1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/ADT/TinyPtrVector.h" 32 #include "llvm/ADT/Twine.h" 33 #include "llvm/Analysis/ConstantFolding.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 44 #include "llvm/CodeGen/MachineConstantPool.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineInstrBundle.h" 51 #include "llvm/CodeGen/MachineJumpTableInfo.h" 52 #include "llvm/CodeGen/MachineLoopInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 55 #include "llvm/CodeGen/MachineOperand.h" 56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/Config/config.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Comdat.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/EHPersonalities.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GCStrategy.h" 75 #include "llvm/IR/GlobalAlias.h" 76 #include "llvm/IR/GlobalIFunc.h" 77 #include "llvm/IR/GlobalObject.h" 78 #include "llvm/IR/GlobalValue.h" 79 #include "llvm/IR/GlobalVariable.h" 80 #include "llvm/IR/Instruction.h" 81 #include "llvm/IR/Mangler.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PseudoProbe.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/IR/ValueHandle.h" 89 #include "llvm/MC/MCAsmInfo.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCDirectives.h" 92 #include "llvm/MC/MCExpr.h" 93 #include "llvm/MC/MCInst.h" 94 #include "llvm/MC/MCSchedule.h" 95 #include "llvm/MC/MCSection.h" 96 #include "llvm/MC/MCSectionCOFF.h" 97 #include "llvm/MC/MCSectionELF.h" 98 #include "llvm/MC/MCSectionMachO.h" 99 #include "llvm/MC/MCSectionXCOFF.h" 100 #include "llvm/MC/MCStreamer.h" 101 #include "llvm/MC/MCSubtargetInfo.h" 102 #include "llvm/MC/MCSymbol.h" 103 #include "llvm/MC/MCSymbolELF.h" 104 #include "llvm/MC/MCTargetOptions.h" 105 #include "llvm/MC/MCValue.h" 106 #include "llvm/MC/SectionKind.h" 107 #include "llvm/Object/ELFTypes.h" 108 #include "llvm/Pass.h" 109 #include "llvm/Remarks/RemarkStreamer.h" 110 #include "llvm/Support/Casting.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Compiler.h" 113 #include "llvm/Support/ErrorHandling.h" 114 #include "llvm/Support/FileSystem.h" 115 #include "llvm/Support/Format.h" 116 #include "llvm/Support/MathExtras.h" 117 #include "llvm/Support/Path.h" 118 #include "llvm/Support/VCSRevision.h" 119 #include "llvm/Support/raw_ostream.h" 120 #include "llvm/Target/TargetLoweringObjectFile.h" 121 #include "llvm/Target/TargetMachine.h" 122 #include "llvm/Target/TargetOptions.h" 123 #include "llvm/TargetParser/Triple.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <cinttypes> 127 #include <cstdint> 128 #include <iterator> 129 #include <memory> 130 #include <optional> 131 #include <string> 132 #include <utility> 133 #include <vector> 134 135 using namespace llvm; 136 137 #define DEBUG_TYPE "asm-printer" 138 139 // This is a replication of fields of object::PGOAnalysisMap::Features. It 140 // should match the order of the fields so that 141 // `object::PGOAnalysisMap::Features::decode(PgoAnalysisMapFeatures.getBits())` 142 // succeeds. 143 enum class PGOMapFeaturesEnum { 144 None, 145 FuncEntryCount, 146 BBFreq, 147 BrProb, 148 All, 149 }; 150 static cl::bits<PGOMapFeaturesEnum> PgoAnalysisMapFeatures( 151 "pgo-analysis-map", cl::Hidden, cl::CommaSeparated, 152 cl::values( 153 clEnumValN(PGOMapFeaturesEnum::None, "none", "Disable all options"), 154 clEnumValN(PGOMapFeaturesEnum::FuncEntryCount, "func-entry-count", 155 "Function Entry Count"), 156 clEnumValN(PGOMapFeaturesEnum::BBFreq, "bb-freq", 157 "Basic Block Frequency"), 158 clEnumValN(PGOMapFeaturesEnum::BrProb, "br-prob", "Branch Probability"), 159 clEnumValN(PGOMapFeaturesEnum::All, "all", "Enable all options")), 160 cl::desc( 161 "Enable extended information within the SHT_LLVM_BB_ADDR_MAP that is " 162 "extracted from PGO related analysis.")); 163 164 static cl::opt<bool> BBAddrMapSkipEmitBBEntries( 165 "basic-block-address-map-skip-bb-entries", 166 cl::desc("Skip emitting basic block entries in the SHT_LLVM_BB_ADDR_MAP " 167 "section. It's used to save binary size when BB entries are " 168 "unnecessary for some PGOAnalysisMap features."), 169 cl::Hidden, cl::init(false)); 170 171 static cl::opt<bool> EmitJumpTableSizesSection( 172 "emit-jump-table-sizes-section", 173 cl::desc("Emit a section containing jump table addresses and sizes"), 174 cl::Hidden, cl::init(false)); 175 176 // This isn't turned on by default, since several of the scheduling models are 177 // not completely accurate, and we don't want to be misleading. 178 static cl::opt<bool> PrintLatency( 179 "asm-print-latency", 180 cl::desc("Print instruction latencies as verbose asm comments"), cl::Hidden, 181 cl::init(false)); 182 183 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 184 185 char AsmPrinter::ID = 0; 186 187 namespace { 188 class AddrLabelMapCallbackPtr final : CallbackVH { 189 AddrLabelMap *Map = nullptr; 190 191 public: 192 AddrLabelMapCallbackPtr() = default; 193 AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {} 194 195 void setPtr(BasicBlock *BB) { 196 ValueHandleBase::operator=(BB); 197 } 198 199 void setMap(AddrLabelMap *map) { Map = map; } 200 201 void deleted() override; 202 void allUsesReplacedWith(Value *V2) override; 203 }; 204 } // namespace 205 206 class llvm::AddrLabelMap { 207 MCContext &Context; 208 struct AddrLabelSymEntry { 209 /// The symbols for the label. 210 TinyPtrVector<MCSymbol *> Symbols; 211 212 Function *Fn; // The containing function of the BasicBlock. 213 unsigned Index; // The index in BBCallbacks for the BasicBlock. 214 }; 215 216 DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols; 217 218 /// Callbacks for the BasicBlock's that we have entries for. We use this so 219 /// we get notified if a block is deleted or RAUWd. 220 std::vector<AddrLabelMapCallbackPtr> BBCallbacks; 221 222 /// This is a per-function list of symbols whose corresponding BasicBlock got 223 /// deleted. These symbols need to be emitted at some point in the file, so 224 /// AsmPrinter emits them after the function body. 225 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>> 226 DeletedAddrLabelsNeedingEmission; 227 228 public: 229 AddrLabelMap(MCContext &context) : Context(context) {} 230 231 ~AddrLabelMap() { 232 assert(DeletedAddrLabelsNeedingEmission.empty() && 233 "Some labels for deleted blocks never got emitted"); 234 } 235 236 ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB); 237 238 void takeDeletedSymbolsForFunction(Function *F, 239 std::vector<MCSymbol *> &Result); 240 241 void UpdateForDeletedBlock(BasicBlock *BB); 242 void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New); 243 }; 244 245 ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) { 246 assert(BB->hasAddressTaken() && 247 "Shouldn't get label for block without address taken"); 248 AddrLabelSymEntry &Entry = AddrLabelSymbols[BB]; 249 250 // If we already had an entry for this block, just return it. 251 if (!Entry.Symbols.empty()) { 252 assert(BB->getParent() == Entry.Fn && "Parent changed"); 253 return Entry.Symbols; 254 } 255 256 // Otherwise, this is a new entry, create a new symbol for it and add an 257 // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd. 258 BBCallbacks.emplace_back(BB); 259 BBCallbacks.back().setMap(this); 260 Entry.Index = BBCallbacks.size() - 1; 261 Entry.Fn = BB->getParent(); 262 MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol() 263 : Context.createTempSymbol(); 264 Entry.Symbols.push_back(Sym); 265 return Entry.Symbols; 266 } 267 268 /// If we have any deleted symbols for F, return them. 269 void AddrLabelMap::takeDeletedSymbolsForFunction( 270 Function *F, std::vector<MCSymbol *> &Result) { 271 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I = 272 DeletedAddrLabelsNeedingEmission.find(F); 273 274 // If there are no entries for the function, just return. 275 if (I == DeletedAddrLabelsNeedingEmission.end()) 276 return; 277 278 // Otherwise, take the list. 279 std::swap(Result, I->second); 280 DeletedAddrLabelsNeedingEmission.erase(I); 281 } 282 283 //===- Address of Block Management ----------------------------------------===// 284 285 ArrayRef<MCSymbol *> 286 AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) { 287 // Lazily create AddrLabelSymbols. 288 if (!AddrLabelSymbols) 289 AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext); 290 return AddrLabelSymbols->getAddrLabelSymbolToEmit( 291 const_cast<BasicBlock *>(BB)); 292 } 293 294 void AsmPrinter::takeDeletedSymbolsForFunction( 295 const Function *F, std::vector<MCSymbol *> &Result) { 296 // If no blocks have had their addresses taken, we're done. 297 if (!AddrLabelSymbols) 298 return; 299 return AddrLabelSymbols->takeDeletedSymbolsForFunction( 300 const_cast<Function *>(F), Result); 301 } 302 303 void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) { 304 // If the block got deleted, there is no need for the symbol. If the symbol 305 // was already emitted, we can just forget about it, otherwise we need to 306 // queue it up for later emission when the function is output. 307 AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]); 308 AddrLabelSymbols.erase(BB); 309 assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?"); 310 BBCallbacks[Entry.Index] = nullptr; // Clear the callback. 311 312 #if !LLVM_MEMORY_SANITIZER_BUILD 313 // BasicBlock is destroyed already, so this access is UB detectable by msan. 314 assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) && 315 "Block/parent mismatch"); 316 #endif 317 318 for (MCSymbol *Sym : Entry.Symbols) { 319 if (Sym->isDefined()) 320 return; 321 322 // If the block is not yet defined, we need to emit it at the end of the 323 // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list 324 // for the containing Function. Since the block is being deleted, its 325 // parent may already be removed, we have to get the function from 'Entry'. 326 DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym); 327 } 328 } 329 330 void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) { 331 // Get the entry for the RAUW'd block and remove it from our map. 332 AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]); 333 AddrLabelSymbols.erase(Old); 334 assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?"); 335 336 AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New]; 337 338 // If New is not address taken, just move our symbol over to it. 339 if (NewEntry.Symbols.empty()) { 340 BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback. 341 NewEntry = std::move(OldEntry); // Set New's entry. 342 return; 343 } 344 345 BBCallbacks[OldEntry.Index] = nullptr; // Update the callback. 346 347 // Otherwise, we need to add the old symbols to the new block's set. 348 llvm::append_range(NewEntry.Symbols, OldEntry.Symbols); 349 } 350 351 void AddrLabelMapCallbackPtr::deleted() { 352 Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr())); 353 } 354 355 void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) { 356 Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2)); 357 } 358 359 /// getGVAlignment - Return the alignment to use for the specified global 360 /// value. This rounds up to the preferred alignment if possible and legal. 361 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 362 Align InAlign) { 363 Align Alignment; 364 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 365 Alignment = DL.getPreferredAlign(GVar); 366 367 // If InAlign is specified, round it to it. 368 if (InAlign > Alignment) 369 Alignment = InAlign; 370 371 // If the GV has a specified alignment, take it into account. 372 const MaybeAlign GVAlign(GV->getAlign()); 373 if (!GVAlign) 374 return Alignment; 375 376 assert(GVAlign && "GVAlign must be set"); 377 378 // If the GVAlign is larger than NumBits, or if we are required to obey 379 // NumBits because the GV has an assigned section, obey it. 380 if (*GVAlign > Alignment || GV->hasSection()) 381 Alignment = *GVAlign; 382 return Alignment; 383 } 384 385 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 386 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 387 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 388 SM(*this) { 389 VerboseAsm = OutStreamer->isVerboseAsm(); 390 DwarfUsesRelocationsAcrossSections = 391 MAI->doesDwarfUseRelocationsAcrossSections(); 392 } 393 394 AsmPrinter::~AsmPrinter() { 395 assert(!DD && Handlers.size() == NumUserHandlers && 396 "Debug/EH info didn't get finalized"); 397 } 398 399 bool AsmPrinter::isPositionIndependent() const { 400 return TM.isPositionIndependent(); 401 } 402 403 /// getFunctionNumber - Return a unique ID for the current function. 404 unsigned AsmPrinter::getFunctionNumber() const { 405 return MF->getFunctionNumber(); 406 } 407 408 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 409 return *TM.getObjFileLowering(); 410 } 411 412 const DataLayout &AsmPrinter::getDataLayout() const { 413 assert(MMI && "MMI could not be nullptr!"); 414 return MMI->getModule()->getDataLayout(); 415 } 416 417 // Do not use the cached DataLayout because some client use it without a Module 418 // (dsymutil, llvm-dwarfdump). 419 unsigned AsmPrinter::getPointerSize() const { 420 return TM.getPointerSize(0); // FIXME: Default address space 421 } 422 423 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 424 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 425 return MF->getSubtarget<MCSubtargetInfo>(); 426 } 427 428 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 429 S.emitInstruction(Inst, getSubtargetInfo()); 430 } 431 432 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 433 if (DD) { 434 assert(OutStreamer->hasRawTextSupport() && 435 "Expected assembly output mode."); 436 // This is NVPTX specific and it's unclear why. 437 // PR51079: If we have code without debug information we need to give up. 438 DISubprogram *MFSP = MF.getFunction().getSubprogram(); 439 if (!MFSP) 440 return; 441 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 442 } 443 } 444 445 /// getCurrentSection() - Return the current section we are emitting to. 446 const MCSection *AsmPrinter::getCurrentSection() const { 447 return OutStreamer->getCurrentSectionOnly(); 448 } 449 450 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 451 AU.setPreservesAll(); 452 MachineFunctionPass::getAnalysisUsage(AU); 453 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 454 AU.addRequired<GCModuleInfo>(); 455 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 456 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 457 } 458 459 bool AsmPrinter::doInitialization(Module &M) { 460 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 461 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 462 HasSplitStack = false; 463 HasNoSplitStack = false; 464 DbgInfoAvailable = !M.debug_compile_units().empty(); 465 466 AddrLabelSymbols = nullptr; 467 468 // Initialize TargetLoweringObjectFile. 469 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 470 .Initialize(OutContext, TM); 471 472 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 473 .getModuleMetadata(M); 474 475 // On AIX, we delay emitting any section information until 476 // after emitting the .file pseudo-op. This allows additional 477 // information (such as the embedded command line) to be associated 478 // with all sections in the object file rather than a single section. 479 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) 480 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 481 482 // Emit the version-min deployment target directive if needed. 483 // 484 // FIXME: If we end up with a collection of these sorts of Darwin-specific 485 // or ELF-specific things, it may make sense to have a platform helper class 486 // that will work with the target helper class. For now keep it here, as the 487 // alternative is duplicated code in each of the target asm printers that 488 // use the directive, where it would need the same conditionalization 489 // anyway. 490 const Triple &Target = TM.getTargetTriple(); 491 if (Target.isOSBinFormatMachO() && Target.isOSDarwin()) { 492 Triple TVT(M.getDarwinTargetVariantTriple()); 493 OutStreamer->emitVersionForTarget( 494 Target, M.getSDKVersion(), 495 M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT, 496 M.getDarwinTargetVariantSDKVersion()); 497 } 498 499 // Allow the target to emit any magic that it wants at the start of the file. 500 emitStartOfAsmFile(M); 501 502 // Very minimal debug info. It is ignored if we emit actual debug info. If we 503 // don't, this at least helps the user find where a global came from. 504 if (MAI->hasSingleParameterDotFile()) { 505 // .file "foo.c" 506 if (MAI->isAIX()) { 507 const char VerStr[] = 508 #ifdef PACKAGE_VENDOR 509 PACKAGE_VENDOR " " 510 #endif 511 PACKAGE_NAME " version " PACKAGE_VERSION 512 #ifdef LLVM_REVISION 513 " (" LLVM_REVISION ")" 514 #endif 515 ; 516 // TODO: Add timestamp and description. 517 OutStreamer->emitFileDirective(M.getSourceFileName(), VerStr, "", ""); 518 } else { 519 OutStreamer->emitFileDirective( 520 llvm::sys::path::filename(M.getSourceFileName())); 521 } 522 } 523 524 // On AIX, emit bytes for llvm.commandline metadata after .file so that the 525 // C_INFO symbol is preserved if any csect is kept by the linker. 526 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 527 emitModuleCommandLines(M); 528 // Now we can generate section information. 529 OutStreamer->switchSection( 530 OutContext.getObjectFileInfo()->getTextSection()); 531 532 // To work around an AIX assembler and/or linker bug, generate 533 // a rename for the default text-section symbol name. This call has 534 // no effect when generating object code directly. 535 MCSection *TextSection = 536 OutStreamer->getContext().getObjectFileInfo()->getTextSection(); 537 MCSymbolXCOFF *XSym = 538 static_cast<MCSectionXCOFF *>(TextSection)->getQualNameSymbol(); 539 if (XSym->hasRename()) 540 OutStreamer->emitXCOFFRenameDirective(XSym, XSym->getSymbolTableName()); 541 } 542 543 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 544 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 545 for (const auto &I : *MI) 546 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) 547 MP->beginAssembly(M, *MI, *this); 548 549 // Emit module-level inline asm if it exists. 550 if (!M.getModuleInlineAsm().empty()) { 551 OutStreamer->AddComment("Start of file scope inline assembly"); 552 OutStreamer->addBlankLine(); 553 emitInlineAsm( 554 M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), 555 TM.Options.MCOptions, nullptr, 556 InlineAsm::AsmDialect(TM.getMCAsmInfo()->getAssemblerDialect())); 557 OutStreamer->AddComment("End of file scope inline assembly"); 558 OutStreamer->addBlankLine(); 559 } 560 561 if (MAI->doesSupportDebugInformation()) { 562 bool EmitCodeView = M.getCodeViewFlag(); 563 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) 564 Handlers.push_back(std::make_unique<CodeViewDebug>(this)); 565 if (!EmitCodeView || M.getDwarfVersion()) { 566 if (hasDebugInfo()) { 567 DD = new DwarfDebug(this); 568 Handlers.push_back(std::unique_ptr<DwarfDebug>(DD)); 569 } 570 } 571 } 572 573 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) 574 PP = std::make_unique<PseudoProbeHandler>(this); 575 576 switch (MAI->getExceptionHandlingType()) { 577 case ExceptionHandling::None: 578 // We may want to emit CFI for debug. 