1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/CommandLine.h" 30 31 #define DEBUG_TYPE "vectorutils" 32 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 /// Maximum factor for an interleaved memory access. 37 static cl::opt<unsigned> MaxInterleaveGroupFactor( 38 "max-interleave-group-factor", cl::Hidden, 39 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 40 cl::init(8)); 41 42 /// Return true if all of the intrinsic's arguments and return type are scalars 43 /// for the scalar form of the intrinsic, and vectors for the vector form of the 44 /// intrinsic (except operands that are marked as always being scalar by 45 /// isVectorIntrinsicWithScalarOpAtArg). 46 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 47 switch (ID) { 48 case Intrinsic::abs: // Begin integer bit-manipulation. 49 case Intrinsic::bswap: 50 case Intrinsic::bitreverse: 51 case Intrinsic::ctpop: 52 case Intrinsic::ctlz: 53 case Intrinsic::cttz: 54 case Intrinsic::fshl: 55 case Intrinsic::fshr: 56 case Intrinsic::smax: 57 case Intrinsic::smin: 58 case Intrinsic::umax: 59 case Intrinsic::umin: 60 case Intrinsic::sadd_sat: 61 case Intrinsic::ssub_sat: 62 case Intrinsic::uadd_sat: 63 case Intrinsic::usub_sat: 64 case Intrinsic::smul_fix: 65 case Intrinsic::smul_fix_sat: 66 case Intrinsic::umul_fix: 67 case Intrinsic::umul_fix_sat: 68 case Intrinsic::sqrt: // Begin floating-point. 69 case Intrinsic::sin: 70 case Intrinsic::cos: 71 case Intrinsic::tan: 72 case Intrinsic::exp: 73 case Intrinsic::exp2: 74 case Intrinsic::log: 75 case Intrinsic::log10: 76 case Intrinsic::log2: 77 case Intrinsic::fabs: 78 case Intrinsic::minnum: 79 case Intrinsic::maxnum: 80 case Intrinsic::minimum: 81 case Intrinsic::maximum: 82 case Intrinsic::copysign: 83 case Intrinsic::floor: 84 case Intrinsic::ceil: 85 case Intrinsic::trunc: 86 case Intrinsic::rint: 87 case Intrinsic::nearbyint: 88 case Intrinsic::round: 89 case Intrinsic::roundeven: 90 case Intrinsic::pow: 91 case Intrinsic::fma: 92 case Intrinsic::fmuladd: 93 case Intrinsic::is_fpclass: 94 case Intrinsic::powi: 95 case Intrinsic::canonicalize: 96 case Intrinsic::fptosi_sat: 97 case Intrinsic::fptoui_sat: 98 case Intrinsic::lrint: 99 case Intrinsic::llrint: 100 return true; 101 default: 102 return false; 103 } 104 } 105 106 /// Identifies if the vector form of the intrinsic has a scalar operand. 107 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, 108 unsigned ScalarOpdIdx) { 109 switch (ID) { 110 case Intrinsic::abs: 111 case Intrinsic::ctlz: 112 case Intrinsic::cttz: 113 case Intrinsic::is_fpclass: 114 case Intrinsic::powi: 115 return (ScalarOpdIdx == 1); 116 case Intrinsic::smul_fix: 117 case Intrinsic::smul_fix_sat: 118 case Intrinsic::umul_fix: 119 case Intrinsic::umul_fix_sat: 120 return (ScalarOpdIdx == 2); 121 default: 122 return false; 123 } 124 } 125 126 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, 127 int OpdIdx) { 128 assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!"); 129 130 switch (ID) { 131 case Intrinsic::fptosi_sat: 132 case Intrinsic::fptoui_sat: 133 case Intrinsic::lrint: 134 case Intrinsic::llrint: 135 return OpdIdx == -1 || OpdIdx == 0; 136 case Intrinsic::is_fpclass: 137 return OpdIdx == 0; 138 case Intrinsic::powi: 139 return OpdIdx == -1 || OpdIdx == 1; 140 default: 141 return OpdIdx == -1; 142 } 143 } 144 145 /// Returns intrinsic ID for call. 146 /// For the input call instruction it finds mapping intrinsic and returns 147 /// its ID, in case it does not found it return not_intrinsic. 148 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 149 const TargetLibraryInfo *TLI) { 150 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); 151 if (ID == Intrinsic::not_intrinsic) 152 return Intrinsic::not_intrinsic; 153 154 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 155 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 156 ID == Intrinsic::experimental_noalias_scope_decl || 157 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) 158 return ID; 159 return Intrinsic::not_intrinsic; 160 } 161 162 /// Given a vector and an element number, see if the scalar value is 163 /// already around as a register, for example if it were inserted then extracted 164 /// from the vector. 165 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 166 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 167 VectorType *VTy = cast<VectorType>(V->getType()); 168 // For fixed-length vector, return poison for out of range access. 169 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 170 unsigned Width = FVTy->getNumElements(); 171 if (EltNo >= Width) 172 return PoisonValue::get(FVTy->getElementType()); 173 } 174 175 if (Constant *C = dyn_cast<Constant>(V)) 176 return C->getAggregateElement(EltNo); 177 178 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 179 // If this is an insert to a variable element, we don't know what it is. 180 if (!isa<ConstantInt>(III->getOperand(2))) 181 return nullptr; 182 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 183 184 // If this is an insert to the element we are looking for, return the 185 // inserted value. 186 if (EltNo == IIElt) 187 return III->getOperand(1); 188 189 // Guard against infinite loop on malformed, unreachable IR. 190 if (III == III->getOperand(0)) 191 return nullptr; 192 193 // Otherwise, the insertelement doesn't modify the value, recurse on its 194 // vector input. 195 return findScalarElement(III->getOperand(0), EltNo); 196 } 197 198 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 199 // Restrict the following transformation to fixed-length vector. 200 if (SVI && isa<FixedVectorType>(SVI->getType())) { 201 unsigned LHSWidth = 202 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); 203 int InEl = SVI->getMaskValue(EltNo); 204 if (InEl < 0) 205 return PoisonValue::get(VTy->getElementType()); 206 if (InEl < (int)LHSWidth) 207 return findScalarElement(SVI->getOperand(0), InEl); 208 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 209 } 210 211 // Extract a value from a vector add operation with a constant zero. 212 // TODO: Use getBinOpIdentity() to generalize this. 213 Value *Val; Constant *C; 214 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 215 if (Constant *Elt = C->getAggregateElement(EltNo)) 216 if (Elt->isNullValue()) 217 return findScalarElement(Val, EltNo); 218 219 // If the vector is a splat then we can trivially find the scalar element. 220 if (isa<ScalableVectorType>(VTy)) 221 if (Value *Splat = getSplatValue(V)) 222 if (EltNo < VTy->getElementCount().getKnownMinValue()) 223 return Splat; 224 225 // Otherwise, we don't know. 226 return nullptr; 227 } 228 229 int llvm::getSplatIndex(ArrayRef<int> Mask) { 230 int SplatIndex = -1; 231 for (int M : Mask) { 232 // Ignore invalid (undefined) mask elements. 