xref: /llvm-project/llvm/lib/CodeGen/CalcSpillWeights.cpp (revision 735ab61ac828bd61398e6847d60e308fdf2b54ec)
1 //===- CalcSpillWeights.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/CalcSpillWeights.h"
10 #include "llvm/ADT/SmallPtrSet.h"
11 #include "llvm/CodeGen/LiveInterval.h"
12 #include "llvm/CodeGen/LiveIntervals.h"
13 #include "llvm/CodeGen/MachineFunction.h"
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/CodeGen/MachineLoopInfo.h"
16 #include "llvm/CodeGen/MachineOperand.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/StackMaps.h"
19 #include "llvm/CodeGen/TargetInstrInfo.h"
20 #include "llvm/CodeGen/TargetRegisterInfo.h"
21 #include "llvm/CodeGen/TargetSubtargetInfo.h"
22 #include "llvm/CodeGen/VirtRegMap.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <cassert>
27 #include <tuple>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "calcspillweights"
32 
33 void VirtRegAuxInfo::calculateSpillWeightsAndHints() {
34   LLVM_DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
35                     << "********** Function: " << MF.getName() << '\n');
36 
37   MachineRegisterInfo &MRI = MF.getRegInfo();
38   for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
39     Register Reg = Register::index2VirtReg(I);
40     if (MRI.reg_nodbg_empty(Reg))
41       continue;
42     calculateSpillWeightAndHint(LIS.getInterval(Reg));
43   }
44 }
45 
46 // Return the preferred allocation register for reg, given a COPY instruction.
47 Register VirtRegAuxInfo::copyHint(const MachineInstr *MI, unsigned Reg,
48                                   const TargetRegisterInfo &TRI,
49                                   const MachineRegisterInfo &MRI) {
50   unsigned Sub, HSub;
51   Register HReg;
52   if (MI->getOperand(0).getReg() == Reg) {
53     Sub = MI->getOperand(0).getSubReg();
54     HReg = MI->getOperand(1).getReg();
55     HSub = MI->getOperand(1).getSubReg();
56   } else {
57     Sub = MI->getOperand(1).getSubReg();
58     HReg = MI->getOperand(0).getReg();
59     HSub = MI->getOperand(0).getSubReg();
60   }
61 
62   if (!HReg)
63     return 0;
64 
65   if (HReg.isVirtual())
66     return Sub == HSub ? HReg : Register();
67 
68   const TargetRegisterClass *RC = MRI.getRegClass(Reg);
69   MCRegister CopiedPReg = HSub ? TRI.getSubReg(HReg, HSub) : HReg.asMCReg();
70   if (RC->contains(CopiedPReg))
71     return CopiedPReg;
72 
73   // Check if reg:sub matches so that a super register could be hinted.
74   if (Sub)
75     return TRI.getMatchingSuperReg(CopiedPReg, Sub, RC);
76 
77   return 0;
78 }
79 
80 // Check if all values in LI are rematerializable
81 bool VirtRegAuxInfo::isRematerializable(const LiveInterval &LI,
82                                         const LiveIntervals &LIS,
83                                         const VirtRegMap &VRM,
84                                         const TargetInstrInfo &TII) {
85   Register Reg = LI.reg();
86   Register Original = VRM.getOriginal(Reg);
87   for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
88        I != E; ++I) {
89     const VNInfo *VNI = *I;
90     if (VNI->isUnused())
91       continue;
92     if (VNI->isPHIDef())
93       return false;
94 
95     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
96     assert(MI && "Dead valno in interval");
97 
98     // Trace copies introduced by live range splitting.  The inline
99     // spiller can rematerialize through these copies, so the spill
100     // weight must reflect this.
101     while (TII.isFullCopyInstr(*MI)) {
102       // The copy destination must match the interval register.
103       if (MI->getOperand(0).getReg() != Reg)
104         return false;
105 
106       // Get the source register.
107       Reg = MI->getOperand(1).getReg();
108 
109       // If the original (pre-splitting) registers match this
110       // copy came from a split.
111       if (!Reg.isVirtual() || VRM.getOriginal(Reg) != Original)
112         return false;
113 
114       // Follow the copy live-in value.
