1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Value.h" 28 #include "llvm/Support/CommandLine.h" 29 30 #define DEBUG_TYPE "vectorutils" 31 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 /// Maximum factor for an interleaved memory access. 36 static cl::opt<unsigned> MaxInterleaveGroupFactor( 37 "max-interleave-group-factor", cl::Hidden, 38 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 39 cl::init(8)); 40 41 /// Return true if all of the intrinsic's arguments and return type are scalars 42 /// for the scalar form of the intrinsic, and vectors for the vector form of the 43 /// intrinsic (except operands that are marked as always being scalar by 44 /// isVectorIntrinsicWithScalarOpAtArg). 45 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 46 switch (ID) { 47 case Intrinsic::abs: // Begin integer bit-manipulation. 48 case Intrinsic::bswap: 49 case Intrinsic::bitreverse: 50 case Intrinsic::ctpop: 51 case Intrinsic::ctlz: 52 case Intrinsic::cttz: 53 case Intrinsic::fshl: 54 case Intrinsic::fshr: 55 case Intrinsic::smax: 56 case Intrinsic::smin: 57 case Intrinsic::umax: 58 case Intrinsic::umin: 59 case Intrinsic::sadd_sat: 60 case Intrinsic::ssub_sat: 61 case Intrinsic::uadd_sat: 62 case Intrinsic::usub_sat: 63 case Intrinsic::smul_fix: 64 case Intrinsic::smul_fix_sat: 65 case Intrinsic::umul_fix: 66 case Intrinsic::umul_fix_sat: 67 case Intrinsic::sqrt: // Begin floating-point. 68 case Intrinsic::sin: 69 case Intrinsic::cos: 70 case Intrinsic::exp: 71 case Intrinsic::exp2: 72 case Intrinsic::log: 73 case Intrinsic::log10: 74 case Intrinsic::log2: 75 case Intrinsic::fabs: 76 case Intrinsic::minnum: 77 case Intrinsic::maxnum: 78 case Intrinsic::minimum: 79 case Intrinsic::maximum: 80 case Intrinsic::copysign: 81 case Intrinsic::floor: 82 case Intrinsic::ceil: 83 case Intrinsic::trunc: 84 case Intrinsic::rint: 85 case Intrinsic::nearbyint: 86 case Intrinsic::round: 87 case Intrinsic::roundeven: 88 case Intrinsic::pow: 89 case Intrinsic::fma: 90 case Intrinsic::fmuladd: 91 case Intrinsic::is_fpclass: 92 case Intrinsic::powi: 93 case Intrinsic::canonicalize: 94 case Intrinsic::fptosi_sat: 95 case Intrinsic::fptoui_sat: 96 case Intrinsic::lrint: 97 case Intrinsic::llrint: 98 return true; 99 default: 100 return false; 101 } 102 } 103 104 /// Identifies if the vector form of the intrinsic has a scalar operand. 105 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, 106 unsigned ScalarOpdIdx) { 107 switch (ID) { 108 case Intrinsic::abs: 109 case Intrinsic::ctlz: 110 case Intrinsic::cttz: 111 case Intrinsic::is_fpclass: 112 case Intrinsic::powi: 113 return (ScalarOpdIdx == 1); 114 case Intrinsic::smul_fix: 115 case Intrinsic::smul_fix_sat: 116 case Intrinsic::umul_fix: 117 case Intrinsic::umul_fix_sat: 118 return (ScalarOpdIdx == 2); 119 default: 120 return false; 121 } 122 } 123 124 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, 125 int OpdIdx) { 126 switch (ID) { 127 case Intrinsic::fptosi_sat: 128 case Intrinsic::fptoui_sat: 129 case Intrinsic::lrint: 130 case Intrinsic::llrint: 131 return OpdIdx == -1 || OpdIdx == 0; 132 case Intrinsic::is_fpclass: 133 return OpdIdx == 0; 134 case Intrinsic::powi: 135 return OpdIdx == -1 || OpdIdx == 1; 136 default: 137 return OpdIdx == -1; 138 } 139 } 140 141 /// Returns intrinsic ID for call. 142 /// For the input call instruction it finds mapping intrinsic and returns 143 /// its ID, in case it does not found it return not_intrinsic. 144 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 145 const TargetLibraryInfo *TLI) { 146 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); 147 if (ID == Intrinsic::not_intrinsic) 148 return Intrinsic::not_intrinsic; 149 150 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 151 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 152 ID == Intrinsic::experimental_noalias_scope_decl || 153 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) 154 return ID; 155 return Intrinsic::not_intrinsic; 156 } 157 158 /// Given a vector and an element number, see if the scalar value is 159 /// already around as a register, for example if it were inserted then extracted 160 /// from the vector. 161 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 162 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 163 VectorType *VTy = cast<VectorType>(V->getType()); 164 // For fixed-length vector, return undef for out of range access. 165 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 166 unsigned Width = FVTy->getNumElements(); 167 if (EltNo >= Width) 168 return UndefValue::get(FVTy->getElementType()); 169 } 170 171 if (Constant *C = dyn_cast<Constant>(V)) 172 return C->getAggregateElement(EltNo); 173 174 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 175 // If this is an insert to a variable element, we don't know what it is. 176 if (!isa<ConstantInt>(III->getOperand(2))) 177 return nullptr; 178 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 179 180 // If this is an insert to the element we are looking for, return the 181 // inserted value. 182 if (EltNo == IIElt) 183 return III->getOperand(1); 184 185 // Guard against infinite loop on malformed, unreachable IR. 186 if (III == III->getOperand(0)) 187 return nullptr; 188 189 // Otherwise, the insertelement doesn't modify the value, recurse on its 190 // vector input. 191 return findScalarElement(III->getOperand(0), EltNo); 192 } 193 194 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 195 // Restrict the following transformation to fixed-length vector. 196 if (SVI && isa<FixedVectorType>(SVI->getType())) { 197 unsigned LHSWidth = 198 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); 199 int InEl = SVI->getMaskValue(EltNo); 200 if (InEl < 0) 201 return UndefValue::get(VTy->getElementType()); 202 if (InEl < (int)LHSWidth) 203 return findScalarElement(SVI->getOperand(0), InEl); 204 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 205 } 206 207 // Extract a value from a vector add operation with a constant zero. 208 // TODO: Use getBinOpIdentity() to generalize this. 209 Value *Val; Constant *C; 210 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 211 if (Constant *Elt = C->getAggregateElement(EltNo)) 212 if (Elt->isNullValue()) 213 return findScalarElement(Val, EltNo); 214 215 // If the vector is a splat then we can trivially find the scalar element. 216 if (isa<ScalableVectorType>(VTy)) 217 if (Value *Splat = getSplatValue(V)) 218 if (EltNo < VTy->getElementCount().getKnownMinValue()) 219 return Splat; 220 221 // Otherwise, we don't know. 222 return nullptr; 223 } 224 225 int llvm::getSplatIndex(ArrayRef<int> Mask) { 226 int SplatIndex = -1; 227 for (int M : Mask) { 228 // Ignore invalid (undefined) mask elements. 229 if (M < 0) 230 continue; 231 232 // There can be only 1 non-negative mask element value if this is a splat. 