xref: /llvm-project/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp (revision 3feb724496238ce10d32e8c2bd84b4ea50f9977e)
1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/TinyPtrVector.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/ConstantFolding.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
44 #include "llvm/CodeGen/MachineConstantPool.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBundle.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineLoopInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfo.h"
54 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
55 #include "llvm/CodeGen/MachineOperand.h"
56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/Config/config.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Comdat.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/EHPersonalities.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GCStrategy.h"
75 #include "llvm/IR/GlobalAlias.h"
76 #include "llvm/IR/GlobalIFunc.h"
77 #include "llvm/IR/GlobalObject.h"
78 #include "llvm/IR/GlobalValue.h"
79 #include "llvm/IR/GlobalVariable.h"
80 #include "llvm/IR/Instruction.h"
81 #include "llvm/IR/Mangler.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PseudoProbe.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/IR/ValueHandle.h"
89 #include "llvm/MC/MCAsmInfo.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCDirectives.h"
92 #include "llvm/MC/MCExpr.h"
93 #include "llvm/MC/MCInst.h"
94 #include "llvm/MC/MCSchedule.h"
95 #include "llvm/MC/MCSection.h"
96 #include "llvm/MC/MCSectionCOFF.h"
97 #include "llvm/MC/MCSectionELF.h"
98 #include "llvm/MC/MCSectionMachO.h"
99 #include "llvm/MC/MCSectionXCOFF.h"
100 #include "llvm/MC/MCStreamer.h"
101 #include "llvm/MC/MCSubtargetInfo.h"
102 #include "llvm/MC/MCSymbol.h"
103 #include "llvm/MC/MCSymbolELF.h"
104 #include "llvm/MC/MCTargetOptions.h"
105 #include "llvm/MC/MCValue.h"
106 #include "llvm/MC/SectionKind.h"
107 #include "llvm/Object/ELFTypes.h"
108 #include "llvm/Pass.h"
109 #include "llvm/Remarks/RemarkStreamer.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Compiler.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/FileSystem.h"
115 #include "llvm/Support/Format.h"
116 #include "llvm/Support/MathExtras.h"
117 #include "llvm/Support/Path.h"
118 #include "llvm/Support/VCSRevision.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include "llvm/Target/TargetLoweringObjectFile.h"
121 #include "llvm/Target/TargetMachine.h"
122 #include "llvm/Target/TargetOptions.h"
123 #include "llvm/TargetParser/Triple.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <cinttypes>
127 #include <cstdint>
128 #include <iterator>
129 #include <memory>
130 #include <optional>
131 #include <string>
132 #include <utility>
133 #include <vector>
134 
135 using namespace llvm;
136 
137 #define DEBUG_TYPE "asm-printer"
138 
139 // This is a replication of fields of object::PGOAnalysisMap::Features. It
140 // should match the order of the fields so that
141 // `object::PGOAnalysisMap::Features::decode(PgoAnalysisMapFeatures.getBits())`
142 // succeeds.
143 enum class PGOMapFeaturesEnum {
144   None,
145   FuncEntryCount,
146   BBFreq,
147   BrProb,
148   All,
149 };
150 static cl::bits<PGOMapFeaturesEnum> PgoAnalysisMapFeatures(
151     "pgo-analysis-map", cl::Hidden, cl::CommaSeparated,
152     cl::values(
153         clEnumValN(PGOMapFeaturesEnum::None, "none", "Disable all options"),
154         clEnumValN(PGOMapFeaturesEnum::FuncEntryCount, "func-entry-count",
155                    "Function Entry Count"),
156         clEnumValN(PGOMapFeaturesEnum::BBFreq, "bb-freq",
157                    "Basic Block Frequency"),
158         clEnumValN(PGOMapFeaturesEnum::BrProb, "br-prob", "Branch Probability"),
159         clEnumValN(PGOMapFeaturesEnum::All, "all", "Enable all options")),
160     cl::desc(
161         "Enable extended information within the SHT_LLVM_BB_ADDR_MAP that is "
162         "extracted from PGO related analysis."));
163 
164 static cl::opt<bool> BBAddrMapSkipEmitBBEntries(
165     "basic-block-address-map-skip-bb-entries",
166     cl::desc("Skip emitting basic block entries in the SHT_LLVM_BB_ADDR_MAP "
167              "section. It's used to save binary size when BB entries are "
168              "unnecessary for some PGOAnalysisMap features."),
169     cl::Hidden, cl::init(false));
170 
171 static cl::opt<bool> EmitJumpTableSizesSection(
172     "emit-jump-table-sizes-section",
173     cl::desc("Emit a section containing jump table addresses and sizes"),
174     cl::Hidden, cl::init(false));
175 
176 // This isn't turned on by default, since several of the scheduling models are
177 // not completely accurate, and we don't want to be misleading.
178 static cl::opt<bool> PrintLatency(
179     "asm-print-latency",
180     cl::desc("Print instruction latencies as verbose asm comments"), cl::Hidden,
181     cl::init(false));
182 
183 STATISTIC(EmittedInsts, "Number of machine instrs printed");
184 
185 char AsmPrinter::ID = 0;
186 
187 namespace {
188 class AddrLabelMapCallbackPtr final : CallbackVH {
189   AddrLabelMap *Map = nullptr;
190 
191 public:
192   AddrLabelMapCallbackPtr() = default;
193   AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {}
194 
195   void setPtr(BasicBlock *BB) {
196     ValueHandleBase::operator=(BB);
197   }
198 
199   void setMap(AddrLabelMap *map) { Map = map; }
200 
201   void deleted() override;
202   void allUsesReplacedWith(Value *V2) override;
203 };
204 } // namespace
205 
206 class llvm::AddrLabelMap {
207   MCContext &Context;
208   struct AddrLabelSymEntry {
209     /// The symbols for the label.
210     TinyPtrVector<MCSymbol *> Symbols;
211 
212     Function *Fn;   // The containing function of the BasicBlock.
213     unsigned Index; // The index in BBCallbacks for the BasicBlock.
214   };
215 
216   DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols;
217 
218   /// Callbacks for the BasicBlock's that we have entries for.  We use this so
219   /// we get notified if a block is deleted or RAUWd.
220   std::vector<AddrLabelMapCallbackPtr> BBCallbacks;
221 
222   /// This is a per-function list of symbols whose corresponding BasicBlock got
223   /// deleted.  These symbols need to be emitted at some point in the file, so
224   /// AsmPrinter emits them after the function body.
225   DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>
226       DeletedAddrLabelsNeedingEmission;
227 
228 public:
229   AddrLabelMap(MCContext &context) : Context(context) {}
230 
231   ~AddrLabelMap() {
232     assert(DeletedAddrLabelsNeedingEmission.empty() &&
233            "Some labels for deleted blocks never got emitted");
234   }
235 
236   ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB);
237 
238   void takeDeletedSymbolsForFunction(Function *F,
239                                      std::vector<MCSymbol *> &Result);
240 
241   void UpdateForDeletedBlock(BasicBlock *BB);
242   void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New);
243 };
244 
245 ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) {
246   assert(BB->hasAddressTaken() &&
247          "Shouldn't get label for block without address taken");
248   AddrLabelSymEntry &Entry = AddrLabelSymbols[BB];
249 
250   // If we already had an entry for this block, just return it.
251   if (!Entry.Symbols.empty()) {
252     assert(BB->getParent() == Entry.Fn && "Parent changed");
253     return Entry.Symbols;
254   }
255 
256   // Otherwise, this is a new entry, create a new symbol for it and add an
257   // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd.
258   BBCallbacks.emplace_back(BB);
259   BBCallbacks.back().setMap(this);
260   Entry.Index = BBCallbacks.size() - 1;
261   Entry.Fn = BB->getParent();
262   MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol()
263                                         : Context.createTempSymbol();
264   Entry.Symbols.push_back(Sym);
265   return Entry.Symbols;
266 }
267 
268 /// If we have any deleted symbols for F, return them.
269 void AddrLabelMap::takeDeletedSymbolsForFunction(
270     Function *F, std::vector<MCSymbol *> &Result) {
271   DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I =
272       DeletedAddrLabelsNeedingEmission.find(F);
273 
274   // If there are no entries for the function, just return.
275   if (I == DeletedAddrLabelsNeedingEmission.end())
276     return;
277 
278   // Otherwise, take the list.
279   std::swap(Result, I->second);
280   DeletedAddrLabelsNeedingEmission.erase(I);
281 }
282 
283 //===- Address of Block Management ----------------------------------------===//
284 
285 ArrayRef<MCSymbol *>
286 AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) {
287   // Lazily create AddrLabelSymbols.
288   if (!AddrLabelSymbols)
289     AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext);
290   return AddrLabelSymbols->getAddrLabelSymbolToEmit(
291       const_cast<BasicBlock *>(BB));
292 }
293 
294 void AsmPrinter::takeDeletedSymbolsForFunction(
295     const Function *F, std::vector<MCSymbol *> &Result) {
296   // If no blocks have had their addresses taken, we're done.
297   if (!AddrLabelSymbols)
298     return;
299   return AddrLabelSymbols->takeDeletedSymbolsForFunction(
300       const_cast<Function *>(F), Result);
301 }
302 
303 void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) {
304   // If the block got deleted, there is no need for the symbol.  If the symbol
305   // was already emitted, we can just forget about it, otherwise we need to
306   // queue it up for later emission when the function is output.
307   AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]);
308   AddrLabelSymbols.erase(BB);
309   assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?");
310   BBCallbacks[Entry.Index] = nullptr; // Clear the callback.
311 
312 #if !LLVM_MEMORY_SANITIZER_BUILD
313   // BasicBlock is destroyed already, so this access is UB detectable by msan.
314   assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) &&
315          "Block/parent mismatch");
316 #endif
317 
318   for (MCSymbol *Sym : Entry.Symbols) {
319     if (Sym->isDefined())
320       return;
321 
322     // If the block is not yet defined, we need to emit it at the end of the
323     // function.  Add the symbol to the DeletedAddrLabelsNeedingEmission list
324     // for the containing Function.  Since the block is being deleted, its
325     // parent may already be removed, we have to get the function from 'Entry'.
326     DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym);
327   }
328 }
329 
330 void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) {
331   // Get the entry for the RAUW'd block and remove it from our map.
332   AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]);
333   AddrLabelSymbols.erase(Old);
334   assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?");
335 
336   AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New];
337 
338   // If New is not address taken, just move our symbol over to it.
339   if (NewEntry.Symbols.empty()) {
340     BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback.
341     NewEntry = std::move(OldEntry);          // Set New's entry.
342     return;
343   }
344 
345   BBCallbacks[OldEntry.Index] = nullptr; // Update the callback.
346 
347   // Otherwise, we need to add the old symbols to the new block's set.
348   llvm::append_range(NewEntry.Symbols, OldEntry.Symbols);
349 }
350 
351 void AddrLabelMapCallbackPtr::deleted() {
352   Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr()));
353 }
354 
355 void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) {
356   Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2));
357 }
358 
359 /// getGVAlignment - Return the alignment to use for the specified global
360 /// value.  This rounds up to the preferred alignment if possible and legal.
361 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
362                                  Align InAlign) {
363   Align Alignment;
364   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
365     Alignment = DL.getPreferredAlign(GVar);
366 
367   // If InAlign is specified, round it to it.
368   if (InAlign > Alignment)
369     Alignment = InAlign;
370 
371   // If the GV has a specified alignment, take it into account.
372   const MaybeAlign GVAlign(GV->getAlign());
373   if (!GVAlign)
374     return Alignment;
375 
376   assert(GVAlign && "GVAlign must be set");
377 
378   // If the GVAlign is larger than NumBits, or if we are required to obey
379   // NumBits because the GV has an assigned section, obey it.
380   if (*GVAlign > Alignment || GV->hasSection())
381     Alignment = *GVAlign;
382   return Alignment;
383 }
384 
385 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
386     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
387       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)),
388       SM(*this) {
389   VerboseAsm = OutStreamer->isVerboseAsm();
390   DwarfUsesRelocationsAcrossSections =
391       MAI->doesDwarfUseRelocationsAcrossSections();
392 }
393 
394 AsmPrinter::~AsmPrinter() {
395   assert(!DD && Handlers.size() == NumUserHandlers &&
396          "Debug/EH info didn't get finalized");
397 }
398 
399 bool AsmPrinter::isPositionIndependent() const {
400   return TM.isPositionIndependent();
401 }
402 
403 /// getFunctionNumber - Return a unique ID for the current function.
404 unsigned AsmPrinter::getFunctionNumber() const {
405   return MF->getFunctionNumber();
406 }
407 
408 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
409   return *TM.getObjFileLowering();
410 }
411 
412 const DataLayout &AsmPrinter::getDataLayout() const {
413   assert(MMI && "MMI could not be nullptr!");
414   return MMI->getModule()->getDataLayout();
415 }
416 
417 // Do not use the cached DataLayout because some client use it without a Module
418 // (dsymutil, llvm-dwarfdump).
419 unsigned AsmPrinter::getPointerSize() const {
420   return TM.getPointerSize(0); // FIXME: Default address space
421 }
422 
423 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
424   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
425   return MF->getSubtarget<MCSubtargetInfo>();
426 }
427 
428 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
429   S.emitInstruction(Inst, getSubtargetInfo());
430 }
431 
432 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
433   if (DD) {
434     assert(OutStreamer->hasRawTextSupport() &&
435            "Expected assembly output mode.");
436     // This is NVPTX specific and it's unclear why.
437     // PR51079: If we have code without debug information we need to give up.
438     DISubprogram *MFSP = MF.getFunction().getSubprogram();
439     if (!MFSP)
440       return;
441     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
442   }
443 }
444 
445 /// getCurrentSection() - Return the current section we are emitting to.
446 const MCSection *AsmPrinter::getCurrentSection() const {
447   return OutStreamer->getCurrentSectionOnly();
448 }
449 
450 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
451   AU.setPreservesAll();
452   MachineFunctionPass::getAnalysisUsage(AU);
453   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
454   AU.addRequired<GCModuleInfo>();
455   AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
456   AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
457 }
458 
459 bool AsmPrinter::doInitialization(Module &M) {
460   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
461   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
462   HasSplitStack = false;
463   HasNoSplitStack = false;
464   DbgInfoAvailable = !M.debug_compile_units().empty();
465 
466   AddrLabelSymbols = nullptr;
467 
468   // Initialize TargetLoweringObjectFile.
469   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
470     .Initialize(OutContext, TM);
471 
472   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
473       .getModuleMetadata(M);
474 
475   // On AIX, we delay emitting any section information until
476   // after emitting the .file pseudo-op. This allows additional
477   // information (such as the embedded command line) to be associated
478   // with all sections in the object file rather than a single section.
479   if (!TM.getTargetTriple().isOSBinFormatXCOFF())
480     OutStreamer->initSections(false, *TM.getMCSubtargetInfo());
481 
482   // Emit the version-min deployment target directive if needed.
483   //
484   // FIXME: If we end up with a collection of these sorts of Darwin-specific
485   // or ELF-specific things, it may make sense to have a platform helper class
486   // that will work with the target helper class. For now keep it here, as the
487   // alternative is duplicated code in each of the target asm printers that
488   // use the directive, where it would need the same conditionalization
489   // anyway.
490   const Triple &Target = TM.getTargetTriple();
491   if (Target.isOSBinFormatMachO() && Target.isOSDarwin()) {
492     Triple TVT(M.getDarwinTargetVariantTriple());
493     OutStreamer->emitVersionForTarget(
494         Target, M.getSDKVersion(),
495         M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT,
496         M.getDarwinTargetVariantSDKVersion());
497   }
498 
499   // Allow the target to emit any magic that it wants at the start of the file.
500   emitStartOfAsmFile(M);
501 
502   // Very minimal debug info. It is ignored if we emit actual debug info. If we
503   // don't, this at least helps the user find where a global came from.
504   if (MAI->hasSingleParameterDotFile()) {
505     // .file "foo.c"
506     if (MAI->isAIX()) {
507       const char VerStr[] =
508 #ifdef PACKAGE_VENDOR
509           PACKAGE_VENDOR " "
510 #endif
511           PACKAGE_NAME " version " PACKAGE_VERSION
512 #ifdef LLVM_REVISION
513                          " (" LLVM_REVISION ")"
514 #endif
515           ;
516       // TODO: Add timestamp and description.
517       OutStreamer->emitFileDirective(M.getSourceFileName(), VerStr, "", "");
518     } else {
519       OutStreamer->emitFileDirective(
520           llvm::sys::path::filename(M.getSourceFileName()));
521     }
522   }
523 
524   // On AIX, emit bytes for llvm.commandline metadata after .file so that the
525   // C_INFO symbol is preserved if any csect is kept by the linker.
526   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
527     emitModuleCommandLines(M);
528     // Now we can generate section information.
529     OutStreamer->switchSection(
530         OutContext.getObjectFileInfo()->getTextSection());
531 
532     // To work around an AIX assembler and/or linker bug, generate
533     // a rename for the default text-section symbol name.  This call has
534     // no effect when generating object code directly.
535     MCSection *TextSection =
536         OutStreamer->getContext().getObjectFileInfo()->getTextSection();
537     MCSymbolXCOFF *XSym =
538         static_cast<MCSectionXCOFF *>(TextSection)->getQualNameSymbol();
539     if (XSym->hasRename())
540       OutStreamer->emitXCOFFRenameDirective(XSym, XSym->getSymbolTableName());
541   }
542 
543   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
544   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
545   for (const auto &I : *MI)
546     if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I))
547       MP->beginAssembly(M, *MI, *this);
548 
549   // Emit module-level inline asm if it exists.
550   if (!M.getModuleInlineAsm().empty()) {
551     OutStreamer->AddComment("Start of file scope inline assembly");
552     OutStreamer->addBlankLine();
553     emitInlineAsm(
554         M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(),
555         TM.Options.MCOptions, nullptr,
556         InlineAsm::AsmDialect(TM.getMCAsmInfo()->getAssemblerDialect()));
557     OutStreamer->AddComment("End of file scope inline assembly");
558     OutStreamer->addBlankLine();
559   }
560 
561   if (MAI->doesSupportDebugInformation()) {
562     bool EmitCodeView = M.getCodeViewFlag();
563     if (EmitCodeView && TM.getTargetTriple().isOSWindows())
564       Handlers.push_back(std::make_unique<CodeViewDebug>(this));
565     if (!EmitCodeView || M.getDwarfVersion()) {
566       if (hasDebugInfo()) {
567         DD = new DwarfDebug(this);
568         Handlers.push_back(std::unique_ptr<DwarfDebug>(DD));
569       }
570     }
571   }
572 
573   if (M.getNamedMetadata(PseudoProbeDescMetadataName))
574     PP = std::make_unique<PseudoProbeHandler>(this);
575 
576   switch (MAI->getExceptionHandlingType()) {
577   case ExceptionHandling::None:
578     // We may want to emit CFI for debug.
579     [[fallthrough]];
580   case ExceptionHandling::SjLj:
581   case ExceptionHandling::DwarfCFI:
582   case ExceptionHandling::ARM:
583     for (auto &F : M.getFunctionList()) {
584       if (getFunctionCFISectionType(F) != CFISection::None)
585         ModuleCFISection = getFunctionCFISectionType(F);
586       // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
587       // the module needs .eh_frame. If we have found that case, we are done.
588       if (ModuleCFISection == CFISection::EH)
589         break;
590     }
591     assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
592            usesCFIWithoutEH() || ModuleCFISection != CFISection::EH);
593     break;
594   default:
595     break;
596   }
597 
598   EHStreamer *ES = nullptr;
599   switch (MAI->getExceptionHandlingType()) {
600   case ExceptionHandling::None:
601     if (!usesCFIWithoutEH())
602       break;
603     [[fallthrough]];
604   case ExceptionHandling::SjLj:
605   case ExceptionHandling::DwarfCFI:
606   case ExceptionHandling::ZOS:
607     ES = new DwarfCFIException(this);
608     break;
609   case ExceptionHandling::ARM:
610     ES = new ARMException(this);
611     break;
612   case ExceptionHandling::WinEH:
613     switch (MAI->getWinEHEncodingType()) {
614     default: llvm_unreachable("unsupported unwinding information encoding");
615     case WinEH::EncodingType::Invalid:
616       break;
617     case WinEH::EncodingType::X86:
618     case WinEH::EncodingType::Itanium:
619       ES = new WinException(this);
620       break;
621     }
622     break;
623   case ExceptionHandling::Wasm:
624     ES = new WasmException(this);
625     break;
626   case ExceptionHandling::AIX:
627     ES = new AIXException(this);
628     break;
629   }
630   if (ES)
631     Handlers.push_back(std::unique_ptr<EHStreamer>(ES));
632 
633   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
634   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
635     EHHandlers.push_back(std::make_unique<WinCFGuard>(this));
636 
637   for (auto &Handler : Handlers)
638     Handler->beginModule(&M);
639   for (auto &Handler : EHHandlers)
640     Handler->beginModule(&M);
641 
642   return false;
643 }
644 
645 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
646   if (!MAI.hasWeakDefCanBeHiddenDirective())
647     return false;
648 
649   return GV->canBeOmittedFromSymbolTable();
650 }
651 
652 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
653   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
654   switch (Linkage) {
655   case GlobalValue::CommonLinkage:
656   case GlobalValue::LinkOnceAnyLinkage:
657   case GlobalValue::LinkOnceODRLinkage:
658   case GlobalValue::WeakAnyLinkage:
659   case GlobalValue::WeakODRLinkage:
660     if (MAI->isMachO()) {
661       // .globl _foo
662       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
663 
664       if (!canBeHidden(GV, *MAI))
665         // .weak_definition _foo
666         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
667       else
668         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
669     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
670       // .globl _foo
671       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
672       //NOTE: linkonce is handled by the section the symbol was assigned to.
