits(BitWidth - ShiftAmt); 7078 break; 7079 } 7080 7081 case Instruction::Trunc: { 7082 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 7083 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 7084 DemandBits.setLowBits(TruncBitWidth); 7085 break; 7086 } 7087 7088 default: 7089 return false; 7090 } 7091 } 7092 7093 uint32_t ActiveBits = DemandBits.getActiveBits(); 7094 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 7095 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 7096 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 7097 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 7098 // followed by an AND. 7099 // TODO: Look into removing this restriction by fixing backends to either 7100 // return false for isLoadExtLegal for i1 or have them select this pattern to 7101 // a single instruction. 7102 // 7103 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 7104 // mask, since these are the only ands that will be removed by isel. 7105 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 7106 WidestAndBits != DemandBits) 7107 return false; 7108 7109 LLVMContext &Ctx = Load->getType()->getContext(); 7110 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 7111 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 7112 7113 // Reject cases that won't be matched as extloads. 7114 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 7115 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 7116 return false; 7117 7118 IRBuilder<> Builder(Load->getNextNonDebugInstruction()); 7119 auto *NewAnd = cast<Instruction>( 7120 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 7121 // Mark this instruction as "inserted by CGP", so that other 7122 // optimizations don't touch it. 7123 InsertedInsts.insert(NewAnd); 7124 7125 // Replace all uses of load with new and (except for the use of load in the 7126 // new and itself). 7127 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); 7128 NewAnd->setOperand(0, Load); 7129 7130 // Remove any and instructions that are now redundant. 7131 for (auto *And : AndsToMaybeRemove) 7132 // Check that the and mask is the same as the one we decided to put on the 7133 // new and. 7134 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 7135 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); 7136 if (&*CurInstIterator == And) 7137 CurInstIterator = std::next(And->getIterator()); 7138 And->eraseFromParent(); 7139 ++NumAndUses; 7140 } 7141 7142 ++NumAndsAdded; 7143 return true; 7144 } 7145 7146 /// Check if V (an operand of a select instruction) is an expensive instruction 7147 /// that is only used once. 7148 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 7149 auto *I = dyn_cast<Instruction>(V); 7150 // If it's safe to speculatively execute, then it should not have side 7151 // effects; therefore, it's safe to sink and possibly *not* execute. 7152 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 7153 TTI->isExpensiveToSpeculativelyExecute(I); 7154 } 7155 7156 /// Returns true if a SelectInst should be turned into an explicit branch. 7157 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 7158 const TargetLowering *TLI, 7159 SelectInst *SI) { 7160 // If even a predictable select is cheap, then a branch can't be cheaper. 7161 if (!TLI->isPredictableSelectExpensive()) 7162 return false; 7163 7164 // FIXME: This should use the same heuristics as IfConversion to determine 7165 // whether a select is better represented as a branch. 7166 7167 // If metadata tells us that the select condition is obviously predictable, 7168 // then we want to replace the select with a branch. 7169 uint64_t TrueWeight, FalseWeight; 7170 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { 7171 uint64_t Max = std::max(TrueWeight, FalseWeight); 7172 uint64_t Sum = TrueWeight + FalseWeight; 7173 if (Sum != 0) { 7174 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 7175 if (Probability > TTI->getPredictableBranchThreshold()) 7176 return true; 7177 } 7178 } 7179 7180 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 7181 7182 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 7183 // comparison condition. If the compare has more than one use, there's 7184 // probably another cmov or setcc around, so it's not worth emitting a branch. 7185 if (!Cmp || !Cmp->hasOneUse()) 7186 return false; 7187 7188 // If either operand of the select is expensive and only needed on one side 7189 // of the select, we should form a branch. 7190 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 7191 sinkSelectOperand(TTI, SI->getFalseValue())) 7192 return true; 7193 7194 return false; 7195 } 7196 7197 /// If \p isTrue is true, return the true value of \p SI, otherwise return 7198 /// false value of \p SI. If the true/false value of \p SI is defined by any 7199 /// select instructions in \p Selects, look through the defining select 7200 /// instruction until the true/false value is not defined in \p Selects. 7201 static Value * 7202 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 7203 const SmallPtrSet<const Instruction *, 2> &Selects) { 7204 Value *V = nullptr; 7205 7206 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 7207 DefSI = dyn_cast<SelectInst>(V)) { 7208 assert(DefSI->getCondition() == SI->getCondition() && 7209 "The condition of DefSI does not match with SI"); 7210 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 7211 } 7212 7213 assert(V && "Failed to get select true/false value"); 7214 return V; 7215 } 7216 7217 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 7218 assert(Shift->isShift() && "Expected a shift"); 7219 7220 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 7221 // general vector shifts, and (3) the shift amount is a select-of-splatted 7222 // values, hoist the shifts before the select: 7223 // shift Op0, (select Cond, TVal, FVal) --> 7224 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 7225 // 7226 // This is inverting a generic IR transform when we know that the cost of a 7227 // general vector shift is more than the cost of 2 shift-by-scalars. 7228 // We can't do this effectively in SDAG because we may not be able to 7229 // determine if the select operands are splats from within a basic block. 7230 Type *Ty = Shift->getType(); 7231 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 7232 return false; 7233 Value *Cond, *TVal, *FVal; 7234 if (!match(Shift->getOperand(1), 7235 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7236 return false; 7237 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7238 return false; 7239 7240 IRBuilder<> Builder(Shift); 7241 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 7242 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 7243 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 7244 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7245 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); 7246 Shift->eraseFromParent(); 7247 return true; 7248 } 7249 7250 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 7251 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 7252 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 7253 "Expected a funnel shift"); 7254 7255 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 7256 // than general vector shifts, and (3) the shift amount is select-of-splatted 7257 // values, hoist the funnel shifts before the select: 7258 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 7259 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 7260 // 7261 // This is inverting a generic IR transform when we know that the cost of a 7262 // general vector shift is more than the cost of 2 shift-by-scalars. 7263 // We can't do this effectively in SDAG because we may not be able to 7264 // determine if the select operands are splats from within a basic block. 7265 Type *Ty = Fsh->getType(); 7266 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 7267 return false; 7268 Value *Cond, *TVal, *FVal; 7269 if (!match(Fsh->getOperand(2), 7270 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7271 return false; 7272 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7273 return false; 7274 7275 IRBuilder<> Builder(Fsh); 7276 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 7277 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); 7278 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); 7279 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7280 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); 7281 Fsh->eraseFromParent(); 7282 return true; 7283 } 7284 7285 /// If we have a SelectInst that will likely profit from branch prediction, 7286 /// turn it into a branch. 7287 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 7288 if (DisableSelectToBranch) 7289 return false; 7290 7291 // If the SelectOptimize pass is enabled, selects have already been optimized. 7292 if (!getCGPassBuilderOption().DisableSelectOptimize) 7293 return false; 7294 7295 // Find all consecutive select instructions that share the same condition. 7296 SmallVector<SelectInst *, 2> ASI; 7297 ASI.push_back(SI); 7298 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 7299 It != SI->getParent()->end(); ++It) { 7300 SelectInst *I = dyn_cast<SelectInst>(&*It); 7301 if (I && SI->getCondition() == I->getCondition()) { 7302 ASI.push_back(I); 7303 } else { 7304 break; 7305 } 7306 } 7307 7308 SelectInst *LastSI = ASI.back(); 7309 // Increment the current iterator to skip all the rest of select instructions 7310 // because they will be either "not lowered" or "all lowered" to branch. 