1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/CodeGenPrepare.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/CodeGenTypes/MachineValueType.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/Argument.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfo.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/GlobalVariable.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/IntrinsicsAArch64.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/MDBuilder.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/ProfDataUtils.h" 72 #include "llvm/IR/Statepoint.h" 73 #include "llvm/IR/Type.h" 74 #include "llvm/IR/Use.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/IR/ValueHandle.h" 78 #include "llvm/IR/ValueMap.h" 79 #include "llvm/InitializePasses.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/BlockFrequency.h" 82 #include "llvm/Support/BranchProbability.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/CommandLine.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Target/TargetMachine.h" 91 #include "llvm/Target/TargetOptions.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 96 #include "llvm/Transforms/Utils/SizeOpts.h" 97 #include <algorithm> 98 #include <cassert> 99 #include <cstdint> 100 #include <iterator> 101 #include <limits> 102 #include <memory> 103 #include <optional> 104 #include <utility> 105 #include <vector> 106 107 using namespace llvm; 108 using namespace llvm::PatternMatch; 109 110 #define DEBUG_TYPE "codegenprepare" 111 112 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 113 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 114 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 115 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 116 "sunken Cmps"); 117 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 118 "of sunken Casts"); 119 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 120 "computations were sunk"); 121 STATISTIC(NumMemoryInstsPhiCreated, 122 "Number of phis created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumMemoryInstsSelectCreated, 125 "Number of select created when address " 126 "computations were sunk to memory instructions"); 127 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 128 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 129 STATISTIC(NumAndsAdded, 130 "Number of and mask instructions added to form ext loads"); 131 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 132 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 133 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 134 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 135 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 136 137 static cl::opt<bool> DisableBranchOpts( 138 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable branch optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> 142 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 143 cl::desc("Disable GC optimizations in CodeGenPrepare")); 144 145 static cl::opt<bool> 146 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, 147 cl::init(false), 148 cl::desc("Disable select to branch conversion.")); 149 150 static cl::opt<bool> 151 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), 152 cl::desc("Address sinking in CGP using GEPs.")); 153 154 static cl::opt<bool> 155 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), 156 cl::desc("Enable sinkinig and/cmp into branches.")); 157 158 static cl::opt<bool> DisableStoreExtract( 159 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> StressStoreExtract( 163 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 164 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 165 166 static cl::opt<bool> DisableExtLdPromotion( 167 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 169 "CodeGenPrepare")); 170 171 static cl::opt<bool> StressExtLdPromotion( 172 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 173 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 174 "optimization in CodeGenPrepare")); 175 176 static cl::opt<bool> DisablePreheaderProtect( 177 "disable-preheader-prot", cl::Hidden, cl::init(false), 178 cl::desc("Disable protection against removing loop preheaders")); 179 180 static cl::opt<bool> ProfileGuidedSectionPrefix( 181 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 182 cl::desc("Use profile info to add section prefix for hot/cold functions")); 183 184 static cl::opt<bool> ProfileUnknownInSpecialSection( 185 "profile-unknown-in-special-section", cl::Hidden, 186 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 187 "profile, we cannot tell the function is cold for sure because " 188 "it may be a function newly added without ever being sampled. " 189 "With the flag enabled, compiler can put such profile unknown " 190 "functions into a special section, so runtime system can choose " 191 "to handle it in a different way than .text section, to save " 192 "RAM for example. ")); 193 194 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 195 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 196 cl::desc("Use the basic-block-sections profile to determine the text " 197 "section prefix for hot functions. Functions with " 198 "basic-block-sections profile will be placed in `.text.hot` " 199 "regardless of their FDO profile info. Other functions won't be " 200 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 201 "profiles.")); 202 203 static cl::opt<uint64_t> FreqRatioToSkipMerge( 204 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 205 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 206 "(frequency of destination block) is greater than this ratio")); 207 208 static cl::opt<bool> ForceSplitStore( 209 "force-split-store", cl::Hidden, cl::init(false), 210 cl::desc("Force store splitting no matter what the target query says.")); 211 212 static cl::opt<bool> EnableTypePromotionMerge( 213 "cgp-type-promotion-merge", cl::Hidden, 214 cl::desc("Enable merging of redundant sexts when one is dominating" 215 " the other."), 216 cl::init(true)); 217 218 static cl::opt<bool> DisableComplexAddrModes( 219 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 220 cl::desc("Disables combining addressing modes with different parts " 221 "in optimizeMemoryInst.")); 222 223 static cl::opt<bool> 224 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 225 cl::desc("Allow creation of Phis in Address sinking.")); 226 227 static cl::opt<bool> AddrSinkNewSelects( 228 "addr-sink-new-select", cl::Hidden, cl::init(true), 229 cl::desc("Allow creation of selects in Address sinking.")); 230 231 static cl::opt<bool> AddrSinkCombineBaseReg( 232 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 233 cl::desc("Allow combining of BaseReg field in Address sinking.")); 234 235 static cl::opt<bool> AddrSinkCombineBaseGV( 236 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 237 cl::desc("Allow combining of BaseGV field in Address sinking.")); 238 239 static cl::opt<bool> AddrSinkCombineBaseOffs( 240 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 241 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 242 243 static cl::opt<bool> AddrSinkCombineScaledReg( 244 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 245 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 246 247 static cl::opt<bool> 248 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 249 cl::init(true), 250 cl::desc("Enable splitting large offset of GEP.")); 251 252 static cl::opt<bool> EnableICMP_EQToICMP_ST( 253 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 254 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 255 256 static cl::opt<bool> 257 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 258 cl::desc("Enable BFI update verification for " 259 "CodeGenPrepare.")); 260 261 static cl::opt<bool> 262 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), 263 cl::desc("Enable converting phi types in CodeGenPrepare")); 264 265 static cl::opt<unsigned> 266 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, 267 cl::desc("Least BB number of huge function.")); 268 269 static cl::opt<unsigned> 270 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), 271 cl::Hidden, 272 cl::desc("Max number of address users to look at")); 273 274 static cl::opt<bool> 275 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false), 276 cl::desc("Disable elimination of dead PHI nodes.")); 277 278 namespace { 279 280 enum ExtType { 281 ZeroExtension, // Zero extension has been seen. 282 SignExtension, // Sign extension has been seen. 283 BothExtension // This extension type is used if we saw sext after 284 // ZeroExtension had been set, or if we saw zext after 285 // SignExtension had been set. It makes the type 286 // information of a promoted instruction invalid. 287 }; 288 289 enum ModifyDT { 290 NotModifyDT, // Not Modify any DT. 291 ModifyBBDT, // Modify the Basic Block Dominator Tree. 292 ModifyInstDT // Modify the Instruction Dominator in a Basic Block, 293 // This usually means we move/delete/insert instruction 294 // in a Basic Block. So we should re-iterate instructions 295 // in such Basic Block. 296 }; 297 298 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 299 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 300 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 301 using SExts = SmallVector<Instruction *, 16>; 302 using ValueToSExts = MapVector<Value *, SExts>; 303 304 class TypePromotionTransaction; 305 306 class CodeGenPrepare { 307 friend class CodeGenPrepareLegacyPass; 308 const TargetMachine *TM = nullptr; 309 const TargetSubtargetInfo *SubtargetInfo = nullptr; 310 const TargetLowering *TLI = nullptr; 311 const TargetRegisterInfo *TRI = nullptr; 312 const TargetTransformInfo *TTI = nullptr; 313 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 314 const TargetLibraryInfo *TLInfo = nullptr; 315 LoopInfo *LI = nullptr; 316 std::unique_ptr<BlockFrequencyInfo> BFI; 317 std::unique_ptr<BranchProbabilityInfo> BPI; 318 ProfileSummaryInfo *PSI = nullptr; 319 320 /// As we scan instructions optimizing them, this is the next instruction 321 /// to optimize. Transforms that can invalidate this should update it. 322 BasicBlock::iterator CurInstIterator; 323 324 /// Keeps track of non-local addresses that have been sunk into a block. 325 /// This allows us to avoid inserting duplicate code for blocks with 326 /// multiple load/stores of the same address. The usage of WeakTrackingVH 327 /// enables SunkAddrs to be treated as a cache whose entries can be 328 /// invalidated if a sunken address computation has been erased. 329 ValueMap<Value *, WeakTrackingVH> SunkAddrs; 330 331 /// Keeps track of all instructions inserted for the current function. 332 SetOfInstrs InsertedInsts; 333 334 /// Keeps track of the type of the related instruction before their 335 /// promotion for the current function. 336 InstrToOrigTy PromotedInsts; 337 338 /// Keep track of instructions removed during promotion. 339 SetOfInstrs RemovedInsts; 340 341 /// Keep track of sext chains based on their initial value. 342 DenseMap<Value *, Instruction *> SeenChainsForSExt; 343 344 /// Keep track of GEPs accessing the same data structures such as structs or 345 /// arrays that are candidates to be split later because of their large 346 /// size. 347 MapVector<AssertingVH<Value>, 348 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 349 LargeOffsetGEPMap; 350 351 /// Keep track of new GEP base after splitting the GEPs having large offset. 352 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 353 354 /// Map serial numbers to Large offset GEPs. 355 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 356 357 /// Keep track of SExt promoted. 358 ValueToSExts ValToSExtendedUses; 359 360 /// True if the function has the OptSize attribute. 361 bool OptSize; 362 363 /// DataLayout for the Function being processed. 364 const DataLayout *DL = nullptr; 365 366 /// Building the dominator tree can be expensive, so we only build it 367 /// lazily and update it when required. 368 std::unique_ptr<DominatorTree> DT; 369 370 public: 371 CodeGenPrepare(){}; 372 CodeGenPrepare(const TargetMachine *TM) : TM(TM){}; 373 /// If encounter huge function, we need to limit the build time. 374 bool IsHugeFunc = false; 375 376 /// FreshBBs is like worklist, it collected the updated BBs which need 377 /// to be optimized again. 378 /// Note: Consider building time in this pass, when a BB updated, we need 379 /// to insert such BB into FreshBBs for huge function. 380 SmallSet<BasicBlock *, 32> FreshBBs; 381 382 void releaseMemory() { 383 // Clear per function information. 384 InsertedInsts.clear(); 385 PromotedInsts.clear(); 386 FreshBBs.clear(); 387 BPI.reset(); 388 BFI.reset(); 389 } 390 391 bool run(Function &F, FunctionAnalysisManager &AM); 392 393 private: 394 template <typename F> 395 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 396 // Substituting can cause recursive simplifications, which can invalidate 397 // our iterator. Use a WeakTrackingVH to hold onto it in case this 398 // happens. 399 Value *CurValue = &*CurInstIterator; 400 WeakTrackingVH IterHandle(CurValue); 401 402 f(); 403 404 // If the iterator instruction was recursively deleted, start over at the 405 // start of the block. 406 if (IterHandle != CurValue) { 407 CurInstIterator = BB->begin(); 408 SunkAddrs.clear(); 409 } 410 } 411 412 // Get the DominatorTree, building if necessary. 413 DominatorTree &getDT(Function &F) { 414 if (!DT) 415 DT = std::make_unique<DominatorTree>(F); 416 return *DT; 417 } 418 419 void removeAllAssertingVHReferences(Value *V); 420 bool eliminateAssumptions(Function &F); 421 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); 422 bool eliminateMostlyEmptyBlocks(Function &F); 423 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 424 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 425 void eliminateMostlyEmptyBlock(BasicBlock *BB); 426 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 427 bool isPreheader); 428 bool makeBitReverse(Instruction &I); 429 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); 430 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); 431 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, 432 unsigned AddrSpace); 433 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 434 bool optimizeInlineAsmInst(CallInst *CS); 435 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); 436 bool optimizeExt(Instruction *&I); 437 bool optimizeExtUses(Instruction *I); 438 bool optimizeLoadExt(LoadInst *Load); 439 bool optimizeShiftInst(BinaryOperator *BO); 440 bool optimizeFunnelShift(IntrinsicInst *Fsh); 441 bool optimizeSelectInst(SelectInst *SI); 442 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 443 bool optimizeSwitchType(SwitchInst *SI); 444 bool optimizeSwitchPhiConstants(SwitchInst *SI); 445 bool optimizeSwitchInst(SwitchInst *SI); 446 bool optimizeExtractElementInst(Instruction *Inst); 447 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); 448 bool fixupDbgValue(Instruction *I); 449 bool fixupDbgVariableRecord(DbgVariableRecord &I); 450 bool fixupDbgVariableRecordsOnInst(Instruction &I); 451 bool placeDbgValues(Function &F); 452 bool placePseudoProbes(Function &F); 453 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 454 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 455 bool tryToPromoteExts(TypePromotionTransaction &TPT, 456 const SmallVectorImpl<Instruction *> &Exts, 457 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 458 unsigned CreatedInstsCost = 0); 459 bool mergeSExts(Function &F); 460 bool splitLargeGEPOffsets(); 461 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 462 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 463 bool optimizePhiTypes(Function &F); 464 bool performAddressTypePromotion( 465 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 466 bool HasPromoted, TypePromotionTransaction &TPT, 467 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 468 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); 469 bool simplifyOffsetableRelocate(GCStatepointInst &I); 470 471 bool tryToSinkFreeOperands(Instruction *I); 472 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, 473 CmpInst *Cmp, Intrinsic::ID IID); 474 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); 475 bool optimizeURem(Instruction *Rem); 476 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 477 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 478 void verifyBFIUpdates(Function &F); 479 bool _run(Function &F); 480 }; 481 482 class CodeGenPrepareLegacyPass : public FunctionPass { 483 public: 484 static char ID; // Pass identification, replacement for typeid 485 486 CodeGenPrepareLegacyPass() : FunctionPass(ID) { 487 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry()); 488 } 489 490 bool runOnFunction(Function &F) override; 491 492 StringRef getPassName() const override { return "CodeGen Prepare"; } 493 494 void getAnalysisUsage(AnalysisUsage &AU) const override { 495 // FIXME: When we can selectively preserve passes, preserve the domtree. 496 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 497 AU.addRequired<TargetLibraryInfoWrapperPass>(); 498 AU.addRequired<TargetPassConfig>(); 499 AU.addRequired<TargetTransformInfoWrapperPass>(); 500 AU.addRequired<LoopInfoWrapperPass>(); 501 AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 502 } 503 }; 504 505 } // end anonymous namespace 506 507 char CodeGenPrepareLegacyPass::ID = 0; 508 509 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) { 510 if (skipFunction(F)) 511 return false; 512 auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 513 CodeGenPrepare CGP(TM); 514 CGP.DL = &F.getDataLayout(); 515 CGP.SubtargetInfo = TM->getSubtargetImpl(F); 516 CGP.TLI = CGP.SubtargetInfo->getTargetLowering(); 517 CGP.TRI = CGP.SubtargetInfo->getRegisterInfo(); 518 CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 519 CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 520 CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 521 CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI)); 522 CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI)); 523 CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 524 auto BBSPRWP = 525 getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 526 CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr; 527 528 return CGP._run(F); 529 } 530 531 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE, 532 "Optimize for code generation", false, false) 533 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass) 534 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 535 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 536 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 537 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 538 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 539 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE, 540 "Optimize for code generation", false, false) 541 542 FunctionPass *llvm::createCodeGenPrepareLegacyPass() { 543 return new CodeGenPrepareLegacyPass(); 544 } 545 546 PreservedAnalyses CodeGenPreparePass::run(Function &F, 547 FunctionAnalysisManager &AM) { 548 CodeGenPrepare CGP(TM); 549 550 bool Changed = CGP.run(F, AM); 551 if (!Changed) 552 return PreservedAnalyses::all(); 553 554 PreservedAnalyses PA; 555 PA.preserve<TargetLibraryAnalysis>(); 556 PA.preserve<TargetIRAnalysis>(); 557 PA.preserve<LoopAnalysis>(); 558 return PA; 559 } 560 561 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) { 562 DL = &F.getDataLayout(); 563 SubtargetInfo = TM->getSubtargetImpl(F); 564 TLI = SubtargetInfo->getTargetLowering(); 565 TRI = SubtargetInfo->getRegisterInfo(); 566 TLInfo = &AM.getResult<TargetLibraryAnalysis>(F); 567 TTI = &AM.getResult<TargetIRAnalysis>(F); 568 LI = &AM.getResult<LoopAnalysis>(F); 569 BPI.reset(new BranchProbabilityInfo(F, *LI)); 570 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 571 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 572 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 573 BBSectionsProfileReader = 574 AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F); 575 return _run(F); 576 } 577 578 bool CodeGenPrepare::_run(Function &F) { 579 bool EverMadeChange = false; 580 581 OptSize = F.hasOptSize(); 582 // Use the basic-block-sections profile to promote hot functions to .text.hot 583 // if requested. 584 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 585 BBSectionsProfileReader->isFunctionHot(F.getName())) { 586 F.setSectionPrefix("hot"); 587 } else if (ProfileGuidedSectionPrefix) { 588 // The hot attribute overwrites profile count based hotness while profile 589 // counts based hotness overwrite the cold attribute. 590 // This is a conservative behabvior. 591 if (F.hasFnAttribute(Attribute::Hot) || 592 PSI->isFunctionHotInCallGraph(&F, *BFI)) 593 F.setSectionPrefix("hot"); 594 // If PSI shows this function is not hot, we will placed the function 595 // into unlikely section if (1) PSI shows this is a cold function, or 596 // (2) the function has a attribute of cold. 597 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 598 F.hasFnAttribute(Attribute::Cold)) 599 F.setSectionPrefix("unlikely"); 600 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 601 PSI->isFunctionHotnessUnknown(F)) 602 F.setSectionPrefix("unknown"); 603 } 604 605 /// This optimization identifies DIV instructions that can be 606 /// profitably bypassed and carried out with a shorter, faster divide. 607 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 608 const DenseMap<unsigned int, unsigned int> &BypassWidths = 609 TLI->getBypassSlowDivWidths(); 610 BasicBlock *BB = &*F.begin(); 611 while (BB != nullptr) { 612 // bypassSlowDivision may create new BBs, but we don't want to reapply the 613 // optimization to those blocks. 614 BasicBlock *Next = BB->getNextNode(); 615 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 616 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 617 BB = Next; 618 } 619 } 620 621 // Get rid of @llvm.assume builtins before attempting to eliminate empty 622 // blocks, since there might be blocks that only contain @llvm.assume calls 623 // (plus arguments that we can get rid of). 624 EverMadeChange |= eliminateAssumptions(F); 625 626 // Eliminate blocks that contain only PHI nodes and an 627 // unconditional branch. 628 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 629 630 ModifyDT ModifiedDT = ModifyDT::NotModifyDT; 631 if (!DisableBranchOpts) 632 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 633 634 // Split some critical edges where one of the sources is an indirect branch, 635 // to help generate sane code for PHIs involving such edges. 636 EverMadeChange |= 637 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 638 639 // If we are optimzing huge function, we need to consider the build time. 640 // Because the basic algorithm's complex is near O(N!). 641 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; 642 643 // Transformations above may invalidate dominator tree and/or loop info. 644 DT.reset(); 645 LI->releaseMemory(); 646 LI->analyze(getDT(F)); 647 648 bool MadeChange = true; 649 bool FuncIterated = false; 650 while (MadeChange) { 651 MadeChange = false; 652 653 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 654 if (FuncIterated && !FreshBBs.contains(&BB)) 655 continue; 656 657 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; 658 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); 659 660 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) 661 DT.reset(); 662 663 MadeChange |= Changed; 664 if (IsHugeFunc) { 665 // If the BB is updated, it may still has chance to be optimized. 666 // This usually happen at sink optimization. 667 // For example: 668 // 669 // bb0: 670 // %and = and i32 %a, 4 671 // %cmp = icmp eq i32 %and, 0 672 // 673 // If the %cmp sink to other BB, the %and will has chance to sink. 674 if (Changed) 675 FreshBBs.insert(&BB); 676 else if (FuncIterated) 677 FreshBBs.erase(&BB); 678 } else { 679 // For small/normal functions, we restart BB iteration if the dominator 680 // tree of the Function was changed. 681 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) 682 break; 683 } 684 } 685 // We have iterated all the BB in the (only work for huge) function. 686 FuncIterated = IsHugeFunc; 687 688 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 689 MadeChange |= mergeSExts(F); 690 if (!LargeOffsetGEPMap.empty()) 691 MadeChange |= splitLargeGEPOffsets(); 692 MadeChange |= optimizePhiTypes(F); 693 694 if (MadeChange) 695 eliminateFallThrough(F, DT.get()); 696 697 #ifndef NDEBUG 698 if (MadeChange && VerifyLoopInfo) 699 LI->verify(getDT(F)); 700 #endif 701 702 // Really free removed instructions during promotion. 703 for (Instruction *I : RemovedInsts) 704 I->deleteValue(); 705 706 EverMadeChange |= MadeChange; 707 SeenChainsForSExt.clear(); 708 ValToSExtendedUses.clear(); 709 RemovedInsts.clear(); 710 LargeOffsetGEPMap.clear(); 711 LargeOffsetGEPID.clear(); 712 } 713 714 NewGEPBases.clear(); 715 SunkAddrs.clear(); 716 717 if (!DisableBranchOpts) { 718 MadeChange = false; 719 // Use a set vector to get deterministic iteration order. The order the 720 // blocks are removed may affect whether or not PHI nodes in successors 721 // are removed. 722 SmallSetVector<BasicBlock *, 8> WorkList; 723 for (BasicBlock &BB : F) { 724 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 725 MadeChange |= ConstantFoldTerminator(&BB, true); 726 if (!MadeChange) 727 continue; 728 729 for (BasicBlock *Succ : Successors) 730 if (pred_empty(Succ)) 731 WorkList.insert(Succ); 732 } 733 734 // Delete the dead blocks and any of their dead successors. 735 MadeChange |= !WorkList.empty(); 736 while (!WorkList.empty()) { 737 BasicBlock *BB = WorkList.pop_back_val(); 738 SmallVector<BasicBlock *, 2> Successors(successors(BB)); 739 740 DeleteDeadBlock(BB); 741 742 for (BasicBlock *Succ : Successors) 743 if (pred_empty(Succ)) 744 WorkList.insert(Succ); 745 } 746 747 // Merge pairs of basic blocks with unconditional branches, connected by 748 // a single edge. 749 if (EverMadeChange || MadeChange) 750 MadeChange |= eliminateFallThrough(F); 751 752 EverMadeChange |= MadeChange; 753 } 754 755 if (!DisableGCOpts) { 756 SmallVector<GCStatepointInst *, 2> Statepoints; 757 for (BasicBlock &BB : F) 758 for (Instruction &I : BB) 759 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 760 Statepoints.push_back(SP); 761 for (auto &I : Statepoints) 762 EverMadeChange |= simplifyOffsetableRelocate(*I); 763 } 764 765 // Do this last to clean up use-before-def scenarios introduced by other 766 // preparatory transforms. 767 EverMadeChange |= placeDbgValues(F); 768 EverMadeChange |= placePseudoProbes(F); 769 770 #ifndef NDEBUG 771 if (VerifyBFIUpdates) 772 verifyBFIUpdates(F); 773 #endif 774 775 return EverMadeChange; 776 } 777 778 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 779 bool MadeChange = false; 780 for (BasicBlock &BB : F) { 781 CurInstIterator = BB.begin(); 782 while (CurInstIterator != BB.end()) { 783 Instruction *I = &*(CurInstIterator++); 784 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 785 MadeChange = true; 786 Value *Operand = Assume->getOperand(0); 787 Assume->eraseFromParent(); 788 789 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 790 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 791 }); 792 } 793 } 794 } 795 return MadeChange; 796 } 797 798 /// An instruction is about to be deleted, so remove all references to it in our 799 /// GEP-tracking data strcutures. 800 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 801 LargeOffsetGEPMap.erase(V); 802 NewGEPBases.erase(V); 803 804 auto GEP = dyn_cast<GetElementPtrInst>(V); 805 if (!GEP) 806 return; 807 808 LargeOffsetGEPID.erase(GEP); 809 810 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 811 if (VecI == LargeOffsetGEPMap.end()) 812 return; 813 814 auto &GEPVector = VecI->second; 815 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 816 817 if (GEPVector.empty()) 818 LargeOffsetGEPMap.erase(VecI); 819 } 820 821 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 822 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 823 DominatorTree NewDT(F); 824 LoopInfo NewLI(NewDT); 825 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 826 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 827 NewBFI.verifyMatch(*BFI); 828 } 829 830 /// Merge basic blocks which are connected by a single edge, where one of the 831 /// basic blocks has a single successor pointing to the other basic block, 832 /// which has a single predecessor. 833 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { 834 bool Changed = false; 835 // Scan all of the blocks in the function, except for the entry block. 836 // Use a temporary array to avoid iterator being invalidated when 837 // deleting blocks. 838 SmallVector<WeakTrackingVH, 16> Blocks; 839 for (auto &Block : llvm::drop_begin(F)) 840 Blocks.push_back(&Block); 841 842 SmallSet<WeakTrackingVH, 16> Preds; 843 for (auto &Block : Blocks) { 844 auto *BB = cast_or_null<BasicBlock>(Block); 845 if (!BB) 846 continue; 847 // If the destination block has a single pred, then this is a trivial 848 // edge, just collapse it. 849 BasicBlock *SinglePred = BB->getSinglePredecessor(); 850 851 // Don't merge if BB's address is taken. 852 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) 853 continue; 854 855 // Make an effort to skip unreachable blocks. 856 if (DT && !DT->isReachableFromEntry(BB)) 857 continue; 858 859 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 860 if (Term && !Term->isConditional()) { 861 Changed = true; 862 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 863 864 // Merge BB into SinglePred and delete it. 865 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, 866 /* MemDep */ nullptr, 867 /* PredecessorWithTwoSuccessors */ false, DT); 868 Preds.insert(SinglePred); 869 870 if (IsHugeFunc) { 871 // Update FreshBBs to optimize the merged BB. 872 FreshBBs.insert(SinglePred); 873 FreshBBs.erase(BB); 874 } 875 } 876 } 877 878 // (Repeatedly) merging blocks into their predecessors can create redundant 879 // debug intrinsics. 880 for (const auto &Pred : Preds) 881 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 882 RemoveRedundantDbgInstrs(BB); 883 884 return Changed; 885 } 886 887 /// Find a destination block from BB if BB is mergeable empty block. 888 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 889 // If this block doesn't end with an uncond branch, ignore it. 890 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 891 if (!BI || !BI->isUnconditional()) 892 return nullptr; 893 894 // If the instruction before the branch (skipping debug info) isn't a phi 895 // node, then other stuff is happening here. 896 BasicBlock::iterator BBI = BI->getIterator(); 897 if (BBI != BB->begin()) { 898 --BBI; 899 while (isa<DbgInfoIntrinsic>(BBI)) { 900 if (BBI == BB->begin()) 901 break; 902 --BBI; 903 } 904 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 905 return nullptr; 906 } 907 908 // Do not break infinite loops. 909 BasicBlock *DestBB = BI->getSuccessor(0); 910 if (DestBB == BB) 911 return nullptr; 912 913 if (!canMergeBlocks(BB, DestBB)) 914 DestBB = nullptr; 915 916 return DestBB; 917 } 918 919 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 920 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 921 /// edges in ways that are non-optimal for isel. Start by eliminating these 922 /// blocks so we can split them the way we want them. 923 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 924 SmallPtrSet<BasicBlock *, 16> Preheaders; 925 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 926 while (!LoopList.empty()) { 927 Loop *L = LoopList.pop_back_val(); 928 llvm::append_range(LoopList, *L); 929 if (BasicBlock *Preheader = L->getLoopPreheader()) 930 Preheaders.insert(Preheader); 931 } 932 933 bool MadeChange = false; 934 // Copy blocks into a temporary array to avoid iterator invalidation issues 935 // as we remove them. 936 // Note that this intentionally skips the entry block. 937 SmallVector<WeakTrackingVH, 16> Blocks; 938 for (auto &Block : llvm::drop_begin(F)) { 939 // Delete phi nodes that could block deleting other empty blocks. 940 if (!DisableDeletePHIs) 941 MadeChange |= DeleteDeadPHIs(&Block, TLInfo); 942 Blocks.push_back(&Block); 943 } 944 945 for (auto &Block : Blocks) { 946 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 947 if (!BB) 948 continue; 949 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 950 if (!DestBB || 951 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 952 continue; 953 954 eliminateMostlyEmptyBlock(BB); 955 MadeChange = true; 956 } 957 return MadeChange; 958 } 959 960 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 961 BasicBlock *DestBB, 962 bool isPreheader) { 963 // Do not delete loop preheaders if doing so would create a critical edge. 964 // Loop preheaders can be good locations to spill registers. If the 965 // preheader is deleted and we create a critical edge, registers may be 966 // spilled in the loop body instead. 967 if (!DisablePreheaderProtect && isPreheader && 968 !(BB->getSinglePredecessor() && 969 BB->getSinglePredecessor()->getSingleSuccessor())) 970 return false; 971 972 // Skip merging if the block's successor is also a successor to any callbr 973 // that leads to this block. 974 // FIXME: Is this really needed? Is this a correctness issue? 975 for (BasicBlock *Pred : predecessors(BB)) { 976 if (isa<CallBrInst>(Pred->getTerminator()) && 977 llvm::is_contained(successors(Pred), DestBB)) 978 return false; 979 } 980 981 // Try to skip merging if the unique predecessor of BB is terminated by a 982 // switch or indirect branch instruction, and BB is used as an incoming block 983 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 984 // add COPY instructions in the predecessor of BB instead of BB (if it is not 985 // merged). Note that the critical edge created by merging such blocks wont be 986 // split in MachineSink because the jump table is not analyzable. By keeping 987 // such empty block (BB), ISel will place COPY instructions in BB, not in the 988 // predecessor of BB. 989 BasicBlock *Pred = BB->getUniquePredecessor(); 990 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || 991 isa<IndirectBrInst>(Pred->getTerminator()))) 992 return true; 993 994 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 995 return true; 996 997 // We use a simple cost heuristic which determine skipping merging is 998 // profitable if the cost of skipping merging is less than the cost of 999 // merging : Cost(skipping merging) < Cost(merging BB), where the 1000 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 1001 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 1002 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 1003 // Freq(Pred) / Freq(BB) > 2. 1004 // Note that if there are multiple empty blocks sharing the same incoming 1005 // value for the PHIs in the DestBB, we consider them together. In such 1006 // case, Cost(merging BB) will be the sum of their frequencies. 1007 1008 if (!isa<PHINode>(DestBB->begin())) 1009 return true; 1010 1011 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 1012 1013 // Find all other incoming blocks from which incoming values of all PHIs in 1014 // DestBB are the same as the ones from BB. 1015 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 1016 if (DestBBPred == BB) 1017 continue; 1018 1019 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 1020 return DestPN.getIncomingValueForBlock(BB) == 1021 DestPN.getIncomingValueForBlock(DestBBPred); 1022 })) 1023 SameIncomingValueBBs.insert(DestBBPred); 1024 } 1025 1026 // See if all BB's incoming values are same as the value from Pred. In this 1027 // case, no reason to skip merging because COPYs are expected to be place in 1028 // Pred already. 1029 if (SameIncomingValueBBs.count(Pred)) 1030 return true; 1031 1032 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 1033 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 1034 1035 for (auto *SameValueBB : SameIncomingValueBBs) 1036 if (SameValueBB->getUniquePredecessor() == Pred && 1037 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 1038 BBFreq += BFI->getBlockFreq(SameValueBB); 1039 1040 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge); 1041 return !Limit || PredFreq <= *Limit; 1042 } 1043 1044 /// Return true if we can merge BB into DestBB if there is a single 1045 /// unconditional branch between them, and BB contains no other non-phi 1046 /// instructions. 1047 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 1048 const BasicBlock *DestBB) const { 1049 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 1050 // the successor. If there are more complex condition (e.g. preheaders), 1051 // don't mess around with them. 1052 for (const PHINode &PN : BB->phis()) { 1053 for (const User *U : PN.users()) { 1054 const Instruction *UI = cast<Instruction>(U); 1055 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 1056 return false; 1057 // If User is inside DestBB block and it is a PHINode then check 1058 // incoming value. If incoming value is not from BB then this is 1059 // a complex condition (e.g. preheaders) we want to avoid here. 1060 if (UI->getParent() == DestBB) { 1061 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 1062 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 1063 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 1064 if (Insn && Insn->getParent() == BB && 1065 Insn->getParent() != UPN->getIncomingBlock(I)) 1066 return false; 1067 } 1068 } 1069 } 1070 } 1071 1072 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 1073 // and DestBB may have conflicting incoming values for the block. If so, we 1074 // can't merge the block. 1075 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 1076 if (!DestBBPN) 1077 return true; // no conflict. 1078 1079 // Collect the preds of BB. 1080 SmallPtrSet<const BasicBlock *, 16> BBPreds; 1081 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1082 // It is faster to get preds from a PHI than with pred_iterator. 1083 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1084 BBPreds.insert(BBPN->getIncomingBlock(i)); 1085 } else { 1086 BBPreds.insert(pred_begin(BB), pred_end(BB)); 1087 } 1088 1089 // Walk the preds of DestBB. 1090 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 1091 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 1092 if (BBPreds.count(Pred)) { // Common predecessor? 1093 for (const PHINode &PN : DestBB->phis()) { 1094 const Value *V1 = PN.getIncomingValueForBlock(Pred); 1095 const Value *V2 = PN.getIncomingValueForBlock(BB); 1096 1097 // If V2 is a phi node in BB, look up what the mapped value will be. 1098 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 1099 if (V2PN->getParent() == BB) 1100 V2 = V2PN->getIncomingValueForBlock(Pred); 1101 1102 // If there is a conflict, bail out. 1103 if (V1 != V2) 1104 return false; 1105 } 1106 } 1107 } 1108 1109 return true; 1110 } 1111 1112 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. 1113 static void replaceAllUsesWith(Value *Old, Value *New, 1114 SmallSet<BasicBlock *, 32> &FreshBBs, 1115 bool IsHuge) { 1116 auto *OldI = dyn_cast<Instruction>(Old); 1117 if (OldI) { 1118 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); 1119 UI != E; ++UI) { 1120 Instruction *User = cast<Instruction>(*UI); 1121 if (IsHuge) 1122 FreshBBs.insert(User->getParent()); 1123 } 1124 } 1125 Old->replaceAllUsesWith(New); 1126 } 1127 1128 /// Eliminate a basic block that has only phi's and an unconditional branch in 1129 /// it. 1130 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 1131 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1132 BasicBlock *DestBB = BI->getSuccessor(0); 1133 1134 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 1135 << *BB << *DestBB); 1136 1137 // If the destination block has a single pred, then this is a trivial edge, 1138 // just collapse it. 1139 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 1140 if (SinglePred != DestBB) { 1141 assert(SinglePred == BB && 1142 "Single predecessor not the same as predecessor"); 1143 // Merge DestBB into SinglePred/BB and delete it. 1144 MergeBlockIntoPredecessor(DestBB); 1145 // Note: BB(=SinglePred) will not be deleted on this path. 1146 // DestBB(=its single successor) is the one that was deleted. 1147 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 1148 1149 if (IsHugeFunc) { 1150 // Update FreshBBs to optimize the merged BB. 1151 FreshBBs.insert(SinglePred); 1152 FreshBBs.erase(DestBB); 1153 } 1154 return; 1155 } 1156 } 1157 1158 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 1159 // to handle the new incoming edges it is about to have. 1160 for (PHINode &PN : DestBB->phis()) { 1161 // Remove the incoming value for BB, and remember it. 1162 Value *InVal = PN.removeIncomingValue(BB, false); 1163 1164 // Two options: either the InVal is a phi node defined in BB or it is some 1165 // value that dominates BB. 1166 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 1167 if (InValPhi && InValPhi->getParent() == BB) { 1168 // Add all of the input values of the input PHI as inputs of this phi. 1169 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 1170 PN.addIncoming(InValPhi->getIncomingValue(i), 1171 InValPhi->getIncomingBlock(i)); 1172 } else { 1173 // Otherwise, add one instance of the dominating value for each edge that 1174 // we will be adding. 1175 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1176 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1177 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1178 } else { 1179 for (BasicBlock *Pred : predecessors(BB)) 1180 PN.addIncoming(InVal, Pred); 1181 } 1182 } 1183 } 1184 1185 // Preserve loop Metadata. 