673     } else {
674       // .weak _foo
675       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
676     }
677     return;
678   case GlobalValue::ExternalLinkage:
679     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
680     return;
681   case GlobalValue::PrivateLinkage:
682   case GlobalValue::InternalLinkage:
683     return;
684   case GlobalValue::ExternalWeakLinkage:
685   case GlobalValue::AvailableExternallyLinkage:
686   case GlobalValue::AppendingLinkage:
687     llvm_unreachable("Should never emit this");
688   }
689   llvm_unreachable("Unknown linkage type!");
690 }
691 
692 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
693                                    const GlobalValue *GV) const {
694   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
695 }
696 
697 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
698   return TM.getSymbol(GV);
699 }
700 
701 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
702   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
703   // exact definion (intersection of GlobalValue::hasExactDefinition() and
704   // !isInterposable()). These linkages include: external, appending, internal,
705   // private. It may be profitable to use a local alias for external. The
706   // assembler would otherwise be conservative and assume a global default
707   // visibility symbol can be interposable, even if the code generator already
708   // assumed it.
709   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
710     const Module &M = *GV.getParent();
711     if (TM.getRelocationModel() != Reloc::Static &&
712         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
713       return getSymbolWithGlobalValueBase(&GV, "$local");
714   }
715   return TM.getSymbol(&GV);
716 }
717 
718 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
719 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
720   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
721   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
722          "No emulated TLS variables in the common section");
723 
724   // Never emit TLS variable xyz in emulated TLS model.
725   // The initialization value is in __emutls_t.xyz instead of xyz.
726   if (IsEmuTLSVar)
727     return;
728 
729   if (GV->hasInitializer()) {
730     // Check to see if this is a special global used by LLVM, if so, emit it.
731     if (emitSpecialLLVMGlobal(GV))
732       return;
733 
734     // Skip the emission of global equivalents. The symbol can be emitted later
735     // on by emitGlobalGOTEquivs in case it turns out to be needed.
736     if (GlobalGOTEquivs.count(getSymbol(GV)))
737       return;
738 
739     if (isVerbose()) {
740       // When printing the control variable __emutls_v.*,
741       // we don't need to print the original TLS variable name.
742       GV->printAsOperand(OutStreamer->getCommentOS(),
743                          /*PrintType=*/false, GV->getParent());
744       OutStreamer->getCommentOS() << '\n';
745     }
746   }
747 
748   MCSymbol *GVSym = getSymbol(GV);
749   MCSymbol *EmittedSym = GVSym;
750 
751   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
752   // attributes.
753   // GV's or GVSym's attributes will be used for the EmittedSym.
754   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
755 
756   if (GV->isTagged()) {
757     Triple T = TM.getTargetTriple();
758 
759     if (T.getArch() != Triple::aarch64 || !T.isAndroid())
760       OutContext.reportError(SMLoc(),
761                              "tagged symbols (-fsanitize=memtag-globals) are "
762                              "only supported on AArch64 Android");
763     OutStreamer->emitSymbolAttribute(EmittedSym, MAI->getMemtagAttr());
764   }
765 
766   if (!GV->hasInitializer())   // External globals require no extra code.
767     return;
768 
769   GVSym->redefineIfPossible();
770   if (GVSym->isDefined() || GVSym->isVariable())
771     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
772                                         "' is already defined");
773 
774   if (MAI->hasDotTypeDotSizeDirective())
775     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
776 
777   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
778 
779   const DataLayout &DL = GV->getDataLayout();
780   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
781 
782   // If the alignment is specified, we *must* obey it.  Overaligning a global
783   // with a specified alignment is a prompt way to break globals emitted to
784   // sections and expected to be contiguous (e.g. ObjC metadata).
785   const Align Alignment = getGVAlignment(GV, DL);
786 
787   for (auto &Handler : Handlers)
788     Handler->setSymbolSize(GVSym, Size);
789 
790   // Handle common symbols
791   if (GVKind.isCommon()) {
792     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
793     // .comm _foo, 42, 4
794     OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
795     return;
796   }
797 
798   // Determine to which section this global should be emitted.
799   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
800 
801   // If we have a bss global going to a section that supports the
802   // zerofill directive, do so here.
803   if (GVKind.isBSS() && MAI->isMachO() && TheSection->isVirtualSection()) {
804     if (Size == 0)
805       Size = 1; // zerofill of 0 bytes is undefined.
806     emitLinkage(GV, GVSym);
807     // .zerofill __DATA, __bss, _foo, 400, 5
808     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment);
809     return;
810   }
811 
812   // If this is a BSS local symbol and we are emitting in the BSS
813   // section use .lcomm/.comm directive.
814   if (GVKind.isBSSLocal() &&
815       getObjFileLowering().getBSSSection() == TheSection) {
816     if (Size == 0)
817       Size = 1; // .comm Foo, 0 is undefined, avoid it.
818 
819     // Use .lcomm only if it supports user-specified alignment.
820     // Otherwise, while it would still be correct to use .lcomm in some
821     // cases (e.g. when Align == 1), the external assembler might enfore
822     // some -unknown- default alignment behavior, which could cause
823     // spurious differences between external and integrated assembler.
824     // Prefer to simply fall back to .local / .comm in this case.
825     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
826       // .lcomm _foo, 42
827       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment);
828       return;
829     }
830 
831     // .local _foo
832     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
833     // .comm _foo, 42, 4
834     OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
835     return;
836   }
837 
838   // Handle thread local data for mach-o which requires us to output an
839   // additional structure of data and mangle the original symbol so that we
840   // can reference it later.
841   //
842   // TODO: This should become an "emit thread local global" method on TLOF.
843   // All of this macho specific stuff should be sunk down into TLOFMachO and
844   // stuff like "TLSExtraDataSection" should no longer be part of the parent
845   // TLOF class.  This will also make it more obvious that stuff like
846   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
847   // specific code.
848   if (GVKind.isThreadLocal() && MAI->isMachO()) {
849     // Emit the .tbss symbol
850     MCSymbol *MangSym =
851         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
852 
853     if (GVKind.isThreadBSS()) {
854       TheSection = getObjFileLowering().getTLSBSSSection();
855       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment);
856     } else if (GVKind.isThreadData()) {
857       OutStreamer->switchSection(TheSection);
858 
859       emitAlignment(Alignment, GV);
860       OutStreamer->emitLabel(MangSym);
861 
862       emitGlobalConstant(GV->getDataLayout(),
863                          GV->getInitializer());
864     }
865 
866     OutStreamer->addBlankLine();
867 
868     // Emit the variable struct for the runtime.
869     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
870 
871     OutStreamer->switchSection(TLVSect);
872     // Emit the linkage here.
873     emitLinkage(GV, GVSym);
874     OutStreamer->emitLabel(GVSym);
875 
876     // Three pointers in size:
877     //   - __tlv_bootstrap - used to make sure support exists
878     //   - spare pointer, used when mapped by the runtime
879     //   - pointer to mangled symbol above with initializer
880     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
881     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
882                                 PtrSize);
883     OutStreamer->emitIntValue(0, PtrSize);
884     OutStreamer->emitSymbolValue(MangSym, PtrSize);
885 
886     OutStreamer->addBlankLine();
887     return;
888   }
889 
890   MCSymbol *EmittedInitSym = GVSym;
891 
892   OutStreamer->switchSection(TheSection);
893 
894   emitLinkage(GV, EmittedInitSym);
895   emitAlignment(Alignment, GV);
896 
897   OutStreamer->emitLabel(EmittedInitSym);
898   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
899   if (LocalAlias != EmittedInitSym)
900     OutStreamer->emitLabel(LocalAlias);
901 
902   emitGlobalConstant(GV->getDataLayout(), GV->getInitializer());
903 
904   if (MAI->hasDotTypeDotSizeDirective())
905     // .size foo, 42
906     OutStreamer->emitELFSize(EmittedInitSym,
907                              MCConstantExpr::create(Size, OutContext));
908 
909   OutStreamer->addBlankLine();
910 }
911 
912 /// Emit the directive and value for debug thread local expression
913 ///
914 /// \p Value - The value to emit.
915 /// \p Size - The size of the integer (in bytes) to emit.
916 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
917   OutStreamer->emitValue(Value, Size);
918 }
919 
920 void AsmPrinter::emitFunctionHeaderComment() {}
921 
922 void AsmPrinter::emitFunctionPrefix(ArrayRef<const Constant *> Prefix) {
923   const Function &F = MF->getFunction();
924   if (!MAI->hasSubsectionsViaSymbols()) {
925     for (auto &C : Prefix)
926       emitGlobalConstant(F.getDataLayout(), C);
927     return;
928   }
929   // Preserving prefix-like data on platforms which use subsections-via-symbols
930   // is a bit tricky. Here we introduce a symbol for the prefix-like data
931   // and use the .alt_entry attribute to mark the function's real entry point
932   // as an alternative entry point to the symbol that precedes the function..
933   OutStreamer->emitLabel(OutContext.createLinkerPrivateTempSymbol());
934 
935   for (auto &C : Prefix) {
936     emitGlobalConstant(F.getDataLayout(), C);
937   }
938 
939   // Emit an .alt_entry directive for the actual function symbol.
940   OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
941 }
942 
943 /// EmitFunctionHeader - This method emits the header for the current
944 /// function.
945 void AsmPrinter::emitFunctionHeader() {
946   const Function &F = MF->getFunction();
947 
948   if (isVerbose())
949     OutStreamer->getCommentOS()
950         << "-- Begin function "
951         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
952 
953   // Print out constants referenced by the function
954   emitConstantPool();
955 
956   // Print the 'header' of function.
957   // If basic block sections are desired, explicitly request a unique section
958   // for this function's entry block.
959   if (MF->front().isBeginSection())
960     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
961   else
962     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
963   OutStreamer->switchSection(MF->getSection());
964 
965   if (MAI->isAIX())
966     emitLinkage(&F, CurrentFnDescSym);
967   else
968     emitVisibility(CurrentFnSym, F.getVisibility());
969 
970   emitLinkage(&F, CurrentFnSym);
971   if (MAI->hasFunctionAlignment())
972     emitAlignment(MF->getAlignment(), &F);
973 
974   if (MAI->hasDotTypeDotSizeDirective())
975     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
976 
977   if (F.hasFnAttribute(Attribute::Cold))
978     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
979 
980   // Emit the prefix data.
981   if (F.hasPrefixData())
982     emitFunctionPrefix({F.getPrefixData()});
983 
984   // Emit KCFI type information before patchable-function-prefix nops.
985   emitKCFITypeId(*MF);
986 
987   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
988   // place prefix data before NOPs.
989   unsigned PatchableFunctionPrefix = 0;
990   unsigned PatchableFunctionEntry = 0;
991   (void)F.getFnAttribute("patchable-function-prefix")
992       .getValueAsString()
993       .getAsInteger(10, PatchableFunctionPrefix);
994   (void)F.getFnAttribute("patchable-function-entry")
995       .getValueAsString()
996       .getAsInteger(10, PatchableFunctionEntry);
997   if (PatchableFunctionPrefix) {
998     CurrentPatchableFunctionEntrySym =
999         OutContext.createLinkerPrivateTempSymbol();
1000     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
1001     emitNops(PatchableFunctionPrefix);
1002   } else if (PatchableFunctionEntry) {
1003     // May be reassigned when emitting the body, to reference the label after
1004     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
1005     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
1006   }
1007 
1008   // Emit the function prologue data for the indirect call sanitizer.
1009   if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) {
1010     assert(MD->getNumOperands() == 2);
1011 
1012     auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0));
1013     auto *TypeHash = mdconst::extract<Constant>(MD->getOperand(1));
1014     emitFunctionPrefix({PrologueSig, TypeHash});
1015   }
1016 
1017   if (isVerbose()) {
1018     F.printAsOperand(OutStreamer->getCommentOS(),
1019                      /*PrintType=*/false, F.getParent());
1020     emitFunctionHeaderComment();
1021     OutStreamer->getCommentOS() << '\n';
1022   }
1023 
1024   // Emit the function descriptor. This is a virtual function to allow targets
1025   // to emit their specific function descriptor. Right now it is only used by
1026   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
1027   // descriptors and should be converted to use this hook as well.
1028   if (MAI->isAIX())
1029     emitFunctionDescriptor();
1030 
1031   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
1032   // their wild and crazy things as required.
1033   emitFunctionEntryLabel();
1034 
1035   // If the function had address-taken blocks that got deleted, then we have
1036   // references to the dangling symbols.  Emit them at the start of the function
1037   // so that we don't get references to undefined symbols.
1038   std::vector<MCSymbol*> DeadBlockSyms;
1039   takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
1040   for (MCSymbol *DeadBlockSym : DeadBlockSyms) {
1041     OutStreamer->AddComment("Address taken block that was later removed");
1042     OutStreamer->emitLabel(DeadBlockSym);
1043   }
1044 
1045   if (CurrentFnBegin) {
1046     if (MAI->useAssignmentForEHBegin()) {
1047       MCSymbol *CurPos = OutContext.createTempSymbol();
1048       OutStreamer->emitLabel(CurPos);
1049       OutStreamer->emitAssignment(CurrentFnBegin,
1050                                  MCSymbolRefExpr::create(CurPos, OutContext));
1051     } else {
1052       OutStreamer->emitLabel(CurrentFnBegin);
1053     }
1054   }
1055 
1056   // Emit pre-function debug and/or EH information.
1057   for (auto &Handler : Handlers) {
1058     Handler->beginFunction(MF);
1059     Handler->beginBasicBlockSection(MF->front());
1060   }
1061   for (auto &Handler : EHHandlers) {
1062     Handler->beginFunction(MF);
1063     Handler->beginBasicBlockSection(MF->front());
1064   }
1065 
1066   // Emit the prologue data.
1067   if (F.hasPrologueData())
1068     emitGlobalConstant(F.getDataLayout(), F.getPrologueData());
1069 }
1070 
1071 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
1072 /// function.  This can be overridden by targets as required to do custom stuff.
1073 void AsmPrinter::emitFunctionEntryLabel() {
1074   CurrentFnSym->redefineIfPossible();
1075 
1076   // The function label could have already been emitted if two symbols end up
1077   // conflicting due to asm renaming.  Detect this and emit an error.
1078   if (CurrentFnSym->isVariable())
1079     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
1080                        "' is a protected alias");
1081 
1082   OutStreamer->emitLabel(CurrentFnSym);
1083 
1084   if (TM.getTargetTriple().isOSBinFormatELF()) {
1085     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
1086     if (Sym != CurrentFnSym) {
1087       cast<MCSymbolELF>(Sym)->setType(ELF::STT_FUNC);
1088       CurrentFnBeginLocal = Sym;
1089       OutStreamer->emitLabel(Sym);
1090       if (MAI->hasDotTypeDotSizeDirective())
1091         OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction);
1092     }
1093   }
1094 }
1095 
1096 /// emitComments - Pretty-print comments for instructions.
1097 static void emitComments(const MachineInstr &MI, const MCSubtargetInfo *STI,
1098                          raw_ostream &CommentOS) {
1099   const MachineFunction *MF = MI.getMF();
1100   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1101 
1102   // Check for spills and reloads
1103 
1104   // We assume a single instruction only has a spill or reload, not
1105   // both.
1106   std::optional<LocationSize> Size;
1107   if ((Size = MI.getRestoreSize(TII))) {
1108     CommentOS << Size->getValue() << "-byte Reload\n";
1109   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
1110     if (!Size->hasValue())
1111       CommentOS << "Unknown-size Folded Reload\n";
1112     else if (Size->getValue())
1113       CommentOS << Size->getValue() << "-byte Folded Reload\n";
1114   } else if ((Size = MI.getSpillSize(TII))) {
1115     CommentOS << Size->getValue() << "-byte Spill\n";
1116   } else if ((Size = MI.getFoldedSpillSize(TII))) {
1117     if (!Size->hasValue())
1118       CommentOS << "Unknown-size Folded Spill\n";
1119     else if (Size->getValue())
1120       CommentOS << Size->getValue() << "-byte Folded Spill\n";
1121   }
1122 
1123   // Check for spill-induced copies
1124   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
1125     CommentOS << " Reload Reuse\n";
1126 
1127   if (PrintLatency) {
1128     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1129     const MCSchedModel &SCModel = STI->getSchedModel();
1130     int Latency = SCModel.computeInstrLatency<MCSubtargetInfo, MCInstrInfo,
1131                                               InstrItineraryData, MachineInstr>(
1132         *STI, *TII, MI);
1133     // Report only interesting latencies.
1134     if (1 < Latency)
1135       CommentOS << " Latency: " << Latency << "\n";
1136   }
1137 }
1138 
1139 /// emitImplicitDef - This method emits the specified machine instruction
1140 /// that is an implicit def.
1141 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
1142   Register RegNo = MI->getOperand(0).getReg();
1143 
1144   SmallString<128> Str;
1145   raw_svector_ostream OS(Str);
1146   OS << "implicit-def: "
1147      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
1148 
1149   OutStreamer->AddComment(OS.str());
1150   OutStreamer->addBlankLine();
1151 }
1152 
1153 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
1154   std::string Str;
1155   raw_string_ostream OS(Str);
1156   OS << "kill:";
1157   for (const MachineOperand &Op : MI->operands()) {
1158     assert(Op.isReg() && "KILL instruction must have only register operands");
1159     OS << ' ' << (Op.isDef() ? "def " : "killed ")
1160        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
1161   }
1162   AP.OutStreamer->AddComment(Str);
1163   AP.OutStreamer->addBlankLine();
1164 }
1165 
1166 static void emitFakeUse(const MachineInstr *MI, AsmPrinter &AP) {
1167   std::string Str;
1168   raw_string_ostream OS(Str);
1169   OS << "fake_use:";
1170   for (const MachineOperand &Op : MI->operands()) {
1171     // In some circumstances we can end up with fake uses of constants; skip
1172     // these.
1173     if (!Op.isReg())
1174       continue;
1175     OS << ' ' << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
1176   }
1177   AP.OutStreamer->AddComment(OS.str());
1178   AP.OutStreamer->addBlankLine();
1179 }
1180 
1181 /// emitDebugValueComment - This method handles the target-independent form
1182 /// of DBG_VALUE, returning true if it was able to do so.  A false return
1183 /// means the target will need to handle MI in EmitInstruction.
1184 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
1185   // This code handles only the 4-operand target-independent form.
1186   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
1187     return false;
1188 
1189   SmallString<128> Str;
1190   raw_svector_ostream OS(Str);
1191   OS << "DEBUG_VALUE: ";
1192 
1193   const DILocalVariable *V = MI->getDebugVariable();
1194   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
1195     StringRef Name = SP->getName();
1196     if (!Name.empty())
1197       OS << Name << ":";
1198   }
1199   OS << V->getName();
1200   OS << " <- ";
1201 
1202   const DIExpression *Expr = MI->getDebugExpression();
1203   // First convert this to a non-variadic expression if possible, to simplify
1204   // the output.
1205   if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr))
1206     Expr = *NonVariadicExpr;
1207   // Then, output the possibly-simplified expression.
1208   if (Expr->getNumElements()) {
1209     OS << '[';
1210     ListSeparator LS;
1211     for (auto &Op : Expr->expr_ops()) {
1212       OS << LS << dwarf::OperationEncodingString(Op.getOp());
1213       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
1214         OS << ' ' << Op.getArg(I);
1215     }
1216     OS << "] ";
1217   }
1218 
1219   // Register or immediate value. Register 0 means undef.
1220   for (const MachineOperand &Op : MI->debug_operands()) {
1221     if (&Op != MI->debug_operands().begin())
1222       OS << ", ";
1223     switch (Op.getType()) {
1224     case MachineOperand::MO_FPImmediate: {
1225       APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
1226       Type *ImmTy = Op.getFPImm()->getType();
1227       if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() ||
1228           ImmTy->isDoubleTy()) {
1229         OS << APF.convertToDouble();
1230       } else {
1231         // There is no good way to print long double.  Convert a copy to
1232         // double.  Ah well, it's only a comment.
