1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/CommandLine.h" 30 31 #define DEBUG_TYPE "vectorutils" 32 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 /// Maximum factor for an interleaved memory access. 37 static cl::opt<unsigned> MaxInterleaveGroupFactor( 38 "max-interleave-group-factor", cl::Hidden, 39 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 40 cl::init(8)); 41 42 /// Return true if all of the intrinsic's arguments and return type are scalars 43 /// for the scalar form of the intrinsic, and vectors for the vector form of the 44 /// intrinsic (except operands that are marked as always being scalar by 45 /// isVectorIntrinsicWithScalarOpAtArg). 46 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 47 switch (ID) { 48 case Intrinsic::abs: // Begin integer bit-manipulation. 49 case Intrinsic::bswap: 50 case Intrinsic::bitreverse: 51 case Intrinsic::ctpop: 52 case Intrinsic::ctlz: 53 case Intrinsic::cttz: 54 case Intrinsic::fshl: 55 case Intrinsic::fshr: 56 case Intrinsic::smax: 57 case Intrinsic::smin: 58 case Intrinsic::umax: 59 case Intrinsic::umin: 60 case Intrinsic::sadd_sat: 61 case Intrinsic::ssub_sat: 62 case Intrinsic::uadd_sat: 63 case Intrinsic::usub_sat: 64 case Intrinsic::smul_fix: 65 case Intrinsic::smul_fix_sat: 66 case Intrinsic::umul_fix: 67 case Intrinsic::umul_fix_sat: 68 case Intrinsic::sqrt: // Begin floating-point. 69 case Intrinsic::asin: 70 case Intrinsic::acos: 71 case Intrinsic::atan: 72 case Intrinsic::atan2: 73 case Intrinsic::sin: 74 case Intrinsic::cos: 75 case Intrinsic::tan: 76 case Intrinsic::sinh: 77 case Intrinsic::cosh: 78 case Intrinsic::tanh: 79 case Intrinsic::exp: 80 case Intrinsic::exp10: 81 case Intrinsic::exp2: 82 case Intrinsic::log: 83 case Intrinsic::log10: 84 case Intrinsic::log2: 85 case Intrinsic::fabs: 86 case Intrinsic::minnum: 87 case Intrinsic::maxnum: 88 case Intrinsic::minimum: 89 case Intrinsic::maximum: 90 case Intrinsic::copysign: 91 case Intrinsic::floor: 92 case Intrinsic::ceil: 93 case Intrinsic::trunc: 94 case Intrinsic::rint: 95 case Intrinsic::nearbyint: 96 case Intrinsic::round: 97 case Intrinsic::roundeven: 98 case Intrinsic::pow: 99 case Intrinsic::fma: 100 case Intrinsic::fmuladd: 101 case Intrinsic::is_fpclass: 102 case Intrinsic::powi: 103 case Intrinsic::canonicalize: 104 case Intrinsic::fptosi_sat: 105 case Intrinsic::fptoui_sat: 106 case Intrinsic::lrint: 107 case Intrinsic::llrint: 108 case Intrinsic::ucmp: 109 case Intrinsic::scmp: 110 return true; 111 default: 112 return false; 113 } 114 } 115 116 /// Identifies if the vector form of the intrinsic has a scalar operand. 117 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, 118 unsigned ScalarOpdIdx) { 119 switch (ID) { 120 case Intrinsic::abs: 121 case Intrinsic::vp_abs: 122 case Intrinsic::ctlz: 123 case Intrinsic::vp_ctlz: 124 case Intrinsic::cttz: 125 case Intrinsic::vp_cttz: 126 case Intrinsic::is_fpclass: 127 case Intrinsic::vp_is_fpclass: 128 case Intrinsic::powi: 129 return (ScalarOpdIdx == 1); 130 case Intrinsic::smul_fix: 131 case Intrinsic::smul_fix_sat: 132 case Intrinsic::umul_fix: 133 case Intrinsic::umul_fix_sat: 134 return (ScalarOpdIdx == 2); 135 default: 136 return false; 137 } 138 } 139 140 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg( 141 Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI) { 142 assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!"); 143 144 if (TTI && Intrinsic::isTargetIntrinsic(ID)) 145 return TTI->isVectorIntrinsicWithOverloadTypeAtArg(ID, OpdIdx); 146 147 switch (ID) { 148 case Intrinsic::fptosi_sat: 149 case Intrinsic::fptoui_sat: 150 case Intrinsic::lrint: 151 case Intrinsic::llrint: 152 case Intrinsic::vp_lrint: 153 case Intrinsic::vp_llrint: 154 case Intrinsic::ucmp: 155 case Intrinsic::scmp: 156 return OpdIdx == -1 || OpdIdx == 0; 157 case Intrinsic::is_fpclass: 158 case Intrinsic::vp_is_fpclass: 159 return OpdIdx == 0; 160 case Intrinsic::powi: 161 return OpdIdx == -1 || OpdIdx == 1; 162 default: 163 return OpdIdx == -1; 164 } 165 } 166 167 bool llvm::isVectorIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, 168 int RetIdx) { 169 switch (ID) { 170 case Intrinsic::frexp: 171 return RetIdx == 0 || RetIdx == 1; 172 default: 173 return RetIdx == 0; 174 } 175 } 176 177 /// Returns intrinsic ID for call. 178 /// For the input call instruction it finds mapping intrinsic and returns 179 /// its ID, in case it does not found it return not_intrinsic. 