7311 CurInstIterator = std::next(LastSI->getIterator()); 7312 // Examine debug-info attached to the consecutive select instructions. They 7313 // won't be individually optimised by optimizeInst, so we need to perform 7314 // DbgVariableRecord maintenence here instead. 7315 for (SelectInst *SI : ArrayRef(ASI).drop_front()) 7316 fixupDbgVariableRecordsOnInst(*SI); 7317 7318 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 7319 7320 // Can we convert the 'select' to CF ? 7321 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 7322 return false; 7323 7324 TargetLowering::SelectSupportKind SelectKind; 7325 if (SI->getType()->isVectorTy()) 7326 SelectKind = TargetLowering::ScalarCondVectorVal; 7327 else 7328 SelectKind = TargetLowering::ScalarValSelect; 7329 7330 if (TLI->isSelectSupported(SelectKind) && 7331 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 7332 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 7333 return false; 7334 7335 // The DominatorTree needs to be rebuilt by any consumers after this 7336 // transformation. We simply reset here rather than setting the ModifiedDT 7337 // flag to avoid restarting the function walk in runOnFunction for each 7338 // select optimized. 7339 DT.reset(); 7340 7341 // Transform a sequence like this: 7342 // start: 7343 // %cmp = cmp uge i32 %a, %b 7344 // %sel = select i1 %cmp, i32 %c, i32 %d 7345 // 7346 // Into: 7347 // start: 7348 // %cmp = cmp uge i32 %a, %b 7349 // %cmp.frozen = freeze %cmp 7350 // br i1 %cmp.frozen, label %select.true, label %select.false 7351 // select.true: 7352 // br label %select.end 7353 // select.false: 7354 // br label %select.end 7355 // select.end: 7356 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 7357 // 7358 // %cmp should be frozen, otherwise it may introduce undefined behavior. 7359 // In addition, we may sink instructions that produce %c or %d from 7360 // the entry block into the destination(s) of the new branch. 7361 // If the true or false blocks do not contain a sunken instruction, that 7362 // block and its branch may be optimized away. In that case, one side of the 7363 // first branch will point directly to select.end, and the corresponding PHI 7364 // predecessor block will be the start block. 7365 7366 // Collect values that go on the true side and the values that go on the false 7367 // side. 7368 SmallVector<Instruction *> TrueInstrs, FalseInstrs; 7369 for (SelectInst *SI : ASI) { 7370 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) 7371 TrueInstrs.push_back(cast<Instruction>(V)); 7372 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) 7373 FalseInstrs.push_back(cast<Instruction>(V)); 7374 } 7375 7376 // Split the select block, according to how many (if any) values go on each 7377 // side. 7378 BasicBlock *StartBlock = SI->getParent(); 7379 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI)); 7380 // We should split before any debug-info. 7381 SplitPt.setHeadBit(true); 7382 7383 IRBuilder<> IB(SI); 7384 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 7385 7386 BasicBlock *TrueBlock = nullptr; 7387 BasicBlock *FalseBlock = nullptr; 7388 BasicBlock *EndBlock = nullptr; 7389 BranchInst *TrueBranch = nullptr; 7390 BranchInst *FalseBranch = nullptr; 7391 if (TrueInstrs.size() == 0) { 7392 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse( 7393 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7394 FalseBlock = FalseBranch->getParent(); 7395 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0)); 7396 } else if (FalseInstrs.size() == 0) { 7397 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen( 7398 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7399 TrueBlock = TrueBranch->getParent(); 7400 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7401 } else { 7402 Instruction *ThenTerm = nullptr; 7403 Instruction *ElseTerm = nullptr; 7404 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm, 7405 nullptr, nullptr, LI); 7406 TrueBranch = cast<BranchInst>(ThenTerm); 7407 FalseBranch = cast<BranchInst>(ElseTerm); 7408 TrueBlock = TrueBranch->getParent(); 7409 FalseBlock = FalseBranch->getParent(); 7410 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7411 } 7412 7413 EndBlock->setName("select.end"); 7414 if (TrueBlock) 7415 TrueBlock->setName("select.true.sink"); 7416 if (FalseBlock) 7417 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" 7418 : "select.false.sink"); 7419 7420 if (IsHugeFunc) { 7421 if (TrueBlock) 7422 FreshBBs.insert(TrueBlock); 7423 if (FalseBlock) 7424 FreshBBs.insert(FalseBlock); 7425 FreshBBs.insert(EndBlock); 7426 } 7427 7428 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); 7429 7430 static const unsigned MD[] = { 7431 LLVMContext::MD_prof, LLVMContext::MD_unpredictable, 7432 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; 7433 StartBlock->getTerminator()->copyMetadata(*SI, MD); 7434 7435 // Sink expensive instructions into the conditional blocks to avoid executing 7436 // them speculatively. 7437 for (Instruction *I : TrueInstrs) 7438 I->moveBefore(TrueBranch); 7439 for (Instruction *I : FalseInstrs) 7440 I->moveBefore(FalseBranch); 7441 7442 // If we did not create a new block for one of the 'true' or 'false' paths 7443 // of the condition, it means that side of the branch goes to the end block 7444 // directly and the path originates from the start block from the point of 7445 // view of the new PHI. 7446 if (TrueBlock == nullptr) 7447 TrueBlock = StartBlock; 7448 else if (FalseBlock == nullptr) 7449 FalseBlock = StartBlock; 7450 7451 SmallPtrSet<const Instruction *, 2> INS; 7452 INS.insert(ASI.begin(), ASI.end()); 7453 // Use reverse iterator because later select may use the value of the 7454 // earlier select, and we need to propagate value through earlier select 7455 // to get the PHI operand. 7456 for (SelectInst *SI : llvm::reverse(ASI)) { 7457 // The select itself is replaced with a PHI Node. 7458 PHINode *PN = PHINode::Create(SI->getType(), 2, ""); 7459 PN->insertBefore(EndBlock->begin()); 7460 PN->takeName(SI); 7461 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 7462 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 7463 PN->setDebugLoc(SI->getDebugLoc()); 7464 7465 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); 7466 SI->eraseFromParent(); 7467 INS.erase(SI); 7468 ++NumSelectsExpanded; 7469 } 7470 7471 // Instruct OptimizeBlock to skip to the next block. 7472 CurInstIterator = StartBlock->end(); 7473 return true; 7474 } 7475 7476 /// Some targets only accept certain types for splat inputs. For example a VDUP 7477 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 7478 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 7479 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 7480 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 7481 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 7482 m_Undef(), m_ZeroMask()))) 7483 return false; 7484 Type *NewType = TLI->shouldConvertSplatType(SVI); 7485 if (!NewType) 7486 return false; 7487 7488 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 7489 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 7490 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 7491 "Expected a type of the same size!"); 7492 auto *NewVecType = 7493 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 7494 7495 // Create a bitcast (shuffle (insert (bitcast(..)))) 7496 IRBuilder<> Builder(SVI->getContext()); 7497 Builder.SetInsertPoint(SVI); 7498 Value *BC1 = Builder.CreateBitCast( 7499 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 7500 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 7501 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 7502 7503 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); 7504 RecursivelyDeleteTriviallyDeadInstructions( 7505 SVI, TLInfo, nullptr, 7506 [&](Value *V) { removeAllAssertingVHReferences(V); }); 7507 7508 // Also hoist the bitcast up to its operand if it they are not in the same 7509 // block. 7510 if (auto *BCI = dyn_cast<Instruction>(BC1)) 7511 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 7512 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 7513 !Op->isTerminator() && !Op->isEHPad()) 7514 BCI->moveAfter(Op); 7515 7516 return true; 7517 } 7518 7519 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 7520 // If the operands of I can be folded into a target instruction together with 7521 // I, duplicate and sink them. 7522 SmallVector<Use *, 4> OpsToSink; 7523 if (!TLI->shouldSinkOperands(I, OpsToSink)) 7524 return false; 7525 7526 // OpsToSink can contain multiple uses in a use chain (e.g. 7527 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 7528 // uses must come first, so we process the ops in reverse order so as to not 7529 // create invalid IR. 7530 BasicBlock *TargetBB = I->getParent(); 7531 bool Changed = false; 7532 SmallVector<Use *, 4> ToReplace; 7533 Instruction *InsertPoint = I; 7534 DenseMap<const Instruction *, unsigned long> InstOrdering; 7535 unsigned long InstNumber = 0; 7536 for (const auto &I : *TargetBB) 7537 InstOrdering[&I] = InstNumber++; 7538 7539 for (Use *U : reverse(OpsToSink)) { 7540 auto *UI = cast<Instruction>(U->get()); 7541 if (isa<PHINode>(UI)) 7542 continue; 7543 if (UI->getParent() == TargetBB) { 7544 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 7545 InsertPoint = UI; 7546 continue; 7547 } 7548 ToReplace.push_back(U); 7549 } 7550 7551 SetVector<Instruction *> MaybeDead; 7552 DenseMap<Instruction *, Instruction *> NewInstructions; 7553 for (Use *U : ToReplace) { 7554 auto *UI = cast<Instruction>(U->get()); 7555 Instruction *NI = UI->clone(); 7556 7557 if (IsHugeFunc) { 7558 // Now we clone an instruction, its operands' defs may sink to this BB 7559 // now. So we put the operands defs' BBs into FreshBBs to do optimization. 