579 [[fallthrough]]; 580 case ExceptionHandling::SjLj: 581 case ExceptionHandling::DwarfCFI: 582 case ExceptionHandling::ARM: 583 for (auto &F : M.getFunctionList()) { 584 if (getFunctionCFISectionType(F) != CFISection::None) 585 ModuleCFISection = getFunctionCFISectionType(F); 586 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence 587 // the module needs .eh_frame. If we have found that case, we are done. 588 if (ModuleCFISection == CFISection::EH) 589 break; 590 } 591 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || 592 usesCFIWithoutEH() || ModuleCFISection != CFISection::EH); 593 break; 594 default: 595 break; 596 } 597 598 EHStreamer *ES = nullptr; 599 switch (MAI->getExceptionHandlingType()) { 600 case ExceptionHandling::None: 601 if (!usesCFIWithoutEH()) 602 break; 603 [[fallthrough]]; 604 case ExceptionHandling::SjLj: 605 case ExceptionHandling::DwarfCFI: 606 case ExceptionHandling::ZOS: 607 ES = new DwarfCFIException(this); 608 break; 609 case ExceptionHandling::ARM: 610 ES = new ARMException(this); 611 break; 612 case ExceptionHandling::WinEH: 613 switch (MAI->getWinEHEncodingType()) { 614 default: llvm_unreachable("unsupported unwinding information encoding"); 615 case WinEH::EncodingType::Invalid: 616 break; 617 case WinEH::EncodingType::X86: 618 case WinEH::EncodingType::Itanium: 619 ES = new WinException(this); 620 break; 621 } 622 break; 623 case ExceptionHandling::Wasm: 624 ES = new WasmException(this); 625 break; 626 case ExceptionHandling::AIX: 627 ES = new AIXException(this); 628 break; 629 } 630 if (ES) 631 Handlers.push_back(std::unique_ptr<EHStreamer>(ES)); 632 633 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 634 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 635 EHHandlers.push_back(std::make_unique<WinCFGuard>(this)); 636 637 for (auto &Handler : Handlers) 638 Handler->beginModule(&M); 639 for (auto &Handler : EHHandlers) 640 Handler->beginModule(&M); 641 642 return false; 643 } 644 645 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 646 if (!MAI.hasWeakDefCanBeHiddenDirective()) 647 return false; 648 649 return GV->canBeOmittedFromSymbolTable(); 650 } 651 652 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 653 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 654 switch (Linkage) { 655 case GlobalValue::CommonLinkage: 656 case GlobalValue::LinkOnceAnyLinkage: 657 case GlobalValue::LinkOnceODRLinkage: 658 case GlobalValue::WeakAnyLinkage: 659 case GlobalValue::WeakODRLinkage: 660 if (MAI->isMachO()) { 661 // .globl _foo 662 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 663 664 if (!canBeHidden(GV, *MAI)) 665 // .weak_definition _foo 666 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 667 else 668 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 669 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 670 // .globl _foo 671 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 672 //NOTE: linkonce is handled by the section the symbol was assigned to. 673 } else { 674 // .weak _foo 675 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 676 } 677 return; 678 case GlobalValue::ExternalLinkage: 679 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 680 return; 681 case GlobalValue::PrivateLinkage: 682 case GlobalValue::InternalLinkage: 683 return; 684 case GlobalValue::ExternalWeakLinkage: 685 case GlobalValue::AvailableExternallyLinkage: 686 case GlobalValue::AppendingLinkage: 687 llvm_unreachable("Should never emit this"); 688 } 689 llvm_unreachable("Unknown linkage type!"); 690 } 691 692 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 693 const GlobalValue *GV) const { 694 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 695 } 696 697 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 698 return TM.getSymbol(GV); 699 } 700 701 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 702 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 703 // exact definion (intersection of GlobalValue::hasExactDefinition() and 704 // !isInterposable()). These linkages include: external, appending, internal, 705 // private. It may be profitable to use a local alias for external. The 706 // assembler would otherwise be conservative and assume a global default 707 // visibility symbol can be interposable, even if the code generator already 708 // assumed it. 709 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 710 const Module &M = *GV.getParent(); 711 if (TM.getRelocationModel() != Reloc::Static && 712 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 713 return getSymbolWithGlobalValueBase(&GV, "$local"); 714 } 715 return TM.getSymbol(&GV); 716 } 717 718 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 719 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 720 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 721 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 722 "No emulated TLS variables in the common section"); 723 724 // Never emit TLS variable xyz in emulated TLS model. 725 // The initialization value is in __emutls_t.xyz instead of xyz. 726 if (IsEmuTLSVar) 727 return; 728 729 if (GV->hasInitializer()) { 730 // Check to see if this is a special global used by LLVM, if so, emit it. 731 if (emitSpecialLLVMGlobal(GV)) 732 return; 733 734 // Skip the emission of global equivalents. The symbol can be emitted later 735 // on by emitGlobalGOTEquivs in case it turns out to be needed. 736 if (GlobalGOTEquivs.count(getSymbol(GV))) 737 return; 738 739 if (isVerbose()) { 740 // When printing the control variable __emutls_v.*, 741 // we don't need to print the original TLS variable name. 742 GV->printAsOperand(OutStreamer->getCommentOS(), 743 /*PrintType=*/false, GV->getParent()); 744 OutStreamer->getCommentOS() << '\n'; 745 } 746 } 747 748 MCSymbol *GVSym = getSymbol(GV); 749 MCSymbol *EmittedSym = GVSym; 750 751 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 752 // attributes. 753 // GV's or GVSym's attributes will be used for the EmittedSym. 754 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 755 756 if (GV->isTagged()) { 757 Triple T = TM.getTargetTriple(); 758 759 if (T.getArch() != Triple::aarch64 || !T.isAndroid()) 760 OutContext.reportError(SMLoc(), 761 "tagged symbols (-fsanitize=memtag-globals) are " 762 "only supported on AArch64 Android"); 763 OutStreamer->emitSymbolAttribute(EmittedSym, MAI->getMemtagAttr()); 764 } 765 766 if (!GV->hasInitializer()) // External globals require no extra code. 767 return; 768 769 GVSym->redefineIfPossible(); 770 if (GVSym->isDefined() || GVSym->isVariable()) 771 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 772 "' is already defined"); 773 774 if (MAI->hasDotTypeDotSizeDirective()) 775 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 776 777 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 778 779 const DataLayout &DL = GV->getDataLayout(); 780 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 781 782 // If the alignment is specified, we *must* obey it. Overaligning a global 783 // with a specified alignment is a prompt way to break globals emitted to 784 // sections and expected to be contiguous (e.g. ObjC metadata). 785 const Align Alignment = getGVAlignment(GV, DL); 786 787 for (auto &Handler : Handlers) 788 Handler->setSymbolSize(GVSym, Size); 789 790 // Handle common symbols 791 if (GVKind.isCommon()) { 792 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 793 // .comm _foo, 42, 4 794 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); 795 return; 796 } 797 798 // Determine to which section this global should be emitted. 799 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 800 801 // If we have a bss global going to a section that supports the 802 // zerofill directive, do so here. 803 if (GVKind.isBSS() && MAI->isMachO() && TheSection->isVirtualSection()) { 804 if (Size == 0) 805 Size = 1; // zerofill of 0 bytes is undefined. 806 emitLinkage(GV, GVSym); 807 // .zerofill __DATA, __bss, _foo, 400, 5 808 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment); 809 return; 810 } 811 812 // If this is a BSS local symbol and we are emitting in the BSS 813 // section use .lcomm/.comm directive. 814 if (GVKind.isBSSLocal() && 815 getObjFileLowering().getBSSSection() == TheSection) { 816 if (Size == 0) 817 Size = 1; // .comm Foo, 0 is undefined, avoid it. 818 819 // Use .lcomm only if it supports user-specified alignment. 820 // Otherwise, while it would still be correct to use .lcomm in some 821 // cases (e.g. when Align == 1), the external assembler might enfore 822 // some -unknown- default alignment behavior, which could cause 823 // spurious differences between external and integrated assembler. 824 // Prefer to simply fall back to .local / .comm in this case. 825 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 826 // .lcomm _foo, 42 827 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment); 828 return; 829 } 830 831 // .local _foo 832 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 833 // .comm _foo, 42, 4 834 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); 835 return; 836 } 837 838 // Handle thread local data for mach-o which requires us to output an 839 // additional structure of data and mangle the original symbol so that we 840 // can reference it later. 841 // 842 // TODO: This should become an "emit thread local global" method on TLOF. 843 // All of this macho specific stuff should be sunk down into TLOFMachO and 844 // stuff like "TLSExtraDataSection" should no longer be part of the parent 845 // TLOF class. This will also make it more obvious that stuff like 846 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 847 // specific code. 848 if (GVKind.isThreadLocal() && MAI->isMachO()) { 849 // Emit the .tbss symbol 850 MCSymbol *MangSym = 851 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 852 853 if (GVKind.isThreadBSS()) { 854 TheSection = getObjFileLowering().getTLSBSSSection(); 855 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment); 856 } else if (GVKind.isThreadData()) { 857 OutStreamer->switchSection(TheSection); 858 859 emitAlignment(Alignment, GV); 860 OutStreamer->emitLabel(MangSym); 861 862 emitGlobalConstant(GV->getDataLayout(), 863 GV->getInitializer()); 864 } 865 866 OutStreamer->addBlankLine(); 867 868 // Emit the variable struct for the runtime. 869 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 870 871 OutStreamer->switchSection(TLVSect); 872 // Emit the linkage here. 873 emitLinkage(GV, GVSym); 874 OutStreamer->emitLabel(GVSym); 875 876 // Three pointers in size: 877 // - __tlv_bootstrap - used to make sure support exists 878 // - spare pointer, used when mapped by the runtime 879 // - pointer to mangled symbol above with initializer 880 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 881 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 882 PtrSize); 883 OutStreamer->emitIntValue(0, PtrSize); 884 OutStreamer->emitSymbolValue(MangSym, PtrSize); 885 886 OutStreamer->addBlankLine(); 887 return; 888 } 889 890 MCSymbol *EmittedInitSym = GVSym; 891 892 OutStreamer->switchSection(TheSection); 893 894 emitLinkage(GV, EmittedInitSym); 895 emitAlignment(Alignment, GV); 896 897 OutStreamer->emitLabel(EmittedInitSym); 898 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 899 if (LocalAlias != EmittedInitSym) 900 OutStreamer->emitLabel(LocalAlias); 901 902 emitGlobalConstant(GV->getDataLayout(), GV->getInitializer()); 903 904 if (MAI->hasDotTypeDotSizeDirective()) 905 // .size foo, 42 906 OutStreamer->emitELFSize(EmittedInitSym, 907 MCConstantExpr::create(Size, OutContext)); 908 909 OutStreamer->addBlankLine(); 910 } 911 912 /// Emit the directive and value for debug thread local expression 913 /// 914 /// \p Value - The value to emit. 915 /// \p Size - The size of the integer (in bytes) to emit. 916 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 917 OutStreamer->emitValue(Value, Size); 918 } 919 920 void AsmPrinter::emitFunctionHeaderComment() {} 921 922 void AsmPrinter::emitFunctionPrefix(ArrayRef<const Constant *> Prefix) { 923 const Function &F = MF->getFunction(); 924 if (!MAI->hasSubsectionsViaSymbols()) { 925 for (auto &C : Prefix) 926 emitGlobalConstant(F.getDataLayout(), C); 927 return; 928 } 929 // Preserving prefix-like data on platforms which use subsections-via-symbols 930 // is a bit tricky. Here we introduce a symbol for the prefix-like data 931 // and use the .alt_entry attribute to mark the function's real entry point 932 // as an alternative entry point to the symbol that precedes the function.. 933 OutStreamer->emitLabel(OutContext.createLinkerPrivateTempSymbol()); 934 935 for (auto &C : Prefix) { 936 emitGlobalConstant(F.getDataLayout(), C); 937 } 938 939 // Emit an .alt_entry directive for the actual function symbol. 940 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 941 } 942 943 /// EmitFunctionHeader - This method emits the header for the current 944 /// function. 945 void AsmPrinter::emitFunctionHeader() { 946 const Function &F = MF->getFunction(); 947 948 if (isVerbose()) 949 OutStreamer->getCommentOS() 950 << "-- Begin function " 951 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 952 953 // Print out constants referenced by the function 954 emitConstantPool(); 955 956 // Print the 'header' of function. 957 // If basic block sections are desired, explicitly request a unique section 958 // for this function's entry block. 959 if (MF->front().isBeginSection()) 960 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 961 else 962 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 963 OutStreamer->switchSection(MF->getSection()); 964 965 if (MAI->isAIX()) 966 emitLinkage(&F, CurrentFnDescSym); 967 else 968 emitVisibility(CurrentFnSym, F.getVisibility()); 969 970 emitLinkage(&F, CurrentFnSym); 971 if (MAI->hasFunctionAlignment()) 972 emitAlignment(MF->getAlignment(), &F); 973 974 if (MAI->hasDotTypeDotSizeDirective()) 975 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 976 977 if (F.hasFnAttribute(Attribute::Cold)) 978 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 979 980 // Emit the prefix data. 981 if (F.hasPrefixData()) 982 emitFunctionPrefix({F.getPrefixData()}); 983 984 // Emit KCFI type information before patchable-function-prefix nops. 985 emitKCFITypeId(*MF); 986 987 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 988 // place prefix data before NOPs. 989 unsigned PatchableFunctionPrefix = 0; 990 unsigned PatchableFunctionEntry = 0; 991 (void)F.getFnAttribute("patchable-function-prefix") 992 .getValueAsString() 993 .getAsInteger(10, PatchableFunctionPrefix); 994 (void)F.getFnAttribute("patchable-function-entry") 995 .getValueAsString() 996 .getAsInteger(10, PatchableFunctionEntry); 997 if (PatchableFunctionPrefix) { 998 CurrentPatchableFunctionEntrySym = 999 OutContext.createLinkerPrivateTempSymbol(); 1000 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 1001 emitNops(PatchableFunctionPrefix); 1002 } else if (PatchableFunctionEntry) { 1003 // May be reassigned when emitting the body, to reference the label after 1004 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 1005 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 1006 } 1007 1008 // Emit the function prologue data for the indirect call sanitizer. 1009 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) { 1010 assert(MD->getNumOperands() == 2); 1011 1012 auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0)); 1013 auto *TypeHash = mdconst::extract<Constant>(MD->getOperand(1)); 1014 emitFunctionPrefix({PrologueSig, TypeHash}); 1015 } 1016 1017 if (isVerbose()) { 1018 F.printAsOperand(OutStreamer->getCommentOS(), 1019 /*PrintType=*/false, F.getParent()); 1020 emitFunctionHeaderComment(); 1021 OutStreamer->getCommentOS() << '\n'; 1022 } 1023 1024 // Emit the function descriptor. This is a virtual function to allow targets 1025 // to emit their specific function descriptor. Right now it is only used by 1026 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 1027 // descriptors and should be converted to use this hook as well. 1028 if (MAI->isAIX()) 1029 emitFunctionDescriptor(); 1030 1031 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 1032 // their wild and crazy things as required. 1033 emitFunctionEntryLabel(); 1034 1035 // If the function had address-taken blocks that got deleted, then we have 1036 // references to the dangling symbols. Emit them at the start of the function 1037 // so that we don't get references to undefined symbols. 1038 std::vector<MCSymbol*> DeadBlockSyms; 1039 takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 1040 for (MCSymbol *DeadBlockSym : DeadBlockSyms) { 1041 OutStreamer->AddComment("Address taken block that was later removed"); 1042 OutStreamer->emitLabel(DeadBlockSym); 1043 } 1044 1045 if (CurrentFnBegin) { 1046 if (MAI->useAssignmentForEHBegin()) { 1047 MCSymbol *CurPos = OutContext.createTempSymbol(); 1048 OutStreamer->emitLabel(CurPos); 1049 OutStreamer->emitAssignment(CurrentFnBegin, 1050 MCSymbolRefExpr::create(CurPos, OutContext)); 1051 } else { 1052 OutStreamer->emitLabel(CurrentFnBegin); 1053 } 1054 } 1055 1056 // Emit pre-function debug and/or EH information. 1057 for (auto &Handler : Handlers) { 1058 Handler->beginFunction(MF); 1059 Handler->beginBasicBlockSection(MF->front()); 1060 } 1061 for (auto &Handler : EHHandlers) { 1062 Handler->beginFunction(MF); 1063 Handler->beginBasicBlockSection(MF->front()); 1064 } 1065 1066 // Emit the prologue data. 1067 if (F.hasPrologueData()) 1068 emitGlobalConstant(F.getDataLayout(), F.getPrologueData()); 1069 } 1070 1071 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 1072 /// function. This can be overridden by targets as required to do custom stuff. 1073 void AsmPrinter::emitFunctionEntryLabel() { 1074 CurrentFnSym->redefineIfPossible(); 1075 1076 // The function label could have already been emitted if two symbols end up 1077 // conflicting due to asm renaming. Detect this and emit an error. 1078 if (CurrentFnSym->isVariable()) 1079 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 1080 "' is a protected alias"); 1081 1082 OutStreamer->emitLabel(CurrentFnSym); 1083 1084 if (TM.getTargetTriple().isOSBinFormatELF()) { 1085 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 1086 if (Sym != CurrentFnSym) { 1087 cast<MCSymbolELF>(Sym)->setType(ELF::STT_FUNC); 1088 CurrentFnBeginLocal = Sym; 1089 OutStreamer->emitLabel(Sym); 1090 if (MAI->hasDotTypeDotSizeDirective()) 1091 OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction); 1092 } 1093 } 1094 } 1095 1096 /// emitComments - Pretty-print comments for instructions. 1097 static void emitComments(const MachineInstr &MI, const MCSubtargetInfo *STI, 1098 raw_ostream &CommentOS) { 1099 const MachineFunction *MF = MI.getMF(); 1100 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1101 1102 // Check for spills and reloads 1103 1104 // We assume a single instruction only has a spill or reload, not 1105 // both. 1106 std::optional<LocationSize> Size; 1107 if ((Size = MI.getRestoreSize(TII))) { 1108 CommentOS << Size->getValue() << "-byte Reload\n"; 1109 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 1110 if (!Size->hasValue()) 1111 CommentOS << "Unknown-size Folded Reload\n"; 1112 else if (Size->getValue()) 1113 CommentOS << Size->getValue() << "-byte Folded Reload\n"; 1114 } else if ((Size = MI.getSpillSize(TII))) { 1115 CommentOS << Size->getValue() << "-byte Spill\n"; 1116 } else if ((Size = MI.getFoldedSpillSize(TII))) { 1117 if (!Size->hasValue()) 1118 CommentOS << "Unknown-size Folded Spill\n"; 1119 else if (Size->getValue()) 1120 CommentOS << Size->getValue() << "-byte Folded Spill\n"; 1121 } 1122 1123 // Check for spill-induced copies 1124 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 1125 CommentOS << " Reload Reuse\n"; 1126 1127 if (PrintLatency) { 1128 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1129 const MCSchedModel &SCModel = STI->getSchedModel(); 1130 int Latency = SCModel.computeInstrLatency<MCSubtargetInfo, MCInstrInfo, 1131 InstrItineraryData, MachineInstr>( 1132 *STI, *TII, MI); 1133 // Report only interesting latencies. 1134 if (1 < Latency) 1135 CommentOS << " Latency: " << Latency << "\n"; 1136 } 1137 } 1138 1139 /// emitImplicitDef - This method emits the specified machine instruction 1140 /// that is an implicit def. 1141 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 1142 Register RegNo = MI->getOperand(0).getReg(); 1143 1144 SmallString<128> Str; 1145 raw_svector_ostream OS(Str); 1146 OS << "implicit-def: " 1147 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 1148 1149 OutStreamer->AddComment(OS.str()); 1150 OutStreamer->addBlankLine(); 1151 } 1152 1153 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 1154 std::string Str; 1155 raw_string_ostream OS(Str); 1156 OS << "kill:"; 1157 for (const MachineOperand &Op : MI->operands()) { 1158 assert(Op.isReg() && "KILL instruction must have only register operands"); 1159 OS << ' ' << (Op.isDef() ? "def " : "killed ") 1160 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 1161 } 1162 AP.OutStreamer->AddComment(Str); 1163 AP.OutStreamer->addBlankLine(); 1164 } 1165 1166 static void emitFakeUse(const MachineInstr *MI, AsmPrinter &AP) { 1167 std::string Str; 1168 raw_string_ostream OS(Str); 1169 OS << "fake_use:"; 1170 for (const MachineOperand &Op : MI->operands()) { 1171 // In some circumstances we can end up with fake uses of constants; skip 1172 // these. 1173 if (!Op.isReg()) 1174 continue; 1175 OS << ' ' << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 1176 } 1177 AP.OutStreamer->AddComment(OS.str()); 1178 AP.OutStreamer->addBlankLine(); 1179 } 1180 1181 /// emitDebugValueComment - This method handles the target-independent form 1182 /// of DBG_VALUE, returning true if it was able to do so. A false return 1183 /// means the target will need to handle MI in EmitInstruction. 1184 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 1185 // This code handles only the 4-operand target-independent form. 1186 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 1187 return false; 1188 1189 SmallString<128> Str; 1190 raw_svector_ostream OS(Str); 1191 OS << "DEBUG_VALUE: "; 1192 1193 const DILocalVariable *V = MI->getDebugVariable(); 1194 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 1195 StringRef Name = SP->getName(); 1196 if (!Name.empty()) 1197 OS << Name << ":"; 1198 } 1199 OS << V->getName(); 1200 OS << " <- "; 1201 1202 const DIExpression *Expr = MI->getDebugExpression(); 1203 // First convert this to a non-variadic expression if possible, to simplify 1204 // the output. 1205 if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr)) 1206 Expr = *NonVariadicExpr; 1207 // Then, output the possibly-simplified expression. 1208 if (Expr->getNumElements()) { 1209 OS << '['; 1210 ListSeparator LS; 1211 for (auto &Op : Expr->expr_ops()) { 1212 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 1213 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 1214 OS << ' ' << Op.getArg(I); 1215 } 1216 OS << "] "; 1217 } 1218 1219 // Register or immediate value. Register 0 means undef. 1220 for (const MachineOperand &Op : MI->debug_operands()) { 1221 if (&Op != MI->debug_operands().begin()) 1222 OS << ", "; 1223 switch (Op.getType()) { 1224 case MachineOperand::MO_FPImmediate: { 1225 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 1226 Type *ImmTy = Op.getFPImm()->getType(); 1227 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || 1228 ImmTy->isDoubleTy()) { 1229 OS << APF.convertToDouble(); 1230 } else { 1231 // There is no good way to print long double. Convert a copy to 1232 // double. Ah well, it's only a comment. 