1233         bool ignored;
1234         APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1235                     &ignored);
1236         OS << "(long double) " << APF.convertToDouble();
1237       }
1238       break;
1239     }
1240     case MachineOperand::MO_Immediate: {
1241       OS << Op.getImm();
1242       break;
1243     }
1244     case MachineOperand::MO_CImmediate: {
1245       Op.getCImm()->getValue().print(OS, false /*isSigned*/);
1246       break;
1247     }
1248     case MachineOperand::MO_TargetIndex: {
1249       OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
1250       break;
1251     }
1252     case MachineOperand::MO_Register:
1253     case MachineOperand::MO_FrameIndex: {
1254       Register Reg;
1255       std::optional<StackOffset> Offset;
1256       if (Op.isReg()) {
1257         Reg = Op.getReg();
1258       } else {
1259         const TargetFrameLowering *TFI =
1260             AP.MF->getSubtarget().getFrameLowering();
1261         Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
1262       }
1263       if (!Reg) {
1264         // Suppress offset, it is not meaningful here.
1265         OS << "undef";
1266         break;
1267       }
1268       // The second operand is only an offset if it's an immediate.
1269       if (MI->isIndirectDebugValue())
1270         Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
1271       if (Offset)
1272         OS << '[';
1273       OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1274       if (Offset)
1275         OS << '+' << Offset->getFixed() << ']';
1276       break;
1277     }
1278     default:
1279       llvm_unreachable("Unknown operand type");
1280     }
1281   }
1282 
1283   // NOTE: Want this comment at start of line, don't emit with AddComment.
1284   AP.OutStreamer->emitRawComment(Str);
1285   return true;
1286 }
1287 
1288 /// This method handles the target-independent form of DBG_LABEL, returning
1289 /// true if it was able to do so.  A false return means the target will need
1290 /// to handle MI in EmitInstruction.
1291 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
1292   if (MI->getNumOperands() != 1)
1293     return false;
1294 
1295   SmallString<128> Str;
1296   raw_svector_ostream OS(Str);
1297   OS << "DEBUG_LABEL: ";
1298 
1299   const DILabel *V = MI->getDebugLabel();
1300   if (auto *SP = dyn_cast<DISubprogram>(
1301           V->getScope()->getNonLexicalBlockFileScope())) {
1302     StringRef Name = SP->getName();
1303     if (!Name.empty())
1304       OS << Name << ":";
1305   }
1306   OS << V->getName();
1307 
1308   // NOTE: Want this comment at start of line, don't emit with AddComment.
1309   AP.OutStreamer->emitRawComment(OS.str());
1310   return true;
1311 }
1312 
1313 AsmPrinter::CFISection
1314 AsmPrinter::getFunctionCFISectionType(const Function &F) const {
1315   // Ignore functions that won't get emitted.
1316   if (F.isDeclarationForLinker())
1317     return CFISection::None;
1318 
1319   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1320       F.needsUnwindTableEntry())
1321     return CFISection::EH;
1322 
1323   if (MAI->usesCFIWithoutEH() && F.hasUWTable())
1324     return CFISection::EH;
1325 
1326   if (hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1327     return CFISection::Debug;
1328 
1329   return CFISection::None;
1330 }
1331 
1332 AsmPrinter::CFISection
1333 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const {
1334   return getFunctionCFISectionType(MF.getFunction());
1335 }
1336 
1337 bool AsmPrinter::needsSEHMoves() {
1338   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1339 }
1340 
1341 bool AsmPrinter::usesCFIWithoutEH() const {
1342   return MAI->usesCFIWithoutEH() && ModuleCFISection != CFISection::None;
1343 }
1344 
1345 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1346   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1347   if (!usesCFIWithoutEH() &&
1348       ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1349       ExceptionHandlingType != ExceptionHandling::ARM)
1350     return;
1351 
1352   if (getFunctionCFISectionType(*MF) == CFISection::None)
1353     return;
1354 
1355   // If there is no "real" instruction following this CFI instruction, skip
1356   // emitting it; it would be beyond the end of the function's FDE range.
1357   auto *MBB = MI.getParent();
1358   auto I = std::next(MI.getIterator());
1359   while (I != MBB->end() && I->isTransient())
1360     ++I;
1361   if (I == MBB->instr_end() &&
1362       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1363     return;
1364 
1365   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1366   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1367   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1368   emitCFIInstruction(CFI);
1369 }
1370 
1371 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1372   // The operands are the MCSymbol and the frame offset of the allocation.
1373   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1374   int FrameOffset = MI.getOperand(1).getImm();
1375 
1376   // Emit a symbol assignment.
1377   OutStreamer->emitAssignment(FrameAllocSym,
1378                              MCConstantExpr::create(FrameOffset, OutContext));
1379 }
1380 
1381 /// Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section
1382 /// for a given basic block. This can be used to capture more precise profile
1383 /// information.
1384 static uint32_t getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1385   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1386   return object::BBAddrMap::BBEntry::Metadata{
1387       MBB.isReturnBlock(), !MBB.empty() && TII->isTailCall(MBB.back()),
1388       MBB.isEHPad(), const_cast<MachineBasicBlock &>(MBB).canFallThrough(),
1389       !MBB.empty() && MBB.rbegin()->isIndirectBranch()}
1390       .encode();
1391 }
1392 
1393 static llvm::object::BBAddrMap::Features
1394 getBBAddrMapFeature(const MachineFunction &MF, int NumMBBSectionRanges) {
1395   // Ensure that the user has not passed in additional options while also
1396   // specifying all or none.
1397   if ((PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::None) ||
1398        PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::All)) &&
1399       popcount(PgoAnalysisMapFeatures.getBits()) != 1) {
1400     MF.getFunction().getContext().emitError(
1401         "-pgo-anaylsis-map can accept only all or none with no additional "
1402         "values.");
1403   }
1404 
1405   bool NoFeatures = PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::None);
1406   bool AllFeatures = PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::All);
1407   bool FuncEntryCountEnabled =
1408       AllFeatures || (!NoFeatures && PgoAnalysisMapFeatures.isSet(
1409                                          PGOMapFeaturesEnum::FuncEntryCount));
1410   bool BBFreqEnabled =
1411       AllFeatures ||
1412       (!NoFeatures && PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BBFreq));
1413   bool BrProbEnabled =
1414       AllFeatures ||
1415       (!NoFeatures && PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BrProb));
1416 
1417   if ((BBFreqEnabled || BrProbEnabled) && BBAddrMapSkipEmitBBEntries) {
1418     MF.getFunction().getContext().emitError(
1419         "BB entries info is required for BBFreq and BrProb "
1420         "features");
1421   }
1422   return {FuncEntryCountEnabled, BBFreqEnabled, BrProbEnabled,
1423           MF.hasBBSections() && NumMBBSectionRanges > 1,
1424           static_cast<bool>(BBAddrMapSkipEmitBBEntries)};
1425 }
1426 
1427 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1428   MCSection *BBAddrMapSection =
1429       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1430   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1431 
1432   const MCSymbol *FunctionSymbol = getFunctionBegin();
1433 
1434   OutStreamer->pushSection();
1435   OutStreamer->switchSection(BBAddrMapSection);
1436   OutStreamer->AddComment("version");
1437   uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion();
1438   OutStreamer->emitInt8(BBAddrMapVersion);
1439   OutStreamer->AddComment("feature");
1440   auto Features = getBBAddrMapFeature(MF, MBBSectionRanges.size());
1441   OutStreamer->emitInt8(Features.encode());
1442   // Emit BB Information for each basic block in the function.
1443   if (Features.MultiBBRange) {
1444     OutStreamer->AddComment("number of basic block ranges");
1445     OutStreamer->emitULEB128IntValue(MBBSectionRanges.size());
1446   }
1447   // Number of blocks in each MBB section.
1448   MapVector<MBBSectionID, unsigned> MBBSectionNumBlocks;
1449   const MCSymbol *PrevMBBEndSymbol = nullptr;
1450   if (!Features.MultiBBRange) {
1451     OutStreamer->AddComment("function address");
1452     OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1453     OutStreamer->AddComment("number of basic blocks");
1454     OutStreamer->emitULEB128IntValue(MF.size());
1455     PrevMBBEndSymbol = FunctionSymbol;
1456   } else {
1457     unsigned BBCount = 0;
1458     for (const MachineBasicBlock &MBB : MF) {
1459       BBCount++;
1460       if (MBB.isEndSection()) {
1461         // Store each section's basic block count when it ends.
1462         MBBSectionNumBlocks[MBB.getSectionID()] = BBCount;
1463         // Reset the count for the next section.
1464         BBCount = 0;
1465       }
1466     }
1467   }
1468   // Emit the BB entry for each basic block in the function.
1469   for (const MachineBasicBlock &MBB : MF) {
1470     const MCSymbol *MBBSymbol =
1471         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1472     bool IsBeginSection =
1473         Features.MultiBBRange && (MBB.isBeginSection() || MBB.isEntryBlock());
1474     if (IsBeginSection) {
1475       OutStreamer->AddComment("base address");
1476       OutStreamer->emitSymbolValue(MBBSymbol, getPointerSize());
1477       OutStreamer->AddComment("number of basic blocks");
1478       OutStreamer->emitULEB128IntValue(MBBSectionNumBlocks[MBB.getSectionID()]);
1479       PrevMBBEndSymbol = MBBSymbol;
1480     }
1481 
1482     if (!Features.OmitBBEntries) {
1483       // TODO: Remove this check when version 1 is deprecated.
1484       if (BBAddrMapVersion > 1) {
1485         OutStreamer->AddComment("BB id");
1486         // Emit the BB ID for this basic block.
1487         // We only emit BaseID since CloneID is unset for
1488         // -basic-block-adress-map.
1489         // TODO: Emit the full BBID when labels and sections can be mixed
1490         // together.
1491         OutStreamer->emitULEB128IntValue(MBB.getBBID()->BaseID);
1492       }
1493       // Emit the basic block offset relative to the end of the previous block.
1494       // This is zero unless the block is padded due to alignment.
1495       emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol);
1496       // Emit the basic block size. When BBs have alignments, their size cannot
1497       // always be computed from their offsets.
1498       emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1499       // Emit the Metadata.
1500       OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1501     }
1502 
1503     PrevMBBEndSymbol = MBB.getEndSymbol();
1504   }
1505 
1506   if (Features.hasPGOAnalysis()) {
1507     assert(BBAddrMapVersion >= 2 &&
1508            "PGOAnalysisMap only supports version 2 or later");
1509 
1510     if (Features.FuncEntryCount) {
1511       OutStreamer->AddComment("function entry count");
1512       auto MaybeEntryCount = MF.getFunction().getEntryCount();
1513       OutStreamer->emitULEB128IntValue(
1514           MaybeEntryCount ? MaybeEntryCount->getCount() : 0);
1515     }
1516     const MachineBlockFrequencyInfo *MBFI =
1517         Features.BBFreq
1518             ? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()
1519             : nullptr;
1520     const MachineBranchProbabilityInfo *MBPI =
1521         Features.BrProb
1522             ? &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI()
1523             : nullptr;
1524 
1525     if (Features.BBFreq || Features.BrProb) {
1526       for (const MachineBasicBlock &MBB : MF) {
1527         if (Features.BBFreq) {
1528           OutStreamer->AddComment("basic block frequency");
1529           OutStreamer->emitULEB128IntValue(
1530               MBFI->getBlockFreq(&MBB).getFrequency());
1531         }
1532         if (Features.BrProb) {
1533           unsigned SuccCount = MBB.succ_size();
1534           OutStreamer->AddComment("basic block successor count");
1535           OutStreamer->emitULEB128IntValue(SuccCount);
1536           for (const MachineBasicBlock *SuccMBB : MBB.successors()) {
1537             OutStreamer->AddComment("successor BB ID");
1538             OutStreamer->emitULEB128IntValue(SuccMBB->getBBID()->BaseID);
1539             OutStreamer->AddComment("successor branch probability");
1540             OutStreamer->emitULEB128IntValue(
1541                 MBPI->getEdgeProbability(&MBB, SuccMBB).getNumerator());
1542           }
1543         }
1544       }
1545     }
1546   }
1547 
1548   OutStreamer->popSection();
1549 }
1550 
1551 void AsmPrinter::emitKCFITrapEntry(const MachineFunction &MF,
1552                                    const MCSymbol *Symbol) {
1553   MCSection *Section =
1554       getObjFileLowering().getKCFITrapSection(*MF.getSection());
1555   if (!Section)
1556     return;
1557 
1558   OutStreamer->pushSection();
1559   OutStreamer->switchSection(Section);
1560 
1561   MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol();
1562   OutStreamer->emitLabel(Loc);
1563   OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4);
1564 
1565   OutStreamer->popSection();
1566 }
1567 
1568 void AsmPrinter::emitKCFITypeId(const MachineFunction &MF) {
1569   const Function &F = MF.getFunction();
1570   if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type))
1571     emitGlobalConstant(F.getDataLayout(),
1572                        mdconst::extract<ConstantInt>(MD->getOperand(0)));
1573 }
1574 
1575 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1576   if (PP) {
1577     auto GUID = MI.getOperand(0).getImm();
1578     auto Index = MI.getOperand(1).getImm();
1579     auto Type = MI.getOperand(2).getImm();
1580     auto Attr = MI.getOperand(3).getImm();
1581     DILocation *DebugLoc = MI.getDebugLoc();
1582     PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1583   }
1584 }
1585 
1586 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1587   if (!MF.getTarget().Options.EmitStackSizeSection)
1588     return;
1589 
1590   MCSection *StackSizeSection =
1591       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1592   if (!StackSizeSection)
1593     return;
1594 
1595   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1596   // Don't emit functions with dynamic stack allocations.
1597   if (FrameInfo.hasVarSizedObjects())
1598     return;
1599 
1600   OutStreamer->pushSection();
1601   OutStreamer->switchSection(StackSizeSection);
1602 
1603   const MCSymbol *FunctionSymbol = getFunctionBegin();
1604   uint64_t StackSize =
1605       FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1606   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1607   OutStreamer->emitULEB128IntValue(StackSize);
1608 
1609   OutStreamer->popSection();
1610 }
1611 
1612 void AsmPrinter::emitStackUsage(const MachineFunction &MF) {
1613   const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput;
1614 
1615   // OutputFilename empty implies -fstack-usage is not passed.
1616   if (OutputFilename.empty())
1617     return;
1618 
1619   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1620   uint64_t StackSize =
1621       FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1622 
1623   if (StackUsageStream == nullptr) {
1624     std::error_code EC;
1625     StackUsageStream =
1626         std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text);
1627     if (EC) {
1628       errs() << "Could not open file: " << EC.message();
1629       return;
1630     }
1631   }
1632 
1633   if (const DISubprogram *DSP = MF.getFunction().getSubprogram())
1634     *StackUsageStream << DSP->getFilename() << ':' << DSP->getLine();
1635   else
1636     *StackUsageStream << MF.getFunction().getParent()->getName();
1637 
1638   *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t';
1639   if (FrameInfo.hasVarSizedObjects())
1640     *StackUsageStream << "dynamic\n";
1641   else
1642     *StackUsageStream << "static\n";
1643 }
1644 
1645 void AsmPrinter::emitPCSectionsLabel(const MachineFunction &MF,
1646                                      const MDNode &MD) {
1647   MCSymbol *S = MF.getContext().createTempSymbol("pcsection");
1648   OutStreamer->emitLabel(S);
1649   PCSectionsSymbols[&MD].emplace_back(S);
1650 }
1651 
1652 void AsmPrinter::emitPCSections(const MachineFunction &MF) {
1653   const Function &F = MF.getFunction();
1654   if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections))
1655     return;
1656 
1657   const CodeModel::Model CM = MF.getTarget().getCodeModel();
1658   const unsigned RelativeRelocSize =
1659       (CM == CodeModel::Medium || CM == CodeModel::Large) ? getPointerSize()
1660                                                           : 4;
1661 
1662   // Switch to PCSection, short-circuiting the common case where the current
1663   // section is still valid (assume most MD_pcsections contain just 1 section).
1664   auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable {
1665     if (Sec == Prev)
1666       return;
1667     MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection());
1668     assert(S && "PC section is not initialized");
1669     OutStreamer->switchSection(S);
1670     Prev = Sec;
1671   };
1672   // Emit symbols into sections and data as specified in the pcsections MDNode.
1673   auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms,
1674                        bool Deltas) {
1675     // Expect the first operand to be a section name. After that, a tuple of
1676     // constants may appear, which will simply be emitted into the current
1677     // section (the user of MD_pcsections decides the format of encoded data).
1678     assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string");
1679     bool ConstULEB128 = false;
1680     for (const MDOperand &MDO : MD.operands()) {
1681       if (auto *S = dyn_cast<MDString>(MDO)) {
1682         // Found string, start of new section!
1683         // Find options for this section "<section>!<opts>" - supported options:
1684         //   C = Compress constant integers of size 2-8 bytes as ULEB128.
1685         const StringRef SecWithOpt = S->getString();
1686         const size_t OptStart = SecWithOpt.find('!'); // likely npos
1687         const StringRef Sec = SecWithOpt.substr(0, OptStart);
1688         const StringRef Opts = SecWithOpt.substr(OptStart); // likely empty
1689         ConstULEB128 = Opts.contains('C');
1690 #ifndef NDEBUG
1691         for (char O : Opts)
1692           assert((O == '!' || O == 'C') && "Invalid !pcsections options");
1693 #endif
1694         SwitchSection(Sec);
1695         const MCSymbol *Prev = Syms.front();
1696         for (const MCSymbol *Sym : Syms) {
1697           if (Sym == Prev || !Deltas) {
1698             // Use the entry itself as the base of the relative offset.
1699             MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base");
1700             OutStreamer->emitLabel(Base);
1701             // Emit relative relocation `addr - base`, which avoids a dynamic
1702             // relocation in the final binary. User will get the address with
1703             // `base + addr`.
1704             emitLabelDifference(Sym, Base, RelativeRelocSize);
1705           } else {
1706             // Emit delta between symbol and previous symbol.
1707             if (ConstULEB128)
1708               emitLabelDifferenceAsULEB128(Sym, Prev);
1709             else
1710               emitLabelDifference(Sym, Prev, 4);
1711           }
1712           Prev = Sym;
1713         }
1714       } else {
1715         // Emit auxiliary data after PC.
1716         assert(isa<MDNode>(MDO) && "expecting either string or tuple");
1717         const auto *AuxMDs = cast<MDNode>(MDO);
1718         for (const MDOperand &AuxMDO : AuxMDs->operands()) {
1719           assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant");
1720           const Constant *C = cast<ConstantAsMetadata>(AuxMDO)->getValue();
1721           const DataLayout &DL = F.getDataLayout();
1722           const uint64_t Size = DL.getTypeStoreSize(C->getType());
1723 
1724           if (auto *CI = dyn_cast<ConstantInt>(C);
1725               CI && ConstULEB128 && Size > 1 && Size <= 8) {
1726             emitULEB128(CI->getZExtValue());
1727           } else {
1728             emitGlobalConstant(DL, C);
1729           }
1730         }
1731       }
1732     }
1733   };
1734 
1735   OutStreamer->pushSection();
1736   // Emit PCs for function start and function size.
1737   if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections))
1738     EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true);
1739   // Emit PCs for instructions collected.
1740   for (const auto &MS : PCSectionsSymbols)
1741     EmitForMD(*MS.first, MS.second, false);
1742   OutStreamer->popSection();
1743   PCSectionsSymbols.clear();
1744 }
1745 
1746 /// Returns true if function begin and end labels should be emitted.
1747 static bool needFuncLabels(const MachineFunction &MF, const AsmPrinter &Asm) {
1748   if (Asm.hasDebugInfo() || !MF.getLandingPads().empty() ||
1749       MF.hasEHFunclets() ||
1750       MF.getFunction().hasMetadata(LLVMContext::MD_pcsections))
1751     return true;
1752 
1753   // We might emit an EH table that uses function begin and end labels even if
1754   // we don't have any landingpads.
1755   if (!MF.getFunction().hasPersonalityFn())
1756     return false;
1757   return !isNoOpWithoutInvoke(
1758       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1759 }
1760 
1761 // Return the mnemonic of a MachineInstr if available, or the MachineInstr
1762 // opcode name otherwise.
1763 static StringRef getMIMnemonic(const MachineInstr &MI, MCStreamer &Streamer) {
1764   const TargetInstrInfo *TII =
1765       MI.getParent()->getParent()->getSubtarget().getInstrInfo();
1766   MCInst MCI;
1767   MCI.setOpcode(MI.getOpcode());
1768   if (StringRef Name = Streamer.getMnemonic(MCI); !Name.empty())
1769     return Name;
1770   StringRef Name = TII->getName(MI.getOpcode());
1771   assert(!Name.empty() && "Missing mnemonic and name for opcode");
1772   return Name;
1773 }
1774 
1775 /// EmitFunctionBody - This method emits the body and trailer for a
1776 /// function.
1777 void AsmPrinter::emitFunctionBody() {
1778   emitFunctionHeader();
1779 
1780   // Emit target-specific gunk before the function body.