7560 for (Value *Op : NI->operands()) 7561 if (auto *OpDef = dyn_cast<Instruction>(Op)) 7562 FreshBBs.insert(OpDef->getParent()); 7563 } 7564 7565 NewInstructions[UI] = NI; 7566 MaybeDead.insert(UI); 7567 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 7568 NI->insertBefore(InsertPoint); 7569 InsertPoint = NI; 7570 InsertedInsts.insert(NI); 7571 7572 // Update the use for the new instruction, making sure that we update the 7573 // sunk instruction uses, if it is part of a chain that has already been 7574 // sunk. 7575 Instruction *OldI = cast<Instruction>(U->getUser()); 7576 if (NewInstructions.count(OldI)) 7577 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 7578 else 7579 U->set(NI); 7580 Changed = true; 7581 } 7582 7583 // Remove instructions that are dead after sinking. 7584 for (auto *I : MaybeDead) { 7585 if (!I->hasNUsesOrMore(1)) { 7586 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7587 I->eraseFromParent(); 7588 } 7589 } 7590 7591 return Changed; 7592 } 7593 7594 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7595 Value *Cond = SI->getCondition(); 7596 Type *OldType = Cond->getType(); 7597 LLVMContext &Context = Cond->getContext(); 7598 EVT OldVT = TLI->getValueType(*DL, OldType); 7599 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7600 unsigned RegWidth = RegType.getSizeInBits(); 7601 7602 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7603 return false; 7604 7605 // If the register width is greater than the type width, expand the condition 7606 // of the switch instruction and each case constant to the width of the 7607 // register. By widening the type of the switch condition, subsequent 7608 // comparisons (for case comparisons) will not need to be extended to the 7609 // preferred register width, so we will potentially eliminate N-1 extends, 7610 // where N is the number of cases in the switch. 7611 auto *NewType = Type::getIntNTy(Context, RegWidth); 7612 7613 // Extend the switch condition and case constants using the target preferred 7614 // extend unless the switch condition is a function argument with an extend 7615 // attribute. In that case, we can avoid an unnecessary mask/extension by 7616 // matching the argument extension instead. 7617 Instruction::CastOps ExtType = Instruction::ZExt; 7618 // Some targets prefer SExt over ZExt. 7619 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7620 ExtType = Instruction::SExt; 7621 7622 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7623 if (Arg->hasSExtAttr()) 7624 ExtType = Instruction::SExt; 7625 if (Arg->hasZExtAttr()) 7626 ExtType = Instruction::ZExt; 7627 } 7628 7629 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7630 ExtInst->insertBefore(SI); 7631 ExtInst->setDebugLoc(SI->getDebugLoc()); 7632 SI->setCondition(ExtInst); 7633 for (auto Case : SI->cases()) { 7634 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7635 APInt WideConst = (ExtType == Instruction::ZExt) 7636 ? NarrowConst.zext(RegWidth) 7637 : NarrowConst.sext(RegWidth); 7638 Case.setValue(ConstantInt::get(Context, WideConst)); 7639 } 7640 7641 return true; 7642 } 7643 7644 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7645 // The SCCP optimization tends to produce code like this: 7646 // switch(x) { case 42: phi(42, ...) } 7647 // Materializing the constant for the phi-argument needs instructions; So we 7648 // change the code to: 7649 // switch(x) { case 42: phi(x, ...) } 7650 7651 Value *Condition = SI->getCondition(); 7652 // Avoid endless loop in degenerate case. 7653 if (isa<ConstantInt>(*Condition)) 7654 return false; 7655 7656 bool Changed = false; 7657 BasicBlock *SwitchBB = SI->getParent(); 7658 Type *ConditionType = Condition->getType(); 7659 7660 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7661 ConstantInt *CaseValue = Case.getCaseValue(); 7662 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7663 // Set to true if we previously checked that `CaseBB` is only reached by 7664 // a single case from this switch. 7665 bool CheckedForSinglePred = false; 7666 for (PHINode &PHI : CaseBB->phis()) { 7667 Type *PHIType = PHI.getType(); 7668 // If ZExt is free then we can also catch patterns like this: 7669 // switch((i32)x) { case 42: phi((i64)42, ...); } 7670 // and replace `(i64)42` with `zext i32 %x to i64`. 7671 bool TryZExt = 7672 PHIType->isIntegerTy() && 7673 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7674 TLI->isZExtFree(ConditionType, PHIType); 7675 if (PHIType == ConditionType || TryZExt) { 7676 // Set to true to skip this case because of multiple preds. 7677 bool SkipCase = false; 7678 Value *Replacement = nullptr; 7679 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7680 Value *PHIValue = PHI.getIncomingValue(I); 7681 if (PHIValue != CaseValue) { 7682 if (!TryZExt) 7683 continue; 7684 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7685 if (!PHIValueInt || 7686 PHIValueInt->getValue() != 7687 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7688 continue; 7689 } 7690 if (PHI.getIncomingBlock(I) != SwitchBB) 7691 continue; 7692 // We cannot optimize if there are multiple case labels jumping to 7693 // this block. This check may get expensive when there are many 7694 // case labels so we test for it last. 7695 if (!CheckedForSinglePred) { 7696 CheckedForSinglePred = true; 7697 if (SI->findCaseDest(CaseBB) == nullptr) { 7698 SkipCase = true; 7699 break; 7700 } 7701 } 7702 7703 if (Replacement == nullptr) { 7704 if (PHIValue == CaseValue) { 7705 Replacement = Condition; 7706 } else { 7707 IRBuilder<> Builder(SI); 7708 Replacement = Builder.CreateZExt(Condition, PHIType); 7709 } 7710 } 7711 PHI.setIncomingValue(I, Replacement); 7712 Changed = true; 7713 } 7714 if (SkipCase) 7715 break; 7716 } 7717 } 7718 } 7719 return Changed; 7720 } 7721 7722 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7723 bool Changed = optimizeSwitchType(SI); 7724 Changed |= optimizeSwitchPhiConstants(SI); 7725 return Changed; 7726 } 7727 7728 namespace { 7729 7730 /// Helper class to promote a scalar operation to a vector one. 7731 /// This class is used to move downward extractelement transition. 7732 /// E.g., 7733 /// a = vector_op <2 x i32> 7734 /// b = extractelement <2 x i32> a, i32 0 7735 /// c = scalar_op b 7736 /// store c 7737 /// 7738 /// => 7739 /// a = vector_op <2 x i32> 7740 /// c = vector_op a (equivalent to scalar_op on the related lane) 7741 /// * d = extractelement <2 x i32> c, i32 0 7742 /// * store d 7743 /// Assuming both extractelement and store can be combine, we get rid of the 7744 /// transition. 7745 class VectorPromoteHelper { 7746 /// DataLayout associated with the current module. 7747 const DataLayout &DL; 7748 7749 /// Used to perform some checks on the legality of vector operations. 7750 const TargetLowering &TLI; 7751 7752 /// Used to estimated the cost of the promoted chain. 7753 const TargetTransformInfo &TTI; 7754 7755 /// The transition being moved downwards. 7756 Instruction *Transition; 7757 7758 /// The sequence of instructions to be promoted. 7759 SmallVector<Instruction *, 4> InstsToBePromoted; 7760 7761 /// Cost of combining a store and an extract. 7762 unsigned StoreExtractCombineCost; 7763 7764 /// Instruction that will be combined with the transition. 7765 Instruction *CombineInst = nullptr; 7766 7767 /// The instruction that represents the current end of the transition. 7768 /// Since we are faking the promotion until we reach the end of the chain 7769 /// of computation, we need a way to get the current end of the transition. 7770 Instruction *getEndOfTransition() const { 7771 if (InstsToBePromoted.empty()) 7772 return Transition; 7773 return InstsToBePromoted.back(); 7774 } 7775 7776 /// Return the index of the original value in the transition. 7777 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7778 /// c, is at index 0. 7779 unsigned getTransitionOriginalValueIdx() const { 7780 assert(isa<ExtractElementInst>(Transition) && 7781 "Other kind of transitions are not supported yet"); 7782 return 0; 7783 } 7784 7785 /// Return the index of the index in the transition. 7786 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7787 /// is at index 1. 7788 unsigned getTransitionIdx() const { 7789 assert(isa<ExtractElementInst>(Transition) && 7790 "Other kind of transitions are not supported yet"); 7791 return 1; 7792 } 7793 7794 /// Get the type of the transition. 7795 /// This is the type of the original value. 7796 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7797 /// transition is <2 x i32>. 7798 Type *getTransitionType() const { 7799 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7800 } 7801 7802 /// Promote \p ToBePromoted by moving \p Def downward through. 7803 /// I.e., we have the following sequence: 7804 /// Def = Transition <ty1> a to <ty2> 7805 /// b = ToBePromoted <ty2> Def, ... 7806 /// => 7807 /// b = ToBePromoted <ty1> a, ... 7808 /// Def = Transition <ty1> ToBePromoted to <ty2> 7809 void promoteImpl(Instruction *ToBePromoted); 7810 7811 /// Check whether or not it is profitable to promote all the 7812 /// instructions enqueued to be promoted. 