1186 if (BI->hasMetadata(LLVMContext::MD_loop)) { 1187 for (auto *Pred : predecessors(BB)) 1188 Pred->getTerminator()->copyMetadata(*BI, LLVMContext::MD_loop); 1189 } 1190 1191 // The PHIs are now updated, change everything that refers to BB to use 1192 // DestBB and remove BB. 1193 BB->replaceAllUsesWith(DestBB); 1194 BB->eraseFromParent(); 1195 ++NumBlocksElim; 1196 1197 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1198 } 1199 1200 // Computes a map of base pointer relocation instructions to corresponding 1201 // derived pointer relocation instructions given a vector of all relocate calls 1202 static void computeBaseDerivedRelocateMap( 1203 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1204 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> 1205 &RelocateInstMap) { 1206 // Collect information in two maps: one primarily for locating the base object 1207 // while filling the second map; the second map is the final structure holding 1208 // a mapping between Base and corresponding Derived relocate calls 1209 MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1210 for (auto *ThisRelocate : AllRelocateCalls) { 1211 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1212 ThisRelocate->getDerivedPtrIndex()); 1213 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1214 } 1215 for (auto &Item : RelocateIdxMap) { 1216 std::pair<unsigned, unsigned> Key = Item.first; 1217 if (Key.first == Key.second) 1218 // Base relocation: nothing to insert 1219 continue; 1220 1221 GCRelocateInst *I = Item.second; 1222 auto BaseKey = std::make_pair(Key.first, Key.first); 1223 1224 // We're iterating over RelocateIdxMap so we cannot modify it. 1225 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1226 if (MaybeBase == RelocateIdxMap.end()) 1227 // TODO: We might want to insert a new base object relocate and gep off 1228 // that, if there are enough derived object relocates. 1229 continue; 1230 1231 RelocateInstMap[MaybeBase->second].push_back(I); 1232 } 1233 } 1234 1235 // Accepts a GEP and extracts the operands into a vector provided they're all 1236 // small integer constants 1237 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1238 SmallVectorImpl<Value *> &OffsetV) { 1239 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1240 // Only accept small constant integer operands 1241 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1242 if (!Op || Op->getZExtValue() > 20) 1243 return false; 1244 } 1245 1246 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1247 OffsetV.push_back(GEP->getOperand(i)); 1248 return true; 1249 } 1250 1251 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1252 // replace, computes a replacement, and affects it. 1253 static bool 1254 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1255 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1256 bool MadeChange = false; 1257 // We must ensure the relocation of derived pointer is defined after 1258 // relocation of base pointer. If we find a relocation corresponding to base 1259 // defined earlier than relocation of base then we move relocation of base 1260 // right before found relocation. We consider only relocation in the same 1261 // basic block as relocation of base. Relocations from other basic block will 1262 // be skipped by optimization and we do not care about them. 1263 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1264 &*R != RelocatedBase; ++R) 1265 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1266 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1267 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1268 RelocatedBase->moveBefore(RI); 1269 MadeChange = true; 1270 break; 1271 } 1272 1273 for (GCRelocateInst *ToReplace : Targets) { 1274 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1275 "Not relocating a derived object of the original base object"); 1276 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1277 // A duplicate relocate call. TODO: coalesce duplicates. 1278 continue; 1279 } 1280 1281 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1282 // Base and derived relocates are in different basic blocks. 1283 // In this case transform is only valid when base dominates derived 1284 // relocate. However it would be too expensive to check dominance 1285 // for each such relocate, so we skip the whole transformation. 1286 continue; 1287 } 1288 1289 Value *Base = ToReplace->getBasePtr(); 1290 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1291 if (!Derived || Derived->getPointerOperand() != Base) 1292 continue; 1293 1294 SmallVector<Value *, 2> OffsetV; 1295 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1296 continue; 1297 1298 // Create a Builder and replace the target callsite with a gep 1299 assert(RelocatedBase->getNextNode() && 1300 "Should always have one since it's not a terminator"); 1301 1302 // Insert after RelocatedBase 1303 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1304 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1305 1306 // If gc_relocate does not match the actual type, cast it to the right type. 1307 // In theory, there must be a bitcast after gc_relocate if the type does not 1308 // match, and we should reuse it to get the derived pointer. But it could be 1309 // cases like this: 1310 // bb1: 1311 // ... 1312 // %g1 = call coldcc i8 addrspace(1)* 1313 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1314 // 1315 // bb2: 1316 // ... 1317 // %g2 = call coldcc i8 addrspace(1)* 1318 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1319 // 1320 // merge: 1321 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1322 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1323 // 1324 // In this case, we can not find the bitcast any more. So we insert a new 1325 // bitcast no matter there is already one or not. In this way, we can handle 1326 // all cases, and the extra bitcast should be optimized away in later 1327 // passes. 1328 Value *ActualRelocatedBase = RelocatedBase; 1329 if (RelocatedBase->getType() != Base->getType()) { 1330 ActualRelocatedBase = 1331 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1332 } 1333 Value *Replacement = 1334 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, 1335 ArrayRef(OffsetV)); 1336 Replacement->takeName(ToReplace); 1337 // If the newly generated derived pointer's type does not match the original 1338 // derived pointer's type, cast the new derived pointer to match it. Same 1339 // reasoning as above. 1340 Value *ActualReplacement = Replacement; 1341 if (Replacement->getType() != ToReplace->getType()) { 1342 ActualReplacement = 1343 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1344 } 1345 ToReplace->replaceAllUsesWith(ActualReplacement); 1346 ToReplace->eraseFromParent(); 1347 1348 MadeChange = true; 1349 } 1350 return MadeChange; 1351 } 1352 1353 // Turns this: 1354 // 1355 // %base = ... 1356 // %ptr = gep %base + 15 1357 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1358 // %base' = relocate(%tok, i32 4, i32 4) 1359 // %ptr' = relocate(%tok, i32 4, i32 5) 1360 // %val = load %ptr' 1361 // 1362 // into this: 1363 // 1364 // %base = ... 1365 // %ptr = gep %base + 15 1366 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1367 // %base' = gc.relocate(%tok, i32 4, i32 4) 1368 // %ptr' = gep %base' + 15 1369 // %val = load %ptr' 1370 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1371 bool MadeChange = false; 1372 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1373 for (auto *U : I.users()) 1374 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1375 // Collect all the relocate calls associated with a statepoint 1376 AllRelocateCalls.push_back(Relocate); 1377 1378 // We need at least one base pointer relocation + one derived pointer 1379 // relocation to mangle 1380 if (AllRelocateCalls.size() < 2) 1381 return false; 1382 1383 // RelocateInstMap is a mapping from the base relocate instruction to the 1384 // corresponding derived relocate instructions 1385 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap; 1386 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1387 if (RelocateInstMap.empty()) 1388 return false; 1389 1390 for (auto &Item : RelocateInstMap) 1391 // Item.first is the RelocatedBase to offset against 1392 // Item.second is the vector of Targets to replace 1393 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1394 return MadeChange; 1395 } 1396 1397 /// Sink the specified cast instruction into its user blocks. 1398 static bool SinkCast(CastInst *CI) { 1399 BasicBlock *DefBB = CI->getParent(); 1400 1401 /// InsertedCasts - Only insert a cast in each block once. 1402 DenseMap<BasicBlock *, CastInst *> InsertedCasts; 1403 1404 bool MadeChange = false; 1405 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1406 UI != E;) { 1407 Use &TheUse = UI.getUse(); 1408 Instruction *User = cast<Instruction>(*UI); 1409 1410 // Figure out which BB this cast is used in. For PHI's this is the 1411 // appropriate predecessor block. 1412 BasicBlock *UserBB = User->getParent(); 1413 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1414 UserBB = PN->getIncomingBlock(TheUse); 1415 } 1416 1417 // Preincrement use iterator so we don't invalidate it. 1418 ++UI; 1419 1420 // The first insertion point of a block containing an EH pad is after the 1421 // pad. If the pad is the user, we cannot sink the cast past the pad. 1422 if (User->isEHPad()) 1423 continue; 1424 1425 // If the block selected to receive the cast is an EH pad that does not 1426 // allow non-PHI instructions before the terminator, we can't sink the 1427 // cast. 1428 if (UserBB->getTerminator()->isEHPad()) 1429 continue; 1430 1431 // If this user is in the same block as the cast, don't change the cast. 1432 if (UserBB == DefBB) 1433 continue; 1434 1435 // If we have already inserted a cast into this block, use it. 1436 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1437 1438 if (!InsertedCast) { 1439 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1440 assert(InsertPt != UserBB->end()); 1441 InsertedCast = cast<CastInst>(CI->clone()); 1442 InsertedCast->insertBefore(*UserBB, InsertPt); 1443 } 1444 1445 // Replace a use of the cast with a use of the new cast. 1446 TheUse = InsertedCast; 1447 MadeChange = true; 1448 ++NumCastUses; 1449 } 1450 1451 // If we removed all uses, nuke the cast. 1452 if (CI->use_empty()) { 1453 salvageDebugInfo(*CI); 1454 CI->eraseFromParent(); 1455 MadeChange = true; 1456 } 1457 1458 return MadeChange; 1459 } 1460 1461 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1462 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1463 /// reduce the number of virtual registers that must be created and coalesced. 1464 /// 1465 /// Return true if any changes are made. 1466 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1467 const DataLayout &DL) { 1468 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1469 // than sinking only nop casts, but is helpful on some platforms. 1470 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1471 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1472 ASC->getDestAddressSpace())) 1473 return false; 1474 } 1475 1476 // If this is a noop copy, 1477 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1478 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1479 1480 // This is an fp<->int conversion? 1481 if (SrcVT.isInteger() != DstVT.isInteger()) 1482 return false; 1483 1484 // If this is an extension, it will be a zero or sign extension, which 1485 // isn't a noop. 1486 if (SrcVT.bitsLT(DstVT)) 1487 return false; 1488 1489 // If these values will be promoted, find out what they will be promoted 1490 // to. This helps us consider truncates on PPC as noop copies when they 1491 // are. 1492 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1493 TargetLowering::TypePromoteInteger) 1494 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1495 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1496 TargetLowering::TypePromoteInteger) 1497 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1498 1499 // If, after promotion, these are the same types, this is a noop copy. 1500 if (SrcVT != DstVT) 1501 return false; 1502 1503 return SinkCast(CI); 1504 } 1505 1506 // Match a simple increment by constant operation. Note that if a sub is 1507 // matched, the step is negated (as if the step had been canonicalized to 1508 // an add, even though we leave the instruction alone.) 1509 static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, 1510 Constant *&Step) { 1511 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1512 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1513 m_Instruction(LHS), m_Constant(Step))))) 1514 return true; 1515 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1516 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1517 m_Instruction(LHS), m_Constant(Step))))) { 1518 Step = ConstantExpr::getNeg(Step); 1519 return true; 1520 } 1521 return false; 1522 } 1523 1524 /// If given \p PN is an inductive variable with value IVInc coming from the 1525 /// backedge, and on each iteration it gets increased by Step, return pair 1526 /// <IVInc, Step>. Otherwise, return std::nullopt. 1527 static std::optional<std::pair<Instruction *, Constant *>> 1528 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1529 const Loop *L = LI->getLoopFor(PN->getParent()); 1530 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1531 return std::nullopt; 1532 auto *IVInc = 1533 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1534 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1535 return std::nullopt; 1536 Instruction *LHS = nullptr; 1537 Constant *Step = nullptr; 1538 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1539 return std::make_pair(IVInc, Step); 1540 return std::nullopt; 1541 } 1542 1543 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1544 auto *I = dyn_cast<Instruction>(V); 1545 if (!I) 1546 return false; 1547 Instruction *LHS = nullptr; 1548 Constant *Step = nullptr; 1549 if (!matchIncrement(I, LHS, Step)) 1550 return false; 1551 if (auto *PN = dyn_cast<PHINode>(LHS)) 1552 if (auto IVInc = getIVIncrement(PN, LI)) 1553 return IVInc->first == I; 1554 return false; 1555 } 1556 1557 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1558 Value *Arg0, Value *Arg1, 1559 CmpInst *Cmp, 1560 Intrinsic::ID IID) { 1561 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1562 if (!isIVIncrement(BO, LI)) 1563 return false; 1564 const Loop *L = LI->getLoopFor(BO->getParent()); 1565 assert(L && "L should not be null after isIVIncrement()"); 1566 // Do not risk on moving increment into a child loop. 1567 if (LI->getLoopFor(Cmp->getParent()) != L) 1568 return false; 1569 1570 // Finally, we need to ensure that the insert point will dominate all 1571 // existing uses of the increment. 1572 1573 auto &DT = getDT(*BO->getParent()->getParent()); 1574 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1575 // If we're moving up the dom tree, all uses are trivially dominated. 1576 // (This is the common case for code produced by LSR.) 1577 return true; 1578 1579 // Otherwise, special case the single use in the phi recurrence. 1580 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1581 }; 1582 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1583 // We used to use a dominator tree here to allow multi-block optimization. 1584 // But that was problematic because: 1585 // 1. It could cause a perf regression by hoisting the math op into the 1586 // critical path. 1587 // 2. It could cause a perf regression by creating a value that was live 1588 // across multiple blocks and increasing register pressure. 1589 // 3. Use of a dominator tree could cause large compile-time regression. 1590 // This is because we recompute the DT on every change in the main CGP 1591 // run-loop. The recomputing is probably unnecessary in many cases, so if 1592 // that was fixed, using a DT here would be ok. 1593 // 1594 // There is one important particular case we still want to handle: if BO is 1595 // the IV increment. Important properties that make it profitable: 1596 // - We can speculate IV increment anywhere in the loop (as long as the 1597 // indvar Phi is its only user); 1598 // - Upon computing Cmp, we effectively compute something equivalent to the 1599 // IV increment (despite it loops differently in the IR). So moving it up 1600 // to the cmp point does not really increase register pressure. 1601 return false; 1602 } 1603 1604 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1605 if (BO->getOpcode() == Instruction::Add && 1606 IID == Intrinsic::usub_with_overflow) { 1607 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1608 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1609 } 1610 1611 // Insert at the first instruction of the pair. 1612 Instruction *InsertPt = nullptr; 1613 for (Instruction &Iter : *Cmp->getParent()) { 1614 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1615 // the overflow intrinsic are defined. 1616 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1617 InsertPt = &Iter; 1618 break; 1619 } 1620 } 1621 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1622 1623 IRBuilder<> Builder(InsertPt); 1624 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1625 if (BO->getOpcode() != Instruction::Xor) { 1626 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1627 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); 1628 } else 1629 assert(BO->hasOneUse() && 1630 "Patterns with XOr should use the BO only in the compare"); 1631 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1632 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); 1633 Cmp->eraseFromParent(); 1634 BO->eraseFromParent(); 1635 return true; 1636 } 1637 1638 /// Match special-case patterns that check for unsigned add overflow. 1639 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1640 BinaryOperator *&Add) { 1641 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1642 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1643 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1644 1645 // We are not expecting non-canonical/degenerate code. Just bail out. 1646 if (isa<Constant>(A)) 1647 return false; 1648 1649 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1650 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1651 B = ConstantInt::get(B->getType(), 1); 1652 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1653 B = Constant::getAllOnesValue(B->getType()); 1654 else 1655 return false; 1656 1657 // Check the users of the variable operand of the compare looking for an add 1658 // with the adjusted constant. 1659 for (User *U : A->users()) { 1660 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1661 Add = cast<BinaryOperator>(U); 1662 return true; 1663 } 1664 } 1665 return false; 1666 } 1667 1668 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1669 /// intrinsic. Return true if any changes were made. 1670 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1671 ModifyDT &ModifiedDT) { 1672 bool EdgeCase = false; 1673 Value *A, *B; 1674 BinaryOperator *Add; 1675 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1676 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1677 return false; 1678 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1679 A = Add->getOperand(0); 1680 B = Add->getOperand(1); 1681 EdgeCase = true; 1682 } 1683 1684 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1685 TLI->getValueType(*DL, Add->getType()), 1686 Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) 1687 return false; 1688 1689 // We don't want to move around uses of condition values this late, so we 1690 // check if it is legal to create the call to the intrinsic in the basic 1691 // block containing the icmp. 1692 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1693 return false; 1694 1695 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1696 Intrinsic::uadd_with_overflow)) 1697 return false; 1698 1699 // Reset callers - do not crash by iterating over a dead instruction. 1700 ModifiedDT = ModifyDT::ModifyInstDT; 1701 return true; 1702 } 1703 1704 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1705 ModifyDT &ModifiedDT) { 1706 // We are not expecting non-canonical/degenerate code. Just bail out. 1707 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1708 if (isa<Constant>(A) && isa<Constant>(B)) 1709 return false; 1710 1711 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1712 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1713 if (Pred == ICmpInst::ICMP_UGT) { 1714 std::swap(A, B); 1715 Pred = ICmpInst::ICMP_ULT; 1716 } 1717 // Convert special-case: (A == 0) is the same as (A u< 1). 1718 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1719 B = ConstantInt::get(B->getType(), 1); 1720 Pred = ICmpInst::ICMP_ULT; 1721 } 1722 // Convert special-case: (A != 0) is the same as (0 u< A). 1723 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1724 std::swap(A, B); 1725 Pred = ICmpInst::ICMP_ULT; 1726 } 1727 if (Pred != ICmpInst::ICMP_ULT) 1728 return false; 1729 1730 // Walk the users of a variable operand of a compare looking for a subtract or 1731 // add with that same operand. Also match the 2nd operand of the compare to 1732 // the add/sub, but that may be a negated constant operand of an add. 1733 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1734 BinaryOperator *Sub = nullptr; 1735 for (User *U : CmpVariableOperand->users()) { 1736 // A - B, A u< B --> usubo(A, B) 1737 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1738 Sub = cast<BinaryOperator>(U); 1739 break; 1740 } 1741 1742 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1743 const APInt *CmpC, *AddC; 1744 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1745 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1746 Sub = cast<BinaryOperator>(U); 1747 break; 1748 } 1749 } 1750 if (!Sub) 1751 return false; 1752 1753 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1754 TLI->getValueType(*DL, Sub->getType()), 1755 Sub->hasNUsesOrMore(1))) 1756 return false; 1757 1758 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1759 Cmp, Intrinsic::usub_with_overflow)) 1760 return false; 1761 1762 // Reset callers - do not crash by iterating over a dead instruction. 1763 ModifiedDT = ModifyDT::ModifyInstDT; 1764 return true; 1765 } 1766 1767 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1768 /// registers that must be created and coalesced. This is a clear win except on 1769 /// targets with multiple condition code registers (PowerPC), where it might 1770 /// lose; some adjustment may be wanted there. 1771 /// 1772 /// Return true if any changes are made. 1773 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1774 if (TLI.hasMultipleConditionRegisters()) 1775 return false; 1776 1777 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1778 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1779 return false; 1780 1781 // Only insert a cmp in each block once. 1782 DenseMap<BasicBlock *, CmpInst *> InsertedCmps; 1783 1784 bool MadeChange = false; 1785 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1786 UI != E;) { 1787 Use &TheUse = UI.getUse(); 1788 Instruction *User = cast<Instruction>(*UI); 1789 1790 // Preincrement use iterator so we don't invalidate it. 1791 ++UI; 1792 1793 // Don't bother for PHI nodes. 1794 if (isa<PHINode>(User)) 1795 continue; 1796 1797 // Figure out which BB this cmp is used in. 1798 BasicBlock *UserBB = User->getParent(); 1799 BasicBlock *DefBB = Cmp->getParent(); 1800 1801 // If this user is in the same block as the cmp, don't change the cmp. 1802 if (UserBB == DefBB) 1803 continue; 1804 1805 // If we have already inserted a cmp into this block, use it. 1806 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1807 1808 if (!InsertedCmp) { 1809 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1810 assert(InsertPt != UserBB->end()); 1811 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1812 Cmp->getOperand(0), Cmp->getOperand(1), ""); 1813 InsertedCmp->insertBefore(*UserBB, InsertPt); 1814 // Propagate the debug info. 1815 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1816 } 1817 1818 // Replace a use of the cmp with a use of the new cmp. 1819 TheUse = InsertedCmp; 1820 MadeChange = true; 1821 ++NumCmpUses; 1822 } 1823 1824 // If we removed all uses, nuke the cmp. 1825 if (Cmp->use_empty()) { 1826 Cmp->eraseFromParent(); 1827 MadeChange = true; 1828 } 1829 1830 return MadeChange; 1831 } 1832 1833 /// For pattern like: 1834 /// 1835 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1836 /// ... 1837 /// DomBB: 1838 /// ... 1839 /// br DomCond, TrueBB, CmpBB 1840 /// CmpBB: (with DomBB being the single predecessor) 1841 /// ... 1842 /// Cmp = icmp eq CmpOp0, CmpOp1 1843 /// ... 1844 /// 1845 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1846 /// different from lowering of icmp eq (PowerPC). This function try to convert 1847 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1848 /// After that, DomCond and Cmp can use the same comparison so reduce one 1849 /// comparison. 1850 /// 1851 /// Return true if any changes are made. 1852 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1853 const TargetLowering &TLI) { 1854 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1855 return false; 1856 1857 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1858 if (Pred != ICmpInst::ICMP_EQ) 1859 return false; 1860 1861 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1862 // icmp slt/sgt would introduce more redundant LLVM IR. 1863 for (User *U : Cmp->users()) { 1864 if (isa<BranchInst>(U)) 1865 continue; 1866 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1867 continue; 1868 return false; 1869 } 1870 1871 // This is a cheap/incomplete check for dominance - just match a single 1872 // predecessor with a conditional branch. 1873 BasicBlock *CmpBB = Cmp->getParent(); 1874 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1875 if (!DomBB) 1876 return false; 1877 1878 // We want to ensure that the only way control gets to the comparison of 1879 // interest is that a less/greater than comparison on the same operands is 1880 // false. 1881 Value *DomCond; 1882 BasicBlock *TrueBB, *FalseBB; 1883 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1884 return false; 1885 if (CmpBB != FalseBB) 1886 return false; 1887 1888 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1889 ICmpInst::Predicate DomPred; 1890 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1891 return false; 1892 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1893 return false; 1894 1895 // Convert the equality comparison to the opposite of the dominating 1896 // comparison and swap the direction for all branch/select users. 1897 // We have conceptually converted: 1898 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1899 // to 1900 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1901 // And similarly for branches. 1902 for (User *U : Cmp->users()) { 1903 if (auto *BI = dyn_cast<BranchInst>(U)) { 1904 assert(BI->isConditional() && "Must be conditional"); 1905 BI->swapSuccessors(); 1906 continue; 1907 } 1908 if (auto *SI = dyn_cast<SelectInst>(U)) { 1909 // Swap operands 1910 SI->swapValues(); 1911 SI->swapProfMetadata(); 1912 continue; 1913 } 1914 llvm_unreachable("Must be a branch or a select"); 1915 } 1916 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1917 return true; 1918 } 1919 1920 /// Many architectures use the same instruction for both subtract and cmp. Try 1921 /// to swap cmp operands to match subtract operations to allow for CSE. 1922 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { 1923 Value *Op0 = Cmp->getOperand(0); 1924 Value *Op1 = Cmp->getOperand(1); 1925 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) || 1926 isa<Constant>(Op1) || Op0 == Op1) 1927 return false; 1928 1929 // If a subtract already has the same operands as a compare, swapping would be 1930 // bad. If a subtract has the same operands as a compare but in reverse order, 1931 // then swapping is good. 1932 int GoodToSwap = 0; 1933 unsigned NumInspected = 0; 1934 for (const User *U : Op0->users()) { 1935 // Avoid walking many users. 1936 if (++NumInspected > 128) 1937 return false; 1938 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 1939 GoodToSwap++; 1940 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 1941 GoodToSwap--; 1942 } 1943 1944 if (GoodToSwap > 0) { 1945 Cmp->swapOperands(); 1946 return true; 1947 } 1948 return false; 1949 } 1950 1951 static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI, 1952 const DataLayout &DL) { 1953 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp); 1954 if (!FCmp) 1955 return false; 1956 1957 // Don't fold if the target offers free fabs and the predicate is legal. 1958 EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType()); 1959 if (TLI.isFAbsFree(VT) && 1960 TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()), 1961 VT.getSimpleVT())) 1962 return false; 1963 1964 // Reverse the canonicalization if it is a FP class test 1965 auto ShouldReverseTransform = [](FPClassTest ClassTest) { 1966 return ClassTest == fcInf || ClassTest == (fcInf | fcNan); 1967 }; 1968 auto [ClassVal, ClassTest] = 1969 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), 1970 FCmp->getOperand(0), FCmp->getOperand(1)); 1971 if (!ClassVal) 1972 return false; 1973 1974 if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest)) 1975 return false; 1976 1977 IRBuilder<> Builder(Cmp); 1978 Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest); 1979 Cmp->replaceAllUsesWith(IsFPClass); 1980 RecursivelyDeleteTriviallyDeadInstructions(Cmp); 1981 return true; 1982 } 1983 1984 static bool isRemOfLoopIncrementWithLoopInvariant( 1985 Instruction *Rem, const LoopInfo *LI, Value *&RemAmtOut, Value *&AddInstOut, 1986 Value *&AddOffsetOut, PHINode *&LoopIncrPNOut) { 1987 Value *Incr, *RemAmt; 1988 // NB: If RemAmt is a power of 2 it *should* have been transformed by now. 1989 if (!match(Rem, m_URem(m_Value(Incr), m_Value(RemAmt)))) 1990 return false; 1991 1992 Value *AddInst, *AddOffset; 1993 // Find out loop increment PHI. 1994 auto *PN = dyn_cast<PHINode>(Incr); 1995 if (PN != nullptr) { 1996 AddInst = nullptr; 1997 AddOffset = nullptr; 1998 } else { 1999 // Search through a NUW add on top of the loop increment. 2000 Value *V0, *V1; 2001 if (!match(Incr, m_NUWAdd(m_Value(V0), m_Value(V1)))) 2002 return false; 2003 2004 AddInst = Incr; 2005 PN = dyn_cast<PHINode>(V0); 2006 if (PN != nullptr) { 2007 AddOffset = V1; 2008 } else { 2009 PN = dyn_cast<PHINode>(V1); 2010 AddOffset = V0; 2011 } 2012 } 2013 2014 if (!PN) 2015 return false; 2016 2017 // This isn't strictly necessary, what we really need is one increment and any 2018 // amount of initial values all being the same. 2019 if (PN->getNumIncomingValues() != 2) 2020 return false; 2021 2022 // Only trivially analyzable loops. 2023 Loop *L = LI->getLoopFor(PN->getParent()); 2024 if (!L || !L->getLoopPreheader() || !L->getLoopLatch()) 2025 return false; 2026 2027 // Req that the remainder is in the loop 2028 if (!L->contains(Rem)) 2029 return false; 2030 2031 // Only works if the remainder amount is a loop invaraint 2032 if (!L->isLoopInvariant(RemAmt)) 2033 return false; 2034 2035 // Is the PHI a loop increment? 2036 auto LoopIncrInfo = getIVIncrement(PN, LI); 2037 if (!LoopIncrInfo) 2038 return false; 2039 2040 // We need remainder_amount % increment_amount to be zero. Increment of one 2041 // satisfies that without any special logic and is overwhelmingly the common 2042 // case. 2043 if (!match(LoopIncrInfo->second, m_One())) 2044 return false; 2045 2046 // Need the increment to not overflow. 2047 if (!match(LoopIncrInfo->first, m_c_NUWAdd(m_Specific(PN), m_Value()))) 2048 return false; 2049 2050 // Set output variables. 2051 RemAmtOut = RemAmt; 2052 LoopIncrPNOut = PN; 2053 AddInstOut = AddInst; 2054 AddOffsetOut = AddOffset; 2055 2056 return true; 2057 } 2058 2059 // Try to transform: 2060 // 2061 // for(i = Start; i < End; ++i) 2062 // Rem = (i nuw+ IncrLoopInvariant) u% RemAmtLoopInvariant; 2063 // 2064 // -> 2065 // 2066 // Rem = (Start nuw+ IncrLoopInvariant) % RemAmtLoopInvariant; 2067 // for(i = Start; i < End; ++i, ++rem) 2068 // Rem = rem == RemAmtLoopInvariant ? 0 : Rem; 2069 static bool foldURemOfLoopIncrement(Instruction *Rem, const DataLayout *DL, 2070 const LoopInfo *LI, 2071 SmallSet<BasicBlock *, 32> &FreshBBs, 2072 bool IsHuge) { 2073 Value *AddOffset, *RemAmt, *AddInst; 2074 PHINode *LoopIncrPN; 2075 if (!isRemOfLoopIncrementWithLoopInvariant(Rem, LI, RemAmt, AddInst, 2076 AddOffset, LoopIncrPN)) 2077 return false; 2078 2079 // Only non-constant remainder as the extra IV is probably not profitable 2080 // in that case. 2081 // 2082 // Potential TODO(1): `urem` of a const ends up as `mul` + `shift` + `add`. If 2083 // we can rule out register pressure and ensure this `urem` is executed each 2084 // iteration, its probably profitable to handle the const case as well. 2085 // 2086 // Potential TODO(2): Should we have a check for how "nested" this remainder 2087 // operation is? The new code runs every iteration so if the remainder is 2088 // guarded behind unlikely conditions this might not be worth it. 2089 if (match(RemAmt, m_ImmConstant())) 2090 return false; 2091 2092 Loop *L = LI->getLoopFor(LoopIncrPN->getParent()); 2093 Value *Start = LoopIncrPN->getIncomingValueForBlock(L->getLoopPreheader()); 2094 // If we have add create initial value for remainder. 2095 // The logic here is: 2096 // (urem (add nuw Start, IncrLoopInvariant), RemAmtLoopInvariant 2097 // 2098 // Only proceed if the expression simplifies (otherwise we can't fully 2099 // optimize out the urem). 2100 if (AddInst) { 2101 assert(AddOffset && "We found an add but missing values"); 2102 // Without dom-condition/assumption cache we aren't likely to get much out 2103 // of a context instruction. 2104 Start = simplifyAddInst(Start, AddOffset, 2105 match(AddInst, m_NSWAdd(m_Value(), m_Value())), 2106 /*IsNUW=*/true, *DL); 2107 if (!Start) 2108 return false; 2109 } 2110 2111 // If we can't fully optimize out the `rem`, skip this transform. 2112 Start = simplifyURemInst(Start, RemAmt, *DL); 2113 if (!Start) 2114 return false; 2115 2116 // Create new remainder with induction variable. 2117 Type *Ty = Rem->getType(); 2118 IRBuilder<> Builder(Rem->getContext()); 2119 2120 Builder.SetInsertPoint(LoopIncrPN); 2121 PHINode *NewRem = Builder.CreatePHI(Ty, 2); 2122 2123 Builder.SetInsertPoint(cast<Instruction>( 2124 LoopIncrPN->getIncomingValueForBlock(L->getLoopLatch()))); 2125 // `(add (urem x, y), 1)` is always nuw. 2126 Value *RemAdd = Builder.CreateNUWAdd(NewRem, ConstantInt::get(Ty, 1)); 2127 Value *RemCmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, RemAdd, RemAmt); 2128 Value *RemSel = 2129 Builder.CreateSelect(RemCmp, Constant::getNullValue(Ty), RemAdd); 2130 2131 NewRem->addIncoming(Start, L->getLoopPreheader()); 2132 NewRem->addIncoming(RemSel, L->getLoopLatch()); 2133 2134 // Insert all touched BBs. 2135 FreshBBs.insert(LoopIncrPN->getParent()); 2136 FreshBBs.insert(L->getLoopLatch()); 2137 FreshBBs.insert(Rem->getParent()); 2138 if (AddInst) 2139 FreshBBs.insert(cast<Instruction>(AddInst)->getParent()); 2140 replaceAllUsesWith(Rem, NewRem, FreshBBs, IsHuge); 2141 Rem->eraseFromParent(); 2142 if (AddInst && AddInst->use_empty()) 2143 cast<Instruction>(AddInst)->eraseFromParent(); 2144 return true; 2145 } 2146 2147 bool CodeGenPrepare::optimizeURem(Instruction *Rem) { 2148 if (foldURemOfLoopIncrement(Rem, DL, LI, FreshBBs, IsHugeFunc)) 2149 return true; 2150 return false; 2151 } 2152 2153 /// Some targets have better codegen for `ctpop(X) u< 2` than `ctpop(X) == 1`. 2154 /// This function converts `ctpop(X) ==/!= 1` into `ctpop(X) u</u> 2/1` if the 2155 /// result cannot be zero. 2156 static bool adjustIsPower2Test(CmpInst *Cmp, const TargetLowering &TLI, 2157 const TargetTransformInfo &TTI, 2158 const DataLayout &DL) { 2159 ICmpInst::Predicate Pred; 2160 if (!match(Cmp, m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(), m_One()))) 2161 return false; 2162 if (!ICmpInst::isEquality(Pred)) 2163 return false; 2164 auto *II = cast<IntrinsicInst>(Cmp->getOperand(0)); 2165 2166 if (isKnownNonZero(II, DL)) { 2167 if (Pred == ICmpInst::ICMP_EQ) { 2168 Cmp->setOperand(1, ConstantInt::get(II->getType(), 2)); 2169 Cmp->setPredicate(ICmpInst::ICMP_ULT); 2170 } else { 2171 Cmp->setPredicate(ICmpInst::ICMP_UGT); 2172 } 2173 return true; 2174 } 2175 return false; 2176 } 2177 2178 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { 2179 if (sinkCmpExpression(Cmp, *TLI)) 2180 return true; 2181 2182 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 2183 return true; 2184 2185 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 2186 return true; 2187 2188 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 2189 return true; 2190 2191 if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) 2192 return true; 2193 2194 if (foldFCmpToFPClassTest(Cmp, *TLI, *DL)) 2195 return true; 2196 2197 if (adjustIsPower2Test(Cmp, *TLI, *TTI, *DL)) 2198 return true; 2199 2200 return false; 2201 } 2202 2203 /// Duplicate and sink the given 'and' instruction into user blocks where it is 2204 /// used in a compare to allow isel to generate better code for targets where 2205 /// this operation can be combined. 2206 /// 2207 /// Return true if any changes are made. 2208 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, 2209 SetOfInstrs &InsertedInsts) { 2210 // Double-check that we're not trying to optimize an instruction that was 2211 // already optimized by some other part of this pass. 2212 assert(!InsertedInsts.count(AndI) && 2213 "Attempting to optimize already optimized and instruction"); 2214 (void)InsertedInsts; 2215 2216 // Nothing to do for single use in same basic block. 2217 if (AndI->hasOneUse() && 2218 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 2219 return false; 2220 2221 // Try to avoid cases where sinking/duplicating is likely to increase register 2222 // pressure. 2223 if (!isa<ConstantInt>(AndI->getOperand(0)) && 2224 !isa<ConstantInt>(AndI->getOperand(1)) && 2225 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 2226 return false; 2227 2228 for (auto *U : AndI->users()) { 2229 Instruction *User = cast<Instruction>(U); 2230 2231 // Only sink 'and' feeding icmp with 0. 2232 if (!isa<ICmpInst>(User)) 2233 return false; 2234 2235 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 2236 if (!CmpC || !CmpC->isZero()) 2237 return false; 2238 } 2239 2240 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 2241 return false; 2242 2243 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 2244 LLVM_DEBUG(AndI->getParent()->dump()); 2245 2246 // Push the 'and' into the same block as the icmp 0. There should only be 2247 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 2248 // others, so we don't need to keep track of which BBs we insert into. 2249 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 2250 UI != E;) { 2251 Use &TheUse = UI.getUse(); 2252 Instruction *User = cast<Instruction>(*UI); 2253 2254 // Preincrement use iterator so we don't invalidate it. 2255 ++UI; 2256 2257 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 2258 2259 // Keep the 'and' in the same place if the use is already in the same block. 2260 Instruction *InsertPt = 2261 User->getParent() == AndI->getParent() ? AndI : User; 2262 Instruction *InsertedAnd = BinaryOperator::Create( 2263 Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "", 2264 InsertPt->getIterator()); 2265 // Propagate the debug info. 2266 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 2267 2268 // Replace a use of the 'and' with a use of the new 'and'. 2269 TheUse = InsertedAnd; 2270 ++NumAndUses; 2271 LLVM_DEBUG(User->getParent()->dump()); 2272 } 2273 2274 // We removed all uses, nuke the and. 2275 AndI->eraseFromParent(); 2276 return true; 2277 } 2278 2279 /// Check if the candidates could be combined with a shift instruction, which 2280 /// includes: 2281 /// 1. Truncate instruction 2282 /// 2. And instruction and the imm is a mask of the low bits: 2283 /// imm & (imm+1) == 0 2284 static bool isExtractBitsCandidateUse(Instruction *User) { 2285 if (!isa<TruncInst>(User)) { 2286 if (User->getOpcode() != Instruction::And || 2287 !isa<ConstantInt>(User->getOperand(1))) 2288 return false; 2289 2290 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 2291 2292 if ((Cimm & (Cimm + 1)).getBoolValue()) 2293 return false; 2294 } 2295 return true; 2296 } 2297 2298 /// Sink both shift and truncate instruction to the use of truncate's BB. 2299 static bool 2300 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 2301 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 2302 const TargetLowering &TLI, const DataLayout &DL) { 2303 BasicBlock *UserBB = User->getParent(); 2304 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 2305 auto *TruncI = cast<TruncInst>(User); 2306 bool MadeChange = false; 2307 2308 for (Value::user_iterator TruncUI = TruncI->user_begin(), 2309 TruncE = TruncI->user_end(); 2310 TruncUI != TruncE;) { 2311 2312 Use &TruncTheUse = TruncUI.getUse(); 2313 Instruction *TruncUser = cast<Instruction>(*TruncUI); 2314 // Preincrement use iterator so we don't invalidate it. 2315 2316 ++TruncUI; 2317 2318 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 2319 if (!ISDOpcode) 2320 continue; 2321 2322 // If the use is actually a legal node, there will not be an 2323 // implicit truncate. 2324 // FIXME: always querying the result type is just an 2325 // approximation; some nodes' legality is determined by the 2326 // operand or other means. There's no good way to find out though. 2327 if (TLI.isOperationLegalOrCustom( 2328 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 2329 continue; 2330 2331 // Don't bother for PHI nodes. 2332 if (isa<PHINode>(TruncUser)) 2333 continue; 2334 2335 BasicBlock *TruncUserBB = TruncUser->getParent(); 2336 2337 if (UserBB == TruncUserBB) 2338 continue; 2339 2340 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 2341 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 2342 2343 if (!InsertedShift && !InsertedTrunc) { 2344 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 2345 assert(InsertPt != TruncUserBB->end()); 2346 // Sink the shift 2347 if (ShiftI->getOpcode() == Instruction::AShr) 2348 InsertedShift = 2349 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2350 else 2351 InsertedShift = 2352 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2353 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2354 InsertedShift->insertBefore(*TruncUserBB, InsertPt); 2355 2356 // Sink the trunc 2357 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 2358 TruncInsertPt++; 2359 // It will go ahead of any debug-info. 2360 TruncInsertPt.setHeadBit(true); 2361 assert(TruncInsertPt != TruncUserBB->end()); 2362 2363 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 2364 TruncI->getType(), ""); 2365 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt); 2366 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 2367 2368 MadeChange = true; 2369 2370 TruncTheUse = InsertedTrunc; 2371 } 2372 } 2373 return MadeChange; 2374 } 2375 2376 /// Sink the shift *right* instruction into user blocks if the uses could 2377 /// potentially be combined with this shift instruction and generate BitExtract 2378 /// instruction. It will only be applied if the architecture supports BitExtract 2379 /// instruction. Here is an example: 2380 /// BB1: 2381 /// %x.extract.shift = lshr i64 %arg1, 32 2382 /// BB2: 2383 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 2384 /// ==> 2385 /// 2386 /// BB2: 2387 /// %x.extract.shift.1 = lshr i64 %arg1, 32 2388 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 2389 /// 2390 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 2391 /// instruction. 