1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/CommandLine.h" 30 31 #define DEBUG_TYPE "vectorutils" 32 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 /// Maximum factor for an interleaved memory access. 37 static cl::opt<unsigned> MaxInterleaveGroupFactor( 38 "max-interleave-group-factor", cl::Hidden, 39 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 40 cl::init(8)); 41 42 /// Return true if all of the intrinsic's arguments and return type are scalars 43 /// for the scalar form of the intrinsic, and vectors for the vector form of the 44 /// intrinsic (except operands that are marked as always being scalar by 45 /// isVectorIntrinsicWithScalarOpAtArg). 46 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 47 switch (ID) { 48 case Intrinsic::abs: // Begin integer bit-manipulation. 49 case Intrinsic::bswap: 50 case Intrinsic::bitreverse: 51 case Intrinsic::ctpop: 52 case Intrinsic::ctlz: 53 case Intrinsic::cttz: 54 case Intrinsic::fshl: 55 case Intrinsic::fshr: 56 case Intrinsic::smax: 57 case Intrinsic::smin: 58 case Intrinsic::umax: 59 case Intrinsic::umin: 60 case Intrinsic::sadd_sat: 61 case Intrinsic::ssub_sat: 62 case Intrinsic::uadd_sat: 63 case Intrinsic::usub_sat: 64 case Intrinsic::smul_fix: 65 case Intrinsic::smul_fix_sat: 66 case Intrinsic::umul_fix: 67 case Intrinsic::umul_fix_sat: 68 case Intrinsic::sqrt: // Begin floating-point. 69 case Intrinsic::asin: 70 case Intrinsic::acos: 71 case Intrinsic::atan: 72 case Intrinsic::atan2: 73 case Intrinsic::sin: 74 case Intrinsic::cos: 75 case Intrinsic::tan: 76 case Intrinsic::sinh: 77 case Intrinsic::cosh: 78 case Intrinsic::tanh: 79 case Intrinsic::exp: 80 case Intrinsic::exp10: 81 case Intrinsic::exp2: 82 case Intrinsic::log: 83 case Intrinsic::log10: 84 case Intrinsic::log2: 85 case Intrinsic::fabs: 86 case Intrinsic::minnum: 87 case Intrinsic::maxnum: 88 case Intrinsic::minimum: 89 case Intrinsic::maximum: 90 case Intrinsic::copysign: 91 case Intrinsic::floor: 92 case Intrinsic::ceil: 93 case Intrinsic::trunc: 94 case Intrinsic::rint: 95 case Intrinsic::nearbyint: 96 case Intrinsic::round: 97 case Intrinsic::roundeven: 98 case Intrinsic::pow: 99 case Intrinsic::fma: 100 case Intrinsic::fmuladd: 101 case Intrinsic::is_fpclass: 102 case Intrinsic::powi: 103 case Intrinsic::canonicalize: 104 case Intrinsic::fptosi_sat: 105 case Intrinsic::fptoui_sat: 106 case Intrinsic::lrint: 107 case Intrinsic::llrint: 108 case Intrinsic::ucmp: 109 case Intrinsic::scmp: 110 return true; 111 default: 112 return false; 113 } 114 } 115 116 bool llvm::isTriviallyScalarizable(Intrinsic::ID ID, 117 const TargetTransformInfo *TTI) { 118 if (isTriviallyVectorizable(ID)) 119 return true; 120 121 if (TTI && Intrinsic::isTargetIntrinsic(ID)) 122 return TTI->isTargetIntrinsicTriviallyScalarizable(ID); 123 124 // TODO: Move frexp to isTriviallyVectorizable. 125 // https://github.com/llvm/llvm-project/issues/112408 126 switch (ID) { 127 case Intrinsic::frexp: 128 return true; 129 } 130 return false; 131 } 132 133 /// Identifies if the vector form of the intrinsic has a scalar operand. 134 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, 135 unsigned ScalarOpdIdx, 136 const TargetTransformInfo *TTI) { 137 138 if (TTI && Intrinsic::isTargetIntrinsic(ID)) 139 return TTI->isTargetIntrinsicWithScalarOpAtArg(ID, ScalarOpdIdx); 140 141 switch (ID) { 142 case Intrinsic::abs: 143 case Intrinsic::vp_abs: 144 case Intrinsic::ctlz: 145 case Intrinsic::vp_ctlz: 146 case Intrinsic::cttz: 147 case Intrinsic::vp_cttz: 148 case Intrinsic::is_fpclass: 149 case Intrinsic::vp_is_fpclass: 150 case Intrinsic::powi: 151 return (ScalarOpdIdx == 1); 152 case Intrinsic::smul_fix: 153 case Intrinsic::smul_fix_sat: 154 case Intrinsic::umul_fix: 155 case Intrinsic::umul_fix_sat: 156 return (ScalarOpdIdx == 2); 157 default: 158 return false; 159 } 160 } 161 162 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg( 163 Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI) { 164 assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!"); 165 166 if (TTI && Intrinsic::isTargetIntrinsic(ID)) 167 return TTI->isTargetIntrinsicWithOverloadTypeAtArg(ID, OpdIdx); 168 169 if (VPCastIntrinsic::isVPCast(ID)) 170 return OpdIdx == -1 || OpdIdx == 0; 171 172 switch (ID) { 173 case Intrinsic::fptosi_sat: 174 case Intrinsic::fptoui_sat: 175 case Intrinsic::lrint: 176 case Intrinsic::llrint: 177 case Intrinsic::vp_lrint: 178 case Intrinsic::vp_llrint: 179 case Intrinsic::ucmp: 180 case Intrinsic::scmp: 181 return OpdIdx == -1 || OpdIdx == 0; 182 case Intrinsic::is_fpclass: 183 case Intrinsic::vp_is_fpclass: 184 return OpdIdx == 0; 185 case Intrinsic::powi: 186 return OpdIdx == -1 || OpdIdx == 1; 187 default: 188 return OpdIdx == -1; 189 } 190 } 191 192 bool llvm::isVectorIntrinsicWithStructReturnOverloadAtField( 193 Intrinsic::ID ID, int RetIdx, const TargetTransformInfo *TTI) { 194 195 if (TTI && Intrinsic::isTargetIntrinsic(ID)) 196 return TTI->isTargetIntrinsicWithStructReturnOverloadAtField(ID, RetIdx); 197 198 switch (ID) { 199 case Intrinsic::frexp: 200 return RetIdx == 0 || RetIdx == 1; 201 default: 202 return RetIdx == 0; 203 } 204 } 205 206 /// Returns intrinsic ID for call. 207 /// For the input call instruction it finds mapping intrinsic and returns 208 /// its ID, in case it does not found it return not_intrinsic. 209 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 210 const TargetLibraryInfo *TLI) { 211 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); 212 if (ID == Intrinsic::not_intrinsic) 213 return Intrinsic::not_intrinsic; 214 215 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 216 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 217 ID == Intrinsic::experimental_noalias_scope_decl || 218 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) 219 return ID; 220 return Intrinsic::not_intrinsic; 221 } 222 223 /// Given a vector and an element number, see if the scalar value is 224 /// already around as a register, for example if it were inserted then extracted 225 /// from the vector. 226 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 227 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 228 VectorType *VTy = cast<VectorType>(V->getType()); 229 // For fixed-length vector, return poison for out of range access. 230 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 231 unsigned Width = FVTy->getNumElements(); 232 if (EltNo >= Width) 233 return PoisonValue::get(FVTy->getElementType()); 234 } 235 236 if (Constant *C = dyn_cast<Constant>(V)) 237 return C->getAggregateElement(EltNo); 238 239 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 240 // If this is an insert to a variable element, we don't know what it is. 241 if (!isa<ConstantInt>(III->getOperand(2))) 242 return nullptr; 243 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 244 245 // If this is an insert to the element we are looking for, return the 246 // inserted value. 247 if (EltNo == IIElt) 248 return III->getOperand(1); 249 250 // Guard against infinite loop on malformed, unreachable IR. 251 if (III == III->getOperand(0)) 252 return nullptr; 253 254 // Otherwise, the insertelement doesn't modify the value, recurse on its 255 // vector input. 