233 if (SplatIndex != -1 && SplatIndex != M) 234 return -1; 235 236 // Initialize the splat index to the 1st non-negative mask element. 237 SplatIndex = M; 238 } 239 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 240 return SplatIndex; 241 } 242 243 /// Get splat value if the input is a splat vector or return nullptr. 244 /// This function is not fully general. It checks only 2 cases: 245 /// the input value is (1) a splat constant vector or (2) a sequence 246 /// of instructions that broadcasts a scalar at element 0. 247 Value *llvm::getSplatValue(const Value *V) { 248 if (isa<VectorType>(V->getType())) 249 if (auto *C = dyn_cast<Constant>(V)) 250 return C->getSplatValue(); 251 252 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 253 Value *Splat; 254 if (match(V, 255 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), 256 m_Value(), m_ZeroMask()))) 257 return Splat; 258 259 return nullptr; 260 } 261 262 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 263 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 264 265 if (isa<VectorType>(V->getType())) { 266 if (isa<UndefValue>(V)) 267 return true; 268 // FIXME: We can allow undefs, but if Index was specified, we may want to 269 // check that the constant is defined at that index. 270 if (auto *C = dyn_cast<Constant>(V)) 271 return C->getSplatValue() != nullptr; 272 } 273 274 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 275 // FIXME: We can safely allow undefs here. If Index was specified, we will 276 // check that the mask elt is defined at the required index. 277 if (!all_equal(Shuf->getShuffleMask())) 278 return false; 279 280 // Match any index. 281 if (Index == -1) 282 return true; 283 284 // Match a specific element. The mask should be defined at and match the 285 // specified index. 286 return Shuf->getMaskValue(Index) == Index; 287 } 288 289 // The remaining tests are all recursive, so bail out if we hit the limit. 290 if (Depth++ == MaxAnalysisRecursionDepth) 291 return false; 292 293 // If both operands of a binop are splats, the result is a splat. 294 Value *X, *Y, *Z; 295 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 296 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 297 298 // If all operands of a select are splats, the result is a splat. 299 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 300 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 301 isSplatValue(Z, Index, Depth); 302 303 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 304 305 return false; 306 } 307 308 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask, 309 const APInt &DemandedElts, APInt &DemandedLHS, 310 APInt &DemandedRHS, bool AllowUndefElts) { 311 DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth); 312 313 // Early out if we don't demand any elements. 314 if (DemandedElts.isZero()) 315 return true; 316 317 // Simple case of a shuffle with zeroinitializer. 318 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 319 DemandedLHS.setBit(0); 320 return true; 321 } 322 323 for (unsigned I = 0, E = Mask.size(); I != E; ++I) { 324 int M = Mask[I]; 325 assert((-1 <= M) && (M < (SrcWidth * 2)) && 326 "Invalid shuffle mask constant"); 327 328 if (!DemandedElts[I] || (AllowUndefElts && (M < 0))) 329 continue; 330 331 // For undef elements, we don't know anything about the common state of 332 // the shuffle result. 333 if (M < 0) 334 return false; 335 336 if (M < SrcWidth) 337 DemandedLHS.setBit(M); 338 else 339 DemandedRHS.setBit(M - SrcWidth); 340 } 341 342 return true; 343 } 344 345 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, 346 SmallVectorImpl<int> &ScaledMask) { 347 assert(Scale > 0 && "Unexpected scaling factor"); 348 349 // Fast-path: if no scaling, then it is just a copy. 350 if (Scale == 1) { 351 ScaledMask.assign(Mask.begin(), Mask.end()); 352 return; 353 } 354 355 ScaledMask.clear(); 356 for (int MaskElt : Mask) { 357 if (MaskElt >= 0) { 358 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && 359 "Overflowed 32-bits"); 360 } 361 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) 362 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); 363 } 364 } 365 366 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, 367 SmallVectorImpl<int> &ScaledMask) { 368 assert(Scale > 0 && "Unexpected scaling factor"); 369 370 // Fast-path: if no scaling, then it is just a copy. 371 if (Scale == 1) { 372 ScaledMask.assign(Mask.begin(), Mask.end()); 373 return true; 374 } 375 376 // We must map the original elements down evenly to a type with less elements. 377 int NumElts = Mask.size(); 378 if (NumElts % Scale != 0) 379 return false; 380 381 ScaledMask.clear(); 382 ScaledMask.reserve(NumElts / Scale); 383 384 // Step through the input mask by splitting into Scale-sized slices. 385 do { 386 ArrayRef<int> MaskSlice = Mask.take_front(Scale); 387 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); 388 389 // The first element of the slice determines how we evaluate this slice. 390 int SliceFront = MaskSlice.front(); 391 if (SliceFront < 0) { 392 // Negative values (undef or other "sentinel" values) must be equal across 393 // the entire slice. 394 if (!all_equal(MaskSlice)) 395 return false; 396 ScaledMask.push_back(SliceFront); 397 } else { 398 // A positive mask element must be cleanly divisible. 399 if (SliceFront % Scale != 0) 400 return false; 401 // Elements of the slice must be consecutive. 402 for (int i = 1; i < Scale; ++i) 403 if (MaskSlice[i] != SliceFront + i) 404 return false; 405 ScaledMask.push_back(SliceFront / Scale); 406 } 407 Mask = Mask.drop_front(Scale); 408 } while (!Mask.empty()); 409 410 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); 411 412 // All elements of the original mask can be scaled down to map to the elements 413 // of a mask with wider elements. 414 return true; 415 } 416 417 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask, 418 SmallVectorImpl<int> &ScaledMask) { 419 std::array<SmallVector<int, 16>, 2> TmpMasks; 420 SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1]; 421 ArrayRef<int> InputMask = Mask; 422 for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) { 423 while (widenShuffleMaskElts(Scale, InputMask, *Output)) { 424 InputMask = *Output; 425 std::swap(Output, Tmp); 426 } 427 } 428 ScaledMask.assign(InputMask.begin(), InputMask.end()); 429 } 430 431 void llvm::processShuffleMasks( 432 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, 433 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, 434 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, 435 function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) { 436 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs); 437 // Try to perform better estimation of the permutation. 438 // 1. Split the source/destination vectors into real registers. 