2392 /// Return true if any changes are made. 2393 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 2394 const TargetLowering &TLI, 2395 const DataLayout &DL) { 2396 BasicBlock *DefBB = ShiftI->getParent(); 2397 2398 /// Only insert instructions in each block once. 2399 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 2400 2401 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 2402 2403 bool MadeChange = false; 2404 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 2405 UI != E;) { 2406 Use &TheUse = UI.getUse(); 2407 Instruction *User = cast<Instruction>(*UI); 2408 // Preincrement use iterator so we don't invalidate it. 2409 ++UI; 2410 2411 // Don't bother for PHI nodes. 2412 if (isa<PHINode>(User)) 2413 continue; 2414 2415 if (!isExtractBitsCandidateUse(User)) 2416 continue; 2417 2418 BasicBlock *UserBB = User->getParent(); 2419 2420 if (UserBB == DefBB) { 2421 // If the shift and truncate instruction are in the same BB. The use of 2422 // the truncate(TruncUse) may still introduce another truncate if not 2423 // legal. In this case, we would like to sink both shift and truncate 2424 // instruction to the BB of TruncUse. 2425 // for example: 2426 // BB1: 2427 // i64 shift.result = lshr i64 opnd, imm 2428 // trunc.result = trunc shift.result to i16 2429 // 2430 // BB2: 2431 // ----> We will have an implicit truncate here if the architecture does 2432 // not have i16 compare. 2433 // cmp i16 trunc.result, opnd2 2434 // 2435 if (isa<TruncInst>(User) && 2436 shiftIsLegal 2437 // If the type of the truncate is legal, no truncate will be 2438 // introduced in other basic blocks. 2439 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 2440 MadeChange = 2441 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 2442 2443 continue; 2444 } 2445 // If we have already inserted a shift into this block, use it. 2446 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 2447 2448 if (!InsertedShift) { 2449 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2450 assert(InsertPt != UserBB->end()); 2451 2452 if (ShiftI->getOpcode() == Instruction::AShr) 2453 InsertedShift = 2454 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2455 else 2456 InsertedShift = 2457 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2458 InsertedShift->insertBefore(*UserBB, InsertPt); 2459 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2460 2461 MadeChange = true; 2462 } 2463 2464 // Replace a use of the shift with a use of the new shift. 2465 TheUse = InsertedShift; 2466 } 2467 2468 // If we removed all uses, or there are none, nuke the shift. 2469 if (ShiftI->use_empty()) { 2470 salvageDebugInfo(*ShiftI); 2471 ShiftI->eraseFromParent(); 2472 MadeChange = true; 2473 } 2474 2475 return MadeChange; 2476 } 2477 2478 /// If counting leading or trailing zeros is an expensive operation and a zero 2479 /// input is defined, add a check for zero to avoid calling the intrinsic. 2480 /// 2481 /// We want to transform: 2482 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2483 /// 2484 /// into: 2485 /// entry: 2486 /// %cmpz = icmp eq i64 %A, 0 2487 /// br i1 %cmpz, label %cond.end, label %cond.false 2488 /// cond.false: 2489 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2490 /// br label %cond.end 2491 /// cond.end: 2492 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2493 /// 2494 /// If the transform is performed, return true and set ModifiedDT to true. 2495 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2496 LoopInfo &LI, 2497 const TargetLowering *TLI, 2498 const DataLayout *DL, ModifyDT &ModifiedDT, 2499 SmallSet<BasicBlock *, 32> &FreshBBs, 2500 bool IsHugeFunc) { 2501 // If a zero input is undefined, it doesn't make sense to despeculate that. 2502 if (match(CountZeros->getOperand(1), m_One())) 2503 return false; 2504 2505 // If it's cheap to speculate, there's nothing to do. 2506 Type *Ty = CountZeros->getType(); 2507 auto IntrinsicID = CountZeros->getIntrinsicID(); 2508 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || 2509 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) 2510 return false; 2511 2512 // Only handle legal scalar cases. Anything else requires too much work. 2513 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2514 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2515 return false; 2516 2517 // Bail if the value is never zero. 2518 Use &Op = CountZeros->getOperandUse(0); 2519 if (isKnownNonZero(Op, *DL)) 2520 return false; 2521 2522 // The intrinsic will be sunk behind a compare against zero and branch. 2523 BasicBlock *StartBlock = CountZeros->getParent(); 2524 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2525 if (IsHugeFunc) 2526 FreshBBs.insert(CallBlock); 2527 2528 // Create another block after the count zero intrinsic. A PHI will be added 2529 // in this block to select the result of the intrinsic or the bit-width 2530 // constant if the input to the intrinsic is zero. 2531 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros)); 2532 // Any debug-info after CountZeros should not be included. 2533 SplitPt.setHeadBit(true); 2534 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2535 if (IsHugeFunc) 2536 FreshBBs.insert(EndBlock); 2537 2538 // Update the LoopInfo. The new blocks are in the same loop as the start 2539 // block. 2540 if (Loop *L = LI.getLoopFor(StartBlock)) { 2541 L->addBasicBlockToLoop(CallBlock, LI); 2542 L->addBasicBlockToLoop(EndBlock, LI); 2543 } 2544 2545 // Set up a builder to create a compare, conditional branch, and PHI. 2546 IRBuilder<> Builder(CountZeros->getContext()); 2547 Builder.SetInsertPoint(StartBlock->getTerminator()); 2548 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2549 2550 // Replace the unconditional branch that was created by the first split with 2551 // a compare against zero and a conditional branch. 2552 Value *Zero = Constant::getNullValue(Ty); 2553 // Avoid introducing branch on poison. This also replaces the ctz operand. 2554 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2555 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2556 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2557 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2558 StartBlock->getTerminator()->eraseFromParent(); 2559 2560 // Create a PHI in the end block to select either the output of the intrinsic 2561 // or the bit width of the operand. 2562 Builder.SetInsertPoint(EndBlock, EndBlock->begin()); 2563 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2564 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); 2565 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2566 PN->addIncoming(BitWidth, StartBlock); 2567 PN->addIncoming(CountZeros, CallBlock); 2568 2569 // We are explicitly handling the zero case, so we can set the intrinsic's 2570 // undefined zero argument to 'true'. This will also prevent reprocessing the 2571 // intrinsic; we only despeculate when a zero input is defined. 2572 CountZeros->setArgOperand(1, Builder.getTrue()); 2573 ModifiedDT = ModifyDT::ModifyBBDT; 2574 return true; 2575 } 2576 2577 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { 2578 BasicBlock *BB = CI->getParent(); 2579 2580 // Lower inline assembly if we can. 2581 // If we found an inline asm expession, and if the target knows how to 2582 // lower it to normal LLVM code, do so now. 2583 if (CI->isInlineAsm()) { 2584 if (TLI->ExpandInlineAsm(CI)) { 2585 // Avoid invalidating the iterator. 2586 CurInstIterator = BB->begin(); 2587 // Avoid processing instructions out of order, which could cause 2588 // reuse before a value is defined. 2589 SunkAddrs.clear(); 2590 return true; 2591 } 2592 // Sink address computing for memory operands into the block. 2593 if (optimizeInlineAsmInst(CI)) 2594 return true; 2595 } 2596 2597 // Align the pointer arguments to this call if the target thinks it's a good 2598 // idea 2599 unsigned MinSize; 2600 Align PrefAlign; 2601 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2602 for (auto &Arg : CI->args()) { 2603 // We want to align both objects whose address is used directly and 2604 // objects whose address is used in casts and GEPs, though it only makes 2605 // sense for GEPs if the offset is a multiple of the desired alignment and 2606 // if size - offset meets the size threshold. 2607 if (!Arg->getType()->isPointerTy()) 2608 continue; 2609 APInt Offset(DL->getIndexSizeInBits( 2610 cast<PointerType>(Arg->getType())->getAddressSpace()), 2611 0); 2612 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2613 uint64_t Offset2 = Offset.getLimitedValue(); 2614 if (!isAligned(PrefAlign, Offset2)) 2615 continue; 2616 AllocaInst *AI; 2617 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2618 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2619 AI->setAlignment(PrefAlign); 2620 // Global variables can only be aligned if they are defined in this 2621 // object (i.e. they are uniquely initialized in this object), and 2622 // over-aligning global variables that have an explicit section is 2623 // forbidden. 2624 GlobalVariable *GV; 2625 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2626 GV->getPointerAlignment(*DL) < PrefAlign && 2627 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) 2628 GV->setAlignment(PrefAlign); 2629 } 2630 } 2631 // If this is a memcpy (or similar) then we may be able to improve the 2632 // alignment. 2633 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2634 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2635 MaybeAlign MIDestAlign = MI->getDestAlign(); 2636 if (!MIDestAlign || DestAlign > *MIDestAlign) 2637 MI->setDestAlignment(DestAlign); 2638 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2639 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2640 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2641 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2642 MTI->setSourceAlignment(SrcAlign); 2643 } 2644 } 2645 2646 // If we have a cold call site, try to sink addressing computation into the 2647 // cold block. This interacts with our handling for loads and stores to 2648 // ensure that we can fold all uses of a potential addressing computation 2649 // into their uses. TODO: generalize this to work over profiling data 2650 if (CI->hasFnAttr(Attribute::Cold) && 2651 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2652 for (auto &Arg : CI->args()) { 2653 if (!Arg->getType()->isPointerTy()) 2654 continue; 2655 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2656 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) 2657 return true; 2658 } 2659 2660 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2661 if (II) { 2662 switch (II->getIntrinsicID()) { 2663 default: 2664 break; 2665 case Intrinsic::assume: 2666 llvm_unreachable("llvm.assume should have been removed already"); 2667 case Intrinsic::allow_runtime_check: 2668 case Intrinsic::allow_ubsan_check: 2669 case Intrinsic::experimental_widenable_condition: { 2670 // Give up on future widening opportunities so that we can fold away dead 2671 // paths and merge blocks before going into block-local instruction 2672 // selection. 2673 if (II->use_empty()) { 2674 II->eraseFromParent(); 2675 return true; 2676 } 2677 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2678 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2679 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2680 }); 2681 return true; 2682 } 2683 case Intrinsic::objectsize: 2684 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2685 case Intrinsic::is_constant: 2686 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2687 case Intrinsic::aarch64_stlxr: 2688 case Intrinsic::aarch64_stxr: { 2689 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2690 if (!ExtVal || !ExtVal->hasOneUse() || 2691 ExtVal->getParent() == CI->getParent()) 2692 return false; 2693 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2694 ExtVal->moveBefore(CI); 2695 // Mark this instruction as "inserted by CGP", so that other 2696 // optimizations don't touch it. 2697 InsertedInsts.insert(ExtVal); 2698 return true; 2699 } 2700 2701 case Intrinsic::launder_invariant_group: 2702 case Intrinsic::strip_invariant_group: { 2703 Value *ArgVal = II->getArgOperand(0); 2704 auto it = LargeOffsetGEPMap.find(II); 2705 if (it != LargeOffsetGEPMap.end()) { 2706 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2707 // Make sure not to have to deal with iterator invalidation 2708 // after possibly adding ArgVal to LargeOffsetGEPMap. 2709 auto GEPs = std::move(it->second); 2710 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2711 LargeOffsetGEPMap.erase(II); 2712 } 2713 2714 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); 2715 II->eraseFromParent(); 2716 return true; 2717 } 2718 case Intrinsic::cttz: 2719 case Intrinsic::ctlz: 2720 // If counting zeros is expensive, try to avoid it. 2721 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs, 2722 IsHugeFunc); 2723 case Intrinsic::fshl: 2724 case Intrinsic::fshr: 2725 return optimizeFunnelShift(II); 2726 case Intrinsic::dbg_assign: 2727 case Intrinsic::dbg_value: 2728 return fixupDbgValue(II); 2729 case Intrinsic::masked_gather: 2730 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2731 case Intrinsic::masked_scatter: 2732 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2733 } 2734 2735 SmallVector<Value *, 2> PtrOps; 2736 Type *AccessTy; 2737 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2738 while (!PtrOps.empty()) { 2739 Value *PtrVal = PtrOps.pop_back_val(); 2740 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2741 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2742 return true; 2743 } 2744 } 2745 2746 // From here on out we're working with named functions. 2747 auto *Callee = CI->getCalledFunction(); 2748 if (!Callee) 2749 return false; 2750 2751 // Lower all default uses of _chk calls. This is very similar 2752 // to what InstCombineCalls does, but here we are only lowering calls 2753 // to fortified library functions (e.g. __memcpy_chk) that have the default 2754 // "don't know" as the objectsize. Anything else should be left alone. 2755 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2756 IRBuilder<> Builder(CI); 2757 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2758 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); 2759 CI->eraseFromParent(); 2760 return true; 2761 } 2762 2763 // SCCP may have propagated, among other things, C++ static variables across 2764 // calls. If this happens to be the case, we may want to undo it in order to 2765 // avoid redundant pointer computation of the constant, as the function method 2766 // returning the constant needs to be executed anyways. 2767 auto GetUniformReturnValue = [](const Function *F) -> GlobalVariable * { 2768 if (!F->getReturnType()->isPointerTy()) 2769 return nullptr; 2770 2771 GlobalVariable *UniformValue = nullptr; 2772 for (auto &BB : *F) { 2773 if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { 2774 if (auto *V = dyn_cast<GlobalVariable>(RI->getReturnValue())) { 2775 if (!UniformValue) 2776 UniformValue = V; 2777 else if (V != UniformValue) 2778 return nullptr; 2779 } else { 2780 return nullptr; 2781 } 2782 } 2783 } 2784 2785 return UniformValue; 2786 }; 2787 2788 if (Callee->hasExactDefinition()) { 2789 if (GlobalVariable *RV = GetUniformReturnValue(Callee)) { 2790 bool MadeChange = false; 2791 for (Use &U : make_early_inc_range(RV->uses())) { 2792 auto *I = dyn_cast<Instruction>(U.getUser()); 2793 if (!I || I->getParent() != CI->getParent()) { 2794 // Limit to the same basic block to avoid extending the call-site live 2795 // range, which otherwise could increase register pressure. 2796 continue; 2797 } 2798 if (CI->comesBefore(I)) { 2799 U.set(CI); 2800 MadeChange = true; 2801 } 2802 } 2803 2804 return MadeChange; 2805 } 2806 } 2807 2808 return false; 2809 } 2810 2811 static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo, 2812 const CallInst *CI) { 2813 assert(CI && CI->use_empty()); 2814 2815 if (const auto *II = dyn_cast<IntrinsicInst>(CI)) 2816 switch (II->getIntrinsicID()) { 2817 case Intrinsic::memset: 2818 case Intrinsic::memcpy: 2819 case Intrinsic::memmove: 2820 return true; 2821 default: 2822 return false; 2823 } 2824 2825 LibFunc LF; 2826 Function *Callee = CI->getCalledFunction(); 2827 if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF)) 2828 switch (LF) { 2829 case LibFunc_strcpy: 2830 case LibFunc_strncpy: 2831 case LibFunc_strcat: 2832 case LibFunc_strncat: 2833 return true; 2834 default: 2835 return false; 2836 } 2837 2838 return false; 2839 } 2840 2841 /// Look for opportunities to duplicate return instructions to the predecessor 2842 /// to enable tail call optimizations. The case it is currently looking for is 2843 /// the following one. Known intrinsics or library function that may be tail 2844 /// called are taken into account as well. 2845 /// @code 2846 /// bb0: 2847 /// %tmp0 = tail call i32 @f0() 2848 /// br label %return 2849 /// bb1: 2850 /// %tmp1 = tail call i32 @f1() 2851 /// br label %return 2852 /// bb2: 2853 /// %tmp2 = tail call i32 @f2() 2854 /// br label %return 2855 /// return: 2856 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2857 /// ret i32 %retval 2858 /// @endcode 2859 /// 2860 /// => 2861 /// 2862 /// @code 2863 /// bb0: 2864 /// %tmp0 = tail call i32 @f0() 2865 /// ret i32 %tmp0 2866 /// bb1: 2867 /// %tmp1 = tail call i32 @f1() 2868 /// ret i32 %tmp1 2869 /// bb2: 2870 /// %tmp2 = tail call i32 @f2() 2871 /// ret i32 %tmp2 2872 /// @endcode 2873 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, 2874 ModifyDT &ModifiedDT) { 2875 if (!BB->getTerminator()) 2876 return false; 2877 2878 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2879 if (!RetI) 2880 return false; 2881 2882 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop"); 2883 2884 PHINode *PN = nullptr; 2885 ExtractValueInst *EVI = nullptr; 2886 BitCastInst *BCI = nullptr; 2887 Value *V = RetI->getReturnValue(); 2888 if (V) { 2889 BCI = dyn_cast<BitCastInst>(V); 2890 if (BCI) 2891 V = BCI->getOperand(0); 2892 2893 EVI = dyn_cast<ExtractValueInst>(V); 2894 if (EVI) { 2895 V = EVI->getOperand(0); 2896 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2897 return false; 2898 } 2899 2900 PN = dyn_cast<PHINode>(V); 2901 } 2902 2903 if (PN && PN->getParent() != BB) 2904 return false; 2905 2906 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2907 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2908 if (BC && BC->hasOneUse()) 2909 Inst = BC->user_back(); 2910 2911 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2912 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2913 return false; 2914 }; 2915 2916 SmallVector<const IntrinsicInst *, 4> FakeUses; 2917 2918 auto isFakeUse = [&FakeUses](const Instruction *Inst) { 2919 if (auto *II = dyn_cast<IntrinsicInst>(Inst); 2920 II && II->getIntrinsicID() == Intrinsic::fake_use) { 2921 // Record the instruction so it can be preserved when the exit block is 2922 // removed. Do not preserve the fake use that uses the result of the 2923 // PHI instruction. 2924 // Do not copy fake uses that use the result of a PHI node. 2925 // FIXME: If we do want to copy the fake use into the return blocks, we 2926 // have to figure out which of the PHI node operands to use for each 2927 // copy. 2928 if (!isa<PHINode>(II->getOperand(0))) { 2929 FakeUses.push_back(II); 2930 } 2931 return true; 2932 } 2933 2934 return false; 2935 }; 2936 2937 // Make sure there are no instructions between the first instruction 2938 // and return. 2939 const Instruction *BI = BB->getFirstNonPHI(); 2940 // Skip over debug and the bitcast. 2941 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2942 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI) || 2943 isFakeUse(BI)) 2944 BI = BI->getNextNode(); 2945 if (BI != RetI) 2946 return false; 2947 2948 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2949 /// call. 2950 const Function *F = BB->getParent(); 2951 SmallVector<BasicBlock *, 4> TailCallBBs; 2952 // Record the call instructions so we can insert any fake uses 2953 // that need to be preserved before them. 2954 SmallVector<CallInst *, 4> CallInsts; 2955 if (PN) { 2956 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2957 // Look through bitcasts. 2958 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2959 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2960 BasicBlock *PredBB = PN->getIncomingBlock(I); 2961 // Make sure the phi value is indeed produced by the tail call. 2962 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2963 TLI->mayBeEmittedAsTailCall(CI) && 2964 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2965 TailCallBBs.push_back(PredBB); 2966 CallInsts.push_back(CI); 2967 } else { 2968 // Consider the cases in which the phi value is indirectly produced by 2969 // the tail call, for example when encountering memset(), memmove(), 2970 // strcpy(), whose return value may have been optimized out. In such 2971 // cases, the value needs to be the first function argument. 2972 // 2973 // bb0: 2974 // tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1) 2975 // br label %return 2976 // return: 2977 // %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ] 2978 if (PredBB && PredBB->getSingleSuccessor() == BB) 2979 CI = dyn_cast_or_null<CallInst>( 2980 PredBB->getTerminator()->getPrevNonDebugInstruction(true)); 2981 2982 if (CI && CI->use_empty() && 2983 isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2984 IncomingVal == CI->getArgOperand(0) && 2985 TLI->mayBeEmittedAsTailCall(CI) && 2986 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2987 TailCallBBs.push_back(PredBB); 2988 CallInsts.push_back(CI); 2989 } 2990 } 2991 } 2992 } else { 2993 SmallPtrSet<BasicBlock *, 4> VisitedBBs; 2994 for (BasicBlock *Pred : predecessors(BB)) { 2995 if (!VisitedBBs.insert(Pred).second) 2996 continue; 2997 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2998 CallInst *CI = dyn_cast<CallInst>(I); 2999 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 3000 attributesPermitTailCall(F, CI, RetI, *TLI)) { 3001 // Either we return void or the return value must be the first 3002 // argument of a known intrinsic or library function. 3003 if (!V || isa<UndefValue>(V) || 3004 (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 3005 V == CI->getArgOperand(0))) { 3006 TailCallBBs.push_back(Pred); 3007 CallInsts.push_back(CI); 3008 } 3009 } 3010 } 3011 } 3012 } 3013 3014 bool Changed = false; 3015 for (auto const &TailCallBB : TailCallBBs) { 3016 // Make sure the call instruction is followed by an unconditional branch to 3017 // the return block. 3018 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 3019 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 3020 continue; 3021 3022 // Duplicate the return into TailCallBB. 3023 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 3024 assert(!VerifyBFIUpdates || 3025 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 3026 BFI->setBlockFreq(BB, 3027 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB))); 3028 ModifiedDT = ModifyDT::ModifyBBDT; 3029 Changed = true; 3030 ++NumRetsDup; 3031 } 3032 3033 // If we eliminated all predecessors of the block, delete the block now. 3034 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) { 3035 // Copy the fake uses found in the original return block to all blocks 3036 // that contain tail calls. 3037 for (auto *CI : CallInsts) { 3038 for (auto const *FakeUse : FakeUses) { 3039 auto *ClonedInst = FakeUse->clone(); 3040 ClonedInst->insertBefore(CI); 3041 } 3042 } 3043 BB->eraseFromParent(); 3044 } 3045 3046 return Changed; 3047 } 3048 3049 //===----------------------------------------------------------------------===// 3050 // Memory Optimization 3051 //===----------------------------------------------------------------------===// 3052 3053 namespace { 3054 3055 /// This is an extended version of TargetLowering::AddrMode 3056 /// which holds actual Value*'s for register values. 3057 struct ExtAddrMode : public TargetLowering::AddrMode { 3058 Value *BaseReg = nullptr; 3059 Value *ScaledReg = nullptr; 3060 Value *OriginalValue = nullptr; 3061 bool InBounds = true; 3062 3063 enum FieldName { 3064 NoField = 0x00, 3065 BaseRegField = 0x01, 3066 BaseGVField = 0x02, 3067 BaseOffsField = 0x04, 3068 ScaledRegField = 0x08, 3069 ScaleField = 0x10, 3070 MultipleFields = 0xff 3071 }; 3072 3073 ExtAddrMode() = default; 3074 3075 void print(raw_ostream &OS) const; 3076 void dump() const; 3077 3078 FieldName compare(const ExtAddrMode &other) { 3079 // First check that the types are the same on each field, as differing types 3080 // is something we can't cope with later on. 3081 if (BaseReg && other.BaseReg && 3082 BaseReg->getType() != other.BaseReg->getType()) 3083 return MultipleFields; 3084 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) 3085 return MultipleFields; 3086 if (ScaledReg && other.ScaledReg && 3087 ScaledReg->getType() != other.ScaledReg->getType()) 3088 return MultipleFields; 3089 3090 // Conservatively reject 'inbounds' mismatches. 3091 if (InBounds != other.InBounds) 3092 return MultipleFields; 3093 3094 // Check each field to see if it differs. 3095 unsigned Result = NoField; 3096 if (BaseReg != other.BaseReg) 3097 Result |= BaseRegField; 3098 if (BaseGV != other.BaseGV) 3099 Result |= BaseGVField; 3100 if (BaseOffs != other.BaseOffs) 3101 Result |= BaseOffsField; 3102 if (ScaledReg != other.ScaledReg) 3103 Result |= ScaledRegField; 3104 // Don't count 0 as being a different scale, because that actually means 3105 // unscaled (which will already be counted by having no ScaledReg). 3106 if (Scale && other.Scale && Scale != other.Scale) 3107 Result |= ScaleField; 3108 3109 if (llvm::popcount(Result) > 1) 3110 return MultipleFields; 3111 else 3112 return static_cast<FieldName>(Result); 3113 } 3114 3115 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 3116 // with no offset. 3117 bool isTrivial() { 3118 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 3119 // trivial if at most one of these terms is nonzero, except that BaseGV and 3120 // BaseReg both being zero actually means a null pointer value, which we 3121 // consider to be 'non-zero' here. 3122 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 3123 } 3124 3125 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 3126 switch (Field) { 3127 default: 3128 return nullptr; 3129 case BaseRegField: 3130 return BaseReg; 3131 case BaseGVField: 3132 return BaseGV; 3133 case ScaledRegField: 3134 return ScaledReg; 3135 case BaseOffsField: 3136 return ConstantInt::get(IntPtrTy, BaseOffs); 3137 } 3138 } 3139 3140 void SetCombinedField(FieldName Field, Value *V, 3141 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 3142 switch (Field) { 3143 default: 3144 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 3145 break; 3146 case ExtAddrMode::BaseRegField: 3147 BaseReg = V; 3148 break; 3149 case ExtAddrMode::BaseGVField: 3150 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 3151 // in the BaseReg field. 3152 assert(BaseReg == nullptr); 3153 BaseReg = V; 3154 BaseGV = nullptr; 3155 break; 3156 case ExtAddrMode::ScaledRegField: 3157 ScaledReg = V; 3158 // If we have a mix of scaled and unscaled addrmodes then we want scale 3159 // to be the scale and not zero. 3160 if (!Scale) 3161 for (const ExtAddrMode &AM : AddrModes) 3162 if (AM.Scale) { 3163 Scale = AM.Scale; 3164 break; 3165 } 3166 break; 3167 case ExtAddrMode::BaseOffsField: 3168 // The offset is no longer a constant, so it goes in ScaledReg with a 3169 // scale of 1. 3170 assert(ScaledReg == nullptr); 3171 ScaledReg = V; 3172 Scale = 1; 3173 BaseOffs = 0; 3174 break; 3175 } 3176 } 3177 }; 3178 3179 #ifndef NDEBUG 3180 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 3181 AM.print(OS); 3182 return OS; 3183 } 3184 #endif 3185 3186 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3187 void ExtAddrMode::print(raw_ostream &OS) const { 3188 bool NeedPlus = false; 3189 OS << "["; 3190 if (InBounds) 3191 OS << "inbounds "; 3192 if (BaseGV) { 3193 OS << "GV:"; 3194 BaseGV->printAsOperand(OS, /*PrintType=*/false); 3195 NeedPlus = true; 3196 } 3197 3198 if (BaseOffs) { 3199 OS << (NeedPlus ? " + " : "") << BaseOffs; 3200 NeedPlus = true; 3201 } 3202 3203 if (BaseReg) { 3204 OS << (NeedPlus ? " + " : "") << "Base:"; 3205 BaseReg->printAsOperand(OS, /*PrintType=*/false); 3206 NeedPlus = true; 3207 } 3208 if (Scale) { 3209 OS << (NeedPlus ? " + " : "") << Scale << "*"; 3210 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 3211 } 3212 3213 OS << ']'; 3214 } 3215 3216 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 3217 print(dbgs()); 3218 dbgs() << '\n'; 3219 } 3220 #endif 3221 3222 } // end anonymous namespace 3223 3224 namespace { 3225 3226 /// This class provides transaction based operation on the IR. 3227 /// Every change made through this class is recorded in the internal state and 3228 /// can be undone (rollback) until commit is called. 3229 /// CGP does not check if instructions could be speculatively executed when 3230 /// moved. Preserving the original location would pessimize the debugging 3231 /// experience, as well as negatively impact the quality of sample PGO. 3232 class TypePromotionTransaction { 3233 /// This represents the common interface of the individual transaction. 3234 /// Each class implements the logic for doing one specific modification on 3235 /// the IR via the TypePromotionTransaction. 3236 class TypePromotionAction { 3237 protected: 3238 /// The Instruction modified. 3239 Instruction *Inst; 3240 3241 public: 3242 /// Constructor of the action. 3243 /// The constructor performs the related action on the IR. 3244 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 3245 3246 virtual ~TypePromotionAction() = default; 3247 3248 /// Undo the modification done by this action. 3249 /// When this method is called, the IR must be in the same state as it was 3250 /// before this action was applied. 3251 /// \pre Undoing the action works if and only if the IR is in the exact same 3252 /// state as it was directly after this action was applied. 3253 virtual void undo() = 0; 3254 3255 /// Advocate every change made by this action. 3256 /// When the results on the IR of the action are to be kept, it is important 3257 /// to call this function, otherwise hidden information may be kept forever. 3258 virtual void commit() { 3259 // Nothing to be done, this action is not doing anything. 3260 } 3261 }; 3262 3263 /// Utility to remember the position of an instruction. 3264 class InsertionHandler { 3265 /// Position of an instruction. 3266 /// Either an instruction: 3267 /// - Is the first in a basic block: BB is used. 3268 /// - Has a previous instruction: PrevInst is used. 3269 union { 3270 Instruction *PrevInst; 3271 BasicBlock *BB; 3272 } Point; 3273 std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt; 3274 3275 /// Remember whether or not the instruction had a previous instruction. 3276 bool HasPrevInstruction; 3277 3278 public: 3279 /// Record the position of \p Inst. 3280 InsertionHandler(Instruction *Inst) { 3281 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin())); 3282 BasicBlock *BB = Inst->getParent(); 3283 3284 // Record where we would have to re-insert the instruction in the sequence 3285 // of DbgRecords, if we ended up reinserting. 3286 if (BB->IsNewDbgInfoFormat) 3287 BeforeDbgRecord = Inst->getDbgReinsertionPosition(); 3288 3289 if (HasPrevInstruction) { 3290 Point.PrevInst = &*std::prev(Inst->getIterator()); 3291 } else { 3292 Point.BB = BB; 3293 } 3294 } 3295 3296 /// Insert \p Inst at the recorded position. 3297 void insert(Instruction *Inst) { 3298 if (HasPrevInstruction) { 3299 if (Inst->getParent()) 3300 Inst->removeFromParent(); 3301 Inst->insertAfter(&*Point.PrevInst); 3302 } else { 3303 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt(); 3304 if (Inst->getParent()) 3305 Inst->moveBefore(*Point.BB, Position); 3306 else 3307 Inst->insertBefore(*Point.BB, Position); 3308 } 3309 3310 Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord); 3311 } 3312 }; 3313 3314 /// Move an instruction before another. 3315 class InstructionMoveBefore : public TypePromotionAction { 3316 /// Original position of the instruction. 3317 InsertionHandler Position; 3318 3319 public: 3320 /// Move \p Inst before \p Before. 3321 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 3322 : TypePromotionAction(Inst), Position(Inst) { 3323 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 3324 << "\n"); 3325 Inst->moveBefore(Before); 3326 } 3327 3328 /// Move the instruction back to its original position. 3329 void undo() override { 3330 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 3331 Position.insert(Inst); 3332 } 3333 }; 3334 3335 /// Set the operand of an instruction with a new value. 3336 class OperandSetter : public TypePromotionAction { 3337 /// Original operand of the instruction. 3338 Value *Origin; 3339 3340 /// Index of the modified instruction. 3341 unsigned Idx; 3342 3343 public: 3344 /// Set \p Idx operand of \p Inst with \p NewVal. 3345 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 3346 : TypePromotionAction(Inst), Idx(Idx) { 3347 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 3348 << "for:" << *Inst << "\n" 3349 << "with:" << *NewVal << "\n"); 3350 Origin = Inst->getOperand(Idx); 3351 Inst->setOperand(Idx, NewVal); 3352 } 3353 3354 /// Restore the original value of the instruction. 3355 void undo() override { 3356 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 3357 << "for: " << *Inst << "\n" 3358 << "with: " << *Origin << "\n"); 3359 Inst->setOperand(Idx, Origin); 3360 } 3361 }; 3362 3363 /// Hide the operands of an instruction. 3364 /// Do as if this instruction was not using any of its operands. 3365 class OperandsHider : public TypePromotionAction { 3366 /// The list of original operands. 3367 SmallVector<Value *, 4> OriginalValues; 3368 3369 public: 3370 /// Remove \p Inst from the uses of the operands of \p Inst. 3371 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 3372 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 3373 unsigned NumOpnds = Inst->getNumOperands(); 3374 OriginalValues.reserve(NumOpnds); 3375 for (unsigned It = 0; It < NumOpnds; ++It) { 3376 // Save the current operand. 3377 Value *Val = Inst->getOperand(It); 3378 OriginalValues.push_back(Val); 3379 // Set a dummy one. 3380 // We could use OperandSetter here, but that would imply an overhead 3381 // that we are not willing to pay. 3382 Inst->setOperand(It, PoisonValue::get(Val->getType())); 3383 } 3384 } 3385 3386 /// Restore the original list of uses. 3387 void undo() override { 3388 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 3389 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 3390 Inst->setOperand(It, OriginalValues[It]); 3391 } 3392 }; 3393 3394 /// Build a truncate instruction. 3395 class TruncBuilder : public TypePromotionAction { 3396 Value *Val; 3397 3398 public: 3399 /// Build a truncate instruction of \p Opnd producing a \p Ty 3400 /// result. 3401 /// trunc Opnd to Ty. 3402 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 3403 IRBuilder<> Builder(Opnd); 3404 Builder.SetCurrentDebugLocation(DebugLoc()); 3405 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 3406 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 3407 } 3408 3409 /// Get the built value. 3410 Value *getBuiltValue() { return Val; } 3411 3412 /// Remove the built instruction. 3413 void undo() override { 3414 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 3415 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3416 IVal->eraseFromParent(); 3417 } 3418 }; 3419 3420 /// Build a sign extension instruction. 3421 class SExtBuilder : public TypePromotionAction { 3422 Value *Val; 3423 3424 public: 3425 /// Build a sign extension instruction of \p Opnd producing a \p Ty 3426 /// result. 3427 /// sext Opnd to Ty. 3428 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3429 : TypePromotionAction(InsertPt) { 3430 IRBuilder<> Builder(InsertPt); 3431 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 3432 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 3433 } 3434 3435 /// Get the built value. 3436 Value *getBuiltValue() { return Val; } 3437 3438 /// Remove the built instruction. 3439 void undo() override { 3440 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 3441 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3442 IVal->eraseFromParent(); 3443 } 3444 }; 3445 3446 /// Build a zero extension instruction. 3447 class ZExtBuilder : public TypePromotionAction { 3448 Value *Val; 3449 3450 public: 3451 /// Build a zero extension instruction of \p Opnd producing a \p Ty 3452 /// result. 3453 /// zext Opnd to Ty. 3454 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3455 : TypePromotionAction(InsertPt) { 3456 IRBuilder<> Builder(InsertPt); 3457 Builder.SetCurrentDebugLocation(DebugLoc()); 3458 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 3459 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 3460 } 3461 3462 /// Get the built value. 3463 Value *getBuiltValue() { return Val; } 3464 3465 /// Remove the built instruction. 3466 void undo() override { 3467 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 3468 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3469 IVal->eraseFromParent(); 3470 } 3471 }; 3472 3473 /// Mutate an instruction to another type. 3474 class TypeMutator : public TypePromotionAction { 3475 /// Record the original type. 3476 Type *OrigTy; 3477 3478 public: 3479 /// Mutate the type of \p Inst into \p NewTy. 3480 TypeMutator(Instruction *Inst, Type *NewTy) 3481 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 3482 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 3483 << "\n"); 3484 Inst->mutateType(NewTy); 3485 } 3486 3487 /// Mutate the instruction back to its original type. 3488 void undo() override { 3489 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 3490 << "\n"); 3491 Inst->mutateType(OrigTy); 3492 } 3493 }; 3494 3495 /// Replace the uses of an instruction by another instruction. 3496 class UsesReplacer : public TypePromotionAction { 3497 /// Helper structure to keep track of the replaced uses. 3498 struct InstructionAndIdx { 3499 /// The instruction using the instruction. 3500 Instruction *Inst; 3501 3502 /// The index where this instruction is used for Inst. 3503 unsigned Idx; 3504 3505 InstructionAndIdx(Instruction *Inst, unsigned Idx) 3506 : Inst(Inst), Idx(Idx) {} 3507 }; 3508 3509 /// Keep track of the original uses (pair Instruction, Index). 3510 SmallVector<InstructionAndIdx, 4> OriginalUses; 3511 /// Keep track of the debug users. 3512 SmallVector<DbgValueInst *, 1> DbgValues; 3513 /// And non-instruction debug-users too. 3514 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 3515 3516 /// Keep track of the new value so that we can undo it by replacing 3517 /// instances of the new value with the original value. 3518 Value *New; 3519 3520 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3521 3522 public: 3523 /// Replace all the use of \p Inst by \p New. 3524 UsesReplacer(Instruction *Inst, Value *New) 3525 : TypePromotionAction(Inst), New(New) { 3526 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3527 << "\n"); 3528 // Record the original uses. 3529 for (Use &U : Inst->uses()) { 3530 Instruction *UserI = cast<Instruction>(U.getUser()); 3531 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3532 } 3533 // Record the debug uses separately. They are not in the instruction's 3534 // use list, but they are replaced by RAUW. 3535 findDbgValues(DbgValues, Inst, &DbgVariableRecords); 3536 3537 // Now, we can replace the uses. 3538 Inst->replaceAllUsesWith(New); 3539 } 3540 3541 /// Reassign the original uses of Inst to Inst. 3542 void undo() override { 3543 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3544 for (InstructionAndIdx &Use : OriginalUses) 3545 Use.Inst->setOperand(Use.Idx, Inst); 3546 // RAUW has replaced all original uses with references to the new value, 3547 // including the debug uses. Since we are undoing the replacements, 3548 // the original debug uses must also be reinstated to maintain the 3549 // correctness and utility of debug value instructions. 3550 for (auto *DVI : DbgValues) 3551 DVI->replaceVariableLocationOp(New, Inst); 3552 // Similar story with DbgVariableRecords, the non-instruction 3553 // representation of dbg.values. 3554 for (DbgVariableRecord *DVR : DbgVariableRecords) 3555 DVR->replaceVariableLocationOp(New, Inst); 3556 } 3557 }; 3558 3559 /// Remove an instruction from the IR. 3560 class InstructionRemover : public TypePromotionAction { 3561 /// Original position of the instruction. 3562 InsertionHandler Inserter; 3563 3564 /// Helper structure to hide all the link to the instruction. In other 3565 /// words, this helps to do as if the instruction was removed. 3566 OperandsHider Hider; 3567 3568 /// Keep track of the uses replaced, if any. 3569 UsesReplacer *Replacer = nullptr; 3570 3571 /// Keep track of instructions removed. 3572 SetOfInstrs &RemovedInsts; 3573 3574 public: 3575 /// Remove all reference of \p Inst and optionally replace all its 3576 /// uses with New. 3577 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3578 /// \pre If !Inst->use_empty(), then New != nullptr 3579 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3580 Value *New = nullptr) 3581 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3582 RemovedInsts(RemovedInsts) { 3583 if (New) 3584 Replacer = new UsesReplacer(Inst, New); 3585 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3586 RemovedInsts.insert(Inst); 3587 /// The instructions removed here will be freed after completing 3588 /// optimizeBlock() for all blocks as we need to keep track of the 3589 /// removed instructions during promotion. 