1233 bool ignored; 1234 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1235 &ignored); 1236 OS << "(long double) " << APF.convertToDouble(); 1237 } 1238 break; 1239 } 1240 case MachineOperand::MO_Immediate: { 1241 OS << Op.getImm(); 1242 break; 1243 } 1244 case MachineOperand::MO_CImmediate: { 1245 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 1246 break; 1247 } 1248 case MachineOperand::MO_TargetIndex: { 1249 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 1250 break; 1251 } 1252 case MachineOperand::MO_Register: 1253 case MachineOperand::MO_FrameIndex: { 1254 Register Reg; 1255 std::optional<StackOffset> Offset; 1256 if (Op.isReg()) { 1257 Reg = Op.getReg(); 1258 } else { 1259 const TargetFrameLowering *TFI = 1260 AP.MF->getSubtarget().getFrameLowering(); 1261 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 1262 } 1263 if (!Reg) { 1264 // Suppress offset, it is not meaningful here. 1265 OS << "undef"; 1266 break; 1267 } 1268 // The second operand is only an offset if it's an immediate. 1269 if (MI->isIndirectDebugValue()) 1270 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 1271 if (Offset) 1272 OS << '['; 1273 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1274 if (Offset) 1275 OS << '+' << Offset->getFixed() << ']'; 1276 break; 1277 } 1278 default: 1279 llvm_unreachable("Unknown operand type"); 1280 } 1281 } 1282 1283 // NOTE: Want this comment at start of line, don't emit with AddComment. 1284 AP.OutStreamer->emitRawComment(Str); 1285 return true; 1286 } 1287 1288 /// This method handles the target-independent form of DBG_LABEL, returning 1289 /// true if it was able to do so. A false return means the target will need 1290 /// to handle MI in EmitInstruction. 1291 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1292 if (MI->getNumOperands() != 1) 1293 return false; 1294 1295 SmallString<128> Str; 1296 raw_svector_ostream OS(Str); 1297 OS << "DEBUG_LABEL: "; 1298 1299 const DILabel *V = MI->getDebugLabel(); 1300 if (auto *SP = dyn_cast<DISubprogram>( 1301 V->getScope()->getNonLexicalBlockFileScope())) { 1302 StringRef Name = SP->getName(); 1303 if (!Name.empty()) 1304 OS << Name << ":"; 1305 } 1306 OS << V->getName(); 1307 1308 // NOTE: Want this comment at start of line, don't emit with AddComment. 1309 AP.OutStreamer->emitRawComment(OS.str()); 1310 return true; 1311 } 1312 1313 AsmPrinter::CFISection 1314 AsmPrinter::getFunctionCFISectionType(const Function &F) const { 1315 // Ignore functions that won't get emitted. 1316 if (F.isDeclarationForLinker()) 1317 return CFISection::None; 1318 1319 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1320 F.needsUnwindTableEntry()) 1321 return CFISection::EH; 1322 1323 if (MAI->usesCFIWithoutEH() && F.hasUWTable()) 1324 return CFISection::EH; 1325 1326 if (hasDebugInfo() || TM.Options.ForceDwarfFrameSection) 1327 return CFISection::Debug; 1328 1329 return CFISection::None; 1330 } 1331 1332 AsmPrinter::CFISection 1333 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { 1334 return getFunctionCFISectionType(MF.getFunction()); 1335 } 1336 1337 bool AsmPrinter::needsSEHMoves() { 1338 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1339 } 1340 1341 bool AsmPrinter::usesCFIWithoutEH() const { 1342 return MAI->usesCFIWithoutEH() && ModuleCFISection != CFISection::None; 1343 } 1344 1345 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1346 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1347 if (!usesCFIWithoutEH() && 1348 ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1349 ExceptionHandlingType != ExceptionHandling::ARM) 1350 return; 1351 1352 if (getFunctionCFISectionType(*MF) == CFISection::None) 1353 return; 1354 1355 // If there is no "real" instruction following this CFI instruction, skip 1356 // emitting it; it would be beyond the end of the function's FDE range. 1357 auto *MBB = MI.getParent(); 1358 auto I = std::next(MI.getIterator()); 1359 while (I != MBB->end() && I->isTransient()) 1360 ++I; 1361 if (I == MBB->instr_end() && 1362 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1363 return; 1364 1365 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1366 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1367 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1368 emitCFIInstruction(CFI); 1369 } 1370 1371 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1372 // The operands are the MCSymbol and the frame offset of the allocation. 1373 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1374 int FrameOffset = MI.getOperand(1).getImm(); 1375 1376 // Emit a symbol assignment. 1377 OutStreamer->emitAssignment(FrameAllocSym, 1378 MCConstantExpr::create(FrameOffset, OutContext)); 1379 } 1380 1381 /// Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section 1382 /// for a given basic block. This can be used to capture more precise profile 1383 /// information. 1384 static uint32_t getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1385 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1386 return object::BBAddrMap::BBEntry::Metadata{ 1387 MBB.isReturnBlock(), !MBB.empty() && TII->isTailCall(MBB.back()), 1388 MBB.isEHPad(), const_cast<MachineBasicBlock &>(MBB).canFallThrough(), 1389 !MBB.empty() && MBB.rbegin()->isIndirectBranch()} 1390 .encode(); 1391 } 1392 1393 static llvm::object::BBAddrMap::Features 1394 getBBAddrMapFeature(const MachineFunction &MF, int NumMBBSectionRanges) { 1395 // Ensure that the user has not passed in additional options while also 1396 // specifying all or none. 1397 if ((PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::None) || 1398 PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::All)) && 1399 popcount(PgoAnalysisMapFeatures.getBits()) != 1) { 1400 MF.getFunction().getContext().emitError( 1401 "-pgo-anaylsis-map can accept only all or none with no additional " 1402 "values."); 1403 } 1404 1405 bool NoFeatures = PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::None); 1406 bool AllFeatures = PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::All); 1407 bool FuncEntryCountEnabled = 1408 AllFeatures || (!NoFeatures && PgoAnalysisMapFeatures.isSet( 1409 PGOMapFeaturesEnum::FuncEntryCount)); 1410 bool BBFreqEnabled = 1411 AllFeatures || 1412 (!NoFeatures && PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BBFreq)); 1413 bool BrProbEnabled = 1414 AllFeatures || 1415 (!NoFeatures && PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BrProb)); 1416 1417 if ((BBFreqEnabled || BrProbEnabled) && BBAddrMapSkipEmitBBEntries) { 1418 MF.getFunction().getContext().emitError( 1419 "BB entries info is required for BBFreq and BrProb " 1420 "features"); 1421 } 1422 return {FuncEntryCountEnabled, BBFreqEnabled, BrProbEnabled, 1423 MF.hasBBSections() && NumMBBSectionRanges > 1, 1424 static_cast<bool>(BBAddrMapSkipEmitBBEntries)}; 1425 } 1426 1427 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1428 MCSection *BBAddrMapSection = 1429 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1430 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1431 1432 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1433 1434 OutStreamer->pushSection(); 1435 OutStreamer->switchSection(BBAddrMapSection); 1436 OutStreamer->AddComment("version"); 1437 uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion(); 1438 OutStreamer->emitInt8(BBAddrMapVersion); 1439 OutStreamer->AddComment("feature"); 1440 auto Features = getBBAddrMapFeature(MF, MBBSectionRanges.size()); 1441 OutStreamer->emitInt8(Features.encode()); 1442 // Emit BB Information for each basic block in the function. 1443 if (Features.MultiBBRange) { 1444 OutStreamer->AddComment("number of basic block ranges"); 1445 OutStreamer->emitULEB128IntValue(MBBSectionRanges.size()); 1446 } 1447 // Number of blocks in each MBB section. 1448 MapVector<MBBSectionID, unsigned> MBBSectionNumBlocks; 1449 const MCSymbol *PrevMBBEndSymbol = nullptr; 1450 if (!Features.MultiBBRange) { 1451 OutStreamer->AddComment("function address"); 1452 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1453 OutStreamer->AddComment("number of basic blocks"); 1454 OutStreamer->emitULEB128IntValue(MF.size()); 1455 PrevMBBEndSymbol = FunctionSymbol; 1456 } else { 1457 unsigned BBCount = 0; 1458 for (const MachineBasicBlock &MBB : MF) { 1459 BBCount++; 1460 if (MBB.isEndSection()) { 1461 // Store each section's basic block count when it ends. 1462 MBBSectionNumBlocks[MBB.getSectionID()] = BBCount; 1463 // Reset the count for the next section. 1464 BBCount = 0; 1465 } 1466 } 1467 } 1468 // Emit the BB entry for each basic block in the function. 1469 for (const MachineBasicBlock &MBB : MF) { 1470 const MCSymbol *MBBSymbol = 1471 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1472 bool IsBeginSection = 1473 Features.MultiBBRange && (MBB.isBeginSection() || MBB.isEntryBlock()); 1474 if (IsBeginSection) { 1475 OutStreamer->AddComment("base address"); 1476 OutStreamer->emitSymbolValue(MBBSymbol, getPointerSize()); 1477 OutStreamer->AddComment("number of basic blocks"); 1478 OutStreamer->emitULEB128IntValue(MBBSectionNumBlocks[MBB.getSectionID()]); 1479 PrevMBBEndSymbol = MBBSymbol; 1480 } 1481 1482 if (!Features.OmitBBEntries) { 1483 // TODO: Remove this check when version 1 is deprecated. 1484 if (BBAddrMapVersion > 1) { 1485 OutStreamer->AddComment("BB id"); 1486 // Emit the BB ID for this basic block. 1487 // We only emit BaseID since CloneID is unset for 1488 // -basic-block-adress-map. 1489 // TODO: Emit the full BBID when labels and sections can be mixed 1490 // together. 1491 OutStreamer->emitULEB128IntValue(MBB.getBBID()->BaseID); 1492 } 1493 // Emit the basic block offset relative to the end of the previous block. 1494 // This is zero unless the block is padded due to alignment. 1495 emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol); 1496 // Emit the basic block size. When BBs have alignments, their size cannot 1497 // always be computed from their offsets. 1498 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1499 // Emit the Metadata. 1500 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1501 } 1502 1503 PrevMBBEndSymbol = MBB.getEndSymbol(); 1504 } 1505 1506 if (Features.hasPGOAnalysis()) { 1507 assert(BBAddrMapVersion >= 2 && 1508 "PGOAnalysisMap only supports version 2 or later"); 1509 1510 if (Features.FuncEntryCount) { 1511 OutStreamer->AddComment("function entry count"); 1512 auto MaybeEntryCount = MF.getFunction().getEntryCount(); 1513 OutStreamer->emitULEB128IntValue( 1514 MaybeEntryCount ? MaybeEntryCount->getCount() : 0); 1515 } 1516 const MachineBlockFrequencyInfo *MBFI = 1517 Features.BBFreq 1518 ? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() 1519 : nullptr; 1520 const MachineBranchProbabilityInfo *MBPI = 1521 Features.BrProb 1522 ? &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI() 1523 : nullptr; 1524 1525 if (Features.BBFreq || Features.BrProb) { 1526 for (const MachineBasicBlock &MBB : MF) { 1527 if (Features.BBFreq) { 1528 OutStreamer->AddComment("basic block frequency"); 1529 OutStreamer->emitULEB128IntValue( 1530 MBFI->getBlockFreq(&MBB).getFrequency()); 1531 } 1532 if (Features.BrProb) { 1533 unsigned SuccCount = MBB.succ_size(); 1534 OutStreamer->AddComment("basic block successor count"); 1535 OutStreamer->emitULEB128IntValue(SuccCount); 1536 for (const MachineBasicBlock *SuccMBB : MBB.successors()) { 1537 OutStreamer->AddComment("successor BB ID"); 1538 OutStreamer->emitULEB128IntValue(SuccMBB->getBBID()->BaseID); 1539 OutStreamer->AddComment("successor branch probability"); 1540 OutStreamer->emitULEB128IntValue( 1541 MBPI->getEdgeProbability(&MBB, SuccMBB).getNumerator()); 1542 } 1543 } 1544 } 1545 } 1546 } 1547 1548 OutStreamer->popSection(); 1549 } 1550 1551 void AsmPrinter::emitKCFITrapEntry(const MachineFunction &MF, 1552 const MCSymbol *Symbol) { 1553 MCSection *Section = 1554 getObjFileLowering().getKCFITrapSection(*MF.getSection()); 1555 if (!Section) 1556 return; 1557 1558 OutStreamer->pushSection(); 1559 OutStreamer->switchSection(Section); 1560 1561 MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol(); 1562 OutStreamer->emitLabel(Loc); 1563 OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4); 1564 1565 OutStreamer->popSection(); 1566 } 1567 1568 void AsmPrinter::emitKCFITypeId(const MachineFunction &MF) { 1569 const Function &F = MF.getFunction(); 1570 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type)) 1571 emitGlobalConstant(F.getDataLayout(), 1572 mdconst::extract<ConstantInt>(MD->getOperand(0))); 1573 } 1574 1575 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1576 if (PP) { 1577 auto GUID = MI.getOperand(0).getImm(); 1578 auto Index = MI.getOperand(1).getImm(); 1579 auto Type = MI.getOperand(2).getImm(); 1580 auto Attr = MI.getOperand(3).getImm(); 1581 DILocation *DebugLoc = MI.getDebugLoc(); 1582 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1583 } 1584 } 1585 1586 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1587 if (!MF.getTarget().Options.EmitStackSizeSection) 1588 return; 1589 1590 MCSection *StackSizeSection = 1591 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1592 if (!StackSizeSection) 1593 return; 1594 1595 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1596 // Don't emit functions with dynamic stack allocations. 1597 if (FrameInfo.hasVarSizedObjects()) 1598 return; 1599 1600 OutStreamer->pushSection(); 1601 OutStreamer->switchSection(StackSizeSection); 1602 1603 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1604 uint64_t StackSize = 1605 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); 1606 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1607 OutStreamer->emitULEB128IntValue(StackSize); 1608 1609 OutStreamer->popSection(); 1610 } 1611 1612 void AsmPrinter::emitStackUsage(const MachineFunction &MF) { 1613 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; 1614 1615 // OutputFilename empty implies -fstack-usage is not passed. 1616 if (OutputFilename.empty()) 1617 return; 1618 1619 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1620 uint64_t StackSize = 1621 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); 1622 1623 if (StackUsageStream == nullptr) { 1624 std::error_code EC; 1625 StackUsageStream = 1626 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); 1627 if (EC) { 1628 errs() << "Could not open file: " << EC.message(); 1629 return; 1630 } 1631 } 1632 1633 if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) 1634 *StackUsageStream << DSP->getFilename() << ':' << DSP->getLine(); 1635 else 1636 *StackUsageStream << MF.getFunction().getParent()->getName(); 1637 1638 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; 1639 if (FrameInfo.hasVarSizedObjects()) 1640 *StackUsageStream << "dynamic\n"; 1641 else 1642 *StackUsageStream << "static\n"; 1643 } 1644 1645 void AsmPrinter::emitPCSectionsLabel(const MachineFunction &MF, 1646 const MDNode &MD) { 1647 MCSymbol *S = MF.getContext().createTempSymbol("pcsection"); 1648 OutStreamer->emitLabel(S); 1649 PCSectionsSymbols[&MD].emplace_back(S); 1650 } 1651 1652 void AsmPrinter::emitPCSections(const MachineFunction &MF) { 1653 const Function &F = MF.getFunction(); 1654 if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections)) 1655 return; 1656 1657 const CodeModel::Model CM = MF.getTarget().getCodeModel(); 1658 const unsigned RelativeRelocSize = 1659 (CM == CodeModel::Medium || CM == CodeModel::Large) ? getPointerSize() 1660 : 4; 1661 1662 // Switch to PCSection, short-circuiting the common case where the current 1663 // section is still valid (assume most MD_pcsections contain just 1 section). 1664 auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable { 1665 if (Sec == Prev) 1666 return; 1667 MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection()); 1668 assert(S && "PC section is not initialized"); 1669 OutStreamer->switchSection(S); 1670 Prev = Sec; 1671 }; 1672 // Emit symbols into sections and data as specified in the pcsections MDNode. 1673 auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms, 1674 bool Deltas) { 1675 // Expect the first operand to be a section name. After that, a tuple of 1676 // constants may appear, which will simply be emitted into the current 1677 // section (the user of MD_pcsections decides the format of encoded data). 1678 assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string"); 1679 bool ConstULEB128 = false; 1680 for (const MDOperand &MDO : MD.operands()) { 1681 if (auto *S = dyn_cast<MDString>(MDO)) { 1682 // Found string, start of new section! 1683 // Find options for this section "<section>!<opts>" - supported options: 1684 // C = Compress constant integers of size 2-8 bytes as ULEB128. 1685 const StringRef SecWithOpt = S->getString(); 1686 const size_t OptStart = SecWithOpt.find('!'); // likely npos 1687 const StringRef Sec = SecWithOpt.substr(0, OptStart); 1688 const StringRef Opts = SecWithOpt.substr(OptStart); // likely empty 1689 ConstULEB128 = Opts.contains('C'); 1690 #ifndef NDEBUG 1691 for (char O : Opts) 1692 assert((O == '!' || O == 'C') && "Invalid !pcsections options"); 1693 #endif 1694 SwitchSection(Sec); 1695 const MCSymbol *Prev = Syms.front(); 1696 for (const MCSymbol *Sym : Syms) { 1697 if (Sym == Prev || !Deltas) { 1698 // Use the entry itself as the base of the relative offset. 1699 MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base"); 1700 OutStreamer->emitLabel(Base); 1701 // Emit relative relocation `addr - base`, which avoids a dynamic 1702 // relocation in the final binary. User will get the address with 1703 // `base + addr`. 1704 emitLabelDifference(Sym, Base, RelativeRelocSize); 1705 } else { 1706 // Emit delta between symbol and previous symbol. 1707 if (ConstULEB128) 1708 emitLabelDifferenceAsULEB128(Sym, Prev); 1709 else 1710 emitLabelDifference(Sym, Prev, 4); 1711 } 1712 Prev = Sym; 1713 } 1714 } else { 1715 // Emit auxiliary data after PC. 1716 assert(isa<MDNode>(MDO) && "expecting either string or tuple"); 1717 const auto *AuxMDs = cast<MDNode>(MDO); 1718 for (const MDOperand &AuxMDO : AuxMDs->operands()) { 1719 assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant"); 1720 const Constant *C = cast<ConstantAsMetadata>(AuxMDO)->getValue(); 1721 const DataLayout &DL = F.getDataLayout(); 1722 const uint64_t Size = DL.getTypeStoreSize(C->getType()); 1723 1724 if (auto *CI = dyn_cast<ConstantInt>(C); 1725 CI && ConstULEB128 && Size > 1 && Size <= 8) { 1726 emitULEB128(CI->getZExtValue()); 1727 } else { 1728 emitGlobalConstant(DL, C); 1729 } 1730 } 1731 } 1732 } 1733 }; 1734 1735 OutStreamer->pushSection(); 1736 // Emit PCs for function start and function size. 1737 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections)) 1738 EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true); 1739 // Emit PCs for instructions collected. 1740 for (const auto &MS : PCSectionsSymbols) 1741 EmitForMD(*MS.first, MS.second, false); 1742 OutStreamer->popSection(); 1743 PCSectionsSymbols.clear(); 1744 } 1745 1746 /// Returns true if function begin and end labels should be emitted. 1747 static bool needFuncLabels(const MachineFunction &MF, const AsmPrinter &Asm) { 1748 if (Asm.hasDebugInfo() || !MF.getLandingPads().empty() || 1749 MF.hasEHFunclets() || 1750 MF.getFunction().hasMetadata(LLVMContext::MD_pcsections)) 1751 return true; 1752 1753 // We might emit an EH table that uses function begin and end labels even if 1754 // we don't have any landingpads. 1755 if (!MF.getFunction().hasPersonalityFn()) 1756 return false; 1757 return !isNoOpWithoutInvoke( 1758 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1759 } 1760 1761 // Return the mnemonic of a MachineInstr if available, or the MachineInstr 1762 // opcode name otherwise. 1763 static StringRef getMIMnemonic(const MachineInstr &MI, MCStreamer &Streamer) { 1764 const TargetInstrInfo *TII = 1765 MI.getParent()->getParent()->getSubtarget().getInstrInfo(); 1766 MCInst MCI; 1767 MCI.setOpcode(MI.getOpcode()); 1768 if (StringRef Name = Streamer.getMnemonic(MCI); !Name.empty()) 1769 return Name; 1770 StringRef Name = TII->getName(MI.getOpcode()); 1771 assert(!Name.empty() && "Missing mnemonic and name for opcode"); 1772 return Name; 1773 } 1774 1775 /// EmitFunctionBody - This method emits the body and trailer for a 1776 /// function. 1777 void AsmPrinter::emitFunctionBody() { 1778 emitFunctionHeader(); 1779 1780 // Emit target-specific gunk before the function body. 1781 emitFunctionBodyStart(); 1782 1783 if (isVerbose()) { 1784 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1785 auto MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); 1786 MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; 1787 if (!MDT) { 1788 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1789 OwnedMDT->recalculate(*MF); 1790 MDT = OwnedMDT.get(); 1791 } 1792 1793 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1794 auto *MLIWrapper = getAnalysisIfAvailable<MachineLoopInfoWrapperPass>(); 1795 MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr; 1796 if (!MLI) { 1797 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1798 OwnedMLI->analyze(*MDT); 1799 MLI = OwnedMLI.get(); 1800 } 1801 } 1802 1803 // Print out code for the function. 