439 // 2. Do the mask analysis to identify which real registers are 440 // permuted. 441 int Sz = Mask.size(); 442 unsigned SzDest = Sz / NumOfDestRegs; 443 unsigned SzSrc = Sz / NumOfSrcRegs; 444 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 445 auto &RegMasks = Res[I]; 446 RegMasks.assign(NumOfSrcRegs, {}); 447 // Check that the values in dest registers are in the one src 448 // register. 449 for (unsigned K = 0; K < SzDest; ++K) { 450 int Idx = I * SzDest + K; 451 if (Idx == Sz) 452 break; 453 if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem) 454 continue; 455 int SrcRegIdx = Mask[Idx] / SzSrc; 456 // Add a cost of PermuteTwoSrc for each new source register permute, 457 // if we have more than one source registers. 458 if (RegMasks[SrcRegIdx].empty()) 459 RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem); 460 RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc; 461 } 462 } 463 // Process split mask. 464 for (unsigned I = 0; I < NumOfUsedRegs; ++I) { 465 auto &Dest = Res[I]; 466 int NumSrcRegs = 467 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 468 switch (NumSrcRegs) { 469 case 0: 470 // No input vectors were used! 471 NoInputAction(); 472 break; 473 case 1: { 474 // Find the only mask with at least single undef mask elem. 475 auto *It = 476 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 477 unsigned SrcReg = std::distance(Dest.begin(), It); 478 SingleInputAction(*It, SrcReg, I); 479 break; 480 } 481 default: { 482 // The first mask is a permutation of a single register. Since we have >2 483 // input registers to shuffle, we merge the masks for 2 first registers 484 // and generate a shuffle of 2 registers rather than the reordering of the 485 // first register and then shuffle with the second register. Next, 486 // generate the shuffles of the resulting register + the remaining 487 // registers from the list. 488 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask, 489 ArrayRef<int> SecondMask) { 490 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { 491 if (SecondMask[Idx] != PoisonMaskElem) { 492 assert(FirstMask[Idx] == PoisonMaskElem && 493 "Expected undefined mask element."); 494 FirstMask[Idx] = SecondMask[Idx] + VF; 495 } 496 } 497 }; 498 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) { 499 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 500 if (Mask[Idx] != PoisonMaskElem) 501 Mask[Idx] = Idx; 502 } 503 }; 504 int SecondIdx; 505 do { 506 int FirstIdx = -1; 507 SecondIdx = -1; 508 MutableArrayRef<int> FirstMask, SecondMask; 509 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 510 SmallVectorImpl<int> &RegMask = Dest[I]; 511 if (RegMask.empty()) 512 continue; 513 514 if (FirstIdx == SecondIdx) { 515 FirstIdx = I; 516 FirstMask = RegMask; 517 continue; 518 } 519 SecondIdx = I; 520 SecondMask = RegMask; 521 CombineMasks(FirstMask, SecondMask); 522 ManyInputsAction(FirstMask, FirstIdx, SecondIdx); 523 NormalizeMask(FirstMask); 524 RegMask.clear(); 525 SecondMask = FirstMask; 526 SecondIdx = FirstIdx; 527 } 528 if (FirstIdx != SecondIdx && SecondIdx >= 0) { 529 CombineMasks(SecondMask, FirstMask); 530 ManyInputsAction(SecondMask, SecondIdx, FirstIdx); 531 Dest[FirstIdx].clear(); 532 NormalizeMask(SecondMask); 533 } 534 } while (SecondIdx >= 0); 535 break; 536 } 537 } 538 } 539 } 540 541 MapVector<Instruction *, uint64_t> 542 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 543 const TargetTransformInfo *TTI) { 544 545 // DemandedBits will give us every value's live-out bits. But we want 546 // to ensure no extra casts would need to be inserted, so every DAG 547 // of connected values must have the same minimum bitwidth. 548 EquivalenceClasses<Value *> ECs; 549 SmallVector<Value *, 16> Worklist; 550 SmallPtrSet<Value *, 4> Roots; 551 SmallPtrSet<Value *, 16> Visited; 552 DenseMap<Value *, uint64_t> DBits; 553 SmallPtrSet<Instruction *, 4> InstructionSet; 554 MapVector<Instruction *, uint64_t> MinBWs; 555 556 // Determine the roots. We work bottom-up, from truncs or icmps. 557 bool SeenExtFromIllegalType = false; 558 for (auto *BB : Blocks) 559 for (auto &I : *BB) { 560 InstructionSet.insert(&I); 561 562 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 563 !TTI->isTypeLegal(I.getOperand(0)->getType())) 564 SeenExtFromIllegalType = true; 565 566 // Only deal with non-vector integers up to 64-bits wide. 567 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 568 !I.getType()->isVectorTy() && 569 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 570 // Don't make work for ourselves. If we know the loaded type is legal, 571 // don't add it to the worklist. 572 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 573 continue; 574 575 Worklist.push_back(&I); 576 Roots.insert(&I); 577 } 578 } 579 // Early exit. 580 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 581 return MinBWs; 582 583 // Now proceed breadth-first, unioning values together. 584 while (!Worklist.empty()) { 585 Value *Val = Worklist.pop_back_val(); 586 Value *Leader = ECs.getOrInsertLeaderValue(Val); 587 588 if (!Visited.insert(Val).second) 589 continue; 590 591 // Non-instructions terminate a chain successfully. 592 if (!isa<Instruction>(Val)) 593 continue; 594 Instruction *I = cast<Instruction>(Val); 595 596 // If we encounter a type that is larger than 64 bits, we can't represent 597 // it so bail out. 598 if (DB.getDemandedBits(I).getBitWidth() > 64) 599 return MapVector<Instruction *, uint64_t>(); 600 601 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 602 DBits[Leader] |= V; 603 DBits[I] = V; 604 605 // Casts, loads and instructions outside of our range terminate a chain 606 // successfully. 607 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 608 !InstructionSet.count(I)) 609 continue; 610 611 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 612 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 613 // transform anything that relies on them. 614 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 615 !I->getType()->isIntegerTy()) { 616 DBits[Leader] |= ~0ULL; 617 continue; 618 } 619 620 // We don't modify the types of PHIs. Reductions will already have been 621 // truncated if possible, and inductions' sizes will have been chosen by 622 // indvars. 623 if (isa<PHINode>(I)) 624 continue; 625 626 if (DBits[Leader] == ~0ULL) 627 // All bits demanded, no point continuing. 628 continue; 629 630 for (Value *O : cast<User>(I)->operands()) { 631 ECs.unionSets(Leader, O); 632 Worklist.push_back(O); 633 } 634 } 635 636 // Now we've discovered all values, walk them to see if there are 637 // any users we didn't see. If there are, we can't optimize that 638 // chain. 