3590 Inst->removeFromParent(); 3591 } 3592 3593 ~InstructionRemover() override { delete Replacer; } 3594 3595 InstructionRemover &operator=(const InstructionRemover &other) = delete; 3596 InstructionRemover(const InstructionRemover &other) = delete; 3597 3598 /// Resurrect the instruction and reassign it to the proper uses if 3599 /// new value was provided when build this action. 3600 void undo() override { 3601 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3602 Inserter.insert(Inst); 3603 if (Replacer) 3604 Replacer->undo(); 3605 Hider.undo(); 3606 RemovedInsts.erase(Inst); 3607 } 3608 }; 3609 3610 public: 3611 /// Restoration point. 3612 /// The restoration point is a pointer to an action instead of an iterator 3613 /// because the iterator may be invalidated but not the pointer. 3614 using ConstRestorationPt = const TypePromotionAction *; 3615 3616 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3617 : RemovedInsts(RemovedInsts) {} 3618 3619 /// Advocate every changes made in that transaction. Return true if any change 3620 /// happen. 3621 bool commit(); 3622 3623 /// Undo all the changes made after the given point. 3624 void rollback(ConstRestorationPt Point); 3625 3626 /// Get the current restoration point. 3627 ConstRestorationPt getRestorationPoint() const; 3628 3629 /// \name API for IR modification with state keeping to support rollback. 3630 /// @{ 3631 /// Same as Instruction::setOperand. 3632 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3633 3634 /// Same as Instruction::eraseFromParent. 3635 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3636 3637 /// Same as Value::replaceAllUsesWith. 3638 void replaceAllUsesWith(Instruction *Inst, Value *New); 3639 3640 /// Same as Value::mutateType. 3641 void mutateType(Instruction *Inst, Type *NewTy); 3642 3643 /// Same as IRBuilder::createTrunc. 3644 Value *createTrunc(Instruction *Opnd, Type *Ty); 3645 3646 /// Same as IRBuilder::createSExt. 3647 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3648 3649 /// Same as IRBuilder::createZExt. 3650 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3651 3652 private: 3653 /// The ordered list of actions made so far. 3654 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3655 3656 using CommitPt = 3657 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3658 3659 SetOfInstrs &RemovedInsts; 3660 }; 3661 3662 } // end anonymous namespace 3663 3664 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3665 Value *NewVal) { 3666 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3667 Inst, Idx, NewVal)); 3668 } 3669 3670 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3671 Value *NewVal) { 3672 Actions.push_back( 3673 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3674 Inst, RemovedInsts, NewVal)); 3675 } 3676 3677 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3678 Value *New) { 3679 Actions.push_back( 3680 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3681 } 3682 3683 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3684 Actions.push_back( 3685 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3686 } 3687 3688 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { 3689 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3690 Value *Val = Ptr->getBuiltValue(); 3691 Actions.push_back(std::move(Ptr)); 3692 return Val; 3693 } 3694 3695 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, 3696 Type *Ty) { 3697 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3698 Value *Val = Ptr->getBuiltValue(); 3699 Actions.push_back(std::move(Ptr)); 3700 return Val; 3701 } 3702 3703 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, 3704 Type *Ty) { 3705 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3706 Value *Val = Ptr->getBuiltValue(); 3707 Actions.push_back(std::move(Ptr)); 3708 return Val; 3709 } 3710 3711 TypePromotionTransaction::ConstRestorationPt 3712 TypePromotionTransaction::getRestorationPoint() const { 3713 return !Actions.empty() ? Actions.back().get() : nullptr; 3714 } 3715 3716 bool TypePromotionTransaction::commit() { 3717 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3718 Action->commit(); 3719 bool Modified = !Actions.empty(); 3720 Actions.clear(); 3721 return Modified; 3722 } 3723 3724 void TypePromotionTransaction::rollback( 3725 TypePromotionTransaction::ConstRestorationPt Point) { 3726 while (!Actions.empty() && Point != Actions.back().get()) { 3727 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3728 Curr->undo(); 3729 } 3730 } 3731 3732 namespace { 3733 3734 /// A helper class for matching addressing modes. 3735 /// 3736 /// This encapsulates the logic for matching the target-legal addressing modes. 3737 class AddressingModeMatcher { 3738 SmallVectorImpl<Instruction *> &AddrModeInsts; 3739 const TargetLowering &TLI; 3740 const TargetRegisterInfo &TRI; 3741 const DataLayout &DL; 3742 const LoopInfo &LI; 3743 const std::function<const DominatorTree &()> getDTFn; 3744 3745 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3746 /// the memory instruction that we're computing this address for. 3747 Type *AccessTy; 3748 unsigned AddrSpace; 3749 Instruction *MemoryInst; 3750 3751 /// This is the addressing mode that we're building up. This is 3752 /// part of the return value of this addressing mode matching stuff. 3753 ExtAddrMode &AddrMode; 3754 3755 /// The instructions inserted by other CodeGenPrepare optimizations. 3756 const SetOfInstrs &InsertedInsts; 3757 3758 /// A map from the instructions to their type before promotion. 3759 InstrToOrigTy &PromotedInsts; 3760 3761 /// The ongoing transaction where every action should be registered. 3762 TypePromotionTransaction &TPT; 3763 3764 // A GEP which has too large offset to be folded into the addressing mode. 3765 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3766 3767 /// This is set to true when we should not do profitability checks. 3768 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3769 bool IgnoreProfitability; 3770 3771 /// True if we are optimizing for size. 3772 bool OptSize = false; 3773 3774 ProfileSummaryInfo *PSI; 3775 BlockFrequencyInfo *BFI; 3776 3777 AddressingModeMatcher( 3778 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3779 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3780 const std::function<const DominatorTree &()> getDTFn, Type *AT, 3781 unsigned AS, Instruction *MI, ExtAddrMode &AM, 3782 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3783 TypePromotionTransaction &TPT, 3784 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3785 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3786 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3787 DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn), 3788 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3789 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3790 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3791 IgnoreProfitability = false; 3792 } 3793 3794 public: 3795 /// Find the maximal addressing mode that a load/store of V can fold, 3796 /// give an access type of AccessTy. This returns a list of involved 3797 /// instructions in AddrModeInsts. 3798 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3799 /// optimizations. 3800 /// \p PromotedInsts maps the instructions to their type before promotion. 3801 /// \p The ongoing transaction where every action should be registered. 3802 static ExtAddrMode 3803 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3804 SmallVectorImpl<Instruction *> &AddrModeInsts, 3805 const TargetLowering &TLI, const LoopInfo &LI, 3806 const std::function<const DominatorTree &()> getDTFn, 3807 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3808 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3809 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3810 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3811 ExtAddrMode Result; 3812 3813 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, 3814 AccessTy, AS, MemoryInst, Result, 3815 InsertedInsts, PromotedInsts, TPT, 3816 LargeOffsetGEP, OptSize, PSI, BFI) 3817 .matchAddr(V, 0); 3818 (void)Success; 3819 assert(Success && "Couldn't select *anything*?"); 3820 return Result; 3821 } 3822 3823 private: 3824 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3825 bool matchAddr(Value *Addr, unsigned Depth); 3826 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3827 bool *MovedAway = nullptr); 3828 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3829 ExtAddrMode &AMBefore, 3830 ExtAddrMode &AMAfter); 3831 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3832 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3833 Value *PromotedOperand) const; 3834 }; 3835 3836 class PhiNodeSet; 3837 3838 /// An iterator for PhiNodeSet. 3839 class PhiNodeSetIterator { 3840 PhiNodeSet *const Set; 3841 size_t CurrentIndex = 0; 3842 3843 public: 3844 /// The constructor. Start should point to either a valid element, or be equal 3845 /// to the size of the underlying SmallVector of the PhiNodeSet. 3846 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); 3847 PHINode *operator*() const; 3848 PhiNodeSetIterator &operator++(); 3849 bool operator==(const PhiNodeSetIterator &RHS) const; 3850 bool operator!=(const PhiNodeSetIterator &RHS) const; 3851 }; 3852 3853 /// Keeps a set of PHINodes. 3854 /// 3855 /// This is a minimal set implementation for a specific use case: 3856 /// It is very fast when there are very few elements, but also provides good 3857 /// performance when there are many. It is similar to SmallPtrSet, but also 3858 /// provides iteration by insertion order, which is deterministic and stable 3859 /// across runs. It is also similar to SmallSetVector, but provides removing 3860 /// elements in O(1) time. This is achieved by not actually removing the element 3861 /// from the underlying vector, so comes at the cost of using more memory, but 3862 /// that is fine, since PhiNodeSets are used as short lived objects. 3863 class PhiNodeSet { 3864 friend class PhiNodeSetIterator; 3865 3866 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3867 using iterator = PhiNodeSetIterator; 3868 3869 /// Keeps the elements in the order of their insertion in the underlying 3870 /// vector. To achieve constant time removal, it never deletes any element. 3871 SmallVector<PHINode *, 32> NodeList; 3872 3873 /// Keeps the elements in the underlying set implementation. This (and not the 3874 /// NodeList defined above) is the source of truth on whether an element 3875 /// is actually in the collection. 3876 MapType NodeMap; 3877 3878 /// Points to the first valid (not deleted) element when the set is not empty 3879 /// and the value is not zero. Equals to the size of the underlying vector 3880 /// when the set is empty. When the value is 0, as in the beginning, the 3881 /// first element may or may not be valid. 3882 size_t FirstValidElement = 0; 3883 3884 public: 3885 /// Inserts a new element to the collection. 3886 /// \returns true if the element is actually added, i.e. was not in the 3887 /// collection before the operation. 3888 bool insert(PHINode *Ptr) { 3889 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3890 NodeList.push_back(Ptr); 3891 return true; 3892 } 3893 return false; 3894 } 3895 3896 /// Removes the element from the collection. 3897 /// \returns whether the element is actually removed, i.e. was in the 3898 /// collection before the operation. 3899 bool erase(PHINode *Ptr) { 3900 if (NodeMap.erase(Ptr)) { 3901 SkipRemovedElements(FirstValidElement); 3902 return true; 3903 } 3904 return false; 3905 } 3906 3907 /// Removes all elements and clears the collection. 3908 void clear() { 3909 NodeMap.clear(); 3910 NodeList.clear(); 3911 FirstValidElement = 0; 3912 } 3913 3914 /// \returns an iterator that will iterate the elements in the order of 3915 /// insertion. 3916 iterator begin() { 3917 if (FirstValidElement == 0) 3918 SkipRemovedElements(FirstValidElement); 3919 return PhiNodeSetIterator(this, FirstValidElement); 3920 } 3921 3922 /// \returns an iterator that points to the end of the collection. 3923 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3924 3925 /// Returns the number of elements in the collection. 3926 size_t size() const { return NodeMap.size(); } 3927 3928 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3929 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } 3930 3931 private: 3932 /// Updates the CurrentIndex so that it will point to a valid element. 3933 /// 3934 /// If the element of NodeList at CurrentIndex is valid, it does not 3935 /// change it. If there are no more valid elements, it updates CurrentIndex 3936 /// to point to the end of the NodeList. 3937 void SkipRemovedElements(size_t &CurrentIndex) { 3938 while (CurrentIndex < NodeList.size()) { 3939 auto it = NodeMap.find(NodeList[CurrentIndex]); 3940 // If the element has been deleted and added again later, NodeMap will 3941 // point to a different index, so CurrentIndex will still be invalid. 3942 if (it != NodeMap.end() && it->second == CurrentIndex) 3943 break; 3944 ++CurrentIndex; 3945 } 3946 } 3947 }; 3948 3949 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3950 : Set(Set), CurrentIndex(Start) {} 3951 3952 PHINode *PhiNodeSetIterator::operator*() const { 3953 assert(CurrentIndex < Set->NodeList.size() && 3954 "PhiNodeSet access out of range"); 3955 return Set->NodeList[CurrentIndex]; 3956 } 3957 3958 PhiNodeSetIterator &PhiNodeSetIterator::operator++() { 3959 assert(CurrentIndex < Set->NodeList.size() && 3960 "PhiNodeSet access out of range"); 3961 ++CurrentIndex; 3962 Set->SkipRemovedElements(CurrentIndex); 3963 return *this; 3964 } 3965 3966 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3967 return CurrentIndex == RHS.CurrentIndex; 3968 } 3969 3970 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3971 return !((*this) == RHS); 3972 } 3973 3974 /// Keep track of simplification of Phi nodes. 3975 /// Accept the set of all phi nodes and erase phi node from this set 3976 /// if it is simplified. 3977 class SimplificationTracker { 3978 DenseMap<Value *, Value *> Storage; 3979 const SimplifyQuery &SQ; 3980 // Tracks newly created Phi nodes. The elements are iterated by insertion 3981 // order. 3982 PhiNodeSet AllPhiNodes; 3983 // Tracks newly created Select nodes. 3984 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3985 3986 public: 3987 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} 3988 3989 Value *Get(Value *V) { 3990 do { 3991 auto SV = Storage.find(V); 3992 if (SV == Storage.end()) 3993 return V; 3994 V = SV->second; 3995 } while (true); 3996 } 3997 3998 Value *Simplify(Value *Val) { 3999 SmallVector<Value *, 32> WorkList; 4000 SmallPtrSet<Value *, 32> Visited; 4001 WorkList.push_back(Val); 4002 while (!WorkList.empty()) { 4003 auto *P = WorkList.pop_back_val(); 4004 if (!Visited.insert(P).second) 4005 continue; 4006 if (auto *PI = dyn_cast<Instruction>(P)) 4007 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 4008 for (auto *U : PI->users()) 4009 WorkList.push_back(cast<Value>(U)); 4010 Put(PI, V); 4011 PI->replaceAllUsesWith(V); 4012 if (auto *PHI = dyn_cast<PHINode>(PI)) 4013 AllPhiNodes.erase(PHI); 4014 if (auto *Select = dyn_cast<SelectInst>(PI)) 4015 AllSelectNodes.erase(Select); 4016 PI->eraseFromParent(); 4017 } 4018 } 4019 return Get(Val); 4020 } 4021 4022 void Put(Value *From, Value *To) { Storage.insert({From, To}); } 4023 4024 void ReplacePhi(PHINode *From, PHINode *To) { 4025 Value *OldReplacement = Get(From); 4026 while (OldReplacement != From) { 4027 From = To; 4028 To = dyn_cast<PHINode>(OldReplacement); 4029 OldReplacement = Get(From); 4030 } 4031 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 4032 Put(From, To); 4033 From->replaceAllUsesWith(To); 4034 AllPhiNodes.erase(From); 4035 From->eraseFromParent(); 4036 } 4037 4038 PhiNodeSet &newPhiNodes() { return AllPhiNodes; } 4039 4040 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 4041 4042 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 4043 4044 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 4045 4046 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 4047 4048 void destroyNewNodes(Type *CommonType) { 4049 // For safe erasing, replace the uses with dummy value first. 4050 auto *Dummy = PoisonValue::get(CommonType); 4051 for (auto *I : AllPhiNodes) { 4052 I->replaceAllUsesWith(Dummy); 4053 I->eraseFromParent(); 4054 } 4055 AllPhiNodes.clear(); 4056 for (auto *I : AllSelectNodes) { 4057 I->replaceAllUsesWith(Dummy); 4058 I->eraseFromParent(); 4059 } 4060 AllSelectNodes.clear(); 4061 } 4062 }; 4063 4064 /// A helper class for combining addressing modes. 4065 class AddressingModeCombiner { 4066 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 4067 typedef std::pair<PHINode *, PHINode *> PHIPair; 4068 4069 private: 4070 /// The addressing modes we've collected. 4071 SmallVector<ExtAddrMode, 16> AddrModes; 4072 4073 /// The field in which the AddrModes differ, when we have more than one. 4074 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 4075 4076 /// Are the AddrModes that we have all just equal to their original values? 4077 bool AllAddrModesTrivial = true; 4078 4079 /// Common Type for all different fields in addressing modes. 4080 Type *CommonType = nullptr; 4081 4082 /// SimplifyQuery for simplifyInstruction utility. 4083 const SimplifyQuery &SQ; 4084 4085 /// Original Address. 4086 Value *Original; 4087 4088 /// Common value among addresses 4089 Value *CommonValue = nullptr; 4090 4091 public: 4092 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 4093 : SQ(_SQ), Original(OriginalValue) {} 4094 4095 ~AddressingModeCombiner() { eraseCommonValueIfDead(); } 4096 4097 /// Get the combined AddrMode 4098 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } 4099 4100 /// Add a new AddrMode if it's compatible with the AddrModes we already 4101 /// have. 4102 /// \return True iff we succeeded in doing so. 4103 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 4104 // Take note of if we have any non-trivial AddrModes, as we need to detect 4105 // when all AddrModes are trivial as then we would introduce a phi or select 4106 // which just duplicates what's already there. 4107 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 4108 4109 // If this is the first addrmode then everything is fine. 4110 if (AddrModes.empty()) { 4111 AddrModes.emplace_back(NewAddrMode); 4112 return true; 4113 } 4114 4115 // Figure out how different this is from the other address modes, which we 4116 // can do just by comparing against the first one given that we only care 4117 // about the cumulative difference. 4118 ExtAddrMode::FieldName ThisDifferentField = 4119 AddrModes[0].compare(NewAddrMode); 4120 if (DifferentField == ExtAddrMode::NoField) 4121 DifferentField = ThisDifferentField; 4122 else if (DifferentField != ThisDifferentField) 4123 DifferentField = ExtAddrMode::MultipleFields; 4124 4125 // If NewAddrMode differs in more than one dimension we cannot handle it. 4126 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 4127 4128 // If Scale Field is different then we reject. 4129 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 4130 4131 // We also must reject the case when base offset is different and 4132 // scale reg is not null, we cannot handle this case due to merge of 4133 // different offsets will be used as ScaleReg. 4134 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 4135 !NewAddrMode.ScaledReg); 4136 4137 // We also must reject the case when GV is different and BaseReg installed 4138 // due to we want to use base reg as a merge of GV values. 4139 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 4140 !NewAddrMode.HasBaseReg); 4141 4142 // Even if NewAddMode is the same we still need to collect it due to 4143 // original value is different. And later we will need all original values 4144 // as anchors during finding the common Phi node. 4145 if (CanHandle) 4146 AddrModes.emplace_back(NewAddrMode); 4147 else 4148 AddrModes.clear(); 4149 4150 return CanHandle; 4151 } 4152 4153 /// Combine the addressing modes we've collected into a single 4154 /// addressing mode. 4155 /// \return True iff we successfully combined them or we only had one so 4156 /// didn't need to combine them anyway. 4157 bool combineAddrModes() { 4158 // If we have no AddrModes then they can't be combined. 4159 if (AddrModes.size() == 0) 4160 return false; 4161 4162 // A single AddrMode can trivially be combined. 4163 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 4164 return true; 4165 4166 // If the AddrModes we collected are all just equal to the value they are 4167 // derived from then combining them wouldn't do anything useful. 4168 if (AllAddrModesTrivial) 4169 return false; 4170 4171 if (!addrModeCombiningAllowed()) 4172 return false; 4173 4174 // Build a map between <original value, basic block where we saw it> to 4175 // value of base register. 4176 // Bail out if there is no common type. 4177 FoldAddrToValueMapping Map; 4178 if (!initializeMap(Map)) 4179 return false; 4180 4181 CommonValue = findCommon(Map); 4182 if (CommonValue) 4183 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 4184 return CommonValue != nullptr; 4185 } 4186 4187 private: 4188 /// `CommonValue` may be a placeholder inserted by us. 4189 /// If the placeholder is not used, we should remove this dead instruction. 4190 void eraseCommonValueIfDead() { 4191 if (CommonValue && CommonValue->getNumUses() == 0) 4192 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) 4193 CommonInst->eraseFromParent(); 4194 } 4195 4196 /// Initialize Map with anchor values. For address seen 4197 /// we set the value of different field saw in this address. 4198 /// At the same time we find a common type for different field we will 4199 /// use to create new Phi/Select nodes. Keep it in CommonType field. 4200 /// Return false if there is no common type found. 4201 bool initializeMap(FoldAddrToValueMapping &Map) { 4202 // Keep track of keys where the value is null. We will need to replace it 4203 // with constant null when we know the common type. 4204 SmallVector<Value *, 2> NullValue; 4205 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 4206 for (auto &AM : AddrModes) { 4207 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 4208 if (DV) { 4209 auto *Type = DV->getType(); 4210 if (CommonType && CommonType != Type) 4211 return false; 4212 CommonType = Type; 4213 Map[AM.OriginalValue] = DV; 4214 } else { 4215 NullValue.push_back(AM.OriginalValue); 4216 } 4217 } 4218 assert(CommonType && "At least one non-null value must be!"); 4219 for (auto *V : NullValue) 4220 Map[V] = Constant::getNullValue(CommonType); 4221 return true; 4222 } 4223 4224 /// We have mapping between value A and other value B where B was a field in 4225 /// addressing mode represented by A. Also we have an original value C 4226 /// representing an address we start with. Traversing from C through phi and 4227 /// selects we ended up with A's in a map. This utility function tries to find 4228 /// a value V which is a field in addressing mode C and traversing through phi 4229 /// nodes and selects we will end up in corresponded values B in a map. 4230 /// The utility will create a new Phi/Selects if needed. 4231 // The simple example looks as follows: 4232 // BB1: 4233 // p1 = b1 + 40 4234 // br cond BB2, BB3 4235 // BB2: 4236 // p2 = b2 + 40 4237 // br BB3 4238 // BB3: 4239 // p = phi [p1, BB1], [p2, BB2] 4240 // v = load p 4241 // Map is 4242 // p1 -> b1 4243 // p2 -> b2 4244 // Request is 4245 // p -> ? 4246 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 4247 Value *findCommon(FoldAddrToValueMapping &Map) { 4248 // Tracks the simplification of newly created phi nodes. The reason we use 4249 // this mapping is because we will add new created Phi nodes in AddrToBase. 4250 // Simplification of Phi nodes is recursive, so some Phi node may 4251 // be simplified after we added it to AddrToBase. In reality this 4252 // simplification is possible only if original phi/selects were not 4253 // simplified yet. 4254 // Using this mapping we can find the current value in AddrToBase. 4255 SimplificationTracker ST(SQ); 4256 4257 // First step, DFS to create PHI nodes for all intermediate blocks. 4258 // Also fill traverse order for the second step. 4259 SmallVector<Value *, 32> TraverseOrder; 4260 InsertPlaceholders(Map, TraverseOrder, ST); 4261 4262 // Second Step, fill new nodes by merged values and simplify if possible. 4263 FillPlaceholders(Map, TraverseOrder, ST); 4264 4265 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 4266 ST.destroyNewNodes(CommonType); 4267 return nullptr; 4268 } 4269 4270 // Now we'd like to match New Phi nodes to existed ones. 4271 unsigned PhiNotMatchedCount = 0; 4272 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 4273 ST.destroyNewNodes(CommonType); 4274 return nullptr; 4275 } 4276 4277 auto *Result = ST.Get(Map.find(Original)->second); 4278 if (Result) { 4279 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 4280 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 4281 } 4282 return Result; 4283 } 4284 4285 /// Try to match PHI node to Candidate. 4286 /// Matcher tracks the matched Phi nodes. 4287 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 4288 SmallSetVector<PHIPair, 8> &Matcher, 4289 PhiNodeSet &PhiNodesToMatch) { 4290 SmallVector<PHIPair, 8> WorkList; 4291 Matcher.insert({PHI, Candidate}); 4292 SmallSet<PHINode *, 8> MatchedPHIs; 4293 MatchedPHIs.insert(PHI); 4294 WorkList.push_back({PHI, Candidate}); 4295 SmallSet<PHIPair, 8> Visited; 4296 while (!WorkList.empty()) { 4297 auto Item = WorkList.pop_back_val(); 4298 if (!Visited.insert(Item).second) 4299 continue; 4300 // We iterate over all incoming values to Phi to compare them. 4301 // If values are different and both of them Phi and the first one is a 4302 // Phi we added (subject to match) and both of them is in the same basic 4303 // block then we can match our pair if values match. So we state that 4304 // these values match and add it to work list to verify that. 4305 for (auto *B : Item.first->blocks()) { 4306 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 4307 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 4308 if (FirstValue == SecondValue) 4309 continue; 4310 4311 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 4312 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 4313 4314 // One of them is not Phi or 4315 // The first one is not Phi node from the set we'd like to match or 4316 // Phi nodes from different basic blocks then 4317 // we will not be able to match. 4318 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 4319 FirstPhi->getParent() != SecondPhi->getParent()) 4320 return false; 4321 4322 // If we already matched them then continue. 4323 if (Matcher.count({FirstPhi, SecondPhi})) 4324 continue; 4325 // So the values are different and does not match. So we need them to 4326 // match. (But we register no more than one match per PHI node, so that 4327 // we won't later try to replace them twice.) 4328 if (MatchedPHIs.insert(FirstPhi).second) 4329 Matcher.insert({FirstPhi, SecondPhi}); 4330 // But me must check it. 4331 WorkList.push_back({FirstPhi, SecondPhi}); 4332 } 4333 } 4334 return true; 4335 } 4336 4337 /// For the given set of PHI nodes (in the SimplificationTracker) try 4338 /// to find their equivalents. 4339 /// Returns false if this matching fails and creation of new Phi is disabled. 4340 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 4341 unsigned &PhiNotMatchedCount) { 4342 // Matched and PhiNodesToMatch iterate their elements in a deterministic 4343 // order, so the replacements (ReplacePhi) are also done in a deterministic 4344 // order. 4345 SmallSetVector<PHIPair, 8> Matched; 4346 SmallPtrSet<PHINode *, 8> WillNotMatch; 4347 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 4348 while (PhiNodesToMatch.size()) { 4349 PHINode *PHI = *PhiNodesToMatch.begin(); 4350 4351 // Add us, if no Phi nodes in the basic block we do not match. 4352 WillNotMatch.clear(); 4353 WillNotMatch.insert(PHI); 4354 4355 // Traverse all Phis until we found equivalent or fail to do that. 4356 bool IsMatched = false; 4357 for (auto &P : PHI->getParent()->phis()) { 4358 // Skip new Phi nodes. 4359 if (PhiNodesToMatch.count(&P)) 4360 continue; 4361 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 4362 break; 4363 // If it does not match, collect all Phi nodes from matcher. 4364 // if we end up with no match, them all these Phi nodes will not match 4365 // later. 4366 for (auto M : Matched) 4367 WillNotMatch.insert(M.first); 4368 Matched.clear(); 4369 } 4370 if (IsMatched) { 4371 // Replace all matched values and erase them. 4372 for (auto MV : Matched) 4373 ST.ReplacePhi(MV.first, MV.second); 4374 Matched.clear(); 4375 continue; 4376 } 4377 // If we are not allowed to create new nodes then bail out. 4378 if (!AllowNewPhiNodes) 4379 return false; 4380 // Just remove all seen values in matcher. They will not match anything. 4381 PhiNotMatchedCount += WillNotMatch.size(); 4382 for (auto *P : WillNotMatch) 4383 PhiNodesToMatch.erase(P); 4384 } 4385 return true; 4386 } 4387 /// Fill the placeholders with values from predecessors and simplify them. 4388 void FillPlaceholders(FoldAddrToValueMapping &Map, 4389 SmallVectorImpl<Value *> &TraverseOrder, 4390 SimplificationTracker &ST) { 4391 while (!TraverseOrder.empty()) { 4392 Value *Current = TraverseOrder.pop_back_val(); 4393 assert(Map.contains(Current) && "No node to fill!!!"); 4394 Value *V = Map[Current]; 4395 4396 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 4397 // CurrentValue also must be Select. 4398 auto *CurrentSelect = cast<SelectInst>(Current); 4399 auto *TrueValue = CurrentSelect->getTrueValue(); 4400 assert(Map.contains(TrueValue) && "No True Value!"); 4401 Select->setTrueValue(ST.Get(Map[TrueValue])); 4402 auto *FalseValue = CurrentSelect->getFalseValue(); 4403 assert(Map.contains(FalseValue) && "No False Value!"); 4404 Select->setFalseValue(ST.Get(Map[FalseValue])); 4405 } else { 4406 // Must be a Phi node then. 4407 auto *PHI = cast<PHINode>(V); 4408 // Fill the Phi node with values from predecessors. 4409 for (auto *B : predecessors(PHI->getParent())) { 4410 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 4411 assert(Map.contains(PV) && "No predecessor Value!"); 4412 PHI->addIncoming(ST.Get(Map[PV]), B); 4413 } 4414 } 4415 Map[Current] = ST.Simplify(V); 4416 } 4417 } 4418 4419 /// Starting from original value recursively iterates over def-use chain up to 4420 /// known ending values represented in a map. For each traversed phi/select 4421 /// inserts a placeholder Phi or Select. 4422 /// Reports all new created Phi/Select nodes by adding them to set. 4423 /// Also reports and order in what values have been traversed. 4424 void InsertPlaceholders(FoldAddrToValueMapping &Map, 4425 SmallVectorImpl<Value *> &TraverseOrder, 4426 SimplificationTracker &ST) { 4427 SmallVector<Value *, 32> Worklist; 4428 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 4429 "Address must be a Phi or Select node"); 4430 auto *Dummy = PoisonValue::get(CommonType); 4431 Worklist.push_back(Original); 4432 while (!Worklist.empty()) { 4433 Value *Current = Worklist.pop_back_val(); 4434 // if it is already visited or it is an ending value then skip it. 4435 if (Map.contains(Current)) 4436 continue; 4437 TraverseOrder.push_back(Current); 4438 4439 // CurrentValue must be a Phi node or select. All others must be covered 4440 // by anchors. 4441 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 4442 // Is it OK to get metadata from OrigSelect?! 4443 // Create a Select placeholder with dummy value. 4444 SelectInst *Select = 4445 SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy, 4446 CurrentSelect->getName(), 4447 CurrentSelect->getIterator(), CurrentSelect); 4448 Map[Current] = Select; 4449 ST.insertNewSelect(Select); 4450 // We are interested in True and False values. 4451 Worklist.push_back(CurrentSelect->getTrueValue()); 4452 Worklist.push_back(CurrentSelect->getFalseValue()); 4453 } else { 4454 // It must be a Phi node then. 4455 PHINode *CurrentPhi = cast<PHINode>(Current); 4456 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 4457 PHINode *PHI = 4458 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator()); 4459 Map[Current] = PHI; 4460 ST.insertNewPhi(PHI); 4461 append_range(Worklist, CurrentPhi->incoming_values()); 4462 } 4463 } 4464 } 4465 4466 bool addrModeCombiningAllowed() { 4467 if (DisableComplexAddrModes) 4468 return false; 4469 switch (DifferentField) { 4470 default: 4471 return false; 4472 case ExtAddrMode::BaseRegField: 4473 return AddrSinkCombineBaseReg; 4474 case ExtAddrMode::BaseGVField: 4475 return AddrSinkCombineBaseGV; 4476 case ExtAddrMode::BaseOffsField: 4477 return AddrSinkCombineBaseOffs; 4478 case ExtAddrMode::ScaledRegField: 4479 return AddrSinkCombineScaledReg; 4480 } 4481 } 4482 }; 4483 } // end anonymous namespace 4484 4485 /// Try adding ScaleReg*Scale to the current addressing mode. 4486 /// Return true and update AddrMode if this addr mode is legal for the target, 4487 /// false if not. 4488 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 4489 unsigned Depth) { 4490 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 4491 // mode. Just process that directly. 4492 if (Scale == 1) 4493 return matchAddr(ScaleReg, Depth); 4494 4495 // If the scale is 0, it takes nothing to add this. 4496 if (Scale == 0) 4497 return true; 4498 4499 // If we already have a scale of this value, we can add to it, otherwise, we 4500 // need an available scale field. 4501 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 4502 return false; 4503 4504 ExtAddrMode TestAddrMode = AddrMode; 4505 4506 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 4507 // [A+B + A*7] -> [B+A*8]. 4508 TestAddrMode.Scale += Scale; 4509 TestAddrMode.ScaledReg = ScaleReg; 4510 4511 // If the new address isn't legal, bail out. 4512 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 4513 return false; 4514 4515 // It was legal, so commit it. 4516 AddrMode = TestAddrMode; 4517 4518 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 4519 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 4520 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 4521 // go any further: we can reuse it and cannot eliminate it. 4522 ConstantInt *CI = nullptr; 4523 Value *AddLHS = nullptr; 4524 if (isa<Instruction>(ScaleReg) && // not a constant expr. 4525 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 4526 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 4527 TestAddrMode.InBounds = false; 4528 TestAddrMode.ScaledReg = AddLHS; 4529 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 4530 4531 // If this addressing mode is legal, commit it and remember that we folded 4532 // this instruction. 4533 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 4534 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 4535 AddrMode = TestAddrMode; 4536 return true; 4537 } 4538 // Restore status quo. 4539 TestAddrMode = AddrMode; 4540 } 4541 4542 // If this is an add recurrence with a constant step, return the increment 4543 // instruction and the canonicalized step. 4544 auto GetConstantStep = 4545 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { 4546 auto *PN = dyn_cast<PHINode>(V); 4547 if (!PN) 4548 return std::nullopt; 4549 auto IVInc = getIVIncrement(PN, &LI); 4550 if (!IVInc) 4551 return std::nullopt; 4552 // TODO: The result of the intrinsics above is two-complement. However when 4553 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 4554 // If it has nuw or nsw flags, we need to make sure that these flags are 4555 // inferrable at the point of memory instruction. Otherwise we are replacing 4556 // well-defined two-complement computation with poison. Currently, to avoid 4557 // potentially complex analysis needed to prove this, we reject such cases. 4558 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 4559 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 4560 return std::nullopt; 4561 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 4562 return std::make_pair(IVInc->first, ConstantStep->getValue()); 4563 return std::nullopt; 4564 }; 4565 4566 // Try to account for the following special case: 4567 // 1. ScaleReg is an inductive variable; 4568 // 2. We use it with non-zero offset; 4569 // 3. IV's increment is available at the point of memory instruction. 4570 // 4571 // In this case, we may reuse the IV increment instead of the IV Phi to 4572 // achieve the following advantages: 4573 // 1. If IV step matches the offset, we will have no need in the offset; 4574 // 2. Even if they don't match, we will reduce the overlap of living IV 4575 // and IV increment, that will potentially lead to better register 4576 // assignment. 4577 if (AddrMode.BaseOffs) { 4578 if (auto IVStep = GetConstantStep(ScaleReg)) { 4579 Instruction *IVInc = IVStep->first; 4580 // The following assert is important to ensure a lack of infinite loops. 4581 // This transforms is (intentionally) the inverse of the one just above. 4582 // If they don't agree on the definition of an increment, we'd alternate 4583 // back and forth indefinitely. 4584 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 4585 APInt Step = IVStep->second; 4586 APInt Offset = Step * AddrMode.Scale; 4587 if (Offset.isSignedIntN(64)) { 4588 TestAddrMode.InBounds = false; 4589 TestAddrMode.ScaledReg = IVInc; 4590 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 4591 // If this addressing mode is legal, commit it.. 4592 // (Note that we defer the (expensive) domtree base legality check 4593 // to the very last possible point.) 4594 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 4595 getDTFn().dominates(IVInc, MemoryInst)) { 4596 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 4597 AddrMode = TestAddrMode; 4598 return true; 4599 } 4600 // Restore status quo. 4601 TestAddrMode = AddrMode; 4602 } 4603 } 4604 } 4605 4606 // Otherwise, just return what we have. 4607 return true; 4608 } 4609 4610 /// This is a little filter, which returns true if an addressing computation 4611 /// involving I might be folded into a load/store accessing it. 4612 /// This doesn't need to be perfect, but needs to accept at least 4613 /// the set of instructions that MatchOperationAddr can. 4614 static bool MightBeFoldableInst(Instruction *I) { 4615 switch (I->getOpcode()) { 4616 case Instruction::BitCast: 4617 case Instruction::AddrSpaceCast: 4618 // Don't touch identity bitcasts. 4619 if (I->getType() == I->getOperand(0)->getType()) 4620 return false; 4621 return I->getType()->isIntOrPtrTy(); 4622 case Instruction::PtrToInt: 4623 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4624 return true; 4625 case Instruction::IntToPtr: 4626 // We know the input is intptr_t, so this is foldable. 4627 return true; 4628 case Instruction::Add: 4629 return true; 4630 case Instruction::Mul: 4631 case Instruction::Shl: 4632 // Can only handle X*C and X << C. 4633 return isa<ConstantInt>(I->getOperand(1)); 4634 case Instruction::GetElementPtr: 4635 return true; 4636 default: 4637 return false; 4638 } 4639 } 4640 4641 /// Check whether or not \p Val is a legal instruction for \p TLI. 4642 /// \note \p Val is assumed to be the product of some type promotion. 4643 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4644 /// to be legal, as the non-promoted value would have had the same state. 4645 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4646 const DataLayout &DL, Value *Val) { 4647 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4648 if (!PromotedInst) 4649 return false; 4650 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4651 // If the ISDOpcode is undefined, it was undefined before the promotion. 4652 if (!ISDOpcode) 4653 return true; 4654 // Otherwise, check if the promoted instruction is legal or not. 4655 return TLI.isOperationLegalOrCustom( 4656 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4657 } 4658 4659 namespace { 4660 4661 /// Hepler class to perform type promotion. 4662 class TypePromotionHelper { 4663 /// Utility function to add a promoted instruction \p ExtOpnd to 4664 /// \p PromotedInsts and record the type of extension we have seen. 4665 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4666 Instruction *ExtOpnd, bool IsSExt) { 4667 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4668 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4669 if (It != PromotedInsts.end()) { 4670 // If the new extension is same as original, the information in 4671 // PromotedInsts[ExtOpnd] is still correct. 4672 if (It->second.getInt() == ExtTy) 4673 return; 4674 4675 // Now the new extension is different from old extension, we make 4676 // the type information invalid by setting extension type to 4677 // BothExtension. 4678 ExtTy = BothExtension; 4679 } 4680 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4681 } 4682 4683 /// Utility function to query the original type of instruction \p Opnd 4684 /// with a matched extension type. If the extension doesn't match, we 4685 /// cannot use the information we had on the original type. 4686 /// BothExtension doesn't match any extension type. 4687 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4688 Instruction *Opnd, bool IsSExt) { 4689 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4690 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4691 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4692 return It->second.getPointer(); 4693 return nullptr; 4694 } 4695 4696 /// Utility function to check whether or not a sign or zero extension 4697 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4698 /// either using the operands of \p Inst or promoting \p Inst. 4699 /// The type of the extension is defined by \p IsSExt. 4700 /// In other words, check if: 4701 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4702 /// #1 Promotion applies: 4703 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4704 /// #2 Operand reuses: 4705 /// ext opnd1 to ConsideredExtType. 4706 /// \p PromotedInsts maps the instructions to their type before promotion. 4707 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4708 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4709 4710 /// Utility function to determine if \p OpIdx should be promoted when 4711 /// promoting \p Inst. 4712 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4713 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4714 } 4715 4716 /// Utility function to promote the operand of \p Ext when this 4717 /// operand is a promotable trunc or sext or zext. 4718 /// \p PromotedInsts maps the instructions to their type before promotion. 