1804 bool HasAnyRealCode = false; 1805 int NumInstsInFunction = 0; 1806 bool IsEHa = MMI->getModule()->getModuleFlag("eh-asynch"); 1807 1808 const MCSubtargetInfo *STI = nullptr; 1809 if (this->MF) 1810 STI = &getSubtargetInfo(); 1811 else 1812 STI = TM.getMCSubtargetInfo(); 1813 1814 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1815 // Create a slot for the entry basic block section so that the section 1816 // order is preserved when iterating over MBBSectionRanges. 1817 if (!MF->empty()) 1818 MBBSectionRanges[MF->front().getSectionID()] = 1819 MBBSectionRange{CurrentFnBegin, nullptr}; 1820 1821 for (auto &MBB : *MF) { 1822 // Print a label for the basic block. 1823 emitBasicBlockStart(MBB); 1824 DenseMap<StringRef, unsigned> MnemonicCounts; 1825 for (auto &MI : MBB) { 1826 // Print the assembly for the instruction. 1827 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1828 !MI.isDebugInstr()) { 1829 HasAnyRealCode = true; 1830 } 1831 1832 // If there is a pre-instruction symbol, emit a label for it here. 1833 if (MCSymbol *S = MI.getPreInstrSymbol()) 1834 OutStreamer->emitLabel(S); 1835 1836 if (MDNode *MD = MI.getPCSections()) 1837 emitPCSectionsLabel(*MF, *MD); 1838 1839 for (auto &Handler : Handlers) 1840 Handler->beginInstruction(&MI); 1841 1842 if (isVerbose()) 1843 emitComments(MI, STI, OutStreamer->getCommentOS()); 1844 1845 switch (MI.getOpcode()) { 1846 case TargetOpcode::CFI_INSTRUCTION: 1847 emitCFIInstruction(MI); 1848 break; 1849 case TargetOpcode::LOCAL_ESCAPE: 1850 emitFrameAlloc(MI); 1851 break; 1852 case TargetOpcode::ANNOTATION_LABEL: 1853 case TargetOpcode::GC_LABEL: 1854 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1855 break; 1856 case TargetOpcode::EH_LABEL: 1857 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1858 // For AsynchEH, insert a Nop if followed by a trap inst 1859 // Or the exception won't be caught. 1860 // (see MCConstantExpr::create(1,..) in WinException.cpp) 1861 // Ignore SDiv/UDiv because a DIV with Const-0 divisor 1862 // must have being turned into an UndefValue. 1863 // Div with variable opnds won't be the first instruction in 1864 // an EH region as it must be led by at least a Load 1865 { 1866 auto MI2 = std::next(MI.getIterator()); 1867 if (IsEHa && MI2 != MBB.end() && 1868 (MI2->mayLoadOrStore() || MI2->mayRaiseFPException())) 1869 emitNops(1); 1870 } 1871 break; 1872 case TargetOpcode::INLINEASM: 1873 case TargetOpcode::INLINEASM_BR: 1874 emitInlineAsm(&MI); 1875 break; 1876 case TargetOpcode::DBG_VALUE: 1877 case TargetOpcode::DBG_VALUE_LIST: 1878 if (isVerbose()) { 1879 if (!emitDebugValueComment(&MI, *this)) 1880 emitInstruction(&MI); 1881 } 1882 break; 1883 case TargetOpcode::DBG_INSTR_REF: 1884 // This instruction reference will have been resolved to a machine 1885 // location, and a nearby DBG_VALUE created. We can safely ignore 1886 // the instruction reference. 1887 break; 1888 case TargetOpcode::DBG_PHI: 1889 // This instruction is only used to label a program point, it's purely 1890 // meta information. 1891 break; 1892 case TargetOpcode::DBG_LABEL: 1893 if (isVerbose()) { 1894 if (!emitDebugLabelComment(&MI, *this)) 1895 emitInstruction(&MI); 1896 } 1897 break; 1898 case TargetOpcode::IMPLICIT_DEF: 1899 if (isVerbose()) emitImplicitDef(&MI); 1900 break; 1901 case TargetOpcode::KILL: 1902 if (isVerbose()) emitKill(&MI, *this); 1903 break; 1904 case TargetOpcode::FAKE_USE: 1905 if (isVerbose()) 1906 emitFakeUse(&MI, *this); 1907 break; 1908 case TargetOpcode::PSEUDO_PROBE: 1909 emitPseudoProbe(MI); 1910 break; 1911 case TargetOpcode::ARITH_FENCE: 1912 if (isVerbose()) 1913 OutStreamer->emitRawComment("ARITH_FENCE"); 1914 break; 1915 case TargetOpcode::MEMBARRIER: 1916 OutStreamer->emitRawComment("MEMBARRIER"); 1917 break; 1918 case TargetOpcode::JUMP_TABLE_DEBUG_INFO: 1919 // This instruction is only used to note jump table debug info, it's 1920 // purely meta information. 1921 break; 1922 case TargetOpcode::INIT_UNDEF: 1923 // This is only used to influence register allocation behavior, no 1924 // actual initialization is needed. 1925 break; 1926 default: 1927 emitInstruction(&MI); 1928 1929 auto CountInstruction = [&](const MachineInstr &MI) { 1930 // Skip Meta instructions inside bundles. 1931 if (MI.isMetaInstruction()) 1932 return; 1933 ++NumInstsInFunction; 1934 if (CanDoExtraAnalysis) { 1935 StringRef Name = getMIMnemonic(MI, *OutStreamer); 1936 ++MnemonicCounts[Name]; 1937 } 1938 }; 1939 if (!MI.isBundle()) { 1940 CountInstruction(MI); 1941 break; 1942 } 1943 // Separately count all the instructions in a bundle. 1944 for (auto It = std::next(MI.getIterator()); 1945 It != MBB.end() && It->isInsideBundle(); ++It) { 1946 CountInstruction(*It); 1947 } 1948 break; 1949 } 1950 1951 // If there is a post-instruction symbol, emit a label for it here. 1952 if (MCSymbol *S = MI.getPostInstrSymbol()) 1953 OutStreamer->emitLabel(S); 1954 1955 for (auto &Handler : Handlers) 1956 Handler->endInstruction(); 1957 } 1958 1959 // We must emit temporary symbol for the end of this basic block, if either 1960 // we have BBLabels enabled or if this basic blocks marks the end of a 1961 // section. 1962 if (MF->getTarget().Options.BBAddrMap || 1963 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) 1964 OutStreamer->emitLabel(MBB.getEndSymbol()); 1965 1966 if (MBB.isEndSection()) { 1967 // The size directive for the section containing the entry block is 1968 // handled separately by the function section. 1969 if (!MBB.sameSection(&MF->front())) { 1970 if (MAI->hasDotTypeDotSizeDirective()) { 1971 // Emit the size directive for the basic block section. 1972 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1973 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1974 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1975 OutContext); 1976 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1977 } 1978 assert(!MBBSectionRanges.contains(MBB.getSectionID()) && 1979 "Overwrite section range"); 1980 MBBSectionRanges[MBB.getSectionID()] = 1981 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1982 } 1983 } 1984 emitBasicBlockEnd(MBB); 1985 1986 if (CanDoExtraAnalysis) { 1987 // Skip empty blocks. 1988 if (MBB.empty()) 1989 continue; 1990 1991 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1992 MBB.begin()->getDebugLoc(), &MBB); 1993 1994 // Generate instruction mix remark. First, sort counts in descending order 1995 // by count and name. 1996 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1997 for (auto &KV : MnemonicCounts) 1998 MnemonicVec.emplace_back(KV.first, KV.second); 1999 2000 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 2001 const std::pair<StringRef, unsigned> &B) { 2002 if (A.second > B.second) 2003 return true; 2004 if (A.second == B.second) 2005 return StringRef(A.first) < StringRef(B.first); 2006 return false; 2007 }); 2008 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 2009 for (auto &KV : MnemonicVec) { 2010 auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str(); 2011 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 2012 } 2013 ORE->emit(R); 2014 } 2015 } 2016 2017 EmittedInsts += NumInstsInFunction; 2018 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 2019 MF->getFunction().getSubprogram(), 2020 &MF->front()); 2021 R << ore::NV("NumInstructions", NumInstsInFunction) 2022 << " instructions in function"; 2023 ORE->emit(R); 2024 2025 // If the function is empty and the object file uses .subsections_via_symbols, 2026 // then we need to emit *something* to the function body to prevent the 2027 // labels from collapsing together. Just emit a noop. 2028 // Similarly, don't emit empty functions on Windows either. It can lead to 2029 // duplicate entries (two functions with the same RVA) in the Guard CF Table 2030 // after linking, causing the kernel not to load the binary: 2031 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 2032 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 2033 const Triple &TT = TM.getTargetTriple(); 2034 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 2035 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 2036 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 2037 2038 // Targets can opt-out of emitting the noop here by leaving the opcode 2039 // unspecified. 2040 if (Noop.getOpcode()) { 2041 OutStreamer->AddComment("avoids zero-length function"); 2042 emitNops(1); 2043 } 2044 } 2045 2046 // Switch to the original section in case basic block sections was used. 2047 OutStreamer->switchSection(MF->getSection()); 2048 2049 const Function &F = MF->getFunction(); 2050 for (const auto &BB : F) { 2051 if (!BB.hasAddressTaken()) 2052 continue; 2053 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 2054 if (Sym->isDefined()) 2055 continue; 2056 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 2057 OutStreamer->emitLabel(Sym); 2058 } 2059 2060 // Emit target-specific gunk after the function body. 2061 emitFunctionBodyEnd(); 2062 2063 // Even though wasm supports .type and .size in general, function symbols 2064 // are automatically sized. 2065 bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm(); 2066 2067 // SPIR-V supports label instructions only inside a block, not after the 2068 // function body. 2069 if (TT.getObjectFormat() != Triple::SPIRV && 2070 (EmitFunctionSize || needFuncLabels(*MF, *this))) { 2071 // Create a symbol for the end of function. 2072 CurrentFnEnd = createTempSymbol("func_end"); 2073 OutStreamer->emitLabel(CurrentFnEnd); 2074 } 2075 2076 // If the target wants a .size directive for the size of the function, emit 2077 // it. 2078 if (EmitFunctionSize) { 2079 // We can get the size as difference between the function label and the 2080 // temp label. 2081 const MCExpr *SizeExp = MCBinaryExpr::createSub( 2082 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 2083 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 2084 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 2085 if (CurrentFnBeginLocal) 2086 OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp); 2087 } 2088 2089 // Call endBasicBlockSection on the last block now, if it wasn't already 2090 // called. 2091 if (!MF->back().isEndSection()) { 2092 for (auto &Handler : Handlers) 2093 Handler->endBasicBlockSection(MF->back()); 2094 for (auto &Handler : EHHandlers) 2095 Handler->endBasicBlockSection(MF->back()); 2096 } 2097 for (auto &Handler : Handlers) 2098 Handler->markFunctionEnd(); 2099 for (auto &Handler : EHHandlers) 2100 Handler->markFunctionEnd(); 2101 // Update the end label of the entry block's section. 2102 MBBSectionRanges[MF->front().getSectionID()].EndLabel = CurrentFnEnd; 2103 2104 // Print out jump tables referenced by the function. 2105 emitJumpTableInfo(); 2106 2107 // Emit post-function debug and/or EH information. 2108 for (auto &Handler : Handlers) 2109 Handler->endFunction(MF); 2110 for (auto &Handler : EHHandlers) 2111 Handler->endFunction(MF); 2112 2113 // Emit section containing BB address offsets and their metadata, when 2114 // BB labels are requested for this function. Skip empty functions. 2115 if (HasAnyRealCode) { 2116 if (MF->getTarget().Options.BBAddrMap) 2117 emitBBAddrMapSection(*MF); 2118 else if (PgoAnalysisMapFeatures.getBits() != 0) 2119 MF->getContext().reportWarning( 2120 SMLoc(), "pgo-analysis-map is enabled for function " + MF->getName() + 2121 " but it does not have labels"); 2122 } 2123 2124 // Emit sections containing instruction and function PCs. 2125 emitPCSections(*MF); 2126 2127 // Emit section containing stack size metadata. 2128 emitStackSizeSection(*MF); 2129 2130 // Emit .su file containing function stack size information. 2131 emitStackUsage(*MF); 2132 2133 emitPatchableFunctionEntries(); 2134 2135 if (isVerbose()) 2136 OutStreamer->getCommentOS() << "-- End function\n"; 2137 2138 OutStreamer->addBlankLine(); 2139 } 2140 2141 /// Compute the number of Global Variables that uses a Constant. 2142 static unsigned getNumGlobalVariableUses(const Constant *C) { 2143 if (!C) 2144 return 0; 2145 2146 if (isa<GlobalVariable>(C)) 2147 return 1; 2148 2149 unsigned NumUses = 0; 2150 for (const auto *CU : C->users()) 2151 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 2152 2153 return NumUses; 2154 } 2155 2156 /// Only consider global GOT equivalents if at least one user is a 2157 /// cstexpr inside an initializer of another global variables. Also, don't 2158 /// handle cstexpr inside instructions. During global variable emission, 2159 /// candidates are skipped and are emitted later in case at least one cstexpr 2160 /// isn't replaced by a PC relative GOT entry access. 2161 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 2162 unsigned &NumGOTEquivUsers) { 2163 // Global GOT equivalents are unnamed private globals with a constant 2164 // pointer initializer to another global symbol. They must point to a 2165 // GlobalVariable or Function, i.e., as GlobalValue. 2166 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 2167 !GV->isConstant() || !GV->isDiscardableIfUnused() || 2168 !isa<GlobalValue>(GV->getOperand(0))) 2169 return false; 2170 2171 // To be a got equivalent, at least one of its users need to be a constant 2172 // expression used by another global variable. 2173 for (const auto *U : GV->users()) 2174 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 2175 2176 return NumGOTEquivUsers > 0; 2177 } 2178 2179 /// Unnamed constant global variables solely contaning a pointer to 2180 /// another globals variable is equivalent to a GOT table entry; it contains the 2181 /// the address of another symbol. Optimize it and replace accesses to these 2182 /// "GOT equivalents" by using the GOT entry for the final global instead. 2183 /// Compute GOT equivalent candidates among all global variables to avoid 2184 /// emitting them if possible later on, after it use is replaced by a GOT entry 2185 /// access. 2186 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 2187 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2188 return; 2189 2190 for (const auto &G : M.globals()) { 2191 unsigned NumGOTEquivUsers = 0; 2192 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 2193 continue; 2194 2195 const MCSymbol *GOTEquivSym = getSymbol(&G); 2196 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 2197 } 2198 } 2199 2200 /// Constant expressions using GOT equivalent globals may not be eligible 2201 /// for PC relative GOT entry conversion, in such cases we need to emit such 2202 /// globals we previously omitted in EmitGlobalVariable. 2203 void AsmPrinter::emitGlobalGOTEquivs() { 2204 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2205 return; 2206 2207 SmallVector<const GlobalVariable *, 8> FailedCandidates; 2208 for (auto &I : GlobalGOTEquivs) { 2209 const GlobalVariable *GV = I.second.first; 2210 unsigned Cnt = I.second.second; 2211 if (Cnt) 2212 FailedCandidates.push_back(GV); 2213 } 2214 GlobalGOTEquivs.clear(); 2215 2216 for (const auto *GV : FailedCandidates) 2217 emitGlobalVariable(GV); 2218 } 2219 2220 void AsmPrinter::emitGlobalAlias(const Module &M, const GlobalAlias &GA) { 2221 MCSymbol *Name = getSymbol(&GA); 2222 bool IsFunction = GA.getValueType()->isFunctionTy(); 2223 // Treat bitcasts of functions as functions also. This is important at least 2224 // on WebAssembly where object and function addresses can't alias each other. 2225 if (!IsFunction) 2226 IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts()); 2227 2228 // AIX's assembly directive `.set` is not usable for aliasing purpose, 2229 // so AIX has to use the extra-label-at-definition strategy. At this 2230 // point, all the extra label is emitted, we just have to emit linkage for 2231 // those labels. 2232 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 2233 // Linkage for alias of global variable has been emitted. 2234 if (isa<GlobalVariable>(GA.getAliaseeObject())) 2235 return; 2236 2237 emitLinkage(&GA, Name); 2238 // If it's a function, also emit linkage for aliases of function entry 2239 // point. 2240 if (IsFunction) 2241 emitLinkage(&GA, 2242 getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM)); 2243 return; 2244 } 2245 2246 if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) 2247 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 2248 else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) 2249 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 2250 else 2251 assert(GA.hasLocalLinkage() && "Invalid alias linkage"); 2252 2253 // Set the symbol type to function if the alias has a function type. 2254 // This affects codegen when the aliasee is not a function. 2255 if (IsFunction) { 2256 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 2257 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 2258 OutStreamer->beginCOFFSymbolDef(Name); 2259 OutStreamer->emitCOFFSymbolStorageClass( 2260 GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC 2261 : COFF::IMAGE_SYM_CLASS_EXTERNAL); 2262 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION 2263 << COFF::SCT_COMPLEX_TYPE_SHIFT); 2264 OutStreamer->endCOFFSymbolDef(); 2265 } 2266 } 2267 2268 emitVisibility(Name, GA.getVisibility()); 2269 2270 const MCExpr *Expr = lowerConstant(GA.getAliasee()); 2271 2272 if (MAI->isMachO() && isa<MCBinaryExpr>(Expr)) 2273 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 2274 2275 // Emit the directives as assignments aka .set: 2276 OutStreamer->emitAssignment(Name, Expr); 2277 MCSymbol *LocalAlias = getSymbolPreferLocal(GA); 2278 if (LocalAlias != Name) 2279 OutStreamer->emitAssignment(LocalAlias, Expr); 2280 2281 // If the aliasee does not correspond to a symbol in the output, i.e. the 2282 // alias is not of an object or the aliased object is private, then set the 2283 // size of the alias symbol from the type of the alias. We don't do this in 2284 // other situations as the alias and aliasee having differing types but same 2285 // size may be intentional. 2286 const GlobalObject *BaseObject = GA.getAliaseeObject(); 2287 if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && 2288 (!BaseObject || BaseObject->hasPrivateLinkage())) { 2289 const DataLayout &DL = M.getDataLayout(); 2290 uint64_t Size = DL.getTypeAllocSize(GA.getValueType()); 2291 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 2292 } 2293 } 2294 2295 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { 2296 assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && 2297 "IFunc is not supported on AIX."); 2298 2299 auto EmitLinkage = [&](MCSymbol *Sym) { 2300 if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) 2301 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2302 else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) 2303 OutStreamer->emitSymbolAttribute(Sym, MCSA_WeakReference); 2304 else 2305 assert(GI.hasLocalLinkage() && "Invalid ifunc linkage"); 2306 }; 2307 2308 if (TM.getTargetTriple().isOSBinFormatELF()) { 2309 MCSymbol *Name = getSymbol(&GI); 2310 EmitLinkage(Name); 2311 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 2312 emitVisibility(Name, GI.getVisibility()); 2313 2314 // Emit the directives as assignments aka .set: 2315 const MCExpr *Expr = lowerConstant(GI.getResolver()); 2316 OutStreamer->emitAssignment(Name, Expr); 2317 MCSymbol *LocalAlias = getSymbolPreferLocal(GI); 2318 if (LocalAlias != Name) 2319 OutStreamer->emitAssignment(LocalAlias, Expr); 2320 2321 return; 2322 } 2323 2324 if (!TM.getTargetTriple().isOSBinFormatMachO() || !getIFuncMCSubtargetInfo()) 2325 llvm::report_fatal_error("IFuncs are not supported on this platform"); 2326 2327 // On Darwin platforms, emit a manually-constructed .symbol_resolver that 2328 // implements the symbol resolution duties of the IFunc. 2329 // 2330 // Normally, this would be handled by linker magic, but unfortunately there 2331 // are a few limitations in ld64 and ld-prime's implementation of 2332 // .symbol_resolver that mean we can't always use them: 2333 // 2334 // * resolvers cannot be the target of an alias 2335 // * resolvers cannot have private linkage 2336 // * resolvers cannot have linkonce linkage 2337 // * resolvers cannot appear in executables 2338 // * resolvers cannot appear in bundles 2339 // 2340 // This works around that by emitting a close approximation of what the 2341 // linker would have done. 2342 2343 MCSymbol *LazyPointer = 2344 GetExternalSymbolSymbol(GI.getName() + ".lazy_pointer"); 2345 MCSymbol *StubHelper = GetExternalSymbolSymbol(GI.getName() + ".stub_helper"); 2346 2347 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection()); 2348 2349 const DataLayout &DL = M.getDataLayout(); 2350 emitAlignment(Align(DL.getPointerSize())); 2351 OutStreamer->emitLabel(LazyPointer); 2352 emitVisibility(LazyPointer, GI.getVisibility()); 2353 OutStreamer->emitValue(MCSymbolRefExpr::create(StubHelper, OutContext), 8); 2354 2355 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection()); 2356 2357 const TargetSubtargetInfo *STI = 2358 TM.getSubtargetImpl(*GI.getResolverFunction()); 2359 const TargetLowering *TLI = STI->getTargetLowering(); 2360 Align TextAlign(TLI->getMinFunctionAlignment()); 2361 2362 MCSymbol *Stub = getSymbol(&GI); 2363 EmitLinkage(Stub); 2364 OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo()); 2365 OutStreamer->emitLabel(Stub); 2366 emitVisibility(Stub, GI.getVisibility()); 2367 emitMachOIFuncStubBody(M, GI, LazyPointer); 2368 2369 OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo()); 2370 OutStreamer->emitLabel(StubHelper); 2371 emitVisibility(StubHelper, GI.getVisibility()); 2372 emitMachOIFuncStubHelperBody(M, GI, LazyPointer); 2373 } 2374 2375 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 2376 if (!RS.needsSection()) 2377 return; 2378 2379 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 2380 2381 std::optional<SmallString<128>> Filename; 2382 if (std::optional<StringRef> FilenameRef = RS.getFilename()) { 2383 Filename = *FilenameRef; 2384 sys::fs::make_absolute(*Filename); 2385 assert(!Filename->empty() && "The filename can't be empty."); 2386 } 2387 2388 std::string Buf; 2389 raw_string_ostream OS(Buf); 2390 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 2391 Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) 2392 : RemarkSerializer.metaSerializer(OS); 2393 MetaSerializer->emit(); 2394 2395 // Switch to the remarks section. 