180 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 181 const TargetLibraryInfo *TLI) { 182 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); 183 if (ID == Intrinsic::not_intrinsic) 184 return Intrinsic::not_intrinsic; 185 186 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 187 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 188 ID == Intrinsic::experimental_noalias_scope_decl || 189 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) 190 return ID; 191 return Intrinsic::not_intrinsic; 192 } 193 194 /// Given a vector and an element number, see if the scalar value is 195 /// already around as a register, for example if it were inserted then extracted 196 /// from the vector. 197 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 198 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 199 VectorType *VTy = cast<VectorType>(V->getType()); 200 // For fixed-length vector, return poison for out of range access. 201 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 202 unsigned Width = FVTy->getNumElements(); 203 if (EltNo >= Width) 204 return PoisonValue::get(FVTy->getElementType()); 205 } 206 207 if (Constant *C = dyn_cast<Constant>(V)) 208 return C->getAggregateElement(EltNo); 209 210 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 211 // If this is an insert to a variable element, we don't know what it is. 212 if (!isa<ConstantInt>(III->getOperand(2))) 213 return nullptr; 214 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 215 216 // If this is an insert to the element we are looking for, return the 217 // inserted value. 218 if (EltNo == IIElt) 219 return III->getOperand(1); 220 221 // Guard against infinite loop on malformed, unreachable IR. 222 if (III == III->getOperand(0)) 223 return nullptr; 224 225 // Otherwise, the insertelement doesn't modify the value, recurse on its 226 // vector input. 227 return findScalarElement(III->getOperand(0), EltNo); 228 } 229 230 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 231 // Restrict the following transformation to fixed-length vector. 232 if (SVI && isa<FixedVectorType>(SVI->getType())) { 233 unsigned LHSWidth = 234 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); 235 int InEl = SVI->getMaskValue(EltNo); 236 if (InEl < 0) 237 return PoisonValue::get(VTy->getElementType()); 238 if (InEl < (int)LHSWidth) 239 return findScalarElement(SVI->getOperand(0), InEl); 240 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 241 } 242 243 // Extract a value from a vector add operation with a constant zero. 244 // TODO: Use getBinOpIdentity() to generalize this. 245 Value *Val; Constant *C; 246 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 247 if (Constant *Elt = C->getAggregateElement(EltNo)) 248 if (Elt->isNullValue()) 249 return findScalarElement(Val, EltNo); 250 251 // If the vector is a splat then we can trivially find the scalar element. 252 if (isa<ScalableVectorType>(VTy)) 253 if (Value *Splat = getSplatValue(V)) 254 if (EltNo < VTy->getElementCount().getKnownMinValue()) 255 return Splat; 256 257 // Otherwise, we don't know. 258 return nullptr; 259 } 260 261 int llvm::getSplatIndex(ArrayRef<int> Mask) { 262 int SplatIndex = -1; 263 for (int M : Mask) { 264 // Ignore invalid (undefined) mask elements. 265 if (M < 0) 266 continue; 267 268 // There can be only 1 non-negative mask element value if this is a splat. 269 if (SplatIndex != -1 && SplatIndex != M) 270 return -1; 271 272 // Initialize the splat index to the 1st non-negative mask element. 273 SplatIndex = M; 274 } 275 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 276 return SplatIndex; 277 } 278 279 /// Get splat value if the input is a splat vector or return nullptr. 280 /// This function is not fully general. It checks only 2 cases: 281 /// the input value is (1) a splat constant vector or (2) a sequence 282 /// of instructions that broadcasts a scalar at element 0. 283 Value *llvm::getSplatValue(const Value *V) { 284 if (isa<VectorType>(V->getType())) 285 if (auto *C = dyn_cast<Constant>(V)) 286 return C->getSplatValue(); 287 288 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 289 Value *Splat; 290 if (match(V, 291 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), 292 m_Value(), m_ZeroMask()))) 293 return Splat; 294 295 return nullptr; 296 } 297 298 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 299 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 300 301 if (isa<VectorType>(V->getType())) { 302 if (isa<UndefValue>(V)) 303 return true; 304 // FIXME: We can allow undefs, but if Index was specified, we may want to 305 // check that the constant is defined at that index. 306 if (auto *C = dyn_cast<Constant>(V)) 307 return C->getSplatValue() != nullptr; 308 } 309 310 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 311 // FIXME: We can safely allow undefs here. If Index was specified, we will 312 // check that the mask elt is defined at the required index. 