4719 /// \p CreatedInstsCost[out] contains the cost of all instructions 4720 /// created to promote the operand of Ext. 4721 /// Newly added extensions are inserted in \p Exts. 4722 /// Newly added truncates are inserted in \p Truncs. 4723 /// Should never be called directly. 4724 /// \return The promoted value which is used instead of Ext. 4725 static Value *promoteOperandForTruncAndAnyExt( 4726 Instruction *Ext, TypePromotionTransaction &TPT, 4727 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4728 SmallVectorImpl<Instruction *> *Exts, 4729 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4730 4731 /// Utility function to promote the operand of \p Ext when this 4732 /// operand is promotable and is not a supported trunc or sext. 4733 /// \p PromotedInsts maps the instructions to their type before promotion. 4734 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4735 /// created to promote the operand of Ext. 4736 /// Newly added extensions are inserted in \p Exts. 4737 /// Newly added truncates are inserted in \p Truncs. 4738 /// Should never be called directly. 4739 /// \return The promoted value which is used instead of Ext. 4740 static Value *promoteOperandForOther(Instruction *Ext, 4741 TypePromotionTransaction &TPT, 4742 InstrToOrigTy &PromotedInsts, 4743 unsigned &CreatedInstsCost, 4744 SmallVectorImpl<Instruction *> *Exts, 4745 SmallVectorImpl<Instruction *> *Truncs, 4746 const TargetLowering &TLI, bool IsSExt); 4747 4748 /// \see promoteOperandForOther. 4749 static Value *signExtendOperandForOther( 4750 Instruction *Ext, TypePromotionTransaction &TPT, 4751 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4752 SmallVectorImpl<Instruction *> *Exts, 4753 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4754 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4755 Exts, Truncs, TLI, true); 4756 } 4757 4758 /// \see promoteOperandForOther. 4759 static Value *zeroExtendOperandForOther( 4760 Instruction *Ext, TypePromotionTransaction &TPT, 4761 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4762 SmallVectorImpl<Instruction *> *Exts, 4763 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4764 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4765 Exts, Truncs, TLI, false); 4766 } 4767 4768 public: 4769 /// Type for the utility function that promotes the operand of Ext. 4770 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4771 InstrToOrigTy &PromotedInsts, 4772 unsigned &CreatedInstsCost, 4773 SmallVectorImpl<Instruction *> *Exts, 4774 SmallVectorImpl<Instruction *> *Truncs, 4775 const TargetLowering &TLI); 4776 4777 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4778 /// action to promote the operand of \p Ext instead of using Ext. 4779 /// \return NULL if no promotable action is possible with the current 4780 /// sign extension. 4781 /// \p InsertedInsts keeps track of all the instructions inserted by the 4782 /// other CodeGenPrepare optimizations. This information is important 4783 /// because we do not want to promote these instructions as CodeGenPrepare 4784 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4785 /// \p PromotedInsts maps the instructions to their type before promotion. 4786 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4787 const TargetLowering &TLI, 4788 const InstrToOrigTy &PromotedInsts); 4789 }; 4790 4791 } // end anonymous namespace 4792 4793 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4794 Type *ConsideredExtType, 4795 const InstrToOrigTy &PromotedInsts, 4796 bool IsSExt) { 4797 // The promotion helper does not know how to deal with vector types yet. 4798 // To be able to fix that, we would need to fix the places where we 4799 // statically extend, e.g., constants and such. 4800 if (Inst->getType()->isVectorTy()) 4801 return false; 4802 4803 // We can always get through zext. 4804 if (isa<ZExtInst>(Inst)) 4805 return true; 4806 4807 // sext(sext) is ok too. 4808 if (IsSExt && isa<SExtInst>(Inst)) 4809 return true; 4810 4811 // We can get through binary operator, if it is legal. In other words, the 4812 // binary operator must have a nuw or nsw flag. 4813 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4814 if (isa<OverflowingBinaryOperator>(BinOp) && 4815 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4816 (IsSExt && BinOp->hasNoSignedWrap()))) 4817 return true; 4818 4819 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4820 if ((Inst->getOpcode() == Instruction::And || 4821 Inst->getOpcode() == Instruction::Or)) 4822 return true; 4823 4824 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4825 if (Inst->getOpcode() == Instruction::Xor) { 4826 // Make sure it is not a NOT. 4827 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4828 if (!Cst->getValue().isAllOnes()) 4829 return true; 4830 } 4831 4832 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4833 // It may change a poisoned value into a regular value, like 4834 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4835 // poisoned value regular value 4836 // It should be OK since undef covers valid value. 4837 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4838 return true; 4839 4840 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4841 // It may change a poisoned value into a regular value, like 4842 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4843 // poisoned value regular value 4844 // It should be OK since undef covers valid value. 4845 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4846 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4847 if (ExtInst->hasOneUse()) { 4848 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4849 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4850 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4851 if (Cst && 4852 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4853 return true; 4854 } 4855 } 4856 } 4857 4858 // Check if we can do the following simplification. 4859 // ext(trunc(opnd)) --> ext(opnd) 4860 if (!isa<TruncInst>(Inst)) 4861 return false; 4862 4863 Value *OpndVal = Inst->getOperand(0); 4864 // Check if we can use this operand in the extension. 4865 // If the type is larger than the result type of the extension, we cannot. 4866 if (!OpndVal->getType()->isIntegerTy() || 4867 OpndVal->getType()->getIntegerBitWidth() > 4868 ConsideredExtType->getIntegerBitWidth()) 4869 return false; 4870 4871 // If the operand of the truncate is not an instruction, we will not have 4872 // any information on the dropped bits. 4873 // (Actually we could for constant but it is not worth the extra logic). 4874 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4875 if (!Opnd) 4876 return false; 4877 4878 // Check if the source of the type is narrow enough. 4879 // I.e., check that trunc just drops extended bits of the same kind of 4880 // the extension. 4881 // #1 get the type of the operand and check the kind of the extended bits. 4882 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4883 if (OpndType) 4884 ; 4885 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4886 OpndType = Opnd->getOperand(0)->getType(); 4887 else 4888 return false; 4889 4890 // #2 check that the truncate just drops extended bits. 4891 return Inst->getType()->getIntegerBitWidth() >= 4892 OpndType->getIntegerBitWidth(); 4893 } 4894 4895 TypePromotionHelper::Action TypePromotionHelper::getAction( 4896 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4897 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4898 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4899 "Unexpected instruction type"); 4900 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4901 Type *ExtTy = Ext->getType(); 4902 bool IsSExt = isa<SExtInst>(Ext); 4903 // If the operand of the extension is not an instruction, we cannot 4904 // get through. 4905 // If it, check we can get through. 4906 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4907 return nullptr; 4908 4909 // Do not promote if the operand has been added by codegenprepare. 4910 // Otherwise, it means we are undoing an optimization that is likely to be 4911 // redone, thus causing potential infinite loop. 4912 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4913 return nullptr; 4914 4915 // SExt or Trunc instructions. 4916 // Return the related handler. 4917 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4918 isa<ZExtInst>(ExtOpnd)) 4919 return promoteOperandForTruncAndAnyExt; 4920 4921 // Regular instruction. 4922 // Abort early if we will have to insert non-free instructions. 4923 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4924 return nullptr; 4925 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4926 } 4927 4928 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4929 Instruction *SExt, TypePromotionTransaction &TPT, 4930 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4931 SmallVectorImpl<Instruction *> *Exts, 4932 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4933 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4934 // get through it and this method should not be called. 4935 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4936 Value *ExtVal = SExt; 4937 bool HasMergedNonFreeExt = false; 4938 if (isa<ZExtInst>(SExtOpnd)) { 4939 // Replace s|zext(zext(opnd)) 4940 // => zext(opnd). 4941 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4942 Value *ZExt = 4943 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4944 TPT.replaceAllUsesWith(SExt, ZExt); 4945 TPT.eraseInstruction(SExt); 4946 ExtVal = ZExt; 4947 } else { 4948 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4949 // => z|sext(opnd). 4950 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4951 } 4952 CreatedInstsCost = 0; 4953 4954 // Remove dead code. 4955 if (SExtOpnd->use_empty()) 4956 TPT.eraseInstruction(SExtOpnd); 4957 4958 // Check if the extension is still needed. 4959 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4960 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4961 if (ExtInst) { 4962 if (Exts) 4963 Exts->push_back(ExtInst); 4964 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4965 } 4966 return ExtVal; 4967 } 4968 4969 // At this point we have: ext ty opnd to ty. 4970 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4971 Value *NextVal = ExtInst->getOperand(0); 4972 TPT.eraseInstruction(ExtInst, NextVal); 4973 return NextVal; 4974 } 4975 4976 Value *TypePromotionHelper::promoteOperandForOther( 4977 Instruction *Ext, TypePromotionTransaction &TPT, 4978 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4979 SmallVectorImpl<Instruction *> *Exts, 4980 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4981 bool IsSExt) { 4982 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4983 // get through it and this method should not be called. 4984 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4985 CreatedInstsCost = 0; 4986 if (!ExtOpnd->hasOneUse()) { 4987 // ExtOpnd will be promoted. 4988 // All its uses, but Ext, will need to use a truncated value of the 4989 // promoted version. 4990 // Create the truncate now. 4991 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4992 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4993 // Insert it just after the definition. 4994 ITrunc->moveAfter(ExtOpnd); 4995 if (Truncs) 4996 Truncs->push_back(ITrunc); 4997 } 4998 4999 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 5000 // Restore the operand of Ext (which has been replaced by the previous call 5001 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 5002 TPT.setOperand(Ext, 0, ExtOpnd); 5003 } 5004 5005 // Get through the Instruction: 5006 // 1. Update its type. 5007 // 2. Replace the uses of Ext by Inst. 5008 // 3. Extend each operand that needs to be extended. 5009 5010 // Remember the original type of the instruction before promotion. 5011 // This is useful to know that the high bits are sign extended bits. 5012 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 5013 // Step #1. 5014 TPT.mutateType(ExtOpnd, Ext->getType()); 5015 // Step #2. 5016 TPT.replaceAllUsesWith(Ext, ExtOpnd); 5017 // Step #3. 5018 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 5019 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 5020 ++OpIdx) { 5021 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 5022 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 5023 !shouldExtOperand(ExtOpnd, OpIdx)) { 5024 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 5025 continue; 5026 } 5027 // Check if we can statically extend the operand. 5028 Value *Opnd = ExtOpnd->getOperand(OpIdx); 5029 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 5030 LLVM_DEBUG(dbgs() << "Statically extend\n"); 5031 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 5032 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 5033 : Cst->getValue().zext(BitWidth); 5034 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 5035 continue; 5036 } 5037 // UndefValue are typed, so we have to statically sign extend them. 5038 if (isa<UndefValue>(Opnd)) { 5039 LLVM_DEBUG(dbgs() << "Statically extend\n"); 5040 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 5041 continue; 5042 } 5043 5044 // Otherwise we have to explicitly sign extend the operand. 5045 Value *ValForExtOpnd = IsSExt 5046 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType()) 5047 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType()); 5048 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 5049 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd); 5050 if (!InstForExtOpnd) 5051 continue; 5052 5053 if (Exts) 5054 Exts->push_back(InstForExtOpnd); 5055 5056 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd); 5057 } 5058 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 5059 TPT.eraseInstruction(Ext); 5060 return ExtOpnd; 5061 } 5062 5063 /// Check whether or not promoting an instruction to a wider type is profitable. 5064 /// \p NewCost gives the cost of extension instructions created by the 5065 /// promotion. 5066 /// \p OldCost gives the cost of extension instructions before the promotion 5067 /// plus the number of instructions that have been 5068 /// matched in the addressing mode the promotion. 5069 /// \p PromotedOperand is the value that has been promoted. 5070 /// \return True if the promotion is profitable, false otherwise. 5071 bool AddressingModeMatcher::isPromotionProfitable( 5072 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 5073 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 5074 << '\n'); 5075 // The cost of the new extensions is greater than the cost of the 5076 // old extension plus what we folded. 5077 // This is not profitable. 5078 if (NewCost > OldCost) 5079 return false; 5080 if (NewCost < OldCost) 5081 return true; 5082 // The promotion is neutral but it may help folding the sign extension in 5083 // loads for instance. 5084 // Check that we did not create an illegal instruction. 5085 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 5086 } 5087 5088 /// Given an instruction or constant expr, see if we can fold the operation 5089 /// into the addressing mode. If so, update the addressing mode and return 5090 /// true, otherwise return false without modifying AddrMode. 5091 /// If \p MovedAway is not NULL, it contains the information of whether or 5092 /// not AddrInst has to be folded into the addressing mode on success. 5093 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 5094 /// because it has been moved away. 5095 /// Thus AddrInst must not be added in the matched instructions. 5096 /// This state can happen when AddrInst is a sext, since it may be moved away. 5097 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 5098 /// not be referenced anymore. 5099 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 5100 unsigned Depth, 5101 bool *MovedAway) { 5102 // Avoid exponential behavior on extremely deep expression trees. 5103 if (Depth >= 5) 5104 return false; 5105 5106 // By default, all matched instructions stay in place. 5107 if (MovedAway) 5108 *MovedAway = false; 5109 5110 switch (Opcode) { 5111 case Instruction::PtrToInt: 5112 // PtrToInt is always a noop, as we know that the int type is pointer sized. 5113 return matchAddr(AddrInst->getOperand(0), Depth); 5114 case Instruction::IntToPtr: { 5115 auto AS = AddrInst->getType()->getPointerAddressSpace(); 5116 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 5117 // This inttoptr is a no-op if the integer type is pointer sized. 5118 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 5119 return matchAddr(AddrInst->getOperand(0), Depth); 5120 return false; 5121 } 5122 case Instruction::BitCast: 5123 // BitCast is always a noop, and we can handle it as long as it is 5124 // int->int or pointer->pointer (we don't want int<->fp or something). 5125 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 5126 // Don't touch identity bitcasts. These were probably put here by LSR, 5127 // and we don't want to mess around with them. Assume it knows what it 5128 // is doing. 5129 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 5130 return matchAddr(AddrInst->getOperand(0), Depth); 5131 return false; 5132 case Instruction::AddrSpaceCast: { 5133 unsigned SrcAS = 5134 AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 5135 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 5136 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 5137 return matchAddr(AddrInst->getOperand(0), Depth); 5138 return false; 5139 } 5140 case Instruction::Add: { 5141 // Check to see if we can merge in one operand, then the other. If so, we 5142 // win. 5143 ExtAddrMode BackupAddrMode = AddrMode; 5144 unsigned OldSize = AddrModeInsts.size(); 5145 // Start a transaction at this point. 5146 // The LHS may match but not the RHS. 5147 // Therefore, we need a higher level restoration point to undo partially 5148 // matched operation. 5149 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5150 TPT.getRestorationPoint(); 5151 5152 // Try to match an integer constant second to increase its chance of ending 5153 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. 5154 int First = 0, Second = 1; 5155 if (isa<ConstantInt>(AddrInst->getOperand(First)) 5156 && !isa<ConstantInt>(AddrInst->getOperand(Second))) 5157 std::swap(First, Second); 5158 AddrMode.InBounds = false; 5159 if (matchAddr(AddrInst->getOperand(First), Depth + 1) && 5160 matchAddr(AddrInst->getOperand(Second), Depth + 1)) 5161 return true; 5162 5163 // Restore the old addr mode info. 5164 AddrMode = BackupAddrMode; 5165 AddrModeInsts.resize(OldSize); 5166 TPT.rollback(LastKnownGood); 5167 5168 // Otherwise this was over-aggressive. Try merging operands in the opposite 5169 // order. 5170 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && 5171 matchAddr(AddrInst->getOperand(First), Depth + 1)) 5172 return true; 5173 5174 // Otherwise we definitely can't merge the ADD in. 5175 AddrMode = BackupAddrMode; 5176 AddrModeInsts.resize(OldSize); 5177 TPT.rollback(LastKnownGood); 5178 break; 5179 } 5180 // case Instruction::Or: 5181 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 5182 // break; 5183 case Instruction::Mul: 5184 case Instruction::Shl: { 5185 // Can only handle X*C and X << C. 5186 AddrMode.InBounds = false; 5187 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 5188 if (!RHS || RHS->getBitWidth() > 64) 5189 return false; 5190 int64_t Scale = Opcode == Instruction::Shl 5191 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 5192 : RHS->getSExtValue(); 5193 5194 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 5195 } 5196 case Instruction::GetElementPtr: { 5197 // Scan the GEP. We check it if it contains constant offsets and at most 5198 // one variable offset. 5199 int VariableOperand = -1; 5200 unsigned VariableScale = 0; 5201 5202 int64_t ConstantOffset = 0; 5203 gep_type_iterator GTI = gep_type_begin(AddrInst); 5204 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 5205 if (StructType *STy = GTI.getStructTypeOrNull()) { 5206 const StructLayout *SL = DL.getStructLayout(STy); 5207 unsigned Idx = 5208 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 5209 ConstantOffset += SL->getElementOffset(Idx); 5210 } else { 5211 TypeSize TS = GTI.getSequentialElementStride(DL); 5212 if (TS.isNonZero()) { 5213 // The optimisations below currently only work for fixed offsets. 5214 if (TS.isScalable()) 5215 return false; 5216 int64_t TypeSize = TS.getFixedValue(); 5217 if (ConstantInt *CI = 5218 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 5219 const APInt &CVal = CI->getValue(); 5220 if (CVal.getSignificantBits() <= 64) { 5221 ConstantOffset += CVal.getSExtValue() * TypeSize; 5222 continue; 5223 } 5224 } 5225 // We only allow one variable index at the moment. 5226 if (VariableOperand != -1) 5227 return false; 5228 5229 // Remember the variable index. 5230 VariableOperand = i; 5231 VariableScale = TypeSize; 5232 } 5233 } 5234 } 5235 5236 // A common case is for the GEP to only do a constant offset. In this case, 5237 // just add it to the disp field and check validity. 5238 if (VariableOperand == -1) { 5239 AddrMode.BaseOffs += ConstantOffset; 5240 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { 5241 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 5242 AddrMode.InBounds = false; 5243 return true; 5244 } 5245 AddrMode.BaseOffs -= ConstantOffset; 5246 5247 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 5248 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 5249 ConstantOffset > 0) { 5250 // Record GEPs with non-zero offsets as candidates for splitting in 5251 // the event that the offset cannot fit into the r+i addressing mode. 5252 // Simple and common case that only one GEP is used in calculating the 5253 // address for the memory access. 5254 Value *Base = AddrInst->getOperand(0); 5255 auto *BaseI = dyn_cast<Instruction>(Base); 5256 auto *GEP = cast<GetElementPtrInst>(AddrInst); 5257 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 5258 (BaseI && !isa<CastInst>(BaseI) && 5259 !isa<GetElementPtrInst>(BaseI))) { 5260 // Make sure the parent block allows inserting non-PHI instructions 5261 // before the terminator. 5262 BasicBlock *Parent = BaseI ? BaseI->getParent() 5263 : &GEP->getFunction()->getEntryBlock(); 5264 if (!Parent->getTerminator()->isEHPad()) 5265 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 5266 } 5267 } 5268 5269 return false; 5270 } 5271 5272 // Save the valid addressing mode in case we can't match. 5273 ExtAddrMode BackupAddrMode = AddrMode; 5274 unsigned OldSize = AddrModeInsts.size(); 5275 5276 // See if the scale and offset amount is valid for this target. 5277 AddrMode.BaseOffs += ConstantOffset; 5278 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 5279 AddrMode.InBounds = false; 5280 5281 // Match the base operand of the GEP. 5282 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { 5283 // If it couldn't be matched, just stuff the value in a register. 5284 if (AddrMode.HasBaseReg) { 5285 AddrMode = BackupAddrMode; 5286 AddrModeInsts.resize(OldSize); 5287 return false; 5288 } 5289 AddrMode.HasBaseReg = true; 5290 AddrMode.BaseReg = AddrInst->getOperand(0); 5291 } 5292 5293 // Match the remaining variable portion of the GEP. 5294 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 5295 Depth)) { 5296 // If it couldn't be matched, try stuffing the base into a register 5297 // instead of matching it, and retrying the match of the scale. 5298 AddrMode = BackupAddrMode; 5299 AddrModeInsts.resize(OldSize); 5300 if (AddrMode.HasBaseReg) 5301 return false; 5302 AddrMode.HasBaseReg = true; 5303 AddrMode.BaseReg = AddrInst->getOperand(0); 5304 AddrMode.BaseOffs += ConstantOffset; 5305 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 5306 VariableScale, Depth)) { 5307 // If even that didn't work, bail. 5308 AddrMode = BackupAddrMode; 5309 AddrModeInsts.resize(OldSize); 5310 return false; 5311 } 5312 } 5313 5314 return true; 5315 } 5316 case Instruction::SExt: 5317 case Instruction::ZExt: { 5318 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 5319 if (!Ext) 5320 return false; 5321 5322 // Try to move this ext out of the way of the addressing mode. 5323 // Ask for a method for doing so. 5324 TypePromotionHelper::Action TPH = 5325 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 5326 if (!TPH) 5327 return false; 5328 5329 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5330 TPT.getRestorationPoint(); 5331 unsigned CreatedInstsCost = 0; 5332 unsigned ExtCost = !TLI.isExtFree(Ext); 5333 Value *PromotedOperand = 5334 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 5335 // SExt has been moved away. 5336 // Thus either it will be rematched later in the recursive calls or it is 5337 // gone. Anyway, we must not fold it into the addressing mode at this point. 5338 // E.g., 5339 // op = add opnd, 1 5340 // idx = ext op 5341 // addr = gep base, idx 5342 // is now: 5343 // promotedOpnd = ext opnd <- no match here 5344 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 5345 // addr = gep base, op <- match 5346 if (MovedAway) 5347 *MovedAway = true; 5348 5349 assert(PromotedOperand && 5350 "TypePromotionHelper should have filtered out those cases"); 5351 5352 ExtAddrMode BackupAddrMode = AddrMode; 5353 unsigned OldSize = AddrModeInsts.size(); 5354 5355 if (!matchAddr(PromotedOperand, Depth) || 5356 // The total of the new cost is equal to the cost of the created 5357 // instructions. 5358 // The total of the old cost is equal to the cost of the extension plus 5359 // what we have saved in the addressing mode. 5360 !isPromotionProfitable(CreatedInstsCost, 5361 ExtCost + (AddrModeInsts.size() - OldSize), 5362 PromotedOperand)) { 5363 AddrMode = BackupAddrMode; 5364 AddrModeInsts.resize(OldSize); 5365 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 5366 TPT.rollback(LastKnownGood); 5367 return false; 5368 } 5369 return true; 5370 } 5371 case Instruction::Call: 5372 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) { 5373 if (II->getIntrinsicID() == Intrinsic::threadlocal_address) { 5374 GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0)); 5375 if (TLI.addressingModeSupportsTLS(GV)) 5376 return matchAddr(AddrInst->getOperand(0), Depth); 5377 } 5378 } 5379 break; 5380 } 5381 return false; 5382 } 5383 5384 /// If we can, try to add the value of 'Addr' into the current addressing mode. 5385 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 5386 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 5387 /// for the target. 5388 /// 5389 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 5390 // Start a transaction at this point that we will rollback if the matching 5391 // fails. 5392 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5393 TPT.getRestorationPoint(); 5394 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 5395 if (CI->getValue().isSignedIntN(64)) { 5396 // Fold in immediates if legal for the target. 5397 AddrMode.BaseOffs += CI->getSExtValue(); 5398 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5399 return true; 5400 AddrMode.BaseOffs -= CI->getSExtValue(); 5401 } 5402 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 5403 // If this is a global variable, try to fold it into the addressing mode. 5404 if (!AddrMode.BaseGV) { 5405 AddrMode.BaseGV = GV; 5406 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5407 return true; 5408 AddrMode.BaseGV = nullptr; 5409 } 5410 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 5411 ExtAddrMode BackupAddrMode = AddrMode; 5412 unsigned OldSize = AddrModeInsts.size(); 5413 5414 // Check to see if it is possible to fold this operation. 5415 bool MovedAway = false; 5416 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 5417 // This instruction may have been moved away. If so, there is nothing 5418 // to check here. 5419 if (MovedAway) 5420 return true; 5421 // Okay, it's possible to fold this. Check to see if it is actually 5422 // *profitable* to do so. We use a simple cost model to avoid increasing 5423 // register pressure too much. 5424 if (I->hasOneUse() || 5425 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 5426 AddrModeInsts.push_back(I); 5427 return true; 5428 } 5429 5430 // It isn't profitable to do this, roll back. 5431 AddrMode = BackupAddrMode; 5432 AddrModeInsts.resize(OldSize); 5433 TPT.rollback(LastKnownGood); 5434 } 5435 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 5436 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 5437 return true; 5438 TPT.rollback(LastKnownGood); 5439 } else if (isa<ConstantPointerNull>(Addr)) { 5440 // Null pointer gets folded without affecting the addressing mode. 5441 return true; 5442 } 5443 5444 // Worse case, the target should support [reg] addressing modes. :) 5445 if (!AddrMode.HasBaseReg) { 5446 AddrMode.HasBaseReg = true; 5447 AddrMode.BaseReg = Addr; 5448 // Still check for legality in case the target supports [imm] but not [i+r]. 5449 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5450 return true; 5451 AddrMode.HasBaseReg = false; 5452 AddrMode.BaseReg = nullptr; 5453 } 5454 5455 // If the base register is already taken, see if we can do [r+r]. 5456 if (AddrMode.Scale == 0) { 5457 AddrMode.Scale = 1; 5458 AddrMode.ScaledReg = Addr; 5459 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5460 return true; 5461 AddrMode.Scale = 0; 5462 AddrMode.ScaledReg = nullptr; 5463 } 5464 // Couldn't match. 5465 TPT.rollback(LastKnownGood); 5466 return false; 5467 } 5468 5469 /// Check to see if all uses of OpVal by the specified inline asm call are due 5470 /// to memory operands. If so, return true, otherwise return false. 5471 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 5472 const TargetLowering &TLI, 5473 const TargetRegisterInfo &TRI) { 5474 const Function *F = CI->getFunction(); 5475 TargetLowering::AsmOperandInfoVector TargetConstraints = 5476 TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI); 5477 5478 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5479 // Compute the constraint code and ConstraintType to use. 5480 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5481 5482 // If this asm operand is our Value*, and if it isn't an indirect memory 5483 // operand, we can't fold it! TODO: Also handle C_Address? 5484 if (OpInfo.CallOperandVal == OpVal && 5485 (OpInfo.ConstraintType != TargetLowering::C_Memory || 5486 !OpInfo.isIndirect)) 5487 return false; 5488 } 5489 5490 return true; 5491 } 5492 5493 /// Recursively walk all the uses of I until we find a memory use. 5494 /// If we find an obviously non-foldable instruction, return true. 5495 /// Add accessed addresses and types to MemoryUses. 5496 static bool FindAllMemoryUses( 5497 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5498 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 5499 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 5500 BlockFrequencyInfo *BFI, unsigned &SeenInsts) { 5501 // If we already considered this instruction, we're done. 5502 if (!ConsideredInsts.insert(I).second) 5503 return false; 5504 5505 // If this is an obviously unfoldable instruction, bail out. 5506 if (!MightBeFoldableInst(I)) 5507 return true; 5508 5509 // Loop over all the uses, recursively processing them. 5510 for (Use &U : I->uses()) { 5511 // Conservatively return true if we're seeing a large number or a deep chain 5512 // of users. This avoids excessive compilation times in pathological cases. 5513 if (SeenInsts++ >= MaxAddressUsersToScan) 5514 return true; 5515 5516 Instruction *UserI = cast<Instruction>(U.getUser()); 5517 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 5518 MemoryUses.push_back({&U, LI->getType()}); 5519 continue; 5520 } 5521 5522 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 5523 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 5524 return true; // Storing addr, not into addr. 5525 MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); 5526 continue; 5527 } 5528 5529 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 5530 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 5531 return true; // Storing addr, not into addr. 5532 MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); 5533 continue; 5534 } 5535 5536 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 5537 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 5538 return true; // Storing addr, not into addr. 5539 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); 5540 continue; 5541 } 5542 5543 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 5544 if (CI->hasFnAttr(Attribute::Cold)) { 5545 // If this is a cold call, we can sink the addressing calculation into 5546 // the cold path. See optimizeCallInst 5547 if (!llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI)) 5548 continue; 5549 } 5550 5551 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 5552 if (!IA) 5553 return true; 5554 5555 // If this is a memory operand, we're cool, otherwise bail out. 5556 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 5557 return true; 5558 continue; 5559 } 5560 5561 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5562 PSI, BFI, SeenInsts)) 5563 return true; 5564 } 5565 5566 return false; 5567 } 5568 5569 static bool FindAllMemoryUses( 5570 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5571 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, 5572 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 5573 unsigned SeenInsts = 0; 5574 SmallPtrSet<Instruction *, 16> ConsideredInsts; 5575 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5576 PSI, BFI, SeenInsts); 5577 } 5578 5579 5580 /// Return true if Val is already known to be live at the use site that we're 5581 /// folding it into. If so, there is no cost to include it in the addressing 5582 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 5583 /// instruction already. 5584 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, 5585 Value *KnownLive1, 5586 Value *KnownLive2) { 5587 // If Val is either of the known-live values, we know it is live! 5588 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 5589 return true; 5590 5591 // All values other than instructions and arguments (e.g. constants) are live. 5592 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) 5593 return true; 5594 5595 // If Val is a constant sized alloca in the entry block, it is live, this is 5596 // true because it is just a reference to the stack/frame pointer, which is 5597 // live for the whole function. 5598 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 5599 if (AI->isStaticAlloca()) 5600 return true; 5601 5602 // Check to see if this value is already used in the memory instruction's 5603 // block. If so, it's already live into the block at the very least, so we 5604 // can reasonably fold it. 5605 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 5606 } 5607 5608 /// It is possible for the addressing mode of the machine to fold the specified 5609 /// instruction into a load or store that ultimately uses it. 5610 /// However, the specified instruction has multiple uses. 5611 /// Given this, it may actually increase register pressure to fold it 5612 /// into the load. For example, consider this code: 5613 /// 5614 /// X = ... 5615 /// Y = X+1 5616 /// use(Y) -> nonload/store 5617 /// Z = Y+1 5618 /// load Z 5619 /// 5620 /// In this case, Y has multiple uses, and can be folded into the load of Z 5621 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 5622 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 5623 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 5624 /// number of computations either. 5625 /// 5626 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 5627 /// X was live across 'load Z' for other reasons, we actually *would* want to 5628 /// fold the addressing mode in the Z case. This would make Y die earlier. 5629 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( 5630 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { 5631 if (IgnoreProfitability) 5632 return true; 5633 5634 // AMBefore is the addressing mode before this instruction was folded into it, 5635 // and AMAfter is the addressing mode after the instruction was folded. Get 5636 // the set of registers referenced by AMAfter and subtract out those 5637 // referenced by AMBefore: this is the set of values which folding in this 5638 // address extends the lifetime of. 5639 // 5640 // Note that there are only two potential values being referenced here, 5641 // BaseReg and ScaleReg (global addresses are always available, as are any 5642 // folded immediates). 5643 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5644 5645 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5646 // lifetime wasn't extended by adding this instruction. 5647 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5648 BaseReg = nullptr; 5649 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5650 ScaledReg = nullptr; 5651 5652 // If folding this instruction (and it's subexprs) didn't extend any live 5653 // ranges, we're ok with it. 5654 if (!BaseReg && !ScaledReg) 5655 return true; 5656 5657 // If all uses of this instruction can have the address mode sunk into them, 5658 // we can remove the addressing mode and effectively trade one live register 5659 // for another (at worst.) In this context, folding an addressing mode into 5660 // the use is just a particularly nice way of sinking it. 5661 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; 5662 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) 5663 return false; // Has a non-memory, non-foldable use! 5664 5665 // Now that we know that all uses of this instruction are part of a chain of 5666 // computation involving only operations that could theoretically be folded 5667 // into a memory use, loop over each of these memory operation uses and see 5668 // if they could *actually* fold the instruction. The assumption is that 5669 // addressing modes are cheap and that duplicating the computation involved 5670 // many times is worthwhile, even on a fastpath. For sinking candidates 5671 // (i.e. cold call sites), this serves as a way to prevent excessive code 5672 // growth since most architectures have some reasonable small and fast way to 5673 // compute an effective address. (i.e LEA on x86) 5674 SmallVector<Instruction *, 32> MatchedAddrModeInsts; 5675 for (const std::pair<Use *, Type *> &Pair : MemoryUses) { 5676 Value *Address = Pair.first->get(); 5677 Instruction *UserI = cast<Instruction>(Pair.first->getUser()); 5678 Type *AddressAccessTy = Pair.second; 5679 unsigned AS = Address->getType()->getPointerAddressSpace(); 5680 5681 // Do a match against the root of this address, ignoring profitability. This 5682 // will tell us if the addressing mode for the memory operation will 5683 // *actually* cover the shared instruction. 5684 ExtAddrMode Result; 5685 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5686 0); 5687 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5688 TPT.getRestorationPoint(); 5689 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5690 AddressAccessTy, AS, UserI, Result, 5691 InsertedInsts, PromotedInsts, TPT, 5692 LargeOffsetGEP, OptSize, PSI, BFI); 5693 Matcher.IgnoreProfitability = true; 5694 bool Success = Matcher.matchAddr(Address, 0); 5695 (void)Success; 5696 assert(Success && "Couldn't select *anything*?"); 5697 5698 // The match was to check the profitability, the changes made are not 5699 // part of the original matcher. Therefore, they should be dropped 5700 // otherwise the original matcher will not present the right state. 5701 TPT.rollback(LastKnownGood); 5702 5703 // If the match didn't cover I, then it won't be shared by it. 5704 if (!is_contained(MatchedAddrModeInsts, I)) 5705 return false; 5706 5707 MatchedAddrModeInsts.clear(); 5708 } 5709 5710 return true; 5711 } 5712 5713 /// Return true if the specified values are defined in a 5714 /// different basic block than BB. 5715 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5716 if (Instruction *I = dyn_cast<Instruction>(V)) 5717 return I->getParent() != BB; 5718 return false; 5719 } 5720 5721 /// Sink addressing mode computation immediate before MemoryInst if doing so 5722 /// can be done without increasing register pressure. The need for the 5723 /// register pressure constraint means this can end up being an all or nothing 5724 /// decision for all uses of the same addressing computation. 5725 /// 5726 /// Load and Store Instructions often have addressing modes that can do 5727 /// significant amounts of computation. As such, instruction selection will try 5728 /// to get the load or store to do as much computation as possible for the 5729 /// program. The problem is that isel can only see within a single block. As 5730 /// such, we sink as much legal addressing mode work into the block as possible. 5731 /// 5732 /// This method is used to optimize both load/store and inline asms with memory 5733 /// operands. It's also used to sink addressing computations feeding into cold 5734 /// call sites into their (cold) basic block. 5735 /// 5736 /// The motivation for handling sinking into cold blocks is that doing so can 5737 /// both enable other address mode sinking (by satisfying the register pressure 5738 /// constraint above), and reduce register pressure globally (by removing the 5739 /// addressing mode computation from the fast path entirely.). 5740 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5741 Type *AccessTy, unsigned AddrSpace) { 5742 Value *Repl = Addr; 5743 5744 // Try to collapse single-value PHI nodes. This is necessary to undo 5745 // unprofitable PRE transformations. 5746 SmallVector<Value *, 8> worklist; 5747 SmallPtrSet<Value *, 16> Visited; 5748 worklist.push_back(Addr); 5749 5750 // Use a worklist to iteratively look through PHI and select nodes, and 5751 // ensure that the addressing mode obtained from the non-PHI/select roots of 5752 // the graph are compatible. 5753 bool PhiOrSelectSeen = false; 5754 SmallVector<Instruction *, 16> AddrModeInsts; 5755 const SimplifyQuery SQ(*DL, TLInfo); 5756 AddressingModeCombiner AddrModes(SQ, Addr); 5757 TypePromotionTransaction TPT(RemovedInsts); 5758 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5759 TPT.getRestorationPoint(); 5760 while (!worklist.empty()) { 5761 Value *V = worklist.pop_back_val(); 5762 5763 // We allow traversing cyclic Phi nodes. 