1781   emitFunctionBodyStart();
1782 
1783   if (isVerbose()) {
1784     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1785     auto MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>();
1786     MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr;
1787     if (!MDT) {
1788       OwnedMDT = std::make_unique<MachineDominatorTree>();
1789       OwnedMDT->recalculate(*MF);
1790       MDT = OwnedMDT.get();
1791     }
1792 
1793     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1794     auto *MLIWrapper = getAnalysisIfAvailable<MachineLoopInfoWrapperPass>();
1795     MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr;
1796     if (!MLI) {
1797       OwnedMLI = std::make_unique<MachineLoopInfo>();
1798       OwnedMLI->analyze(*MDT);
1799       MLI = OwnedMLI.get();
1800     }
1801   }
1802 
1803   // Print out code for the function.
1804   bool HasAnyRealCode = false;
1805   int NumInstsInFunction = 0;
1806   bool IsEHa = MMI->getModule()->getModuleFlag("eh-asynch");
1807 
1808   const MCSubtargetInfo *STI = nullptr;
1809   if (this->MF)
1810     STI = &getSubtargetInfo();
1811   else
1812     STI = TM.getMCSubtargetInfo();
1813 
1814   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1815   // Create a slot for the entry basic block section so that the section
1816   // order is preserved when iterating over MBBSectionRanges.
1817   if (!MF->empty())
1818     MBBSectionRanges[MF->front().getSectionID()] =
1819         MBBSectionRange{CurrentFnBegin, nullptr};
1820 
1821   for (auto &MBB : *MF) {
1822     // Print a label for the basic block.
1823     emitBasicBlockStart(MBB);
1824     DenseMap<StringRef, unsigned> MnemonicCounts;
1825     for (auto &MI : MBB) {
1826       // Print the assembly for the instruction.
1827       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1828           !MI.isDebugInstr()) {
1829         HasAnyRealCode = true;
1830       }
1831 
1832       // If there is a pre-instruction symbol, emit a label for it here.
1833       if (MCSymbol *S = MI.getPreInstrSymbol())
1834         OutStreamer->emitLabel(S);
1835 
1836       if (MDNode *MD = MI.getPCSections())
1837         emitPCSectionsLabel(*MF, *MD);
1838 
1839       for (auto &Handler : Handlers)
1840         Handler->beginInstruction(&MI);
1841 
1842       if (isVerbose())
1843         emitComments(MI, STI, OutStreamer->getCommentOS());
1844 
1845       switch (MI.getOpcode()) {
1846       case TargetOpcode::CFI_INSTRUCTION:
1847         emitCFIInstruction(MI);
1848         break;
1849       case TargetOpcode::LOCAL_ESCAPE:
1850         emitFrameAlloc(MI);
1851         break;
1852       case TargetOpcode::ANNOTATION_LABEL:
1853       case TargetOpcode::GC_LABEL:
1854         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1855         break;
1856       case TargetOpcode::EH_LABEL:
1857         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1858         // For AsynchEH, insert a Nop if followed by a trap inst
1859         //   Or the exception won't be caught.
1860         //   (see MCConstantExpr::create(1,..) in WinException.cpp)
1861         //  Ignore SDiv/UDiv because a DIV with Const-0 divisor
1862         //    must have being turned into an UndefValue.
1863         //  Div with variable opnds won't be the first instruction in
1864         //  an EH region as it must be led by at least a Load
1865         {
1866           auto MI2 = std::next(MI.getIterator());
1867           if (IsEHa && MI2 != MBB.end() &&
1868               (MI2->mayLoadOrStore() || MI2->mayRaiseFPException()))
1869             emitNops(1);
1870         }
1871         break;
1872       case TargetOpcode::INLINEASM:
1873       case TargetOpcode::INLINEASM_BR:
1874         emitInlineAsm(&MI);
1875         break;
1876       case TargetOpcode::DBG_VALUE:
1877       case TargetOpcode::DBG_VALUE_LIST:
1878         if (isVerbose()) {
1879           if (!emitDebugValueComment(&MI, *this))
1880             emitInstruction(&MI);
1881         }
1882         break;
1883       case TargetOpcode::DBG_INSTR_REF:
1884         // This instruction reference will have been resolved to a machine
1885         // location, and a nearby DBG_VALUE created. We can safely ignore
1886         // the instruction reference.
1887         break;
1888       case TargetOpcode::DBG_PHI:
1889         // This instruction is only used to label a program point, it's purely
1890         // meta information.
1891         break;
1892       case TargetOpcode::DBG_LABEL:
1893         if (isVerbose()) {
1894           if (!emitDebugLabelComment(&MI, *this))
1895             emitInstruction(&MI);
1896         }
1897         break;
1898       case TargetOpcode::IMPLICIT_DEF:
1899         if (isVerbose()) emitImplicitDef(&MI);
1900         break;
1901       case TargetOpcode::KILL:
1902         if (isVerbose()) emitKill(&MI, *this);
1903         break;
1904       case TargetOpcode::FAKE_USE:
1905         if (isVerbose())
1906           emitFakeUse(&MI, *this);
1907         break;
1908       case TargetOpcode::PSEUDO_PROBE:
1909         emitPseudoProbe(MI);
1910         break;
1911       case TargetOpcode::ARITH_FENCE:
1912         if (isVerbose())
1913           OutStreamer->emitRawComment("ARITH_FENCE");
1914         break;
1915       case TargetOpcode::MEMBARRIER:
1916         OutStreamer->emitRawComment("MEMBARRIER");
1917         break;
1918       case TargetOpcode::JUMP_TABLE_DEBUG_INFO:
1919         // This instruction is only used to note jump table debug info, it's
1920         // purely meta information.
1921         break;
1922       case TargetOpcode::INIT_UNDEF:
1923         // This is only used to influence register allocation behavior, no
1924         // actual initialization is needed.
1925         break;
1926       default:
1927         emitInstruction(&MI);
1928 
1929         auto CountInstruction = [&](const MachineInstr &MI) {
1930           // Skip Meta instructions inside bundles.
1931           if (MI.isMetaInstruction())
1932             return;
1933           ++NumInstsInFunction;
1934           if (CanDoExtraAnalysis) {
1935             StringRef Name = getMIMnemonic(MI, *OutStreamer);
1936             ++MnemonicCounts[Name];
1937           }
1938         };
1939         if (!MI.isBundle()) {
1940           CountInstruction(MI);
1941           break;
1942         }
1943         // Separately count all the instructions in a bundle.
1944         for (auto It = std::next(MI.getIterator());
1945              It != MBB.end() && It->isInsideBundle(); ++It) {
1946           CountInstruction(*It);
1947         }
1948         break;
1949       }
1950 
1951       // If there is a post-instruction symbol, emit a label for it here.
1952       if (MCSymbol *S = MI.getPostInstrSymbol())
1953         OutStreamer->emitLabel(S);
1954 
1955       for (auto &Handler : Handlers)
1956         Handler->endInstruction();
1957     }
1958 
1959     // We must emit temporary symbol for the end of this basic block, if either
1960     // we have BBLabels enabled or if this basic blocks marks the end of a
1961     // section.
1962     if (MF->getTarget().Options.BBAddrMap ||
1963         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection()))
1964       OutStreamer->emitLabel(MBB.getEndSymbol());
1965 
1966     if (MBB.isEndSection()) {
1967       // The size directive for the section containing the entry block is
1968       // handled separately by the function section.
1969       if (!MBB.sameSection(&MF->front())) {
1970         if (MAI->hasDotTypeDotSizeDirective()) {
1971           // Emit the size directive for the basic block section.
1972           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1973               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1974               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1975               OutContext);
1976           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1977         }
1978         assert(!MBBSectionRanges.contains(MBB.getSectionID()) &&
1979                "Overwrite section range");
1980         MBBSectionRanges[MBB.getSectionID()] =
1981             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1982       }
1983     }
1984     emitBasicBlockEnd(MBB);
1985 
1986     if (CanDoExtraAnalysis) {
1987       // Skip empty blocks.
1988       if (MBB.empty())
1989         continue;
1990 
1991       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1992                                           MBB.begin()->getDebugLoc(), &MBB);
1993 
1994       // Generate instruction mix remark. First, sort counts in descending order
1995       // by count and name.
1996       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1997       for (auto &KV : MnemonicCounts)
1998         MnemonicVec.emplace_back(KV.first, KV.second);
1999 
2000       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
2001                            const std::pair<StringRef, unsigned> &B) {
2002         if (A.second > B.second)
2003           return true;
2004         if (A.second == B.second)
2005           return StringRef(A.first) < StringRef(B.first);
2006         return false;
2007       });
2008       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
2009       for (auto &KV : MnemonicVec) {
2010         auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str();
2011         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
2012       }
2013       ORE->emit(R);
2014     }
2015   }
2016 
2017   EmittedInsts += NumInstsInFunction;
2018   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
2019                                       MF->getFunction().getSubprogram(),
2020                                       &MF->front());
2021   R << ore::NV("NumInstructions", NumInstsInFunction)
2022     << " instructions in function";
2023   ORE->emit(R);
2024 
2025   // If the function is empty and the object file uses .subsections_via_symbols,
2026   // then we need to emit *something* to the function body to prevent the
2027   // labels from collapsing together.  Just emit a noop.
2028   // Similarly, don't emit empty functions on Windows either. It can lead to
2029   // duplicate entries (two functions with the same RVA) in the Guard CF Table
2030   // after linking, causing the kernel not to load the binary:
2031   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
2032   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
2033   const Triple &TT = TM.getTargetTriple();
2034   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
2035                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
2036     MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
2037 
2038     // Targets can opt-out of emitting the noop here by leaving the opcode
2039     // unspecified.
2040     if (Noop.getOpcode()) {
2041       OutStreamer->AddComment("avoids zero-length function");
2042       emitNops(1);
2043     }
2044   }
2045 
2046   // Switch to the original section in case basic block sections was used.
2047   OutStreamer->switchSection(MF->getSection());
2048 
2049   const Function &F = MF->getFunction();
2050   for (const auto &BB : F) {
2051     if (!BB.hasAddressTaken())
2052       continue;
2053     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
2054     if (Sym->isDefined())
2055       continue;
2056     OutStreamer->AddComment("Address of block that was removed by CodeGen");
2057     OutStreamer->emitLabel(Sym);
2058   }
2059 
2060   // Emit target-specific gunk after the function body.
2061   emitFunctionBodyEnd();
2062 
2063   // Even though wasm supports .type and .size in general, function symbols
2064   // are automatically sized.
2065   bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm();
2066 
2067   // SPIR-V supports label instructions only inside a block, not after the
2068   // function body.
2069   if (TT.getObjectFormat() != Triple::SPIRV &&
2070       (EmitFunctionSize || needFuncLabels(*MF, *this))) {
2071     // Create a symbol for the end of function.
2072     CurrentFnEnd = createTempSymbol("func_end");
2073     OutStreamer->emitLabel(CurrentFnEnd);
2074   }
2075 
2076   // If the target wants a .size directive for the size of the function, emit
2077   // it.
2078   if (EmitFunctionSize) {
2079     // We can get the size as difference between the function label and the
2080     // temp label.
2081     const MCExpr *SizeExp = MCBinaryExpr::createSub(
2082         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
2083         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
2084     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
2085     if (CurrentFnBeginLocal)
2086       OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp);
2087   }
2088 
2089   // Call endBasicBlockSection on the last block now, if it wasn't already
2090   // called.
2091   if (!MF->back().isEndSection()) {
2092     for (auto &Handler : Handlers)
2093       Handler->endBasicBlockSection(MF->back());
2094     for (auto &Handler : EHHandlers)
2095       Handler->endBasicBlockSection(MF->back());
2096   }
2097   for (auto &Handler : Handlers)
2098     Handler->markFunctionEnd();
2099   for (auto &Handler : EHHandlers)
2100     Handler->markFunctionEnd();
2101   // Update the end label of the entry block's section.
2102   MBBSectionRanges[MF->front().getSectionID()].EndLabel = CurrentFnEnd;
2103 
2104   // Print out jump tables referenced by the function.
2105   emitJumpTableInfo();
2106 
2107   // Emit post-function debug and/or EH information.
2108   for (auto &Handler : Handlers)
2109     Handler->endFunction(MF);
2110   for (auto &Handler : EHHandlers)
2111     Handler->endFunction(MF);
2112 
2113   // Emit section containing BB address offsets and their metadata, when
2114   // BB labels are requested for this function. Skip empty functions.
2115   if (HasAnyRealCode) {
2116     if (MF->getTarget().Options.BBAddrMap)
2117       emitBBAddrMapSection(*MF);
2118     else if (PgoAnalysisMapFeatures.getBits() != 0)
2119       MF->getContext().reportWarning(
2120           SMLoc(), "pgo-analysis-map is enabled for function " + MF->getName() +
2121                        " but it does not have labels");
2122   }
2123 
2124   // Emit sections containing instruction and function PCs.
2125   emitPCSections(*MF);
2126 
2127   // Emit section containing stack size metadata.
2128   emitStackSizeSection(*MF);
2129 
2130   // Emit .su file containing function stack size information.
2131   emitStackUsage(*MF);
2132 
2133   emitPatchableFunctionEntries();
2134 
2135   if (isVerbose())
2136     OutStreamer->getCommentOS() << "-- End function\n";
2137 
2138   OutStreamer->addBlankLine();
2139 }
2140 
2141 /// Compute the number of Global Variables that uses a Constant.
2142 static unsigned getNumGlobalVariableUses(const Constant *C) {
2143   if (!C)
2144     return 0;
2145 
2146   if (isa<GlobalVariable>(C))
2147     return 1;
2148 
2149   unsigned NumUses = 0;
2150   for (const auto *CU : C->users())
2151     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
2152 
2153   return NumUses;
2154 }
2155 
2156 /// Only consider global GOT equivalents if at least one user is a
2157 /// cstexpr inside an initializer of another global variables. Also, don't
2158 /// handle cstexpr inside instructions. During global variable emission,
2159 /// candidates are skipped and are emitted later in case at least one cstexpr
2160 /// isn't replaced by a PC relative GOT entry access.
2161 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
2162                                      unsigned &NumGOTEquivUsers) {
2163   // Global GOT equivalents are unnamed private globals with a constant
2164   // pointer initializer to another global symbol. They must point to a
2165   // GlobalVariable or Function, i.e., as GlobalValue.
2166   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
2167       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
2168       !isa<GlobalValue>(GV->getOperand(0)))
2169     return false;
2170 
2171   // To be a got equivalent, at least one of its users need to be a constant
2172   // expression used by another global variable.
2173   for (const auto *U : GV->users())
2174     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
2175 
2176   return NumGOTEquivUsers > 0;
2177 }
2178 
2179 /// Unnamed constant global variables solely contaning a pointer to
2180 /// another globals variable is equivalent to a GOT table entry; it contains the
2181 /// the address of another symbol. Optimize it and replace accesses to these
2182 /// "GOT equivalents" by using the GOT entry for the final global instead.
2183 /// Compute GOT equivalent candidates among all global variables to avoid
2184 /// emitting them if possible later on, after it use is replaced by a GOT entry
2185 /// access.
2186 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
2187   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
2188     return;
2189 
2190   for (const auto &G : M.globals()) {
2191     unsigned NumGOTEquivUsers = 0;
2192     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
2193       continue;
2194 
2195     const MCSymbol *GOTEquivSym = getSymbol(&G);
2196     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
2197   }
2198 }
2199 
2200 /// Constant expressions using GOT equivalent globals may not be eligible
2201 /// for PC relative GOT entry conversion, in such cases we need to emit such
2202 /// globals we previously omitted in EmitGlobalVariable.
2203 void AsmPrinter::emitGlobalGOTEquivs() {
2204   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
2205     return;
2206 
2207   SmallVector<const GlobalVariable *, 8> FailedCandidates;
2208   for (auto &I : GlobalGOTEquivs) {
2209     const GlobalVariable *GV = I.second.first;
2210     unsigned Cnt = I.second.second;
2211     if (Cnt)
2212       FailedCandidates.push_back(GV);
2213   }
2214   GlobalGOTEquivs.clear();
2215 
2216   for (const auto *GV : FailedCandidates)
2217     emitGlobalVariable(GV);
2218 }
2219 
2220 void AsmPrinter::emitGlobalAlias(const Module &M, const GlobalAlias &GA) {
2221   MCSymbol *Name = getSymbol(&GA);
2222   bool IsFunction = GA.getValueType()->isFunctionTy();
2223   // Treat bitcasts of functions as functions also. This is important at least
2224   // on WebAssembly where object and function addresses can't alias each other.
2225   if (!IsFunction)
2226     IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts());
2227 
2228   // AIX's assembly directive `.set` is not usable for aliasing purpose,
2229   // so AIX has to use the extra-label-at-definition strategy. At this
2230   // point, all the extra label is emitted, we just have to emit linkage for
2231   // those labels.
2232   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
2233     // Linkage for alias of global variable has been emitted.
2234     if (isa<GlobalVariable>(GA.getAliaseeObject()))
2235       return;
2236 
2237     emitLinkage(&GA, Name);
2238     // If it's a function, also emit linkage for aliases of function entry
2239     // point.
2240     if (IsFunction)
2241       emitLinkage(&GA,
2242                   getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM));
2243     return;
2244   }
2245 
2246   if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective())
2247     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
2248   else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage())
2249     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
2250   else
2251     assert(GA.hasLocalLinkage() && "Invalid alias linkage");
2252 
2253   // Set the symbol type to function if the alias has a function type.
2254   // This affects codegen when the aliasee is not a function.
2255   if (IsFunction) {
2256     OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
2257     if (TM.getTargetTriple().isOSBinFormatCOFF()) {
2258       OutStreamer->beginCOFFSymbolDef(Name);
2259       OutStreamer->emitCOFFSymbolStorageClass(
2260           GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC
2261                                : COFF::IMAGE_SYM_CLASS_EXTERNAL);
2262       OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION
2263                                       << COFF::SCT_COMPLEX_TYPE_SHIFT);
2264       OutStreamer->endCOFFSymbolDef();
2265     }
2266   }
2267 
2268   emitVisibility(Name, GA.getVisibility());
2269 
2270   const MCExpr *Expr = lowerConstant(GA.getAliasee());
2271 
2272   if (MAI->isMachO() && isa<MCBinaryExpr>(Expr))
2273     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
2274 
2275   // Emit the directives as assignments aka .set:
2276   OutStreamer->emitAssignment(Name, Expr);
2277   MCSymbol *LocalAlias = getSymbolPreferLocal(GA);
2278   if (LocalAlias != Name)
2279     OutStreamer->emitAssignment(LocalAlias, Expr);
2280 
2281   // If the aliasee does not correspond to a symbol in the output, i.e. the
2282   // alias is not of an object or the aliased object is private, then set the
2283   // size of the alias symbol from the type of the alias. We don't do this in
2284   // other situations as the alias and aliasee having differing types but same
2285   // size may be intentional.
2286   const GlobalObject *BaseObject = GA.getAliaseeObject();
2287   if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() &&
2288       (!BaseObject || BaseObject->hasPrivateLinkage())) {
2289     const DataLayout &DL = M.getDataLayout();
2290     uint64_t Size = DL.getTypeAllocSize(GA.getValueType());
2291     OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
2292   }
2293 }
2294 
2295 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) {
2296   assert(!TM.getTargetTriple().isOSBinFormatXCOFF() &&
2297          "IFunc is not supported on AIX.");
2298 
2299   auto EmitLinkage = [&](MCSymbol *Sym) {
2300     if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective())
2301       OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
2302     else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage())
2303       OutStreamer->emitSymbolAttribute(Sym, MCSA_WeakReference);
2304     else
2305       assert(GI.hasLocalLinkage() && "Invalid ifunc linkage");
2306   };
2307 
2308   if (TM.getTargetTriple().isOSBinFormatELF()) {
2309     MCSymbol *Name = getSymbol(&GI);
2310     EmitLinkage(Name);
2311     OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
2312     emitVisibility(Name, GI.getVisibility());
2313 
2314     // Emit the directives as assignments aka .set:
2315     const MCExpr *Expr = lowerConstant(GI.getResolver());
2316     OutStreamer->emitAssignment(Name, Expr);
2317     MCSymbol *LocalAlias = getSymbolPreferLocal(GI);
2318     if (LocalAlias != Name)
2319       OutStreamer->emitAssignment(LocalAlias, Expr);
2320 
2321     return;
2322   }
2323 
2324   if (!TM.getTargetTriple().isOSBinFormatMachO() || !getIFuncMCSubtargetInfo())
2325     llvm::report_fatal_error("IFuncs are not supported on this platform");
2326 
2327   // On Darwin platforms, emit a manually-constructed .symbol_resolver that
2328   // implements the symbol resolution duties of the IFunc.
2329   //
2330   // Normally, this would be handled by linker magic, but unfortunately there
2331   // are a few limitations in ld64 and ld-prime's implementation of
2332   // .symbol_resolver that mean we can't always use them:
2333   //
2334   //    *  resolvers cannot be the target of an alias
2335   //    *  resolvers cannot have private linkage
2336   //    *  resolvers cannot have linkonce linkage
2337   //    *  resolvers cannot appear in executables
2338   //    *  resolvers cannot appear in bundles
2339   //
2340   // This works around that by emitting a close approximation of what the
2341   // linker would have done.