7813 bool isProfitableToPromote() { 7814 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7815 unsigned Index = isa<ConstantInt>(ValIdx) 7816 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7817 : -1; 7818 Type *PromotedType = getTransitionType(); 7819 7820 StoreInst *ST = cast<StoreInst>(CombineInst); 7821 unsigned AS = ST->getPointerAddressSpace(); 7822 // Check if this store is supported. 7823 if (!TLI.allowsMisalignedMemoryAccesses( 7824 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7825 ST->getAlign())) { 7826 // If this is not supported, there is no way we can combine 7827 // the extract with the store. 7828 return false; 7829 } 7830 7831 // The scalar chain of computation has to pay for the transition 7832 // scalar to vector. 7833 // The vector chain has to account for the combining cost. 7834 enum TargetTransformInfo::TargetCostKind CostKind = 7835 TargetTransformInfo::TCK_RecipThroughput; 7836 InstructionCost ScalarCost = 7837 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); 7838 InstructionCost VectorCost = StoreExtractCombineCost; 7839 for (const auto &Inst : InstsToBePromoted) { 7840 // Compute the cost. 7841 // By construction, all instructions being promoted are arithmetic ones. 7842 // Moreover, one argument is a constant that can be viewed as a splat 7843 // constant. 7844 Value *Arg0 = Inst->getOperand(0); 7845 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7846 isa<ConstantFP>(Arg0); 7847 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; 7848 if (IsArg0Constant) 7849 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7850 else 7851 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7852 7853 ScalarCost += TTI.getArithmeticInstrCost( 7854 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); 7855 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7856 CostKind, Arg0Info, Arg1Info); 7857 } 7858 LLVM_DEBUG( 7859 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7860 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7861 return ScalarCost > VectorCost; 7862 } 7863 7864 /// Generate a constant vector with \p Val with the same 7865 /// number of elements as the transition. 7866 /// \p UseSplat defines whether or not \p Val should be replicated 7867 /// across the whole vector. 7868 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7869 /// otherwise we generate a vector with as many undef as possible: 7870 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7871 /// used at the index of the extract. 7872 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7873 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7874 if (!UseSplat) { 7875 // If we cannot determine where the constant must be, we have to 7876 // use a splat constant. 7877 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7878 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7879 ExtractIdx = CstVal->getSExtValue(); 7880 else 7881 UseSplat = true; 7882 } 7883 7884 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7885 if (UseSplat) 7886 return ConstantVector::getSplat(EC, Val); 7887 7888 if (!EC.isScalable()) { 7889 SmallVector<Constant *, 4> ConstVec; 7890 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7891 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7892 if (Idx == ExtractIdx) 7893 ConstVec.push_back(Val); 7894 else 7895 ConstVec.push_back(UndefVal); 7896 } 7897 return ConstantVector::get(ConstVec); 7898 } else 7899 llvm_unreachable( 7900 "Generate scalable vector for non-splat is unimplemented"); 7901 } 7902 7903 /// Check if promoting to a vector type an operand at \p OperandIdx 7904 /// in \p Use can trigger undefined behavior. 7905 static bool canCauseUndefinedBehavior(const Instruction *Use, 7906 unsigned OperandIdx) { 7907 // This is not safe to introduce undef when the operand is on 7908 // the right hand side of a division-like instruction. 7909 if (OperandIdx != 1) 7910 return false; 7911 switch (Use->getOpcode()) { 7912 default: 7913 return false; 7914 case Instruction::SDiv: 7915 case Instruction::UDiv: 7916 case Instruction::SRem: 7917 case Instruction::URem: 7918 return true; 7919 case Instruction::FDiv: 7920 case Instruction::FRem: 7921 return !Use->hasNoNaNs(); 7922 } 7923 llvm_unreachable(nullptr); 7924 } 7925 7926 public: 7927 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7928 const TargetTransformInfo &TTI, Instruction *Transition, 7929 unsigned CombineCost) 7930 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7931 StoreExtractCombineCost(CombineCost) { 7932 assert(Transition && "Do not know how to promote null"); 7933 } 7934 7935 /// Check if we can promote \p ToBePromoted to \p Type. 7936 bool canPromote(const Instruction *ToBePromoted) const { 7937 // We could support CastInst too. 7938 return isa<BinaryOperator>(ToBePromoted); 7939 } 7940 7941 /// Check if it is profitable to promote \p ToBePromoted 7942 /// by moving downward the transition through. 7943 bool shouldPromote(const Instruction *ToBePromoted) const { 7944 // Promote only if all the operands can be statically expanded. 7945 // Indeed, we do not want to introduce any new kind of transitions. 7946 for (const Use &U : ToBePromoted->operands()) { 7947 const Value *Val = U.get(); 7948 if (Val == getEndOfTransition()) { 7949 // If the use is a division and the transition is on the rhs, 7950 // we cannot promote the operation, otherwise we may create a 7951 // division by zero. 7952 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7953 return false; 7954 continue; 7955 } 7956 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7957 !isa<ConstantFP>(Val)) 7958 return false; 7959 } 7960 // Check that the resulting operation is legal. 7961 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7962 if (!ISDOpcode) 7963 return false; 7964 return StressStoreExtract || 7965 TLI.isOperationLegalOrCustom( 7966 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7967 } 7968 7969 /// Check whether or not \p Use can be combined 7970 /// with the transition. 7971 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7972 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7973 7974 /// Record \p ToBePromoted as part of the chain to be promoted. 7975 void enqueueForPromotion(Instruction *ToBePromoted) { 7976 InstsToBePromoted.push_back(ToBePromoted); 7977 } 7978 7979 /// Set the instruction that will be combined with the transition. 7980 void recordCombineInstruction(Instruction *ToBeCombined) { 7981 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7982 CombineInst = ToBeCombined; 7983 } 7984 7985 /// Promote all the instructions enqueued for promotion if it is 7986 /// is profitable. 7987 /// \return True if the promotion happened, false otherwise. 7988 bool promote() { 7989 // Check if there is something to promote. 7990 // Right now, if we do not have anything to combine with, 7991 // we assume the promotion is not profitable. 7992 if (InstsToBePromoted.empty() || !CombineInst) 7993 return false; 7994 7995 // Check cost. 7996 if (!StressStoreExtract && !isProfitableToPromote()) 7997 return false; 7998 7999 // Promote. 8000 for (auto &ToBePromoted : InstsToBePromoted) 8001 promoteImpl(ToBePromoted); 8002 InstsToBePromoted.clear(); 8003 return true; 8004 } 8005 }; 8006 8007 } // end anonymous namespace 8008 8009 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 8010 // At this point, we know that all the operands of ToBePromoted but Def 8011 // can be statically promoted. 8012 // For Def, we need to use its parameter in ToBePromoted: 8013 // b = ToBePromoted ty1 a 8014 // Def = Transition ty1 b to ty2 8015 // Move the transition down. 8016 // 1. Replace all uses of the promoted operation by the transition. 8017 // = ... b => = ... Def. 8018 assert(ToBePromoted->getType() == Transition->getType() && 8019 "The type of the result of the transition does not match " 8020 "the final type"); 8021 ToBePromoted->replaceAllUsesWith(Transition); 8022 // 2. Update the type of the uses. 8023 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 8024 Type *TransitionTy = getTransitionType(); 8025 ToBePromoted->mutateType(TransitionTy); 8026 // 3. Update all the operands of the promoted operation with promoted 8027 // operands. 8028 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 8029 for (Use &U : ToBePromoted->operands()) { 8030 Value *Val = U.get(); 8031 Value *NewVal = nullptr; 8032 if (Val == Transition) 8033 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 8034 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 8035 isa<ConstantFP>(Val)) { 8036 // Use a splat constant if it is not safe to use undef. 8037 NewVal = getConstantVector( 8038 cast<Constant>(Val), 8039 isa<UndefValue>(Val) || 8040 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 8041 } else 8042 llvm_unreachable("Did you modified shouldPromote and forgot to update " 8043 "this?"); 8044 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 8045 } 8046 Transition->moveAfter(ToBePromoted); 8047 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 8048 } 8049 8050 /// Some targets can do store(extractelement) with one instruction. 8051 /// Try to push the extractelement towards the stores when the target 8052 /// has this feature and this is profitable. 8053 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 8054 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 8055 if (DisableStoreExtract || 8056 (!StressStoreExtract && 8057 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 8058 Inst->getOperand(1), CombineCost))) 8059 return false; 8060 8061 // At this point we know that Inst is a vector to scalar transition. 8062 // Try to move it down the def-use chain, until: 8063 // - We can combine the transition with its single use 8064 // => we got rid of the transition. 