5764 // In case of success after this loop we ensure that traversing through 5765 // Phi nodes ends up with all cases to compute address of the form 5766 // BaseGV + Base + Scale * Index + Offset 5767 // where Scale and Offset are constans and BaseGV, Base and Index 5768 // are exactly the same Values in all cases. 5769 // It means that BaseGV, Scale and Offset dominate our memory instruction 5770 // and have the same value as they had in address computation represented 5771 // as Phi. So we can safely sink address computation to memory instruction. 5772 if (!Visited.insert(V).second) 5773 continue; 5774 5775 // For a PHI node, push all of its incoming values. 5776 if (PHINode *P = dyn_cast<PHINode>(V)) { 5777 append_range(worklist, P->incoming_values()); 5778 PhiOrSelectSeen = true; 5779 continue; 5780 } 5781 // Similar for select. 5782 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5783 worklist.push_back(SI->getFalseValue()); 5784 worklist.push_back(SI->getTrueValue()); 5785 PhiOrSelectSeen = true; 5786 continue; 5787 } 5788 5789 // For non-PHIs, determine the addressing mode being computed. Note that 5790 // the result may differ depending on what other uses our candidate 5791 // addressing instructions might have. 5792 AddrModeInsts.clear(); 5793 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5794 0); 5795 // Defer the query (and possible computation of) the dom tree to point of 5796 // actual use. It's expected that most address matches don't actually need 5797 // the domtree. 5798 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5799 Function *F = MemoryInst->getParent()->getParent(); 5800 return this->getDT(*F); 5801 }; 5802 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5803 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5804 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5805 BFI.get()); 5806 5807 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5808 if (GEP && !NewGEPBases.count(GEP)) { 5809 // If splitting the underlying data structure can reduce the offset of a 5810 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5811 // previously split data structures. 5812 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5813 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5814 } 5815 5816 NewAddrMode.OriginalValue = V; 5817 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5818 break; 5819 } 5820 5821 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5822 // or we have multiple but either couldn't combine them or combining them 5823 // wouldn't do anything useful, bail out now. 5824 if (!AddrModes.combineAddrModes()) { 5825 TPT.rollback(LastKnownGood); 5826 return false; 5827 } 5828 bool Modified = TPT.commit(); 5829 5830 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5831 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5832 5833 // If all the instructions matched are already in this BB, don't do anything. 5834 // If we saw a Phi node then it is not local definitely, and if we saw a 5835 // select then we want to push the address calculation past it even if it's 5836 // already in this BB. 5837 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5838 return IsNonLocalValue(V, MemoryInst->getParent()); 5839 })) { 5840 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5841 << "\n"); 5842 return Modified; 5843 } 5844 5845 // Insert this computation right after this user. Since our caller is 5846 // scanning from the top of the BB to the bottom, reuse of the expr are 5847 // guaranteed to happen later. 5848 IRBuilder<> Builder(MemoryInst); 5849 5850 // Now that we determined the addressing expression we want to use and know 5851 // that we have to sink it into this block. Check to see if we have already 5852 // done this for some other load/store instr in this block. If so, reuse 5853 // the computation. Before attempting reuse, check if the address is valid 5854 // as it may have been erased. 5855 5856 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5857 5858 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5859 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5860 if (SunkAddr) { 5861 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5862 << " for " << *MemoryInst << "\n"); 5863 if (SunkAddr->getType() != Addr->getType()) { 5864 if (SunkAddr->getType()->getPointerAddressSpace() != 5865 Addr->getType()->getPointerAddressSpace() && 5866 !DL->isNonIntegralPointerType(Addr->getType())) { 5867 // There are two reasons the address spaces might not match: a no-op 5868 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5869 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5870 // TODO: allow bitcast between different address space pointers with the 5871 // same size. 5872 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5873 SunkAddr = 5874 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5875 } else 5876 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5877 } 5878 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5879 SubtargetInfo->addrSinkUsingGEPs())) { 5880 // By default, we use the GEP-based method when AA is used later. This 5881 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5882 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5883 << " for " << *MemoryInst << "\n"); 5884 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5885 5886 // First, find the pointer. 5887 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5888 ResultPtr = AddrMode.BaseReg; 5889 AddrMode.BaseReg = nullptr; 5890 } 5891 5892 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5893 // We can't add more than one pointer together, nor can we scale a 5894 // pointer (both of which seem meaningless). 5895 if (ResultPtr || AddrMode.Scale != 1) 5896 return Modified; 5897 5898 ResultPtr = AddrMode.ScaledReg; 5899 AddrMode.Scale = 0; 5900 } 5901 5902 // It is only safe to sign extend the BaseReg if we know that the math 5903 // required to create it did not overflow before we extend it. Since 5904 // the original IR value was tossed in favor of a constant back when 5905 // the AddrMode was created we need to bail out gracefully if widths 5906 // do not match instead of extending it. 5907 // 5908 // (See below for code to add the scale.) 5909 if (AddrMode.Scale) { 5910 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5911 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5912 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5913 return Modified; 5914 } 5915 5916 GlobalValue *BaseGV = AddrMode.BaseGV; 5917 if (BaseGV != nullptr) { 5918 if (ResultPtr) 5919 return Modified; 5920 5921 if (BaseGV->isThreadLocal()) { 5922 ResultPtr = Builder.CreateThreadLocalAddress(BaseGV); 5923 } else { 5924 ResultPtr = BaseGV; 5925 } 5926 } 5927 5928 // If the real base value actually came from an inttoptr, then the matcher 5929 // will look through it and provide only the integer value. In that case, 5930 // use it here. 5931 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5932 if (!ResultPtr && AddrMode.BaseReg) { 5933 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5934 "sunkaddr"); 5935 AddrMode.BaseReg = nullptr; 5936 } else if (!ResultPtr && AddrMode.Scale == 1) { 5937 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5938 "sunkaddr"); 5939 AddrMode.Scale = 0; 5940 } 5941 } 5942 5943 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && 5944 !AddrMode.BaseOffs) { 5945 SunkAddr = Constant::getNullValue(Addr->getType()); 5946 } else if (!ResultPtr) { 5947 return Modified; 5948 } else { 5949 Type *I8PtrTy = 5950 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace()); 5951 5952 // Start with the base register. Do this first so that subsequent address 5953 // matching finds it last, which will prevent it from trying to match it 5954 // as the scaled value in case it happens to be a mul. That would be 5955 // problematic if we've sunk a different mul for the scale, because then 5956 // we'd end up sinking both muls. 5957 if (AddrMode.BaseReg) { 5958 Value *V = AddrMode.BaseReg; 5959 if (V->getType() != IntPtrTy) 5960 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5961 5962 ResultIndex = V; 5963 } 5964 5965 // Add the scale value. 5966 if (AddrMode.Scale) { 5967 Value *V = AddrMode.ScaledReg; 5968 if (V->getType() == IntPtrTy) { 5969 // done. 5970 } else { 5971 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5972 cast<IntegerType>(V->getType())->getBitWidth() && 5973 "We can't transform if ScaledReg is too narrow"); 5974 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5975 } 5976 5977 if (AddrMode.Scale != 1) 5978 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5979 "sunkaddr"); 5980 if (ResultIndex) 5981 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5982 else 5983 ResultIndex = V; 5984 } 5985 5986 // Add in the Base Offset if present. 5987 if (AddrMode.BaseOffs) { 5988 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5989 if (ResultIndex) { 5990 // We need to add this separately from the scale above to help with 5991 // SDAG consecutive load/store merging. 5992 if (ResultPtr->getType() != I8PtrTy) 5993 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5994 ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5995 AddrMode.InBounds); 5996 } 5997 5998 ResultIndex = V; 5999 } 6000 6001 if (!ResultIndex) { 6002 SunkAddr = ResultPtr; 6003 } else { 6004 if (ResultPtr->getType() != I8PtrTy) 6005 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 6006 SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 6007 AddrMode.InBounds); 6008 } 6009 6010 if (SunkAddr->getType() != Addr->getType()) { 6011 if (SunkAddr->getType()->getPointerAddressSpace() != 6012 Addr->getType()->getPointerAddressSpace() && 6013 !DL->isNonIntegralPointerType(Addr->getType())) { 6014 // There are two reasons the address spaces might not match: a no-op 6015 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 6016 // ptrtoint/inttoptr pair to ensure we match the original semantics. 6017 // TODO: allow bitcast between different address space pointers with 6018 // the same size. 6019 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 6020 SunkAddr = 6021 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 6022 } else 6023 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 6024 } 6025 } 6026 } else { 6027 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 6028 // non-integral pointers, so in that case bail out now. 6029 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 6030 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 6031 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 6032 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 6033 if (DL->isNonIntegralPointerType(Addr->getType()) || 6034 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 6035 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 6036 (AddrMode.BaseGV && 6037 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 6038 return Modified; 6039 6040 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 6041 << " for " << *MemoryInst << "\n"); 6042 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 6043 Value *Result = nullptr; 6044 6045 // Start with the base register. Do this first so that subsequent address 6046 // matching finds it last, which will prevent it from trying to match it 6047 // as the scaled value in case it happens to be a mul. That would be 6048 // problematic if we've sunk a different mul for the scale, because then 6049 // we'd end up sinking both muls. 6050 if (AddrMode.BaseReg) { 6051 Value *V = AddrMode.BaseReg; 6052 if (V->getType()->isPointerTy()) 6053 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 6054 if (V->getType() != IntPtrTy) 6055 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 6056 Result = V; 6057 } 6058 6059 // Add the scale value. 6060 if (AddrMode.Scale) { 6061 Value *V = AddrMode.ScaledReg; 6062 if (V->getType() == IntPtrTy) { 6063 // done. 6064 } else if (V->getType()->isPointerTy()) { 6065 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 6066 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 6067 cast<IntegerType>(V->getType())->getBitWidth()) { 6068 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 6069 } else { 6070 // It is only safe to sign extend the BaseReg if we know that the math 6071 // required to create it did not overflow before we extend it. Since 6072 // the original IR value was tossed in favor of a constant back when 6073 // the AddrMode was created we need to bail out gracefully if widths 6074 // do not match instead of extending it. 6075 Instruction *I = dyn_cast_or_null<Instruction>(Result); 6076 if (I && (Result != AddrMode.BaseReg)) 6077 I->eraseFromParent(); 6078 return Modified; 6079 } 6080 if (AddrMode.Scale != 1) 6081 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 6082 "sunkaddr"); 6083 if (Result) 6084 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 6085 else 6086 Result = V; 6087 } 6088 6089 // Add in the BaseGV if present. 6090 GlobalValue *BaseGV = AddrMode.BaseGV; 6091 if (BaseGV != nullptr) { 6092 Value *BaseGVPtr; 6093 if (BaseGV->isThreadLocal()) { 6094 BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV); 6095 } else { 6096 BaseGVPtr = BaseGV; 6097 } 6098 Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr"); 6099 if (Result) 6100 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 6101 else 6102 Result = V; 6103 } 6104 6105 // Add in the Base Offset if present. 6106 if (AddrMode.BaseOffs) { 6107 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 6108 if (Result) 6109 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 6110 else 6111 Result = V; 6112 } 6113 6114 if (!Result) 6115 SunkAddr = Constant::getNullValue(Addr->getType()); 6116 else 6117 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 6118 } 6119 6120 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 6121 // Store the newly computed address into the cache. In the case we reused a 6122 // value, this should be idempotent. 6123 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 6124 6125 // If we have no uses, recursively delete the value and all dead instructions 6126 // using it. 6127 if (Repl->use_empty()) { 6128 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 6129 RecursivelyDeleteTriviallyDeadInstructions( 6130 Repl, TLInfo, nullptr, 6131 [&](Value *V) { removeAllAssertingVHReferences(V); }); 6132 }); 6133 } 6134 ++NumMemoryInsts; 6135 return true; 6136 } 6137 6138 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 6139 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 6140 /// only handle a 2 operand GEP in the same basic block or a splat constant 6141 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 6142 /// index. 6143 /// 6144 /// If the existing GEP has a vector base pointer that is splat, we can look 6145 /// through the splat to find the scalar pointer. If we can't find a scalar 6146 /// pointer there's nothing we can do. 6147 /// 6148 /// If we have a GEP with more than 2 indices where the middle indices are all 6149 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 6150 /// 6151 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 6152 /// followed by a GEP with an all zeroes vector index. This will enable 6153 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 6154 /// zero index. 6155 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 6156 Value *Ptr) { 6157 Value *NewAddr; 6158 6159 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 6160 // Don't optimize GEPs that don't have indices. 6161 if (!GEP->hasIndices()) 6162 return false; 6163 6164 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 6165 // FIXME: We should support this by sinking the GEP. 6166 if (MemoryInst->getParent() != GEP->getParent()) 6167 return false; 6168 6169 SmallVector<Value *, 2> Ops(GEP->operands()); 6170 6171 bool RewriteGEP = false; 6172 6173 if (Ops[0]->getType()->isVectorTy()) { 6174 Ops[0] = getSplatValue(Ops[0]); 6175 if (!Ops[0]) 6176 return false; 6177 RewriteGEP = true; 6178 } 6179 6180 unsigned FinalIndex = Ops.size() - 1; 6181 6182 // Ensure all but the last index is 0. 6183 // FIXME: This isn't strictly required. All that's required is that they are 6184 // all scalars or splats. 6185 for (unsigned i = 1; i < FinalIndex; ++i) { 6186 auto *C = dyn_cast<Constant>(Ops[i]); 6187 if (!C) 6188 return false; 6189 if (isa<VectorType>(C->getType())) 6190 C = C->getSplatValue(); 6191 auto *CI = dyn_cast_or_null<ConstantInt>(C); 6192 if (!CI || !CI->isZero()) 6193 return false; 6194 // Scalarize the index if needed. 6195 Ops[i] = CI; 6196 } 6197 6198 // Try to scalarize the final index. 6199 if (Ops[FinalIndex]->getType()->isVectorTy()) { 6200 if (Value *V = getSplatValue(Ops[FinalIndex])) { 6201 auto *C = dyn_cast<ConstantInt>(V); 6202 // Don't scalarize all zeros vector. 6203 if (!C || !C->isZero()) { 6204 Ops[FinalIndex] = V; 6205 RewriteGEP = true; 6206 } 6207 } 6208 } 6209 6210 // If we made any changes or the we have extra operands, we need to generate 6211 // new instructions. 6212 if (!RewriteGEP && Ops.size() == 2) 6213 return false; 6214 6215 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 6216 6217 IRBuilder<> Builder(MemoryInst); 6218 6219 Type *SourceTy = GEP->getSourceElementType(); 6220 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 6221 6222 // If the final index isn't a vector, emit a scalar GEP containing all ops 6223 // and a vector GEP with all zeroes final index. 6224 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 6225 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); 6226 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 6227 auto *SecondTy = GetElementPtrInst::getIndexedType( 6228 SourceTy, ArrayRef(Ops).drop_front()); 6229 NewAddr = 6230 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 6231 } else { 6232 Value *Base = Ops[0]; 6233 Value *Index = Ops[FinalIndex]; 6234 6235 // Create a scalar GEP if there are more than 2 operands. 6236 if (Ops.size() != 2) { 6237 // Replace the last index with 0. 6238 Ops[FinalIndex] = 6239 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType()); 6240 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); 6241 SourceTy = GetElementPtrInst::getIndexedType( 6242 SourceTy, ArrayRef(Ops).drop_front()); 6243 } 6244 6245 // Now create the GEP with scalar pointer and vector index. 6246 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 6247 } 6248 } else if (!isa<Constant>(Ptr)) { 6249 // Not a GEP, maybe its a splat and we can create a GEP to enable 6250 // SelectionDAGBuilder to use it as a uniform base. 6251 Value *V = getSplatValue(Ptr); 6252 if (!V) 6253 return false; 6254 6255 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 6256 6257 IRBuilder<> Builder(MemoryInst); 6258 6259 // Emit a vector GEP with a scalar pointer and all 0s vector index. 6260 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 6261 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 6262 Type *ScalarTy; 6263 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 6264 Intrinsic::masked_gather) { 6265 ScalarTy = MemoryInst->getType()->getScalarType(); 6266 } else { 6267 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 6268 Intrinsic::masked_scatter); 6269 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 6270 } 6271 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 6272 } else { 6273 // Constant, SelectionDAGBuilder knows to check if its a splat. 6274 return false; 6275 } 6276 6277 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 6278 6279 // If we have no uses, recursively delete the value and all dead instructions 6280 // using it. 6281 if (Ptr->use_empty()) 6282 RecursivelyDeleteTriviallyDeadInstructions( 6283 Ptr, TLInfo, nullptr, 6284 [&](Value *V) { removeAllAssertingVHReferences(V); }); 6285 6286 return true; 6287 } 6288 6289 /// If there are any memory operands, use OptimizeMemoryInst to sink their 6290 /// address computing into the block when possible / profitable. 6291 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 6292 bool MadeChange = false; 6293 6294 const TargetRegisterInfo *TRI = 6295 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 6296 TargetLowering::AsmOperandInfoVector TargetConstraints = 6297 TLI->ParseConstraints(*DL, TRI, *CS); 6298 unsigned ArgNo = 0; 6299 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 6300 // Compute the constraint code and ConstraintType to use. 6301 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6302 6303 // TODO: Also handle C_Address? 6304 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6305 OpInfo.isIndirect) { 6306 Value *OpVal = CS->getArgOperand(ArgNo++); 6307 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 6308 } else if (OpInfo.Type == InlineAsm::isInput) 6309 ArgNo++; 6310 } 6311 6312 return MadeChange; 6313 } 6314 6315 /// Check if all the uses of \p Val are equivalent (or free) zero or 6316 /// sign extensions. 6317 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 6318 assert(!Val->use_empty() && "Input must have at least one use"); 6319 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 6320 bool IsSExt = isa<SExtInst>(FirstUser); 6321 Type *ExtTy = FirstUser->getType(); 6322 for (const User *U : Val->users()) { 6323 const Instruction *UI = cast<Instruction>(U); 6324 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 6325 return false; 6326 Type *CurTy = UI->getType(); 6327 // Same input and output types: Same instruction after CSE. 6328 if (CurTy == ExtTy) 6329 continue; 6330 6331 // If IsSExt is true, we are in this situation: 6332 // a = Val 6333 // b = sext ty1 a to ty2 6334 // c = sext ty1 a to ty3 6335 // Assuming ty2 is shorter than ty3, this could be turned into: 6336 // a = Val 6337 // b = sext ty1 a to ty2 6338 // c = sext ty2 b to ty3 6339 // However, the last sext is not free. 6340 if (IsSExt) 6341 return false; 6342 6343 // This is a ZExt, maybe this is free to extend from one type to another. 6344 // In that case, we would not account for a different use. 6345 Type *NarrowTy; 6346 Type *LargeTy; 6347 if (ExtTy->getScalarType()->getIntegerBitWidth() > 6348 CurTy->getScalarType()->getIntegerBitWidth()) { 6349 NarrowTy = CurTy; 6350 LargeTy = ExtTy; 6351 } else { 6352 NarrowTy = ExtTy; 6353 LargeTy = CurTy; 6354 } 6355 6356 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 6357 return false; 6358 } 6359 // All uses are the same or can be derived from one another for free. 6360 return true; 6361 } 6362 6363 /// Try to speculatively promote extensions in \p Exts and continue 6364 /// promoting through newly promoted operands recursively as far as doing so is 6365 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 6366 /// When some promotion happened, \p TPT contains the proper state to revert 6367 /// them. 6368 /// 6369 /// \return true if some promotion happened, false otherwise. 6370 bool CodeGenPrepare::tryToPromoteExts( 6371 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 6372 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 6373 unsigned CreatedInstsCost) { 6374 bool Promoted = false; 6375 6376 // Iterate over all the extensions to try to promote them. 6377 for (auto *I : Exts) { 6378 // Early check if we directly have ext(load). 6379 if (isa<LoadInst>(I->getOperand(0))) { 6380 ProfitablyMovedExts.push_back(I); 6381 continue; 6382 } 6383 6384 // Check whether or not we want to do any promotion. The reason we have 6385 // this check inside the for loop is to catch the case where an extension 6386 // is directly fed by a load because in such case the extension can be moved 6387 // up without any promotion on its operands. 6388 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 6389 return false; 6390 6391 // Get the action to perform the promotion. 6392 TypePromotionHelper::Action TPH = 6393 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 6394 // Check if we can promote. 6395 if (!TPH) { 6396 // Save the current extension as we cannot move up through its operand. 6397 ProfitablyMovedExts.push_back(I); 6398 continue; 6399 } 6400 6401 // Save the current state. 6402 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6403 TPT.getRestorationPoint(); 6404 SmallVector<Instruction *, 4> NewExts; 6405 unsigned NewCreatedInstsCost = 0; 6406 unsigned ExtCost = !TLI->isExtFree(I); 6407 // Promote. 6408 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 6409 &NewExts, nullptr, *TLI); 6410 assert(PromotedVal && 6411 "TypePromotionHelper should have filtered out those cases"); 6412 6413 // We would be able to merge only one extension in a load. 6414 // Therefore, if we have more than 1 new extension we heuristically 6415 // cut this search path, because it means we degrade the code quality. 6416 // With exactly 2, the transformation is neutral, because we will merge 6417 // one extension but leave one. However, we optimistically keep going, 6418 // because the new extension may be removed too. Also avoid replacing a 6419 // single free extension with multiple extensions, as this increases the 6420 // number of IR instructions while not providing any savings. 6421 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 6422 // FIXME: It would be possible to propagate a negative value instead of 6423 // conservatively ceiling it to 0. 6424 TotalCreatedInstsCost = 6425 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 6426 if (!StressExtLdPromotion && 6427 (TotalCreatedInstsCost > 1 || 6428 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) || 6429 (ExtCost == 0 && NewExts.size() > 1))) { 6430 // This promotion is not profitable, rollback to the previous state, and 6431 // save the current extension in ProfitablyMovedExts as the latest 6432 // speculative promotion turned out to be unprofitable. 6433 TPT.rollback(LastKnownGood); 6434 ProfitablyMovedExts.push_back(I); 6435 continue; 6436 } 6437 // Continue promoting NewExts as far as doing so is profitable. 6438 SmallVector<Instruction *, 2> NewlyMovedExts; 6439 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 6440 bool NewPromoted = false; 6441 for (auto *ExtInst : NewlyMovedExts) { 6442 Instruction *MovedExt = cast<Instruction>(ExtInst); 6443 Value *ExtOperand = MovedExt->getOperand(0); 6444 // If we have reached to a load, we need this extra profitability check 6445 // as it could potentially be merged into an ext(load). 6446 if (isa<LoadInst>(ExtOperand) && 6447 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 6448 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 6449 continue; 6450 6451 ProfitablyMovedExts.push_back(MovedExt); 6452 NewPromoted = true; 6453 } 6454 6455 // If none of speculative promotions for NewExts is profitable, rollback 6456 // and save the current extension (I) as the last profitable extension. 6457 if (!NewPromoted) { 6458 TPT.rollback(LastKnownGood); 6459 ProfitablyMovedExts.push_back(I); 6460 continue; 6461 } 6462 // The promotion is profitable. 6463 Promoted = true; 6464 } 6465 return Promoted; 6466 } 6467 6468 /// Merging redundant sexts when one is dominating the other. 6469 bool CodeGenPrepare::mergeSExts(Function &F) { 6470 bool Changed = false; 6471 for (auto &Entry : ValToSExtendedUses) { 6472 SExts &Insts = Entry.second; 6473 SExts CurPts; 6474 for (Instruction *Inst : Insts) { 6475 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 6476 Inst->getOperand(0) != Entry.first) 6477 continue; 6478 bool inserted = false; 6479 for (auto &Pt : CurPts) { 6480 if (getDT(F).dominates(Inst, Pt)) { 6481 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); 6482 RemovedInsts.insert(Pt); 6483 Pt->removeFromParent(); 6484 Pt = Inst; 6485 inserted = true; 6486 Changed = true; 6487 break; 6488 } 6489 if (!getDT(F).dominates(Pt, Inst)) 6490 // Give up if we need to merge in a common dominator as the 6491 // experiments show it is not profitable. 6492 continue; 6493 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); 6494 RemovedInsts.insert(Inst); 6495 Inst->removeFromParent(); 6496 inserted = true; 6497 Changed = true; 6498 break; 6499 } 6500 if (!inserted) 6501 CurPts.push_back(Inst); 6502 } 6503 } 6504 return Changed; 6505 } 6506 6507 // Splitting large data structures so that the GEPs accessing them can have 6508 // smaller offsets so that they can be sunk to the same blocks as their users. 6509 // For example, a large struct starting from %base is split into two parts 6510 // where the second part starts from %new_base. 6511 // 6512 // Before: 6513 // BB0: 6514 // %base = 6515 // 6516 // BB1: 6517 // %gep0 = gep %base, off0 6518 // %gep1 = gep %base, off1 6519 // %gep2 = gep %base, off2 6520 // 6521 // BB2: 6522 // %load1 = load %gep0 6523 // %load2 = load %gep1 6524 // %load3 = load %gep2 6525 // 6526 // After: 6527 // BB0: 6528 // %base = 6529 // %new_base = gep %base, off0 6530 // 6531 // BB1: 6532 // %new_gep0 = %new_base 6533 // %new_gep1 = gep %new_base, off1 - off0 6534 // %new_gep2 = gep %new_base, off2 - off0 6535 // 6536 // BB2: 6537 // %load1 = load i32, i32* %new_gep0 6538 // %load2 = load i32, i32* %new_gep1 6539 // %load3 = load i32, i32* %new_gep2 6540 // 6541 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 6542 // their offsets are smaller enough to fit into the addressing mode. 6543 bool CodeGenPrepare::splitLargeGEPOffsets() { 6544 bool Changed = false; 6545 for (auto &Entry : LargeOffsetGEPMap) { 6546 Value *OldBase = Entry.first; 6547 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 6548 &LargeOffsetGEPs = Entry.second; 6549 auto compareGEPOffset = 6550 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 6551 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 6552 if (LHS.first == RHS.first) 6553 return false; 6554 if (LHS.second != RHS.second) 6555 return LHS.second < RHS.second; 6556 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 6557 }; 6558 // Sorting all the GEPs of the same data structures based on the offsets. 6559 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 6560 LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end()); 6561 // Skip if all the GEPs have the same offsets. 6562 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 6563 continue; 6564 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 6565 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 6566 Value *NewBaseGEP = nullptr; 6567 6568 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase, 6569 GetElementPtrInst *GEP) { 6570 LLVMContext &Ctx = GEP->getContext(); 6571 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6572 Type *I8PtrTy = 6573 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace()); 6574 6575 BasicBlock::iterator NewBaseInsertPt; 6576 BasicBlock *NewBaseInsertBB; 6577 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 6578 // If the base of the struct is an instruction, the new base will be 6579 // inserted close to it. 6580 NewBaseInsertBB = BaseI->getParent(); 6581 if (isa<PHINode>(BaseI)) 6582 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6583 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 6584 NewBaseInsertBB = 6585 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI); 6586 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6587 } else 6588 NewBaseInsertPt = std::next(BaseI->getIterator()); 6589 } else { 6590 // If the current base is an argument or global value, the new base 6591 // will be inserted to the entry block. 6592 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 6593 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6594 } 6595 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 6596 // Create a new base. 6597 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset); 6598 NewBaseGEP = OldBase; 6599 if (NewBaseGEP->getType() != I8PtrTy) 6600 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 6601 NewBaseGEP = 6602 NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep"); 6603 NewGEPBases.insert(NewBaseGEP); 6604 return; 6605 }; 6606 6607 // Check whether all the offsets can be encoded with prefered common base. 6608 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset( 6609 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) { 6610 BaseOffset = PreferBase; 6611 // Create a new base if the offset of the BaseGEP can be decoded with one 6612 // instruction. 6613 createNewBase(BaseOffset, OldBase, BaseGEP); 6614 } 6615 6616 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 6617 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 6618 GetElementPtrInst *GEP = LargeOffsetGEP->first; 6619 int64_t Offset = LargeOffsetGEP->second; 6620 if (Offset != BaseOffset) { 6621 TargetLowering::AddrMode AddrMode; 6622 AddrMode.HasBaseReg = true; 6623 AddrMode.BaseOffs = Offset - BaseOffset; 6624 // The result type of the GEP might not be the type of the memory 6625 // access. 6626 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 6627 GEP->getResultElementType(), 6628 GEP->getAddressSpace())) { 6629 // We need to create a new base if the offset to the current base is 6630 // too large to fit into the addressing mode. So, a very large struct 6631 // may be split into several parts. 6632 BaseGEP = GEP; 6633 BaseOffset = Offset; 6634 NewBaseGEP = nullptr; 6635 } 6636 } 6637 6638 // Generate a new GEP to replace the current one. 6639 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6640 6641 if (!NewBaseGEP) { 6642 // Create a new base if we don't have one yet. Find the insertion 6643 // pointer for the new base first. 6644 createNewBase(BaseOffset, OldBase, GEP); 6645 } 6646 6647 IRBuilder<> Builder(GEP); 6648 Value *NewGEP = NewBaseGEP; 6649 if (Offset != BaseOffset) { 6650 // Calculate the new offset for the new GEP. 6651 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset); 6652 NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index); 6653 } 6654 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); 6655 LargeOffsetGEPID.erase(GEP); 6656 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6657 GEP->eraseFromParent(); 6658 Changed = true; 6659 } 6660 } 6661 return Changed; 6662 } 6663 6664 bool CodeGenPrepare::optimizePhiType( 6665 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6666 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6667 // We are looking for a collection on interconnected phi nodes that together 6668 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6669 // are of the same type. Convert the whole set of nodes to the type of the 6670 // bitcast. 6671 Type *PhiTy = I->getType(); 6672 Type *ConvertTy = nullptr; 6673 if (Visited.count(I) || 6674 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6675 return false; 6676 6677 SmallVector<Instruction *, 4> Worklist; 6678 Worklist.push_back(cast<Instruction>(I)); 6679 SmallPtrSet<PHINode *, 4> PhiNodes; 6680 SmallPtrSet<ConstantData *, 4> Constants; 6681 PhiNodes.insert(I); 6682 Visited.insert(I); 6683 SmallPtrSet<Instruction *, 4> Defs; 6684 SmallPtrSet<Instruction *, 4> Uses; 6685 // This works by adding extra bitcasts between load/stores and removing 6686 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6687 // we can get in the situation where we remove a bitcast in one iteration 6688 // just to add it again in the next. We need to ensure that at least one 6689 // bitcast we remove are anchored to something that will not change back. 6690 bool AnyAnchored = false; 6691 6692 while (!Worklist.empty()) { 6693 Instruction *II = Worklist.pop_back_val(); 6694 6695 if (auto *Phi = dyn_cast<PHINode>(II)) { 6696 // Handle Defs, which might also be PHI's 6697 for (Value *V : Phi->incoming_values()) { 6698 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6699 if (!PhiNodes.count(OpPhi)) { 6700 if (!Visited.insert(OpPhi).second) 6701 return false; 6702 PhiNodes.insert(OpPhi); 6703 Worklist.push_back(OpPhi); 6704 } 6705 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6706 if (!OpLoad->isSimple()) 6707 return false; 6708 if (Defs.insert(OpLoad).second) 6709 Worklist.push_back(OpLoad); 6710 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6711 if (Defs.insert(OpEx).second) 6712 Worklist.push_back(OpEx); 6713 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6714 if (!ConvertTy) 6715 ConvertTy = OpBC->getOperand(0)->getType(); 6716 if (OpBC->getOperand(0)->getType() != ConvertTy) 6717 return false; 6718 if (Defs.insert(OpBC).second) { 6719 Worklist.push_back(OpBC); 6720 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6721 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6722 } 6723 } else if (auto *OpC = dyn_cast<ConstantData>(V)) 6724 Constants.insert(OpC); 6725 else 6726 return false; 6727 } 6728 } 6729 6730 // Handle uses which might also be phi's 6731 for (User *V : II->users()) { 6732 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6733 if (!PhiNodes.count(OpPhi)) { 6734 if (Visited.count(OpPhi)) 6735 return false; 6736 PhiNodes.insert(OpPhi); 6737 Visited.insert(OpPhi); 6738 Worklist.push_back(OpPhi); 6739 } 6740 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6741 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6742 return false; 6743 Uses.insert(OpStore); 6744 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6745 if (!ConvertTy) 6746 ConvertTy = OpBC->getType(); 6747 if (OpBC->getType() != ConvertTy) 6748 return false; 6749 Uses.insert(OpBC); 6750 AnyAnchored |= 6751 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6752 } else { 6753 return false; 6754 } 6755 } 6756 } 6757 6758 if (!ConvertTy || !AnyAnchored || 6759 !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6760 return false; 6761 6762 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6763 << *ConvertTy << "\n"); 6764 6765 // Create all the new phi nodes of the new type, and bitcast any loads to the 6766 // correct type. 6767 ValueToValueMap ValMap; 6768 for (ConstantData *C : Constants) 6769 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy); 6770 for (Instruction *D : Defs) { 6771 if (isa<BitCastInst>(D)) { 6772 ValMap[D] = D->getOperand(0); 6773 DeletedInstrs.insert(D); 6774 } else { 6775 BasicBlock::iterator insertPt = std::next(D->getIterator()); 6776 ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt); 6777 } 6778 } 6779 for (PHINode *Phi : PhiNodes) 6780 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6781 Phi->getName() + ".tc", Phi->getIterator()); 6782 // Pipe together all the PhiNodes. 6783 for (PHINode *Phi : PhiNodes) { 6784 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6785 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6786 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6787 Phi->getIncomingBlock(i)); 6788 Visited.insert(NewPhi); 6789 } 6790 // And finally pipe up the stores and bitcasts 6791 for (Instruction *U : Uses) { 6792 if (isa<BitCastInst>(U)) { 6793 DeletedInstrs.insert(U); 6794 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); 6795 } else { 6796 U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", 6797 U->getIterator())); 6798 } 6799 } 6800 6801 // Save the removed phis to be deleted later. 6802 for (PHINode *Phi : PhiNodes) 6803 DeletedInstrs.insert(Phi); 6804 return true; 6805 } 6806 6807 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6808 if (!OptimizePhiTypes) 6809 return false; 6810 6811 bool Changed = false; 6812 SmallPtrSet<PHINode *, 4> Visited; 6813 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6814 6815 // Attempt to optimize all the phis in the functions to the correct type. 6816 for (auto &BB : F) 6817 for (auto &Phi : BB.phis()) 6818 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6819 6820 // Remove any old phi's that have been converted. 6821 for (auto *I : DeletedInstrs) { 6822 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); 6823 I->eraseFromParent(); 6824 } 6825 6826 return Changed; 6827 } 6828 6829 /// Return true, if an ext(load) can be formed from an extension in 6830 /// \p MovedExts. 6831 bool CodeGenPrepare::canFormExtLd( 6832 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6833 Instruction *&Inst, bool HasPromoted) { 6834 for (auto *MovedExtInst : MovedExts) { 6835 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6836 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6837 Inst = MovedExtInst; 6838 break; 6839 } 6840 } 6841 if (!LI) 6842 return false; 6843 6844 // If they're already in the same block, there's nothing to do. 6845 // Make the cheap checks first if we did not promote. 6846 // If we promoted, we need to check if it is indeed profitable. 6847 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6848 return false; 6849 6850 return TLI->isExtLoad(LI, Inst, *DL); 6851 } 6852 6853 /// Move a zext or sext fed by a load into the same basic block as the load, 6854 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6855 /// extend into the load. 6856 /// 6857 /// E.g., 6858 /// \code 6859 /// %ld = load i32* %addr 6860 /// %add = add nuw i32 %ld, 4 6861 /// %zext = zext i32 %add to i64 6862 // \endcode 6863 /// => 6864 /// \code 6865 /// %ld = load i32* %addr 6866 /// %zext = zext i32 %ld to i64 6867 /// %add = add nuw i64 %zext, 4 6868 /// \encode 6869 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6870 /// allow us to match zext(load i32*) to i64. 6871 /// 6872 /// Also, try to promote the computations used to obtain a sign extended 6873 /// value used into memory accesses. 6874 /// E.g., 6875 /// \code 6876 /// a = add nsw i32 b, 3 6877 /// d = sext i32 a to i64 6878 /// e = getelementptr ..., i64 d 6879 /// \endcode 6880 /// => 6881 /// \code 6882 /// f = sext i32 b to i64 6883 /// a = add nsw i64 f, 3 6884 /// e = getelementptr ..., i64 a 6885 /// \endcode 6886 /// 6887 /// \p Inst[in/out] the extension may be modified during the process if some 6888 /// promotions apply. 6889 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6890 bool AllowPromotionWithoutCommonHeader = false; 6891 /// See if it is an interesting sext operations for the address type 6892 /// promotion before trying to promote it, e.g., the ones with the right 6893 /// type and used in memory accesses. 6894 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6895 *Inst, AllowPromotionWithoutCommonHeader); 6896 TypePromotionTransaction TPT(RemovedInsts); 6897 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6898 TPT.getRestorationPoint(); 6899 SmallVector<Instruction *, 1> Exts; 6900 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6901 Exts.push_back(Inst); 6902 6903 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6904 6905 // Look for a load being extended. 