639 for (auto &I : DBits) 640 for (auto *U : I.first->users()) 641 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 642 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 643 644 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 645 uint64_t LeaderDemandedBits = 0; 646 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 647 LeaderDemandedBits |= DBits[M]; 648 649 uint64_t MinBW = llvm::bit_width(LeaderDemandedBits); 650 // Round up to a power of 2 651 MinBW = llvm::bit_ceil(MinBW); 652 653 // We don't modify the types of PHIs. Reductions will already have been 654 // truncated if possible, and inductions' sizes will have been chosen by 655 // indvars. 656 // If we are required to shrink a PHI, abandon this entire equivalence class. 657 bool Abort = false; 658 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 659 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) { 660 Abort = true; 661 break; 662 } 663 if (Abort) 664 continue; 665 666 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { 667 auto *MI = dyn_cast<Instruction>(M); 668 if (!MI) 669 continue; 670 Type *Ty = M->getType(); 671 if (Roots.count(M)) 672 Ty = MI->getOperand(0)->getType(); 673 674 if (MinBW >= Ty->getScalarSizeInBits()) 675 continue; 676 677 // If any of M's operands demand more bits than MinBW then M cannot be 678 // performed safely in MinBW. 679 if (any_of(MI->operands(), [&DB, MinBW](Use &U) { 680 auto *CI = dyn_cast<ConstantInt>(U); 681 // For constants shift amounts, check if the shift would result in 682 // poison. 683 if (CI && 684 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) && 685 U.getOperandNo() == 1) 686 return CI->uge(MinBW); 687 uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue()); 688 return bit_ceil(BW) > MinBW; 689 })) 690 continue; 691 692 MinBWs[MI] = MinBW; 693 } 694 } 695 696 return MinBWs; 697 } 698 699 /// Add all access groups in @p AccGroups to @p List. 700 template <typename ListT> 701 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 702 // Interpret an access group as a list containing itself. 703 if (AccGroups->getNumOperands() == 0) { 704 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 705 List.insert(AccGroups); 706 return; 707 } 708 709 for (const auto &AccGroupListOp : AccGroups->operands()) { 710 auto *Item = cast<MDNode>(AccGroupListOp.get()); 711 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 712 List.insert(Item); 713 } 714 } 715 716 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 717 if (!AccGroups1) 718 return AccGroups2; 719 if (!AccGroups2) 720 return AccGroups1; 721 if (AccGroups1 == AccGroups2) 722 return AccGroups1; 723 724 SmallSetVector<Metadata *, 4> Union; 725 addToAccessGroupList(Union, AccGroups1); 726 addToAccessGroupList(Union, AccGroups2); 727 728 if (Union.size() == 0) 729 return nullptr; 730 if (Union.size() == 1) 731 return cast<MDNode>(Union.front()); 732 733 LLVMContext &Ctx = AccGroups1->getContext(); 734 return MDNode::get(Ctx, Union.getArrayRef()); 735 } 736 737 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 738 const Instruction *Inst2) { 739 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 740 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 741 742 if (!MayAccessMem1 && !MayAccessMem2) 743 return nullptr; 744 if (!MayAccessMem1) 745 return Inst2->getMetadata(LLVMContext::MD_access_group); 746 if (!MayAccessMem2) 747 return Inst1->getMetadata(LLVMContext::MD_access_group); 748 749 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 750 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 751 if (!MD1 || !MD2) 752 return nullptr; 753 if (MD1 == MD2) 754 return MD1; 755 756 // Use set for scalable 'contains' check. 757 SmallPtrSet<Metadata *, 4> AccGroupSet2; 758 addToAccessGroupList(AccGroupSet2, MD2); 759 760 SmallVector<Metadata *, 4> Intersection; 761 if (MD1->getNumOperands() == 0) { 762 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 763 if (AccGroupSet2.count(MD1)) 764 Intersection.push_back(MD1); 765 } else { 766 for (const MDOperand &Node : MD1->operands()) { 767 auto *Item = cast<MDNode>(Node.get()); 768 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 769 if (AccGroupSet2.count(Item)) 770 Intersection.push_back(Item); 771 } 772 } 773 774 if (Intersection.size() == 0) 775 return nullptr; 776 if (Intersection.size() == 1) 777 return cast<MDNode>(Intersection.front()); 778 779 LLVMContext &Ctx = Inst1->getContext(); 780 return MDNode::get(Ctx, Intersection); 781 } 782 783 /// \returns \p I after propagating metadata from \p VL. 784 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 785 if (VL.empty()) 786 return Inst; 787 Instruction *I0 = cast<Instruction>(VL[0]); 788 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 789 I0->getAllMetadataOtherThanDebugLoc(Metadata); 790 791 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 792 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 793 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 794 LLVMContext::MD_access_group}) { 795 MDNode *MD = I0->getMetadata(Kind); 796 797 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 798 const Instruction *IJ = cast<Instruction>(VL[J]); 799 MDNode *IMD = IJ->getMetadata(Kind); 800 switch (Kind) { 801 case LLVMContext::MD_tbaa: 802 MD = MDNode::getMostGenericTBAA(MD, IMD); 803 break; 804 case LLVMContext::MD_alias_scope: 805 MD = MDNode::getMostGenericAliasScope(MD, IMD); 806 break; 807 case LLVMContext::MD_fpmath: 808 MD = MDNode::getMostGenericFPMath(MD, IMD); 809 break; 810 case LLVMContext::MD_noalias: 811 case LLVMContext::MD_nontemporal: 812 case LLVMContext::MD_invariant_load: 813 MD = MDNode::intersect(MD, IMD); 814 break; 815 case LLVMContext::MD_access_group: 816 MD = intersectAccessGroups(Inst, IJ); 817 break; 818 default: 819 llvm_unreachable("unhandled metadata"); 820 } 821 } 822 823 Inst->setMetadata(Kind, MD); 824 } 825 826 return Inst; 827 } 828 829 Constant * 830 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 831 const InterleaveGroup<Instruction> &Group) { 832 // All 1's means mask is not needed. 833 if (Group.getNumMembers() == Group.getFactor()) 834 return nullptr; 835 836 // TODO: support reversed access. 837 assert(!Group.isReverse() && "Reversed group not supported."); 838 839 SmallVector<Constant *, 16> Mask; 840 for (unsigned i = 0; i < VF; i++) 841 for (unsigned j = 0; j < Group.getFactor(); ++j) { 842 unsigned HasMember = Group.getMember(j) ? 