256 return findScalarElement(III->getOperand(0), EltNo); 257 } 258 259 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 260 // Restrict the following transformation to fixed-length vector. 261 if (SVI && isa<FixedVectorType>(SVI->getType())) { 262 unsigned LHSWidth = 263 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); 264 int InEl = SVI->getMaskValue(EltNo); 265 if (InEl < 0) 266 return PoisonValue::get(VTy->getElementType()); 267 if (InEl < (int)LHSWidth) 268 return findScalarElement(SVI->getOperand(0), InEl); 269 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 270 } 271 272 // Extract a value from a vector add operation with a constant zero. 273 // TODO: Use getBinOpIdentity() to generalize this. 274 Value *Val; Constant *C; 275 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 276 if (Constant *Elt = C->getAggregateElement(EltNo)) 277 if (Elt->isNullValue()) 278 return findScalarElement(Val, EltNo); 279 280 // If the vector is a splat then we can trivially find the scalar element. 281 if (isa<ScalableVectorType>(VTy)) 282 if (Value *Splat = getSplatValue(V)) 283 if (EltNo < VTy->getElementCount().getKnownMinValue()) 284 return Splat; 285 286 // Otherwise, we don't know. 287 return nullptr; 288 } 289 290 int llvm::getSplatIndex(ArrayRef<int> Mask) { 291 int SplatIndex = -1; 292 for (int M : Mask) { 293 // Ignore invalid (undefined) mask elements. 294 if (M < 0) 295 continue; 296 297 // There can be only 1 non-negative mask element value if this is a splat. 298 if (SplatIndex != -1 && SplatIndex != M) 299 return -1; 300 301 // Initialize the splat index to the 1st non-negative mask element. 302 SplatIndex = M; 303 } 304 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 305 return SplatIndex; 306 } 307 308 /// Get splat value if the input is a splat vector or return nullptr. 309 /// This function is not fully general. It checks only 2 cases: 310 /// the input value is (1) a splat constant vector or (2) a sequence 311 /// of instructions that broadcasts a scalar at element 0. 312 Value *llvm::getSplatValue(const Value *V) { 313 if (isa<VectorType>(V->getType())) 314 if (auto *C = dyn_cast<Constant>(V)) 315 return C->getSplatValue(); 316 317 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 318 Value *Splat; 319 if (match(V, 320 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), 321 m_Value(), m_ZeroMask()))) 322 return Splat; 323 324 return nullptr; 325 } 326 327 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 328 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 329 330 if (isa<VectorType>(V->getType())) { 331 if (isa<UndefValue>(V)) 332 return true; 333 // FIXME: We can allow undefs, but if Index was specified, we may want to 334 // check that the constant is defined at that index. 335 if (auto *C = dyn_cast<Constant>(V)) 336 return C->getSplatValue() != nullptr; 337 } 338 339 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 340 // FIXME: We can safely allow undefs here. If Index was specified, we will 341 // check that the mask elt is defined at the required index. 342 if (!all_equal(Shuf->getShuffleMask())) 343 return false; 344 345 // Match any index. 346 if (Index == -1) 347 return true; 348 349 // Match a specific element. The mask should be defined at and match the 350 // specified index. 351 return Shuf->getMaskValue(Index) == Index; 352 } 353 354 // The remaining tests are all recursive, so bail out if we hit the limit. 355 if (Depth++ == MaxAnalysisRecursionDepth) 356 return false; 357 358 // If both operands of a binop are splats, the result is a splat. 359 Value *X, *Y, *Z; 360 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 361 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 362 363 // If all operands of a select are splats, the result is a splat. 364 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 365 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 366 isSplatValue(Z, Index, Depth); 367 368 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 369 370 return false; 371 } 372 373 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask, 374 const APInt &DemandedElts, APInt &DemandedLHS, 375 APInt &DemandedRHS, bool AllowUndefElts) { 376 DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth); 377 378 // Early out if we don't demand any elements. 379 if (DemandedElts.isZero()) 380 return true; 381 382 // Simple case of a shuffle with zeroinitializer. 383 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 384 DemandedLHS.setBit(0); 385 return true; 386 } 387 388 for (unsigned I = 0, E = Mask.size(); I != E; ++I) { 389 int M = Mask[I]; 390 assert((-1 <= M) && (M < (SrcWidth * 2)) && 391 "Invalid shuffle mask constant"); 392 393 if (!DemandedElts[I] || (AllowUndefElts && (M < 0))) 394 continue; 395 396 // For undef elements, we don't know anything about the common state of 397 // the shuffle result. 398 if (M < 0) 399 return false; 400 401 if (M < SrcWidth) 402 DemandedLHS.setBit(M); 403 else 404 DemandedRHS.setBit(M - SrcWidth); 405 } 406 407 return true; 408 } 409 410 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, 411 SmallVectorImpl<int> &ScaledMask) { 412 assert(Scale > 0 && "Unexpected scaling factor"); 413 414 // Fast-path: if no scaling, then it is just a copy. 415 if (Scale == 1) { 416 ScaledMask.assign(Mask.begin(), Mask.end()); 417 return; 418 } 419 420 ScaledMask.clear(); 421 for (int MaskElt : Mask) { 422 if (MaskElt >= 0) { 423 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && 424 "Overflowed 32-bits"); 425 } 426 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) 427 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); 428 } 429 } 430 431 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, 432 SmallVectorImpl<int> &ScaledMask) { 433 assert(Scale > 0 && "Unexpected scaling factor"); 434 435 // Fast-path: if no scaling, then it is just a copy. 436 if (Scale == 1) { 437 ScaledMask.assign(Mask.begin(), Mask.end()); 438 return true; 439 } 440 441 // We must map the original elements down evenly to a type with less elements. 442 int NumElts = Mask.size(); 443 if (NumElts % Scale != 0) 444 return false; 445 446 ScaledMask.clear(); 447 ScaledMask.reserve(NumElts / Scale); 448 449 // Step through the input mask by splitting into Scale-sized slices. 450 do { 451 ArrayRef<int> MaskSlice = Mask.take_front(Scale); 452 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); 453 454 // The first element of the slice determines how we evaluate this slice. 455 int SliceFront = MaskSlice.front(); 456 if (SliceFront < 0) { 457 // Negative values (undef or other "sentinel" values) must be equal across 458 // the entire slice. 459 if (!all_equal(MaskSlice)) 460 return false; 461 ScaledMask.push_back(SliceFront); 462 } else { 463 // A positive mask element must be cleanly divisible. 464 if (SliceFront % Scale != 0) 465 return false; 466 // Elements of the slice must be consecutive. 