313 if (!all_equal(Shuf->getShuffleMask())) 314 return false; 315 316 // Match any index. 317 if (Index == -1) 318 return true; 319 320 // Match a specific element. The mask should be defined at and match the 321 // specified index. 322 return Shuf->getMaskValue(Index) == Index; 323 } 324 325 // The remaining tests are all recursive, so bail out if we hit the limit. 326 if (Depth++ == MaxAnalysisRecursionDepth) 327 return false; 328 329 // If both operands of a binop are splats, the result is a splat. 330 Value *X, *Y, *Z; 331 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 332 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 333 334 // If all operands of a select are splats, the result is a splat. 335 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 336 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 337 isSplatValue(Z, Index, Depth); 338 339 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 340 341 return false; 342 } 343 344 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask, 345 const APInt &DemandedElts, APInt &DemandedLHS, 346 APInt &DemandedRHS, bool AllowUndefElts) { 347 DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth); 348 349 // Early out if we don't demand any elements. 350 if (DemandedElts.isZero()) 351 return true; 352 353 // Simple case of a shuffle with zeroinitializer. 354 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 355 DemandedLHS.setBit(0); 356 return true; 357 } 358 359 for (unsigned I = 0, E = Mask.size(); I != E; ++I) { 360 int M = Mask[I]; 361 assert((-1 <= M) && (M < (SrcWidth * 2)) && 362 "Invalid shuffle mask constant"); 363 364 if (!DemandedElts[I] || (AllowUndefElts && (M < 0))) 365 continue; 366 367 // For undef elements, we don't know anything about the common state of 368 // the shuffle result. 369 if (M < 0) 370 return false; 371 372 if (M < SrcWidth) 373 DemandedLHS.setBit(M); 374 else 375 DemandedRHS.setBit(M - SrcWidth); 376 } 377 378 return true; 379 } 380 381 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, 382 SmallVectorImpl<int> &ScaledMask) { 383 assert(Scale > 0 && "Unexpected scaling factor"); 384 385 // Fast-path: if no scaling, then it is just a copy. 386 if (Scale == 1) { 387 ScaledMask.assign(Mask.begin(), Mask.end()); 388 return; 389 } 390 391 ScaledMask.clear(); 392 for (int MaskElt : Mask) { 393 if (MaskElt >= 0) { 394 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && 395 "Overflowed 32-bits"); 396 } 397 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) 398 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); 399 } 400 } 401 402 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, 403 SmallVectorImpl<int> &ScaledMask) { 404 assert(Scale > 0 && "Unexpected scaling factor"); 405 406 // Fast-path: if no scaling, then it is just a copy. 407 if (Scale == 1) { 408 ScaledMask.assign(Mask.begin(), Mask.end()); 409 return true; 410 } 411 412 // We must map the original elements down evenly to a type with less elements. 413 int NumElts = Mask.size(); 414 if (NumElts % Scale != 0) 415 return false; 416 417 ScaledMask.clear(); 418 ScaledMask.reserve(NumElts / Scale); 419 420 // Step through the input mask by splitting into Scale-sized slices. 421 do { 422 ArrayRef<int> MaskSlice = Mask.take_front(Scale); 423 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); 424 425 // The first element of the slice determines how we evaluate this slice. 426 int SliceFront = MaskSlice.front(); 427 if (SliceFront < 0) { 428 // Negative values (undef or other "sentinel" values) must be equal across 429 // the entire slice. 430 if (!all_equal(MaskSlice)) 431 return false; 432 ScaledMask.push_back(SliceFront); 433 } else { 434 // A positive mask element must be cleanly divisible. 435 if (SliceFront % Scale != 0) 436 return false; 437 // Elements of the slice must be consecutive. 438 for (int i = 1; i < Scale; ++i) 439 if (MaskSlice[i] != SliceFront + i) 440 return false; 441 ScaledMask.push_back(SliceFront / Scale); 442 } 443 Mask = Mask.drop_front(Scale); 444 } while (!Mask.empty()); 445 446 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); 447 448 // All elements of the original mask can be scaled down to map to the elements 449 // of a mask with wider elements. 450 return true; 451 } 452 453 bool llvm::scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef<int> Mask, 454 SmallVectorImpl<int> &ScaledMask) { 455 unsigned NumSrcElts = Mask.size(); 456 assert(NumSrcElts > 0 && NumDstElts > 0 && "Unexpected scaling factor"); 457 458 // Fast-path: if no scaling, then it is just a copy. 459 if (NumSrcElts == NumDstElts) { 460 ScaledMask.assign(Mask.begin(), Mask.end()); 461 return true; 462 } 463 464 // Ensure we can find a whole scale factor. 