1 : 0; 843 Mask.push_back(Builder.getInt1(HasMember)); 844 } 845 846 return ConstantVector::get(Mask); 847 } 848 849 llvm::SmallVector<int, 16> 850 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { 851 SmallVector<int, 16> MaskVec; 852 for (unsigned i = 0; i < VF; i++) 853 for (unsigned j = 0; j < ReplicationFactor; j++) 854 MaskVec.push_back(i); 855 856 return MaskVec; 857 } 858 859 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, 860 unsigned NumVecs) { 861 SmallVector<int, 16> Mask; 862 for (unsigned i = 0; i < VF; i++) 863 for (unsigned j = 0; j < NumVecs; j++) 864 Mask.push_back(j * VF + i); 865 866 return Mask; 867 } 868 869 llvm::SmallVector<int, 16> 870 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { 871 SmallVector<int, 16> Mask; 872 for (unsigned i = 0; i < VF; i++) 873 Mask.push_back(Start + i * Stride); 874 875 return Mask; 876 } 877 878 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, 879 unsigned NumInts, 880 unsigned NumUndefs) { 881 SmallVector<int, 16> Mask; 882 for (unsigned i = 0; i < NumInts; i++) 883 Mask.push_back(Start + i); 884 885 for (unsigned i = 0; i < NumUndefs; i++) 886 Mask.push_back(-1); 887 888 return Mask; 889 } 890 891 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, 892 unsigned NumElts) { 893 // Avoid casts in the loop and make sure we have a reasonable number. 894 int NumEltsSigned = NumElts; 895 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); 896 897 // If the mask chooses an element from operand 1, reduce it to choose from the 898 // corresponding element of operand 0. Undef mask elements are unchanged. 899 SmallVector<int, 16> UnaryMask; 900 for (int MaskElt : Mask) { 901 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); 902 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; 903 UnaryMask.push_back(UnaryElt); 904 } 905 return UnaryMask; 906 } 907 908 /// A helper function for concatenating vectors. This function concatenates two 909 /// vectors having the same element type. If the second vector has fewer 910 /// elements than the first, it is padded with undefs. 911 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 912 Value *V2) { 913 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 914 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 915 assert(VecTy1 && VecTy2 && 916 VecTy1->getScalarType() == VecTy2->getScalarType() && 917 "Expect two vectors with the same element type"); 918 919 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); 920 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); 921 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 922 923 if (NumElts1 > NumElts2) { 924 // Extend with UNDEFs. 925 V2 = Builder.CreateShuffleVector( 926 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); 927 } 928 929 return Builder.CreateShuffleVector( 930 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); 931 } 932 933 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 934 ArrayRef<Value *> Vecs) { 935 unsigned NumVecs = Vecs.size(); 936 assert(NumVecs > 1 && "Should be at least two vectors"); 937 938 SmallVector<Value *, 8> ResList; 939 ResList.append(Vecs.begin(), Vecs.end()); 940 do { 941 SmallVector<Value *, 8> TmpList; 942 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 943 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 944 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 945 "Only the last vector may have a different type"); 946 947 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 948 } 949 950 // Push the last vector if the total number of vectors is odd. 951 if (NumVecs % 2 != 0) 952 TmpList.push_back(ResList[NumVecs - 1]); 953 954 ResList = TmpList; 955 NumVecs = ResList.size(); 956 } while (NumVecs > 1); 957 958 return ResList[0]; 959 } 960 961 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 962 assert(isa<VectorType>(Mask->getType()) && 963 isa<IntegerType>(Mask->getType()->getScalarType()) && 964 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 965 1 && 966 "Mask must be a vector of i1"); 967 968 auto *ConstMask = dyn_cast<Constant>(Mask); 969 if (!ConstMask) 970 return false; 971 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 972 return true; 973 if (isa<ScalableVectorType>(ConstMask->getType())) 974 return false; 975 for (unsigned 976 I = 0, 977 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 978 I != E; ++I) { 979 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 980 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 981 continue; 982 return false; 983 } 984 return true; 985 } 986 987 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 988 assert(isa<VectorType>(Mask->getType()) && 989 isa<IntegerType>(Mask->getType()->getScalarType()) && 990 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 991 1 && 992 "Mask must be a vector of i1"); 993 994 auto *ConstMask = dyn_cast<Constant>(Mask); 995 if (!ConstMask) 996 return false; 997 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 998 return true; 999 if (isa<ScalableVectorType>(ConstMask->getType())) 1000 return false; 1001 for (unsigned 1002 I = 0, 1003 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1004 I != E; ++I) { 1005 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1006 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1007 continue; 1008 return false; 1009 } 1010 return true; 1011 } 1012 1013 /// TODO: This is a lot like known bits, but for 1014 /// vectors. Is there something we can common this with? 1015 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 1016 assert(isa<FixedVectorType>(Mask->getType()) && 1017 isa<IntegerType>(Mask->getType()->getScalarType()) && 1018 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1019 1 && 1020 "Mask must be a fixed width vector of i1"); 1021 1022 const unsigned VWidth = 1023 cast<FixedVectorType>(Mask->getType())->getNumElements(); 1024 APInt DemandedElts = APInt::getAllOnes(VWidth); 1025 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 1026 for (unsigned i = 0; i < VWidth; i++) 1027 if (CV->getAggregateElement(i)->isNullValue()) 1028 DemandedElts.clearBit(i); 1029 return DemandedElts; 1030 } 1031 1032 bool InterleavedAccessInfo::isStrided(int Stride) { 1033 unsigned Factor = std::abs(Stride); 1034 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1035 } 1036 1037 void InterleavedAccessInfo::collectConstStrideAccesses( 1038 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1039 const DenseMap<Value*, const SCEV*> &Strides) { 1040 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 1041 1042 // Since it's desired that the load/store instructions be maintained in 1043 // "program order" for the interleaved access analysis, we have to visit the 1044 // blocks in the loop in reverse postorder (i.e., in a topological order). 1045 // Such an ordering will ensure that any load/store that may be executed 1046 // before a second load/store will precede the second load/store in 1047 // AccessStrideInfo. 