8065 // - We escape the current basic block 8066 // => we would need to check that we are moving it at a cheaper place and 8067 // we do not do that for now. 8068 BasicBlock *Parent = Inst->getParent(); 8069 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 8070 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 8071 // If the transition has more than one use, assume this is not going to be 8072 // beneficial. 8073 while (Inst->hasOneUse()) { 8074 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 8075 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 8076 8077 if (ToBePromoted->getParent() != Parent) { 8078 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 8079 << ToBePromoted->getParent()->getName() 8080 << ") than the transition (" << Parent->getName() 8081 << ").\n"); 8082 return false; 8083 } 8084 8085 if (VPH.canCombine(ToBePromoted)) { 8086 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 8087 << "will be combined with: " << *ToBePromoted << '\n'); 8088 VPH.recordCombineInstruction(ToBePromoted); 8089 bool Changed = VPH.promote(); 8090 NumStoreExtractExposed += Changed; 8091 return Changed; 8092 } 8093 8094 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 8095 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 8096 return false; 8097 8098 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 8099 8100 VPH.enqueueForPromotion(ToBePromoted); 8101 Inst = ToBePromoted; 8102 } 8103 return false; 8104 } 8105 8106 /// For the instruction sequence of store below, F and I values 8107 /// are bundled together as an i64 value before being stored into memory. 8108 /// Sometimes it is more efficient to generate separate stores for F and I, 8109 /// which can remove the bitwise instructions or sink them to colder places. 8110 /// 8111 /// (store (or (zext (bitcast F to i32) to i64), 8112 /// (shl (zext I to i64), 32)), addr) --> 8113 /// (store F, addr) and (store I, addr+4) 8114 /// 8115 /// Similarly, splitting for other merged store can also be beneficial, like: 8116 /// For pair of {i32, i32}, i64 store --> two i32 stores. 8117 /// For pair of {i32, i16}, i64 store --> two i32 stores. 8118 /// For pair of {i16, i16}, i32 store --> two i16 stores. 8119 /// For pair of {i16, i8}, i32 store --> two i16 stores. 8120 /// For pair of {i8, i8}, i16 store --> two i8 stores. 8121 /// 8122 /// We allow each target to determine specifically which kind of splitting is 8123 /// supported. 8124 /// 8125 /// The store patterns are commonly seen from the simple code snippet below 8126 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 8127 /// void goo(const std::pair<int, float> &); 8128 /// hoo() { 8129 /// ... 8130 /// goo(std::make_pair(tmp, ftmp)); 8131 /// ... 8132 /// } 8133 /// 8134 /// Although we already have similar splitting in DAG Combine, we duplicate 8135 /// it in CodeGenPrepare to catch the case in which pattern is across 8136 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 8137 /// during code expansion. 8138 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 8139 const TargetLowering &TLI) { 8140 // Handle simple but common cases only. 8141 Type *StoreType = SI.getValueOperand()->getType(); 8142 8143 // The code below assumes shifting a value by <number of bits>, 8144 // whereas scalable vectors would have to be shifted by 8145 // <2log(vscale) + number of bits> in order to store the 8146 // low/high parts. Bailing out for now. 8147 if (StoreType->isScalableTy()) 8148 return false; 8149 8150 if (!DL.typeSizeEqualsStoreSize(StoreType) || 8151 DL.getTypeSizeInBits(StoreType) == 0) 8152 return false; 8153 8154 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 8155 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 8156 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 8157 return false; 8158 8159 // Don't split the store if it is volatile. 8160 if (SI.isVolatile()) 8161 return false; 8162 8163 // Match the following patterns: 8164 // (store (or (zext LValue to i64), 8165 // (shl (zext HValue to i64), 32)), HalfValBitSize) 8166 // or 8167 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 8168 // (zext LValue to i64), 8169 // Expect both operands of OR and the first operand of SHL have only 8170 // one use. 8171 Value *LValue, *HValue; 8172 if (!match(SI.getValueOperand(), 8173 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 8174 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 8175 m_SpecificInt(HalfValBitSize)))))) 8176 return false; 8177 8178 // Check LValue and HValue are int with size less or equal than 32. 8179 if (!LValue->getType()->isIntegerTy() || 8180 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 8181 !HValue->getType()->isIntegerTy() || 8182 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 8183 return false; 8184 8185 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 8186 // as the input of target query. 8187 auto *LBC = dyn_cast<BitCastInst>(LValue); 8188 auto *HBC = dyn_cast<BitCastInst>(HValue); 8189 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 8190 : EVT::getEVT(LValue->getType()); 8191 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 8192 : EVT::getEVT(HValue->getType()); 8193 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 8194 return false; 8195 8196 // Start to split store. 8197 IRBuilder<> Builder(SI.getContext()); 8198 Builder.SetInsertPoint(&SI); 8199 8200 // If LValue/HValue is a bitcast in another BB, create a new one in current 8201 // BB so it may be merged with the splitted stores by dag combiner. 8202 if (LBC && LBC->getParent() != SI.getParent()) 8203 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 8204 if (HBC && HBC->getParent() != SI.getParent()) 8205 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 8206 8207 bool IsLE = SI.getDataLayout().isLittleEndian(); 8208 auto CreateSplitStore = [&](Value *V, bool Upper) { 8209 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 8210 Value *Addr = SI.getPointerOperand(); 8211 Align Alignment = SI.getAlign(); 8212 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 8213 if (IsOffsetStore) { 8214 Addr = Builder.CreateGEP( 8215 SplitStoreType, Addr, 8216 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 8217 8218 // When splitting the store in half, naturally one half will retain the 8219 // alignment of the original wider store, regardless of whether it was 8220 // over-aligned or not, while the other will require adjustment. 8221 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 8222 } 8223 Builder.CreateAlignedStore(V, Addr, Alignment); 8224 }; 8225 8226 CreateSplitStore(LValue, false); 8227 CreateSplitStore(HValue, true); 8228 8229 // Delete the old store. 8230 SI.eraseFromParent(); 8231 return true; 8232 } 8233 8234 // Return true if the GEP has two operands, the first operand is of a sequential 8235 // type, and the second operand is a constant. 8236 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 8237 gep_type_iterator I = gep_type_begin(*GEP); 8238 return GEP->getNumOperands() == 2 && I.isSequential() && 8239 isa<ConstantInt>(GEP->getOperand(1)); 8240 } 8241 8242 // Try unmerging GEPs to reduce liveness interference (register pressure) across 8243 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 8244 // reducing liveness interference across those edges benefits global register 8245 // allocation. Currently handles only certain cases. 8246 // 8247 // For example, unmerge %GEPI and %UGEPI as below. 8248 // 8249 // ---------- BEFORE ---------- 8250 // SrcBlock: 8251 // ... 8252 // %GEPIOp = ... 8253 // ... 8254 // %GEPI = gep %GEPIOp, Idx 8255 // ... 8256 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 8257 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 8258 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 8259 // %UGEPI) 8260 // 8261 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 8262 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 8263 // ... 8264 // 8265 // DstBi: 8266 // ... 8267 // %UGEPI = gep %GEPIOp, UIdx 8268 // ... 8269 // --------------------------- 8270 // 8271 // ---------- AFTER ---------- 8272 // SrcBlock: 8273 // ... (same as above) 8274 // (* %GEPI is still alive on the indirectbr edges) 8275 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 8276 // unmerging) 8277 // ... 8278 // 8279 // DstBi: 8280 // ... 8281 // %UGEPI = gep %GEPI, (UIdx-Idx) 8282 // ... 8283 // --------------------------- 8284 // 8285 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 8286 // no longer alive on them. 8287 // 8288 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 8289 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 8290 // not to disable further simplications and optimizations as a result of GEP 8291 // merging. 8292 // 8293 // Note this unmerging may increase the length of the data flow critical path 8294 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 8295 // between the register pressure and the length of data-flow critical 8296 // path. Restricting this to the uncommon IndirectBr case would minimize the 8297 // impact of potentially longer critical path, if any, and the impact on compile 8298 // time. 8299 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 8300 const TargetTransformInfo *TTI) { 8301 BasicBlock *SrcBlock = GEPI->getParent(); 8302 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 8303 // (non-IndirectBr) cases exit early here. 8304 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 8305 return false; 8306 // Check that GEPI is a simple gep with a single constant index. 