465 assert(((NumSrcElts % NumDstElts) == 0 || (NumDstElts % NumSrcElts) == 0) && 466 "Unexpected scaling factor"); 467 468 if (NumSrcElts > NumDstElts) { 469 int Scale = NumSrcElts / NumDstElts; 470 return widenShuffleMaskElts(Scale, Mask, ScaledMask); 471 } 472 473 int Scale = NumDstElts / NumSrcElts; 474 narrowShuffleMaskElts(Scale, Mask, ScaledMask); 475 return true; 476 } 477 478 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask, 479 SmallVectorImpl<int> &ScaledMask) { 480 std::array<SmallVector<int, 16>, 2> TmpMasks; 481 SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1]; 482 ArrayRef<int> InputMask = Mask; 483 for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) { 484 while (widenShuffleMaskElts(Scale, InputMask, *Output)) { 485 InputMask = *Output; 486 std::swap(Output, Tmp); 487 } 488 } 489 ScaledMask.assign(InputMask.begin(), InputMask.end()); 490 } 491 492 void llvm::processShuffleMasks( 493 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, 494 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, 495 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, 496 function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) { 497 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs); 498 // Try to perform better estimation of the permutation. 499 // 1. Split the source/destination vectors into real registers. 500 // 2. Do the mask analysis to identify which real registers are 501 // permuted. 502 int Sz = Mask.size(); 503 unsigned SzDest = Sz / NumOfDestRegs; 504 unsigned SzSrc = Sz / NumOfSrcRegs; 505 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 506 auto &RegMasks = Res[I]; 507 RegMasks.assign(2 * NumOfSrcRegs, {}); 508 // Check that the values in dest registers are in the one src 509 // register. 510 for (unsigned K = 0; K < SzDest; ++K) { 511 int Idx = I * SzDest + K; 512 if (Idx == Sz) 513 break; 514 if (Mask[Idx] >= 2 * Sz || Mask[Idx] == PoisonMaskElem) 515 continue; 516 int MaskIdx = Mask[Idx] % Sz; 517 int SrcRegIdx = MaskIdx / SzSrc + (Mask[Idx] >= Sz ? NumOfSrcRegs : 0); 518 // Add a cost of PermuteTwoSrc for each new source register permute, 519 // if we have more than one source registers. 520 if (RegMasks[SrcRegIdx].empty()) 521 RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem); 522 RegMasks[SrcRegIdx][K] = MaskIdx % SzSrc; 523 } 524 } 525 // Process split mask. 526 for (unsigned I : seq<unsigned>(NumOfUsedRegs)) { 527 auto &Dest = Res[I]; 528 int NumSrcRegs = 529 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 530 switch (NumSrcRegs) { 531 case 0: 532 // No input vectors were used! 533 NoInputAction(); 534 break; 535 case 1: { 536 // Find the only mask with at least single undef mask elem. 537 auto *It = 538 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 539 unsigned SrcReg = std::distance(Dest.begin(), It); 540 SingleInputAction(*It, SrcReg, I); 541 break; 542 } 543 default: { 544 // The first mask is a permutation of a single register. Since we have >2 545 // input registers to shuffle, we merge the masks for 2 first registers 546 // and generate a shuffle of 2 registers rather than the reordering of the 547 // first register and then shuffle with the second register. Next, 548 // generate the shuffles of the resulting register + the remaining 549 // registers from the list. 550 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask, 551 ArrayRef<int> SecondMask) { 552 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { 553 if (SecondMask[Idx] != PoisonMaskElem) { 554 assert(FirstMask[Idx] == PoisonMaskElem && 555 "Expected undefined mask element."); 556 FirstMask[Idx] = SecondMask[Idx] + VF; 557 } 558 } 559 }; 560 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) { 561 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 562 if (Mask[Idx] != PoisonMaskElem) 563 Mask[Idx] = Idx; 564 } 565 }; 566 int SecondIdx; 567 do { 568 int FirstIdx = -1; 569 SecondIdx = -1; 570 MutableArrayRef<int> FirstMask, SecondMask; 571 for (unsigned I : seq<unsigned>(2 * NumOfSrcRegs)) { 572 SmallVectorImpl<int> &RegMask = Dest[I]; 573 if (RegMask.empty()) 574 continue; 575 576 if (FirstIdx == SecondIdx) { 577 FirstIdx = I; 578 FirstMask = RegMask; 579 continue; 580 } 581 SecondIdx = I; 582 SecondMask = RegMask; 583 CombineMasks(FirstMask, SecondMask); 584 ManyInputsAction(FirstMask, FirstIdx, SecondIdx); 585 NormalizeMask(FirstMask); 586 RegMask.clear(); 587 SecondMask = FirstMask; 588 SecondIdx = FirstIdx; 589 } 590 if (FirstIdx != SecondIdx && SecondIdx >= 0) { 591 CombineMasks(SecondMask, FirstMask); 592 ManyInputsAction(SecondMask, SecondIdx, FirstIdx); 593 Dest[FirstIdx].clear(); 594 NormalizeMask(SecondMask); 595 } 596 } while (SecondIdx >= 0); 597 break; 598 } 599 } 600 } 601 } 602 603 void llvm::getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, 604 const APInt &DemandedElts, 605 APInt &DemandedLHS, 606 APInt &DemandedRHS) { 607 assert(VectorBitWidth >= 128 && "Vectors smaller than 128 bit not supported"); 608 int NumLanes = VectorBitWidth / 128; 609 int NumElts = DemandedElts.getBitWidth(); 610 int NumEltsPerLane = NumElts / NumLanes; 611 int HalfEltsPerLane = NumEltsPerLane / 2; 612 613 DemandedLHS = APInt::getZero(NumElts); 614 DemandedRHS = APInt::getZero(NumElts); 615 616 // Map DemandedElts to the horizontal operands. 