2396 MCSection *RemarksSection = 2397 OutContext.getObjectFileInfo()->getRemarksSection(); 2398 OutStreamer->switchSection(RemarksSection); 2399 2400 OutStreamer->emitBinaryData(Buf); 2401 } 2402 2403 static void tagGlobalDefinition(Module &M, GlobalVariable *G) { 2404 Constant *Initializer = G->getInitializer(); 2405 uint64_t SizeInBytes = 2406 M.getDataLayout().getTypeAllocSize(Initializer->getType()); 2407 2408 uint64_t NewSize = alignTo(SizeInBytes, 16); 2409 if (SizeInBytes != NewSize) { 2410 // Pad the initializer out to the next multiple of 16 bytes. 2411 llvm::SmallVector<uint8_t> Init(NewSize - SizeInBytes, 0); 2412 Constant *Padding = ConstantDataArray::get(M.getContext(), Init); 2413 Initializer = ConstantStruct::getAnon({Initializer, Padding}); 2414 auto *NewGV = new GlobalVariable( 2415 M, Initializer->getType(), G->isConstant(), G->getLinkage(), 2416 Initializer, "", G, G->getThreadLocalMode(), G->getAddressSpace()); 2417 NewGV->copyAttributesFrom(G); 2418 NewGV->setComdat(G->getComdat()); 2419 NewGV->copyMetadata(G, 0); 2420 2421 NewGV->takeName(G); 2422 G->replaceAllUsesWith(NewGV); 2423 G->eraseFromParent(); 2424 G = NewGV; 2425 } 2426 2427 if (G->getAlign().valueOrOne() < 16) 2428 G->setAlignment(Align(16)); 2429 2430 // Ensure that tagged globals don't get merged by ICF - as they should have 2431 // different tags at runtime. 2432 G->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2433 } 2434 2435 bool AsmPrinter::doFinalization(Module &M) { 2436 // Set the MachineFunction to nullptr so that we can catch attempted 2437 // accesses to MF specific features at the module level and so that 2438 // we can conditionalize accesses based on whether or not it is nullptr. 2439 MF = nullptr; 2440 2441 std::vector<GlobalVariable *> GlobalsToTag; 2442 for (GlobalVariable &G : M.globals()) { 2443 if (G.isDeclaration() || !G.isTagged()) 2444 continue; 2445 GlobalsToTag.push_back(&G); 2446 } 2447 for (GlobalVariable *G : GlobalsToTag) 2448 tagGlobalDefinition(M, G); 2449 2450 // Gather all GOT equivalent globals in the module. We really need two 2451 // passes over the globals: one to compute and another to avoid its emission 2452 // in EmitGlobalVariable, otherwise we would not be able to handle cases 2453 // where the got equivalent shows up before its use. 2454 computeGlobalGOTEquivs(M); 2455 2456 // Emit global variables. 2457 for (const auto &G : M.globals()) 2458 emitGlobalVariable(&G); 2459 2460 // Emit remaining GOT equivalent globals. 2461 emitGlobalGOTEquivs(); 2462 2463 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2464 2465 // Emit linkage(XCOFF) and visibility info for declarations 2466 for (const Function &F : M) { 2467 if (!F.isDeclarationForLinker()) 2468 continue; 2469 2470 MCSymbol *Name = getSymbol(&F); 2471 // Function getSymbol gives us the function descriptor symbol for XCOFF. 2472 2473 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 2474 GlobalValue::VisibilityTypes V = F.getVisibility(); 2475 if (V == GlobalValue::DefaultVisibility) 2476 continue; 2477 2478 emitVisibility(Name, V, false); 2479 continue; 2480 } 2481 2482 if (F.isIntrinsic()) 2483 continue; 2484 2485 // Handle the XCOFF case. 2486 // Variable `Name` is the function descriptor symbol (see above). Get the 2487 // function entry point symbol. 2488 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 2489 // Emit linkage for the function entry point. 2490 emitLinkage(&F, FnEntryPointSym); 2491 2492 // If a function's address is taken, which means it may be called via a 2493 // function pointer, we need the function descriptor for it. 2494 if (F.hasAddressTaken()) 2495 emitLinkage(&F, Name); 2496 } 2497 2498 // Emit the remarks section contents. 2499 // FIXME: Figure out when is the safest time to emit this section. It should 2500 // not come after debug info. 2501 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 2502 emitRemarksSection(*RS); 2503 2504 TLOF.emitModuleMetadata(*OutStreamer, M); 2505 2506 if (TM.getTargetTriple().isOSBinFormatELF()) { 2507 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 2508 2509 // Output stubs for external and common global variables. 2510 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 2511 if (!Stubs.empty()) { 2512 OutStreamer->switchSection(TLOF.getDataSection()); 2513 const DataLayout &DL = M.getDataLayout(); 2514 2515 emitAlignment(Align(DL.getPointerSize())); 2516 for (const auto &Stub : Stubs) { 2517 OutStreamer->emitLabel(Stub.first); 2518 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 2519 DL.getPointerSize()); 2520 } 2521 } 2522 } 2523 2524 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 2525 MachineModuleInfoCOFF &MMICOFF = 2526 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 2527 2528 // Output stubs for external and common global variables. 2529 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 2530 if (!Stubs.empty()) { 2531 const DataLayout &DL = M.getDataLayout(); 2532 2533 for (const auto &Stub : Stubs) { 2534 SmallString<256> SectionName = StringRef(".rdata$"); 2535 SectionName += Stub.first->getName(); 2536 OutStreamer->switchSection(OutContext.getCOFFSection( 2537 SectionName, 2538 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 2539 COFF::IMAGE_SCN_LNK_COMDAT, 2540 Stub.first->getName(), COFF::IMAGE_COMDAT_SELECT_ANY)); 2541 emitAlignment(Align(DL.getPointerSize())); 2542 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 2543 OutStreamer->emitLabel(Stub.first); 2544 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 2545 DL.getPointerSize()); 2546 } 2547 } 2548 } 2549 2550 // This needs to happen before emitting debug information since that can end 2551 // arbitrary sections. 2552 if (auto *TS = OutStreamer->getTargetStreamer()) 2553 TS->emitConstantPools(); 2554 2555 // Emit Stack maps before any debug info. Mach-O requires that no data or 2556 // text sections come after debug info has been emitted. This matters for 2557 // stack maps as they are arbitrary data, and may even have a custom format 2558 // through user plugins. 2559 emitStackMaps(); 2560 2561 // Print aliases in topological order, that is, for each alias a = b, 2562 // b must be printed before a. 2563 // This is because on some targets (e.g. PowerPC) linker expects aliases in 2564 // such an order to generate correct TOC information. 2565 SmallVector<const GlobalAlias *, 16> AliasStack; 2566 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 2567 for (const auto &Alias : M.aliases()) { 2568 if (Alias.hasAvailableExternallyLinkage()) 2569 continue; 2570 for (const GlobalAlias *Cur = &Alias; Cur; 2571 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 2572 if (!AliasVisited.insert(Cur).second) 2573 break; 2574 AliasStack.push_back(Cur); 2575 } 2576 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 2577 emitGlobalAlias(M, *AncestorAlias); 2578 AliasStack.clear(); 2579 } 2580 2581 // IFuncs must come before deubginfo in case the backend decides to emit them 2582 // as actual functions, since on Mach-O targets, we cannot create regular 2583 // sections after DWARF. 2584 for (const auto &IFunc : M.ifuncs()) 2585 emitGlobalIFunc(M, IFunc); 2586 2587 // Finalize debug and EH information. 2588 for (auto &Handler : Handlers) 2589 Handler->endModule(); 2590 for (auto &Handler : EHHandlers) 2591 Handler->endModule(); 2592 2593 // This deletes all the ephemeral handlers that AsmPrinter added, while 2594 // keeping all the user-added handlers alive until the AsmPrinter is 2595 // destroyed. 2596 EHHandlers.clear(); 2597 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 2598 DD = nullptr; 2599 2600 // If the target wants to know about weak references, print them all. 2601 if (MAI->getWeakRefDirective()) { 2602 // FIXME: This is not lazy, it would be nice to only print weak references 2603 // to stuff that is actually used. Note that doing so would require targets 2604 // to notice uses in operands (due to constant exprs etc). This should 2605 // happen with the MC stuff eventually. 2606 2607 // Print out module-level global objects here. 2608 for (const auto &GO : M.global_objects()) { 2609 if (!GO.hasExternalWeakLinkage()) 2610 continue; 2611 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 2612 } 2613 if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) { 2614 auto SymbolName = "swift_async_extendedFramePointerFlags"; 2615 auto Global = M.getGlobalVariable(SymbolName); 2616 if (!Global) { 2617 auto PtrTy = PointerType::getUnqual(M.getContext()); 2618 Global = new GlobalVariable(M, PtrTy, false, 2619 GlobalValue::ExternalWeakLinkage, nullptr, 2620 SymbolName); 2621 OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference); 2622 } 2623 } 2624 } 2625 2626 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 2627 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 2628 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 2629 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I)) 2630 MP->finishAssembly(M, *MI, *this); 2631 2632 // Emit llvm.ident metadata in an '.ident' directive. 2633 emitModuleIdents(M); 2634 2635 // Emit bytes for llvm.commandline metadata. 2636 // The command line metadata is emitted earlier on XCOFF. 2637 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) 2638 emitModuleCommandLines(M); 2639 2640 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 2641 // split-stack is used. 2642 if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) { 2643 OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack", 2644 ELF::SHT_PROGBITS, 0)); 2645 if (HasNoSplitStack) 2646 OutStreamer->switchSection(OutContext.getELFSection( 2647 ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 2648 } 2649 2650 // If we don't have any trampolines, then we don't require stack memory 2651 // to be executable. Some targets have a directive to declare this. 2652 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 2653 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 2654 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 2655 OutStreamer->switchSection(S); 2656 2657 if (TM.Options.EmitAddrsig) { 2658 // Emit address-significance attributes for all globals. 2659 OutStreamer->emitAddrsig(); 2660 for (const GlobalValue &GV : M.global_values()) { 2661 if (!GV.use_empty() && !GV.isThreadLocal() && 2662 !GV.hasDLLImportStorageClass() && 2663 !GV.getName().starts_with("llvm.") && 2664 !GV.hasAtLeastLocalUnnamedAddr()) 2665 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 2666 } 2667 } 2668 2669 // Emit symbol partition specifications (ELF only). 2670 if (TM.getTargetTriple().isOSBinFormatELF()) { 2671 unsigned UniqueID = 0; 2672 for (const GlobalValue &GV : M.global_values()) { 2673 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 2674 GV.getVisibility() != GlobalValue::DefaultVisibility) 2675 continue; 2676 2677 OutStreamer->switchSection( 2678 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 2679 "", false, ++UniqueID, nullptr)); 2680 OutStreamer->emitBytes(GV.getPartition()); 2681 OutStreamer->emitZeros(1); 2682 OutStreamer->emitValue( 2683 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 2684 MAI->getCodePointerSize()); 2685 } 2686 } 2687 2688 // Allow the target to emit any magic that it wants at the end of the file, 2689 // after everything else has gone out. 2690 emitEndOfAsmFile(M); 2691 2692 MMI = nullptr; 2693 AddrLabelSymbols = nullptr; 2694 2695 OutStreamer->finish(); 2696 OutStreamer->reset(); 2697 OwnedMLI.reset(); 2698 OwnedMDT.reset(); 2699 2700 return false; 2701 } 2702 2703 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 2704 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionID()); 2705 if (Res.second) 2706 Res.first->second = createTempSymbol("exception"); 2707 return Res.first->second; 2708 } 2709 2710 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 2711 this->MF = &MF; 2712 const Function &F = MF.getFunction(); 2713 2714 // Record that there are split-stack functions, so we will emit a special 2715 // section to tell the linker. 2716 if (MF.shouldSplitStack()) { 2717 HasSplitStack = true; 2718 2719 if (!MF.getFrameInfo().needsSplitStackProlog()) 2720 HasNoSplitStack = true; 2721 } else 2722 HasNoSplitStack = true; 2723 2724 // Get the function symbol. 2725 if (!MAI->isAIX()) { 2726 CurrentFnSym = getSymbol(&MF.getFunction()); 2727 } else { 2728 assert(TM.getTargetTriple().isOSAIX() && 2729 "Only AIX uses the function descriptor hooks."); 2730 // AIX is unique here in that the name of the symbol emitted for the 2731 // function body does not have the same name as the source function's 2732 // C-linkage name. 2733 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 2734 " initalized first."); 2735 2736 // Get the function entry point symbol. 2737 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 2738 } 2739 2740 CurrentFnSymForSize = CurrentFnSym; 2741 CurrentFnBegin = nullptr; 2742 CurrentFnBeginLocal = nullptr; 2743 CurrentSectionBeginSym = nullptr; 2744 MBBSectionRanges.clear(); 2745 MBBSectionExceptionSyms.clear(); 2746 bool NeedsLocalForSize = MAI->needsLocalForSize(); 2747 if (F.hasFnAttribute("patchable-function-entry") || 2748 F.hasFnAttribute("function-instrument") || 2749 F.hasFnAttribute("xray-instruction-threshold") || 2750 needFuncLabels(MF, *this) || NeedsLocalForSize || 2751 MF.getTarget().Options.EmitStackSizeSection || 2752 MF.getTarget().Options.BBAddrMap) { 2753 CurrentFnBegin = createTempSymbol("func_begin"); 2754 if (NeedsLocalForSize) 2755 CurrentFnSymForSize = CurrentFnBegin; 2756 } 2757 2758 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2759 } 2760 2761 namespace { 2762 2763 // Keep track the alignment, constpool entries per Section. 2764 struct SectionCPs { 2765 MCSection *S; 2766 Align Alignment; 2767 SmallVector<unsigned, 4> CPEs; 2768 2769 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 2770 }; 2771 2772 } // end anonymous namespace 2773 2774 /// EmitConstantPool - Print to the current output stream assembly 2775 /// representations of the constants in the constant pool MCP. This is 2776 /// used to print out constants which have been "spilled to memory" by 2777 /// the code generator. 2778 void AsmPrinter::emitConstantPool() { 2779 const MachineConstantPool *MCP = MF->getConstantPool(); 2780 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 2781 if (CP.empty()) return; 2782 2783 // Calculate sections for constant pool entries. We collect entries to go into 2784 // the same section together to reduce amount of section switch statements. 2785 SmallVector<SectionCPs, 4> CPSections; 2786 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 2787 const MachineConstantPoolEntry &CPE = CP[i]; 2788 Align Alignment = CPE.getAlign(); 2789 2790 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 2791 2792 const Constant *C = nullptr; 2793 if (!CPE.isMachineConstantPoolEntry()) 2794 C = CPE.Val.ConstVal; 2795 2796 MCSection *S = getObjFileLowering().getSectionForConstant( 2797 getDataLayout(), Kind, C, Alignment); 2798 2799 // The number of sections are small, just do a linear search from the 2800 // last section to the first. 2801 bool Found = false; 2802 unsigned SecIdx = CPSections.size(); 2803 while (SecIdx != 0) { 2804 if (CPSections[--SecIdx].S == S) { 2805 Found = true; 2806 break; 2807 } 2808 } 2809 if (!Found) { 2810 SecIdx = CPSections.size(); 2811 CPSections.push_back(SectionCPs(S, Alignment)); 2812 } 2813 2814 if (Alignment > CPSections[SecIdx].Alignment) 2815 CPSections[SecIdx].Alignment = Alignment; 2816 CPSections[SecIdx].CPEs.push_back(i); 2817 } 2818 2819 // Now print stuff into the calculated sections. 2820 const MCSection *CurSection = nullptr; 2821 unsigned Offset = 0; 2822 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 2823 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 2824 unsigned CPI = CPSections[i].CPEs[j]; 2825 MCSymbol *Sym = GetCPISymbol(CPI); 2826 if (!Sym->isUndefined()) 2827 continue; 2828 2829 if (CurSection != CPSections[i].S) { 2830 OutStreamer->switchSection(CPSections[i].S); 2831 emitAlignment(Align(CPSections[i].Alignment)); 2832 CurSection = CPSections[i].S; 2833 Offset = 0; 2834 } 2835 2836 MachineConstantPoolEntry CPE = CP[CPI]; 2837 2838 // Emit inter-object padding for alignment. 2839 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2840 OutStreamer->emitZeros(NewOffset - Offset); 2841 2842 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2843 2844 OutStreamer->emitLabel(Sym); 2845 if (CPE.isMachineConstantPoolEntry()) 2846 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2847 else 2848 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2849 } 2850 } 2851 } 2852 2853 // Print assembly representations of the jump tables used by the current 2854 // function. 2855 void AsmPrinter::emitJumpTableInfo() { 2856 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2857 if (!MJTI) return; 2858 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2859 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2860 if (JT.empty()) return; 2861 2862 // Pick the directive to use to print the jump table entries, and switch to 2863 // the appropriate section. 2864 const Function &F = MF->getFunction(); 2865 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2866 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2867 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 2868 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference64, 2869 F); 2870 2871 if (!TM.Options.EnableStaticDataPartitioning) { 2872 emitJumpTableImpl(*MJTI, llvm::to_vector(llvm::seq<unsigned>(JT.size())), 2873 JTInDiffSection); 2874 return; 2875 } 2876 2877 SmallVector<unsigned> HotJumpTableIndices, ColdJumpTableIndices; 2878 // When static data partitioning is enabled, collect jump table entries that 2879 // go into the same section together to reduce the amount of section switch 2880 // statements. 2881 for (unsigned JTI = 0, JTSize = JT.size(); JTI < JTSize; ++JTI) { 2882 if (JT[JTI].Hotness == MachineFunctionDataHotness::Cold) { 2883 ColdJumpTableIndices.push_back(JTI); 2884 } else { 2885 HotJumpTableIndices.push_back(JTI); 2886 } 2887 } 2888 2889 emitJumpTableImpl(*MJTI, HotJumpTableIndices, JTInDiffSection); 2890 emitJumpTableImpl(*MJTI, ColdJumpTableIndices, JTInDiffSection); 2891 } 2892 2893 void AsmPrinter::emitJumpTableImpl(const MachineJumpTableInfo &MJTI, 2894 ArrayRef<unsigned> JumpTableIndices, 2895 bool JTInDiffSection) { 2896 if (JumpTableIndices.empty()) 2897 return; 2898 2899 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2900 const Function &F = MF->getFunction(); 2901 const std::vector<MachineJumpTableEntry> &JT = MJTI.getJumpTables(); 2902 MCSection *JumpTableSection = nullptr; 2903 if (TM.Options.EnableStaticDataPartitioning) { 2904 JumpTableSection = 2905 TLOF.getSectionForJumpTable(F, TM, &JT[JumpTableIndices.front()]); 2906 } else { 2907 JumpTableSection = TLOF.getSectionForJumpTable(F, TM); 2908 } 2909 2910 const DataLayout &DL = MF->getDataLayout(); 2911 if (JTInDiffSection) { 2912 OutStreamer->switchSection(JumpTableSection); 2913 } 2914 2915 emitAlignment(Align(MJTI.getEntryAlignment(MF->getDataLayout()))); 2916 2917 // Jump tables in code sections are marked with a data_region directive 2918 // where that's supported. 2919 if (!JTInDiffSection) 2920 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2921 2922 for (const unsigned JumpTableIndex : JumpTableIndices) { 2923 ArrayRef<MachineBasicBlock *> JTBBs = JT[JumpTableIndex].MBBs; 2924 2925 // If this jump table was deleted, ignore it. 2926 if (JTBBs.empty()) 2927 continue; 2928 2929 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2930 /// emit a .set directive for each unique entry. 2931 if (MJTI.getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2932 MAI->doesSetDirectiveSuppressReloc()) { 2933 SmallPtrSet<const MachineBasicBlock *, 16> EmittedSets; 2934 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2935 const MCExpr *Base = 2936 TLI->getPICJumpTableRelocBaseExpr(MF, JumpTableIndex, OutContext); 2937 for (const MachineBasicBlock *MBB : JTBBs) { 2938 if (!EmittedSets.insert(MBB).second) 2939 continue; 2940 2941 // .set LJTSet, LBB32-base 2942 const MCExpr *LHS = 2943 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2944 OutStreamer->emitAssignment( 2945 GetJTSetSymbol(JumpTableIndex, MBB->getNumber()), 2946 MCBinaryExpr::createSub(LHS, Base, OutContext)); 2947 } 2948 } 2949 2950 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2951 // before each jump table. The first label is never referenced, but tells 2952 // the assembler and linker the extents of the jump table object. The 2953 // second label is actually referenced by the code. 2954 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2955 // FIXME: This doesn't have to have any specific name, just any randomly 2956 // named and numbered local label started with 'l' would work. Simplify 2957 // GetJTISymbol. 