2342 
2343   MCSymbol *LazyPointer =
2344       GetExternalSymbolSymbol(GI.getName() + ".lazy_pointer");
2345   MCSymbol *StubHelper = GetExternalSymbolSymbol(GI.getName() + ".stub_helper");
2346 
2347   OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection());
2348 
2349   const DataLayout &DL = M.getDataLayout();
2350   emitAlignment(Align(DL.getPointerSize()));
2351   OutStreamer->emitLabel(LazyPointer);
2352   emitVisibility(LazyPointer, GI.getVisibility());
2353   OutStreamer->emitValue(MCSymbolRefExpr::create(StubHelper, OutContext), 8);
2354 
2355   OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection());
2356 
2357   const TargetSubtargetInfo *STI =
2358       TM.getSubtargetImpl(*GI.getResolverFunction());
2359   const TargetLowering *TLI = STI->getTargetLowering();
2360   Align TextAlign(TLI->getMinFunctionAlignment());
2361 
2362   MCSymbol *Stub = getSymbol(&GI);
2363   EmitLinkage(Stub);
2364   OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo());
2365   OutStreamer->emitLabel(Stub);
2366   emitVisibility(Stub, GI.getVisibility());
2367   emitMachOIFuncStubBody(M, GI, LazyPointer);
2368 
2369   OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo());
2370   OutStreamer->emitLabel(StubHelper);
2371   emitVisibility(StubHelper, GI.getVisibility());
2372   emitMachOIFuncStubHelperBody(M, GI, LazyPointer);
2373 }
2374 
2375 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
2376   if (!RS.needsSection())
2377     return;
2378 
2379   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
2380 
2381   std::optional<SmallString<128>> Filename;
2382   if (std::optional<StringRef> FilenameRef = RS.getFilename()) {
2383     Filename = *FilenameRef;
2384     sys::fs::make_absolute(*Filename);
2385     assert(!Filename->empty() && "The filename can't be empty.");
2386   }
2387 
2388   std::string Buf;
2389   raw_string_ostream OS(Buf);
2390   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
2391       Filename ? RemarkSerializer.metaSerializer(OS, Filename->str())
2392                : RemarkSerializer.metaSerializer(OS);
2393   MetaSerializer->emit();
2394 
2395   // Switch to the remarks section.
2396   MCSection *RemarksSection =
2397       OutContext.getObjectFileInfo()->getRemarksSection();
2398   OutStreamer->switchSection(RemarksSection);
2399 
2400   OutStreamer->emitBinaryData(Buf);
2401 }
2402 
2403 static void tagGlobalDefinition(Module &M, GlobalVariable *G) {
2404   Constant *Initializer = G->getInitializer();
2405   uint64_t SizeInBytes =
2406       M.getDataLayout().getTypeAllocSize(Initializer->getType());
2407 
2408   uint64_t NewSize = alignTo(SizeInBytes, 16);
2409   if (SizeInBytes != NewSize) {
2410     // Pad the initializer out to the next multiple of 16 bytes.
2411     llvm::SmallVector<uint8_t> Init(NewSize - SizeInBytes, 0);
2412     Constant *Padding = ConstantDataArray::get(M.getContext(), Init);
2413     Initializer = ConstantStruct::getAnon({Initializer, Padding});
2414     auto *NewGV = new GlobalVariable(
2415         M, Initializer->getType(), G->isConstant(), G->getLinkage(),
2416         Initializer, "", G, G->getThreadLocalMode(), G->getAddressSpace());
2417     NewGV->copyAttributesFrom(G);
2418     NewGV->setComdat(G->getComdat());
2419     NewGV->copyMetadata(G, 0);
2420 
2421     NewGV->takeName(G);
2422     G->replaceAllUsesWith(NewGV);
2423     G->eraseFromParent();
2424     G = NewGV;
2425   }
2426 
2427   if (G->getAlign().valueOrOne() < 16)
2428     G->setAlignment(Align(16));
2429 
2430   // Ensure that tagged globals don't get merged by ICF - as they should have
2431   // different tags at runtime.
2432   G->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2433 }
2434 
2435 bool AsmPrinter::doFinalization(Module &M) {
2436   // Set the MachineFunction to nullptr so that we can catch attempted
2437   // accesses to MF specific features at the module level and so that
2438   // we can conditionalize accesses based on whether or not it is nullptr.
2439   MF = nullptr;
2440 
2441   std::vector<GlobalVariable *> GlobalsToTag;
2442   for (GlobalVariable &G : M.globals()) {
2443     if (G.isDeclaration() || !G.isTagged())
2444       continue;
2445     GlobalsToTag.push_back(&G);
2446   }
2447   for (GlobalVariable *G : GlobalsToTag)
2448     tagGlobalDefinition(M, G);
2449 
2450   // Gather all GOT equivalent globals in the module. We really need two
2451   // passes over the globals: one to compute and another to avoid its emission
2452   // in EmitGlobalVariable, otherwise we would not be able to handle cases
2453   // where the got equivalent shows up before its use.
2454   computeGlobalGOTEquivs(M);
2455 
2456   // Emit global variables.
2457   for (const auto &G : M.globals())
2458     emitGlobalVariable(&G);
2459 
2460   // Emit remaining GOT equivalent globals.
2461   emitGlobalGOTEquivs();
2462 
2463   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2464 
2465   // Emit linkage(XCOFF) and visibility info for declarations
2466   for (const Function &F : M) {
2467     if (!F.isDeclarationForLinker())
2468       continue;
2469 
2470     MCSymbol *Name = getSymbol(&F);
2471     // Function getSymbol gives us the function descriptor symbol for XCOFF.
2472 
2473     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
2474       GlobalValue::VisibilityTypes V = F.getVisibility();
2475       if (V == GlobalValue::DefaultVisibility)
2476         continue;
2477 
2478       emitVisibility(Name, V, false);
2479       continue;
2480     }
2481 
2482     if (F.isIntrinsic())
2483       continue;
2484 
2485     // Handle the XCOFF case.
2486     // Variable `Name` is the function descriptor symbol (see above). Get the
2487     // function entry point symbol.
2488     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
2489     // Emit linkage for the function entry point.
2490     emitLinkage(&F, FnEntryPointSym);
2491 
2492     // If a function's address is taken, which means it may be called via a
2493     // function pointer, we need the function descriptor for it.
2494     if (F.hasAddressTaken())
2495       emitLinkage(&F, Name);
2496   }
2497 
2498   // Emit the remarks section contents.
2499   // FIXME: Figure out when is the safest time to emit this section. It should
2500   // not come after debug info.
2501   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
2502     emitRemarksSection(*RS);
2503 
2504   TLOF.emitModuleMetadata(*OutStreamer, M);
2505 
2506   if (TM.getTargetTriple().isOSBinFormatELF()) {
2507     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
2508 
2509     // Output stubs for external and common global variables.
2510     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
2511     if (!Stubs.empty()) {
2512       OutStreamer->switchSection(TLOF.getDataSection());
2513       const DataLayout &DL = M.getDataLayout();
2514 
2515       emitAlignment(Align(DL.getPointerSize()));
2516       for (const auto &Stub : Stubs) {
2517         OutStreamer->emitLabel(Stub.first);
2518         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
2519                                      DL.getPointerSize());
2520       }
2521     }
2522   }
2523 
2524   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
2525     MachineModuleInfoCOFF &MMICOFF =
2526         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
2527 
2528     // Output stubs for external and common global variables.
2529     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
2530     if (!Stubs.empty()) {
2531       const DataLayout &DL = M.getDataLayout();
2532 
2533       for (const auto &Stub : Stubs) {
2534         SmallString<256> SectionName = StringRef(".rdata$");
2535         SectionName += Stub.first->getName();
2536         OutStreamer->switchSection(OutContext.getCOFFSection(
2537             SectionName,
2538             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
2539                 COFF::IMAGE_SCN_LNK_COMDAT,
2540             Stub.first->getName(), COFF::IMAGE_COMDAT_SELECT_ANY));
2541         emitAlignment(Align(DL.getPointerSize()));
2542         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
2543         OutStreamer->emitLabel(Stub.first);
2544         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
2545                                      DL.getPointerSize());
2546       }
2547     }
2548   }
2549 
2550   // This needs to happen before emitting debug information since that can end
2551   // arbitrary sections.
2552   if (auto *TS = OutStreamer->getTargetStreamer())
2553     TS->emitConstantPools();
2554 
2555   // Emit Stack maps before any debug info. Mach-O requires that no data or
2556   // text sections come after debug info has been emitted. This matters for
2557   // stack maps as they are arbitrary data, and may even have a custom format
2558   // through user plugins.
2559   emitStackMaps();
2560 
2561   // Print aliases in topological order, that is, for each alias a = b,
2562   // b must be printed before a.
2563   // This is because on some targets (e.g. PowerPC) linker expects aliases in
2564   // such an order to generate correct TOC information.
2565   SmallVector<const GlobalAlias *, 16> AliasStack;
2566   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
2567   for (const auto &Alias : M.aliases()) {
2568     if (Alias.hasAvailableExternallyLinkage())
2569       continue;
2570     for (const GlobalAlias *Cur = &Alias; Cur;
2571          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
2572       if (!AliasVisited.insert(Cur).second)
2573         break;
2574       AliasStack.push_back(Cur);
2575     }
2576     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
2577       emitGlobalAlias(M, *AncestorAlias);
2578     AliasStack.clear();
2579   }
2580 
2581   // IFuncs must come before deubginfo in case the backend decides to emit them
2582   // as actual functions, since on Mach-O targets, we cannot create regular
2583   // sections after DWARF.
2584   for (const auto &IFunc : M.ifuncs())
2585     emitGlobalIFunc(M, IFunc);
2586 
2587   // Finalize debug and EH information.
2588   for (auto &Handler : Handlers)
2589     Handler->endModule();
2590   for (auto &Handler : EHHandlers)
2591     Handler->endModule();
2592 
2593   // This deletes all the ephemeral handlers that AsmPrinter added, while
2594   // keeping all the user-added handlers alive until the AsmPrinter is
2595   // destroyed.
2596   EHHandlers.clear();
2597   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
2598   DD = nullptr;
2599 
2600   // If the target wants to know about weak references, print them all.
2601   if (MAI->getWeakRefDirective()) {
2602     // FIXME: This is not lazy, it would be nice to only print weak references
2603     // to stuff that is actually used.  Note that doing so would require targets
2604     // to notice uses in operands (due to constant exprs etc).  This should
2605     // happen with the MC stuff eventually.
2606 
2607     // Print out module-level global objects here.
2608     for (const auto &GO : M.global_objects()) {
2609       if (!GO.hasExternalWeakLinkage())
2610         continue;
2611       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
2612     }
2613     if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) {
2614       auto SymbolName = "swift_async_extendedFramePointerFlags";
2615       auto Global = M.getGlobalVariable(SymbolName);
2616       if (!Global) {
2617         auto PtrTy = PointerType::getUnqual(M.getContext());
2618         Global = new GlobalVariable(M, PtrTy, false,
2619                                     GlobalValue::ExternalWeakLinkage, nullptr,
2620                                     SymbolName);
2621         OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference);
2622       }
2623     }
2624   }
2625 
2626   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
2627   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
2628   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
2629     if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I))
2630       MP->finishAssembly(M, *MI, *this);
2631 
2632   // Emit llvm.ident metadata in an '.ident' directive.
2633   emitModuleIdents(M);
2634 
2635   // Emit bytes for llvm.commandline metadata.
2636   // The command line metadata is emitted earlier on XCOFF.
2637   if (!TM.getTargetTriple().isOSBinFormatXCOFF())
2638     emitModuleCommandLines(M);
2639 
2640   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
2641   // split-stack is used.
2642   if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) {
2643     OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack",
2644                                                         ELF::SHT_PROGBITS, 0));
2645     if (HasNoSplitStack)
2646       OutStreamer->switchSection(OutContext.getELFSection(
2647           ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
2648   }
2649 
2650   // If we don't have any trampolines, then we don't require stack memory
2651   // to be executable. Some targets have a directive to declare this.
2652   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
2653   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
2654     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
2655       OutStreamer->switchSection(S);
2656 
2657   if (TM.Options.EmitAddrsig) {
2658     // Emit address-significance attributes for all globals.
2659     OutStreamer->emitAddrsig();
2660     for (const GlobalValue &GV : M.global_values()) {
2661       if (!GV.use_empty() && !GV.isThreadLocal() &&
2662           !GV.hasDLLImportStorageClass() &&
2663           !GV.getName().starts_with("llvm.") &&
2664           !GV.hasAtLeastLocalUnnamedAddr())
2665         OutStreamer->emitAddrsigSym(getSymbol(&GV));
2666     }
2667   }
2668 
2669   // Emit symbol partition specifications (ELF only).
2670   if (TM.getTargetTriple().isOSBinFormatELF()) {
2671     unsigned UniqueID = 0;
2672     for (const GlobalValue &GV : M.global_values()) {
2673       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
2674           GV.getVisibility() != GlobalValue::DefaultVisibility)
2675         continue;
2676 
2677       OutStreamer->switchSection(
2678           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
2679                                    "", false, ++UniqueID, nullptr));
2680       OutStreamer->emitBytes(GV.getPartition());
2681       OutStreamer->emitZeros(1);
2682       OutStreamer->emitValue(
2683           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
2684           MAI->getCodePointerSize());
2685     }
2686   }
2687 
2688   // Allow the target to emit any magic that it wants at the end of the file,
2689   // after everything else has gone out.
2690   emitEndOfAsmFile(M);
2691 
2692   MMI = nullptr;
2693   AddrLabelSymbols = nullptr;
2694 
2695   OutStreamer->finish();
2696   OutStreamer->reset();
2697   OwnedMLI.reset();
2698   OwnedMDT.reset();
2699 
2700   return false;
2701 }
2702 
2703 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
2704   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionID());
2705   if (Res.second)
2706     Res.first->second = createTempSymbol("exception");
2707   return Res.first->second;
2708 }
2709 
2710 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
2711   this->MF = &MF;
2712   const Function &F = MF.getFunction();
2713 
2714   // Record that there are split-stack functions, so we will emit a special
2715   // section to tell the linker.
2716   if (MF.shouldSplitStack()) {
2717     HasSplitStack = true;
2718 
2719     if (!MF.getFrameInfo().needsSplitStackProlog())
2720       HasNoSplitStack = true;
2721   } else
2722     HasNoSplitStack = true;
2723 
2724   // Get the function symbol.
2725   if (!MAI->isAIX()) {
2726     CurrentFnSym = getSymbol(&MF.getFunction());
2727   } else {
2728     assert(TM.getTargetTriple().isOSAIX() &&
2729            "Only AIX uses the function descriptor hooks.");
2730     // AIX is unique here in that the name of the symbol emitted for the
2731     // function body does not have the same name as the source function's
2732     // C-linkage name.
2733     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
2734                                " initalized first.");
2735 
2736     // Get the function entry point symbol.
2737     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
2738   }
2739 
2740   CurrentFnSymForSize = CurrentFnSym;
2741   CurrentFnBegin = nullptr;
2742   CurrentFnBeginLocal = nullptr;
2743   CurrentSectionBeginSym = nullptr;
2744   MBBSectionRanges.clear();
2745   MBBSectionExceptionSyms.clear();
2746   bool NeedsLocalForSize = MAI->needsLocalForSize();
2747   if (F.hasFnAttribute("patchable-function-entry") ||
2748       F.hasFnAttribute("function-instrument") ||
2749       F.hasFnAttribute("xray-instruction-threshold") ||
2750       needFuncLabels(MF, *this) || NeedsLocalForSize ||
2751       MF.getTarget().Options.EmitStackSizeSection ||
2752       MF.getTarget().Options.BBAddrMap) {
2753     CurrentFnBegin = createTempSymbol("func_begin");
2754     if (NeedsLocalForSize)
2755       CurrentFnSymForSize = CurrentFnBegin;
2756   }
2757 
2758   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2759 }
2760 
2761 namespace {
2762 
2763 // Keep track the alignment, constpool entries per Section.
2764   struct SectionCPs {
2765     MCSection *S;
2766     Align Alignment;
2767     SmallVector<unsigned, 4> CPEs;
2768 
2769     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
2770   };
2771 
2772 } // end anonymous namespace
2773 
2774 /// EmitConstantPool - Print to the current output stream assembly
2775 /// representations of the constants in the constant pool MCP. This is
2776 /// used to print out constants which have been "spilled to memory" by
2777 /// the code generator.
2778 void AsmPrinter::emitConstantPool() {
2779   const MachineConstantPool *MCP = MF->getConstantPool();
2780   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
2781   if (CP.empty()) return;
2782 
2783   // Calculate sections for constant pool entries. We collect entries to go into
2784   // the same section together to reduce amount of section switch statements.
2785   SmallVector<SectionCPs, 4> CPSections;
2786   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
2787     const MachineConstantPoolEntry &CPE = CP[i];
2788     Align Alignment = CPE.getAlign();
2789 
2790     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
2791 
2792     const Constant *C = nullptr;
2793     if (!CPE.isMachineConstantPoolEntry())
2794       C = CPE.Val.ConstVal;
2795 
2796     MCSection *S = getObjFileLowering().getSectionForConstant(
2797         getDataLayout(), Kind, C, Alignment);
2798 
2799     // The number of sections are small, just do a linear search from the
2800     // last section to the first.
2801     bool Found = false;
2802     unsigned SecIdx = CPSections.size();
2803     while (SecIdx != 0) {
2804       if (CPSections[--SecIdx].S == S) {
2805         Found = true;
2806         break;
2807       }
2808     }
2809     if (!Found) {
2810       SecIdx = CPSections.size();
2811       CPSections.push_back(SectionCPs(S, Alignment));
2812     }
2813 
2814     if (Alignment > CPSections[SecIdx].Alignment)
2815       CPSections[SecIdx].Alignment = Alignment;
2816     CPSections[SecIdx].CPEs.push_back(i);
2817   }
2818 
2819   // Now print stuff into the calculated sections.
2820   const MCSection *CurSection = nullptr;
2821   unsigned Offset = 0;
2822   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
2823     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
2824       unsigned CPI = CPSections[i].CPEs[j];
2825       MCSymbol *Sym = GetCPISymbol(CPI);
2826       if (!Sym->isUndefined())
2827         continue;
2828 
2829       if (CurSection != CPSections[i].S) {
2830         OutStreamer->switchSection(CPSections[i].S);
2831         emitAlignment(Align(CPSections[i].Alignment));
2832         CurSection = CPSections[i].S;
2833         Offset = 0;
2834       }
2835 
2836       MachineConstantPoolEntry CPE = CP[CPI];
2837 
2838       // Emit inter-object padding for alignment.
2839       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
2840       OutStreamer->emitZeros(NewOffset - Offset);
2841 
2842       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
2843 
2844       OutStreamer->emitLabel(Sym);
2845       if (CPE.isMachineConstantPoolEntry())
2846         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
2847       else
2848         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
2849     }
2850   }
2851 }
2852 
2853 // Print assembly representations of the jump tables used by the current
2854 // function.
2855 void AsmPrinter::emitJumpTableInfo() {
2856   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2857   if (!MJTI) return;
2858   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2859   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2860   if (JT.empty()) return;
2861 
2862   // Pick the directive to use to print the jump table entries, and switch to
2863   // the appropriate section.
2864   const Function &F = MF->getFunction();
2865   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2866   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2867       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
2868           MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference64,
2869       F);
2870 
2871   if (!TM.Options.EnableStaticDataPartitioning) {
2872     emitJumpTableImpl(*MJTI, llvm::to_vector(llvm::seq<unsigned>(JT.size())),
2873                       JTInDiffSection);
2874     return;
2875   }
2876 
2877   SmallVector<unsigned> HotJumpTableIndices, ColdJumpTableIndices;
2878   // When static data partitioning is enabled, collect jump table entries that
2879   // go into the same section together to reduce the amount of section switch
2880   // statements.
2881   for (unsigned JTI = 0, JTSize = JT.size(); JTI < JTSize; ++JTI) {
2882     if (JT[JTI].Hotness == MachineFunctionDataHotness::Cold) {
2883       ColdJumpTableIndices.push_back(JTI);
2884     } else {
2885       HotJumpTableIndices.push_back(JTI);
2886     }
2887   }
2888 
2889   emitJumpTableImpl(*MJTI, HotJumpTableIndices, JTInDiffSection);
2890   emitJumpTableImpl(*MJTI, ColdJumpTableIndices, JTInDiffSection);
2891 }
2892 
2893 void AsmPrinter::emitJumpTableImpl(const MachineJumpTableInfo &MJTI,
2894                                    ArrayRef<unsigned> JumpTableIndices,
2895                                    bool JTInDiffSection) {
2896   if (JumpTableIndices.empty())
2897     return;
2898 
2899   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2900   const Function &F = MF->getFunction();
2901   const std::vector<MachineJumpTableEntry> &JT = MJTI.getJumpTables();
2902   MCSection *JumpTableSection = nullptr;
2903   if (TM.Options.EnableStaticDataPartitioning) {
2904     JumpTableSection =
2905         TLOF.getSectionForJumpTable(F, TM, &JT[JumpTableIndices.front()]);
2906   } else {
2907     JumpTableSection = TLOF.getSectionForJumpTable(F, TM);
2908   }
2909 
2910   const DataLayout &DL = MF->getDataLayout();
2911   if (JTInDiffSection) {
2912     OutStreamer->switchSection(JumpTableSection);
2913   }
2914 
2915   emitAlignment(Align(MJTI.getEntryAlignment(MF->getDataLayout())));
2916 
2917   // Jump tables in code sections are marked with a data_region directive
2918   // where that's supported.