233 if (M < 0) 234 continue; 235 236 // There can be only 1 non-negative mask element value if this is a splat. 237 if (SplatIndex != -1 && SplatIndex != M) 238 return -1; 239 240 // Initialize the splat index to the 1st non-negative mask element. 241 SplatIndex = M; 242 } 243 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 244 return SplatIndex; 245 } 246 247 /// Get splat value if the input is a splat vector or return nullptr. 248 /// This function is not fully general. It checks only 2 cases: 249 /// the input value is (1) a splat constant vector or (2) a sequence 250 /// of instructions that broadcasts a scalar at element 0. 251 Value *llvm::getSplatValue(const Value *V) { 252 if (isa<VectorType>(V->getType())) 253 if (auto *C = dyn_cast<Constant>(V)) 254 return C->getSplatValue(); 255 256 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 257 Value *Splat; 258 if (match(V, 259 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), 260 m_Value(), m_ZeroMask()))) 261 return Splat; 262 263 return nullptr; 264 } 265 266 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 267 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 268 269 if (isa<VectorType>(V->getType())) { 270 if (isa<UndefValue>(V)) 271 return true; 272 // FIXME: We can allow undefs, but if Index was specified, we may want to 273 // check that the constant is defined at that index. 274 if (auto *C = dyn_cast<Constant>(V)) 275 return C->getSplatValue() != nullptr; 276 } 277 278 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 279 // FIXME: We can safely allow undefs here. If Index was specified, we will 280 // check that the mask elt is defined at the required index. 281 if (!all_equal(Shuf->getShuffleMask())) 282 return false; 283 284 // Match any index. 285 if (Index == -1) 286 return true; 287 288 // Match a specific element. The mask should be defined at and match the 289 // specified index. 290 return Shuf->getMaskValue(Index) == Index; 291 } 292 293 // The remaining tests are all recursive, so bail out if we hit the limit. 294 if (Depth++ == MaxAnalysisRecursionDepth) 295 return false; 296 297 // If both operands of a binop are splats, the result is a splat. 298 Value *X, *Y, *Z; 299 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 300 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 301 302 // If all operands of a select are splats, the result is a splat. 303 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 304 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 305 isSplatValue(Z, Index, Depth); 306 307 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 308 309 return false; 310 } 311 312 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask, 313 const APInt &DemandedElts, APInt &DemandedLHS, 314 APInt &DemandedRHS, bool AllowUndefElts) { 315 DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth); 316 317 // Early out if we don't demand any elements. 318 if (DemandedElts.isZero()) 319 return true; 320 321 // Simple case of a shuffle with zeroinitializer. 322 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 323 DemandedLHS.setBit(0); 324 return true; 325 } 326 327 for (unsigned I = 0, E = Mask.size(); I != E; ++I) { 328 int M = Mask[I]; 329 assert((-1 <= M) && (M < (SrcWidth * 2)) && 330 "Invalid shuffle mask constant"); 331 332 if (!DemandedElts[I] || (AllowUndefElts && (M < 0))) 333 continue; 334 335 // For undef elements, we don't know anything about the common state of 336 // the shuffle result. 337 if (M < 0) 338 return false; 339 340 if (M < SrcWidth) 341 DemandedLHS.setBit(M); 342 else 343 DemandedRHS.setBit(M - SrcWidth); 344 } 345 346 return true; 347 } 348 349 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, 350 SmallVectorImpl<int> &ScaledMask) { 351 assert(Scale > 0 && "Unexpected scaling factor"); 352 353 // Fast-path: if no scaling, then it is just a copy. 354 if (Scale == 1) { 355 ScaledMask.assign(Mask.begin(), Mask.end()); 356 return; 357 } 358 359 ScaledMask.clear(); 360 for (int MaskElt : Mask) { 361 if (MaskElt >= 0) { 362 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && 363 "Overflowed 32-bits"); 364 } 365 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) 366 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); 367 } 368 } 369 370 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, 371 SmallVectorImpl<int> &ScaledMask) { 372 assert(Scale > 0 && "Unexpected scaling factor"); 373 374 // Fast-path: if no scaling, then it is just a copy. 375 if (Scale == 1) { 376 ScaledMask.assign(Mask.begin(), Mask.end()); 377 return true; 378 } 379 380 // We must map the original elements down evenly to a type with less elements. 381 int NumElts = Mask.size(); 382 if (NumElts % Scale != 0) 383 return false; 384 385 ScaledMask.clear(); 386 ScaledMask.reserve(NumElts / Scale); 387 388 // Step through the input mask by splitting into Scale-sized slices. 389 do { 390 ArrayRef<int> MaskSlice = Mask.take_front(Scale); 391 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); 392 393 // The first element of the slice determines how we evaluate this slice. 394 int SliceFront = MaskSlice.front(); 395 if (SliceFront < 0) { 396 // Negative values (undef or other "sentinel" values) must be equal across 397 // the entire slice. 398 if (!all_equal(MaskSlice)) 399 return false; 400 ScaledMask.push_back(SliceFront); 401 } else { 402 // A positive mask element must be cleanly divisible. 403 if (SliceFront % Scale != 0) 404 return false; 405 // Elements of the slice must be consecutive. 406 for (int i = 1; i < Scale; ++i) 407 if (MaskSlice[i] != SliceFront + i) 408 return false; 409 ScaledMask.push_back(SliceFront / Scale); 410 } 411 Mask = Mask.drop_front(Scale); 412 } while (!Mask.empty()); 413 414 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); 415 416 // All elements of the original mask can be scaled down to map to the elements 417 // of a mask with wider elements. 418 return true; 419 } 420 421 bool llvm::scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef<int> Mask, 422 SmallVectorImpl<int> &ScaledMask) { 423 unsigned NumSrcElts = Mask.size(); 424 assert(NumSrcElts > 0 && NumDstElts > 0 && "Unexpected scaling factor"); 425 426 // Fast-path: if no scaling, then it is just a copy. 427 if (NumSrcElts == NumDstElts) { 428 ScaledMask.assign(Mask.begin(), Mask.end()); 429 return true; 430 } 431 432 // Ensure we can find a whole scale factor. 