2958 OutStreamer->emitLabel(GetJTISymbol(JumpTableIndex, true)); 2959 2960 MCSymbol *JTISymbol = GetJTISymbol(JumpTableIndex); 2961 OutStreamer->emitLabel(JTISymbol); 2962 2963 // Defer MCAssembler based constant folding due to a performance issue. The 2964 // label differences will be evaluated at write time. 2965 for (const MachineBasicBlock *MBB : JTBBs) 2966 emitJumpTableEntry(MJTI, MBB, JumpTableIndex); 2967 } 2968 2969 if (EmitJumpTableSizesSection) 2970 emitJumpTableSizesSection(MJTI, MF->getFunction()); 2971 2972 if (!JTInDiffSection) 2973 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2974 } 2975 2976 void AsmPrinter::emitJumpTableSizesSection(const MachineJumpTableInfo &MJTI, 2977 const Function &F) const { 2978 const std::vector<MachineJumpTableEntry> &JT = MJTI.getJumpTables(); 2979 2980 if (JT.empty()) 2981 return; 2982 2983 StringRef GroupName = F.hasComdat() ? F.getComdat()->getName() : ""; 2984 MCSection *JumpTableSizesSection = nullptr; 2985 StringRef sectionName = ".llvm_jump_table_sizes"; 2986 2987 bool isElf = TM.getTargetTriple().isOSBinFormatELF(); 2988 bool isCoff = TM.getTargetTriple().isOSBinFormatCOFF(); 2989 2990 if (!isCoff && !isElf) 2991 return; 2992 2993 if (isElf) { 2994 MCSymbolELF *LinkedToSym = dyn_cast<MCSymbolELF>(CurrentFnSym); 2995 int Flags = F.hasComdat() ? static_cast<int>(ELF::SHF_GROUP) : 0; 2996 2997 JumpTableSizesSection = OutContext.getELFSection( 2998 sectionName, ELF::SHT_LLVM_JT_SIZES, Flags, 0, GroupName, F.hasComdat(), 2999 MCSection::NonUniqueID, LinkedToSym); 3000 } else if (isCoff) { 3001 if (F.hasComdat()) { 3002 JumpTableSizesSection = OutContext.getCOFFSection( 3003 sectionName, 3004 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 3005 COFF::IMAGE_SCN_LNK_COMDAT | COFF::IMAGE_SCN_MEM_DISCARDABLE, 3006 F.getComdat()->getName(), COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE); 3007 } else { 3008 JumpTableSizesSection = OutContext.getCOFFSection( 3009 sectionName, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 3010 COFF::IMAGE_SCN_MEM_READ | 3011 COFF::IMAGE_SCN_MEM_DISCARDABLE); 3012 } 3013 } 3014 3015 OutStreamer->switchSection(JumpTableSizesSection); 3016 3017 for (unsigned JTI = 0, E = JT.size(); JTI != E; ++JTI) { 3018 const std::vector<MachineBasicBlock *> &JTBBs = JT[JTI].MBBs; 3019 OutStreamer->emitSymbolValue(GetJTISymbol(JTI), TM.getProgramPointerSize()); 3020 OutStreamer->emitIntValue(JTBBs.size(), TM.getProgramPointerSize()); 3021 } 3022 } 3023 3024 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 3025 /// current stream. 3026 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo &MJTI, 3027 const MachineBasicBlock *MBB, 3028 unsigned UID) const { 3029 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 3030 const MCExpr *Value = nullptr; 3031 switch (MJTI.getEntryKind()) { 3032 case MachineJumpTableInfo::EK_Inline: 3033 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 3034 case MachineJumpTableInfo::EK_Custom32: 3035 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 3036 &MJTI, MBB, UID, OutContext); 3037 break; 3038 case MachineJumpTableInfo::EK_BlockAddress: 3039 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 3040 // .word LBB123 3041 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 3042 break; 3043 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 3044 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 3045 // with a relocation as gp-relative, e.g.: 3046 // .gprel32 LBB123 3047 MCSymbol *MBBSym = MBB->getSymbol(); 3048 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 3049 return; 3050 } 3051 3052 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 3053 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 3054 // with a relocation as gp-relative, e.g.: 3055 // .gpdword LBB123 3056 MCSymbol *MBBSym = MBB->getSymbol(); 3057 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 3058 return; 3059 } 3060 3061 case MachineJumpTableInfo::EK_LabelDifference32: 3062 case MachineJumpTableInfo::EK_LabelDifference64: { 3063 // Each entry is the address of the block minus the address of the jump 3064 // table. This is used for PIC jump tables where gprel32 is not supported. 3065 // e.g.: 3066 // .word LBB123 - LJTI1_2 3067 // If the .set directive avoids relocations, this is emitted as: 3068 // .set L4_5_set_123, LBB123 - LJTI1_2 3069 // .word L4_5_set_123 3070 if (MJTI.getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 3071 MAI->doesSetDirectiveSuppressReloc()) { 3072 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 3073 OutContext); 3074 break; 3075 } 3076 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 3077 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 3078 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 3079 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 3080 break; 3081 } 3082 } 3083 3084 assert(Value && "Unknown entry kind!"); 3085 3086 unsigned EntrySize = MJTI.getEntrySize(getDataLayout()); 3087 OutStreamer->emitValue(Value, EntrySize); 3088 } 3089 3090 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 3091 /// special global used by LLVM. If so, emit it and return true, otherwise 3092 /// do nothing and return false. 3093 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 3094 if (GV->getName() == "llvm.used") { 3095 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 3096 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 3097 return true; 3098 } 3099 3100 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 3101 if (GV->getSection() == "llvm.metadata" || 3102 GV->hasAvailableExternallyLinkage()) 3103 return true; 3104 3105 if (GV->getName() == "llvm.arm64ec.symbolmap") { 3106 // For ARM64EC, print the table that maps between symbols and the 3107 // corresponding thunks to translate between x64 and AArch64 code. 3108 // This table is generated by AArch64Arm64ECCallLowering. 3109 OutStreamer->switchSection( 3110 OutContext.getCOFFSection(".hybmp$x", COFF::IMAGE_SCN_LNK_INFO)); 3111 auto *Arr = cast<ConstantArray>(GV->getInitializer()); 3112 for (auto &U : Arr->operands()) { 3113 auto *C = cast<Constant>(U); 3114 auto *Src = cast<GlobalValue>(C->getOperand(0)->stripPointerCasts()); 3115 auto *Dst = cast<GlobalValue>(C->getOperand(1)->stripPointerCasts()); 3116 int Kind = cast<ConstantInt>(C->getOperand(2))->getZExtValue(); 3117 3118 if (Src->hasDLLImportStorageClass()) { 3119 // For now, we assume dllimport functions aren't directly called. 3120 // (We might change this later to match MSVC.) 3121 OutStreamer->emitCOFFSymbolIndex( 3122 OutContext.getOrCreateSymbol("__imp_" + Src->getName())); 3123 OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst)); 3124 OutStreamer->emitInt32(Kind); 3125 } else { 3126 // FIXME: For non-dllimport functions, MSVC emits the same entry 3127 // twice, for reasons I don't understand. I have to assume the linker 3128 // ignores the redundant entry; there aren't any reasonable semantics 3129 // to attach to it. 3130 OutStreamer->emitCOFFSymbolIndex(getSymbol(Src)); 3131 OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst)); 3132 OutStreamer->emitInt32(Kind); 3133 } 3134 } 3135 return true; 3136 } 3137 3138 if (!GV->hasAppendingLinkage()) return false; 3139 3140 assert(GV->hasInitializer() && "Not a special LLVM global!"); 3141 3142 if (GV->getName() == "llvm.global_ctors") { 3143 emitXXStructorList(GV->getDataLayout(), GV->getInitializer(), 3144 /* isCtor */ true); 3145 3146 return true; 3147 } 3148 3149 if (GV->getName() == "llvm.global_dtors") { 3150 emitXXStructorList(GV->getDataLayout(), GV->getInitializer(), 3151 /* isCtor */ false); 3152 3153 return true; 3154 } 3155 3156 report_fatal_error("unknown special variable with appending linkage"); 3157 } 3158 3159 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 3160 /// global in the specified llvm.used list. 3161 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 3162 // Should be an array of 'i8*'. 3163 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 3164 const GlobalValue *GV = 3165 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 3166 if (GV) 3167 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 3168 } 3169 } 3170 3171 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 3172 const Constant *List, 3173 SmallVector<Structor, 8> &Structors) { 3174 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 3175 // the init priority. 3176 if (!isa<ConstantArray>(List)) 3177 return; 3178 3179 // Gather the structors in a form that's convenient for sorting by priority. 3180 for (Value *O : cast<ConstantArray>(List)->operands()) { 3181 auto *CS = cast<ConstantStruct>(O); 3182 if (CS->getOperand(1)->isNullValue()) 3183 break; // Found a null terminator, skip the rest. 3184 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 3185 if (!Priority) 3186 continue; // Malformed. 3187 Structors.push_back(Structor()); 3188 Structor &S = Structors.back(); 3189 S.Priority = Priority->getLimitedValue(65535); 3190 S.Func = CS->getOperand(1); 3191 if (!CS->getOperand(2)->isNullValue()) { 3192 if (TM.getTargetTriple().isOSAIX()) 3193 llvm::report_fatal_error( 3194 "associated data of XXStructor list is not yet supported on AIX"); 3195 S.ComdatKey = 3196 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 3197 } 3198 } 3199 3200 // Emit the function pointers in the target-specific order 3201 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 3202 return L.Priority < R.Priority; 3203 }); 3204 } 3205 3206 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 3207 /// priority. 3208 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 3209 bool IsCtor) { 3210 SmallVector<Structor, 8> Structors; 3211 preprocessXXStructorList(DL, List, Structors); 3212 if (Structors.empty()) 3213 return; 3214 3215 // Emit the structors in reverse order if we are using the .ctor/.dtor 3216 // initialization scheme. 3217 if (!TM.Options.UseInitArray) 3218 std::reverse(Structors.begin(), Structors.end()); 3219 3220 const Align Align = DL.getPointerPrefAlignment(); 3221 for (Structor &S : Structors) { 3222 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 3223 const MCSymbol *KeySym = nullptr; 3224 if (GlobalValue *GV = S.ComdatKey) { 3225 if (GV->isDeclarationForLinker()) 3226 // If the associated variable is not defined in this module 3227 // (it might be available_externally, or have been an 3228 // available_externally definition that was dropped by the 3229 // EliminateAvailableExternally pass), some other TU 3230 // will provide its dynamic initializer. 3231 continue; 3232 3233 KeySym = getSymbol(GV); 3234 } 3235 3236 MCSection *OutputSection = 3237 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 3238 : Obj.getStaticDtorSection(S.Priority, KeySym)); 3239 OutStreamer->switchSection(OutputSection); 3240 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 3241 emitAlignment(Align); 3242 emitXXStructor(DL, S.Func); 3243 } 3244 } 3245 3246 void AsmPrinter::emitModuleIdents(Module &M) { 3247 if (!MAI->hasIdentDirective()) 3248 return; 3249 3250 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 3251 for (const MDNode *N : NMD->operands()) { 3252 assert(N->getNumOperands() == 1 && 3253 "llvm.ident metadata entry can have only one operand"); 3254 const MDString *S = cast<MDString>(N->getOperand(0)); 3255 OutStreamer->emitIdent(S->getString()); 3256 } 3257 } 3258 } 3259 3260 void AsmPrinter::emitModuleCommandLines(Module &M) { 3261 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 3262 if (!CommandLine) 3263 return; 3264 3265 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 3266 if (!NMD || !NMD->getNumOperands()) 3267 return; 3268 3269 OutStreamer->pushSection(); 3270 OutStreamer->switchSection(CommandLine); 3271 OutStreamer->emitZeros(1); 3272 for (const MDNode *N : NMD->operands()) { 3273 assert(N->getNumOperands() == 1 && 3274 "llvm.commandline metadata entry can have only one operand"); 3275 const MDString *S = cast<MDString>(N->getOperand(0)); 3276 OutStreamer->emitBytes(S->getString()); 3277 OutStreamer->emitZeros(1); 3278 } 3279 OutStreamer->popSection(); 3280 } 3281 3282 //===--------------------------------------------------------------------===// 3283 // Emission and print routines 3284 // 3285 3286 /// Emit a byte directive and value. 3287 /// 3288 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 3289 3290 /// Emit a short directive and value. 3291 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 3292 3293 /// Emit a long directive and value. 3294 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 3295 3296 /// EmitSLEB128 - emit the specified signed leb128 value. 3297 void AsmPrinter::emitSLEB128(int64_t Value, const char *Desc) const { 3298 if (isVerbose() && Desc) 3299 OutStreamer->AddComment(Desc); 3300 3301 OutStreamer->emitSLEB128IntValue(Value); 3302 } 3303 3304 void AsmPrinter::emitULEB128(uint64_t Value, const char *Desc, 3305 unsigned PadTo) const { 3306 if (isVerbose() && Desc) 3307 OutStreamer->AddComment(Desc); 3308 3309 OutStreamer->emitULEB128IntValue(Value, PadTo); 3310 } 3311 3312 /// Emit a long long directive and value. 3313 void AsmPrinter::emitInt64(uint64_t Value) const { 3314 OutStreamer->emitInt64(Value); 3315 } 3316 3317 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 3318 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 3319 /// .set if it avoids relocations. 3320 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 3321 unsigned Size) const { 3322 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 3323 } 3324 3325 /// Emit something like ".uleb128 Hi-Lo". 3326 void AsmPrinter::emitLabelDifferenceAsULEB128(const MCSymbol *Hi, 3327 const MCSymbol *Lo) const { 3328 OutStreamer->emitAbsoluteSymbolDiffAsULEB128(Hi, Lo); 3329 } 3330 3331 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 3332 /// where the size in bytes of the directive is specified by Size and Label 3333 /// specifies the label. This implicitly uses .set if it is available. 3334 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 3335 unsigned Size, 3336 bool IsSectionRelative) const { 3337 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 3338 OutStreamer->emitCOFFSecRel32(Label, Offset); 3339 if (Size > 4) 3340 OutStreamer->emitZeros(Size - 4); 3341 return; 3342 } 3343 3344 // Emit Label+Offset (or just Label if Offset is zero) 3345 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 3346 if (Offset) 3347 Expr = MCBinaryExpr::createAdd( 3348 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 3349 3350 OutStreamer->emitValue(Expr, Size); 3351 } 3352 3353 //===----------------------------------------------------------------------===// 3354 3355 // EmitAlignment - Emit an alignment directive to the specified power of 3356 // two boundary. If a global value is specified, and if that global has 3357 // an explicit alignment requested, it will override the alignment request 3358 // if required for correctness. 3359 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV, 3360 unsigned MaxBytesToEmit) const { 3361 if (GV) 3362 Alignment = getGVAlignment(GV, GV->getDataLayout(), Alignment); 3363 3364 if (Alignment == Align(1)) 3365 return; // 1-byte aligned: no need to emit alignment. 3366 3367 if (getCurrentSection()->isText()) { 3368 const MCSubtargetInfo *STI = nullptr; 3369 if (this->MF) 3370 STI = &getSubtargetInfo(); 3371 else 3372 STI = TM.getMCSubtargetInfo(); 3373 OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit); 3374 } else 3375 OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit); 3376 } 3377 3378 //===----------------------------------------------------------------------===// 3379 // Constant emission. 3380 //===----------------------------------------------------------------------===// 3381 3382 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 3383 MCContext &Ctx = OutContext; 3384 3385 if (CV->isNullValue() || isa<UndefValue>(CV)) 3386 return MCConstantExpr::create(0, Ctx); 3387 3388 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 3389 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 3390 3391 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(CV)) 3392 return lowerConstantPtrAuth(*CPA); 3393 3394 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 3395 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 3396 3397 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 3398 return lowerBlockAddressConstant(*BA); 3399 3400 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 3401 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 3402 3403 if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV)) 3404 return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx); 3405 3406 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 3407 if (!CE) { 3408 llvm_unreachable("Unknown constant value to lower!"); 3409 } 3410 3411 // The constant expression opcodes are limited to those that are necessary 3412 // to represent relocations on supported targets. Expressions involving only 3413 // constant addresses are constant folded instead. 3414 switch (CE->getOpcode()) { 3415 default: 3416 break; // Error 3417 case Instruction::AddrSpaceCast: { 3418 const Constant *Op = CE->getOperand(0); 3419 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 3420 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 3421 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 3422 return lowerConstant(Op); 3423 3424 break; // Error 3425 } 3426 case Instruction::GetElementPtr: { 3427 // Generate a symbolic expression for the byte address 3428 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 3429 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 3430 3431 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 3432 if (!OffsetAI) 3433 return Base; 3434 3435 int64_t Offset = OffsetAI.getSExtValue(); 3436 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 3437 Ctx); 3438 } 3439 3440 case Instruction::Trunc: 3441 // We emit the value and depend on the assembler to truncate the generated 3442 // expression properly. This is important for differences between 3443 // blockaddress labels. Since the two labels are in the same function, it 3444 // is reasonable to treat their delta as a 32-bit value. 3445 [[fallthrough]]; 3446 case Instruction::BitCast: 3447 return lowerConstant(CE->getOperand(0)); 3448 3449 case Instruction::IntToPtr: { 3450 const DataLayout &DL = getDataLayout(); 3451 3452 // Handle casts to pointers by changing them into casts to the appropriate 3453 // integer type. This promotes constant folding and simplifies this code. 3454 Constant *Op = CE->getOperand(0); 3455 Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()), 3456 /*IsSigned*/ false, DL); 3457 if (Op) 3458 return lowerConstant(Op); 3459 3460 break; // Error 3461 } 3462 3463 case Instruction::PtrToInt: { 3464 const DataLayout &DL = getDataLayout(); 3465 3466 // Support only foldable casts to/from pointers that can be eliminated by 3467 // changing the pointer to the appropriately sized integer type. 3468 Constant *Op = CE->getOperand(0); 3469 Type *Ty = CE->getType(); 3470 3471 const MCExpr *OpExpr = lowerConstant(Op); 3472 3473 // We can emit the pointer value into this slot if the slot is an 3474 // integer slot equal to the size of the pointer. 3475 // 3476 // If the pointer is larger than the resultant integer, then 3477 // as with Trunc just depend on the assembler to truncate it. 3478 if (DL.getTypeAllocSize(Ty).getFixedValue() <= 3479 DL.getTypeAllocSize(Op->getType()).getFixedValue()) 3480 return OpExpr; 3481 3482 break; // Error 3483 } 3484 3485 case Instruction::Sub: { 3486 GlobalValue *LHSGV; 3487 APInt LHSOffset; 3488 DSOLocalEquivalent *DSOEquiv; 3489 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 3490 getDataLayout(), &DSOEquiv)) { 3491 GlobalValue *RHSGV; 3492 APInt RHSOffset; 3493 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 3494 getDataLayout())) { 3495 const MCExpr *RelocExpr = 3496 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 3497 if (!RelocExpr) { 3498 const MCExpr *LHSExpr = 3499 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 3500 if (DSOEquiv && 3501 getObjFileLowering().supportDSOLocalEquivalentLowering()) 3502 LHSExpr = 3503 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 3504 RelocExpr = MCBinaryExpr::createSub( 3505 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 3506 } 3507 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 3508 if (Addend != 0) 3509 RelocExpr = MCBinaryExpr::createAdd( 3510 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 3511 return RelocExpr; 3512 } 3513 } 3514 3515 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 3516 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 3517 return MCBinaryExpr::createSub(LHS, RHS, Ctx); 3518 break; 3519 } 3520 3521 case Instruction::Add: { 3522 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 3523 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 3524 return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 3525 } 3526 } 3527 3528 // If the code isn't optimized, there may be outstanding folding 3529 // opportunities. Attempt to fold the expression using DataLayout as a 3530 // last resort before giving up. 3531 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 3532 if (C != CE) 3533 return lowerConstant(C); 3534 3535 // Otherwise report the problem to the user. 3536 std::string S; 3537 raw_string_ostream OS(S); 3538 OS << "Unsupported expression in static initializer: "; 3539 CE->printAsOperand(OS, /*PrintType=*/false, 3540 !MF ? nullptr : MF->getFunction().getParent()); 3541 report_fatal_error(Twine(S)); 3542 } 3543 3544 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 3545 AsmPrinter &AP, 3546 const Constant *BaseCV = nullptr, 3547 uint64_t Offset = 0, 3548 AsmPrinter::AliasMapTy *AliasList = nullptr); 3549 3550 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 3551 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 3552 3553 /// isRepeatedByteSequence - Determine whether the given value is 3554 /// composed of a repeated sequence of identical bytes and return the 3555 /// byte value. If it is not a repeated sequence, return -1. 