1048 LoopBlocksDFS DFS(TheLoop); 1049 DFS.perform(LI); 1050 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 1051 for (auto &I : *BB) { 1052 Value *Ptr = getLoadStorePointerOperand(&I); 1053 if (!Ptr) 1054 continue; 1055 Type *ElementTy = getLoadStoreType(&I); 1056 1057 // Currently, codegen doesn't support cases where the type size doesn't 1058 // match the alloc size. Skip them for now. 1059 uint64_t Size = DL.getTypeAllocSize(ElementTy); 1060 if (Size * 8 != DL.getTypeSizeInBits(ElementTy)) 1061 continue; 1062 1063 // We don't check wrapping here because we don't know yet if Ptr will be 1064 // part of a full group or a group with gaps. Checking wrapping for all 1065 // pointers (even those that end up in groups with no gaps) will be overly 1066 // conservative. For full groups, wrapping should be ok since if we would 1067 // wrap around the address space we would do a memory access at nullptr 1068 // even without the transformation. The wrapping checks are therefore 1069 // deferred until after we've formed the interleaved groups. 1070 int64_t Stride = 1071 getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, 1072 /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0); 1073 1074 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 1075 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, 1076 getLoadStoreAlignment(&I)); 1077 } 1078 } 1079 1080 // Analyze interleaved accesses and collect them into interleaved load and 1081 // store groups. 1082 // 1083 // When generating code for an interleaved load group, we effectively hoist all 1084 // loads in the group to the location of the first load in program order. When 1085 // generating code for an interleaved store group, we sink all stores to the 1086 // location of the last store. This code motion can change the order of load 1087 // and store instructions and may break dependences. 1088 // 1089 // The code generation strategy mentioned above ensures that we won't violate 1090 // any write-after-read (WAR) dependences. 1091 // 1092 // E.g., for the WAR dependence: a = A[i]; // (1) 1093 // A[i] = b; // (2) 1094 // 1095 // The store group of (2) is always inserted at or below (2), and the load 1096 // group of (1) is always inserted at or above (1). Thus, the instructions will 1097 // never be reordered. All other dependences are checked to ensure the 1098 // correctness of the instruction reordering. 1099 // 1100 // The algorithm visits all memory accesses in the loop in bottom-up program 1101 // order. Program order is established by traversing the blocks in the loop in 1102 // reverse postorder when collecting the accesses. 1103 // 1104 // We visit the memory accesses in bottom-up order because it can simplify the 1105 // construction of store groups in the presence of write-after-write (WAW) 1106 // dependences. 1107 // 1108 // E.g., for the WAW dependence: A[i] = a; // (1) 1109 // A[i] = b; // (2) 1110 // A[i + 1] = c; // (3) 1111 // 1112 // We will first create a store group with (3) and (2). (1) can't be added to 1113 // this group because it and (2) are dependent. However, (1) can be grouped 1114 // with other accesses that may precede it in program order. Note that a 1115 // bottom-up order does not imply that WAW dependences should not be checked. 1116 void InterleavedAccessInfo::analyzeInterleaving( 1117 bool EnablePredicatedInterleavedMemAccesses) { 1118 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 1119 const auto &Strides = LAI->getSymbolicStrides(); 1120 1121 // Holds all accesses with a constant stride. 1122 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 1123 collectConstStrideAccesses(AccessStrideInfo, Strides); 1124 1125 if (AccessStrideInfo.empty()) 1126 return; 1127 1128 // Collect the dependences in the loop. 1129 collectDependences(); 1130 1131 // Holds all interleaved store groups temporarily. 1132 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 1133 // Holds all interleaved load groups temporarily. 1134 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 1135 // Groups added to this set cannot have new members added. 1136 SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups; 1137 1138 // Search in bottom-up program order for pairs of accesses (A and B) that can 1139 // form interleaved load or store groups. In the algorithm below, access A 1140 // precedes access B in program order. We initialize a group for B in the 1141 // outer loop of the algorithm, and then in the inner loop, we attempt to 1142 // insert each A into B's group if: 1143 // 1144 // 1. A and B have the same stride, 1145 // 2. A and B have the same memory object size, and 1146 // 3. A belongs in B's group according to its distance from B. 1147 // 1148 // Special care is taken to ensure group formation will not break any 1149 // dependences. 1150 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 1151 BI != E; ++BI) { 1152 Instruction *B = BI->first; 1153 StrideDescriptor DesB = BI->second; 1154 1155 // Initialize a group for B if it has an allowable stride. Even if we don't 1156 // create a group for B, we continue with the bottom-up algorithm to ensure 1157 // we don't break any of B's dependences. 1158 InterleaveGroup<Instruction> *GroupB = nullptr; 1159 if (isStrided(DesB.Stride) && 1160 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 1161 GroupB = getInterleaveGroup(B); 1162 if (!GroupB) { 1163 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 1164 << '\n'); 1165 GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 1166 if (B->mayWriteToMemory()) 1167 StoreGroups.insert(GroupB); 1168 else 1169 LoadGroups.insert(GroupB); 1170 } 1171 } 1172 1173 for (auto AI = std::next(BI); AI != E; ++AI) { 1174 Instruction *A = AI->first; 1175 StrideDescriptor DesA = AI->second; 1176 1177 // Our code motion strategy implies that we can't have dependences 1178 // between accesses in an interleaved group and other accesses located 1179 // between the first and last member of the group. Note that this also 1180 // means that a group can't have more than one member at a given offset. 1181 // The accesses in a group can have dependences with other accesses, but 1182 // we must ensure we don't extend the boundaries of the group such that 1183 // we encompass those dependent accesses. 1184 // 1185 // For example, assume we have the sequence of accesses shown below in a 1186 // stride-2 loop: 1187 // 1188 // (1, 2) is a group | A[i] = a; // (1) 1189 // | A[i-1] = b; // (2) | 1190 // A[i-3] = c; // (3) 1191 // A[i] = d; // (4) | (2, 4) is not a group 1192 // 1193 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1194 // but not with (4). If we did, the dependent access (3) would be within 1195 // the boundaries of the (2, 4) group. 1196 auto DependentMember = [&](InterleaveGroup<Instruction> *Group, 1197 StrideEntry *A) -> Instruction * { 1198 for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) { 1199 Instruction *MemberOfGroupB = Group->getMember(Index); 1200 if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups( 1201 A, &*AccessStrideInfo.find(MemberOfGroupB))) 1202 return MemberOfGroupB; 1203 } 1204 return nullptr; 1205 }; 1206 1207 auto GroupA = getInterleaveGroup(A); 1208 // If A is a load, dependencies are tolerable, there's nothing to do here. 1209 // If both A and B belong to the same (store) group, they are independent, 1210 // even if dependencies have not been recorded. 