433 assert(((NumSrcElts % NumDstElts) == 0 || (NumDstElts % NumSrcElts) == 0) && 434 "Unexpected scaling factor"); 435 436 if (NumSrcElts > NumDstElts) { 437 int Scale = NumSrcElts / NumDstElts; 438 return widenShuffleMaskElts(Scale, Mask, ScaledMask); 439 } 440 441 int Scale = NumDstElts / NumSrcElts; 442 narrowShuffleMaskElts(Scale, Mask, ScaledMask); 443 return true; 444 } 445 446 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask, 447 SmallVectorImpl<int> &ScaledMask) { 448 std::array<SmallVector<int, 16>, 2> TmpMasks; 449 SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1]; 450 ArrayRef<int> InputMask = Mask; 451 for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) { 452 while (widenShuffleMaskElts(Scale, InputMask, *Output)) { 453 InputMask = *Output; 454 std::swap(Output, Tmp); 455 } 456 } 457 ScaledMask.assign(InputMask.begin(), InputMask.end()); 458 } 459 460 void llvm::processShuffleMasks( 461 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, 462 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, 463 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, 464 function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) { 465 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs); 466 // Try to perform better estimation of the permutation. 467 // 1. Split the source/destination vectors into real registers. 468 // 2. Do the mask analysis to identify which real registers are 469 // permuted. 470 int Sz = Mask.size(); 471 unsigned SzDest = Sz / NumOfDestRegs; 472 unsigned SzSrc = Sz / NumOfSrcRegs; 473 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 474 auto &RegMasks = Res[I]; 475 RegMasks.assign(NumOfSrcRegs, {}); 476 // Check that the values in dest registers are in the one src 477 // register. 478 for (unsigned K = 0; K < SzDest; ++K) { 479 int Idx = I * SzDest + K; 480 if (Idx == Sz) 481 break; 482 if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem) 483 continue; 484 int SrcRegIdx = Mask[Idx] / SzSrc; 485 // Add a cost of PermuteTwoSrc for each new source register permute, 486 // if we have more than one source registers. 487 if (RegMasks[SrcRegIdx].empty()) 488 RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem); 489 RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc; 490 } 491 } 492 // Process split mask. 493 for (unsigned I = 0; I < NumOfUsedRegs; ++I) { 494 auto &Dest = Res[I]; 495 int NumSrcRegs = 496 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 497 switch (NumSrcRegs) { 498 case 0: 499 // No input vectors were used! 500 NoInputAction(); 501 break; 502 case 1: { 503 // Find the only mask with at least single undef mask elem. 504 auto *It = 505 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 506 unsigned SrcReg = std::distance(Dest.begin(), It); 507 SingleInputAction(*It, SrcReg, I); 508 break; 509 } 510 default: { 511 // The first mask is a permutation of a single register. Since we have >2 512 // input registers to shuffle, we merge the masks for 2 first registers 513 // and generate a shuffle of 2 registers rather than the reordering of the 514 // first register and then shuffle with the second register. Next, 515 // generate the shuffles of the resulting register + the remaining 516 // registers from the list. 517 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask, 518 ArrayRef<int> SecondMask) { 519 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { 520 if (SecondMask[Idx] != PoisonMaskElem) { 521 assert(FirstMask[Idx] == PoisonMaskElem && 522 "Expected undefined mask element."); 523 FirstMask[Idx] = SecondMask[Idx] + VF; 524 } 525 } 526 }; 527 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) { 528 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 529 if (Mask[Idx] != PoisonMaskElem) 530 Mask[Idx] = Idx; 531 } 532 }; 533 int SecondIdx; 534 do { 535 int FirstIdx = -1; 536 SecondIdx = -1; 537 MutableArrayRef<int> FirstMask, SecondMask; 538 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 539 SmallVectorImpl<int> &RegMask = Dest[I]; 540 if (RegMask.empty()) 541 continue; 542 543 if (FirstIdx == SecondIdx) { 544 FirstIdx = I; 545 FirstMask = RegMask; 546 continue; 547 } 548 SecondIdx = I; 549 SecondMask = RegMask; 550 CombineMasks(FirstMask, SecondMask); 551 ManyInputsAction(FirstMask, FirstIdx, SecondIdx); 552 NormalizeMask(FirstMask); 553 RegMask.clear(); 554 SecondMask = FirstMask; 555 SecondIdx = FirstIdx; 556 } 557 if (FirstIdx != SecondIdx && SecondIdx >= 0) { 558 CombineMasks(SecondMask, FirstMask); 559 ManyInputsAction(SecondMask, SecondIdx, FirstIdx); 560 Dest[FirstIdx].clear(); 561 NormalizeMask(SecondMask); 562 } 563 } while (SecondIdx >= 0); 564 break; 565 } 566 } 567 } 568 } 569 570 MapVector<Instruction *, uint64_t> 571 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 572 const TargetTransformInfo *TTI) { 573 574 // DemandedBits will give us every value's live-out bits. But we want 575 // to ensure no extra casts would need to be inserted, so every DAG 576 // of connected values must have the same minimum bitwidth. 577 EquivalenceClasses<Value *> ECs; 578 SmallVector<Value *, 16> Worklist; 579 SmallPtrSet<Value *, 4> Roots; 580 SmallPtrSet<Value *, 16> Visited; 581 DenseMap<Value *, uint64_t> DBits; 582 SmallPtrSet<Instruction *, 4> InstructionSet; 583 MapVector<Instruction *, uint64_t> MinBWs; 584 585 // Determine the roots. We work bottom-up, from truncs or icmps. 586 bool SeenExtFromIllegalType = false; 587 for (auto *BB : Blocks) 588 for (auto &I : *BB) { 589 InstructionSet.insert(&I); 590 591 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 592 !TTI->isTypeLegal(I.getOperand(0)->getType())) 593 SeenExtFromIllegalType = true; 594 595 // Only deal with non-vector integers up to 64-bits wide. 596 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 597 !I.getType()->isVectorTy() && 598 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 599 // Don't make work for ourselves. If we know the loaded type is legal, 600 // don't add it to the worklist. 601 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 602 continue; 603 604 Worklist.push_back(&I); 605 Roots.insert(&I); 606 } 607 } 608 // Early exit. 609 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 610 return MinBWs; 611 612 // Now proceed breadth-first, unioning values together. 613 while (!Worklist.empty()) { 614 Value *Val = Worklist.pop_back_val(); 615 Value *Leader = ECs.getOrInsertLeaderValue(Val); 616 617 if (!Visited.insert(Val).second) 618 continue; 619 620 // Non-instructions terminate a chain successfully. 621 if (!isa<Instruction>(Val)) 622 continue; 623 Instruction *I = cast<Instruction>(Val); 624 625 // If we encounter a type that is larger than 64 bits, we can't represent 626 // it so bail out. 627 if (DB.getDemandedBits(I).getBitWidth() > 64) 628 return MapVector<Instruction *, uint64_t>(); 629 630 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 631 DBits[Leader] |= V; 632 DBits[I] = V; 633 634 // Casts, loads and instructions outside of our range terminate a chain 635 // successfully. 