617 for (int Idx = 0; Idx != NumElts; ++Idx) { 618 if (!DemandedElts[Idx]) 619 continue; 620 int LaneIdx = (Idx / NumEltsPerLane) * NumEltsPerLane; 621 int LocalIdx = Idx % NumEltsPerLane; 622 if (LocalIdx < HalfEltsPerLane) { 623 DemandedLHS.setBit(LaneIdx + 2 * LocalIdx); 624 } else { 625 LocalIdx -= HalfEltsPerLane; 626 DemandedRHS.setBit(LaneIdx + 2 * LocalIdx); 627 } 628 } 629 } 630 631 MapVector<Instruction *, uint64_t> 632 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 633 const TargetTransformInfo *TTI) { 634 635 // DemandedBits will give us every value's live-out bits. But we want 636 // to ensure no extra casts would need to be inserted, so every DAG 637 // of connected values must have the same minimum bitwidth. 638 EquivalenceClasses<Value *> ECs; 639 SmallVector<Value *, 16> Worklist; 640 SmallPtrSet<Value *, 4> Roots; 641 SmallPtrSet<Value *, 16> Visited; 642 DenseMap<Value *, uint64_t> DBits; 643 SmallPtrSet<Instruction *, 4> InstructionSet; 644 MapVector<Instruction *, uint64_t> MinBWs; 645 646 // Determine the roots. We work bottom-up, from truncs or icmps. 647 bool SeenExtFromIllegalType = false; 648 for (auto *BB : Blocks) 649 for (auto &I : *BB) { 650 InstructionSet.insert(&I); 651 652 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 653 !TTI->isTypeLegal(I.getOperand(0)->getType())) 654 SeenExtFromIllegalType = true; 655 656 // Only deal with non-vector integers up to 64-bits wide. 657 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 658 !I.getType()->isVectorTy() && 659 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 660 // Don't make work for ourselves. If we know the loaded type is legal, 661 // don't add it to the worklist. 662 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 663 continue; 664 665 Worklist.push_back(&I); 666 Roots.insert(&I); 667 } 668 } 669 // Early exit. 670 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 671 return MinBWs; 672 673 // Now proceed breadth-first, unioning values together. 674 while (!Worklist.empty()) { 675 Value *Val = Worklist.pop_back_val(); 676 Value *Leader = ECs.getOrInsertLeaderValue(Val); 677 678 if (!Visited.insert(Val).second) 679 continue; 680 681 // Non-instructions terminate a chain successfully. 682 if (!isa<Instruction>(Val)) 683 continue; 684 Instruction *I = cast<Instruction>(Val); 685 686 // If we encounter a type that is larger than 64 bits, we can't represent 687 // it so bail out. 688 if (DB.getDemandedBits(I).getBitWidth() > 64) 689 return MapVector<Instruction *, uint64_t>(); 690 691 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 692 DBits[Leader] |= V; 693 DBits[I] = V; 694 695 // Casts, loads and instructions outside of our range terminate a chain 696 // successfully. 697 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 698 !InstructionSet.count(I)) 699 continue; 700 701 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 702 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 703 // transform anything that relies on them. 704 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 705 !I->getType()->isIntegerTy()) { 706 DBits[Leader] |= ~0ULL; 707 continue; 708 } 709 710 // We don't modify the types of PHIs. Reductions will already have been 711 // truncated if possible, and inductions' sizes will have been chosen by 712 // indvars. 713 if (isa<PHINode>(I)) 714 continue; 715 716 if (DBits[Leader] == ~0ULL) 717 // All bits demanded, no point continuing. 718 continue; 719 720 for (Value *O : cast<User>(I)->operands()) { 721 ECs.unionSets(Leader, O); 722 Worklist.push_back(O); 723 } 724 } 725 726 // Now we've discovered all values, walk them to see if there are 727 // any users we didn't see. If there are, we can't optimize that 728 // chain. 