1211 // If both GroupA and GroupB are null, there's nothing to do here. 1212 if (A->mayWriteToMemory() && GroupA != GroupB) { 1213 Instruction *DependentInst = nullptr; 1214 // If GroupB is a load group, we have to compare AI against all 1215 // members of GroupB because if any load within GroupB has a dependency 1216 // on AI, we need to mark GroupB as complete and also release the 1217 // store GroupA (if A belongs to one). The former prevents incorrect 1218 // hoisting of load B above store A while the latter prevents incorrect 1219 // sinking of store A below load B. 1220 if (GroupB && LoadGroups.contains(GroupB)) 1221 DependentInst = DependentMember(GroupB, &*AI); 1222 else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) 1223 DependentInst = B; 1224 1225 if (DependentInst) { 1226 // A has a store dependence on B (or on some load within GroupB) and 1227 // is part of a store group. Release A's group to prevent illegal 1228 // sinking of A below B. A will then be free to form another group 1229 // with instructions that precede it. 1230 if (GroupA && StoreGroups.contains(GroupA)) { 1231 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1232 "dependence between " 1233 << *A << " and " << *DependentInst << '\n'); 1234 StoreGroups.remove(GroupA); 1235 releaseGroup(GroupA); 1236 } 1237 // If B is a load and part of an interleave group, no earlier loads 1238 // can be added to B's interleave group, because this would mean the 1239 // DependentInst would move across store A. Mark the interleave group 1240 // as complete. 1241 if (GroupB && LoadGroups.contains(GroupB)) { 1242 LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B 1243 << " as complete.\n"); 1244 CompletedLoadGroups.insert(GroupB); 1245 } 1246 } 1247 } 1248 if (CompletedLoadGroups.contains(GroupB)) { 1249 // Skip trying to add A to B, continue to look for other conflicting A's 1250 // in groups to be released. 1251 continue; 1252 } 1253 1254 // At this point, we've checked for illegal code motion. If either A or B 1255 // isn't strided, there's nothing left to do. 1256 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1257 continue; 1258 1259 // Ignore A if it's already in a group or isn't the same kind of memory 1260 // operation as B. 1261 // Note that mayReadFromMemory() isn't mutually exclusive to 1262 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1263 // here, canVectorizeMemory() should have returned false - except for the 1264 // case we asked for optimization remarks. 1265 if (isInterleaved(A) || 1266 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1267 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1268 continue; 1269 1270 // Check rules 1 and 2. Ignore A if its stride or size is different from 1271 // that of B. 1272 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1273 continue; 1274 1275 // Ignore A if the memory object of A and B don't belong to the same 1276 // address space 1277 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1278 continue; 1279 1280 // Calculate the distance from A to B. 1281 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1282 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1283 if (!DistToB) 1284 continue; 1285 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1286 1287 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1288 // size. 1289 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1290 continue; 1291 1292 // All members of a predicated interleave-group must have the same predicate, 1293 // and currently must reside in the same BB. 1294 BasicBlock *BlockA = A->getParent(); 1295 BasicBlock *BlockB = B->getParent(); 1296 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1297 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1298 continue; 1299 1300 // The index of A is the index of B plus A's distance to B in multiples 1301 // of the size. 1302 int IndexA = 1303 GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1304 1305 // Try to insert A into B's group. 1306 if (GroupB->insertMember(A, IndexA, DesA.Alignment)) { 1307 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1308 << " into the interleave group with" << *B 1309 << '\n'); 1310 InterleaveGroupMap[A] = GroupB; 1311 1312 // Set the first load in program order as the insert position. 1313 if (A->mayReadFromMemory()) 1314 GroupB->setInsertPos(A); 1315 } 1316 } // Iteration over A accesses. 1317 } // Iteration over B accesses. 1318 1319 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, 1320 int Index, 1321 std::string FirstOrLast) -> bool { 1322 Instruction *Member = Group->getMember(Index); 1323 assert(Member && "Group member does not exist"); 1324 Value *MemberPtr = getLoadStorePointerOperand(Member); 1325 Type *AccessTy = getLoadStoreType(Member); 1326 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, 1327 /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0)) 1328 return false; 1329 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 1330 << FirstOrLast 1331 << " group member potentially pointer-wrapping.\n"); 1332 releaseGroup(Group); 1333 return true; 1334 }; 1335 1336 // Remove interleaved groups with gaps whose memory 1337 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1338 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1339 // not check wrapping (see documentation there). 1340 // FORNOW we use Assume=false; 1341 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1342 // of runtime SCEV assumptions checks (thereby potentially failing to 1343 // vectorize altogether). 1344 // Additional optional optimizations: 1345 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1346 // wrap then we can deduce that all pointers in the group don't wrap. 1347 // This means that we can forcefully peel the loop in order to only have to 1348 // check the first pointer for no-wrap. When we'll change to use Assume=true 1349 // we'll only need at most one runtime check per interleaved group. 1350 for (auto *Group : LoadGroups) { 1351 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1352 // load would wrap around the address space we would do a memory access at 1353 // nullptr even without the transformation. 1354 if (Group->getNumMembers() == Group->getFactor()) 1355 continue; 1356 1357 // Case 2: If first and last members of the group don't wrap this implies 1358 // that all the pointers in the group don't wrap. 1359 // So we check only group member 0 (which is always guaranteed to exist), 1360 // and group member Factor - 1; If the latter doesn't exist we rely on 1361 // peeling (if it is a non-reversed accsess -- see Case 3). 