467 for (int i = 1; i < Scale; ++i) 468 if (MaskSlice[i] != SliceFront + i) 469 return false; 470 ScaledMask.push_back(SliceFront / Scale); 471 } 472 Mask = Mask.drop_front(Scale); 473 } while (!Mask.empty()); 474 475 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); 476 477 // All elements of the original mask can be scaled down to map to the elements 478 // of a mask with wider elements. 479 return true; 480 } 481 482 bool llvm::widenShuffleMaskElts(ArrayRef<int> M, 483 SmallVectorImpl<int> &NewMask) { 484 unsigned NumElts = M.size(); 485 if (NumElts % 2 != 0) 486 return false; 487 488 NewMask.clear(); 489 for (unsigned i = 0; i < NumElts; i += 2) { 490 int M0 = M[i]; 491 int M1 = M[i + 1]; 492 493 // If both elements are undef, new mask is undef too. 494 if (M0 == -1 && M1 == -1) { 495 NewMask.push_back(-1); 496 continue; 497 } 498 499 if (M0 == -1 && M1 != -1 && (M1 % 2) == 1) { 500 NewMask.push_back(M1 / 2); 501 continue; 502 } 503 504 if (M0 != -1 && (M0 % 2) == 0 && ((M0 + 1) == M1 || M1 == -1)) { 505 NewMask.push_back(M0 / 2); 506 continue; 507 } 508 509 NewMask.clear(); 510 return false; 511 } 512 513 assert(NewMask.size() == NumElts / 2 && "Incorrect size for mask!"); 514 return true; 515 } 516 517 bool llvm::scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef<int> Mask, 518 SmallVectorImpl<int> &ScaledMask) { 519 unsigned NumSrcElts = Mask.size(); 520 assert(NumSrcElts > 0 && NumDstElts > 0 && "Unexpected scaling factor"); 521 522 // Fast-path: if no scaling, then it is just a copy. 523 if (NumSrcElts == NumDstElts) { 524 ScaledMask.assign(Mask.begin(), Mask.end()); 525 return true; 526 } 527 528 // Ensure we can find a whole scale factor. 529 assert(((NumSrcElts % NumDstElts) == 0 || (NumDstElts % NumSrcElts) == 0) && 530 "Unexpected scaling factor"); 531 532 if (NumSrcElts > NumDstElts) { 533 int Scale = NumSrcElts / NumDstElts; 534 return widenShuffleMaskElts(Scale, Mask, ScaledMask); 535 } 536 537 int Scale = NumDstElts / NumSrcElts; 538 narrowShuffleMaskElts(Scale, Mask, ScaledMask); 539 return true; 540 } 541 542 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask, 543 SmallVectorImpl<int> &ScaledMask) { 544 std::array<SmallVector<int, 16>, 2> TmpMasks; 545 SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1]; 546 ArrayRef<int> InputMask = Mask; 547 for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) { 548 while (widenShuffleMaskElts(Scale, InputMask, *Output)) { 549 InputMask = *Output; 550 std::swap(Output, Tmp); 551 } 552 } 553 ScaledMask.assign(InputMask.begin(), InputMask.end()); 554 } 555 556 void llvm::processShuffleMasks( 557 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, 558 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, 559 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, 560 function_ref<void(ArrayRef<int>, unsigned, unsigned, bool)> 561 ManyInputsAction) { 562 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs); 563 // Try to perform better estimation of the permutation. 564 // 1. Split the source/destination vectors into real registers. 565 // 2. Do the mask analysis to identify which real registers are 566 // permuted. 567 int Sz = Mask.size(); 568 unsigned SzDest = Sz / NumOfDestRegs; 569 unsigned SzSrc = Sz / NumOfSrcRegs; 570 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 571 auto &RegMasks = Res[I]; 572 RegMasks.assign(2 * NumOfSrcRegs, {}); 573 // Check that the values in dest registers are in the one src 574 // register. 575 for (unsigned K = 0; K < SzDest; ++K) { 576 int Idx = I * SzDest + K; 577 if (Idx == Sz) 578 break; 579 if (Mask[Idx] >= 2 * Sz || Mask[Idx] == PoisonMaskElem) 580 continue; 581 int MaskIdx = Mask[Idx] % Sz; 582 int SrcRegIdx = MaskIdx / SzSrc + (Mask[Idx] >= Sz ? NumOfSrcRegs : 0); 583 // Add a cost of PermuteTwoSrc for each new source register permute, 584 // if we have more than one source registers. 585 if (RegMasks[SrcRegIdx].empty()) 586 RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem); 587 RegMasks[SrcRegIdx][K] = MaskIdx % SzSrc; 588 } 589 } 590 // Process split mask. 591 for (unsigned I : seq<unsigned>(NumOfUsedRegs)) { 592 auto &Dest = Res[I]; 593 int NumSrcRegs = 594 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 595 switch (NumSrcRegs) { 596 case 0: 597 // No input vectors were used! 598 NoInputAction(); 599 break; 600 case 1: { 601 // Find the only mask with at least single undef mask elem. 602 auto *It = 603 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 604 unsigned SrcReg = std::distance(Dest.begin(), It); 605 SingleInputAction(*It, SrcReg, I); 606 break; 607 } 608 default: { 609 // The first mask is a permutation of a single register. Since we have >2 610 // input registers to shuffle, we merge the masks for 2 first registers 611 // and generate a shuffle of 2 registers rather than the reordering of the 612 // first register and then shuffle with the second register. Next, 613 // generate the shuffles of the resulting register + the remaining 614 // registers from the list. 615 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask, 616 ArrayRef<int> SecondMask) { 617 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { 618 if (SecondMask[Idx] != PoisonMaskElem) { 619 assert(FirstMask[Idx] == PoisonMaskElem && 620 "Expected undefined mask element."); 621 FirstMask[Idx] = SecondMask[Idx] + VF; 622 } 623 } 624 }; 625 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) { 626 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 627 if (Mask[Idx] != PoisonMaskElem) 628 Mask[Idx] = Idx; 629 } 630 }; 631 int SecondIdx; 632 bool NewReg = true; 633 do { 634 int FirstIdx = -1; 635 SecondIdx = -1; 636 MutableArrayRef<int> FirstMask, SecondMask; 637 for (unsigned I : seq<unsigned>(2 * NumOfSrcRegs)) { 638 SmallVectorImpl<int> &RegMask = Dest[I]; 639 if (RegMask.empty()) 640 continue; 641 642 if (FirstIdx == SecondIdx) { 643 FirstIdx = I; 644 FirstMask = RegMask; 645 continue; 646 } 647 SecondIdx = I; 648 SecondMask = RegMask; 649 CombineMasks(FirstMask, SecondMask); 650 ManyInputsAction(FirstMask, FirstIdx, SecondIdx, NewReg); 651 NewReg = false; 652 NormalizeMask(FirstMask); 653 RegMask.clear(); 654 SecondMask = FirstMask; 655 SecondIdx = FirstIdx; 656 } 657 if (FirstIdx != SecondIdx && SecondIdx >= 0) { 658 CombineMasks(SecondMask, FirstMask); 659 ManyInputsAction(SecondMask, SecondIdx, FirstIdx, NewReg); 660 NewReg = false; 661 Dest[FirstIdx].clear(); 662 NormalizeMask(SecondMask); 663 } 664 } while (SecondIdx >= 0); 665 break; 666 } 667 } 668 } 669 } 670 671 void llvm::getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, 672 const APInt &DemandedElts, 673 APInt &DemandedLHS, 674 APInt &DemandedRHS) { 675 assert(VectorBitWidth >= 128 && "Vectors smaller than 128 bit not supported"); 676 int NumLanes = VectorBitWidth / 128; 677 int NumElts = DemandedElts.getBitWidth(); 678 int NumEltsPerLane = NumElts / NumLanes; 679 int HalfEltsPerLane = NumEltsPerLane / 2; 680 681 DemandedLHS = APInt::getZero(NumElts); 682 DemandedRHS = APInt::getZero(NumElts); 683 684 // Map DemandedElts to the horizontal operands. 