636 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 637 !InstructionSet.count(I)) 638 continue; 639 640 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 641 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 642 // transform anything that relies on them. 643 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 644 !I->getType()->isIntegerTy()) { 645 DBits[Leader] |= ~0ULL; 646 continue; 647 } 648 649 // We don't modify the types of PHIs. Reductions will already have been 650 // truncated if possible, and inductions' sizes will have been chosen by 651 // indvars. 652 if (isa<PHINode>(I)) 653 continue; 654 655 if (DBits[Leader] == ~0ULL) 656 // All bits demanded, no point continuing. 657 continue; 658 659 for (Value *O : cast<User>(I)->operands()) { 660 ECs.unionSets(Leader, O); 661 Worklist.push_back(O); 662 } 663 } 664 665 // Now we've discovered all values, walk them to see if there are 666 // any users we didn't see. If there are, we can't optimize that 667 // chain. 668 for (auto &I : DBits) 669 for (auto *U : I.first->users()) 670 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 671 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 672 673 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 674 uint64_t LeaderDemandedBits = 0; 675 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 676 LeaderDemandedBits |= DBits[M]; 677 678 uint64_t MinBW = llvm::bit_width(LeaderDemandedBits); 679 // Round up to a power of 2 680 MinBW = llvm::bit_ceil(MinBW); 681 682 // We don't modify the types of PHIs. Reductions will already have been 683 // truncated if possible, and inductions' sizes will have been chosen by 684 // indvars. 685 // If we are required to shrink a PHI, abandon this entire equivalence class. 686 bool Abort = false; 687 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 688 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) { 689 Abort = true; 690 break; 691 } 692 if (Abort) 693 continue; 694 695 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { 696 auto *MI = dyn_cast<Instruction>(M); 697 if (!MI) 698 continue; 699 Type *Ty = M->getType(); 700 if (Roots.count(M)) 701 Ty = MI->getOperand(0)->getType(); 702 703 if (MinBW >= Ty->getScalarSizeInBits()) 704 continue; 705 706 // If any of M's operands demand more bits than MinBW then M cannot be 707 // performed safely in MinBW. 708 if (any_of(MI->operands(), [&DB, MinBW](Use &U) { 709 auto *CI = dyn_cast<ConstantInt>(U); 710 // For constants shift amounts, check if the shift would result in 711 // poison. 712 if (CI && 713 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) && 714 U.getOperandNo() == 1) 715 return CI->uge(MinBW); 716 uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue()); 717 return bit_ceil(BW) > MinBW; 718 })) 719 continue; 720 721 MinBWs[MI] = MinBW; 722 } 723 } 724 725 return MinBWs; 726 } 727 728 /// Add all access groups in @p AccGroups to @p List. 729 template <typename ListT> 730 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 731 // Interpret an access group as a list containing itself. 732 if (AccGroups->getNumOperands() == 0) { 733 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 734 List.insert(AccGroups); 735 return; 736 } 737 738 for (const auto &AccGroupListOp : AccGroups->operands()) { 739 auto *Item = cast<MDNode>(AccGroupListOp.get()); 740 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 741 List.insert(Item); 742 } 743 } 744 745 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 746 if (!AccGroups1) 747 return AccGroups2; 748 if (!AccGroups2) 749 return AccGroups1; 750 if (AccGroups1 == AccGroups2) 751 return AccGroups1; 752 753 SmallSetVector<Metadata *, 4> Union; 754 addToAccessGroupList(Union, AccGroups1); 755 addToAccessGroupList(Union, AccGroups2); 756 757 if (Union.size() == 0) 758 return nullptr; 759 if (Union.size() == 1) 760 return cast<MDNode>(Union.front()); 761 762 LLVMContext &Ctx = AccGroups1->getContext(); 763 return MDNode::get(Ctx, Union.getArrayRef()); 764 } 765 766 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 767 const Instruction *Inst2) { 768 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 769 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 770 771 if (!MayAccessMem1 && !MayAccessMem2) 772 return nullptr; 773 if (!MayAccessMem1) 774 return Inst2->getMetadata(LLVMContext::MD_access_group); 775 if (!MayAccessMem2) 776 return Inst1->getMetadata(LLVMContext::MD_access_group); 777 778 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 779 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 780 if (!MD1 || !MD2) 781 return nullptr; 782 if (MD1 == MD2) 783 return MD1; 784 785 // Use set for scalable 'contains' check. 786 SmallPtrSet<Metadata *, 4> AccGroupSet2; 787 addToAccessGroupList(AccGroupSet2, MD2); 788 789 SmallVector<Metadata *, 4> Intersection; 790 if (MD1->getNumOperands() == 0) { 791 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 792 if (AccGroupSet2.count(MD1)) 793 Intersection.push_back(MD1); 794 } else { 795 for (const MDOperand &Node : MD1->operands()) { 796 auto *Item = cast<MDNode>(Node.get()); 797 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 798 if (AccGroupSet2.count(Item)) 799 Intersection.push_back(Item); 800 } 801 } 802 803 if (Intersection.size() == 0) 804 return nullptr; 805 if (Intersection.size() == 1) 806 return cast<MDNode>(Intersection.front()); 807 808 LLVMContext &Ctx = Inst1->getContext(); 809 return MDNode::get(Ctx, Intersection); 810 } 811 812 /// \returns \p I after propagating metadata from \p VL. 813 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 814 if (VL.empty()) 815 return Inst; 816 Instruction *I0 = cast<Instruction>(VL[0]); 817 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 818 I0->getAllMetadataOtherThanDebugLoc(Metadata); 819 820 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 821 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 822 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 823 LLVMContext::MD_access_group, LLVMContext::MD_mmra}) { 824 MDNode *MD = I0->getMetadata(Kind); 825 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 826 const Instruction *IJ = cast<Instruction>(VL[J]); 827 MDNode *IMD = IJ->getMetadata(Kind); 828 829 switch (Kind) { 830 case LLVMContext::MD_mmra: { 831 MD = MMRAMetadata::combine(Inst->getContext(), MD, IMD); 832 break; 833 } 834 case LLVMContext::MD_tbaa: 835 MD = MDNode::getMostGenericTBAA(MD, IMD); 836 break; 837 case LLVMContext::MD_alias_scope: 838 MD = MDNode::getMostGenericAliasScope(MD, IMD); 839 break; 840 case LLVMContext::MD_fpmath: 841 MD = MDNode::getMostGenericFPMath(MD, IMD); 842 break; 843 case LLVMContext::MD_noalias: 844 case LLVMContext::MD_nontemporal: 845 case LLVMContext::MD_invariant_load: 846 MD = MDNode::intersect(MD, IMD); 847 break; 848 case LLVMContext::MD_access_group: 849 MD = intersectAccessGroups(Inst, IJ); 850 break; 851 default: 852 llvm_unreachable("unhandled metadata"); 853 } 854 } 855 856 Inst->setMetadata(Kind, MD); 857 } 858 859 return Inst; 860 } 861 862 Constant * 863 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 864 const InterleaveGroup<Instruction> &Group) { 865 // All 1's means mask is not needed. 