8307 if (!GEPSequentialConstIndexed(GEPI)) 8308 return false; 8309 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 8310 // Check that GEPI is a cheap one. 8311 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 8312 TargetTransformInfo::TCK_SizeAndLatency) > 8313 TargetTransformInfo::TCC_Basic) 8314 return false; 8315 Value *GEPIOp = GEPI->getOperand(0); 8316 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 8317 if (!isa<Instruction>(GEPIOp)) 8318 return false; 8319 auto *GEPIOpI = cast<Instruction>(GEPIOp); 8320 if (GEPIOpI->getParent() != SrcBlock) 8321 return false; 8322 // Check that GEP is used outside the block, meaning it's alive on the 8323 // IndirectBr edge(s). 8324 if (llvm::none_of(GEPI->users(), [&](User *Usr) { 8325 if (auto *I = dyn_cast<Instruction>(Usr)) { 8326 if (I->getParent() != SrcBlock) { 8327 return true; 8328 } 8329 } 8330 return false; 8331 })) 8332 return false; 8333 // The second elements of the GEP chains to be unmerged. 8334 std::vector<GetElementPtrInst *> UGEPIs; 8335 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 8336 // on IndirectBr edges. 8337 for (User *Usr : GEPIOp->users()) { 8338 if (Usr == GEPI) 8339 continue; 8340 // Check if Usr is an Instruction. If not, give up. 8341 if (!isa<Instruction>(Usr)) 8342 return false; 8343 auto *UI = cast<Instruction>(Usr); 8344 // Check if Usr in the same block as GEPIOp, which is fine, skip. 8345 if (UI->getParent() == SrcBlock) 8346 continue; 8347 // Check if Usr is a GEP. If not, give up. 8348 if (!isa<GetElementPtrInst>(Usr)) 8349 return false; 8350 auto *UGEPI = cast<GetElementPtrInst>(Usr); 8351 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 8352 // the pointer operand to it. If so, record it in the vector. If not, give 8353 // up. 8354 if (!GEPSequentialConstIndexed(UGEPI)) 8355 return false; 8356 if (UGEPI->getOperand(0) != GEPIOp) 8357 return false; 8358 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType()) 8359 return false; 8360 if (GEPIIdx->getType() != 8361 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 8362 return false; 8363 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8364 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 8365 TargetTransformInfo::TCK_SizeAndLatency) > 8366 TargetTransformInfo::TCC_Basic) 8367 return false; 8368 UGEPIs.push_back(UGEPI); 8369 } 8370 if (UGEPIs.size() == 0) 8371 return false; 8372 // Check the materializing cost of (Uidx-Idx). 8373 for (GetElementPtrInst *UGEPI : UGEPIs) { 8374 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8375 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 8376 InstructionCost ImmCost = TTI->getIntImmCost( 8377 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 8378 if (ImmCost > TargetTransformInfo::TCC_Basic) 8379 return false; 8380 } 8381 // Now unmerge between GEPI and UGEPIs. 8382 for (GetElementPtrInst *UGEPI : UGEPIs) { 8383 UGEPI->setOperand(0, GEPI); 8384 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8385 Constant *NewUGEPIIdx = ConstantInt::get( 8386 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); 8387 UGEPI->setOperand(1, NewUGEPIIdx); 8388 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 8389 // inbounds to avoid UB. 8390 if (!GEPI->isInBounds()) { 8391 UGEPI->setIsInBounds(false); 8392 } 8393 } 8394 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 8395 // alive on IndirectBr edges). 8396 assert(llvm::none_of(GEPIOp->users(), 8397 [&](User *Usr) { 8398 return cast<Instruction>(Usr)->getParent() != SrcBlock; 8399 }) && 8400 "GEPIOp is used outside SrcBlock"); 8401 return true; 8402 } 8403 8404 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, 8405 SmallSet<BasicBlock *, 32> &FreshBBs, 8406 bool IsHugeFunc) { 8407 // Try and convert 8408 // %c = icmp ult %x, 8 8409 // br %c, bla, blb 8410 // %tc = lshr %x, 3 8411 // to 8412 // %tc = lshr %x, 3 8413 // %c = icmp eq %tc, 0 8414 // br %c, bla, blb 8415 // Creating the cmp to zero can be better for the backend, especially if the 8416 // lshr produces flags that can be used automatically. 8417 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 8418 return false; 8419 8420 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 8421 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 8422 return false; 8423 8424 Value *X = Cmp->getOperand(0); 8425 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 8426 8427 for (auto *U : X->users()) { 8428 Instruction *UI = dyn_cast<Instruction>(U); 8429 // A quick dominance check 8430 if (!UI || 8431 (UI->getParent() != Branch->getParent() && 8432 UI->getParent() != Branch->getSuccessor(0) && 8433 UI->getParent() != Branch->getSuccessor(1)) || 8434 (UI->getParent() != Branch->getParent() && 8435 !UI->getParent()->getSinglePredecessor())) 8436 continue; 8437 8438 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 8439 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 8440 IRBuilder<> Builder(Branch); 8441 if (UI->getParent() != Branch->getParent()) 8442 UI->moveBefore(Branch); 8443 UI->dropPoisonGeneratingFlags(); 8444 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 8445 ConstantInt::get(UI->getType(), 0)); 8446 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8447 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8448 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8449 return true; 8450 } 8451 if (Cmp->isEquality() && 8452 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 8453 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 8454 IRBuilder<> Builder(Branch); 8455 if (UI->getParent() != Branch->getParent()) 8456 UI->moveBefore(Branch); 8457 UI->dropPoisonGeneratingFlags(); 8458 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 8459 ConstantInt::get(UI->getType(), 0)); 8460 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8461 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8462 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8463 return true; 8464 } 8465 } 8466 return false; 8467 } 8468 8469 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { 8470 bool AnyChange = false; 8471 AnyChange = fixupDbgVariableRecordsOnInst(*I); 8472 8473 // Bail out if we inserted the instruction to prevent optimizations from 8474 // stepping on each other's toes. 8475 if (InsertedInsts.count(I)) 8476 return AnyChange; 8477 8478 // TODO: Move into the switch on opcode below here. 8479 if (PHINode *P = dyn_cast<PHINode>(I)) { 8480 // It is possible for very late stage optimizations (such as SimplifyCFG) 8481 // to introduce PHI nodes too late to be cleaned up. If we detect such a 8482 // trivial PHI, go ahead and zap it here. 8483 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 8484 LargeOffsetGEPMap.erase(P); 8485 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); 8486 P->eraseFromParent(); 8487 ++NumPHIsElim; 8488 return true; 8489 } 8490 return AnyChange; 8491 } 8492 8493 if (CastInst *CI = dyn_cast<CastInst>(I)) { 8494 // If the source of the cast is a constant, then this should have 8495 // already been constant folded. The only reason NOT to constant fold 8496 // it is if something (e.g. LSR) was careful to place the constant 8497 // evaluation in a block other than then one that uses it (e.g. to hoist 8498 // the address of globals out of a loop). If this is the case, we don't 8499 // want to forward-subst the cast. 8500 if (isa<Constant>(CI->getOperand(0))) 8501 return AnyChange; 8502 8503 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 8504 return true; 8505 8506 if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) || 8507 isa<TruncInst>(I)) && 8508 TLI->optimizeExtendOrTruncateConversion( 8509 I, LI->getLoopFor(I->getParent()), *TTI)) 8510 return true; 8511 8512 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 8513 /// Sink a zext or sext into its user blocks if the target type doesn't 8514 /// fit in one register 8515 if (TLI->getTypeAction(CI->getContext(), 8516 TLI->getValueType(*DL, CI->getType())) == 8517 TargetLowering::TypeExpandInteger) { 8518 return SinkCast(CI); 8519 } else { 8520 if (TLI->optimizeExtendOrTruncateConversion( 8521 I, LI->getLoopFor(I->getParent()), *TTI)) 8522 return true; 8523 8524 bool MadeChange = optimizeExt(I); 8525 return MadeChange | optimizeExtUses(I); 8526 } 8527 } 8528 return AnyChange; 8529 } 8530 8531 if (auto *Cmp = dyn_cast<CmpInst>(I)) 8532 if (optimizeCmp(Cmp, ModifiedDT)) 8533 return true; 8534 8535 if (match(I, m_URem(m_Value(), m_Value()))) 8536 if (optimizeURem(I)) 8537 return true; 8538 8539 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8540 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8541 bool Modified = optimizeLoadExt(LI); 8542 unsigned AS = LI->getPointerAddressSpace(); 8543 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 8544 return Modified; 8545 } 8546 8547 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 8548 if (splitMergedValStore(*SI, *DL, *TLI)) 8549 return true; 8550 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8551 unsigned AS = SI->getPointerAddressSpace(); 8552 return optimizeMemoryInst(I, SI->getOperand(1), 8553 SI->getOperand(0)->getType(), AS); 8554 } 8555 8556 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 8557 unsigned AS = RMW->getPointerAddressSpace(); 8558 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); 8559 } 8560 8561 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 8562 unsigned AS = CmpX->getPointerAddressSpace(); 8563 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 8564 CmpX->getCompareOperand()->getType(), AS); 8565 } 8566 8567 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 8568 8569 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 8570 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 8571 return true; 8572 8573 // TODO: Move this into the switch on opcode - it handles shifts already. 