685 for (int Idx = 0; Idx != NumElts; ++Idx) { 686 if (!DemandedElts[Idx]) 687 continue; 688 int LaneIdx = (Idx / NumEltsPerLane) * NumEltsPerLane; 689 int LocalIdx = Idx % NumEltsPerLane; 690 if (LocalIdx < HalfEltsPerLane) { 691 DemandedLHS.setBit(LaneIdx + 2 * LocalIdx); 692 } else { 693 LocalIdx -= HalfEltsPerLane; 694 DemandedRHS.setBit(LaneIdx + 2 * LocalIdx); 695 } 696 } 697 } 698 699 MapVector<Instruction *, uint64_t> 700 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 701 const TargetTransformInfo *TTI) { 702 703 // DemandedBits will give us every value's live-out bits. But we want 704 // to ensure no extra casts would need to be inserted, so every DAG 705 // of connected values must have the same minimum bitwidth. 706 EquivalenceClasses<Value *> ECs; 707 SmallVector<Value *, 16> Worklist; 708 SmallPtrSet<Value *, 4> Roots; 709 SmallPtrSet<Value *, 16> Visited; 710 DenseMap<Value *, uint64_t> DBits; 711 SmallPtrSet<Instruction *, 4> InstructionSet; 712 MapVector<Instruction *, uint64_t> MinBWs; 713 714 // Determine the roots. We work bottom-up, from truncs or icmps. 715 bool SeenExtFromIllegalType = false; 716 for (auto *BB : Blocks) 717 for (auto &I : *BB) { 718 InstructionSet.insert(&I); 719 720 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 721 !TTI->isTypeLegal(I.getOperand(0)->getType())) 722 SeenExtFromIllegalType = true; 723 724 // Only deal with non-vector integers up to 64-bits wide. 725 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 726 !I.getType()->isVectorTy() && 727 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 728 // Don't make work for ourselves. If we know the loaded type is legal, 729 // don't add it to the worklist. 730 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 731 continue; 732 733 Worklist.push_back(&I); 734 Roots.insert(&I); 735 } 736 } 737 // Early exit. 738 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 739 return MinBWs; 740 741 // Now proceed breadth-first, unioning values together. 742 while (!Worklist.empty()) { 743 Value *Val = Worklist.pop_back_val(); 744 Value *Leader = ECs.getOrInsertLeaderValue(Val); 745 746 if (!Visited.insert(Val).second) 747 continue; 748 749 // Non-instructions terminate a chain successfully. 750 if (!isa<Instruction>(Val)) 751 continue; 752 Instruction *I = cast<Instruction>(Val); 753 754 // If we encounter a type that is larger than 64 bits, we can't represent 755 // it so bail out. 756 if (DB.getDemandedBits(I).getBitWidth() > 64) 757 return MapVector<Instruction *, uint64_t>(); 758 759 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 760 DBits[Leader] |= V; 761 DBits[I] = V; 762 763 // Casts, loads and instructions outside of our range terminate a chain 764 // successfully. 765 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 766 !InstructionSet.count(I)) 767 continue; 768 769 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 770 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 771 // transform anything that relies on them. 772 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 773 !I->getType()->isIntegerTy()) { 774 DBits[Leader] |= ~0ULL; 775 continue; 776 } 777 778 // We don't modify the types of PHIs. Reductions will already have been 779 // truncated if possible, and inductions' sizes will have been chosen by 780 // indvars. 781 if (isa<PHINode>(I)) 782 continue; 783 784 if (DBits[Leader] == ~0ULL) 785 // All bits demanded, no point continuing. 786 continue; 787 788 for (Value *O : cast<User>(I)->operands()) { 789 ECs.unionSets(Leader, O); 790 Worklist.push_back(O); 791 } 792 } 793 794 // Now we've discovered all values, walk them to see if there are 795 // any users we didn't see. If there are, we can't optimize that 796 // chain. 797 for (auto &I : DBits) 798 for (auto *U : I.first->users()) 799 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 800 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 801 802 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 803 uint64_t LeaderDemandedBits = 0; 804 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 805 LeaderDemandedBits |= DBits[M]; 806 807 uint64_t MinBW = llvm::bit_width(LeaderDemandedBits); 808 // Round up to a power of 2 809 MinBW = llvm::bit_ceil(MinBW); 810 811 // We don't modify the types of PHIs. Reductions will already have been 812 // truncated if possible, and inductions' sizes will have been chosen by 813 // indvars. 814 // If we are required to shrink a PHI, abandon this entire equivalence class. 815 bool Abort = false; 816 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 817 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) { 818 Abort = true; 819 break; 820 } 821 if (Abort) 822 continue; 823 824 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { 825 auto *MI = dyn_cast<Instruction>(M); 826 if (!MI) 827 continue; 828 Type *Ty = M->getType(); 829 if (Roots.count(M)) 830 Ty = MI->getOperand(0)->getType(); 831 832 if (MinBW >= Ty->getScalarSizeInBits()) 833 continue; 834 835 // If any of M's operands demand more bits than MinBW then M cannot be 836 // performed safely in MinBW. 837 if (any_of(MI->operands(), [&DB, MinBW](Use &U) { 838 auto *CI = dyn_cast<ConstantInt>(U); 839 // For constants shift amounts, check if the shift would result in 840 // poison. 841 if (CI && 842 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) && 843 U.getOperandNo() == 1) 844 return CI->uge(MinBW); 845 uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue()); 846 return bit_ceil(BW) > MinBW; 847 })) 848 continue; 849 850 MinBWs[MI] = MinBW; 851 } 852 } 853 854 return MinBWs; 855 } 856 857 /// Add all access groups in @p AccGroups to @p List. 858 template <typename ListT> 859 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 860 // Interpret an access group as a list containing itself. 861 if (AccGroups->getNumOperands() == 0) { 862 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 863 List.insert(AccGroups); 864 return; 865 } 866 867 for (const auto &AccGroupListOp : AccGroups->operands()) { 868 auto *Item = cast<MDNode>(AccGroupListOp.get()); 869 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 870 List.insert(Item); 871 } 872 } 873 874 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 875 if (!AccGroups1) 876 return AccGroups2; 877 if (!AccGroups2) 878 return AccGroups1; 879 if (AccGroups1 == AccGroups2) 880 return AccGroups1; 881 882 SmallSetVector<Metadata *, 4> Union; 883 addToAccessGroupList(Union, AccGroups1); 884 addToAccessGroupList(Union, AccGroups2); 885 886 if (Union.size() == 0) 887 return nullptr; 888 if (Union.size() == 1) 889 return cast<MDNode>(Union.front()); 890 891 LLVMContext &Ctx = AccGroups1->getContext(); 892 return MDNode::get(Ctx, Union.getArrayRef()); 893 } 894 895 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 896 const Instruction *Inst2) { 897 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 898 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 899 900 if (!MayAccessMem1 && !MayAccessMem2) 901 return nullptr; 902 if (!MayAccessMem1) 903 return Inst2->getMetadata(LLVMContext::MD_access_group); 904 if (!MayAccessMem2) 905 return Inst1->getMetadata(LLVMContext::MD_access_group); 906 907 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 908 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 909 if (!MD1 || !MD2) 910 return nullptr; 911 if (MD1 == MD2) 912 return MD1; 913 914 // Use set for scalable 'contains' check. 