2919   if (!JTInDiffSection)
2920     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2921 
2922   for (const unsigned JumpTableIndex : JumpTableIndices) {
2923     ArrayRef<MachineBasicBlock *> JTBBs = JT[JumpTableIndex].MBBs;
2924 
2925     // If this jump table was deleted, ignore it.
2926     if (JTBBs.empty())
2927       continue;
2928 
2929     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2930     /// emit a .set directive for each unique entry.
2931     if (MJTI.getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2932         MAI->doesSetDirectiveSuppressReloc()) {
2933       SmallPtrSet<const MachineBasicBlock *, 16> EmittedSets;
2934       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2935       const MCExpr *Base =
2936           TLI->getPICJumpTableRelocBaseExpr(MF, JumpTableIndex, OutContext);
2937       for (const MachineBasicBlock *MBB : JTBBs) {
2938         if (!EmittedSets.insert(MBB).second)
2939           continue;
2940 
2941         // .set LJTSet, LBB32-base
2942         const MCExpr *LHS =
2943             MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2944         OutStreamer->emitAssignment(
2945             GetJTSetSymbol(JumpTableIndex, MBB->getNumber()),
2946             MCBinaryExpr::createSub(LHS, Base, OutContext));
2947       }
2948     }
2949 
2950     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2951     // before each jump table.  The first label is never referenced, but tells
2952     // the assembler and linker the extents of the jump table object.  The
2953     // second label is actually referenced by the code.
2954     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2955       // FIXME: This doesn't have to have any specific name, just any randomly
2956       // named and numbered local label started with 'l' would work.  Simplify
2957       // GetJTISymbol.
2958       OutStreamer->emitLabel(GetJTISymbol(JumpTableIndex, true));
2959 
2960     MCSymbol *JTISymbol = GetJTISymbol(JumpTableIndex);
2961     OutStreamer->emitLabel(JTISymbol);
2962 
2963     // Defer MCAssembler based constant folding due to a performance issue. The
2964     // label differences will be evaluated at write time.
2965     for (const MachineBasicBlock *MBB : JTBBs)
2966       emitJumpTableEntry(MJTI, MBB, JumpTableIndex);
2967   }
2968 
2969   if (EmitJumpTableSizesSection)
2970     emitJumpTableSizesSection(MJTI, MF->getFunction());
2971 
2972   if (!JTInDiffSection)
2973     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2974 }
2975 
2976 void AsmPrinter::emitJumpTableSizesSection(const MachineJumpTableInfo &MJTI,
2977                                            const Function &F) const {
2978   const std::vector<MachineJumpTableEntry> &JT = MJTI.getJumpTables();
2979 
2980   if (JT.empty())
2981     return;
2982 
2983   StringRef GroupName = F.hasComdat() ? F.getComdat()->getName() : "";
2984   MCSection *JumpTableSizesSection = nullptr;
2985   StringRef sectionName = ".llvm_jump_table_sizes";
2986 
2987   bool isElf = TM.getTargetTriple().isOSBinFormatELF();
2988   bool isCoff = TM.getTargetTriple().isOSBinFormatCOFF();
2989 
2990   if (!isCoff && !isElf)
2991     return;
2992 
2993   if (isElf) {
2994     MCSymbolELF *LinkedToSym = dyn_cast<MCSymbolELF>(CurrentFnSym);
2995     int Flags = F.hasComdat() ? static_cast<int>(ELF::SHF_GROUP) : 0;
2996 
2997     JumpTableSizesSection = OutContext.getELFSection(
2998         sectionName, ELF::SHT_LLVM_JT_SIZES, Flags, 0, GroupName, F.hasComdat(),
2999         MCSection::NonUniqueID, LinkedToSym);
3000   } else if (isCoff) {
3001     if (F.hasComdat()) {
3002       JumpTableSizesSection = OutContext.getCOFFSection(
3003           sectionName,
3004           COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
3005               COFF::IMAGE_SCN_LNK_COMDAT | COFF::IMAGE_SCN_MEM_DISCARDABLE,
3006           F.getComdat()->getName(), COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE);
3007     } else {
3008       JumpTableSizesSection = OutContext.getCOFFSection(
3009           sectionName, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
3010                            COFF::IMAGE_SCN_MEM_READ |
3011                            COFF::IMAGE_SCN_MEM_DISCARDABLE);
3012     }
3013   }
3014 
3015   OutStreamer->switchSection(JumpTableSizesSection);
3016 
3017   for (unsigned JTI = 0, E = JT.size(); JTI != E; ++JTI) {
3018     const std::vector<MachineBasicBlock *> &JTBBs = JT[JTI].MBBs;
3019     OutStreamer->emitSymbolValue(GetJTISymbol(JTI), TM.getProgramPointerSize());
3020     OutStreamer->emitIntValue(JTBBs.size(), TM.getProgramPointerSize());
3021   }
3022 }
3023 
3024 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
3025 /// current stream.
3026 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo &MJTI,
3027                                     const MachineBasicBlock *MBB,
3028                                     unsigned UID) const {
3029   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
3030   const MCExpr *Value = nullptr;
3031   switch (MJTI.getEntryKind()) {
3032   case MachineJumpTableInfo::EK_Inline:
3033     llvm_unreachable("Cannot emit EK_Inline jump table entry");
3034   case MachineJumpTableInfo::EK_Custom32:
3035     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
3036         &MJTI, MBB, UID, OutContext);
3037     break;
3038   case MachineJumpTableInfo::EK_BlockAddress:
3039     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
3040     //     .word LBB123
3041     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
3042     break;
3043   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
3044     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
3045     // with a relocation as gp-relative, e.g.:
3046     //     .gprel32 LBB123
3047     MCSymbol *MBBSym = MBB->getSymbol();
3048     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
3049     return;
3050   }
3051 
3052   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
3053     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
3054     // with a relocation as gp-relative, e.g.:
3055     //     .gpdword LBB123
3056     MCSymbol *MBBSym = MBB->getSymbol();
3057     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
3058     return;
3059   }
3060 
3061   case MachineJumpTableInfo::EK_LabelDifference32:
3062   case MachineJumpTableInfo::EK_LabelDifference64: {
3063     // Each entry is the address of the block minus the address of the jump
3064     // table. This is used for PIC jump tables where gprel32 is not supported.
3065     // e.g.:
3066     //      .word LBB123 - LJTI1_2
3067     // If the .set directive avoids relocations, this is emitted as:
3068     //      .set L4_5_set_123, LBB123 - LJTI1_2
3069     //      .word L4_5_set_123
3070     if (MJTI.getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
3071         MAI->doesSetDirectiveSuppressReloc()) {
3072       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
3073                                       OutContext);
3074       break;
3075     }
3076     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
3077     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
3078     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
3079     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
3080     break;
3081   }
3082   }
3083 
3084   assert(Value && "Unknown entry kind!");
3085 
3086   unsigned EntrySize = MJTI.getEntrySize(getDataLayout());
3087   OutStreamer->emitValue(Value, EntrySize);
3088 }
3089 
3090 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
3091 /// special global used by LLVM.  If so, emit it and return true, otherwise
3092 /// do nothing and return false.
3093 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
3094   if (GV->getName() == "llvm.used") {
3095     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
3096       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
3097     return true;
3098   }
3099 
3100   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
3101   if (GV->getSection() == "llvm.metadata" ||
3102       GV->hasAvailableExternallyLinkage())
3103     return true;
3104 
3105   if (GV->getName() == "llvm.arm64ec.symbolmap") {
3106     // For ARM64EC, print the table that maps between symbols and the
3107     // corresponding thunks to translate between x64 and AArch64 code.
3108     // This table is generated by AArch64Arm64ECCallLowering.
3109     OutStreamer->switchSection(
3110         OutContext.getCOFFSection(".hybmp$x", COFF::IMAGE_SCN_LNK_INFO));
3111     auto *Arr = cast<ConstantArray>(GV->getInitializer());
3112     for (auto &U : Arr->operands()) {
3113       auto *C = cast<Constant>(U);
3114       auto *Src = cast<GlobalValue>(C->getOperand(0)->stripPointerCasts());
3115       auto *Dst = cast<GlobalValue>(C->getOperand(1)->stripPointerCasts());
3116       int Kind = cast<ConstantInt>(C->getOperand(2))->getZExtValue();
3117 
3118       if (Src->hasDLLImportStorageClass()) {
3119         // For now, we assume dllimport functions aren't directly called.
3120         // (We might change this later to match MSVC.)
3121         OutStreamer->emitCOFFSymbolIndex(
3122             OutContext.getOrCreateSymbol("__imp_" + Src->getName()));
3123         OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst));
3124         OutStreamer->emitInt32(Kind);
3125       } else {
3126         // FIXME: For non-dllimport functions, MSVC emits the same entry
3127         // twice, for reasons I don't understand.  I have to assume the linker
3128         // ignores the redundant entry; there aren't any reasonable semantics
3129         // to attach to it.
3130         OutStreamer->emitCOFFSymbolIndex(getSymbol(Src));
3131         OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst));
3132         OutStreamer->emitInt32(Kind);
3133       }
3134     }
3135     return true;
3136   }
3137 
3138   if (!GV->hasAppendingLinkage()) return false;
3139 
3140   assert(GV->hasInitializer() && "Not a special LLVM global!");
3141 
3142   if (GV->getName() == "llvm.global_ctors") {
3143     emitXXStructorList(GV->getDataLayout(), GV->getInitializer(),
3144                        /* isCtor */ true);
3145 
3146     return true;
3147   }
3148 
3149   if (GV->getName() == "llvm.global_dtors") {
3150     emitXXStructorList(GV->getDataLayout(), GV->getInitializer(),
3151                        /* isCtor */ false);
3152 
3153     return true;
3154   }
3155 
3156   report_fatal_error("unknown special variable with appending linkage");
3157 }
3158 
3159 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
3160 /// global in the specified llvm.used list.
3161 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
3162   // Should be an array of 'i8*'.
3163   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
3164     const GlobalValue *GV =
3165       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
3166     if (GV)
3167       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
3168   }
3169 }
3170 
3171 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
3172                                           const Constant *List,
3173                                           SmallVector<Structor, 8> &Structors) {
3174   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
3175   // the init priority.
3176   if (!isa<ConstantArray>(List))
3177     return;
3178 
3179   // Gather the structors in a form that's convenient for sorting by priority.
3180   for (Value *O : cast<ConstantArray>(List)->operands()) {
3181     auto *CS = cast<ConstantStruct>(O);
3182     if (CS->getOperand(1)->isNullValue())
3183       break; // Found a null terminator, skip the rest.
3184     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
3185     if (!Priority)
3186       continue; // Malformed.
3187     Structors.push_back(Structor());
3188     Structor &S = Structors.back();
3189     S.Priority = Priority->getLimitedValue(65535);
3190     S.Func = CS->getOperand(1);
3191     if (!CS->getOperand(2)->isNullValue()) {
3192       if (TM.getTargetTriple().isOSAIX())
3193         llvm::report_fatal_error(
3194             "associated data of XXStructor list is not yet supported on AIX");
3195       S.ComdatKey =
3196           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
3197     }
3198   }
3199 
3200   // Emit the function pointers in the target-specific order
3201   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
3202     return L.Priority < R.Priority;
3203   });
3204 }
3205 
3206 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
3207 /// priority.
3208 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
3209                                     bool IsCtor) {
3210   SmallVector<Structor, 8> Structors;
3211   preprocessXXStructorList(DL, List, Structors);
3212   if (Structors.empty())
3213     return;
3214 
3215   // Emit the structors in reverse order if we are using the .ctor/.dtor
3216   // initialization scheme.
3217   if (!TM.Options.UseInitArray)
3218     std::reverse(Structors.begin(), Structors.end());
3219 
3220   const Align Align = DL.getPointerPrefAlignment();
3221   for (Structor &S : Structors) {
3222     const TargetLoweringObjectFile &Obj = getObjFileLowering();
3223     const MCSymbol *KeySym = nullptr;
3224     if (GlobalValue *GV = S.ComdatKey) {
3225       if (GV->isDeclarationForLinker())
3226         // If the associated variable is not defined in this module
3227         // (it might be available_externally, or have been an
3228         // available_externally definition that was dropped by the
3229         // EliminateAvailableExternally pass), some other TU
3230         // will provide its dynamic initializer.
3231         continue;
3232 
3233       KeySym = getSymbol(GV);
3234     }
3235 
3236     MCSection *OutputSection =
3237         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
3238                 : Obj.getStaticDtorSection(S.Priority, KeySym));
3239     OutStreamer->switchSection(OutputSection);
3240     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
3241       emitAlignment(Align);
3242     emitXXStructor(DL, S.Func);
3243   }
3244 }
3245 
3246 void AsmPrinter::emitModuleIdents(Module &M) {
3247   if (!MAI->hasIdentDirective())
3248     return;
3249 
3250   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
3251     for (const MDNode *N : NMD->operands()) {
3252       assert(N->getNumOperands() == 1 &&
3253              "llvm.ident metadata entry can have only one operand");
3254       const MDString *S = cast<MDString>(N->getOperand(0));
3255       OutStreamer->emitIdent(S->getString());
3256     }
3257   }
3258 }
3259 
3260 void AsmPrinter::emitModuleCommandLines(Module &M) {
3261   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
3262   if (!CommandLine)
3263     return;
3264 
3265   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
3266   if (!NMD || !NMD->getNumOperands())
3267     return;
3268 
3269   OutStreamer->pushSection();
3270   OutStreamer->switchSection(CommandLine);
3271   OutStreamer->emitZeros(1);
3272   for (const MDNode *N : NMD->operands()) {
3273     assert(N->getNumOperands() == 1 &&
3274            "llvm.commandline metadata entry can have only one operand");
3275     const MDString *S = cast<MDString>(N->getOperand(0));
3276     OutStreamer->emitBytes(S->getString());
3277     OutStreamer->emitZeros(1);
3278   }
3279   OutStreamer->popSection();
3280 }
3281 
3282 //===--------------------------------------------------------------------===//
3283 // Emission and print routines
3284 //
3285 
3286 /// Emit a byte directive and value.
3287 ///
3288 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
3289 
3290 /// Emit a short directive and value.
3291 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
3292 
3293 /// Emit a long directive and value.
3294 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
3295 
3296 /// EmitSLEB128 - emit the specified signed leb128 value.
3297 void AsmPrinter::emitSLEB128(int64_t Value, const char *Desc) const {
3298   if (isVerbose() && Desc)
3299     OutStreamer->AddComment(Desc);
3300 
3301   OutStreamer->emitSLEB128IntValue(Value);
3302 }
3303 
3304 void AsmPrinter::emitULEB128(uint64_t Value, const char *Desc,
3305                              unsigned PadTo) const {
3306   if (isVerbose() && Desc)
3307     OutStreamer->AddComment(Desc);
3308 
3309   OutStreamer->emitULEB128IntValue(Value, PadTo);
3310 }
3311 
3312 /// Emit a long long directive and value.
3313 void AsmPrinter::emitInt64(uint64_t Value) const {
3314   OutStreamer->emitInt64(Value);
3315 }
3316 
3317 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
3318 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
3319 /// .set if it avoids relocations.
3320 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
3321                                      unsigned Size) const {
3322   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
3323 }
3324 
3325 /// Emit something like ".uleb128 Hi-Lo".
3326 void AsmPrinter::emitLabelDifferenceAsULEB128(const MCSymbol *Hi,
3327                                               const MCSymbol *Lo) const {
3328   OutStreamer->emitAbsoluteSymbolDiffAsULEB128(Hi, Lo);
3329 }
3330 
3331 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
3332 /// where the size in bytes of the directive is specified by Size and Label
3333 /// specifies the label.  This implicitly uses .set if it is available.
3334 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
3335                                      unsigned Size,
3336                                      bool IsSectionRelative) const {
3337   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
3338     OutStreamer->emitCOFFSecRel32(Label, Offset);
3339     if (Size > 4)
3340       OutStreamer->emitZeros(Size - 4);
3341     return;
3342   }
3343 
3344   // Emit Label+Offset (or just Label if Offset is zero)
3345   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
3346   if (Offset)
3347     Expr = MCBinaryExpr::createAdd(
3348         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
3349 
3350   OutStreamer->emitValue(Expr, Size);
3351 }
3352 
3353 //===----------------------------------------------------------------------===//
3354 
3355 // EmitAlignment - Emit an alignment directive to the specified power of
3356 // two boundary.  If a global value is specified, and if that global has
3357 // an explicit alignment requested, it will override the alignment request
3358 // if required for correctness.
3359 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV,
3360                                unsigned MaxBytesToEmit) const {
3361   if (GV)
3362     Alignment = getGVAlignment(GV, GV->getDataLayout(), Alignment);
3363 
3364   if (Alignment == Align(1))
3365     return; // 1-byte aligned: no need to emit alignment.
3366 
3367   if (getCurrentSection()->isText()) {
3368     const MCSubtargetInfo *STI = nullptr;
3369     if (this->MF)
3370       STI = &getSubtargetInfo();
3371     else
3372       STI = TM.getMCSubtargetInfo();
3373     OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit);
3374   } else
3375     OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit);
3376 }
3377 
3378 //===----------------------------------------------------------------------===//
3379 // Constant emission.
3380 //===----------------------------------------------------------------------===//
3381 
3382 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
3383   MCContext &Ctx = OutContext;
3384 
3385   if (CV->isNullValue() || isa<UndefValue>(CV))
3386     return MCConstantExpr::create(0, Ctx);
3387 
3388   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
3389     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
3390 
3391   if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(CV))
3392     return lowerConstantPtrAuth(*CPA);
3393 
3394   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
3395     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
3396 
3397   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
3398     return lowerBlockAddressConstant(*BA);
3399 
3400   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
3401     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
3402 
3403   if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV))
3404     return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx);
3405 
3406   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
3407   if (!CE) {
3408     llvm_unreachable("Unknown constant value to lower!");
3409   }
3410 
3411   // The constant expression opcodes are limited to those that are necessary
3412   // to represent relocations on supported targets. Expressions involving only
3413   // constant addresses are constant folded instead.
3414   switch (CE->getOpcode()) {
3415   default:
3416     break; // Error
3417   case Instruction::AddrSpaceCast: {
3418     const Constant *Op = CE->getOperand(0);
3419     unsigned DstAS = CE->getType()->getPointerAddressSpace();
3420     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
3421     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
3422       return lowerConstant(Op);
3423 
3424     break; // Error
3425   }
3426   case Instruction::GetElementPtr: {
3427     // Generate a symbolic expression for the byte address
3428     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
3429     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
3430 
3431     const MCExpr *Base = lowerConstant(CE->getOperand(0));
3432     if (!OffsetAI)
3433       return Base;
3434 
3435     int64_t Offset = OffsetAI.getSExtValue();
3436     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
3437                                    Ctx);
3438   }
3439 
3440   case Instruction::Trunc:
3441     // We emit the value and depend on the assembler to truncate the generated
3442     // expression properly.  This is important for differences between
3443     // blockaddress labels.  Since the two labels are in the same function, it
3444     // is reasonable to treat their delta as a 32-bit value.
3445     [[fallthrough]];
3446   case Instruction::BitCast:
3447     return lowerConstant(CE->getOperand(0));
3448 
3449   case Instruction::IntToPtr: {
3450     const DataLayout &DL = getDataLayout();
3451 
3452     // Handle casts to pointers by changing them into casts to the appropriate
3453     // integer type.  This promotes constant folding and simplifies this code.
3454     Constant *Op = CE->getOperand(0);
3455     Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()),
3456                                  /*IsSigned*/ false, DL);
3457     if (Op)
3458       return lowerConstant(Op);
3459 
3460     break; // Error
3461   }
3462 
3463   case Instruction::PtrToInt: {
3464     const DataLayout &DL = getDataLayout();
3465 
3466     // Support only foldable casts to/from pointers that can be eliminated by
3467     // changing the pointer to the appropriately sized integer type.
3468     Constant *Op = CE->getOperand(0);
3469     Type *Ty = CE->getType();
3470 
3471     const MCExpr *OpExpr = lowerConstant(Op);
3472 
3473     // We can emit the pointer value into this slot if the slot is an
3474     // integer slot equal to the size of the pointer.
3475     //
3476     // If the pointer is larger than the resultant integer, then
3477     // as with Trunc just depend on the assembler to truncate it.