8574 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 8575 BinOp->getOpcode() == Instruction::LShr)) { 8576 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 8577 if (CI && TLI->hasExtractBitsInsn()) 8578 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 8579 return true; 8580 } 8581 8582 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 8583 if (GEPI->hasAllZeroIndices()) { 8584 /// The GEP operand must be a pointer, so must its result -> BitCast 8585 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 8586 GEPI->getName(), GEPI->getIterator()); 8587 NC->setDebugLoc(GEPI->getDebugLoc()); 8588 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); 8589 RecursivelyDeleteTriviallyDeadInstructions( 8590 GEPI, TLInfo, nullptr, 8591 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8592 ++NumGEPsElim; 8593 optimizeInst(NC, ModifiedDT); 8594 return true; 8595 } 8596 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8597 return true; 8598 } 8599 } 8600 8601 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8602 // freeze(icmp a, const)) -> icmp (freeze a), const 8603 // This helps generate efficient conditional jumps. 8604 Instruction *CmpI = nullptr; 8605 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8606 CmpI = II; 8607 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8608 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8609 8610 if (CmpI && CmpI->hasOneUse()) { 8611 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8612 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8613 isa<ConstantPointerNull>(Op0); 8614 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8615 isa<ConstantPointerNull>(Op1); 8616 if (Const0 || Const1) { 8617 if (!Const0 || !Const1) { 8618 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator()); 8619 F->takeName(FI); 8620 CmpI->setOperand(Const0 ? 1 : 0, F); 8621 } 8622 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); 8623 FI->eraseFromParent(); 8624 return true; 8625 } 8626 } 8627 return AnyChange; 8628 } 8629 8630 if (tryToSinkFreeOperands(I)) 8631 return true; 8632 8633 switch (I->getOpcode()) { 8634 case Instruction::Shl: 8635 case Instruction::LShr: 8636 case Instruction::AShr: 8637 return optimizeShiftInst(cast<BinaryOperator>(I)); 8638 case Instruction::Call: 8639 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8640 case Instruction::Select: 8641 return optimizeSelectInst(cast<SelectInst>(I)); 8642 case Instruction::ShuffleVector: 8643 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8644 case Instruction::Switch: 8645 return optimizeSwitchInst(cast<SwitchInst>(I)); 8646 case Instruction::ExtractElement: 8647 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8648 case Instruction::Br: 8649 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); 8650 } 8651 8652 return AnyChange; 8653 } 8654 8655 /// Given an OR instruction, check to see if this is a bitreverse 8656 /// idiom. If so, insert the new intrinsic and return true. 8657 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8658 if (!I.getType()->isIntegerTy() || 8659 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8660 TLI->getValueType(*DL, I.getType(), true))) 8661 return false; 8662 8663 SmallVector<Instruction *, 4> Insts; 8664 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8665 return false; 8666 Instruction *LastInst = Insts.back(); 8667 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); 8668 RecursivelyDeleteTriviallyDeadInstructions( 8669 &I, TLInfo, nullptr, 8670 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8671 return true; 8672 } 8673 8674 // In this pass we look for GEP and cast instructions that are used 8675 // across basic blocks and rewrite them to improve basic-block-at-a-time 8676 // selection. 8677 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { 8678 SunkAddrs.clear(); 8679 bool MadeChange = false; 8680 8681 do { 8682 CurInstIterator = BB.begin(); 8683 ModifiedDT = ModifyDT::NotModifyDT; 8684 while (CurInstIterator != BB.end()) { 8685 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8686 if (ModifiedDT != ModifyDT::NotModifyDT) { 8687 // For huge function we tend to quickly go though the inner optmization 8688 // opportunities in the BB. So we go back to the BB head to re-optimize 8689 // each instruction instead of go back to the function head. 8690 if (IsHugeFunc) { 8691 DT.reset(); 8692 getDT(*BB.getParent()); 8693 break; 8694 } else { 8695 return true; 8696 } 8697 } 8698 } 8699 } while (ModifiedDT == ModifyDT::ModifyInstDT); 8700 8701 bool MadeBitReverse = true; 8702 while (MadeBitReverse) { 8703 MadeBitReverse = false; 8704 for (auto &I : reverse(BB)) { 8705 if (makeBitReverse(I)) { 8706 MadeBitReverse = MadeChange = true; 8707 break; 8708 } 8709 } 8710 } 8711 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8712 8713 return MadeChange; 8714 } 8715 8716 // Some CGP optimizations may move or alter what's computed in a block. Check 8717 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8718 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8719 assert(isa<DbgValueInst>(I)); 8720 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8721 8722 // Does this dbg.value refer to a sunk address calculation? 8723 bool AnyChange = false; 8724 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8725 DVI.location_ops().end()); 8726 for (Value *Location : LocationOps) { 8727 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8728 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8729 if (SunkAddr) { 8730 // Point dbg.value at locally computed address, which should give the best 8731 // opportunity to be accurately lowered. This update may change the type 8732 // of pointer being referred to; however this makes no difference to 8733 // debugging information, and we can't generate bitcasts that may affect 8734 // codegen. 8735 DVI.replaceVariableLocationOp(Location, SunkAddr); 8736 AnyChange = true; 8737 } 8738 } 8739 return AnyChange; 8740 } 8741 8742 bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) { 8743 bool AnyChange = false; 8744 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 8745 AnyChange |= fixupDbgVariableRecord(DVR); 8746 return AnyChange; 8747 } 8748 8749 // FIXME: should updating debug-info really cause the "changed" flag to fire, 8750 // which can cause a function to be reprocessed? 8751 bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) { 8752 if (DVR.Type != DbgVariableRecord::LocationType::Value && 8753 DVR.Type != DbgVariableRecord::LocationType::Assign) 8754 return false; 8755 8756 // Does this DbgVariableRecord refer to a sunk address calculation? 8757 bool AnyChange = false; 8758 SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(), 8759 DVR.location_ops().end()); 8760 for (Value *Location : LocationOps) { 8761 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8762 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8763 if (SunkAddr) { 8764 // Point dbg.value at locally computed address, which should give the best 8765 // opportunity to be accurately lowered. This update may change the type 8766 // of pointer being referred to; however this makes no difference to 8767 // debugging information, and we can't generate bitcasts that may affect 8768 // codegen. 8769 DVR.replaceVariableLocationOp(Location, SunkAddr); 8770 AnyChange = true; 8771 } 8772 } 8773 return AnyChange; 8774 } 8775 8776 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) { 8777 DVI->removeFromParent(); 8778 if (isa<PHINode>(VI)) 8779 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8780 else 8781 DVI->insertAfter(VI); 8782 } 8783 8784 static void DbgInserterHelper(DbgVariableRecord *DVR, Instruction *VI) { 8785 DVR->removeFromParent(); 8786 BasicBlock *VIBB = VI->getParent(); 8787 if (isa<PHINode>(VI)) 8788 VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt()); 8789 else 8790 VIBB->insertDbgRecordAfter(DVR, VI); 8791 } 8792 8793 // A llvm.dbg.value may be using a value before its definition, due to 8794 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8795 // them by moving the dbg.value to immediately after the value definition. 8796 // FIXME: Ideally this should never be necessary, and this has the potential 8797 // to re-order dbg.value intrinsics. 8798 bool CodeGenPrepare::placeDbgValues(Function &F) { 8799 bool MadeChange = false; 8800 DominatorTree DT(F); 8801 8802 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) { 8803 SmallVector<Instruction *, 4> VIs; 8804 for (Value *V : DbgItem->location_ops()) 8805 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8806 VIs.push_back(VI); 8807 8808 // This item may depend on multiple instructions, complicating any 8809 // potential sink. This block takes the defensive approach, opting to 8810 // "undef" the item if it has more than one instruction and any of them do 8811 // not dominate iem. 8812 for (Instruction *VI : VIs) { 8813 if (VI->isTerminator()) 8814 continue; 8815 8816 // If VI is a phi in a block with an EHPad terminator, we can't insert 8817 // after it. 8818 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8819 continue; 8820 8821 // If the defining instruction dominates the dbg.value, we do not need 8822 // to move the dbg.value. 