729 for (auto &I : DBits) 730 for (auto *U : I.first->users()) 731 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 732 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 733 734 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 735 uint64_t LeaderDemandedBits = 0; 736 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 737 LeaderDemandedBits |= DBits[M]; 738 739 uint64_t MinBW = llvm::bit_width(LeaderDemandedBits); 740 // Round up to a power of 2 741 MinBW = llvm::bit_ceil(MinBW); 742 743 // We don't modify the types of PHIs. Reductions will already have been 744 // truncated if possible, and inductions' sizes will have been chosen by 745 // indvars. 746 // If we are required to shrink a PHI, abandon this entire equivalence class. 747 bool Abort = false; 748 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 749 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) { 750 Abort = true; 751 break; 752 } 753 if (Abort) 754 continue; 755 756 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { 757 auto *MI = dyn_cast<Instruction>(M); 758 if (!MI) 759 continue; 760 Type *Ty = M->getType(); 761 if (Roots.count(M)) 762 Ty = MI->getOperand(0)->getType(); 763 764 if (MinBW >= Ty->getScalarSizeInBits()) 765 continue; 766 767 // If any of M's operands demand more bits than MinBW then M cannot be 768 // performed safely in MinBW. 769 if (any_of(MI->operands(), [&DB, MinBW](Use &U) { 770 auto *CI = dyn_cast<ConstantInt>(U); 771 // For constants shift amounts, check if the shift would result in 772 // poison. 773 if (CI && 774 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) && 775 U.getOperandNo() == 1) 776 return CI->uge(MinBW); 777 uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue()); 778 return bit_ceil(BW) > MinBW; 779 })) 780 continue; 781 782 MinBWs[MI] = MinBW; 783 } 784 } 785 786 return MinBWs; 787 } 788 789 /// Add all access groups in @p AccGroups to @p List. 790 template <typename ListT> 791 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 792 // Interpret an access group as a list containing itself. 793 if (AccGroups->getNumOperands() == 0) { 794 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 795 List.insert(AccGroups); 796 return; 797 } 798 799 for (const auto &AccGroupListOp : AccGroups->operands()) { 800 auto *Item = cast<MDNode>(AccGroupListOp.get()); 801 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 802 List.insert(Item); 803 } 804 } 805 806 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 807 if (!AccGroups1) 808 return AccGroups2; 809 if (!AccGroups2) 810 return AccGroups1; 811 if (AccGroups1 == AccGroups2) 812 return AccGroups1; 813 814 SmallSetVector<Metadata *, 4> Union; 815 addToAccessGroupList(Union, AccGroups1); 816 addToAccessGroupList(Union, AccGroups2); 817 818 if (Union.size() == 0) 819 return nullptr; 820 if (Union.size() == 1) 821 return cast<MDNode>(Union.front()); 822 823 LLVMContext &Ctx = AccGroups1->getContext(); 824 return MDNode::get(Ctx, Union.getArrayRef()); 825 } 826 827 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 828 const Instruction *Inst2) { 829 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 830 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 831 832 if (!MayAccessMem1 && !MayAccessMem2) 833 return nullptr; 834 if (!MayAccessMem1) 835 return Inst2->getMetadata(LLVMContext::MD_access_group); 836 if (!MayAccessMem2) 837 return Inst1->getMetadata(LLVMContext::MD_access_group); 838 839 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 840 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 841 if (!MD1 || !MD2) 842 return nullptr; 843 if (MD1 == MD2) 844 return MD1; 845 846 // Use set for scalable 'contains' check. 847 SmallPtrSet<Metadata *, 4> AccGroupSet2; 848 addToAccessGroupList(AccGroupSet2, MD2); 849 850 SmallVector<Metadata *, 4> Intersection; 851 if (MD1->getNumOperands() == 0) { 852 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 853 if (AccGroupSet2.count(MD1)) 854 Intersection.push_back(MD1); 855 } else { 856 for (const MDOperand &Node : MD1->operands()) { 857 auto *Item = cast<MDNode>(Node.get()); 858 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 859 if (AccGroupSet2.count(Item)) 860 Intersection.push_back(Item); 861 } 862 } 863 864 if (Intersection.size() == 0) 865 return nullptr; 866 if (Intersection.size() == 1) 867 return cast<MDNode>(Intersection.front()); 868 869 LLVMContext &Ctx = Inst1->getContext(); 870 return MDNode::get(Ctx, Intersection); 871 } 872 873 /// \returns \p I after propagating metadata from \p VL. 874 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 875 if (VL.empty()) 876 return Inst; 877 Instruction *I0 = cast<Instruction>(VL[0]); 878 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 879 I0->getAllMetadataOtherThanDebugLoc(Metadata); 880 881 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 882 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 883 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 884 