3478     if (DL.getTypeAllocSize(Ty).getFixedValue() <=
3479         DL.getTypeAllocSize(Op->getType()).getFixedValue())
3480       return OpExpr;
3481 
3482     break; // Error
3483   }
3484 
3485   case Instruction::Sub: {
3486     GlobalValue *LHSGV;
3487     APInt LHSOffset;
3488     DSOLocalEquivalent *DSOEquiv;
3489     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
3490                                    getDataLayout(), &DSOEquiv)) {
3491       GlobalValue *RHSGV;
3492       APInt RHSOffset;
3493       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
3494                                      getDataLayout())) {
3495         const MCExpr *RelocExpr =
3496             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
3497         if (!RelocExpr) {
3498           const MCExpr *LHSExpr =
3499               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
3500           if (DSOEquiv &&
3501               getObjFileLowering().supportDSOLocalEquivalentLowering())
3502             LHSExpr =
3503                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
3504           RelocExpr = MCBinaryExpr::createSub(
3505               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
3506         }
3507         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
3508         if (Addend != 0)
3509           RelocExpr = MCBinaryExpr::createAdd(
3510               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
3511         return RelocExpr;
3512       }
3513     }
3514 
3515     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
3516     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
3517     return MCBinaryExpr::createSub(LHS, RHS, Ctx);
3518     break;
3519   }
3520 
3521   case Instruction::Add: {
3522     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
3523     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
3524     return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
3525   }
3526   }
3527 
3528   // If the code isn't optimized, there may be outstanding folding
3529   // opportunities. Attempt to fold the expression using DataLayout as a
3530   // last resort before giving up.
3531   Constant *C = ConstantFoldConstant(CE, getDataLayout());
3532   if (C != CE)
3533     return lowerConstant(C);
3534 
3535   // Otherwise report the problem to the user.
3536   std::string S;
3537   raw_string_ostream OS(S);
3538   OS << "Unsupported expression in static initializer: ";
3539   CE->printAsOperand(OS, /*PrintType=*/false,
3540                      !MF ? nullptr : MF->getFunction().getParent());
3541   report_fatal_error(Twine(S));
3542 }
3543 
3544 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
3545                                    AsmPrinter &AP,
3546                                    const Constant *BaseCV = nullptr,
3547                                    uint64_t Offset = 0,
3548                                    AsmPrinter::AliasMapTy *AliasList = nullptr);
3549 
3550 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
3551 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
3552 
3553 /// isRepeatedByteSequence - Determine whether the given value is
3554 /// composed of a repeated sequence of identical bytes and return the
3555 /// byte value.  If it is not a repeated sequence, return -1.
3556 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
3557   StringRef Data = V->getRawDataValues();
3558   assert(!Data.empty() && "Empty aggregates should be CAZ node");
3559   char C = Data[0];
3560   for (unsigned i = 1, e = Data.size(); i != e; ++i)
3561     if (Data[i] != C) return -1;
3562   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
3563 }
3564 
3565 /// isRepeatedByteSequence - Determine whether the given value is
3566 /// composed of a repeated sequence of identical bytes and return the
3567 /// byte value.  If it is not a repeated sequence, return -1.
3568 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
3569   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
3570     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
3571     assert(Size % 8 == 0);
3572 
3573     // Extend the element to take zero padding into account.
3574     APInt Value = CI->getValue().zext(Size);
3575     if (!Value.isSplat(8))
3576       return -1;
3577 
3578     return Value.zextOrTrunc(8).getZExtValue();
3579   }
3580   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
3581     // Make sure all array elements are sequences of the same repeated
3582     // byte.
3583     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
3584     Constant *Op0 = CA->getOperand(0);
3585     int Byte = isRepeatedByteSequence(Op0, DL);
3586     if (Byte == -1)
3587       return -1;
3588 
3589     // All array elements must be equal.
3590     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
3591       if (CA->getOperand(i) != Op0)
3592         return -1;
3593     return Byte;
3594   }
3595 
3596   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
3597     return isRepeatedByteSequence(CDS);
3598 
3599   return -1;
3600 }
3601 
3602 static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset,
3603                                   AsmPrinter::AliasMapTy *AliasList) {
3604   if (AliasList) {
3605     auto AliasIt = AliasList->find(Offset);
3606     if (AliasIt != AliasList->end()) {
3607       for (const GlobalAlias *GA : AliasIt->second)
3608         AP.OutStreamer->emitLabel(AP.getSymbol(GA));
3609       AliasList->erase(Offset);
3610     }
3611   }
3612 }
3613 
3614 static void emitGlobalConstantDataSequential(
3615     const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP,
3616     AsmPrinter::AliasMapTy *AliasList) {
3617   // See if we can aggregate this into a .fill, if so, emit it as such.
3618   int Value = isRepeatedByteSequence(CDS, DL);
3619   if (Value != -1) {
3620     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
3621     // Don't emit a 1-byte object as a .fill.
3622     if (Bytes > 1)
3623       return AP.OutStreamer->emitFill(Bytes, Value);
3624   }
3625 
3626   // If this can be emitted with .ascii/.asciz, emit it as such.
3627   if (CDS->isString())
3628     return AP.OutStreamer->emitBytes(CDS->getAsString());
3629 
3630   // Otherwise, emit the values in successive locations.
3631   unsigned ElementByteSize = CDS->getElementByteSize();
3632   if (isa<IntegerType>(CDS->getElementType())) {
3633     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
3634       emitGlobalAliasInline(AP, ElementByteSize * I, AliasList);
3635       if (AP.isVerbose())
3636         AP.OutStreamer->getCommentOS()
3637             << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I));
3638       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I),
3639                                    ElementByteSize);
3640     }
3641   } else {
3642     Type *ET = CDS->getElementType();
3643     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
3644       emitGlobalAliasInline(AP, ElementByteSize * I, AliasList);
3645       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
3646     }
3647   }
3648 
3649   unsigned Size = DL.getTypeAllocSize(CDS->getType());
3650   unsigned EmittedSize =
3651       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
3652   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
3653   if (unsigned Padding = Size - EmittedSize)
3654     AP.OutStreamer->emitZeros(Padding);
3655 }
3656 
3657 static void emitGlobalConstantArray(const DataLayout &DL,
3658                                     const ConstantArray *CA, AsmPrinter &AP,
3659                                     const Constant *BaseCV, uint64_t Offset,
3660                                     AsmPrinter::AliasMapTy *AliasList) {
3661   // See if we can aggregate some values.  Make sure it can be
3662   // represented as a series of bytes of the constant value.
3663   int Value = isRepeatedByteSequence(CA, DL);
3664 
3665   if (Value != -1) {
3666     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
3667     AP.OutStreamer->emitFill(Bytes, Value);
3668   } else {
3669     for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) {
3670       emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset,
3671                              AliasList);
3672       Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType());
3673     }
3674   }
3675 }
3676 
3677 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP);
3678 
3679 static void emitGlobalConstantVector(const DataLayout &DL, const Constant *CV,
3680                                      AsmPrinter &AP,
3681                                      AsmPrinter::AliasMapTy *AliasList) {
3682   auto *VTy = cast<FixedVectorType>(CV->getType());
3683   Type *ElementType = VTy->getElementType();
3684   uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType);
3685   uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType);
3686   uint64_t EmittedSize;
3687   if (ElementSizeInBits != ElementAllocSizeInBits) {
3688     // If the allocation size of an element is different from the size in bits,
3689     // printing each element separately will insert incorrect padding.
3690     //
3691     // The general algorithm here is complicated; instead of writing it out
3692     // here, just use the existing code in ConstantFolding.
3693     Type *IntT =
3694         IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType()));
3695     ConstantInt *CI = dyn_cast_or_null<ConstantInt>(ConstantFoldConstant(
3696         ConstantExpr::getBitCast(const_cast<Constant *>(CV), IntT), DL));
3697     if (!CI) {
3698       report_fatal_error(
3699           "Cannot lower vector global with unusual element type");
3700     }
3701     emitGlobalAliasInline(AP, 0, AliasList);
3702     emitGlobalConstantLargeInt(CI, AP);
3703     EmittedSize = DL.getTypeStoreSize(CV->getType());
3704   } else {
3705     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
3706       emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList);
3707       emitGlobalConstantImpl(DL, CV->getAggregateElement(I), AP);
3708     }
3709     EmittedSize = DL.getTypeAllocSize(ElementType) * VTy->getNumElements();
3710   }
3711 
3712   unsigned Size = DL.getTypeAllocSize(CV->getType());
3713   if (unsigned Padding = Size - EmittedSize)
3714     AP.OutStreamer->emitZeros(Padding);
3715 }
3716 
3717 static void emitGlobalConstantStruct(const DataLayout &DL,
3718                                      const ConstantStruct *CS, AsmPrinter &AP,
3719                                      const Constant *BaseCV, uint64_t Offset,
3720                                      AsmPrinter::AliasMapTy *AliasList) {
3721   // Print the fields in successive locations. Pad to align if needed!
3722   uint64_t Size = DL.getTypeAllocSize(CS->getType());
3723   const StructLayout *Layout = DL.getStructLayout(CS->getType());
3724   uint64_t SizeSoFar = 0;
3725   for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) {
3726     const Constant *Field = CS->getOperand(I);
3727 
3728     // Print the actual field value.
3729     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar,
3730                            AliasList);
3731 
3732     // Check if padding is needed and insert one or more 0s.
3733     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
3734     uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) -
3735                         Layout->getElementOffset(I)) -
3736                        FieldSize;
3737     SizeSoFar += FieldSize + PadSize;
3738 
3739     // Insert padding - this may include padding to increase the size of the
3740     // current field up to the ABI size (if the struct is not packed) as well
3741     // as padding to ensure that the next field starts at the right offset.
3742     AP.OutStreamer->emitZeros(PadSize);
3743   }
3744   assert(SizeSoFar == Layout->getSizeInBytes() &&
3745          "Layout of constant struct may be incorrect!");
3746 }
3747 
3748 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
3749   assert(ET && "Unknown float type");
3750   APInt API = APF.bitcastToAPInt();
3751 
3752   // First print a comment with what we think the original floating-point value
3753   // should have been.
3754   if (AP.isVerbose()) {
3755     SmallString<8> StrVal;
3756     APF.toString(StrVal);
3757     ET->print(AP.OutStreamer->getCommentOS());
3758     AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n';
3759   }
3760 
3761   // Now iterate through the APInt chunks, emitting them in endian-correct
3762   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
3763   // floats).
3764   unsigned NumBytes = API.getBitWidth() / 8;
3765   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
3766   const uint64_t *p = API.getRawData();
3767 
3768   // PPC's long double has odd notions of endianness compared to how LLVM
3769   // handles it: p[0] goes first for *big* endian on PPC.
3770   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
3771     int Chunk = API.getNumWords() - 1;
3772 
3773     if (TrailingBytes)
3774       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
3775 
3776     for (; Chunk >= 0; --Chunk)
3777       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
3778   } else {
3779     unsigned Chunk;
3780     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
3781       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
3782 
3783     if (TrailingBytes)
3784       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
3785   }
3786 
3787   // Emit the tail padding for the long double.
3788   const DataLayout &DL = AP.getDataLayout();
3789   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
3790 }
3791 
3792 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
3793   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
3794 }
3795 
3796 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
3797   const DataLayout &DL = AP.getDataLayout();
3798   unsigned BitWidth = CI->getBitWidth();
3799 
3800   // Copy the value as we may massage the layout for constants whose bit width
3801   // is not a multiple of 64-bits.
3802   APInt Realigned(CI->getValue());
3803   uint64_t ExtraBits = 0;
3804   unsigned ExtraBitsSize = BitWidth & 63;
3805 
3806   if (ExtraBitsSize) {
3807     // The bit width of the data is not a multiple of 64-bits.
3808     // The extra bits are expected to be at the end of the chunk of the memory.
3809     // Little endian:
3810     // * Nothing to be done, just record the extra bits to emit.
3811     // Big endian:
3812     // * Record the extra bits to emit.
3813     // * Realign the raw data to emit the chunks of 64-bits.
3814     if (DL.isBigEndian()) {
3815       // Basically the structure of the raw data is a chunk of 64-bits cells:
3816       //    0        1         BitWidth / 64
3817       // [chunk1][chunk2] ... [chunkN].
3818       // The most significant chunk is chunkN and it should be emitted first.
3819       // However, due to the alignment issue chunkN contains useless bits.
3820       // Realign the chunks so that they contain only useful information:
3821       // ExtraBits     0       1       (BitWidth / 64) - 1
3822       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
3823       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
3824       ExtraBits = Realigned.getRawData()[0] &
3825         (((uint64_t)-1) >> (64 - ExtraBitsSize));
3826       if (BitWidth >= 64)
3827         Realigned.lshrInPlace(ExtraBitsSize);
3828     } else
3829       ExtraBits = Realigned.getRawData()[BitWidth / 64];
3830   }
3831 
3832   // We don't expect assemblers to support integer data directives
3833   // for more than 64 bits, so we emit the data in at most 64-bit
3834   // quantities at a time.
3835   const uint64_t *RawData = Realigned.getRawData();
3836   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
3837     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
3838     AP.OutStreamer->emitIntValue(Val, 8);
3839   }
3840 
3841   if (ExtraBitsSize) {
3842     // Emit the extra bits after the 64-bits chunks.
3843 
3844     // Emit a directive that fills the expected size.
3845     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
3846     Size -= (BitWidth / 64) * 8;
3847     assert(Size && Size * 8 >= ExtraBitsSize &&
3848            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
3849            == ExtraBits && "Directive too small for extra bits.");
3850     AP.OutStreamer->emitIntValue(ExtraBits, Size);
3851   }
3852 }
3853 
3854 /// Transform a not absolute MCExpr containing a reference to a GOT
3855 /// equivalent global, by a target specific GOT pc relative access to the
3856 /// final symbol.
3857 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
3858                                          const Constant *BaseCst,
3859                                          uint64_t Offset) {
3860   // The global @foo below illustrates a global that uses a got equivalent.
3861   //
3862   //  @bar = global i32 42
3863   //  @gotequiv = private unnamed_addr constant i32* @bar
3864   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
3865   //                             i64 ptrtoint (i32* @foo to i64))
3866   //                        to i32)
3867   //
3868   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
3869   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
3870   // form:
3871   //
3872   //  foo = cstexpr, where
3873   //    cstexpr := <gotequiv> - "." + <cst>
3874   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
3875   //
3876   // After canonicalization by evaluateAsRelocatable `ME` turns into:
3877   //
3878   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
3879   //    gotpcrelcst := <offset from @foo base> + <cst>
3880   MCValue MV;
3881   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
3882     return;
3883   const MCSymbolRefExpr *SymA = MV.getSymA();
3884   if (!SymA)
3885     return;
3886 
3887   // Check that GOT equivalent symbol is cached.
3888   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
3889   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
3890     return;
3891 
3892   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
3893   if (!BaseGV)
3894     return;
3895 
3896   // Check for a valid base symbol
3897   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
3898   const MCSymbolRefExpr *SymB = MV.getSymB();
3899 
3900   if (!SymB || BaseSym != &SymB->getSymbol())
3901     return;
3902 
3903   // Make sure to match:
3904   //
3905   //    gotpcrelcst := <offset from @foo base> + <cst>
3906   //
3907   int64_t GOTPCRelCst = Offset + MV.getConstant();
3908   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
3909     return;
3910 
3911   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
3912   //
3913   //  bar:
3914   //    .long 42
3915   //  gotequiv:
3916   //    .quad bar
3917   //  foo:
3918   //    .long gotequiv - "." + <cst>
3919   //
3920   // is replaced by the target specific equivalent to:
3921   //
3922   //  bar:
3923   //    .long 42
3924   //  foo:
3925   //    .long bar@GOTPCREL+<gotpcrelcst>
3926   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
3927   const GlobalVariable *GV = Result.first;
3928   int NumUses = (int)Result.second;
3929   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
3930   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
3931   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
3932       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
3933 
3934   // Update GOT equivalent usage information
3935   --NumUses;
3936   if (NumUses >= 0)
3937     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
3938 }
3939 
3940 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
3941                                    AsmPrinter &AP, const Constant *BaseCV,
3942                                    uint64_t Offset,
3943                                    AsmPrinter::AliasMapTy *AliasList) {
3944   assert((!AliasList || AP.TM.getTargetTriple().isOSBinFormatXCOFF()) &&
3945          "AliasList only expected for XCOFF");
3946   emitGlobalAliasInline(AP, Offset, AliasList);
3947   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3948 
3949   // Globals with sub-elements such as combinations of arrays and structs
3950   // are handled recursively by emitGlobalConstantImpl. Keep track of the
3951   // constant symbol base and the current position with BaseCV and Offset.
3952   if (!BaseCV && CV->hasOneUse())
3953     BaseCV = dyn_cast<Constant>(CV->user_back());
3954 
3955   if (isa<ConstantAggregateZero>(CV)) {
3956     StructType *structType;
3957     if (AliasList && (structType = llvm::dyn_cast<StructType>(CV->getType()))) {
3958       unsigned numElements = {structType->getNumElements()};
3959       if (numElements != 0) {
3960         // Handle cases of aliases to direct struct elements
3961         const StructLayout *Layout = DL.getStructLayout(structType);
3962         uint64_t SizeSoFar = 0;
3963         for (unsigned int i = 0; i < numElements - 1; ++i) {
3964           uint64_t GapToNext = Layout->getElementOffset(i + 1) - SizeSoFar;
3965           AP.OutStreamer->emitZeros(GapToNext);
3966           SizeSoFar += GapToNext;
3967           emitGlobalAliasInline(AP, Offset + SizeSoFar, AliasList);
3968         }
3969         AP.OutStreamer->emitZeros(Size - SizeSoFar);
3970         return;
3971       }
3972     }
3973     return AP.OutStreamer->emitZeros(Size);
3974   }
3975 
3976   if (isa<UndefValue>(CV))
3977     return AP.OutStreamer->emitZeros(Size);
3978 
3979   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
3980     if (isa<VectorType>(CV->getType()))
3981       return emitGlobalConstantVector(DL, CV, AP, AliasList);
3982 
3983     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
3984     if (StoreSize <= 8) {
3985       if (AP.isVerbose())
3986         AP.OutStreamer->getCommentOS()
3987             << format("0x%" PRIx64 "\n", CI->getZExtValue());
3988       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
3989     } else {
3990       emitGlobalConstantLargeInt(CI, AP);
3991     }
3992 
3993     // Emit tail padding if needed
3994     if (Size != StoreSize)
3995       AP.OutStreamer->emitZeros(Size - StoreSize);
3996 
3997     return;
3998   }
3999 
4000   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
4001     if (isa<VectorType>(CV->getType()))
4002       return emitGlobalConstantVector(DL, CV, AP, AliasList);
4003     else
4004       return emitGlobalConstantFP(CFP, AP);
4005   }
4006 
4007   if (isa<ConstantPointerNull>(CV)) {
4008     AP.OutStreamer->emitIntValue(0, Size);
4009     return;
4010   }
4011 
4012   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
4013     return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList);
4014 
4015   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
4016     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList);
4017 
4018   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
4019     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList);
4020 
4021   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
4022     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
4023     // vectors).
4024     if (CE->getOpcode() == Instruction::BitCast)
4025       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
4026 
4027     if (Size > 8) {
4028       // If the constant expression's size is greater than 64-bits, then we have
4029       // to emit the value in chunks. Try to constant fold the value and emit it
4030       // that way.
4031       Constant *New = ConstantFoldConstant(CE, DL);
4032       if (New != CE)
4033         return emitGlobalConstantImpl(DL, New, AP);
4034     }
4035   }
4036 
4037   if (isa<ConstantVector>(CV))
4038     return emitGlobalConstantVector(DL, CV, AP, AliasList);
4039 
4040   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
4041   // thread the streamer with EmitValue.
4042   const MCExpr *ME = AP.lowerConstant(CV);
4043 
4044   // Since lowerConstant already folded and got rid of all IR pointer and
4045   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
4046   // directly.
4047   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
4048     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
4049 
4050   AP.OutStreamer->emitValue(ME, Size);
4051 }
4052 
4053 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
4054 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV,
4055                                     AliasMapTy *AliasList) {
4056   uint64_t Size = DL.getTypeAllocSize(CV->getType());
4057   if (Size)
4058     emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList);
4059   else if (MAI->hasSubsectionsViaSymbols()) {
4060     // If the global has zero size, emit a single byte so that two labels don't
4061     // look like they are at the same location.
4062     OutStreamer->emitIntValue(0, 1);
4063   }
4064   if (!AliasList)
4065     return;
4066   // TODO: These remaining aliases are not emitted in the correct location. Need
4067   // to handle the case where the alias offset doesn't refer to any sub-element.
4068   for (auto &AliasPair : *AliasList) {
4069     for (const GlobalAlias *GA : AliasPair.second)
4070       OutStreamer->emitLabel(getSymbol(GA));
4071   }
4072 }
4073 
4074 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
4075   // Target doesn't support this yet!