8823 if (DT.dominates(VI, Position)) 8824 continue; 8825 8826 // If we depend on multiple instructions and any of them doesn't 8827 // dominate this DVI, we probably can't salvage it: moving it to 8828 // after any of the instructions could cause us to lose the others. 8829 if (VIs.size() > 1) { 8830 LLVM_DEBUG( 8831 dbgs() 8832 << "Unable to find valid location for Debug Value, undefing:\n" 8833 << *DbgItem); 8834 DbgItem->setKillLocation(); 8835 break; 8836 } 8837 8838 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8839 << *DbgItem << ' ' << *VI); 8840 DbgInserterHelper(DbgItem, VI); 8841 MadeChange = true; 8842 ++NumDbgValueMoved; 8843 } 8844 }; 8845 8846 for (BasicBlock &BB : F) { 8847 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8848 // Process dbg.value intrinsics. 8849 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8850 if (DVI) { 8851 DbgProcessor(DVI, DVI); 8852 continue; 8853 } 8854 8855 // If this isn't a dbg.value, process any attached DbgVariableRecord 8856 // records attached to this instruction. 8857 for (DbgVariableRecord &DVR : llvm::make_early_inc_range( 8858 filterDbgVars(Insn.getDbgRecordRange()))) { 8859 if (DVR.Type != DbgVariableRecord::LocationType::Value) 8860 continue; 8861 DbgProcessor(&DVR, &Insn); 8862 } 8863 } 8864 } 8865 8866 return MadeChange; 8867 } 8868 8869 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8870 // probes can be chained dependencies of other regular DAG nodes and block DAG 8871 // combine optimizations. 8872 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8873 bool MadeChange = false; 8874 for (auto &Block : F) { 8875 // Move the rest probes to the beginning of the block. 8876 auto FirstInst = Block.getFirstInsertionPt(); 8877 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8878 ++FirstInst; 8879 BasicBlock::iterator I(FirstInst); 8880 I++; 8881 while (I != Block.end()) { 8882 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8883 II->moveBefore(&*FirstInst); 8884 MadeChange = true; 8885 } 8886 } 8887 } 8888 return MadeChange; 8889 } 8890 8891 /// Scale down both weights to fit into uint32_t. 8892 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8893 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8894 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8895 NewTrue = NewTrue / Scale; 8896 NewFalse = NewFalse / Scale; 8897 } 8898 8899 /// Some targets prefer to split a conditional branch like: 8900 /// \code 8901 /// %0 = icmp ne i32 %a, 0 8902 /// %1 = icmp ne i32 %b, 0 8903 /// %or.cond = or i1 %0, %1 8904 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8905 /// \endcode 8906 /// into multiple branch instructions like: 8907 /// \code 8908 /// bb1: 8909 /// %0 = icmp ne i32 %a, 0 8910 /// br i1 %0, label %TrueBB, label %bb2 8911 /// bb2: 8912 /// %1 = icmp ne i32 %b, 0 8913 /// br i1 %1, label %TrueBB, label %FalseBB 8914 /// \endcode 8915 /// This usually allows instruction selection to do even further optimizations 8916 /// and combine the compare with the branch instruction. Currently this is 8917 /// applied for targets which have "cheap" jump instructions. 8918 /// 8919 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8920 /// 8921 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { 8922 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8923 return false; 8924 8925 bool MadeChange = false; 8926 for (auto &BB : F) { 8927 // Does this BB end with the following? 8928 // %cond1 = icmp|fcmp|binary instruction ... 8929 // %cond2 = icmp|fcmp|binary instruction ... 8930 // %cond.or = or|and i1 %cond1, cond2 8931 // br i1 %cond.or label %dest1, label %dest2" 8932 Instruction *LogicOp; 8933 BasicBlock *TBB, *FBB; 8934 if (!match(BB.getTerminator(), 8935 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8936 continue; 8937 8938 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8939 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8940 continue; 8941 8942 // The merging of mostly empty BB can cause a degenerate branch. 8943 if (TBB == FBB) 8944 continue; 8945 8946 unsigned Opc; 8947 Value *Cond1, *Cond2; 8948 if (match(LogicOp, 8949 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8950 Opc = Instruction::And; 8951 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8952 m_OneUse(m_Value(Cond2))))) 8953 Opc = Instruction::Or; 8954 else 8955 continue; 8956 8957 auto IsGoodCond = [](Value *Cond) { 8958 return match( 8959 Cond, 8960 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8961 m_LogicalOr(m_Value(), m_Value())))); 8962 }; 8963 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8964 continue; 8965 8966 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8967 8968 // Create a new BB. 8969 auto *TmpBB = 8970 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8971 BB.getParent(), BB.getNextNode()); 8972 if (IsHugeFunc) 8973 FreshBBs.insert(TmpBB); 8974 8975 // Update original basic block by using the first condition directly by the 8976 // branch instruction and removing the no longer needed and/or instruction. 8977 Br1->setCondition(Cond1); 8978 LogicOp->eraseFromParent(); 8979 8980 // Depending on the condition we have to either replace the true or the 8981 // false successor of the original branch instruction. 8982 if (Opc == Instruction::And) 8983 Br1->setSuccessor(0, TmpBB); 8984 else 8985 Br1->setSuccessor(1, TmpBB); 8986 8987 // Fill in the new basic block. 8988 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8989 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8990 I->removeFromParent(); 8991 I->insertBefore(Br2); 8992 } 8993 8994 // Update PHI nodes in both successors. The original BB needs to be 8995 // replaced in one successor's PHI nodes, because the branch comes now from 8996 // the newly generated BB (NewBB). In the other successor we need to add one 8997 // incoming edge to the PHI nodes, because both branch instructions target 8998 // now the same successor. Depending on the original branch condition 8999 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 9000 // we perform the correct update for the PHI nodes. 9001 // This doesn't change the successor order of the just created branch 9002 // instruction (or any other instruction). 9003 if (Opc == Instruction::Or) 9004 std::swap(TBB, FBB); 9005 9006 // Replace the old BB with the new BB. 9007 TBB->replacePhiUsesWith(&BB, TmpBB); 9008 9009 // Add another incoming edge from the new BB. 9010 for (PHINode &PN : FBB->phis()) { 9011 auto *Val = PN.getIncomingValueForBlock(&BB); 9012 PN.addIncoming(Val, TmpBB); 9013 } 9014 9015 // Update the branch weights (from SelectionDAGBuilder:: 9016 // FindMergedConditions). 9017 if (Opc == Instruction::Or) { 9018 // Codegen X | Y as: 9019 // BB1: 9020 // jmp_if_X TBB 9021 // jmp TmpBB 9022 // TmpBB: 9023 // jmp_if_Y TBB 9024 // jmp FBB 9025 // 9026 9027 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 9028 // The requirement is that 9029 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 9030 // = TrueProb for original BB. 9031 // Assuming the original weights are A and B, one choice is to set BB1's 9032 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 9033 // assumes that 9034 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 9035 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 9036 // TmpBB, but the math is more complicated. 9037 uint64_t TrueWeight, FalseWeight; 9038 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 9039 uint64_t NewTrueWeight = TrueWeight; 9040 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 9041 scaleWeights(NewTrueWeight, NewFalseWeight); 9042 Br1->setMetadata(LLVMContext::MD_prof, 9043 MDBuilder(Br1->getContext()) 9044 .createBranchWeights(TrueWeight, FalseWeight, 9045 hasBranchWeightOrigin(*Br1))); 9046 9047 NewTrueWeight = TrueWeight; 9048 NewFalseWeight = 2 * FalseWeight; 9049 scaleWeights(NewTrueWeight, NewFalseWeight); 9050 Br2->setMetadata(LLVMContext::MD_prof, 9051 MDBuilder(Br2->getContext()) 9052 .createBranchWeights(TrueWeight, FalseWeight)); 9053 } 9054 } else { 9055 // Codegen X & Y as: 9056 // BB1: 9057 // jmp_if_X TmpBB 9058 // jmp FBB 9059 // TmpBB: 9060 // jmp_if_Y TBB 9061 // jmp FBB 9062 // 9063 // This requires creation of TmpBB after CurBB. 9064 9065 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 9066 // The requirement is that 9067 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 9068 // = FalseProb for original BB. 9069 // Assuming the original weights are A and B, one choice is to set BB1's 9070 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 9071 // assumes that 9072 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 9073 uint64_t TrueWeight, FalseWeight; 9074 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 9075 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 9076 uint64_t NewFalseWeight = FalseWeight; 9077 scaleWeights(NewTrueWeight, NewFalseWeight); 9078 Br1->setMetadata(LLVMContext::MD_prof, 9079 MDBuilder(Br1->getContext()) 9080 .createBranchWeights(TrueWeight, FalseWeight)); 9081 9082 NewTrueWeight = 2 * TrueWeight; 9083 NewFalseWeight = FalseWeight; 9084 scaleWeights(NewTrueWeight, NewFalseWeight); 9085 Br2->setMetadata(LLVMContext::MD_prof, 9086 MDBuilder(Br2->getContext()) 9087 .createBranchWeights(TrueWeight, FalseWeight)); 9088 } 9089 } 9090 9091 ModifiedDT = ModifyDT::ModifyBBDT; 9092 MadeChange = true; 9093 9094 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 9095 TmpBB->dump()); 9096 } 9097 return MadeChange; 9098 } 9099