3556 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 3557 StringRef Data = V->getRawDataValues(); 3558 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 3559 char C = Data[0]; 3560 for (unsigned i = 1, e = Data.size(); i != e; ++i) 3561 if (Data[i] != C) return -1; 3562 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 3563 } 3564 3565 /// isRepeatedByteSequence - Determine whether the given value is 3566 /// composed of a repeated sequence of identical bytes and return the 3567 /// byte value. If it is not a repeated sequence, return -1. 3568 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 3569 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3570 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 3571 assert(Size % 8 == 0); 3572 3573 // Extend the element to take zero padding into account. 3574 APInt Value = CI->getValue().zext(Size); 3575 if (!Value.isSplat(8)) 3576 return -1; 3577 3578 return Value.zextOrTrunc(8).getZExtValue(); 3579 } 3580 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 3581 // Make sure all array elements are sequences of the same repeated 3582 // byte. 3583 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 3584 Constant *Op0 = CA->getOperand(0); 3585 int Byte = isRepeatedByteSequence(Op0, DL); 3586 if (Byte == -1) 3587 return -1; 3588 3589 // All array elements must be equal. 3590 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 3591 if (CA->getOperand(i) != Op0) 3592 return -1; 3593 return Byte; 3594 } 3595 3596 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 3597 return isRepeatedByteSequence(CDS); 3598 3599 return -1; 3600 } 3601 3602 static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset, 3603 AsmPrinter::AliasMapTy *AliasList) { 3604 if (AliasList) { 3605 auto AliasIt = AliasList->find(Offset); 3606 if (AliasIt != AliasList->end()) { 3607 for (const GlobalAlias *GA : AliasIt->second) 3608 AP.OutStreamer->emitLabel(AP.getSymbol(GA)); 3609 AliasList->erase(Offset); 3610 } 3611 } 3612 } 3613 3614 static void emitGlobalConstantDataSequential( 3615 const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP, 3616 AsmPrinter::AliasMapTy *AliasList) { 3617 // See if we can aggregate this into a .fill, if so, emit it as such. 3618 int Value = isRepeatedByteSequence(CDS, DL); 3619 if (Value != -1) { 3620 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 3621 // Don't emit a 1-byte object as a .fill. 3622 if (Bytes > 1) 3623 return AP.OutStreamer->emitFill(Bytes, Value); 3624 } 3625 3626 // If this can be emitted with .ascii/.asciz, emit it as such. 3627 if (CDS->isString()) 3628 return AP.OutStreamer->emitBytes(CDS->getAsString()); 3629 3630 // Otherwise, emit the values in successive locations. 3631 unsigned ElementByteSize = CDS->getElementByteSize(); 3632 if (isa<IntegerType>(CDS->getElementType())) { 3633 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 3634 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); 3635 if (AP.isVerbose()) 3636 AP.OutStreamer->getCommentOS() 3637 << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I)); 3638 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I), 3639 ElementByteSize); 3640 } 3641 } else { 3642 Type *ET = CDS->getElementType(); 3643 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 3644 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); 3645 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 3646 } 3647 } 3648 3649 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 3650 unsigned EmittedSize = 3651 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 3652 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 3653 if (unsigned Padding = Size - EmittedSize) 3654 AP.OutStreamer->emitZeros(Padding); 3655 } 3656 3657 static void emitGlobalConstantArray(const DataLayout &DL, 3658 const ConstantArray *CA, AsmPrinter &AP, 3659 const Constant *BaseCV, uint64_t Offset, 3660 AsmPrinter::AliasMapTy *AliasList) { 3661 // See if we can aggregate some values. Make sure it can be 3662 // represented as a series of bytes of the constant value. 3663 int Value = isRepeatedByteSequence(CA, DL); 3664 3665 if (Value != -1) { 3666 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 3667 AP.OutStreamer->emitFill(Bytes, Value); 3668 } else { 3669 for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) { 3670 emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset, 3671 AliasList); 3672 Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType()); 3673 } 3674 } 3675 } 3676 3677 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP); 3678 3679 static void emitGlobalConstantVector(const DataLayout &DL, const Constant *CV, 3680 AsmPrinter &AP, 3681 AsmPrinter::AliasMapTy *AliasList) { 3682 auto *VTy = cast<FixedVectorType>(CV->getType()); 3683 Type *ElementType = VTy->getElementType(); 3684 uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType); 3685 uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType); 3686 uint64_t EmittedSize; 3687 if (ElementSizeInBits != ElementAllocSizeInBits) { 3688 // If the allocation size of an element is different from the size in bits, 3689 // printing each element separately will insert incorrect padding. 3690 // 3691 // The general algorithm here is complicated; instead of writing it out 3692 // here, just use the existing code in ConstantFolding. 3693 Type *IntT = 3694 IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType())); 3695 ConstantInt *CI = dyn_cast_or_null<ConstantInt>(ConstantFoldConstant( 3696 ConstantExpr::getBitCast(const_cast<Constant *>(CV), IntT), DL)); 3697 if (!CI) { 3698 report_fatal_error( 3699 "Cannot lower vector global with unusual element type"); 3700 } 3701 emitGlobalAliasInline(AP, 0, AliasList); 3702 emitGlobalConstantLargeInt(CI, AP); 3703 EmittedSize = DL.getTypeStoreSize(CV->getType()); 3704 } else { 3705 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 3706 emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList); 3707 emitGlobalConstantImpl(DL, CV->getAggregateElement(I), AP); 3708 } 3709 EmittedSize = DL.getTypeAllocSize(ElementType) * VTy->getNumElements(); 3710 } 3711 3712 unsigned Size = DL.getTypeAllocSize(CV->getType()); 3713 if (unsigned Padding = Size - EmittedSize) 3714 AP.OutStreamer->emitZeros(Padding); 3715 } 3716 3717 static void emitGlobalConstantStruct(const DataLayout &DL, 3718 const ConstantStruct *CS, AsmPrinter &AP, 3719 const Constant *BaseCV, uint64_t Offset, 3720 AsmPrinter::AliasMapTy *AliasList) { 3721 // Print the fields in successive locations. Pad to align if needed! 3722 uint64_t Size = DL.getTypeAllocSize(CS->getType()); 3723 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 3724 uint64_t SizeSoFar = 0; 3725 for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) { 3726 const Constant *Field = CS->getOperand(I); 3727 3728 // Print the actual field value. 3729 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar, 3730 AliasList); 3731 3732 // Check if padding is needed and insert one or more 0s. 3733 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 3734 uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) - 3735 Layout->getElementOffset(I)) - 3736 FieldSize; 3737 SizeSoFar += FieldSize + PadSize; 3738 3739 // Insert padding - this may include padding to increase the size of the 3740 // current field up to the ABI size (if the struct is not packed) as well 3741 // as padding to ensure that the next field starts at the right offset. 3742 AP.OutStreamer->emitZeros(PadSize); 3743 } 3744 assert(SizeSoFar == Layout->getSizeInBytes() && 3745 "Layout of constant struct may be incorrect!"); 3746 } 3747 3748 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 3749 assert(ET && "Unknown float type"); 3750 APInt API = APF.bitcastToAPInt(); 3751 3752 // First print a comment with what we think the original floating-point value 3753 // should have been. 3754 if (AP.isVerbose()) { 3755 SmallString<8> StrVal; 3756 APF.toString(StrVal); 3757 ET->print(AP.OutStreamer->getCommentOS()); 3758 AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n'; 3759 } 3760 3761 // Now iterate through the APInt chunks, emitting them in endian-correct 3762 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 3763 // floats). 3764 unsigned NumBytes = API.getBitWidth() / 8; 3765 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 3766 const uint64_t *p = API.getRawData(); 3767 3768 // PPC's long double has odd notions of endianness compared to how LLVM 3769 // handles it: p[0] goes first for *big* endian on PPC. 3770 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 3771 int Chunk = API.getNumWords() - 1; 3772 3773 if (TrailingBytes) 3774 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 3775 3776 for (; Chunk >= 0; --Chunk) 3777 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 3778 } else { 3779 unsigned Chunk; 3780 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 3781 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 3782 3783 if (TrailingBytes) 3784 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 3785 } 3786 3787 // Emit the tail padding for the long double. 3788 const DataLayout &DL = AP.getDataLayout(); 3789 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 3790 } 3791 3792 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 3793 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 3794 } 3795 3796 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 3797 const DataLayout &DL = AP.getDataLayout(); 3798 unsigned BitWidth = CI->getBitWidth(); 3799 3800 // Copy the value as we may massage the layout for constants whose bit width 3801 // is not a multiple of 64-bits. 3802 APInt Realigned(CI->getValue()); 3803 uint64_t ExtraBits = 0; 3804 unsigned ExtraBitsSize = BitWidth & 63; 3805 3806 if (ExtraBitsSize) { 3807 // The bit width of the data is not a multiple of 64-bits. 3808 // The extra bits are expected to be at the end of the chunk of the memory. 3809 // Little endian: 3810 // * Nothing to be done, just record the extra bits to emit. 3811 // Big endian: 3812 // * Record the extra bits to emit. 3813 // * Realign the raw data to emit the chunks of 64-bits. 3814 if (DL.isBigEndian()) { 3815 // Basically the structure of the raw data is a chunk of 64-bits cells: 3816 // 0 1 BitWidth / 64 3817 // [chunk1][chunk2] ... [chunkN]. 3818 // The most significant chunk is chunkN and it should be emitted first. 3819 // However, due to the alignment issue chunkN contains useless bits. 3820 // Realign the chunks so that they contain only useful information: 3821 // ExtraBits 0 1 (BitWidth / 64) - 1 3822 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 3823 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 3824 ExtraBits = Realigned.getRawData()[0] & 3825 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 3826 if (BitWidth >= 64) 3827 Realigned.lshrInPlace(ExtraBitsSize); 3828 } else 3829 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 3830 } 3831 3832 // We don't expect assemblers to support integer data directives 3833 // for more than 64 bits, so we emit the data in at most 64-bit 3834 // quantities at a time. 3835 const uint64_t *RawData = Realigned.getRawData(); 3836 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 3837 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 3838 AP.OutStreamer->emitIntValue(Val, 8); 3839 } 3840 3841 if (ExtraBitsSize) { 3842 // Emit the extra bits after the 64-bits chunks. 3843 3844 // Emit a directive that fills the expected size. 3845 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 3846 Size -= (BitWidth / 64) * 8; 3847 assert(Size && Size * 8 >= ExtraBitsSize && 3848 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 3849 == ExtraBits && "Directive too small for extra bits."); 3850 AP.OutStreamer->emitIntValue(ExtraBits, Size); 3851 } 3852 } 3853 3854 /// Transform a not absolute MCExpr containing a reference to a GOT 3855 /// equivalent global, by a target specific GOT pc relative access to the 3856 /// final symbol. 3857 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 3858 const Constant *BaseCst, 3859 uint64_t Offset) { 3860 // The global @foo below illustrates a global that uses a got equivalent. 3861 // 3862 // @bar = global i32 42 3863 // @gotequiv = private unnamed_addr constant i32* @bar 3864 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 3865 // i64 ptrtoint (i32* @foo to i64)) 3866 // to i32) 3867 // 3868 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 3869 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 3870 // form: 3871 // 3872 // foo = cstexpr, where 3873 // cstexpr := <gotequiv> - "." + <cst> 3874 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 3875 // 3876 // After canonicalization by evaluateAsRelocatable `ME` turns into: 3877 // 3878 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 3879 // gotpcrelcst := <offset from @foo base> + <cst> 3880 MCValue MV; 3881 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 3882 return; 3883 const MCSymbolRefExpr *SymA = MV.getSymA(); 3884 if (!SymA) 3885 return; 3886 3887 // Check that GOT equivalent symbol is cached. 3888 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 3889 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 3890 return; 3891 3892 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 3893 if (!BaseGV) 3894 return; 3895 3896 // Check for a valid base symbol 3897 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 3898 const MCSymbolRefExpr *SymB = MV.getSymB(); 3899 3900 if (!SymB || BaseSym != &SymB->getSymbol()) 3901 return; 3902 3903 // Make sure to match: 3904 // 3905 // gotpcrelcst := <offset from @foo base> + <cst> 3906 // 3907 int64_t GOTPCRelCst = Offset + MV.getConstant(); 3908 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 3909 return; 3910 3911 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 3912 // 3913 // bar: 3914 // .long 42 3915 // gotequiv: 3916 // .quad bar 3917 // foo: 3918 // .long gotequiv - "." + <cst> 3919 // 3920 // is replaced by the target specific equivalent to: 3921 // 3922 // bar: 3923 // .long 42 3924 // foo: 3925 // .long bar@GOTPCREL+<gotpcrelcst> 3926 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 3927 const GlobalVariable *GV = Result.first; 3928 int NumUses = (int)Result.second; 3929 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 3930 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 3931 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 3932 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 3933 3934 // Update GOT equivalent usage information 3935 --NumUses; 3936 if (NumUses >= 0) 3937 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 3938 } 3939 3940 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 3941 AsmPrinter &AP, const Constant *BaseCV, 3942 uint64_t Offset, 3943 AsmPrinter::AliasMapTy *AliasList) { 3944 assert((!AliasList || AP.TM.getTargetTriple().isOSBinFormatXCOFF()) && 3945 "AliasList only expected for XCOFF"); 3946 emitGlobalAliasInline(AP, Offset, AliasList); 3947 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3948 3949 // Globals with sub-elements such as combinations of arrays and structs 3950 // are handled recursively by emitGlobalConstantImpl. Keep track of the 3951 // constant symbol base and the current position with BaseCV and Offset. 3952 if (!BaseCV && CV->hasOneUse()) 3953 BaseCV = dyn_cast<Constant>(CV->user_back()); 3954 3955 if (isa<ConstantAggregateZero>(CV)) { 3956 StructType *structType; 3957 if (AliasList && (structType = llvm::dyn_cast<StructType>(CV->getType()))) { 3958 unsigned numElements = {structType->getNumElements()}; 3959 if (numElements != 0) { 3960 // Handle cases of aliases to direct struct elements 3961 const StructLayout *Layout = DL.getStructLayout(structType); 3962 uint64_t SizeSoFar = 0; 3963 for (unsigned int i = 0; i < numElements - 1; ++i) { 3964 uint64_t GapToNext = Layout->getElementOffset(i + 1) - SizeSoFar; 3965 AP.OutStreamer->emitZeros(GapToNext); 3966 SizeSoFar += GapToNext; 3967 emitGlobalAliasInline(AP, Offset + SizeSoFar, AliasList); 3968 } 3969 AP.OutStreamer->emitZeros(Size - SizeSoFar); 3970 return; 3971 } 3972 } 3973 return AP.OutStreamer->emitZeros(Size); 3974 } 3975 3976 if (isa<UndefValue>(CV)) 3977 return AP.OutStreamer->emitZeros(Size); 3978 3979 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 3980 if (isa<VectorType>(CV->getType())) 3981 return emitGlobalConstantVector(DL, CV, AP, AliasList); 3982 3983 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 3984 if (StoreSize <= 8) { 3985 if (AP.isVerbose()) 3986 AP.OutStreamer->getCommentOS() 3987 << format("0x%" PRIx64 "\n", CI->getZExtValue()); 3988 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 3989 } else { 3990 emitGlobalConstantLargeInt(CI, AP); 3991 } 3992 3993 // Emit tail padding if needed 3994 if (Size != StoreSize) 3995 AP.OutStreamer->emitZeros(Size - StoreSize); 3996 3997 return; 3998 } 3999 4000 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 4001 if (isa<VectorType>(CV->getType())) 4002 return emitGlobalConstantVector(DL, CV, AP, AliasList); 4003 else 4004 return emitGlobalConstantFP(CFP, AP); 4005 } 4006 4007 if (isa<ConstantPointerNull>(CV)) { 4008 AP.OutStreamer->emitIntValue(0, Size); 4009 return; 4010 } 4011 4012 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 4013 return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList); 4014 4015 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 4016 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList); 4017 4018 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 4019 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList); 4020 4021 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 4022 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 4023 // vectors). 4024 if (CE->getOpcode() == Instruction::BitCast) 4025 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 4026 4027 if (Size > 8) { 4028 // If the constant expression's size is greater than 64-bits, then we have 4029 // to emit the value in chunks. Try to constant fold the value and emit it 4030 // that way. 4031 Constant *New = ConstantFoldConstant(CE, DL); 4032 if (New != CE) 4033 return emitGlobalConstantImpl(DL, New, AP); 4034 } 4035 } 4036 4037 if (isa<ConstantVector>(CV)) 4038 return emitGlobalConstantVector(DL, CV, AP, AliasList); 4039 4040 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 4041 // thread the streamer with EmitValue. 4042 const MCExpr *ME = AP.lowerConstant(CV); 4043 4044 // Since lowerConstant already folded and got rid of all IR pointer and 4045 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 4046 // directly. 4047 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 4048 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 4049 4050 AP.OutStreamer->emitValue(ME, Size); 4051 } 4052 4053 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 4054 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV, 4055 AliasMapTy *AliasList) { 4056 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 4057 if (Size) 4058 emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList); 4059 else if (MAI->hasSubsectionsViaSymbols()) { 4060 // If the global has zero size, emit a single byte so that two labels don't 4061 // look like they are at the same location. 4062 OutStreamer->emitIntValue(0, 1); 4063 } 4064 if (!AliasList) 4065 return; 4066 // TODO: These remaining aliases are not emitted in the correct location. Need 4067 // to handle the case where the alias offset doesn't refer to any sub-element. 4068 for (auto &AliasPair : *AliasList) { 4069 for (const GlobalAlias *GA : AliasPair.second) 4070 OutStreamer->emitLabel(getSymbol(GA)); 4071 } 4072 } 4073 4074 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 4075 // Target doesn't support this yet! 4076 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 4077 } 4078 4079 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 4080 if (Offset > 0) 4081 OS << '+' << Offset; 4082 else if (Offset < 0) 4083 OS << Offset; 4084 } 4085 4086 void AsmPrinter::emitNops(unsigned N) { 4087 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 4088 for (; N; --N) 4089 EmitToStreamer(*OutStreamer, Nop); 4090 } 4091 4092 //===----------------------------------------------------------------------===// 4093 // Symbol Lowering Routines. 