1362 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) 1363 continue; 1364 if (Group->getMember(Group->getFactor() - 1)) 1365 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, 1366 std::string("last")); 1367 else { 1368 // Case 3: A non-reversed interleaved load group with gaps: We need 1369 // to execute at least one scalar epilogue iteration. This will ensure 1370 // we don't speculatively access memory out-of-bounds. We only need 1371 // to look for a member at index factor - 1, since every group must have 1372 // a member at index zero. 1373 if (Group->isReverse()) { 1374 LLVM_DEBUG( 1375 dbgs() << "LV: Invalidate candidate interleaved group due to " 1376 "a reverse access with gaps.\n"); 1377 releaseGroup(Group); 1378 continue; 1379 } 1380 LLVM_DEBUG( 1381 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1382 RequiresScalarEpilogue = true; 1383 } 1384 } 1385 1386 for (auto *Group : StoreGroups) { 1387 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1388 // store would wrap around the address space we would do a memory access at 1389 // nullptr even without the transformation. 1390 if (Group->getNumMembers() == Group->getFactor()) 1391 continue; 1392 1393 // Interleave-store-group with gaps is implemented using masked wide store. 1394 // Remove interleaved store groups with gaps if 1395 // masked-interleaved-accesses are not enabled by the target. 1396 if (!EnablePredicatedInterleavedMemAccesses) { 1397 LLVM_DEBUG( 1398 dbgs() << "LV: Invalidate candidate interleaved store group due " 1399 "to gaps.\n"); 1400 releaseGroup(Group); 1401 continue; 1402 } 1403 1404 // Case 2: If first and last members of the group don't wrap this implies 1405 // that all the pointers in the group don't wrap. 1406 // So we check only group member 0 (which is always guaranteed to exist), 1407 // and the last group member. Case 3 (scalar epilog) is not relevant for 1408 // stores with gaps, which are implemented with masked-store (rather than 1409 // speculative access, as in loads). 1410 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) 1411 continue; 1412 for (int Index = Group->getFactor() - 1; Index > 0; Index--) 1413 if (Group->getMember(Index)) { 1414 InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last")); 1415 break; 1416 } 1417 } 1418 } 1419 1420 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1421 // If no group had triggered the requirement to create an epilogue loop, 1422 // there is nothing to do. 1423 if (!requiresScalarEpilogue()) 1424 return; 1425 1426 bool ReleasedGroup = false; 1427 // Release groups requiring scalar epilogues. Note that this also removes them 1428 // from InterleaveGroups. 1429 for (auto *Group : make_early_inc_range(InterleaveGroups)) { 1430 if (!Group->requiresScalarEpilogue()) 1431 continue; 1432 LLVM_DEBUG( 1433 dbgs() 1434 << "LV: Invalidate candidate interleaved group due to gaps that " 1435 "require a scalar epilogue (not allowed under optsize) and cannot " 1436 "be masked (not enabled). \n"); 1437 releaseGroup(Group); 1438 ReleasedGroup = true; 1439 } 1440 assert(ReleasedGroup && "At least one group must be invalidated, as a " 1441 "scalar epilogue was required"); 1442 (void)ReleasedGroup; 1443 RequiresScalarEpilogue = false; 1444 } 1445 1446 template <typename InstT> 1447 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1448 llvm_unreachable("addMetadata can only be used for Instruction"); 1449 } 1450 1451 namespace llvm { 1452 template <> 1453 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1454 SmallVector<Value *, 4> VL; 1455 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1456 [](std::pair<int, Instruction *> p) { return p.second; }); 1457 propagateMetadata(NewInst, VL); 1458 } 1459 } 1460 1461 void VFABI::getVectorVariantNames( 1462 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { 1463 const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString(); 1464 if (S.empty()) 1465 return; 1466 1467 SmallVector<StringRef, 8> ListAttr; 1468 S.split(ListAttr, ","); 1469 1470 for (const auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { 1471 std::optional<VFInfo> Info = 1472 VFABI::tryDemangleForVFABI(S, CI.getFunctionType()); 1473 if (Info && CI.getModule()->getFunction(Info->VectorName)) { 1474 LLVM_DEBUG(dbgs() << "VFABI: Adding mapping '" << S << "' for " << CI 1475 << "\n"); 1476 VariantMappings.push_back(std::string(S)); 1477 } else 1478 LLVM_DEBUG(dbgs() << "VFABI: Invalid mapping '" << S << "'\n"); 1479 } 1480 } 1481 1482 FunctionType *VFABI::createFunctionType(const VFInfo &Info, 1483 const FunctionType *ScalarFTy) { 1484 // Create vector parameter types 1485 SmallVector<Type *, 8> VecTypes; 1486 ElementCount VF = Info.Shape.VF; 1487 int ScalarParamIndex = 0; 1488 for (auto VFParam : Info.Shape.Parameters) { 1489 if (VFParam.ParamKind == VFParamKind::GlobalPredicate) { 1490 VectorType *MaskTy = 1491 VectorType::get(Type::getInt1Ty(ScalarFTy->getContext()), VF); 1492 VecTypes.push_back(MaskTy); 1493 continue; 1494 } 1495 1496 Type *OperandTy = ScalarFTy->getParamType(ScalarParamIndex++); 1497 if (VFParam.ParamKind == VFParamKind::Vector) 1498 OperandTy = VectorType::get(OperandTy, VF); 1499 VecTypes.push_back(OperandTy); 1500 } 1501 1502 auto *RetTy = ScalarFTy->getReturnType(); 1503 if (!RetTy->isVoidTy()) 1504 RetTy = VectorType::get(RetTy, VF); 1505 return FunctionType::get(RetTy, VecTypes, false); 1506 } 1507 1508 bool VFShape::hasValidParameterList() const { 1509 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; 1510 ++Pos) { 1511 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); 1512 1513 switch (Parameters[Pos].ParamKind) { 1514 default: // Nothing to check. 1515 break; 1516 case VFParamKind::OMP_Linear: 1517 case VFParamKind::OMP_LinearRef: 1518 case VFParamKind::OMP_LinearVal: 1519 case VFParamKind::OMP_LinearUVal: 1520 // Compile time linear steps must be non-zero. 1521 if (Parameters[Pos].LinearStepOrPos == 0) 1522 return false; 1523 break; 1524 case VFParamKind::OMP_LinearPos: 1525 case VFParamKind::OMP_LinearRefPos: 1526 case VFParamKind::OMP_LinearValPos: 1527 case VFParamKind::OMP_LinearUValPos: 1528 // The runtime linear step must be referring to some other 1529 // parameters in the signature. 1530 if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) 1531 return false; 1532 // The linear step parameter must be marked as uniform. 1533 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != 1534 VFParamKind::OMP_Uniform) 1535 return false; 1536 // The linear step parameter can't point at itself. 1537 if (Parameters[Pos].LinearStepOrPos == int(Pos)) 1538 return false; 1539 break; 1540 case VFParamKind::GlobalPredicate: 1541 // The global predicate must be the unique. Can be placed anywhere in the 1542 // signature. 1543 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) 1544 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) 1545 return false; 1546 break; 1547 } 1548 } 1549 return true; 1550 } 1551