866 if (Group.getNumMembers() == Group.getFactor()) 867 return nullptr; 868 869 // TODO: support reversed access. 870 assert(!Group.isReverse() && "Reversed group not supported."); 871 872 SmallVector<Constant *, 16> Mask; 873 for (unsigned i = 0; i < VF; i++) 874 for (unsigned j = 0; j < Group.getFactor(); ++j) { 875 unsigned HasMember = Group.getMember(j) ? 1 : 0; 876 Mask.push_back(Builder.getInt1(HasMember)); 877 } 878 879 return ConstantVector::get(Mask); 880 } 881 882 llvm::SmallVector<int, 16> 883 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { 884 SmallVector<int, 16> MaskVec; 885 for (unsigned i = 0; i < VF; i++) 886 for (unsigned j = 0; j < ReplicationFactor; j++) 887 MaskVec.push_back(i); 888 889 return MaskVec; 890 } 891 892 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, 893 unsigned NumVecs) { 894 SmallVector<int, 16> Mask; 895 for (unsigned i = 0; i < VF; i++) 896 for (unsigned j = 0; j < NumVecs; j++) 897 Mask.push_back(j * VF + i); 898 899 return Mask; 900 } 901 902 llvm::SmallVector<int, 16> 903 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { 904 SmallVector<int, 16> Mask; 905 for (unsigned i = 0; i < VF; i++) 906 Mask.push_back(Start + i * Stride); 907 908 return Mask; 909 } 910 911 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, 912 unsigned NumInts, 913 unsigned NumUndefs) { 914 SmallVector<int, 16> Mask; 915 for (unsigned i = 0; i < NumInts; i++) 916 Mask.push_back(Start + i); 917 918 for (unsigned i = 0; i < NumUndefs; i++) 919 Mask.push_back(-1); 920 921 return Mask; 922 } 923 924 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, 925 unsigned NumElts) { 926 // Avoid casts in the loop and make sure we have a reasonable number. 927 int NumEltsSigned = NumElts; 928 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); 929 930 // If the mask chooses an element from operand 1, reduce it to choose from the 931 // corresponding element of operand 0. Undef mask elements are unchanged. 932 SmallVector<int, 16> UnaryMask; 933 for (int MaskElt : Mask) { 934 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); 935 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; 936 UnaryMask.push_back(UnaryElt); 937 } 938 return UnaryMask; 939 } 940 941 /// A helper function for concatenating vectors. This function concatenates two 942 /// vectors having the same element type. If the second vector has fewer 943 /// elements than the first, it is padded with undefs. 944 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 945 Value *V2) { 946 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 947 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 948 assert(VecTy1 && VecTy2 && 949 VecTy1->getScalarType() == VecTy2->getScalarType() && 950 "Expect two vectors with the same element type"); 951 952 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); 953 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); 954 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 955 956 if (NumElts1 > NumElts2) { 957 // Extend with UNDEFs. 958 V2 = Builder.CreateShuffleVector( 959 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); 960 } 961 962 return Builder.CreateShuffleVector( 963 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); 964 } 965 966 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 967 ArrayRef<Value *> Vecs) { 968 unsigned NumVecs = Vecs.size(); 969 assert(NumVecs > 1 && "Should be at least two vectors"); 970 971 SmallVector<Value *, 8> ResList; 972 ResList.append(Vecs.begin(), Vecs.end()); 973 do { 974 SmallVector<Value *, 8> TmpList; 975 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 976 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 977 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 978 "Only the last vector may have a different type"); 979 980 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 981 } 982 983 // Push the last vector if the total number of vectors is odd. 984 if (NumVecs % 2 != 0) 985 TmpList.push_back(ResList[NumVecs - 1]); 986 987 ResList = TmpList; 988 NumVecs = ResList.size(); 989 } while (NumVecs > 1); 990 991 return ResList[0]; 992 } 993 994 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 995 assert(isa<VectorType>(Mask->getType()) && 996 isa<IntegerType>(Mask->getType()->getScalarType()) && 997 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 998 1 && 999 "Mask must be a vector of i1"); 1000 1001 auto *ConstMask = dyn_cast<Constant>(Mask); 1002 if (!ConstMask) 1003 return false; 1004 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 1005 return true; 1006 if (isa<ScalableVectorType>(ConstMask->getType())) 1007 return false; 1008 for (unsigned 1009 I = 0, 1010 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1011 I != E; ++I) { 1012 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1013 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 1014 continue; 1015 return false; 1016 } 1017 return true; 1018 } 1019 1020 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 1021 assert(isa<VectorType>(Mask->getType()) && 1022 isa<IntegerType>(Mask->getType()->getScalarType()) && 1023 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1024 1 && 1025 "Mask must be a vector of i1"); 1026 1027 auto *ConstMask = dyn_cast<Constant>(Mask); 1028 if (!ConstMask) 1029 return false; 1030 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 1031 return true; 1032 if (isa<ScalableVectorType>(ConstMask->getType())) 1033 return false; 1034 for (unsigned 1035 I = 0, 1036 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1037 I != E; ++I) { 1038 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1039 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1040 continue; 1041 return false; 1042 } 1043 return true; 1044 } 1045 1046 bool llvm::maskContainsAllOneOrUndef(Value *Mask) { 1047 assert(isa<VectorType>(Mask->getType()) && 1048 isa<IntegerType>(Mask->getType()->getScalarType()) && 