4094 //===----------------------------------------------------------------------===// 4095 4096 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 4097 return OutContext.createTempSymbol(Name, true); 4098 } 4099 4100 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 4101 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol( 4102 BA->getBasicBlock()); 4103 } 4104 4105 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 4106 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB); 4107 } 4108 4109 const MCExpr *AsmPrinter::lowerBlockAddressConstant(const BlockAddress &BA) { 4110 return MCSymbolRefExpr::create(GetBlockAddressSymbol(&BA), OutContext); 4111 } 4112 4113 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 4114 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 4115 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 4116 const MachineConstantPoolEntry &CPE = 4117 MF->getConstantPool()->getConstants()[CPID]; 4118 if (!CPE.isMachineConstantPoolEntry()) { 4119 const DataLayout &DL = MF->getDataLayout(); 4120 SectionKind Kind = CPE.getSectionKind(&DL); 4121 const Constant *C = CPE.Val.ConstVal; 4122 Align Alignment = CPE.Alignment; 4123 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 4124 getObjFileLowering().getSectionForConstant(DL, Kind, C, 4125 Alignment))) { 4126 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 4127 if (Sym->isUndefined()) 4128 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 4129 return Sym; 4130 } 4131 } 4132 } 4133 } 4134 4135 const DataLayout &DL = getDataLayout(); 4136 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 4137 "CPI" + Twine(getFunctionNumber()) + "_" + 4138 Twine(CPID)); 4139 } 4140 4141 /// GetJTISymbol - Return the symbol for the specified jump table entry. 4142 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 4143 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 4144 } 4145 4146 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 4147 /// FIXME: privatize to AsmPrinter. 4148 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 4149 const DataLayout &DL = getDataLayout(); 4150 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 4151 Twine(getFunctionNumber()) + "_" + 4152 Twine(UID) + "_set_" + Twine(MBBID)); 4153 } 4154 4155 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 4156 StringRef Suffix) const { 4157 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 4158 } 4159 4160 /// Return the MCSymbol for the specified ExternalSymbol. 4161 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(Twine Sym) const { 4162 SmallString<60> NameStr; 4163 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 4164 return OutContext.getOrCreateSymbol(NameStr); 4165 } 4166 4167 /// PrintParentLoopComment - Print comments about parent loops of this one. 4168 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 4169 unsigned FunctionNumber) { 4170 if (!Loop) return; 4171 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 4172 OS.indent(Loop->getLoopDepth()*2) 4173 << "Parent Loop BB" << FunctionNumber << "_" 4174 << Loop->getHeader()->getNumber() 4175 << " Depth=" << Loop->getLoopDepth() << '\n'; 4176 } 4177 4178 /// PrintChildLoopComment - Print comments about child loops within 4179 /// the loop for this basic block, with nesting. 4180 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 4181 unsigned FunctionNumber) { 4182 // Add child loop information 4183 for (const MachineLoop *CL : *Loop) { 4184 OS.indent(CL->getLoopDepth()*2) 4185 << "Child Loop BB" << FunctionNumber << "_" 4186 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 4187 << '\n'; 4188 PrintChildLoopComment(OS, CL, FunctionNumber); 4189 } 4190 } 4191 4192 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 4193 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 4194 const MachineLoopInfo *LI, 4195 const AsmPrinter &AP) { 4196 // Add loop depth information 4197 const MachineLoop *Loop = LI->getLoopFor(&MBB); 4198 if (!Loop) return; 4199 4200 MachineBasicBlock *Header = Loop->getHeader(); 4201 assert(Header && "No header for loop"); 4202 4203 // If this block is not a loop header, just print out what is the loop header 4204 // and return. 4205 if (Header != &MBB) { 4206 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 4207 Twine(AP.getFunctionNumber())+"_" + 4208 Twine(Loop->getHeader()->getNumber())+ 4209 " Depth="+Twine(Loop->getLoopDepth())); 4210 return; 4211 } 4212 4213 // Otherwise, it is a loop header. Print out information about child and 4214 // parent loops. 4215 raw_ostream &OS = AP.OutStreamer->getCommentOS(); 4216 4217 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 4218 4219 OS << "=>"; 4220 OS.indent(Loop->getLoopDepth()*2-2); 4221 4222 OS << "This "; 4223 if (Loop->isInnermost()) 4224 OS << "Inner "; 4225 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 4226 4227 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 4228 } 4229 4230 /// emitBasicBlockStart - This method prints the label for the specified 4231 /// MachineBasicBlock, an alignment (if present) and a comment describing 4232 /// it if appropriate. 4233 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 4234 // End the previous funclet and start a new one. 4235 if (MBB.isEHFuncletEntry()) { 4236 for (auto &Handler : Handlers) { 4237 Handler->endFunclet(); 4238 Handler->beginFunclet(MBB); 4239 } 4240 for (auto &Handler : EHHandlers) { 4241 Handler->endFunclet(); 4242 Handler->beginFunclet(MBB); 4243 } 4244 } 4245 4246 // Switch to a new section if this basic block must begin a section. The 4247 // entry block is always placed in the function section and is handled 4248 // separately. 4249 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 4250 OutStreamer->switchSection( 4251 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 4252 MBB, TM)); 4253 CurrentSectionBeginSym = MBB.getSymbol(); 4254 } 4255 4256 for (auto &Handler : Handlers) 4257 Handler->beginCodeAlignment(MBB); 4258 4259 // Emit an alignment directive for this block, if needed. 4260 const Align Alignment = MBB.getAlignment(); 4261 if (Alignment != Align(1)) 4262 emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment()); 4263 4264 // If the block has its address taken, emit any labels that were used to 4265 // reference the block. It is possible that there is more than one label 4266 // here, because multiple LLVM BB's may have been RAUW'd to this block after 4267 // the references were generated. 4268 if (MBB.isIRBlockAddressTaken()) { 4269 if (isVerbose()) 4270 OutStreamer->AddComment("Block address taken"); 4271 4272 BasicBlock *BB = MBB.getAddressTakenIRBlock(); 4273 assert(BB && BB->hasAddressTaken() && "Missing BB"); 4274 for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB)) 4275 OutStreamer->emitLabel(Sym); 4276 } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) { 4277 OutStreamer->AddComment("Block address taken"); 4278 } 4279 4280 // Print some verbose block comments. 4281 if (isVerbose()) { 4282 if (const BasicBlock *BB = MBB.getBasicBlock()) { 4283 if (BB->hasName()) { 4284 BB->printAsOperand(OutStreamer->getCommentOS(), 4285 /*PrintType=*/false, BB->getModule()); 4286 OutStreamer->getCommentOS() << '\n'; 4287 } 4288 } 4289 4290 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 4291 emitBasicBlockLoopComments(MBB, MLI, *this); 4292 } 4293 4294 // Print the main label for the block. 4295 if (shouldEmitLabelForBasicBlock(MBB)) { 4296 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 4297 OutStreamer->AddComment("Label of block must be emitted"); 4298 OutStreamer->emitLabel(MBB.getSymbol()); 4299 } else { 4300 if (isVerbose()) { 4301 // NOTE: Want this comment at start of line, don't emit with AddComment. 4302 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 4303 false); 4304 } 4305 } 4306 4307 if (MBB.isEHCatchretTarget() && 4308 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 4309 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 4310 } 4311 4312 // With BB sections, each basic block must handle CFI information on its own 4313 // if it begins a section (Entry block call is handled separately, next to 4314 // beginFunction). 4315 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 4316 for (auto &Handler : Handlers) 4317 Handler->beginBasicBlockSection(MBB); 4318 for (auto &Handler : EHHandlers) 4319 Handler->beginBasicBlockSection(MBB); 4320 } 4321 } 4322 4323 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 4324 // Check if CFI information needs to be updated for this MBB with basic block 4325 // sections. 4326 if (MBB.isEndSection()) { 4327 for (auto &Handler : Handlers) 4328 Handler->endBasicBlockSection(MBB); 4329 for (auto &Handler : EHHandlers) 4330 Handler->endBasicBlockSection(MBB); 4331 } 4332 } 4333 4334 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 4335 bool IsDefinition) const { 4336 MCSymbolAttr Attr = MCSA_Invalid; 4337 4338 switch (Visibility) { 4339 default: break; 4340 case GlobalValue::HiddenVisibility: 4341 if (IsDefinition) 4342 Attr = MAI->getHiddenVisibilityAttr(); 4343 else 4344 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 4345 break; 4346 case GlobalValue::ProtectedVisibility: 4347 Attr = MAI->getProtectedVisibilityAttr(); 4348 break; 4349 } 4350 4351 if (Attr != MCSA_Invalid) 4352 OutStreamer->emitSymbolAttribute(Sym, Attr); 4353 } 4354 4355 bool AsmPrinter::shouldEmitLabelForBasicBlock( 4356 const MachineBasicBlock &MBB) const { 4357 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 4358 // in the labels mode (option `=labels`) and every section beginning in the 4359 // sections mode (`=all` and `=list=`). 4360 if ((MF->getTarget().Options.BBAddrMap || MBB.isBeginSection()) && 4361 !MBB.isEntryBlock()) 4362 return true; 4363 // A label is needed for any block with at least one predecessor (when that 4364 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 4365 // entry, or if a label is forced). 4366 return !MBB.pred_empty() && 4367 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 4368 MBB.hasLabelMustBeEmitted()); 4369 } 4370 4371 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 4372 /// exactly one predecessor and the control transfer mechanism between 4373 /// the predecessor and this block is a fall-through. 4374 bool AsmPrinter:: 4375 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 4376 // If this is a landing pad, it isn't a fall through. If it has no preds, 4377 // then nothing falls through to it. 4378 if (MBB->isEHPad() || MBB->pred_empty()) 4379 return false; 4380 4381 // If there isn't exactly one predecessor, it can't be a fall through. 4382 if (MBB->pred_size() > 1) 4383 return false; 4384 4385 // The predecessor has to be immediately before this block. 4386 MachineBasicBlock *Pred = *MBB->pred_begin(); 4387 if (!Pred->isLayoutSuccessor(MBB)) 4388 return false; 4389 4390 // If the block is completely empty, then it definitely does fall through. 4391 if (Pred->empty()) 4392 return true; 4393 4394 // Check the terminators in the previous blocks 4395 for (const auto &MI : Pred->terminators()) { 4396 // If it is not a simple branch, we are in a table somewhere. 4397 if (!MI.isBranch() || MI.isIndirectBranch()) 4398 return false; 4399 4400 // If we are the operands of one of the branches, this is not a fall 4401 // through. Note that targets with delay slots will usually bundle 4402 // terminators with the delay slot instruction. 4403 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 4404 if (OP->isJTI()) 4405 return false; 4406 if (OP->isMBB() && OP->getMBB() == MBB) 4407 return false; 4408 } 4409 } 4410 4411 return true; 4412 } 4413 4414 GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) { 4415 if (!S.usesMetadata()) 4416 return nullptr; 4417 4418 auto [GCPI, Inserted] = GCMetadataPrinters.insert({&S, nullptr}); 4419 if (!Inserted) 4420 return GCPI->second.get(); 4421 4422 auto Name = S.getName(); 4423 4424 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 4425 GCMetadataPrinterRegistry::entries()) 4426 if (Name == GCMetaPrinter.getName()) { 4427 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 4428 GMP->S = &S; 4429 GCPI->second = std::move(GMP); 4430 return GCPI->second.get(); 4431 } 4432 4433 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 4434 } 4435 4436 void AsmPrinter::emitStackMaps() { 4437 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 4438 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 4439 bool NeedsDefault = false; 4440 if (MI->begin() == MI->end()) 4441 // No GC strategy, use the default format. 4442 NeedsDefault = true; 4443 else 4444 for (const auto &I : *MI) { 4445 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) 4446 if (MP->emitStackMaps(SM, *this)) 4447 continue; 4448 // The strategy doesn't have printer or doesn't emit custom stack maps. 4449 // Use the default format. 4450 NeedsDefault = true; 4451 } 4452 4453 if (NeedsDefault) 4454 SM.serializeToStackMapSection(); 4455 } 4456 4457 void AsmPrinter::addAsmPrinterHandler( 4458 std::unique_ptr<AsmPrinterHandler> Handler) { 4459 Handlers.insert(Handlers.begin(), std::move(Handler)); 4460 NumUserHandlers++; 4461 } 4462 4463 /// Pin vtables to this file. 4464 AsmPrinterHandler::~AsmPrinterHandler() = default; 4465 4466 void AsmPrinterHandler::markFunctionEnd() {} 4467 4468 // In the binary's "xray_instr_map" section, an array of these function entries 4469 // describes each instrumentation point. When XRay patches your code, the index 4470 // into this table will be given to your handler as a patch point identifier. 4471 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 4472 auto Kind8 = static_cast<uint8_t>(Kind); 4473 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 4474 Out->emitBinaryData( 4475 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 4476 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 4477 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 4478 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 4479 Out->emitZeros(Padding); 4480 } 4481 4482 void AsmPrinter::emitXRayTable() { 4483 if (Sleds.empty()) 4484 return; 4485 4486 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 4487 const Function &F = MF->getFunction(); 4488 MCSection *InstMap = nullptr; 4489 MCSection *FnSledIndex = nullptr; 4490 const Triple &TT = TM.getTargetTriple(); 4491 // Use PC-relative addresses on all targets. 4492 if (TT.isOSBinFormatELF()) { 4493 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 4494 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 4495 StringRef GroupName; 4496 if (F.hasComdat()) { 4497 Flags |= ELF::SHF_GROUP; 4498 GroupName = F.getComdat()->getName(); 4499 } 4500 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 4501 Flags, 0, GroupName, F.hasComdat(), 4502 MCSection::NonUniqueID, LinkedToSym); 4503 4504 if (TM.Options.XRayFunctionIndex) 4505 FnSledIndex = OutContext.getELFSection( 4506 "xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(), 4507 MCSection::NonUniqueID, LinkedToSym); 4508 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 4509 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 4510 MachO::S_ATTR_LIVE_SUPPORT, 4511 SectionKind::getReadOnlyWithRel()); 4512 if (TM.Options.XRayFunctionIndex) 4513 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 4514 MachO::S_ATTR_LIVE_SUPPORT, 4515 SectionKind::getReadOnly()); 4516 } else { 4517 llvm_unreachable("Unsupported target"); 4518 } 4519 4520 auto WordSizeBytes = MAI->getCodePointerSize(); 4521 4522 // Now we switch to the instrumentation map section. Because this is done 4523 // per-function, we are able to create an index entry that will represent the 4524 // range of sleds associated with a function. 4525 auto &Ctx = OutContext; 4526 MCSymbol *SledsStart = 4527 OutContext.createLinkerPrivateSymbol("xray_sleds_start"); 4528 OutStreamer->switchSection(InstMap); 4529 OutStreamer->emitLabel(SledsStart); 4530 for (const auto &Sled : Sleds) { 4531 MCSymbol *Dot = Ctx.createTempSymbol(); 4532 OutStreamer->emitLabel(Dot); 4533 OutStreamer->emitValueImpl( 4534 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 4535 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 4536 WordSizeBytes); 4537 OutStreamer->emitValueImpl( 4538 MCBinaryExpr::createSub( 4539 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 4540 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 4541 MCConstantExpr::create(WordSizeBytes, Ctx), 4542 Ctx), 4543 Ctx), 4544 WordSizeBytes); 4545 Sled.emit(WordSizeBytes, OutStreamer.get()); 4546 } 4547 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 4548 OutStreamer->emitLabel(SledsEnd); 4549 4550 // We then emit a single entry in the index per function. We use the symbols 4551 // that bound the instrumentation map as the range for a specific function. 4552 // Each entry here will be 2 * word size aligned, as we're writing down two 4553 // pointers. This should work for both 32-bit and 64-bit platforms. 4554 if (FnSledIndex) { 4555 OutStreamer->switchSection(FnSledIndex); 4556 OutStreamer->emitCodeAlignment(Align(2 * WordSizeBytes), 4557 &getSubtargetInfo()); 4558 // For Mach-O, use an "l" symbol as the atom of this subsection. The label 4559 // difference uses a SUBTRACTOR external relocation which references the 4560 // symbol. 4561 MCSymbol *Dot = Ctx.createLinkerPrivateSymbol("xray_fn_idx"); 4562 OutStreamer->emitLabel(Dot); 4563 OutStreamer->emitValueImpl( 4564 MCBinaryExpr::createSub(MCSymbolRefExpr::create(SledsStart, Ctx), 4565 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 4566 WordSizeBytes); 4567 OutStreamer->emitValueImpl(MCConstantExpr::create(Sleds.size(), Ctx), 4568 WordSizeBytes); 4569 OutStreamer->switchSection(PrevSection); 4570 } 4571 Sleds.clear(); 4572 } 4573 4574 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 4575 SledKind Kind, uint8_t Version) { 4576 const Function &F = MI.getMF()->getFunction(); 4577 auto Attr = F.getFnAttribute("function-instrument"); 4578 bool LogArgs = F.hasFnAttribute("xray-log-args"); 4579 bool AlwaysInstrument = 4580 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 4581 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 4582 Kind = SledKind::LOG_ARGS_ENTER; 4583 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 4584 AlwaysInstrument, &F, Version}); 4585 } 4586 4587 void AsmPrinter::emitPatchableFunctionEntries() { 4588 const Function &F = MF->getFunction(); 4589 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 4590 (void)F.getFnAttribute("patchable-function-prefix") 4591 .getValueAsString() 4592 .getAsInteger(10, PatchableFunctionPrefix); 4593 (void)F.getFnAttribute("patchable-function-entry") 4594 .getValueAsString() 4595 .getAsInteger(10, PatchableFunctionEntry); 4596 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 4597 return; 4598 const unsigned PointerSize = getPointerSize(); 4599 if (TM.getTargetTriple().isOSBinFormatELF()) { 4600 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 4601 const MCSymbolELF *LinkedToSym = nullptr; 4602 StringRef GroupName; 4603 4604 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 4605 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 4606 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 4607 Flags |= ELF::SHF_LINK_ORDER; 4608 if (F.hasComdat()) { 4609 Flags |= ELF::SHF_GROUP; 4610 GroupName = F.getComdat()->getName(); 4611 } 4612 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 4613 } 4614 OutStreamer->switchSection(OutContext.getELFSection( 4615 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 4616 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 4617 emitAlignment(Align(PointerSize)); 4618 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 4619 } 4620 } 4621 4622 uint16_t AsmPrinter::getDwarfVersion() const { 4623 return OutStreamer->getContext().getDwarfVersion(); 4624 } 4625 4626 void AsmPrinter::setDwarfVersion(uint16_t Version) { 4627 OutStreamer->getContext().setDwarfVersion(Version); 4628 } 4629 4630 bool AsmPrinter::isDwarf64() const { 4631 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 4632 } 4633 4634 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 4635 return dwarf::getDwarfOffsetByteSize( 4636 OutStreamer->getContext().getDwarfFormat()); 4637 } 4638 4639 dwarf::FormParams AsmPrinter::getDwarfFormParams() const { 4640 return {getDwarfVersion(), uint8_t(MAI->getCodePointerSize()), 4641 OutStreamer->getContext().getDwarfFormat(), 4642 doesDwarfUseRelocationsAcrossSections()}; 4643 } 4644 4645 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 4646 return dwarf::getUnitLengthFieldByteSize( 4647 OutStreamer->getContext().getDwarfFormat()); 4648 } 4649 4650 std::tuple<const MCSymbol *, uint64_t, const MCSymbol *, 4651 codeview::JumpTableEntrySize> 4652 AsmPrinter::getCodeViewJumpTableInfo(int JTI, const MachineInstr *BranchInstr, 4653 const MCSymbol *BranchLabel) const { 4654 const auto TLI = MF->getSubtarget().getTargetLowering(); 4655 const auto BaseExpr = 4656 TLI->getPICJumpTableRelocBaseExpr(MF, JTI, MMI->getContext()); 4657 const auto Base = &cast<MCSymbolRefExpr>(BaseExpr)->getSymbol(); 4658 4659 // By default, for the architectures that support CodeView, 4660 // EK_LabelDifference32 is implemented as an Int32 from the base address. 4661 return std::make_tuple(Base, 0, BranchLabel, 4662 codeview::JumpTableEntrySize::Int32); 4663 } 4664