915 SmallPtrSet<Metadata *, 4> AccGroupSet2; 916 addToAccessGroupList(AccGroupSet2, MD2); 917 918 SmallVector<Metadata *, 4> Intersection; 919 if (MD1->getNumOperands() == 0) { 920 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 921 if (AccGroupSet2.count(MD1)) 922 Intersection.push_back(MD1); 923 } else { 924 for (const MDOperand &Node : MD1->operands()) { 925 auto *Item = cast<MDNode>(Node.get()); 926 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 927 if (AccGroupSet2.count(Item)) 928 Intersection.push_back(Item); 929 } 930 } 931 932 if (Intersection.size() == 0) 933 return nullptr; 934 if (Intersection.size() == 1) 935 return cast<MDNode>(Intersection.front()); 936 937 LLVMContext &Ctx = Inst1->getContext(); 938 return MDNode::get(Ctx, Intersection); 939 } 940 941 /// \returns \p I after propagating metadata from \p VL. 942 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 943 if (VL.empty()) 944 return Inst; 945 Instruction *I0 = cast<Instruction>(VL[0]); 946 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 947 I0->getAllMetadataOtherThanDebugLoc(Metadata); 948 949 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 950 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 951 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 952 LLVMContext::MD_access_group, LLVMContext::MD_mmra}) { 953 MDNode *MD = I0->getMetadata(Kind); 954 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 955 const Instruction *IJ = cast<Instruction>(VL[J]); 956 MDNode *IMD = IJ->getMetadata(Kind); 957 958 switch (Kind) { 959 case LLVMContext::MD_mmra: { 960 MD = MMRAMetadata::combine(Inst->getContext(), MD, IMD); 961 break; 962 } 963 case LLVMContext::MD_tbaa: 964 MD = MDNode::getMostGenericTBAA(MD, IMD); 965 break; 966 case LLVMContext::MD_alias_scope: 967 MD = MDNode::getMostGenericAliasScope(MD, IMD); 968 break; 969 case LLVMContext::MD_fpmath: 970 MD = MDNode::getMostGenericFPMath(MD, IMD); 971 break; 972 case LLVMContext::MD_noalias: 973 case LLVMContext::MD_nontemporal: 974 case LLVMContext::MD_invariant_load: 975 MD = MDNode::intersect(MD, IMD); 976 break; 977 case LLVMContext::MD_access_group: 978 MD = intersectAccessGroups(Inst, IJ); 979 break; 980 default: 981 llvm_unreachable("unhandled metadata"); 982 } 983 } 984 985 Inst->setMetadata(Kind, MD); 986 } 987 988 return Inst; 989 } 990 991 Constant * 992 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 993 const InterleaveGroup<Instruction> &Group) { 994 // All 1's means mask is not needed. 995 if (Group.getNumMembers() == Group.getFactor()) 996 return nullptr; 997 998 // TODO: support reversed access. 999 assert(!Group.isReverse() && "Reversed group not supported."); 1000 1001 SmallVector<Constant *, 16> Mask; 1002 for (unsigned i = 0; i < VF; i++) 1003 for (unsigned j = 0; j < Group.getFactor(); ++j) { 1004 unsigned HasMember = Group.getMember(j) ? 1 : 0; 1005 Mask.push_back(Builder.getInt1(HasMember)); 1006 } 1007 1008 return ConstantVector::get(Mask); 1009 } 1010 1011 llvm::SmallVector<int, 16> 1012 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { 1013 SmallVector<int, 16> MaskVec; 1014 for (unsigned i = 0; i < VF; i++) 1015 for (unsigned j = 0; j < ReplicationFactor; j++) 1016 MaskVec.push_back(i); 1017 1018 return MaskVec; 1019 } 1020 1021 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, 1022 unsigned NumVecs) { 1023 SmallVector<int, 16> Mask; 1024 for (unsigned i = 0; i < VF; i++) 1025 for (unsigned j = 0; j < NumVecs; j++) 1026 Mask.push_back(j * VF + i); 1027 1028 return Mask; 1029 } 1030 1031 llvm::SmallVector<int, 16> 1032 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { 1033 SmallVector<int, 16> Mask; 1034 for (unsigned i = 0; i < VF; i++) 1035 Mask.push_back(Start + i * Stride); 1036 1037 return Mask; 1038 } 1039 1040 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, 1041 unsigned NumInts, 1042 unsigned NumUndefs) { 1043 SmallVector<int, 16> Mask; 1044 for (unsigned i = 0; i < NumInts; i++) 1045 Mask.push_back(Start + i); 1046 1047 for (unsigned i = 0; i < NumUndefs; i++) 1048 Mask.push_back(-1); 1049 1050 return Mask; 1051 } 1052 1053 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, 1054 unsigned NumElts) { 1055 // Avoid casts in the loop and make sure we have a reasonable number. 1056 int NumEltsSigned = NumElts; 1057 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); 1058 1059 // If the mask chooses an element from operand 1, reduce it to choose from the 1060 // corresponding element of operand 0. Undef mask elements are unchanged. 1061 SmallVector<int, 16> UnaryMask; 1062 for (int MaskElt : Mask) { 1063 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); 1064 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; 1065 UnaryMask.push_back(UnaryElt); 1066 } 1067 return UnaryMask; 1068 } 1069 1070 /// A helper function for concatenating vectors. This function concatenates two 1071 /// vectors having the same element type. If the second vector has fewer 1072 /// elements than the first, it is padded with undefs. 1073 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 1074 Value *V2) { 1075 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 1076 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 1077 assert(VecTy1 && VecTy2 && 1078 VecTy1->getScalarType() == VecTy2->getScalarType() && 1079 "Expect two vectors with the same element type"); 1080 1081 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); 1082 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); 1083 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 1084 1085 if (NumElts1 > NumElts2) { 1086 // Extend with UNDEFs. 1087 V2 = Builder.CreateShuffleVector( 1088 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); 1089 } 1090 1091 return Builder.CreateShuffleVector( 1092 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); 1093 } 1094 1095 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 1096 ArrayRef<Value *> Vecs) { 1097 unsigned NumVecs = Vecs.size(); 1098 assert(NumVecs > 1 && "Should be at least two vectors"); 1099 1100 SmallVector<Value *, 8> ResList; 1101 ResList.append(Vecs.begin(), Vecs.end()); 1102 do { 1103 SmallVector<Value *, 8> TmpList; 1104 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 1105 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 1106 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 1107 "Only the last vector may have a different type"); 1108 1109 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 1110 } 1111 1112 // Push the last vector if the total number of vectors is odd. 1113 if (NumVecs % 2 != 0) 1114 TmpList.push_back(ResList[NumVecs - 1]); 1115 1116 ResList = TmpList; 1117 NumVecs = ResList.size(); 1118 } while (NumVecs > 1); 1119 1120 return ResList[0]; 1121 } 1122 1123 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 1124 assert(isa<VectorType>(Mask->getType()) && 1125 isa<IntegerType>(Mask->getType()->getScalarType()) && 1126 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1127 1 && 1128 "Mask must be a vector of i1"); 1129 1130 auto *ConstMask = dyn_cast<Constant>(Mask); 1131 if (!ConstMask) 1132 return false; 1133 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 1134 return true; 1135 if (isa<ScalableVectorType>(ConstMask->getType())) 1136 return false; 1137 for (unsigned 1138 I = 0, 1139 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1140 I != E; ++I) { 1141 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1142 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 1143 continue; 1144 return false; 1145 } 1146 return true; 1147 } 1148 1149 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 1150 assert(isa<VectorType>(Mask->getType()) && 1151 isa<IntegerType>(Mask->getType()->getScalarType()) && 1152 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1153 1 && 1154 "Mask must be a vector of i1"); 1155 1156 auto *ConstMask = dyn_cast<Constant>(Mask); 1157 if (!ConstMask) 1158 return false; 1159 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 1160 return true; 1161 if (isa<ScalableVectorType>(ConstMask->getType())) 1162 return false; 1163 for (unsigned 1164 I = 0, 1165 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1166 I != E; ++I) { 1167 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1168 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1169 continue; 1170 return false; 1171 } 1172 return true; 1173 } 1174 1175 bool llvm::maskContainsAllOneOrUndef(Value *Mask) { 1176 assert(isa<VectorType>(Mask->getType()) && 1177 isa<IntegerType>(Mask->getType()->getScalarType()) && 1178 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1179 1 && 1180 "Mask must be a vector of i1"); 1181 1182 auto *ConstMask = dyn_cast<Constant>(Mask); 1183 if (!ConstMask) 1184 return false; 1185 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 1186 return true; 1187 if (isa<ScalableVectorType>(ConstMask->getType())) 1188 return false; 1189 for (unsigned 1190 I = 0, 1191 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1192 I != E; ++I) { 1193 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1194 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1195 return true; 1196 } 1197 return false; 1198 } 1199 1200 /// TODO: This is a lot like known bits, but for 1201 /// vectors. Is there something we can common this with? 1202 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 1203 assert(isa<FixedVectorType>(Mask->getType()) && 1204 isa<IntegerType>(Mask->getType()->getScalarType()) && 1205 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1206 1 && 1207 "Mask must be a fixed width vector of i1"); 1208 1209 const unsigned VWidth = 1210 cast<FixedVectorType>(Mask->getType())->getNumElements(); 1211 APInt DemandedElts = APInt::getAllOnes(VWidth); 1212 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 1213 for (unsigned i = 0; i < VWidth; i++) 1214 if (CV->getAggregateElement(i)->isNullValue()) 1215 DemandedElts.clearBit(i); 1216 return DemandedElts; 1217 } 1218 1219 bool InterleavedAccessInfo::isStrided(int Stride) { 1220 unsigned Factor = std::abs(Stride); 1221 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1222 } 1223 1224 void InterleavedAccessInfo::collectConstStrideAccesses( 1225 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1226 const DenseMap<Value*, const SCEV*> &Strides) { 1227 auto &DL = TheLoop->getHeader()->getDataLayout(); 1228 1229 // Since it's desired that the load/store instructions be maintained in 1230 // "program order" for the interleaved access analysis, we have to visit the 1231 // blocks in the loop in reverse postorder (i.e., in a topological order). 1232 // Such an ordering will ensure that any load/store that may be executed 1233 // before a second load/store will precede the second load/store in 1234 // AccessStrideInfo. 1235 LoopBlocksDFS DFS(TheLoop); 1236 DFS.perform(LI); 1237 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 1238 for (auto &I : *BB) { 1239 Value *Ptr = getLoadStorePointerOperand(&I); 1240 if (!Ptr) 1241 continue; 1242 Type *ElementTy = getLoadStoreType(&I); 1243 1244 // Currently, codegen doesn't support cases where the type size doesn't 1245 // match the alloc size. Skip them for now. 1246 uint64_t Size = DL.getTypeAllocSize(ElementTy); 1247 if (Size * 8 != DL.getTypeSizeInBits(ElementTy)) 1248 continue; 1249 1250 // We don't check wrapping here because we don't know yet if Ptr will be 1251 // part of a full group or a group with gaps. Checking wrapping for all 1252 // pointers (even those that end up in groups with no gaps) will be overly 1253 // conservative. For full groups, wrapping should be ok since if we would 1254 // wrap around the address space we would do a memory access at nullptr 1255 // even without the transformation. The wrapping checks are therefore 1256 // deferred until after we've formed the interleaved groups. 1257 int64_t Stride = 1258 getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, 1259 /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0); 1260 1261 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 1262 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, 1263 getLoadStoreAlignment(&I)); 1264 } 1265 } 1266 1267 // Analyze interleaved accesses and collect them into interleaved load and 1268 // store groups. 1269 // 1270 // When generating code for an interleaved load group, we effectively hoist all 1271 // loads in the group to the location of the first load in program order. When 1272 // generating code for an interleaved store group, we sink all stores to the 1273 // location of the last store. This code motion can change the order of load 1274 // and store instructions and may break dependences. 1275 // 1276 // The code generation strategy mentioned above ensures that we won't violate 1277 // any write-after-read (WAR) dependences. 1278 // 1279 // E.g., for the WAR dependence: a = A[i]; // (1) 1280 // A[i] = b; // (2) 1281 // 1282 // The store group of (2) is always inserted at or below (2), and the load 1283 // group of (1) is always inserted at or above (1). Thus, the instructions will 1284 // never be reordered. All other dependences are checked to ensure the 1285 // correctness of the instruction reordering. 1286 // 1287 // The algorithm visits all memory accesses in the loop in bottom-up program 1288 // order. Program order is established by traversing the blocks in the loop in 1289 // reverse postorder when collecting the accesses. 1290 // 1291 // We visit the memory accesses in bottom-up order because it can simplify the 1292 // construction of store groups in the presence of write-after-write (WAW) 1293 // dependences. 1294 // 1295 // E.g., for the WAW dependence: A[i] = a; // (1) 1296 // A[i] = b; // (2) 1297 // A[i + 1] = c; // (3) 1298 // 1299 // We will first create a store group with (3) and (2). (1) can't be added to 1300 // this group because it and (2) are dependent. However, (1) can be grouped 1301 // with other accesses that may precede it in program order. Note that a 1302 // bottom-up order does not imply that WAW dependences should not be checked. 1303 void InterleavedAccessInfo::analyzeInterleaving( 1304 bool EnablePredicatedInterleavedMemAccesses) { 1305 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 1306 const auto &Strides = LAI->getSymbolicStrides(); 1307 1308 // Holds all accesses with a constant stride. 