1049 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1050 1 && 1051 "Mask must be a vector of i1"); 1052 1053 auto *ConstMask = dyn_cast<Constant>(Mask); 1054 if (!ConstMask) 1055 return false; 1056 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 1057 return true; 1058 if (isa<ScalableVectorType>(ConstMask->getType())) 1059 return false; 1060 for (unsigned 1061 I = 0, 1062 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1063 I != E; ++I) { 1064 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1065 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1066 return true; 1067 } 1068 return false; 1069 } 1070 1071 /// TODO: This is a lot like known bits, but for 1072 /// vectors. Is there something we can common this with? 1073 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 1074 assert(isa<FixedVectorType>(Mask->getType()) && 1075 isa<IntegerType>(Mask->getType()->getScalarType()) && 1076 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1077 1 && 1078 "Mask must be a fixed width vector of i1"); 1079 1080 const unsigned VWidth = 1081 cast<FixedVectorType>(Mask->getType())->getNumElements(); 1082 APInt DemandedElts = APInt::getAllOnes(VWidth); 1083 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 1084 for (unsigned i = 0; i < VWidth; i++) 1085 if (CV->getAggregateElement(i)->isNullValue()) 1086 DemandedElts.clearBit(i); 1087 return DemandedElts; 1088 } 1089 1090 bool InterleavedAccessInfo::isStrided(int Stride) { 1091 unsigned Factor = std::abs(Stride); 1092 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1093 } 1094 1095 void InterleavedAccessInfo::collectConstStrideAccesses( 1096 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1097 const DenseMap<Value*, const SCEV*> &Strides) { 1098 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 1099 1100 // Since it's desired that the load/store instructions be maintained in 1101 // "program order" for the interleaved access analysis, we have to visit the 1102 // blocks in the loop in reverse postorder (i.e., in a topological order). 1103 // Such an ordering will ensure that any load/store that may be executed 1104 // before a second load/store will precede the second load/store in 1105 // AccessStrideInfo. 1106 LoopBlocksDFS DFS(TheLoop); 1107 DFS.perform(LI); 1108 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 1109 for (auto &I : *BB) { 1110 Value *Ptr = getLoadStorePointerOperand(&I); 1111 if (!Ptr) 1112 continue; 1113 Type *ElementTy = getLoadStoreType(&I); 1114 1115 // Currently, codegen doesn't support cases where the type size doesn't 1116 // match the alloc size. Skip them for now. 1117 uint64_t Size = DL.getTypeAllocSize(ElementTy); 1118 if (Size * 8 != DL.getTypeSizeInBits(ElementTy)) 1119 continue; 1120 1121 // We don't check wrapping here because we don't know yet if Ptr will be 1122 // part of a full group or a group with gaps. Checking wrapping for all 1123 // pointers (even those that end up in groups with no gaps) will be overly 1124 // conservative. For full groups, wrapping should be ok since if we would 1125 // wrap around the address space we would do a memory access at nullptr 1126 // even without the transformation. The wrapping checks are therefore 1127 // deferred until after we've formed the interleaved groups. 1128 int64_t Stride = 1129 getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, 1130 /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0); 1131 1132 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 1133 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, 1134 getLoadStoreAlignment(&I)); 1135 } 1136 } 1137 1138 // Analyze interleaved accesses and collect them into interleaved load and 1139 // store groups. 1140 // 1141 // When generating code for an interleaved load group, we effectively hoist all 1142 // loads in the group to the location of the first load in program order. When 1143 // generating code for an interleaved store group, we sink all stores to the 1144 // location of the last store. This code motion can change the order of load 1145 // and store instructions and may break dependences. 1146 // 1147 // The code generation strategy mentioned above ensures that we won't violate 1148 // any write-after-read (WAR) dependences. 1149 // 1150 // E.g., for the WAR dependence: a = A[i]; // (1) 1151 // A[i] = b; // (2) 1152 // 1153 // The store group of (2) is always inserted at or below (2), and the load 1154 // group of (1) is always inserted at or above (1). Thus, the instructions will 1155 // never be reordered. All other dependences are checked to ensure the 1156 // correctness of the instruction reordering. 1157 // 1158 // The algorithm visits all memory accesses in the loop in bottom-up program 1159 // order. Program order is established by traversing the blocks in the loop in 1160 // reverse postorder when collecting the accesses. 1161 // 1162 // We visit the memory accesses in bottom-up order because it can simplify the 1163 // construction of store groups in the presence of write-after-write (WAW) 1164 // dependences. 1165 // 1166 // E.g., for the WAW dependence: A[i] = a; // (1) 1167 // A[i] = b; // (2) 1168 // A[i + 1] = c; // (3) 1169 // 1170 // We will first create a store group with (3) and (2). (1) can't be added to 1171 // this group because it and (2) are dependent. However, (1) can be grouped 1172 // with other accesses that may precede it in program order. Note that a 1173 // bottom-up order does not imply that WAW dependences should not be checked. 1174 void InterleavedAccessInfo::analyzeInterleaving( 1175 bool EnablePredicatedInterleavedMemAccesses) { 1176 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 1177 const auto &Strides = LAI->getSymbolicStrides(); 1178 1179 // Holds all accesses with a constant stride. 1180 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 1181 collectConstStrideAccesses(AccessStrideInfo, Strides); 1182 1183 if (AccessStrideInfo.empty()) 1184 return; 1185 1186 // Collect the dependences in the loop. 1187 collectDependences(); 1188 1189 // Holds all interleaved store groups temporarily. 1190 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 1191 // Holds all interleaved load groups temporarily. 1192 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 1193 // Groups added to this set cannot have new members added. 