4076   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
4077 }
4078 
4079 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
4080   if (Offset > 0)
4081     OS << '+' << Offset;
4082   else if (Offset < 0)
4083     OS << Offset;
4084 }
4085 
4086 void AsmPrinter::emitNops(unsigned N) {
4087   MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
4088   for (; N; --N)
4089     EmitToStreamer(*OutStreamer, Nop);
4090 }
4091 
4092 //===----------------------------------------------------------------------===//
4093 // Symbol Lowering Routines.
4094 //===----------------------------------------------------------------------===//
4095 
4096 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
4097   return OutContext.createTempSymbol(Name, true);
4098 }
4099 
4100 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
4101   return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(
4102       BA->getBasicBlock());
4103 }
4104 
4105 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
4106   return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB);
4107 }
4108 
4109 const MCExpr *AsmPrinter::lowerBlockAddressConstant(const BlockAddress &BA) {
4110   return MCSymbolRefExpr::create(GetBlockAddressSymbol(&BA), OutContext);
4111 }
4112 
4113 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
4114 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
4115   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
4116     const MachineConstantPoolEntry &CPE =
4117         MF->getConstantPool()->getConstants()[CPID];
4118     if (!CPE.isMachineConstantPoolEntry()) {
4119       const DataLayout &DL = MF->getDataLayout();
4120       SectionKind Kind = CPE.getSectionKind(&DL);
4121       const Constant *C = CPE.Val.ConstVal;
4122       Align Alignment = CPE.Alignment;
4123       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
4124               getObjFileLowering().getSectionForConstant(DL, Kind, C,
4125                                                          Alignment))) {
4126         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
4127           if (Sym->isUndefined())
4128             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
4129           return Sym;
4130         }
4131       }
4132     }
4133   }
4134 
4135   const DataLayout &DL = getDataLayout();
4136   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
4137                                       "CPI" + Twine(getFunctionNumber()) + "_" +
4138                                       Twine(CPID));
4139 }
4140 
4141 /// GetJTISymbol - Return the symbol for the specified jump table entry.
4142 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
4143   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
4144 }
4145 
4146 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
4147 /// FIXME: privatize to AsmPrinter.
4148 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
4149   const DataLayout &DL = getDataLayout();
4150   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
4151                                       Twine(getFunctionNumber()) + "_" +
4152                                       Twine(UID) + "_set_" + Twine(MBBID));
4153 }
4154 
4155 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
4156                                                    StringRef Suffix) const {
4157   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
4158 }
4159 
4160 /// Return the MCSymbol for the specified ExternalSymbol.
4161 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(Twine Sym) const {
4162   SmallString<60> NameStr;
4163   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
4164   return OutContext.getOrCreateSymbol(NameStr);
4165 }
4166 
4167 /// PrintParentLoopComment - Print comments about parent loops of this one.
4168 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
4169                                    unsigned FunctionNumber) {
4170   if (!Loop) return;
4171   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
4172   OS.indent(Loop->getLoopDepth()*2)
4173     << "Parent Loop BB" << FunctionNumber << "_"
4174     << Loop->getHeader()->getNumber()
4175     << " Depth=" << Loop->getLoopDepth() << '\n';
4176 }
4177 
4178 /// PrintChildLoopComment - Print comments about child loops within
4179 /// the loop for this basic block, with nesting.
4180 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
4181                                   unsigned FunctionNumber) {
4182   // Add child loop information
4183   for (const MachineLoop *CL : *Loop) {
4184     OS.indent(CL->getLoopDepth()*2)
4185       << "Child Loop BB" << FunctionNumber << "_"
4186       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
4187       << '\n';
4188     PrintChildLoopComment(OS, CL, FunctionNumber);
4189   }
4190 }
4191 
4192 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
4193 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
4194                                        const MachineLoopInfo *LI,
4195                                        const AsmPrinter &AP) {
4196   // Add loop depth information
4197   const MachineLoop *Loop = LI->getLoopFor(&MBB);
4198   if (!Loop) return;
4199 
4200   MachineBasicBlock *Header = Loop->getHeader();
4201   assert(Header && "No header for loop");
4202 
4203   // If this block is not a loop header, just print out what is the loop header
4204   // and return.
4205   if (Header != &MBB) {
4206     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
4207                                Twine(AP.getFunctionNumber())+"_" +
4208                                Twine(Loop->getHeader()->getNumber())+
4209                                " Depth="+Twine(Loop->getLoopDepth()));
4210     return;
4211   }
4212 
4213   // Otherwise, it is a loop header.  Print out information about child and
4214   // parent loops.
4215   raw_ostream &OS = AP.OutStreamer->getCommentOS();
4216 
4217   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
4218 
4219   OS << "=>";
4220   OS.indent(Loop->getLoopDepth()*2-2);
4221 
4222   OS << "This ";
4223   if (Loop->isInnermost())
4224     OS << "Inner ";
4225   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
4226 
4227   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
4228 }
4229 
4230 /// emitBasicBlockStart - This method prints the label for the specified
4231 /// MachineBasicBlock, an alignment (if present) and a comment describing
4232 /// it if appropriate.
4233 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
4234   // End the previous funclet and start a new one.
4235   if (MBB.isEHFuncletEntry()) {
4236     for (auto &Handler : Handlers) {
4237       Handler->endFunclet();
4238       Handler->beginFunclet(MBB);
4239     }
4240     for (auto &Handler : EHHandlers) {
4241       Handler->endFunclet();
4242       Handler->beginFunclet(MBB);
4243     }
4244   }
4245 
4246   // Switch to a new section if this basic block must begin a section. The
4247   // entry block is always placed in the function section and is handled
4248   // separately.
4249   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
4250     OutStreamer->switchSection(
4251         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
4252                                                             MBB, TM));
4253     CurrentSectionBeginSym = MBB.getSymbol();
4254   }
4255 
4256   for (auto &Handler : Handlers)
4257     Handler->beginCodeAlignment(MBB);
4258 
4259   // Emit an alignment directive for this block, if needed.
4260   const Align Alignment = MBB.getAlignment();
4261   if (Alignment != Align(1))
4262     emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment());
4263 
4264   // If the block has its address taken, emit any labels that were used to
4265   // reference the block.  It is possible that there is more than one label
4266   // here, because multiple LLVM BB's may have been RAUW'd to this block after
4267   // the references were generated.
4268   if (MBB.isIRBlockAddressTaken()) {
4269     if (isVerbose())
4270       OutStreamer->AddComment("Block address taken");
4271 
4272     BasicBlock *BB = MBB.getAddressTakenIRBlock();
4273     assert(BB && BB->hasAddressTaken() && "Missing BB");
4274     for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB))
4275       OutStreamer->emitLabel(Sym);
4276   } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) {
4277     OutStreamer->AddComment("Block address taken");
4278   }
4279 
4280   // Print some verbose block comments.
4281   if (isVerbose()) {
4282     if (const BasicBlock *BB = MBB.getBasicBlock()) {
4283       if (BB->hasName()) {
4284         BB->printAsOperand(OutStreamer->getCommentOS(),
4285                            /*PrintType=*/false, BB->getModule());
4286         OutStreamer->getCommentOS() << '\n';
4287       }
4288     }
4289 
4290     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
4291     emitBasicBlockLoopComments(MBB, MLI, *this);
4292   }
4293 
4294   // Print the main label for the block.
4295   if (shouldEmitLabelForBasicBlock(MBB)) {
4296     if (isVerbose() && MBB.hasLabelMustBeEmitted())
4297       OutStreamer->AddComment("Label of block must be emitted");
4298     OutStreamer->emitLabel(MBB.getSymbol());
4299   } else {
4300     if (isVerbose()) {
4301       // NOTE: Want this comment at start of line, don't emit with AddComment.
4302       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
4303                                   false);
4304     }
4305   }
4306 
4307   if (MBB.isEHCatchretTarget() &&
4308       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
4309     OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
4310   }
4311 
4312   // With BB sections, each basic block must handle CFI information on its own
4313   // if it begins a section (Entry block call is handled separately, next to
4314   // beginFunction).
4315   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
4316     for (auto &Handler : Handlers)
4317       Handler->beginBasicBlockSection(MBB);
4318     for (auto &Handler : EHHandlers)
4319       Handler->beginBasicBlockSection(MBB);
4320   }
4321 }
4322 
4323 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
4324   // Check if CFI information needs to be updated for this MBB with basic block
4325   // sections.
4326   if (MBB.isEndSection()) {
4327     for (auto &Handler : Handlers)
4328       Handler->endBasicBlockSection(MBB);
4329     for (auto &Handler : EHHandlers)
4330       Handler->endBasicBlockSection(MBB);
4331   }
4332 }
4333 
4334 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
4335                                 bool IsDefinition) const {
4336   MCSymbolAttr Attr = MCSA_Invalid;
4337 
4338   switch (Visibility) {
4339   default: break;
4340   case GlobalValue::HiddenVisibility:
4341     if (IsDefinition)
4342       Attr = MAI->getHiddenVisibilityAttr();
4343     else
4344       Attr = MAI->getHiddenDeclarationVisibilityAttr();
4345     break;
4346   case GlobalValue::ProtectedVisibility:
4347     Attr = MAI->getProtectedVisibilityAttr();
4348     break;
4349   }
4350 
4351   if (Attr != MCSA_Invalid)
4352     OutStreamer->emitSymbolAttribute(Sym, Attr);
4353 }
4354 
4355 bool AsmPrinter::shouldEmitLabelForBasicBlock(
4356     const MachineBasicBlock &MBB) const {
4357   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
4358   // in the labels mode (option `=labels`) and every section beginning in the
4359   // sections mode (`=all` and `=list=`).
4360   if ((MF->getTarget().Options.BBAddrMap || MBB.isBeginSection()) &&
4361       !MBB.isEntryBlock())
4362     return true;
4363   // A label is needed for any block with at least one predecessor (when that
4364   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
4365   // entry, or if a label is forced).
4366   return !MBB.pred_empty() &&
4367          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
4368           MBB.hasLabelMustBeEmitted());
4369 }
4370 
4371 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
4372 /// exactly one predecessor and the control transfer mechanism between
4373 /// the predecessor and this block is a fall-through.
4374 bool AsmPrinter::
4375 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
4376   // If this is a landing pad, it isn't a fall through.  If it has no preds,
4377   // then nothing falls through to it.
4378   if (MBB->isEHPad() || MBB->pred_empty())
4379     return false;
4380 
4381   // If there isn't exactly one predecessor, it can't be a fall through.
4382   if (MBB->pred_size() > 1)
4383     return false;
4384 
4385   // The predecessor has to be immediately before this block.
4386   MachineBasicBlock *Pred = *MBB->pred_begin();
4387   if (!Pred->isLayoutSuccessor(MBB))
4388     return false;
4389 
4390   // If the block is completely empty, then it definitely does fall through.
4391   if (Pred->empty())
4392     return true;
4393 
4394   // Check the terminators in the previous blocks
4395   for (const auto &MI : Pred->terminators()) {
4396     // If it is not a simple branch, we are in a table somewhere.
4397     if (!MI.isBranch() || MI.isIndirectBranch())
4398       return false;
4399 
4400     // If we are the operands of one of the branches, this is not a fall
4401     // through. Note that targets with delay slots will usually bundle
4402     // terminators with the delay slot instruction.
4403     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
4404       if (OP->isJTI())
4405         return false;
4406       if (OP->isMBB() && OP->getMBB() == MBB)
4407         return false;
4408     }
4409   }
4410 
4411   return true;
4412 }
4413 
4414 GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) {
4415   if (!S.usesMetadata())
4416     return nullptr;
4417 
4418   auto [GCPI, Inserted] = GCMetadataPrinters.insert({&S, nullptr});
4419   if (!Inserted)
4420     return GCPI->second.get();
4421 
4422   auto Name = S.getName();
4423 
4424   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
4425        GCMetadataPrinterRegistry::entries())
4426     if (Name == GCMetaPrinter.getName()) {
4427       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
4428       GMP->S = &S;
4429       GCPI->second = std::move(GMP);
4430       return GCPI->second.get();
4431     }
4432 
4433   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
4434 }
4435 
4436 void AsmPrinter::emitStackMaps() {
4437   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
4438   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
4439   bool NeedsDefault = false;
4440   if (MI->begin() == MI->end())
4441     // No GC strategy, use the default format.
4442     NeedsDefault = true;
4443   else
4444     for (const auto &I : *MI) {
4445       if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I))
4446         if (MP->emitStackMaps(SM, *this))
4447           continue;
4448       // The strategy doesn't have printer or doesn't emit custom stack maps.
4449       // Use the default format.
4450       NeedsDefault = true;
4451     }
4452 
4453   if (NeedsDefault)
4454     SM.serializeToStackMapSection();
4455 }
4456 
4457 void AsmPrinter::addAsmPrinterHandler(
4458     std::unique_ptr<AsmPrinterHandler> Handler) {
4459   Handlers.insert(Handlers.begin(), std::move(Handler));
4460   NumUserHandlers++;
4461 }
4462 
4463 /// Pin vtables to this file.
4464 AsmPrinterHandler::~AsmPrinterHandler() = default;
4465 
4466 void AsmPrinterHandler::markFunctionEnd() {}
4467 
4468 // In the binary's "xray_instr_map" section, an array of these function entries
4469 // describes each instrumentation point.  When XRay patches your code, the index
4470 // into this table will be given to your handler as a patch point identifier.
4471 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
4472   auto Kind8 = static_cast<uint8_t>(Kind);
4473   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
4474   Out->emitBinaryData(
4475       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
4476   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
4477   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
4478   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
4479   Out->emitZeros(Padding);
4480 }
4481 
4482 void AsmPrinter::emitXRayTable() {
4483   if (Sleds.empty())
4484     return;
4485 
4486   auto PrevSection = OutStreamer->getCurrentSectionOnly();
4487   const Function &F = MF->getFunction();
4488   MCSection *InstMap = nullptr;
4489   MCSection *FnSledIndex = nullptr;
4490   const Triple &TT = TM.getTargetTriple();
4491   // Use PC-relative addresses on all targets.
4492   if (TT.isOSBinFormatELF()) {
4493     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
4494     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
4495     StringRef GroupName;
4496     if (F.hasComdat()) {
4497       Flags |= ELF::SHF_GROUP;
4498       GroupName = F.getComdat()->getName();
4499     }
4500     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
4501                                        Flags, 0, GroupName, F.hasComdat(),
4502                                        MCSection::NonUniqueID, LinkedToSym);
4503 
4504     if (TM.Options.XRayFunctionIndex)
4505       FnSledIndex = OutContext.getELFSection(
4506           "xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(),
4507           MCSection::NonUniqueID, LinkedToSym);
4508   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
4509     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map",
4510                                          MachO::S_ATTR_LIVE_SUPPORT,
4511                                          SectionKind::getReadOnlyWithRel());
4512     if (TM.Options.XRayFunctionIndex)
4513       FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx",
4514                                                MachO::S_ATTR_LIVE_SUPPORT,
4515                                                SectionKind::getReadOnly());
4516   } else {
4517     llvm_unreachable("Unsupported target");
4518   }
4519 
4520   auto WordSizeBytes = MAI->getCodePointerSize();
4521 
4522   // Now we switch to the instrumentation map section. Because this is done
4523   // per-function, we are able to create an index entry that will represent the
4524   // range of sleds associated with a function.
4525   auto &Ctx = OutContext;
4526   MCSymbol *SledsStart =
4527       OutContext.createLinkerPrivateSymbol("xray_sleds_start");
4528   OutStreamer->switchSection(InstMap);
4529   OutStreamer->emitLabel(SledsStart);
4530   for (const auto &Sled : Sleds) {
4531     MCSymbol *Dot = Ctx.createTempSymbol();
4532     OutStreamer->emitLabel(Dot);
4533     OutStreamer->emitValueImpl(
4534         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
4535                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
4536         WordSizeBytes);
4537     OutStreamer->emitValueImpl(
4538         MCBinaryExpr::createSub(
4539             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
4540             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
4541                                     MCConstantExpr::create(WordSizeBytes, Ctx),
4542                                     Ctx),
4543             Ctx),
4544         WordSizeBytes);
4545     Sled.emit(WordSizeBytes, OutStreamer.get());
4546   }
4547   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
4548   OutStreamer->emitLabel(SledsEnd);
4549 
4550   // We then emit a single entry in the index per function. We use the symbols
4551   // that bound the instrumentation map as the range for a specific function.
4552   // Each entry here will be 2 * word size aligned, as we're writing down two
4553   // pointers. This should work for both 32-bit and 64-bit platforms.
4554   if (FnSledIndex) {
4555     OutStreamer->switchSection(FnSledIndex);
4556     OutStreamer->emitCodeAlignment(Align(2 * WordSizeBytes),
4557                                    &getSubtargetInfo());
4558     // For Mach-O, use an "l" symbol as the atom of this subsection. The label
4559     // difference uses a SUBTRACTOR external relocation which references the
4560     // symbol.
4561     MCSymbol *Dot = Ctx.createLinkerPrivateSymbol("xray_fn_idx");
4562     OutStreamer->emitLabel(Dot);
4563     OutStreamer->emitValueImpl(
4564         MCBinaryExpr::createSub(MCSymbolRefExpr::create(SledsStart, Ctx),
4565                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
4566         WordSizeBytes);
4567     OutStreamer->emitValueImpl(MCConstantExpr::create(Sleds.size(), Ctx),
4568                                WordSizeBytes);
4569     OutStreamer->switchSection(PrevSection);
4570   }
4571   Sleds.clear();
4572 }
4573 
4574 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
4575                             SledKind Kind, uint8_t Version) {
4576   const Function &F = MI.getMF()->getFunction();
4577   auto Attr = F.getFnAttribute("function-instrument");
4578   bool LogArgs = F.hasFnAttribute("xray-log-args");
4579   bool AlwaysInstrument =
4580     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
4581   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
4582     Kind = SledKind::LOG_ARGS_ENTER;
4583   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
4584                                        AlwaysInstrument, &F, Version});
4585 }
4586 
4587 void AsmPrinter::emitPatchableFunctionEntries() {
4588   const Function &F = MF->getFunction();
4589   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
4590   (void)F.getFnAttribute("patchable-function-prefix")
4591       .getValueAsString()
4592       .getAsInteger(10, PatchableFunctionPrefix);
4593   (void)F.getFnAttribute("patchable-function-entry")
4594       .getValueAsString()
4595       .getAsInteger(10, PatchableFunctionEntry);
4596   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
4597     return;
4598   const unsigned PointerSize = getPointerSize();
4599   if (TM.getTargetTriple().isOSBinFormatELF()) {
4600     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
4601     const MCSymbolELF *LinkedToSym = nullptr;
4602     StringRef GroupName;
4603 
4604     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
4605     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
4606     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
4607       Flags |= ELF::SHF_LINK_ORDER;
4608       if (F.hasComdat()) {
4609         Flags |= ELF::SHF_GROUP;
4610         GroupName = F.getComdat()->getName();
4611       }
4612       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
4613     }
4614     OutStreamer->switchSection(OutContext.getELFSection(
4615         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
4616         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
4617     emitAlignment(Align(PointerSize));
4618     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
4619   }
4620 }
4621 
4622 uint16_t AsmPrinter::getDwarfVersion() const {
4623   return OutStreamer->getContext().getDwarfVersion();
4624 }
4625 
4626 void AsmPrinter::setDwarfVersion(uint16_t Version) {
4627   OutStreamer->getContext().setDwarfVersion(Version);
4628 }
4629 
4630 bool AsmPrinter::isDwarf64() const {
4631   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
4632 }
4633 
4634 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
4635   return dwarf::getDwarfOffsetByteSize(
4636       OutStreamer->getContext().getDwarfFormat());
4637 }
4638 
4639 dwarf::FormParams AsmPrinter::getDwarfFormParams() const {
4640   return {getDwarfVersion(), uint8_t(MAI->getCodePointerSize()),
4641           OutStreamer->getContext().getDwarfFormat(),
4642           doesDwarfUseRelocationsAcrossSections()};
4643 }
4644 
4645 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
4646   return dwarf::getUnitLengthFieldByteSize(
4647       OutStreamer->getContext().getDwarfFormat());
4648 }
4649 
4650 std::tuple<const MCSymbol *, uint64_t, const MCSymbol *,
4651            codeview::JumpTableEntrySize>
4652 AsmPrinter::getCodeViewJumpTableInfo(int JTI, const MachineInstr *BranchInstr,
4653                                      const MCSymbol *BranchLabel) const {
4654   const auto TLI = MF->getSubtarget().getTargetLowering();
4655   const auto BaseExpr =
4656       TLI->getPICJumpTableRelocBaseExpr(MF, JTI, MMI->getContext());
4657   const auto Base = &cast<MCSymbolRefExpr>(BaseExpr)->getSymbol();
4658 
4659   // By default, for the architectures that support CodeView,
4660   // EK_LabelDifference32 is implemented as an Int32 from the base address.
4661   return std::make_tuple(Base, 0, BranchLabel,
4662                          codeview::JumpTableEntrySize::Int32);
4663 }
4664