1309 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 1310 collectConstStrideAccesses(AccessStrideInfo, Strides); 1311 1312 if (AccessStrideInfo.empty()) 1313 return; 1314 1315 // Collect the dependences in the loop. 1316 collectDependences(); 1317 1318 // Holds all interleaved store groups temporarily. 1319 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 1320 // Holds all interleaved load groups temporarily. 1321 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 1322 // Groups added to this set cannot have new members added. 1323 SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups; 1324 1325 // Search in bottom-up program order for pairs of accesses (A and B) that can 1326 // form interleaved load or store groups. In the algorithm below, access A 1327 // precedes access B in program order. We initialize a group for B in the 1328 // outer loop of the algorithm, and then in the inner loop, we attempt to 1329 // insert each A into B's group if: 1330 // 1331 // 1. A and B have the same stride, 1332 // 2. A and B have the same memory object size, and 1333 // 3. A belongs in B's group according to its distance from B. 1334 // 1335 // Special care is taken to ensure group formation will not break any 1336 // dependences. 1337 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 1338 BI != E; ++BI) { 1339 Instruction *B = BI->first; 1340 StrideDescriptor DesB = BI->second; 1341 1342 // Initialize a group for B if it has an allowable stride. Even if we don't 1343 // create a group for B, we continue with the bottom-up algorithm to ensure 1344 // we don't break any of B's dependences. 1345 InterleaveGroup<Instruction> *GroupB = nullptr; 1346 if (isStrided(DesB.Stride) && 1347 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 1348 GroupB = getInterleaveGroup(B); 1349 if (!GroupB) { 1350 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 1351 << '\n'); 1352 GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 1353 if (B->mayWriteToMemory()) 1354 StoreGroups.insert(GroupB); 1355 else 1356 LoadGroups.insert(GroupB); 1357 } 1358 } 1359 1360 for (auto AI = std::next(BI); AI != E; ++AI) { 1361 Instruction *A = AI->first; 1362 StrideDescriptor DesA = AI->second; 1363 1364 // Our code motion strategy implies that we can't have dependences 1365 // between accesses in an interleaved group and other accesses located 1366 // between the first and last member of the group. Note that this also 1367 // means that a group can't have more than one member at a given offset. 1368 // The accesses in a group can have dependences with other accesses, but 1369 // we must ensure we don't extend the boundaries of the group such that 1370 // we encompass those dependent accesses. 1371 // 1372 // For example, assume we have the sequence of accesses shown below in a 1373 // stride-2 loop: 1374 // 1375 // (1, 2) is a group | A[i] = a; // (1) 1376 // | A[i-1] = b; // (2) | 1377 // A[i-3] = c; // (3) 1378 // A[i] = d; // (4) | (2, 4) is not a group 1379 // 1380 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1381 // but not with (4). If we did, the dependent access (3) would be within 1382 // the boundaries of the (2, 4) group. 1383 auto DependentMember = [&](InterleaveGroup<Instruction> *Group, 1384 StrideEntry *A) -> Instruction * { 1385 for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) { 1386 Instruction *MemberOfGroupB = Group->getMember(Index); 1387 if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups( 1388 A, &*AccessStrideInfo.find(MemberOfGroupB))) 1389 return MemberOfGroupB; 1390 } 1391 return nullptr; 1392 }; 1393 1394 auto GroupA = getInterleaveGroup(A); 1395 // If A is a load, dependencies are tolerable, there's nothing to do here. 1396 // If both A and B belong to the same (store) group, they are independent, 1397 // even if dependencies have not been recorded. 1398 // If both GroupA and GroupB are null, there's nothing to do here. 1399 if (A->mayWriteToMemory() && GroupA != GroupB) { 1400 Instruction *DependentInst = nullptr; 1401 // If GroupB is a load group, we have to compare AI against all 1402 // members of GroupB because if any load within GroupB has a dependency 1403 // on AI, we need to mark GroupB as complete and also release the 1404 // store GroupA (if A belongs to one). The former prevents incorrect 1405 // hoisting of load B above store A while the latter prevents incorrect 1406 // sinking of store A below load B. 1407 if (GroupB && LoadGroups.contains(GroupB)) 1408 DependentInst = DependentMember(GroupB, &*AI); 1409 else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) 1410 DependentInst = B; 1411 1412 if (DependentInst) { 1413 // A has a store dependence on B (or on some load within GroupB) and 1414 // is part of a store group. Release A's group to prevent illegal 1415 // sinking of A below B. A will then be free to form another group 1416 // with instructions that precede it. 1417 if (GroupA && StoreGroups.contains(GroupA)) { 1418 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1419 "dependence between " 1420 << *A << " and " << *DependentInst << '\n'); 1421 StoreGroups.remove(GroupA); 1422 releaseGroup(GroupA); 1423 } 1424 // If B is a load and part of an interleave group, no earlier loads 1425 // can be added to B's interleave group, because this would mean the 1426 // DependentInst would move across store A. Mark the interleave group 1427 // as complete. 1428 if (GroupB && LoadGroups.contains(GroupB)) { 1429 LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B 1430 << " as complete.\n"); 1431 CompletedLoadGroups.insert(GroupB); 1432 } 1433 } 1434 } 1435 if (CompletedLoadGroups.contains(GroupB)) { 1436 // Skip trying to add A to B, continue to look for other conflicting A's 1437 // in groups to be released. 1438 continue; 1439 } 1440 1441 // At this point, we've checked for illegal code motion. If either A or B 1442 // isn't strided, there's nothing left to do. 1443 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1444 continue; 1445 1446 // Ignore A if it's already in a group or isn't the same kind of memory 1447 // operation as B. 1448 // Note that mayReadFromMemory() isn't mutually exclusive to 1449 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1450 // here, canVectorizeMemory() should have returned false - except for the 1451 // case we asked for optimization remarks. 