1194 SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups; 1195 1196 // Search in bottom-up program order for pairs of accesses (A and B) that can 1197 // form interleaved load or store groups. In the algorithm below, access A 1198 // precedes access B in program order. We initialize a group for B in the 1199 // outer loop of the algorithm, and then in the inner loop, we attempt to 1200 // insert each A into B's group if: 1201 // 1202 // 1. A and B have the same stride, 1203 // 2. A and B have the same memory object size, and 1204 // 3. A belongs in B's group according to its distance from B. 1205 // 1206 // Special care is taken to ensure group formation will not break any 1207 // dependences. 1208 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 1209 BI != E; ++BI) { 1210 Instruction *B = BI->first; 1211 StrideDescriptor DesB = BI->second; 1212 1213 // Initialize a group for B if it has an allowable stride. Even if we don't 1214 // create a group for B, we continue with the bottom-up algorithm to ensure 1215 // we don't break any of B's dependences. 1216 InterleaveGroup<Instruction> *GroupB = nullptr; 1217 if (isStrided(DesB.Stride) && 1218 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 1219 GroupB = getInterleaveGroup(B); 1220 if (!GroupB) { 1221 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 1222 << '\n'); 1223 GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 1224 if (B->mayWriteToMemory()) 1225 StoreGroups.insert(GroupB); 1226 else 1227 LoadGroups.insert(GroupB); 1228 } 1229 } 1230 1231 for (auto AI = std::next(BI); AI != E; ++AI) { 1232 Instruction *A = AI->first; 1233 StrideDescriptor DesA = AI->second; 1234 1235 // Our code motion strategy implies that we can't have dependences 1236 // between accesses in an interleaved group and other accesses located 1237 // between the first and last member of the group. Note that this also 1238 // means that a group can't have more than one member at a given offset. 1239 // The accesses in a group can have dependences with other accesses, but 1240 // we must ensure we don't extend the boundaries of the group such that 1241 // we encompass those dependent accesses. 1242 // 1243 // For example, assume we have the sequence of accesses shown below in a 1244 // stride-2 loop: 1245 // 1246 // (1, 2) is a group | A[i] = a; // (1) 1247 // | A[i-1] = b; // (2) | 1248 // A[i-3] = c; // (3) 1249 // A[i] = d; // (4) | (2, 4) is not a group 1250 // 1251 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1252 // but not with (4). If we did, the dependent access (3) would be within 1253 // the boundaries of the (2, 4) group. 1254 auto DependentMember = [&](InterleaveGroup<Instruction> *Group, 1255 StrideEntry *A) -> Instruction * { 1256 for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) { 1257 Instruction *MemberOfGroupB = Group->getMember(Index); 1258 if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups( 1259 A, &*AccessStrideInfo.find(MemberOfGroupB))) 1260 return MemberOfGroupB; 1261 } 1262 return nullptr; 1263 }; 1264 1265 auto GroupA = getInterleaveGroup(A); 1266 // If A is a load, dependencies are tolerable, there's nothing to do here. 1267 // If both A and B belong to the same (store) group, they are independent, 1268 // even if dependencies have not been recorded. 1269 // If both GroupA and GroupB are null, there's nothing to do here. 1270 if (A->mayWriteToMemory() && GroupA != GroupB) { 1271 Instruction *DependentInst = nullptr; 1272 // If GroupB is a load group, we have to compare AI against all 1273 // members of GroupB because if any load within GroupB has a dependency 1274 // on AI, we need to mark GroupB as complete and also release the 1275 // store GroupA (if A belongs to one). The former prevents incorrect 1276 // hoisting of load B above store A while the latter prevents incorrect 1277 // sinking of store A below load B. 1278 if (GroupB && LoadGroups.contains(GroupB)) 1279 DependentInst = DependentMember(GroupB, &*AI); 1280 else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) 1281 DependentInst = B; 1282 1283 if (DependentInst) { 1284 // A has a store dependence on B (or on some load within GroupB) and 1285 // is part of a store group. Release A's group to prevent illegal 1286 // sinking of A below B. A will then be free to form another group 1287 // with instructions that precede it. 1288 if (GroupA && StoreGroups.contains(GroupA)) { 1289 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1290 "dependence between " 1291 << *A << " and " << *DependentInst << '\n'); 1292 StoreGroups.remove(GroupA); 1293 releaseGroup(GroupA); 1294 } 1295 // If B is a load and part of an interleave group, no earlier loads 1296 // can be added to B's interleave group, because this would mean the 1297 // DependentInst would move across store A. Mark the interleave group 1298 // as complete. 1299 if (GroupB && LoadGroups.contains(GroupB)) { 1300 LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B 1301 << " as complete.\n"); 1302 CompletedLoadGroups.insert(GroupB); 1303 } 1304 } 1305 } 1306 if (CompletedLoadGroups.contains(GroupB)) { 1307 // Skip trying to add A to B, continue to look for other conflicting A's 1308 // in groups to be released. 1309 continue; 1310 } 1311 1312 // At this point, we've checked for illegal code motion. If either A or B 1313 // isn't strided, there's nothing left to do. 1314 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1315 continue; 1316 1317 // Ignore A if it's already in a group or isn't the same kind of memory 1318 // operation as B. 1319 // Note that mayReadFromMemory() isn't mutually exclusive to 1320 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1321 // here, canVectorizeMemory() should have returned false - except for the 1322 // case we asked for optimization remarks. 1323 if (isInterleaved(A) || 1324 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1325 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1326 continue; 1327 1328 // Check rules 1 and 2. Ignore A if its stride or size is different from 1329 // that of B. 1330 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1331 continue; 1332 1333 // Ignore A if the memory object of A and B don't belong to the same 1334 // address space 1335 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1336 continue; 1337 1338 // Calculate the distance from A to B. 1339 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1340 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1341 if (!DistToB) 1342 continue; 1343 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1344 1345 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1346 // size. 1347 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1348 continue; 1349 1350 // All members of a predicated interleave-group must have the same predicate, 1351 // and currently must reside in the same BB. 1352 BasicBlock *BlockA = A->getParent(); 1353 BasicBlock *BlockB = B->getParent(); 1354 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1355 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1356 continue; 1357 1358 // The index of A is the index of B plus A's distance to B in multiples 1359 // of the size. 1360 int IndexA = 1361 GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1362 1363 // Try to insert A into B's group. 