6906 LoadInst *LI = nullptr; 6907 Instruction *ExtFedByLoad; 6908 6909 // Try to promote a chain of computation if it allows to form an extended 6910 // load. 6911 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6912 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6913 TPT.commit(); 6914 // Move the extend into the same block as the load. 6915 ExtFedByLoad->moveAfter(LI); 6916 ++NumExtsMoved; 6917 Inst = ExtFedByLoad; 6918 return true; 6919 } 6920 6921 // Continue promoting SExts if known as considerable depending on targets. 6922 if (ATPConsiderable && 6923 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6924 HasPromoted, TPT, SpeculativelyMovedExts)) 6925 return true; 6926 6927 TPT.rollback(LastKnownGood); 6928 return false; 6929 } 6930 6931 // Perform address type promotion if doing so is profitable. 6932 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6933 // instructions that sign extended the same initial value. However, if 6934 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6935 // extension is just profitable. 6936 bool CodeGenPrepare::performAddressTypePromotion( 6937 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6938 bool HasPromoted, TypePromotionTransaction &TPT, 6939 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6940 bool Promoted = false; 6941 SmallPtrSet<Instruction *, 1> UnhandledExts; 6942 bool AllSeenFirst = true; 6943 for (auto *I : SpeculativelyMovedExts) { 6944 Value *HeadOfChain = I->getOperand(0); 6945 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6946 SeenChainsForSExt.find(HeadOfChain); 6947 // If there is an unhandled SExt which has the same header, try to promote 6948 // it as well. 6949 if (AlreadySeen != SeenChainsForSExt.end()) { 6950 if (AlreadySeen->second != nullptr) 6951 UnhandledExts.insert(AlreadySeen->second); 6952 AllSeenFirst = false; 6953 } 6954 } 6955 6956 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6957 SpeculativelyMovedExts.size() == 1)) { 6958 TPT.commit(); 6959 if (HasPromoted) 6960 Promoted = true; 6961 for (auto *I : SpeculativelyMovedExts) { 6962 Value *HeadOfChain = I->getOperand(0); 6963 SeenChainsForSExt[HeadOfChain] = nullptr; 6964 ValToSExtendedUses[HeadOfChain].push_back(I); 6965 } 6966 // Update Inst as promotion happen. 6967 Inst = SpeculativelyMovedExts.pop_back_val(); 6968 } else { 6969 // This is the first chain visited from the header, keep the current chain 6970 // as unhandled. Defer to promote this until we encounter another SExt 6971 // chain derived from the same header. 6972 for (auto *I : SpeculativelyMovedExts) { 6973 Value *HeadOfChain = I->getOperand(0); 6974 SeenChainsForSExt[HeadOfChain] = Inst; 6975 } 6976 return false; 6977 } 6978 6979 if (!AllSeenFirst && !UnhandledExts.empty()) 6980 for (auto *VisitedSExt : UnhandledExts) { 6981 if (RemovedInsts.count(VisitedSExt)) 6982 continue; 6983 TypePromotionTransaction TPT(RemovedInsts); 6984 SmallVector<Instruction *, 1> Exts; 6985 SmallVector<Instruction *, 2> Chains; 6986 Exts.push_back(VisitedSExt); 6987 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6988 TPT.commit(); 6989 if (HasPromoted) 6990 Promoted = true; 6991 for (auto *I : Chains) { 6992 Value *HeadOfChain = I->getOperand(0); 6993 // Mark this as handled. 6994 SeenChainsForSExt[HeadOfChain] = nullptr; 6995 ValToSExtendedUses[HeadOfChain].push_back(I); 6996 } 6997 } 6998 return Promoted; 6999 } 7000 7001 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 7002 BasicBlock *DefBB = I->getParent(); 7003 7004 // If the result of a {s|z}ext and its source are both live out, rewrite all 7005 // other uses of the source with result of extension. 7006 Value *Src = I->getOperand(0); 7007 if (Src->hasOneUse()) 7008 return false; 7009 7010 // Only do this xform if truncating is free. 7011 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 7012 return false; 7013 7014 // Only safe to perform the optimization if the source is also defined in 7015 // this block. 7016 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 7017 return false; 7018 7019 bool DefIsLiveOut = false; 7020 for (User *U : I->users()) { 7021 Instruction *UI = cast<Instruction>(U); 7022 7023 // Figure out which BB this ext is used in. 7024 BasicBlock *UserBB = UI->getParent(); 7025 if (UserBB == DefBB) 7026 continue; 7027 DefIsLiveOut = true; 7028 break; 7029 } 7030 if (!DefIsLiveOut) 7031 return false; 7032 7033 // Make sure none of the uses are PHI nodes. 7034 for (User *U : Src->users()) { 7035 Instruction *UI = cast<Instruction>(U); 7036 BasicBlock *UserBB = UI->getParent(); 7037 if (UserBB == DefBB) 7038 continue; 7039 // Be conservative. We don't want this xform to end up introducing 7040 // reloads just before load / store instructions. 7041 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 7042 return false; 7043 } 7044 7045 // InsertedTruncs - Only insert one trunc in each block once. 7046 DenseMap<BasicBlock *, Instruction *> InsertedTruncs; 7047 7048 bool MadeChange = false; 7049 for (Use &U : Src->uses()) { 7050 Instruction *User = cast<Instruction>(U.getUser()); 7051 7052 // Figure out which BB this ext is used in. 7053 BasicBlock *UserBB = User->getParent(); 7054 if (UserBB == DefBB) 7055 continue; 7056 7057 // Both src and def are live in this block. Rewrite the use. 7058 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 7059 7060 if (!InsertedTrunc) { 7061 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 7062 assert(InsertPt != UserBB->end()); 7063 InsertedTrunc = new TruncInst(I, Src->getType(), ""); 7064 InsertedTrunc->insertBefore(*UserBB, InsertPt); 7065 InsertedInsts.insert(InsertedTrunc); 7066 } 7067 7068 // Replace a use of the {s|z}ext source with a use of the result. 7069 U = InsertedTrunc; 7070 ++NumExtUses; 7071 MadeChange = true; 7072 } 7073 7074 return MadeChange; 7075 } 7076 7077 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 7078 // just after the load if the target can fold this into one extload instruction, 7079 // with the hope of eliminating some of the other later "and" instructions using 7080 // the loaded value. "and"s that are made trivially redundant by the insertion 7081 // of the new "and" are removed by this function, while others (e.g. those whose 7082 // path from the load goes through a phi) are left for isel to potentially 7083 // remove. 7084 // 7085 // For example: 7086 // 7087 // b0: 7088 // x = load i32 7089 // ... 7090 // b1: 7091 // y = and x, 0xff 7092 // z = use y 7093 // 7094 // becomes: 7095 // 7096 // b0: 7097 // x = load i32 7098 // x' = and x, 0xff 7099 // ... 7100 // b1: 7101 // z = use x' 7102 // 7103 // whereas: 7104 // 7105 // b0: 7106 // x1 = load i32 7107 // ... 7108 // b1: 7109 // x2 = load i32 7110 // ... 7111 // b2: 7112 // x = phi x1, x2 7113 // y = and x, 0xff 7114 // 7115 // becomes (after a call to optimizeLoadExt for each load): 7116 // 7117 // b0: 7118 // x1 = load i32 7119 // x1' = and x1, 0xff 7120 // ... 7121 // b1: 7122 // x2 = load i32 7123 // x2' = and x2, 0xff 7124 // ... 7125 // b2: 7126 // x = phi x1', x2' 7127 // y = and x, 0xff 7128 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 7129 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 7130 return false; 7131 7132 // Skip loads we've already transformed. 7133 if (Load->hasOneUse() && 7134 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 7135 return false; 7136 7137 // Look at all uses of Load, looking through phis, to determine how many bits 7138 // of the loaded value are needed. 7139 SmallVector<Instruction *, 8> WorkList; 7140 SmallPtrSet<Instruction *, 16> Visited; 7141 SmallVector<Instruction *, 8> AndsToMaybeRemove; 7142 for (auto *U : Load->users()) 7143 WorkList.push_back(cast<Instruction>(U)); 7144 7145 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 7146 unsigned BitWidth = LoadResultVT.getSizeInBits(); 7147 // If the BitWidth is 0, do not try to optimize the type 7148 if (BitWidth == 0) 7149 return false; 7150 7151 APInt DemandBits(BitWidth, 0); 7152 APInt WidestAndBits(BitWidth, 0); 7153 7154 while (!WorkList.empty()) { 7155 Instruction *I = WorkList.pop_back_val(); 7156 7157 // Break use-def graph loops. 7158 if (!Visited.insert(I).second) 7159 continue; 7160 7161 // For a PHI node, push all of its users. 7162 if (auto *Phi = dyn_cast<PHINode>(I)) { 7163 for (auto *U : Phi->users()) 7164 WorkList.push_back(cast<Instruction>(U)); 7165 continue; 7166 } 7167 7168 switch (I->getOpcode()) { 7169 case Instruction::And: { 7170 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 7171 if (!AndC) 7172 return false; 7173 APInt AndBits = AndC->getValue(); 7174 DemandBits |= AndBits; 7175 // Keep track of the widest and mask we see. 7176 if (AndBits.ugt(WidestAndBits)) 7177 WidestAndBits = AndBits; 7178 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 7179 AndsToMaybeRemove.push_back(I); 7180 break; 7181 } 7182 7183 case Instruction::Shl: { 7184 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 7185 if (!ShlC) 7186 return false; 7187 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 7188 DemandBits.setLowBits(BitWidth - ShiftAmt); 7189 break; 7190 } 7191 7192 case Instruction::Trunc: { 7193 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 7194 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 7195 DemandBits.setLowBits(TruncBitWidth); 7196 break; 7197 } 7198 7199 default: 7200 return false; 7201 } 7202 } 7203 7204 uint32_t ActiveBits = DemandBits.getActiveBits(); 7205 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 7206 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 7207 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 7208 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 7209 // followed by an AND. 7210 // TODO: Look into removing this restriction by fixing backends to either 7211 // return false for isLoadExtLegal for i1 or have them select this pattern to 7212 // a single instruction. 7213 // 7214 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 7215 // mask, since these are the only ands that will be removed by isel. 7216 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 7217 WidestAndBits != DemandBits) 7218 return false; 7219 7220 LLVMContext &Ctx = Load->getType()->getContext(); 7221 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 7222 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 7223 7224 // Reject cases that won't be matched as extloads. 7225 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 7226 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 7227 return false; 7228 7229 IRBuilder<> Builder(Load->getNextNonDebugInstruction()); 7230 auto *NewAnd = cast<Instruction>( 7231 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 7232 // Mark this instruction as "inserted by CGP", so that other 7233 // optimizations don't touch it. 7234 InsertedInsts.insert(NewAnd); 7235 7236 // Replace all uses of load with new and (except for the use of load in the 7237 // new and itself). 7238 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); 7239 NewAnd->setOperand(0, Load); 7240 7241 // Remove any and instructions that are now redundant. 7242 for (auto *And : AndsToMaybeRemove) 7243 // Check that the and mask is the same as the one we decided to put on the 7244 // new and. 7245 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 7246 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); 7247 if (&*CurInstIterator == And) 7248 CurInstIterator = std::next(And->getIterator()); 7249 And->eraseFromParent(); 7250 ++NumAndUses; 7251 } 7252 7253 ++NumAndsAdded; 7254 return true; 7255 } 7256 7257 /// Check if V (an operand of a select instruction) is an expensive instruction 7258 /// that is only used once. 7259 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 7260 auto *I = dyn_cast<Instruction>(V); 7261 // If it's safe to speculatively execute, then it should not have side 7262 // effects; therefore, it's safe to sink and possibly *not* execute. 7263 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 7264 TTI->isExpensiveToSpeculativelyExecute(I); 7265 } 7266 7267 /// Returns true if a SelectInst should be turned into an explicit branch. 7268 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 7269 const TargetLowering *TLI, 7270 SelectInst *SI) { 7271 // If even a predictable select is cheap, then a branch can't be cheaper. 7272 if (!TLI->isPredictableSelectExpensive()) 7273 return false; 7274 7275 // FIXME: This should use the same heuristics as IfConversion to determine 7276 // whether a select is better represented as a branch. 7277 7278 // If metadata tells us that the select condition is obviously predictable, 7279 // then we want to replace the select with a branch. 7280 uint64_t TrueWeight, FalseWeight; 7281 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { 7282 uint64_t Max = std::max(TrueWeight, FalseWeight); 7283 uint64_t Sum = TrueWeight + FalseWeight; 7284 if (Sum != 0) { 7285 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 7286 if (Probability > TTI->getPredictableBranchThreshold()) 7287 return true; 7288 } 7289 } 7290 7291 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 7292 7293 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 7294 // comparison condition. If the compare has more than one use, there's 7295 // probably another cmov or setcc around, so it's not worth emitting a branch. 7296 if (!Cmp || !Cmp->hasOneUse()) 7297 return false; 7298 7299 // If either operand of the select is expensive and only needed on one side 7300 // of the select, we should form a branch. 7301 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 7302 sinkSelectOperand(TTI, SI->getFalseValue())) 7303 return true; 7304 7305 return false; 7306 } 7307 7308 /// If \p isTrue is true, return the true value of \p SI, otherwise return 7309 /// false value of \p SI. If the true/false value of \p SI is defined by any 7310 /// select instructions in \p Selects, look through the defining select 7311 /// instruction until the true/false value is not defined in \p Selects. 7312 static Value * 7313 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 7314 const SmallPtrSet<const Instruction *, 2> &Selects) { 7315 Value *V = nullptr; 7316 7317 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 7318 DefSI = dyn_cast<SelectInst>(V)) { 7319 assert(DefSI->getCondition() == SI->getCondition() && 7320 "The condition of DefSI does not match with SI"); 7321 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 7322 } 7323 7324 assert(V && "Failed to get select true/false value"); 7325 return V; 7326 } 7327 7328 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 7329 assert(Shift->isShift() && "Expected a shift"); 7330 7331 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 7332 // general vector shifts, and (3) the shift amount is a select-of-splatted 7333 // values, hoist the shifts before the select: 7334 // shift Op0, (select Cond, TVal, FVal) --> 7335 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 7336 // 7337 // This is inverting a generic IR transform when we know that the cost of a 7338 // general vector shift is more than the cost of 2 shift-by-scalars. 7339 // We can't do this effectively in SDAG because we may not be able to 7340 // determine if the select operands are splats from within a basic block. 7341 Type *Ty = Shift->getType(); 7342 if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty)) 7343 return false; 7344 Value *Cond, *TVal, *FVal; 7345 if (!match(Shift->getOperand(1), 7346 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7347 return false; 7348 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7349 return false; 7350 7351 IRBuilder<> Builder(Shift); 7352 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 7353 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 7354 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 7355 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7356 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); 7357 Shift->eraseFromParent(); 7358 return true; 7359 } 7360 7361 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 7362 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 7363 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 7364 "Expected a funnel shift"); 7365 7366 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 7367 // than general vector shifts, and (3) the shift amount is select-of-splatted 7368 // values, hoist the funnel shifts before the select: 7369 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 7370 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 7371 // 7372 // This is inverting a generic IR transform when we know that the cost of a 7373 // general vector shift is more than the cost of 2 shift-by-scalars. 7374 // We can't do this effectively in SDAG because we may not be able to 7375 // determine if the select operands are splats from within a basic block. 7376 Type *Ty = Fsh->getType(); 7377 if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty)) 7378 return false; 7379 Value *Cond, *TVal, *FVal; 7380 if (!match(Fsh->getOperand(2), 7381 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7382 return false; 7383 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7384 return false; 7385 7386 IRBuilder<> Builder(Fsh); 7387 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 7388 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); 7389 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); 7390 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7391 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); 7392 Fsh->eraseFromParent(); 7393 return true; 7394 } 7395 7396 /// If we have a SelectInst that will likely profit from branch prediction, 7397 /// turn it into a branch. 7398 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 7399 if (DisableSelectToBranch) 7400 return false; 7401 7402 // If the SelectOptimize pass is enabled, selects have already been optimized. 7403 if (!getCGPassBuilderOption().DisableSelectOptimize) 7404 return false; 7405 7406 // Find all consecutive select instructions that share the same condition. 7407 SmallVector<SelectInst *, 2> ASI; 7408 ASI.push_back(SI); 7409 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 7410 It != SI->getParent()->end(); ++It) { 7411 SelectInst *I = dyn_cast<SelectInst>(&*It); 7412 if (I && SI->getCondition() == I->getCondition()) { 7413 ASI.push_back(I); 7414 } else { 7415 break; 7416 } 7417 } 7418 7419 SelectInst *LastSI = ASI.back(); 7420 // Increment the current iterator to skip all the rest of select instructions 7421 // because they will be either "not lowered" or "all lowered" to branch. 7422 CurInstIterator = std::next(LastSI->getIterator()); 7423 // Examine debug-info attached to the consecutive select instructions. They 7424 // won't be individually optimised by optimizeInst, so we need to perform 7425 // DbgVariableRecord maintenence here instead. 7426 for (SelectInst *SI : ArrayRef(ASI).drop_front()) 7427 fixupDbgVariableRecordsOnInst(*SI); 7428 7429 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 7430 7431 // Can we convert the 'select' to CF ? 7432 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 7433 return false; 7434 7435 TargetLowering::SelectSupportKind SelectKind; 7436 if (SI->getType()->isVectorTy()) 7437 SelectKind = TargetLowering::ScalarCondVectorVal; 7438 else 7439 SelectKind = TargetLowering::ScalarValSelect; 7440 7441 if (TLI->isSelectSupported(SelectKind) && 7442 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || 7443 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 7444 return false; 7445 7446 // The DominatorTree needs to be rebuilt by any consumers after this 7447 // transformation. We simply reset here rather than setting the ModifiedDT 7448 // flag to avoid restarting the function walk in runOnFunction for each 7449 // select optimized. 7450 DT.reset(); 7451 7452 // Transform a sequence like this: 7453 // start: 7454 // %cmp = cmp uge i32 %a, %b 7455 // %sel = select i1 %cmp, i32 %c, i32 %d 7456 // 7457 // Into: 7458 // start: 7459 // %cmp = cmp uge i32 %a, %b 7460 // %cmp.frozen = freeze %cmp 7461 // br i1 %cmp.frozen, label %select.true, label %select.false 7462 // select.true: 7463 // br label %select.end 7464 // select.false: 7465 // br label %select.end 7466 // select.end: 7467 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 7468 // 7469 // %cmp should be frozen, otherwise it may introduce undefined behavior. 7470 // In addition, we may sink instructions that produce %c or %d from 7471 // the entry block into the destination(s) of the new branch. 7472 // If the true or false blocks do not contain a sunken instruction, that 7473 // block and its branch may be optimized away. In that case, one side of the 7474 // first branch will point directly to select.end, and the corresponding PHI 7475 // predecessor block will be the start block. 7476 7477 // Collect values that go on the true side and the values that go on the false 7478 // side. 7479 SmallVector<Instruction *> TrueInstrs, FalseInstrs; 7480 for (SelectInst *SI : ASI) { 7481 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) 7482 TrueInstrs.push_back(cast<Instruction>(V)); 7483 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) 7484 FalseInstrs.push_back(cast<Instruction>(V)); 7485 } 7486 7487 // Split the select block, according to how many (if any) values go on each 7488 // side. 7489 BasicBlock *StartBlock = SI->getParent(); 7490 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI)); 7491 // We should split before any debug-info. 7492 SplitPt.setHeadBit(true); 7493 7494 IRBuilder<> IB(SI); 7495 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 7496 7497 BasicBlock *TrueBlock = nullptr; 7498 BasicBlock *FalseBlock = nullptr; 7499 BasicBlock *EndBlock = nullptr; 7500 BranchInst *TrueBranch = nullptr; 7501 BranchInst *FalseBranch = nullptr; 7502 if (TrueInstrs.size() == 0) { 7503 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse( 7504 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7505 FalseBlock = FalseBranch->getParent(); 7506 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0)); 7507 } else if (FalseInstrs.size() == 0) { 7508 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen( 7509 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7510 TrueBlock = TrueBranch->getParent(); 7511 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7512 } else { 7513 Instruction *ThenTerm = nullptr; 7514 Instruction *ElseTerm = nullptr; 7515 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm, 7516 nullptr, nullptr, LI); 7517 TrueBranch = cast<BranchInst>(ThenTerm); 7518 FalseBranch = cast<BranchInst>(ElseTerm); 7519 TrueBlock = TrueBranch->getParent(); 7520 FalseBlock = FalseBranch->getParent(); 7521 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7522 } 7523 7524 EndBlock->setName("select.end"); 7525 if (TrueBlock) 7526 TrueBlock->setName("select.true.sink"); 7527 if (FalseBlock) 7528 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" 7529 : "select.false.sink"); 7530 7531 if (IsHugeFunc) { 7532 if (TrueBlock) 7533 FreshBBs.insert(TrueBlock); 7534 if (FalseBlock) 7535 FreshBBs.insert(FalseBlock); 7536 FreshBBs.insert(EndBlock); 7537 } 7538 7539 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); 7540 7541 static const unsigned MD[] = { 7542 LLVMContext::MD_prof, LLVMContext::MD_unpredictable, 7543 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; 7544 StartBlock->getTerminator()->copyMetadata(*SI, MD); 7545 7546 // Sink expensive instructions into the conditional blocks to avoid executing 7547 // them speculatively. 7548 for (Instruction *I : TrueInstrs) 7549 I->moveBefore(TrueBranch); 7550 for (Instruction *I : FalseInstrs) 7551 I->moveBefore(FalseBranch); 7552 7553 // If we did not create a new block for one of the 'true' or 'false' paths 7554 // of the condition, it means that side of the branch goes to the end block 7555 // directly and the path originates from the start block from the point of 7556 // view of the new PHI. 7557 if (TrueBlock == nullptr) 7558 TrueBlock = StartBlock; 7559 else if (FalseBlock == nullptr) 7560 FalseBlock = StartBlock; 7561 7562 SmallPtrSet<const Instruction *, 2> INS; 7563 INS.insert(ASI.begin(), ASI.end()); 7564 // Use reverse iterator because later select may use the value of the 7565 // earlier select, and we need to propagate value through earlier select 7566 // to get the PHI operand. 7567 for (SelectInst *SI : llvm::reverse(ASI)) { 7568 // The select itself is replaced with a PHI Node. 7569 PHINode *PN = PHINode::Create(SI->getType(), 2, ""); 7570 PN->insertBefore(EndBlock->begin()); 7571 PN->takeName(SI); 7572 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 7573 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 7574 PN->setDebugLoc(SI->getDebugLoc()); 7575 7576 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); 7577 SI->eraseFromParent(); 7578 INS.erase(SI); 7579 ++NumSelectsExpanded; 7580 } 7581 7582 // Instruct OptimizeBlock to skip to the next block. 7583 CurInstIterator = StartBlock->end(); 7584 return true; 7585 } 7586 7587 /// Some targets only accept certain types for splat inputs. For example a VDUP 7588 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 7589 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 7590 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 7591 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 7592 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 7593 m_Undef(), m_ZeroMask()))) 7594 return false; 7595 Type *NewType = TLI->shouldConvertSplatType(SVI); 7596 if (!NewType) 7597 return false; 7598 7599 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 7600 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 7601 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 7602 "Expected a type of the same size!"); 7603 auto *NewVecType = 7604 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 7605 7606 // Create a bitcast (shuffle (insert (bitcast(..)))) 7607 IRBuilder<> Builder(SVI->getContext()); 7608 Builder.SetInsertPoint(SVI); 7609 Value *BC1 = Builder.CreateBitCast( 7610 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 7611 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 7612 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 7613 7614 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); 7615 RecursivelyDeleteTriviallyDeadInstructions( 7616 SVI, TLInfo, nullptr, 7617 [&](Value *V) { removeAllAssertingVHReferences(V); }); 7618 7619 // Also hoist the bitcast up to its operand if it they are not in the same 7620 // block. 7621 if (auto *BCI = dyn_cast<Instruction>(BC1)) 7622 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 7623 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 7624 !Op->isTerminator() && !Op->isEHPad()) 7625 BCI->moveAfter(Op); 7626 7627 return true; 7628 } 7629 7630 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 7631 // If the operands of I can be folded into a target instruction together with 7632 // I, duplicate and sink them. 7633 SmallVector<Use *, 4> OpsToSink; 7634 if (!TTI->isProfitableToSinkOperands(I, OpsToSink)) 7635 return false; 7636 7637 // OpsToSink can contain multiple uses in a use chain (e.g. 7638 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 7639 // uses must come first, so we process the ops in reverse order so as to not 7640 // create invalid IR. 7641 BasicBlock *TargetBB = I->getParent(); 7642 bool Changed = false; 7643 SmallVector<Use *, 4> ToReplace; 7644 Instruction *InsertPoint = I; 7645 DenseMap<const Instruction *, unsigned long> InstOrdering; 7646 unsigned long InstNumber = 0; 7647 for (const auto &I : *TargetBB) 7648 InstOrdering[&I] = InstNumber++; 7649 7650 for (Use *U : reverse(OpsToSink)) { 7651 auto *UI = cast<Instruction>(U->get()); 7652 if (isa<PHINode>(UI)) 7653 continue; 7654 if (UI->getParent() == TargetBB) { 7655 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 7656 InsertPoint = UI; 7657 continue; 7658 } 7659 ToReplace.push_back(U); 7660 } 7661 7662 SetVector<Instruction *> MaybeDead; 7663 DenseMap<Instruction *, Instruction *> NewInstructions; 7664 for (Use *U : ToReplace) { 7665 auto *UI = cast<Instruction>(U->get()); 7666 Instruction *NI = UI->clone(); 7667 7668 if (IsHugeFunc) { 7669 // Now we clone an instruction, its operands' defs may sink to this BB 7670 // now. So we put the operands defs' BBs into FreshBBs to do optimization. 7671 for (Value *Op : NI->operands()) 7672 if (auto *OpDef = dyn_cast<Instruction>(Op)) 7673 FreshBBs.insert(OpDef->getParent()); 7674 } 7675 7676 NewInstructions[UI] = NI; 7677 MaybeDead.insert(UI); 7678 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 7679 NI->insertBefore(InsertPoint); 7680 InsertPoint = NI; 7681 InsertedInsts.insert(NI); 7682 7683 // Update the use for the new instruction, making sure that we update the 7684 // sunk instruction uses, if it is part of a chain that has already been 7685 // sunk. 7686 Instruction *OldI = cast<Instruction>(U->getUser()); 7687 if (NewInstructions.count(OldI)) 7688 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 7689 else 7690 U->set(NI); 7691 Changed = true; 7692 } 7693 7694 // Remove instructions that are dead after sinking. 7695 for (auto *I : MaybeDead) { 7696 if (!I->hasNUsesOrMore(1)) { 7697 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7698 I->eraseFromParent(); 7699 } 7700 } 7701 7702 return Changed; 7703 } 7704 7705 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7706 Value *Cond = SI->getCondition(); 7707 Type *OldType = Cond->getType(); 7708 LLVMContext &Context = Cond->getContext(); 7709 EVT OldVT = TLI->getValueType(*DL, OldType); 7710 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7711 unsigned RegWidth = RegType.getSizeInBits(); 7712 7713 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7714 return false; 7715 7716 // If the register width is greater than the type width, expand the condition 7717 // of the switch instruction and each case constant to the width of the 7718 // register. By widening the type of the switch condition, subsequent 7719 // comparisons (for case comparisons) will not need to be extended to the 7720 // preferred register width, so we will potentially eliminate N-1 extends, 7721 // where N is the number of cases in the switch. 7722 auto *NewType = Type::getIntNTy(Context, RegWidth); 7723 7724 // Extend the switch condition and case constants using the target preferred 7725 // extend unless the switch condition is a function argument with an extend 7726 // attribute. In that case, we can avoid an unnecessary mask/extension by 7727 // matching the argument extension instead. 7728 Instruction::CastOps ExtType = Instruction::ZExt; 7729 // Some targets prefer SExt over ZExt. 7730 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7731 ExtType = Instruction::SExt; 7732 7733 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7734 if (Arg->hasSExtAttr()) 7735 ExtType = Instruction::SExt; 7736 if (Arg->hasZExtAttr()) 7737 ExtType = Instruction::ZExt; 7738 } 7739 7740 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7741 ExtInst->insertBefore(SI); 7742 ExtInst->setDebugLoc(SI->getDebugLoc()); 7743 SI->setCondition(ExtInst); 7744 for (auto Case : SI->cases()) { 7745 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7746 APInt WideConst = (ExtType == Instruction::ZExt) 7747 ? NarrowConst.zext(RegWidth) 7748 : NarrowConst.sext(RegWidth); 7749 Case.setValue(ConstantInt::get(Context, WideConst)); 7750 } 7751 7752 return true; 7753 } 7754 7755 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7756 // The SCCP optimization tends to produce code like this: 7757 // switch(x) { case 42: phi(42, ...) } 7758 // Materializing the constant for the phi-argument needs instructions; So we 7759 // change the code to: 7760 // switch(x) { case 42: phi(x, ...) } 7761 7762 Value *Condition = SI->getCondition(); 7763 // Avoid endless loop in degenerate case. 7764 if (isa<ConstantInt>(*Condition)) 7765 return false; 7766 7767 bool Changed = false; 7768 BasicBlock *SwitchBB = SI->getParent(); 7769 Type *ConditionType = Condition->getType(); 7770 7771 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7772 ConstantInt *CaseValue = Case.getCaseValue(); 7773 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7774 // Set to true if we previously checked that `CaseBB` is only reached by 7775 // a single case from this switch. 7776 bool CheckedForSinglePred = false; 7777 for (PHINode &PHI : CaseBB->phis()) { 7778 Type *PHIType = PHI.getType(); 7779 // If ZExt is free then we can also catch patterns like this: 7780 // switch((i32)x) { case 42: phi((i64)42, ...); } 7781 // and replace `(i64)42` with `zext i32 %x to i64`. 7782 bool TryZExt = 7783 PHIType->isIntegerTy() && 7784 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7785 TLI->isZExtFree(ConditionType, PHIType); 7786 if (PHIType == ConditionType || TryZExt) { 7787 // Set to true to skip this case because of multiple preds. 7788 bool SkipCase = false; 7789 Value *Replacement = nullptr; 7790 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7791 Value *PHIValue = PHI.getIncomingValue(I); 7792 if (PHIValue != CaseValue) { 7793 if (!TryZExt) 7794 continue; 7795 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7796 if (!PHIValueInt || 7797 PHIValueInt->getValue() != 7798 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7799 continue; 7800 } 7801 if (PHI.getIncomingBlock(I) != SwitchBB) 7802 continue; 7803 // We cannot optimize if there are multiple case labels jumping to 7804 // this block. This check may get expensive when there are many 7805 // case labels so we test for it last. 7806 if (!CheckedForSinglePred) { 7807 CheckedForSinglePred = true; 7808 if (SI->findCaseDest(CaseBB) == nullptr) { 7809 SkipCase = true; 7810 break; 7811 } 7812 } 7813 7814 if (Replacement == nullptr) { 7815 if (PHIValue == CaseValue) { 7816 Replacement = Condition; 7817 } else { 7818 IRBuilder<> Builder(SI); 7819 Replacement = Builder.CreateZExt(Condition, PHIType); 7820 } 7821 } 7822 PHI.setIncomingValue(I, Replacement); 7823 Changed = true; 7824 } 7825 if (SkipCase) 7826 break; 7827 } 7828 } 7829 } 7830 return Changed; 7831 } 7832 7833 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7834 bool Changed = optimizeSwitchType(SI); 7835 Changed |= optimizeSwitchPhiConstants(SI); 7836 return Changed; 7837 } 7838 7839 namespace { 7840 7841 /// Helper class to promote a scalar operation to a vector one. 7842 /// This class is used to move downward extractelement transition. 7843 /// E.g., 7844 /// a = vector_op <2 x i32> 7845 /// b = extractelement <2 x i32> a, i32 0 7846 /// c = scalar_op b 7847 /// store c 7848 /// 7849 /// => 7850 /// a = vector_op <2 x i32> 7851 /// c = vector_op a (equivalent to scalar_op on the related lane) 7852 /// * d = extractelement <2 x i32> c, i32 0 7853 /// * store d 7854 /// Assuming both extractelement and store can be combine, we get rid of the 7855 /// transition. 7856 class VectorPromoteHelper { 7857 /// DataLayout associated with the current module. 7858 const DataLayout &DL; 7859 7860 /// Used to perform some checks on the legality of vector operations. 7861 const TargetLowering &TLI; 7862 7863 /// Used to estimated the cost of the promoted chain. 7864 const TargetTransformInfo &TTI; 7865 7866 /// The transition being moved downwards. 7867 Instruction *Transition; 7868 7869 /// The sequence of instructions to be promoted. 7870 SmallVector<Instruction *, 4> InstsToBePromoted; 7871 7872 /// Cost of combining a store and an extract. 7873 unsigned StoreExtractCombineCost; 7874 7875 /// Instruction that will be combined with the transition. 7876 Instruction *CombineInst = nullptr; 7877 7878 /// The instruction that represents the current end of the transition. 7879 /// Since we are faking the promotion until we reach the end of the chain 7880 /// of computation, we need a way to get the current end of the transition. 7881 Instruction *getEndOfTransition() const { 7882 if (InstsToBePromoted.empty()) 7883 return Transition; 7884 return InstsToBePromoted.back(); 7885 } 7886 7887 /// Return the index of the original value in the transition. 7888 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7889 /// c, is at index 0. 7890 unsigned getTransitionOriginalValueIdx() const { 7891 assert(isa<ExtractElementInst>(Transition) && 7892 "Other kind of transitions are not supported yet"); 7893 return 0; 7894 } 7895 7896 /// Return the index of the index in the transition. 7897 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7898 /// is at index 1. 7899 unsigned getTransitionIdx() const { 7900 assert(isa<ExtractElementInst>(Transition) && 7901 "Other kind of transitions are not supported yet"); 7902 return 1; 7903 } 7904 7905 /// Get the type of the transition. 7906 /// This is the type of the original value. 7907 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7908 /// transition is <2 x i32>. 7909 Type *getTransitionType() const { 7910 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7911 } 7912 7913 /// Promote \p ToBePromoted by moving \p Def downward through. 7914 /// I.e., we have the following sequence: 7915 /// Def = Transition <ty1> a to <ty2> 7916 /// b = ToBePromoted <ty2> Def, ... 7917 /// => 7918 /// b = ToBePromoted <ty1> a, ... 7919 /// Def = Transition <ty1> ToBePromoted to <ty2> 7920 void promoteImpl(Instruction *ToBePromoted); 7921 7922 /// Check whether or not it is profitable to promote all the 7923 /// instructions enqueued to be promoted. 7924 bool isProfitableToPromote() { 7925 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7926 unsigned Index = isa<ConstantInt>(ValIdx) 7927 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7928 : -1; 7929 Type *PromotedType = getTransitionType(); 7930 7931 StoreInst *ST = cast<StoreInst>(CombineInst); 7932 unsigned AS = ST->getPointerAddressSpace(); 7933 // Check if this store is supported. 7934 if (!TLI.allowsMisalignedMemoryAccesses( 7935 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7936 ST->getAlign())) { 7937 // If this is not supported, there is no way we can combine 7938 // the extract with the store. 7939 return false; 7940 } 7941 7942 // The scalar chain of computation has to pay for the transition 7943 // scalar to vector. 7944 // The vector chain has to account for the combining cost. 7945 enum TargetTransformInfo::TargetCostKind CostKind = 7946 TargetTransformInfo::TCK_RecipThroughput; 7947 InstructionCost ScalarCost = 7948 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); 7949 InstructionCost VectorCost = StoreExtractCombineCost; 7950 for (const auto &Inst : InstsToBePromoted) { 7951 // Compute the cost. 7952 // By construction, all instructions being promoted are arithmetic ones. 7953 // Moreover, one argument is a constant that can be viewed as a splat 7954 // constant. 7955 Value *Arg0 = Inst->getOperand(0); 7956 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7957 isa<ConstantFP>(Arg0); 7958 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; 7959 if (IsArg0Constant) 7960 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7961 else 7962 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7963 7964 ScalarCost += TTI.getArithmeticInstrCost( 7965 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); 7966 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7967 CostKind, Arg0Info, Arg1Info); 7968 } 7969 LLVM_DEBUG( 7970 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7971 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7972 return ScalarCost > VectorCost; 7973 } 7974 7975 /// Generate a constant vector with \p Val with the same 7976 /// number of elements as the transition. 7977 /// \p UseSplat defines whether or not \p Val should be replicated 7978 /// across the whole vector. 7979 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7980 /// otherwise we generate a vector with as many undef as possible: 7981 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7982 /// used at the index of the extract. 7983 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7984 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7985 if (!UseSplat) { 7986 // If we cannot determine where the constant must be, we have to 7987 // use a splat constant. 7988 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7989 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7990 ExtractIdx = CstVal->getSExtValue(); 7991 else 7992 UseSplat = true; 7993 } 7994 7995 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7996 if (UseSplat) 7997 return ConstantVector::getSplat(EC, Val); 7998 7999 if (!EC.isScalable()) { 8000 SmallVector<Constant *, 4> ConstVec; 8001 UndefValue *UndefVal = UndefValue::get(Val->getType()); 8002 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 8003 if (Idx == ExtractIdx) 8004 ConstVec.push_back(Val); 8005 else 8006 ConstVec.push_back(UndefVal); 8007 } 8008 return ConstantVector::get(ConstVec); 8009 } else 8010 llvm_unreachable( 8011 "Generate scalable vector for non-splat is unimplemented"); 8012 } 8013 8014 /// Check if promoting to a vector type an operand at \p OperandIdx 8015 /// in \p Use can trigger undefined behavior. 8016 static bool canCauseUndefinedBehavior(const Instruction *Use, 8017 unsigned OperandIdx) { 8018 // This is not safe to introduce undef when the operand is on 8019 // the right hand side of a division-like instruction. 8020 if (OperandIdx != 1) 8021 return false; 8022 switch (Use->getOpcode()) { 8023 default: 8024 return false; 8025 case Instruction::SDiv: 8026 case Instruction::UDiv: 8027 case Instruction::SRem: 8028 case Instruction::URem: 8029 return true; 8030 case Instruction::FDiv: 8031 case Instruction::FRem: 8032 return !Use->hasNoNaNs(); 8033 } 8034 llvm_unreachable(nullptr); 8035 } 8036 8037 public: 8038 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 8039 const TargetTransformInfo &TTI, Instruction *Transition, 8040 unsigned CombineCost) 8041 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 8042 StoreExtractCombineCost(CombineCost) { 8043 assert(Transition && "Do not know how to promote null"); 8044 } 8045 8046 /// Check if we can promote \p ToBePromoted to \p Type. 8047 bool canPromote(const Instruction *ToBePromoted) const { 8048 // We could support CastInst too. 8049 return isa<BinaryOperator>(ToBePromoted); 8050 } 8051 8052 /// Check if it is profitable to promote \p ToBePromoted 8053 /// by moving downward the transition through. 8054 bool shouldPromote(const Instruction *ToBePromoted) const { 8055 // Promote only if all the operands can be statically expanded. 8056 // Indeed, we do not want to introduce any new kind of transitions. 