1452 if (isInterleaved(A) || 1453 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1454 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1455 continue; 1456 1457 // Check rules 1 and 2. Ignore A if its stride or size is different from 1458 // that of B. 1459 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1460 continue; 1461 1462 // Ignore A if the memory object of A and B don't belong to the same 1463 // address space 1464 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1465 continue; 1466 1467 // Calculate the distance from A to B. 1468 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1469 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1470 if (!DistToB) 1471 continue; 1472 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1473 1474 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1475 // size. 1476 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1477 continue; 1478 1479 // All members of a predicated interleave-group must have the same predicate, 1480 // and currently must reside in the same BB. 1481 BasicBlock *BlockA = A->getParent(); 1482 BasicBlock *BlockB = B->getParent(); 1483 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1484 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1485 continue; 1486 1487 // The index of A is the index of B plus A's distance to B in multiples 1488 // of the size. 1489 int IndexA = 1490 GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1491 1492 // Try to insert A into B's group. 1493 if (GroupB->insertMember(A, IndexA, DesA.Alignment)) { 1494 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1495 << " into the interleave group with" << *B 1496 << '\n'); 1497 InterleaveGroupMap[A] = GroupB; 1498 1499 // Set the first load in program order as the insert position. 1500 if (A->mayReadFromMemory()) 1501 GroupB->setInsertPos(A); 1502 } 1503 } // Iteration over A accesses. 1504 } // Iteration over B accesses. 1505 1506 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, 1507 int Index, 1508 const char *FirstOrLast) -> bool { 1509 Instruction *Member = Group->getMember(Index); 1510 assert(Member && "Group member does not exist"); 1511 Value *MemberPtr = getLoadStorePointerOperand(Member); 1512 Type *AccessTy = getLoadStoreType(Member); 1513 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, 1514 /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0)) 1515 return false; 1516 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 1517 << FirstOrLast 1518 << " group member potentially pointer-wrapping.\n"); 1519 releaseGroup(Group); 1520 return true; 1521 }; 1522 1523 // Remove interleaved groups with gaps whose memory 1524 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1525 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1526 // not check wrapping (see documentation there). 1527 // FORNOW we use Assume=false; 1528 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1529 // of runtime SCEV assumptions checks (thereby potentially failing to 1530 // vectorize altogether). 1531 // Additional optional optimizations: 1532 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1533 // wrap then we can deduce that all pointers in the group don't wrap. 1534 // This means that we can forcefully peel the loop in order to only have to 1535 // check the first pointer for no-wrap. When we'll change to use Assume=true 1536 // we'll only need at most one runtime check per interleaved group. 1537 for (auto *Group : LoadGroups) { 1538 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1539 // load would wrap around the address space we would do a memory access at 1540 // nullptr even without the transformation. 1541 if (Group->getNumMembers() == Group->getFactor()) 1542 continue; 1543 1544 // Case 2: If first and last members of the group don't wrap this implies 1545 // that all the pointers in the group don't wrap. 1546 // So we check only group member 0 (which is always guaranteed to exist), 1547 // and group member Factor - 1; If the latter doesn't exist we rely on 1548 // peeling (if it is a non-reversed access -- see Case 3). 1549 if (InvalidateGroupIfMemberMayWrap(Group, 0, "first")) 1550 continue; 1551 if (Group->getMember(Group->getFactor() - 1)) 1552 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, "last"); 1553 else { 1554 // Case 3: A non-reversed interleaved load group with gaps: We need 1555 // to execute at least one scalar epilogue iteration. This will ensure 1556 // we don't speculatively access memory out-of-bounds. We only need 1557 // to look for a member at index factor - 1, since every group must have 1558 // a member at index zero. 1559 if (Group->isReverse()) { 1560 LLVM_DEBUG( 1561 dbgs() << "LV: Invalidate candidate interleaved group due to " 1562 "a reverse access with gaps.\n"); 1563 releaseGroup(Group); 1564 continue; 1565 } 1566 LLVM_DEBUG( 1567 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1568 RequiresScalarEpilogue = true; 1569 } 1570 } 1571 1572 for (auto *Group : StoreGroups) { 1573 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1574 // store would wrap around the address space we would do a memory access at 1575 // nullptr even without the transformation. 1576 if (Group->getNumMembers() == Group->getFactor()) 1577 continue; 1578 1579 // Interleave-store-group with gaps is implemented using masked wide store. 1580 // Remove interleaved store groups with gaps if 1581 // masked-interleaved-accesses are not enabled by the target. 1582 if (!EnablePredicatedInterleavedMemAccesses) { 1583 LLVM_DEBUG( 1584 dbgs() << "LV: Invalidate candidate interleaved store group due " 1585 "to gaps.\n"); 1586 releaseGroup(Group); 1587 continue; 1588 } 1589 1590 // Case 2: If first and last members of the group don't wrap this implies 1591 // that all the pointers in the group don't wrap. 1592 // So we check only group member 0 (which is always guaranteed to exist), 1593 // and the last group member. Case 3 (scalar epilog) is not relevant for 1594 // stores with gaps, which are implemented with masked-store (rather than 1595 // speculative access, as in loads). 1596 if (InvalidateGroupIfMemberMayWrap(Group, 0, "first")) 1597 continue; 1598 for (int Index = Group->getFactor() - 1; Index > 0; Index--) 1599 if (Group->getMember(Index)) { 1600 InvalidateGroupIfMemberMayWrap(Group, Index, "last"); 1601 break; 1602 } 1603 } 1604 } 1605 1606 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1607 // If no group had triggered the requirement to create an epilogue loop, 1608 // there is nothing to do. 1609 if (!requiresScalarEpilogue()) 1610 return; 1611 1612 // Release groups requiring scalar epilogues. Note that this also removes them 1613 // from InterleaveGroups. 1614 bool ReleasedGroup = InterleaveGroups.remove_if([&](auto *Group) { 1615 if (!Group->requiresScalarEpilogue()) 1616 return false; 1617 LLVM_DEBUG( 1618 dbgs() 1619 << "LV: Invalidate candidate interleaved group due to gaps that " 1620 "require a scalar epilogue (not allowed under optsize) and cannot " 1621 "be masked (not enabled). \n"); 1622 releaseGroupWithoutRemovingFromSet(Group); 1623 return true; 1624 }); 1625 assert(ReleasedGroup && "At least one group must be invalidated, as a " 1626 "scalar epilogue was required"); 1627 (void)ReleasedGroup; 1628 RequiresScalarEpilogue = false; 1629 } 1630 1631 template <typename InstT> 1632 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1633 llvm_unreachable("addMetadata can only be used for Instruction"); 1634 } 1635 1636 namespace llvm { 1637 template <> 1638 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1639 SmallVector<Value *, 4> VL; 1640 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1641 [](std::pair<int, Instruction *> p) { return p.second; }); 1642 propagateMetadata(NewInst, VL); 1643 } 1644 } // namespace llvm 1645