1364 if (GroupB->insertMember(A, IndexA, DesA.Alignment)) { 1365 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1366 << " into the interleave group with" << *B 1367 << '\n'); 1368 InterleaveGroupMap[A] = GroupB; 1369 1370 // Set the first load in program order as the insert position. 1371 if (A->mayReadFromMemory()) 1372 GroupB->setInsertPos(A); 1373 } 1374 } // Iteration over A accesses. 1375 } // Iteration over B accesses. 1376 1377 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, 1378 int Index, 1379 std::string FirstOrLast) -> bool { 1380 Instruction *Member = Group->getMember(Index); 1381 assert(Member && "Group member does not exist"); 1382 Value *MemberPtr = getLoadStorePointerOperand(Member); 1383 Type *AccessTy = getLoadStoreType(Member); 1384 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, 1385 /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0)) 1386 return false; 1387 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 1388 << FirstOrLast 1389 << " group member potentially pointer-wrapping.\n"); 1390 releaseGroup(Group); 1391 return true; 1392 }; 1393 1394 // Remove interleaved groups with gaps whose memory 1395 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1396 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1397 // not check wrapping (see documentation there). 1398 // FORNOW we use Assume=false; 1399 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1400 // of runtime SCEV assumptions checks (thereby potentially failing to 1401 // vectorize altogether). 1402 // Additional optional optimizations: 1403 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1404 // wrap then we can deduce that all pointers in the group don't wrap. 1405 // This means that we can forcefully peel the loop in order to only have to 1406 // check the first pointer for no-wrap. When we'll change to use Assume=true 1407 // we'll only need at most one runtime check per interleaved group. 1408 for (auto *Group : LoadGroups) { 1409 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1410 // load would wrap around the address space we would do a memory access at 1411 // nullptr even without the transformation. 1412 if (Group->getNumMembers() == Group->getFactor()) 1413 continue; 1414 1415 // Case 2: If first and last members of the group don't wrap this implies 1416 // that all the pointers in the group don't wrap. 1417 // So we check only group member 0 (which is always guaranteed to exist), 1418 // and group member Factor - 1; If the latter doesn't exist we rely on 1419 // peeling (if it is a non-reversed accsess -- see Case 3). 1420 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) 1421 continue; 1422 if (Group->getMember(Group->getFactor() - 1)) 1423 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, 1424 std::string("last")); 1425 else { 1426 // Case 3: A non-reversed interleaved load group with gaps: We need 1427 // to execute at least one scalar epilogue iteration. This will ensure 1428 // we don't speculatively access memory out-of-bounds. We only need 1429 // to look for a member at index factor - 1, since every group must have 1430 // a member at index zero. 1431 if (Group->isReverse()) { 1432 LLVM_DEBUG( 1433 dbgs() << "LV: Invalidate candidate interleaved group due to " 1434 "a reverse access with gaps.\n"); 1435 releaseGroup(Group); 1436 continue; 1437 } 1438 LLVM_DEBUG( 1439 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1440 RequiresScalarEpilogue = true; 1441 } 1442 } 1443 1444 for (auto *Group : StoreGroups) { 1445 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1446 // store would wrap around the address space we would do a memory access at 1447 // nullptr even without the transformation. 1448 if (Group->getNumMembers() == Group->getFactor()) 1449 continue; 1450 1451 // Interleave-store-group with gaps is implemented using masked wide store. 1452 // Remove interleaved store groups with gaps if 1453 // masked-interleaved-accesses are not enabled by the target. 1454 if (!EnablePredicatedInterleavedMemAccesses) { 1455 LLVM_DEBUG( 1456 dbgs() << "LV: Invalidate candidate interleaved store group due " 1457 "to gaps.\n"); 1458 releaseGroup(Group); 1459 continue; 1460 } 1461 1462 // Case 2: If first and last members of the group don't wrap this implies 1463 // that all the pointers in the group don't wrap. 1464 // So we check only group member 0 (which is always guaranteed to exist), 1465 // and the last group member. Case 3 (scalar epilog) is not relevant for 1466 // stores with gaps, which are implemented with masked-store (rather than 1467 // speculative access, as in loads). 1468 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) 1469 continue; 1470 for (int Index = Group->getFactor() - 1; Index > 0; Index--) 1471 if (Group->getMember(Index)) { 1472 InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last")); 1473 break; 1474 } 1475 } 1476 } 1477 1478 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1479 // If no group had triggered the requirement to create an epilogue loop, 1480 // there is nothing to do. 1481 if (!requiresScalarEpilogue()) 1482 return; 1483 1484 // Release groups requiring scalar epilogues. Note that this also removes them 1485 // from InterleaveGroups. 1486 bool ReleasedGroup = InterleaveGroups.remove_if([&](auto *Group) { 1487 if (!Group->requiresScalarEpilogue()) 1488 return false; 1489 LLVM_DEBUG( 1490 dbgs() 1491 << "LV: Invalidate candidate interleaved group due to gaps that " 1492 "require a scalar epilogue (not allowed under optsize) and cannot " 1493 "be masked (not enabled). \n"); 1494 releaseGroupWithoutRemovingFromSet(Group); 1495 return true; 1496 }); 1497 assert(ReleasedGroup && "At least one group must be invalidated, as a " 1498 "scalar epilogue was required"); 1499 (void)ReleasedGroup; 1500 RequiresScalarEpilogue = false; 1501 } 1502 1503 template <typename InstT> 1504 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1505 llvm_unreachable("addMetadata can only be used for Instruction"); 1506 } 1507 1508 namespace llvm { 1509 template <> 1510 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1511 SmallVector<Value *, 4> VL; 1512 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1513 [](std::pair<int, Instruction *> p) { return p.second; }); 1514 propagateMetadata(NewInst, VL); 1515 } 1516 } // namespace llvm 1517