LLVMContext::MD_access_group, LLVMContext::MD_mmra}) { 885 MDNode *MD = I0->getMetadata(Kind); 886 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 887 const Instruction *IJ = cast<Instruction>(VL[J]); 888 MDNode *IMD = IJ->getMetadata(Kind); 889 890 switch (Kind) { 891 case LLVMContext::MD_mmra: { 892 MD = MMRAMetadata::combine(Inst->getContext(), MD, IMD); 893 break; 894 } 895 case LLVMContext::MD_tbaa: 896 MD = MDNode::getMostGenericTBAA(MD, IMD); 897 break; 898 case LLVMContext::MD_alias_scope: 899 MD = MDNode::getMostGenericAliasScope(MD, IMD); 900 break; 901 case LLVMContext::MD_fpmath: 902 MD = MDNode::getMostGenericFPMath(MD, IMD); 903 break; 904 case LLVMContext::MD_noalias: 905 case LLVMContext::MD_nontemporal: 906 case LLVMContext::MD_invariant_load: 907 MD = MDNode::intersect(MD, IMD); 908 break; 909 case LLVMContext::MD_access_group: 910 MD = intersectAccessGroups(Inst, IJ); 911 break; 912 default: 913 llvm_unreachable("unhandled metadata"); 914 } 915 } 916 917 Inst->setMetadata(Kind, MD); 918 } 919 920 return Inst; 921 } 922 923 Constant * 924 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 925 const InterleaveGroup<Instruction> &Group) { 926 // All 1's means mask is not needed. 927 if (Group.getNumMembers() == Group.getFactor()) 928 return nullptr; 929 930 // TODO: support reversed access. 931 assert(!Group.isReverse() && "Reversed group not supported."); 932 933 SmallVector<Constant *, 16> Mask; 934 for (unsigned i = 0; i < VF; i++) 935 for (unsigned j = 0; j < Group.getFactor(); ++j) { 936 unsigned HasMember = Group.getMember(j) ? 1 : 0; 937 Mask.push_back(Builder.getInt1(HasMember)); 938 } 939 940 return ConstantVector::get(Mask); 941 } 942 943 llvm::SmallVector<int, 16> 944 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { 945 SmallVector<int, 16> MaskVec; 946 for (unsigned i = 0; i < VF; i++) 947 for (unsigned j = 0; j < ReplicationFactor; j++) 948 MaskVec.push_back(i); 949 950 return MaskVec; 951 } 952 953 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, 954 unsigned NumVecs) { 955 SmallVector<int, 16> Mask; 956 for (unsigned i = 0; i < VF; i++) 957 for (unsigned j = 0; j < NumVecs; j++) 958 Mask.push_back(j * VF + i); 959 960 return Mask; 961 } 962 963 llvm::SmallVector<int, 16> 964 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { 965 SmallVector<int, 16> Mask; 966 for (unsigned i = 0; i < VF; i++) 967 Mask.push_back(Start + i * Stride); 968 969 return Mask; 970 } 971 972 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, 973 unsigned NumInts, 974 unsigned NumUndefs) { 975 SmallVector<int, 16> Mask; 976 for (unsigned i = 0; i < NumInts; i++) 977 Mask.push_back(Start + i); 978 979 for (unsigned i = 0; i < NumUndefs; i++) 980 Mask.push_back(-1); 981 982 return Mask; 983 } 984 985 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, 986 unsigned NumElts) { 987 // Avoid casts in the loop and make sure we have a reasonable number. 988 int NumEltsSigned = NumElts; 989 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); 990 991 // If the mask chooses an element from operand 1, reduce it to choose from the 992 // corresponding element of operand 0. Undef mask elements are unchanged. 993 SmallVector<int, 16> UnaryMask; 994 for (int MaskElt : Mask) { 995 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); 996 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; 997 UnaryMask.push_back(UnaryElt); 998 } 999 return UnaryMask; 1000 } 1001 1002 /// A helper function for concatenating vectors. This function concatenates two 1003 /// vectors having the same element type. If the second vector has fewer 1004 /// elements than the first, it is padded with undefs. 1005 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 1006 Value *V2) { 1007 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 1008 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 1009 assert(VecTy1 && VecTy2 && 1010 VecTy1->getScalarType() == VecTy2->getScalarType() && 1011 "Expect two vectors with the same element type"); 1012 1013 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); 1014 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); 1015 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 1016 1017 if (NumElts1 > NumElts2) { 1018 // Extend with UNDEFs. 