115       const LiveInterval &SrcLI = LIS.getInterval(Reg);
116       LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
117       VNI = SrcQ.valueIn();
118       assert(VNI && "Copy from non-existing value");
119       if (VNI->isPHIDef())
120         return false;
121       MI = LIS.getInstructionFromIndex(VNI->def);
122       assert(MI && "Dead valno in interval");
123     }
124 
125     if (!TII.isTriviallyReMaterializable(*MI))
126       return false;
127   }
128   return true;
129 }
130 
131 bool VirtRegAuxInfo::isLiveAtStatepointVarArg(LiveInterval &LI) {
132   return any_of(VRM.getRegInfo().reg_operands(LI.reg()),
133                 [](MachineOperand &MO) {
134     MachineInstr *MI = MO.getParent();
135     if (MI->getOpcode() != TargetOpcode::STATEPOINT)
136       return false;
137     return StatepointOpers(MI).getVarIdx() <= MO.getOperandNo();
138   });
139 }
140 
141 void VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &LI) {
142   float Weight = weightCalcHelper(LI);
143   // Check if unspillable.
144   if (Weight < 0)
145     return;
146   LI.setWeight(Weight);
147 }
148 
149 static bool canMemFoldInlineAsm(LiveInterval &LI,
150                                 const MachineRegisterInfo &MRI) {
151   for (const MachineOperand &MO : MRI.reg_operands(LI.reg())) {
152     const MachineInstr *MI = MO.getParent();
153     if (MI->isInlineAsm() && MI->mayFoldInlineAsmRegOp(MI->getOperandNo(&MO)))
154       return true;
155   }
156 
157   return false;
158 }
159 
160 float VirtRegAuxInfo::weightCalcHelper(LiveInterval &LI, SlotIndex *Start,
161                                        SlotIndex *End) {
162   MachineRegisterInfo &MRI = MF.getRegInfo();
163   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
164   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
165   MachineBasicBlock *MBB = nullptr;
166   float TotalWeight = 0;
167   unsigned NumInstr = 0; // Number of instructions using LI
168   SmallPtrSet<MachineInstr *, 8> Visited;
169 
170   std::pair<unsigned, Register> TargetHint = MRI.getRegAllocationHint(LI.reg());
171 
172   if (LI.isSpillable()) {
173     Register Reg = LI.reg();
174     Register Original = VRM.getOriginal(Reg);
175     const LiveInterval &OrigInt = LIS.getInterval(Original);
176     // li comes from a split of OrigInt. If OrigInt was marked
177     // as not spillable, make sure the new interval is marked
178     // as not spillable as well.
179     if (!OrigInt.isSpillable())
180       LI.markNotSpillable();
181   }
182 
183   // Don't recompute spill weight for an unspillable register.
184   bool IsSpillable = LI.isSpillable();
185 
186   bool IsLocalSplitArtifact = Start && End;
187 
188   // Do not update future local split artifacts.
189   bool ShouldUpdateLI = !IsLocalSplitArtifact;
190 
191   if (IsLocalSplitArtifact) {
192     MachineBasicBlock *LocalMBB = LIS.getMBBFromIndex(*End);
193     assert(LocalMBB == LIS.getMBBFromIndex(*Start) &&
194            "start and end are expected to be in the same basic block");
195 
196     // Local split artifact will have 2 additional copy instructions and they
197     // will be in the same BB.
198     // localLI = COPY other
199     // ...
200     // other   = COPY localLI
201     TotalWeight +=
202         LiveIntervals::getSpillWeight(true, false, &MBFI, LocalMBB, PSI);
203     TotalWeight +=
204         LiveIntervals::getSpillWeight(false, true, &MBFI, LocalMBB, PSI);
205 
206     NumInstr += 2;
207   }
208 
209   // CopyHint is a sortable hint derived from a COPY instruction.
210   struct CopyHint {
211     Register Reg;
212     float Weight;
213     CopyHint(Register R, float W) : Reg(R), Weight(W) {}
214     bool operator<(const CopyHint &Rhs) const {
215       // Always prefer any physreg hint.
216       if (Reg.isPhysical() != Rhs.Reg.isPhysical())
217         return Reg.isPhysical();
218       if (Weight != Rhs.Weight)
219         return (Weight > Rhs.Weight);
220       return Reg.id() < Rhs.Reg.id(); // Tie-breaker.
221     }
222   };
223 
224   bool IsExiting = false;
225   SmallDenseMap<Register, float, 8> Hint;
226   for (MachineRegisterInfo::reg_instr_nodbg_iterator
227            I = MRI.reg_instr_nodbg_begin(LI.reg()),
228            E = MRI.reg_instr_nodbg_end();
229        I != E;) {
230     MachineInstr *MI = &*(I++);
231 
232     // For local split artifacts, we are interested only in instructions between
233     // the expected start and end of the range.