8057 for (const Use &U : ToBePromoted->operands()) { 8058 const Value *Val = U.get(); 8059 if (Val == getEndOfTransition()) { 8060 // If the use is a division and the transition is on the rhs, 8061 // we cannot promote the operation, otherwise we may create a 8062 // division by zero. 8063 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 8064 return false; 8065 continue; 8066 } 8067 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 8068 !isa<ConstantFP>(Val)) 8069 return false; 8070 } 8071 // Check that the resulting operation is legal. 8072 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 8073 if (!ISDOpcode) 8074 return false; 8075 return StressStoreExtract || 8076 TLI.isOperationLegalOrCustom( 8077 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 8078 } 8079 8080 /// Check whether or not \p Use can be combined 8081 /// with the transition. 8082 /// I.e., is it possible to do Use(Transition) => AnotherUse? 8083 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 8084 8085 /// Record \p ToBePromoted as part of the chain to be promoted. 8086 void enqueueForPromotion(Instruction *ToBePromoted) { 8087 InstsToBePromoted.push_back(ToBePromoted); 8088 } 8089 8090 /// Set the instruction that will be combined with the transition. 8091 void recordCombineInstruction(Instruction *ToBeCombined) { 8092 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 8093 CombineInst = ToBeCombined; 8094 } 8095 8096 /// Promote all the instructions enqueued for promotion if it is 8097 /// is profitable. 8098 /// \return True if the promotion happened, false otherwise. 8099 bool promote() { 8100 // Check if there is something to promote. 8101 // Right now, if we do not have anything to combine with, 8102 // we assume the promotion is not profitable. 8103 if (InstsToBePromoted.empty() || !CombineInst) 8104 return false; 8105 8106 // Check cost. 8107 if (!StressStoreExtract && !isProfitableToPromote()) 8108 return false; 8109 8110 // Promote. 8111 for (auto &ToBePromoted : InstsToBePromoted) 8112 promoteImpl(ToBePromoted); 8113 InstsToBePromoted.clear(); 8114 return true; 8115 } 8116 }; 8117 8118 } // end anonymous namespace 8119 8120 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 8121 // At this point, we know that all the operands of ToBePromoted but Def 8122 // can be statically promoted. 8123 // For Def, we need to use its parameter in ToBePromoted: 8124 // b = ToBePromoted ty1 a 8125 // Def = Transition ty1 b to ty2 8126 // Move the transition down. 8127 // 1. Replace all uses of the promoted operation by the transition. 8128 // = ... b => = ... Def. 8129 assert(ToBePromoted->getType() == Transition->getType() && 8130 "The type of the result of the transition does not match " 8131 "the final type"); 8132 ToBePromoted->replaceAllUsesWith(Transition); 8133 // 2. Update the type of the uses. 8134 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 8135 Type *TransitionTy = getTransitionType(); 8136 ToBePromoted->mutateType(TransitionTy); 8137 // 3. Update all the operands of the promoted operation with promoted 8138 // operands. 8139 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 8140 for (Use &U : ToBePromoted->operands()) { 8141 Value *Val = U.get(); 8142 Value *NewVal = nullptr; 8143 if (Val == Transition) 8144 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 8145 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 8146 isa<ConstantFP>(Val)) { 8147 // Use a splat constant if it is not safe to use undef. 8148 NewVal = getConstantVector( 8149 cast<Constant>(Val), 8150 isa<UndefValue>(Val) || 8151 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 8152 } else 8153 llvm_unreachable("Did you modified shouldPromote and forgot to update " 8154 "this?"); 8155 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 8156 } 8157 Transition->moveAfter(ToBePromoted); 8158 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 8159 } 8160 8161 /// Some targets can do store(extractelement) with one instruction. 8162 /// Try to push the extractelement towards the stores when the target 8163 /// has this feature and this is profitable. 8164 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 8165 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 8166 if (DisableStoreExtract || 8167 (!StressStoreExtract && 8168 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 8169 Inst->getOperand(1), CombineCost))) 8170 return false; 8171 8172 // At this point we know that Inst is a vector to scalar transition. 8173 // Try to move it down the def-use chain, until: 8174 // - We can combine the transition with its single use 8175 // => we got rid of the transition. 8176 // - We escape the current basic block 8177 // => we would need to check that we are moving it at a cheaper place and 8178 // we do not do that for now. 8179 BasicBlock *Parent = Inst->getParent(); 8180 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 8181 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 8182 // If the transition has more than one use, assume this is not going to be 8183 // beneficial. 8184 while (Inst->hasOneUse()) { 8185 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 8186 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 8187 8188 if (ToBePromoted->getParent() != Parent) { 8189 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 8190 << ToBePromoted->getParent()->getName() 8191 << ") than the transition (" << Parent->getName() 8192 << ").\n"); 8193 return false; 8194 } 8195 8196 if (VPH.canCombine(ToBePromoted)) { 8197 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 8198 << "will be combined with: " << *ToBePromoted << '\n'); 8199 VPH.recordCombineInstruction(ToBePromoted); 8200 bool Changed = VPH.promote(); 8201 NumStoreExtractExposed += Changed; 8202 return Changed; 8203 } 8204 8205 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 8206 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 8207 return false; 8208 8209 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 8210 8211 VPH.enqueueForPromotion(ToBePromoted); 8212 Inst = ToBePromoted; 8213 } 8214 return false; 8215 } 8216 8217 /// For the instruction sequence of store below, F and I values 8218 /// are bundled together as an i64 value before being stored into memory. 8219 /// Sometimes it is more efficient to generate separate stores for F and I, 8220 /// which can remove the bitwise instructions or sink them to colder places. 8221 /// 8222 /// (store (or (zext (bitcast F to i32) to i64), 8223 /// (shl (zext I to i64), 32)), addr) --> 8224 /// (store F, addr) and (store I, addr+4) 8225 /// 8226 /// Similarly, splitting for other merged store can also be beneficial, like: 8227 /// For pair of {i32, i32}, i64 store --> two i32 stores. 8228 /// For pair of {i32, i16}, i64 store --> two i32 stores. 8229 /// For pair of {i16, i16}, i32 store --> two i16 stores. 8230 /// For pair of {i16, i8}, i32 store --> two i16 stores. 8231 /// For pair of {i8, i8}, i16 store --> two i8 stores. 8232 /// 8233 /// We allow each target to determine specifically which kind of splitting is 8234 /// supported. 8235 /// 8236 /// The store patterns are commonly seen from the simple code snippet below 8237 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 8238 /// void goo(const std::pair<int, float> &); 8239 /// hoo() { 8240 /// ... 8241 /// goo(std::make_pair(tmp, ftmp)); 8242 /// ... 8243 /// } 8244 /// 8245 /// Although we already have similar splitting in DAG Combine, we duplicate 8246 /// it in CodeGenPrepare to catch the case in which pattern is across 8247 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 8248 /// during code expansion. 8249 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 8250 const TargetLowering &TLI) { 8251 // Handle simple but common cases only. 8252 Type *StoreType = SI.getValueOperand()->getType(); 8253 8254 // The code below assumes shifting a value by <number of bits>, 8255 // whereas scalable vectors would have to be shifted by 8256 // <2log(vscale) + number of bits> in order to store the 8257 // low/high parts. Bailing out for now. 8258 if (StoreType->isScalableTy()) 8259 return false; 8260 8261 if (!DL.typeSizeEqualsStoreSize(StoreType) || 8262 DL.getTypeSizeInBits(StoreType) == 0) 8263 return false; 8264 8265 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 8266 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 8267 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 8268 return false; 8269 8270 // Don't split the store if it is volatile. 8271 if (SI.isVolatile()) 8272 return false; 8273 8274 // Match the following patterns: 8275 // (store (or (zext LValue to i64), 8276 // (shl (zext HValue to i64), 32)), HalfValBitSize) 8277 // or 8278 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 8279 // (zext LValue to i64), 8280 // Expect both operands of OR and the first operand of SHL have only 8281 // one use. 8282 Value *LValue, *HValue; 8283 if (!match(SI.getValueOperand(), 8284 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 8285 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 8286 m_SpecificInt(HalfValBitSize)))))) 8287 return false; 8288 8289 // Check LValue and HValue are int with size less or equal than 32. 8290 if (!LValue->getType()->isIntegerTy() || 8291 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 8292 !HValue->getType()->isIntegerTy() || 8293 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 8294 return false; 8295 8296 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 8297 // as the input of target query. 8298 auto *LBC = dyn_cast<BitCastInst>(LValue); 8299 auto *HBC = dyn_cast<BitCastInst>(HValue); 8300 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 8301 : EVT::getEVT(LValue->getType()); 8302 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 8303 : EVT::getEVT(HValue->getType()); 8304 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 8305 return false; 8306 8307 // Start to split store. 8308 IRBuilder<> Builder(SI.getContext()); 8309 Builder.SetInsertPoint(&SI); 8310 8311 // If LValue/HValue is a bitcast in another BB, create a new one in current 8312 // BB so it may be merged with the splitted stores by dag combiner. 8313 if (LBC && LBC->getParent() != SI.getParent()) 8314 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 8315 if (HBC && HBC->getParent() != SI.getParent()) 8316 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 8317 8318 bool IsLE = SI.getDataLayout().isLittleEndian(); 8319 auto CreateSplitStore = [&](Value *V, bool Upper) { 8320 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 8321 Value *Addr = SI.getPointerOperand(); 8322 Align Alignment = SI.getAlign(); 8323 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 8324 if (IsOffsetStore) { 8325 Addr = Builder.CreateGEP( 8326 SplitStoreType, Addr, 8327 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 8328 8329 // When splitting the store in half, naturally one half will retain the 8330 // alignment of the original wider store, regardless of whether it was 8331 // over-aligned or not, while the other will require adjustment. 8332 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 8333 } 8334 Builder.CreateAlignedStore(V, Addr, Alignment); 8335 }; 8336 8337 CreateSplitStore(LValue, false); 8338 CreateSplitStore(HValue, true); 8339 8340 // Delete the old store. 8341 SI.eraseFromParent(); 8342 return true; 8343 } 8344 8345 // Return true if the GEP has two operands, the first operand is of a sequential 8346 // type, and the second operand is a constant. 8347 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 8348 gep_type_iterator I = gep_type_begin(*GEP); 8349 return GEP->getNumOperands() == 2 && I.isSequential() && 8350 isa<ConstantInt>(GEP->getOperand(1)); 8351 } 8352 8353 // Try unmerging GEPs to reduce liveness interference (register pressure) across 8354 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 8355 // reducing liveness interference across those edges benefits global register 8356 // allocation. Currently handles only certain cases. 8357 // 8358 // For example, unmerge %GEPI and %UGEPI as below. 8359 // 8360 // ---------- BEFORE ---------- 8361 // SrcBlock: 8362 // ... 8363 // %GEPIOp = ... 8364 // ... 8365 // %GEPI = gep %GEPIOp, Idx 8366 // ... 8367 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 8368 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 8369 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 8370 // %UGEPI) 8371 // 8372 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 8373 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 8374 // ... 8375 // 8376 // DstBi: 8377 // ... 8378 // %UGEPI = gep %GEPIOp, UIdx 8379 // ... 8380 // --------------------------- 8381 // 8382 // ---------- AFTER ---------- 8383 // SrcBlock: 8384 // ... (same as above) 8385 // (* %GEPI is still alive on the indirectbr edges) 8386 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 8387 // unmerging) 8388 // ... 8389 // 8390 // DstBi: 8391 // ... 8392 // %UGEPI = gep %GEPI, (UIdx-Idx) 8393 // ... 8394 // --------------------------- 8395 // 8396 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 8397 // no longer alive on them. 8398 // 8399 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 8400 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 8401 // not to disable further simplications and optimizations as a result of GEP 8402 // merging. 8403 // 8404 // Note this unmerging may increase the length of the data flow critical path 8405 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 8406 // between the register pressure and the length of data-flow critical 8407 // path. Restricting this to the uncommon IndirectBr case would minimize the 8408 // impact of potentially longer critical path, if any, and the impact on compile 8409 // time. 8410 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 8411 const TargetTransformInfo *TTI) { 8412 BasicBlock *SrcBlock = GEPI->getParent(); 8413 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 8414 // (non-IndirectBr) cases exit early here. 8415 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 8416 return false; 8417 // Check that GEPI is a simple gep with a single constant index. 8418 if (!GEPSequentialConstIndexed(GEPI)) 8419 return false; 8420 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 8421 // Check that GEPI is a cheap one. 8422 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 8423 TargetTransformInfo::TCK_SizeAndLatency) > 8424 TargetTransformInfo::TCC_Basic) 8425 return false; 8426 Value *GEPIOp = GEPI->getOperand(0); 8427 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 8428 if (!isa<Instruction>(GEPIOp)) 8429 return false; 8430 auto *GEPIOpI = cast<Instruction>(GEPIOp); 8431 if (GEPIOpI->getParent() != SrcBlock) 8432 return false; 8433 // Check that GEP is used outside the block, meaning it's alive on the 8434 // IndirectBr edge(s). 8435 if (llvm::none_of(GEPI->users(), [&](User *Usr) { 8436 if (auto *I = dyn_cast<Instruction>(Usr)) { 8437 if (I->getParent() != SrcBlock) { 8438 return true; 8439 } 8440 } 8441 return false; 8442 })) 8443 return false; 8444 // The second elements of the GEP chains to be unmerged. 8445 std::vector<GetElementPtrInst *> UGEPIs; 8446 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 8447 // on IndirectBr edges. 8448 for (User *Usr : GEPIOp->users()) { 8449 if (Usr == GEPI) 8450 continue; 8451 // Check if Usr is an Instruction. If not, give up. 8452 if (!isa<Instruction>(Usr)) 8453 return false; 8454 auto *UI = cast<Instruction>(Usr); 8455 // Check if Usr in the same block as GEPIOp, which is fine, skip. 8456 if (UI->getParent() == SrcBlock) 8457 continue; 8458 // Check if Usr is a GEP. If not, give up. 8459 if (!isa<GetElementPtrInst>(Usr)) 8460 return false; 8461 auto *UGEPI = cast<GetElementPtrInst>(Usr); 8462 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 8463 // the pointer operand to it. If so, record it in the vector. If not, give 8464 // up. 8465 if (!GEPSequentialConstIndexed(UGEPI)) 8466 return false; 8467 if (UGEPI->getOperand(0) != GEPIOp) 8468 return false; 8469 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType()) 8470 return false; 8471 if (GEPIIdx->getType() != 8472 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 8473 return false; 8474 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8475 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 8476 TargetTransformInfo::TCK_SizeAndLatency) > 8477 TargetTransformInfo::TCC_Basic) 8478 return false; 8479 UGEPIs.push_back(UGEPI); 8480 } 8481 if (UGEPIs.size() == 0) 8482 return false; 8483 // Check the materializing cost of (Uidx-Idx). 8484 for (GetElementPtrInst *UGEPI : UGEPIs) { 8485 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8486 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 8487 InstructionCost ImmCost = TTI->getIntImmCost( 8488 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 8489 if (ImmCost > TargetTransformInfo::TCC_Basic) 8490 return false; 8491 } 8492 // Now unmerge between GEPI and UGEPIs. 8493 for (GetElementPtrInst *UGEPI : UGEPIs) { 8494 UGEPI->setOperand(0, GEPI); 8495 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8496 Constant *NewUGEPIIdx = ConstantInt::get( 8497 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); 8498 UGEPI->setOperand(1, NewUGEPIIdx); 8499 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 8500 // inbounds to avoid UB. 8501 if (!GEPI->isInBounds()) { 8502 UGEPI->setIsInBounds(false); 8503 } 8504 } 8505 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 8506 // alive on IndirectBr edges). 8507 assert(llvm::none_of(GEPIOp->users(), 8508 [&](User *Usr) { 8509 return cast<Instruction>(Usr)->getParent() != SrcBlock; 8510 }) && 8511 "GEPIOp is used outside SrcBlock"); 8512 return true; 8513 } 8514 8515 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, 8516 SmallSet<BasicBlock *, 32> &FreshBBs, 8517 bool IsHugeFunc) { 8518 // Try and convert 8519 // %c = icmp ult %x, 8 8520 // br %c, bla, blb 8521 // %tc = lshr %x, 3 8522 // to 8523 // %tc = lshr %x, 3 8524 // %c = icmp eq %tc, 0 8525 // br %c, bla, blb 8526 // Creating the cmp to zero can be better for the backend, especially if the 8527 // lshr produces flags that can be used automatically. 8528 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 8529 return false; 8530 8531 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 8532 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 8533 return false; 8534 8535 Value *X = Cmp->getOperand(0); 8536 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 8537 8538 for (auto *U : X->users()) { 8539 Instruction *UI = dyn_cast<Instruction>(U); 8540 // A quick dominance check 8541 if (!UI || 8542 (UI->getParent() != Branch->getParent() && 8543 UI->getParent() != Branch->getSuccessor(0) && 8544 UI->getParent() != Branch->getSuccessor(1)) || 8545 (UI->getParent() != Branch->getParent() && 8546 !UI->getParent()->getSinglePredecessor())) 8547 continue; 8548 8549 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 8550 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 8551 IRBuilder<> Builder(Branch); 8552 if (UI->getParent() != Branch->getParent()) 8553 UI->moveBefore(Branch); 8554 UI->dropPoisonGeneratingFlags(); 8555 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 8556 ConstantInt::get(UI->getType(), 0)); 8557 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8558 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8559 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8560 return true; 8561 } 8562 if (Cmp->isEquality() && 8563 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 8564 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 8565 IRBuilder<> Builder(Branch); 8566 if (UI->getParent() != Branch->getParent()) 8567 UI->moveBefore(Branch); 8568 UI->dropPoisonGeneratingFlags(); 8569 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 8570 ConstantInt::get(UI->getType(), 0)); 8571 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8572 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8573 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8574 return true; 8575 } 8576 } 8577 return false; 8578 } 8579 8580 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { 8581 bool AnyChange = false; 8582 AnyChange = fixupDbgVariableRecordsOnInst(*I); 8583 8584 // Bail out if we inserted the instruction to prevent optimizations from 8585 // stepping on each other's toes. 8586 if (InsertedInsts.count(I)) 8587 return AnyChange; 8588 8589 // TODO: Move into the switch on opcode below here. 8590 if (PHINode *P = dyn_cast<PHINode>(I)) { 8591 // It is possible for very late stage optimizations (such as SimplifyCFG) 8592 // to introduce PHI nodes too late to be cleaned up. If we detect such a 8593 // trivial PHI, go ahead and zap it here. 8594 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 8595 LargeOffsetGEPMap.erase(P); 8596 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); 8597 P->eraseFromParent(); 8598 ++NumPHIsElim; 8599 return true; 8600 } 8601 return AnyChange; 8602 } 8603 8604 if (CastInst *CI = dyn_cast<CastInst>(I)) { 8605 // If the source of the cast is a constant, then this should have 8606 // already been constant folded. The only reason NOT to constant fold 8607 // it is if something (e.g. LSR) was careful to place the constant 8608 // evaluation in a block other than then one that uses it (e.g. to hoist 8609 // the address of globals out of a loop). If this is the case, we don't 8610 // want to forward-subst the cast. 8611 if (isa<Constant>(CI->getOperand(0))) 8612 return AnyChange; 8613 8614 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 8615 return true; 8616 8617 if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) || 8618 isa<TruncInst>(I)) && 8619 TLI->optimizeExtendOrTruncateConversion( 8620 I, LI->getLoopFor(I->getParent()), *TTI)) 8621 return true; 8622 8623 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 8624 /// Sink a zext or sext into its user blocks if the target type doesn't 8625 /// fit in one register 8626 if (TLI->getTypeAction(CI->getContext(), 8627 TLI->getValueType(*DL, CI->getType())) == 8628 TargetLowering::TypeExpandInteger) { 8629 return SinkCast(CI); 8630 } else { 8631 if (TLI->optimizeExtendOrTruncateConversion( 8632 I, LI->getLoopFor(I->getParent()), *TTI)) 8633 return true; 8634 8635 bool MadeChange = optimizeExt(I); 8636 return MadeChange | optimizeExtUses(I); 8637 } 8638 } 8639 return AnyChange; 8640 } 8641 8642 if (auto *Cmp = dyn_cast<CmpInst>(I)) 8643 if (optimizeCmp(Cmp, ModifiedDT)) 8644 return true; 8645 8646 if (match(I, m_URem(m_Value(), m_Value()))) 8647 if (optimizeURem(I)) 8648 return true; 8649 8650 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8651 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8652 bool Modified = optimizeLoadExt(LI); 8653 unsigned AS = LI->getPointerAddressSpace(); 8654 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 8655 return Modified; 8656 } 8657 8658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 8659 if (splitMergedValStore(*SI, *DL, *TLI)) 8660 return true; 8661 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8662 unsigned AS = SI->getPointerAddressSpace(); 8663 return optimizeMemoryInst(I, SI->getOperand(1), 8664 SI->getOperand(0)->getType(), AS); 8665 } 8666 8667 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 8668 unsigned AS = RMW->getPointerAddressSpace(); 8669 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); 8670 } 8671 8672 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 8673 unsigned AS = CmpX->getPointerAddressSpace(); 8674 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 8675 CmpX->getCompareOperand()->getType(), AS); 8676 } 8677 8678 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 8679 8680 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 8681 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 8682 return true; 8683 8684 // TODO: Move this into the switch on opcode - it handles shifts already. 8685 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 8686 BinOp->getOpcode() == Instruction::LShr)) { 8687 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 8688 if (CI && TLI->hasExtractBitsInsn()) 8689 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 8690 return true; 8691 } 8692 8693 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 8694 if (GEPI->hasAllZeroIndices()) { 8695 /// The GEP operand must be a pointer, so must its result -> BitCast 8696 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 8697 GEPI->getName(), GEPI->getIterator()); 8698 NC->setDebugLoc(GEPI->getDebugLoc()); 8699 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); 8700 RecursivelyDeleteTriviallyDeadInstructions( 8701 GEPI, TLInfo, nullptr, 8702 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8703 ++NumGEPsElim; 8704 optimizeInst(NC, ModifiedDT); 8705 return true; 8706 } 8707 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8708 return true; 8709 } 8710 } 8711 8712 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8713 // freeze(icmp a, const)) -> icmp (freeze a), const 8714 // This helps generate efficient conditional jumps. 8715 Instruction *CmpI = nullptr; 8716 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8717 CmpI = II; 8718 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8719 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8720 8721 if (CmpI && CmpI->hasOneUse()) { 8722 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8723 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8724 isa<ConstantPointerNull>(Op0); 8725 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8726 isa<ConstantPointerNull>(Op1); 8727 if (Const0 || Const1) { 8728 if (!Const0 || !Const1) { 8729 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator()); 8730 F->takeName(FI); 8731 CmpI->setOperand(Const0 ? 1 : 0, F); 8732 } 8733 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); 8734 FI->eraseFromParent(); 8735 return true; 8736 } 8737 } 8738 return AnyChange; 8739 } 8740 8741 if (tryToSinkFreeOperands(I)) 8742 return true; 8743 8744 switch (I->getOpcode()) { 8745 case Instruction::Shl: 8746 case Instruction::LShr: 8747 case Instruction::AShr: 8748 return optimizeShiftInst(cast<BinaryOperator>(I)); 8749 case Instruction::Call: 8750 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8751 case Instruction::Select: 8752 return optimizeSelectInst(cast<SelectInst>(I)); 8753 case Instruction::ShuffleVector: 8754 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8755 case Instruction::Switch: 8756 return optimizeSwitchInst(cast<SwitchInst>(I)); 8757 case Instruction::ExtractElement: 8758 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8759 case Instruction::Br: 8760 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); 8761 } 8762 8763 return AnyChange; 8764 } 8765 8766 /// Given an OR instruction, check to see if this is a bitreverse 8767 /// idiom. If so, insert the new intrinsic and return true. 8768 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8769 if (!I.getType()->isIntegerTy() || 8770 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8771 TLI->getValueType(*DL, I.getType(), true))) 8772 return false; 8773 8774 SmallVector<Instruction *, 4> Insts; 8775 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8776 return false; 8777 Instruction *LastInst = Insts.back(); 8778 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); 8779 RecursivelyDeleteTriviallyDeadInstructions( 8780 &I, TLInfo, nullptr, 8781 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8782 return true; 8783 } 8784 8785 // In this pass we look for GEP and cast instructions that are used 8786 // across basic blocks and rewrite them to improve basic-block-at-a-time 8787 // selection. 8788 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { 8789 SunkAddrs.clear(); 8790 bool MadeChange = false; 8791 8792 do { 8793 CurInstIterator = BB.begin(); 8794 ModifiedDT = ModifyDT::NotModifyDT; 8795 while (CurInstIterator != BB.end()) { 8796 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8797 if (ModifiedDT != ModifyDT::NotModifyDT) { 8798 // For huge function we tend to quickly go though the inner optmization 8799 // opportunities in the BB. So we go back to the BB head to re-optimize 8800 // each instruction instead of go back to the function head. 8801 if (IsHugeFunc) { 8802 DT.reset(); 8803 getDT(*BB.getParent()); 8804 break; 8805 } else { 8806 return true; 8807 } 8808 } 8809 } 8810 } while (ModifiedDT == ModifyDT::ModifyInstDT); 8811 8812 bool MadeBitReverse = true; 8813 while (MadeBitReverse) { 8814 MadeBitReverse = false; 8815 for (auto &I : reverse(BB)) { 8816 if (makeBitReverse(I)) { 8817 MadeBitReverse = MadeChange = true; 8818 break; 8819 } 8820 } 8821 } 8822 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8823 8824 return MadeChange; 8825 } 8826 8827 // Some CGP optimizations may move or alter what's computed in a block. Check 8828 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8829 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8830 assert(isa<DbgValueInst>(I)); 8831 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8832 8833 // Does this dbg.value refer to a sunk address calculation? 8834 bool AnyChange = false; 8835 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8836 DVI.location_ops().end()); 8837 for (Value *Location : LocationOps) { 8838 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8839 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8840 if (SunkAddr) { 8841 // Point dbg.value at locally computed address, which should give the best 8842 // opportunity to be accurately lowered. This update may change the type 8843 // of pointer being referred to; however this makes no difference to 8844 // debugging information, and we can't generate bitcasts that may affect 8845 // codegen. 8846 DVI.replaceVariableLocationOp(Location, SunkAddr); 8847 AnyChange = true; 8848 } 8849 } 8850 return AnyChange; 8851 } 8852 8853 bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) { 8854 bool AnyChange = false; 8855 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 8856 AnyChange |= fixupDbgVariableRecord(DVR); 8857 return AnyChange; 8858 } 8859 8860 // FIXME: should updating debug-info really cause the "changed" flag to fire, 8861 // which can cause a function to be reprocessed? 8862 bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) { 8863 if (DVR.Type != DbgVariableRecord::LocationType::Value && 8864 DVR.Type != DbgVariableRecord::LocationType::Assign) 8865 return false; 8866 8867 // Does this DbgVariableRecord refer to a sunk address calculation? 8868 bool AnyChange = false; 8869 SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(), 8870 DVR.location_ops().end()); 8871 for (Value *Location : LocationOps) { 8872 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8873 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8874 if (SunkAddr) { 8875 // Point dbg.value at locally computed address, which should give the best 8876 // opportunity to be accurately lowered. This update may change the type 8877 // of pointer being referred to; however this makes no difference to 8878 // debugging information, and we can't generate bitcasts that may affect 8879 // codegen. 8880 DVR.replaceVariableLocationOp(Location, SunkAddr); 8881 AnyChange = true; 8882 } 8883 } 8884 return AnyChange; 8885 } 8886 8887 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) { 8888 DVI->removeFromParent(); 8889 if (isa<PHINode>(VI)) 8890 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8891 else 8892 DVI->insertAfter(VI); 8893 } 8894 8895 static void DbgInserterHelper(DbgVariableRecord *DVR, Instruction *VI) { 8896 DVR->removeFromParent(); 8897 BasicBlock *VIBB = VI->getParent(); 8898 if (isa<PHINode>(VI)) 8899 VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt()); 8900 else 8901 VIBB->insertDbgRecordAfter(DVR, VI); 8902 } 8903 8904 // A llvm.dbg.value may be using a value before its definition, due to 8905 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8906 // them by moving the dbg.value to immediately after the value definition. 8907 // FIXME: Ideally this should never be necessary, and this has the potential 8908 // to re-order dbg.value intrinsics. 8909 bool CodeGenPrepare::placeDbgValues(Function &F) { 8910 bool MadeChange = false; 8911 DominatorTree DT(F); 8912 8913 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) { 8914 SmallVector<Instruction *, 4> VIs; 8915 for (Value *V : DbgItem->location_ops()) 8916 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8917 VIs.push_back(VI); 8918 8919 // This item may depend on multiple instructions, complicating any 8920 // potential sink. This block takes the defensive approach, opting to 8921 // "undef" the item if it has more than one instruction and any of them do 8922 // not dominate iem. 8923 for (Instruction *VI : VIs) { 8924 if (VI->isTerminator()) 8925 continue; 8926 8927 // If VI is a phi in a block with an EHPad terminator, we can't insert 8928 // after it. 8929 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8930 continue; 8931 8932 // If the defining instruction dominates the dbg.value, we do not need 8933 // to move the dbg.value. 8934 if (DT.dominates(VI, Position)) 8935 continue; 8936 8937 // If we depend on multiple instructions and any of them doesn't 8938 // dominate this DVI, we probably can't salvage it: moving it to 8939 // after any of the instructions could cause us to lose the others. 8940 if (VIs.size() > 1) { 8941 LLVM_DEBUG( 8942 dbgs() 8943 << "Unable to find valid location for Debug Value, undefing:\n" 8944 << *DbgItem); 8945 DbgItem->setKillLocation(); 8946 break; 8947 } 8948 8949 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8950 << *DbgItem << ' ' << *VI); 8951 DbgInserterHelper(DbgItem, VI); 8952 MadeChange = true; 8953 ++NumDbgValueMoved; 8954 } 8955 }; 8956 8957 for (BasicBlock &BB : F) { 8958 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8959 // Process dbg.value intrinsics. 8960 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8961 if (DVI) { 8962 DbgProcessor(DVI, DVI); 8963 continue; 8964 } 8965 8966 // If this isn't a dbg.value, process any attached DbgVariableRecord 8967 // records attached to this instruction. 8968 for (DbgVariableRecord &DVR : llvm::make_early_inc_range( 8969 filterDbgVars(Insn.getDbgRecordRange()))) { 8970 if (DVR.Type != DbgVariableRecord::LocationType::Value) 8971 continue; 8972 DbgProcessor(&DVR, &Insn); 8973 } 8974 } 8975 } 8976 8977 return MadeChange; 8978 } 8979 8980 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8981 // probes can be chained dependencies of other regular DAG nodes and block DAG 8982 // combine optimizations. 8983 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8984 bool MadeChange = false; 8985 for (auto &Block : F) { 8986 // Move the rest probes to the beginning of the block. 8987 auto FirstInst = Block.getFirstInsertionPt(); 8988 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8989 ++FirstInst; 8990 BasicBlock::iterator I(FirstInst); 8991 I++; 8992 while (I != Block.end()) { 8993 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8994 II->moveBefore(&*FirstInst); 8995 MadeChange = true; 8996 } 8997 } 8998 } 8999 return MadeChange; 9000 } 9001 9002 /// Scale down both weights to fit into uint32_t. 9003 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 9004 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 9005 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 9006 NewTrue = NewTrue / Scale; 9007 NewFalse = NewFalse / Scale; 9008 } 9009 9010 /// Some targets prefer to split a conditional branch like: 9011 /// \code 9012 /// %0 = icmp ne i32 %a, 0 9013 /// %1 = icmp ne i32 %b, 0 9014 /// %or.cond = or i1 %0, %1 9015 /// br i1 %or.cond, label %TrueBB, label %FalseBB 9016 /// \endcode 9017 /// into multiple branch instructions like: 9018 /// \code 9019 /// bb1: 9020 /// %0 = icmp ne i32 %a, 0 9021 /// br i1 %0, label %TrueBB, label %bb2 9022 /// bb2: 9023 /// %1 = icmp ne i32 %b, 0 9024 /// br i1 %1, label %TrueBB, label %FalseBB 9025 /// \endcode 9026 /// This usually allows instruction selection to do even further optimizations 9027 /// and combine the compare with the branch instruction. Currently this is 9028 /// applied for targets which have "cheap" jump instructions. 9029 /// 9030 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 9031 /// 9032 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { 9033 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 9034 return false; 9035 9036 bool MadeChange = false; 9037 for (auto &BB : F) { 9038 // Does this BB end with the following? 9039 // %cond1 = icmp|fcmp|binary instruction ... 9040 // %cond2 = icmp|fcmp|binary instruction ... 9041 // %cond.or = or|and i1 %cond1, cond2 9042 // br i1 %cond.or label %dest1, label %dest2" 9043 Instruction *LogicOp; 9044 BasicBlock *TBB, *FBB; 9045 if (!match(BB.getTerminator(), 9046 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 9047 continue; 9048 9049 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 9050 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 9051 continue; 9052 9053 // The merging of mostly empty BB can cause a degenerate branch. 9054 if (TBB == FBB) 9055 continue; 9056 9057 unsigned Opc; 9058 Value *Cond1, *Cond2; 9059 if (match(LogicOp, 9060 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 9061 Opc = Instruction::And; 9062 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 9063 m_OneUse(m_Value(Cond2))))) 9064 Opc = Instruction::Or; 9065 else 9066 continue; 9067 9068 auto IsGoodCond = [](Value *Cond) { 9069 return match( 9070 Cond, 9071 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 9072 m_LogicalOr(m_Value(), m_Value())))); 9073 }; 9074 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 9075 continue; 9076 9077 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 9078 9079 // Create a new BB. 9080 auto *TmpBB = 9081 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 9082 BB.getParent(), BB.getNextNode()); 9083 if (IsHugeFunc) 9084 FreshBBs.insert(TmpBB); 9085 9086 // Update original basic block by using the first condition directly by the 9087 // branch instruction and removing the no longer needed and/or instruction. 9088 Br1->setCondition(Cond1); 9089 LogicOp->eraseFromParent(); 9090 9091 // Depending on the condition we have to either replace the true or the 9092 // false successor of the original branch instruction. 9093 if (Opc == Instruction::And) 9094 Br1->setSuccessor(0, TmpBB); 9095 else 9096 Br1->setSuccessor(1, TmpBB); 9097 9098 // Fill in the new basic block. 9099 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 9100 if (auto *I = dyn_cast<Instruction>(Cond2)) { 9101 I->removeFromParent(); 9102 I->insertBefore(Br2); 9103 } 9104 9105 // Update PHI nodes in both successors. The original BB needs to be 9106 // replaced in one successor's PHI nodes, because the branch comes now from 9107 // the newly generated BB (NewBB). In the other successor we need to add one 9108 // incoming edge to the PHI nodes, because both branch instructions target 9109 // now the same successor. Depending on the original branch condition 9110 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 9111 // we perform the correct update for the PHI nodes. 9112 // This doesn't change the successor order of the just created branch 9113 // instruction (or any other instruction). 9114 if (Opc == Instruction::Or) 9115 std::swap(TBB, FBB); 9116 9117 // Replace the old BB with the new BB. 9118 TBB->replacePhiUsesWith(&BB, TmpBB); 9119 9120 // Add another incoming edge from the new BB. 9121 for (PHINode &PN : FBB->phis()) { 9122 auto *Val = PN.getIncomingValueForBlock(&BB); 9123 PN.addIncoming(Val, TmpBB); 9124 } 9125 9126 // Update the branch weights (from SelectionDAGBuilder:: 9127 // FindMergedConditions). 9128 if (Opc == Instruction::Or) { 9129 // Codegen X | Y as: 9130 // BB1: 9131 // jmp_if_X TBB 9132 // jmp TmpBB 9133 // TmpBB: 9134 // jmp_if_Y TBB 9135 // jmp FBB 9136 // 9137 9138 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 9139 // The requirement is that 9140 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 9141 // = TrueProb for original BB. 9142 // Assuming the original weights are A and B, one choice is to set BB1's 9143 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 9144 // assumes that 9145 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 9146 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 9147 // TmpBB, but the math is more complicated. 9148 uint64_t TrueWeight, FalseWeight; 9149 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 9150 uint64_t NewTrueWeight = TrueWeight; 9151 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 9152 scaleWeights(NewTrueWeight, NewFalseWeight); 9153 Br1->setMetadata(LLVMContext::MD_prof, 9154 MDBuilder(Br1->getContext()) 9155 .createBranchWeights(TrueWeight, FalseWeight, 9156 hasBranchWeightOrigin(*Br1))); 9157 9158 NewTrueWeight = TrueWeight; 9159 NewFalseWeight = 2 * FalseWeight; 9160 scaleWeights(NewTrueWeight, NewFalseWeight); 9161 Br2->setMetadata(LLVMContext::MD_prof, 9162 MDBuilder(Br2->getContext()) 9163 .createBranchWeights(TrueWeight, FalseWeight)); 9164 } 9165 } else { 9166 // Codegen X & Y as: 9167 // BB1: 9168 // jmp_if_X TmpBB 9169 // jmp FBB 9170 // TmpBB: 9171 // jmp_if_Y TBB 9172 // jmp FBB 9173 // 9174 // This requires creation of TmpBB after CurBB. 9175 9176 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 9177 // The requirement is that 9178 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 9179 // = FalseProb for original BB. 9180 // Assuming the original weights are A and B, one choice is to set BB1's 9181 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 9182 // assumes that 9183 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 9184 uint64_t TrueWeight, FalseWeight; 9185 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 9186 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 9187 uint64_t NewFalseWeight = FalseWeight; 9188 scaleWeights(NewTrueWeight, NewFalseWeight); 9189 Br1->setMetadata(LLVMContext::MD_prof, 9190 MDBuilder(Br1->getContext()) 9191 .createBranchWeights(TrueWeight, FalseWeight)); 9192 9193 NewTrueWeight = 2 * TrueWeight; 9194 NewFalseWeight = FalseWeight; 9195 scaleWeights(NewTrueWeight, NewFalseWeight); 9196 Br2->setMetadata(LLVMContext::MD_prof, 9197 MDBuilder(Br2->getContext()) 9198 .createBranchWeights(TrueWeight, FalseWeight)); 9199 } 9200 } 9201 9202 ModifiedDT = ModifyDT::ModifyBBDT; 9203 MadeChange = true; 9204 9205 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 9206 TmpBB->dump()); 9207 } 9208 return MadeChange; 9209 } 9210