234     SlotIndex SI = LIS.getInstructionIndex(*MI);
235     if (IsLocalSplitArtifact && ((SI < *Start) || (SI > *End)))
236       continue;
237 
238     NumInstr++;
239     bool identityCopy = false;
240     auto DestSrc = TII.isCopyInstr(*MI);
241     if (DestSrc) {
242       const MachineOperand *DestRegOp = DestSrc->Destination;
243       const MachineOperand *SrcRegOp = DestSrc->Source;
244       identityCopy = DestRegOp->getReg() == SrcRegOp->getReg() &&
245                      DestRegOp->getSubReg() == SrcRegOp->getSubReg();
246     }
247 
248     if (identityCopy || MI->isImplicitDef())
249       continue;
250     if (!Visited.insert(MI).second)
251       continue;
252 
253     // For terminators that produce values, ask the backend if the register is
254     // not spillable.
255     if (TII.isUnspillableTerminator(MI) &&
256         MI->definesRegister(LI.reg(), /*TRI=*/nullptr)) {
257       LI.markNotSpillable();
258       return -1.0f;
259     }
260 
261     // Force Weight onto the stack so that x86 doesn't add hidden precision.
262     stack_float_t Weight = 1.0f;
263     if (IsSpillable) {
264       // Get loop info for mi.
265       if (MI->getParent() != MBB) {
266         MBB = MI->getParent();
267         const MachineLoop *Loop = Loops.getLoopFor(MBB);
268         IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
269       }
270 
271       // Calculate instr weight.
272       bool Reads, Writes;
273       std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
274       Weight = LiveIntervals::getSpillWeight(Writes, Reads, &MBFI, *MI, PSI);
275 
276       // Give extra weight to what looks like a loop induction variable update.
277       if (Writes && IsExiting && LIS.isLiveOutOfMBB(LI, MBB))
278         Weight *= 3;
279 
280       TotalWeight += Weight;
281     }
282 
283     // Get allocation hints from copies.
284     if (!TII.isCopyInstr(*MI))
285       continue;
286     Register HintReg = copyHint(MI, LI.reg(), TRI, MRI);
287     if (HintReg && (HintReg.isVirtual() || MRI.isAllocatable(HintReg)))
288       Hint[HintReg] += Weight;
289   }
290 
291   // Pass all the sorted copy hints to mri.
292   if (ShouldUpdateLI && Hint.size()) {
293     // Remove a generic hint if previously added by target.
294     if (TargetHint.first == 0 && TargetHint.second)
295       MRI.clearSimpleHint(LI.reg());
296 
297     // Don't add the target-type hint again.
298     Register SkipReg = TargetHint.first != 0 ? TargetHint.second : Register();
299     SmallVector<CopyHint, 8> RegHints;
300     for (const auto &[Reg, Weight] : Hint) {
301       if (Reg != SkipReg)
302         RegHints.emplace_back(Reg, Weight);
303     }
304     sort(RegHints);
305     for (const auto &[Reg, Weight] : RegHints)
306       MRI.addRegAllocationHint(LI.reg(), Reg);
307 
308     // Weakly boost the spill weight of hinted registers.
309     TotalWeight *= 1.01F;
310   }
311 
312   // If the live interval was already unspillable, leave it that way.
313   if (!IsSpillable)
314     return -1.0;
315 
316   // Mark li as unspillable if all live ranges are tiny and the interval
317   // is not live at any reg mask.  If the interval is live at a reg mask
318   // spilling may be required. If li is live as use in statepoint instruction
319   // spilling may be required due to if we mark interval with use in statepoint
320   // as not spillable we are risky to end up with no register to allocate.
321   // At the same time STATEPOINT instruction is perfectly fine to have this
322   // operand on stack, so spilling such interval and folding its load from stack
323   // into instruction itself makes perfect sense.
324   if (ShouldUpdateLI && LI.isZeroLength(LIS.getSlotIndexes()) &&
325       !LI.isLiveAtIndexes(LIS.getRegMaskSlots()) &&
326       !isLiveAtStatepointVarArg(LI) && !canMemFoldInlineAsm(LI, MRI)) {
327     LI.markNotSpillable();
328     return -1.0;
329   }
330 
331   // If all of the definitions of the interval are re-materializable,
332   // it is a preferred candidate for spilling.
333   // FIXME: this gets much more complicated once we support non-trivial
334   // re-materialization.
335   if (isRematerializable(LI, LIS, VRM, *MF.getSubtarget().getInstrInfo()))
336     TotalWeight *= 0.5F;
337 
338   if (IsLocalSplitArtifact)
339     return normalize(TotalWeight, Start->distance(*End), NumInstr);
340   return normalize(TotalWeight, LI.getSize(), NumInstr);
341 }
342