1019 V2 = Builder.CreateShuffleVector( 1020 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); 1021 } 1022 1023 return Builder.CreateShuffleVector( 1024 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); 1025 } 1026 1027 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 1028 ArrayRef<Value *> Vecs) { 1029 unsigned NumVecs = Vecs.size(); 1030 assert(NumVecs > 1 && "Should be at least two vectors"); 1031 1032 SmallVector<Value *, 8> ResList; 1033 ResList.append(Vecs.begin(), Vecs.end()); 1034 do { 1035 SmallVector<Value *, 8> TmpList; 1036 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 1037 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 1038 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 1039 "Only the last vector may have a different type"); 1040 1041 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 1042 } 1043 1044 // Push the last vector if the total number of vectors is odd. 1045 if (NumVecs % 2 != 0) 1046 TmpList.push_back(ResList[NumVecs - 1]); 1047 1048 ResList = TmpList; 1049 NumVecs = ResList.size(); 1050 } while (NumVecs > 1); 1051 1052 return ResList[0]; 1053 } 1054 1055 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 1056 assert(isa<VectorType>(Mask->getType()) && 1057 isa<IntegerType>(Mask->getType()->getScalarType()) && 1058 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1059 1 && 1060 "Mask must be a vector of i1"); 1061 1062 auto *ConstMask = dyn_cast<Constant>(Mask); 1063 if (!ConstMask) 1064 return false; 1065 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 1066 return true; 1067 if (isa<ScalableVectorType>(ConstMask->getType())) 1068 return false; 1069 for (unsigned 1070 I = 0, 1071 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1072 I != E; ++I) { 1073 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1074 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 1075 continue; 1076 return false; 1077 } 1078 return true; 1079 } 1080 1081 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 1082 assert(isa<VectorType>(Mask->getType()) && 1083 isa<IntegerType>(Mask->getType()->getScalarType()) && 1084 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1085 1 && 1086 "Mask must be a vector of i1"); 1087 1088 auto *ConstMask = dyn_cast<Constant>(Mask); 1089 if (!ConstMask) 1090 return false; 1091 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 1092 return true; 1093 if (isa<ScalableVectorType>(ConstMask->getType())) 1094 return false; 1095 for (unsigned 1096 I = 0, 1097 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1098 I != E; ++I) { 1099 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1100 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1101 continue; 1102 return false; 1103 } 1104 return true; 1105 } 1106 1107 bool llvm::maskContainsAllOneOrUndef(Value *Mask) { 1108 assert(isa<VectorType>(Mask->getType()) && 1109 isa<IntegerType>(Mask->getType()->getScalarType()) && 1110 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1111 1 && 1112 "Mask must be a vector of i1"); 1113 1114 auto *ConstMask = dyn_cast<Constant>(Mask); 1115 if (!ConstMask) 1116 return false; 1117 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 1118 return true; 1119 if (isa<ScalableVectorType>(ConstMask->getType())) 1120 return false; 1121 for (unsigned 1122 I = 0, 1123 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1124 I != E; ++I) { 1125 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1126 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1127 return true; 1128 } 1129 return false; 1130 } 1131 1132 /// TODO: This is a lot like known bits, but for 1133 /// vectors. Is there something we can common this with? 1134 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 1135 assert(isa<FixedVectorType>(Mask->getType()) && 1136 isa<IntegerType>(Mask->getType()->getScalarType()) && 1137 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1138 1 && 1139 "Mask must be a fixed width vector of i1"); 1140 1141 const unsigned VWidth = 1142 cast<FixedVectorType>(Mask->getType())->getNumElements(); 1143 APInt DemandedElts = APInt::getAllOnes(VWidth); 1144 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 1145 for (unsigned i = 0; i < VWidth; i++) 1146 if (CV->getAggregateElement(i)->isNullValue()) 1147 DemandedElts.clearBit(i); 1148 return DemandedElts; 1149 } 1150 1151 bool InterleavedAccessInfo::isStrided(int Stride) { 1152 unsigned Factor = std::abs(Stride); 1153 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1154 } 1155 1156 void InterleavedAccessInfo::collectConstStrideAccesses( 1157 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1158 const DenseMap<Value*, const SCEV*> &Strides) { 1159 auto &DL = TheLoop->getHeader()->getDataLayout(); 1160 1161 // Since it's desired that the load/store instructions be maintained in 1162 // "program order" for the interleaved access analysis, we have to visit the 1163 // blocks in the loop in reverse postorder (i.e., in a topological order). 1164 // Such an ordering will ensure that any load/store that may be executed 1165 // before a second load/store will precede the second load/store in 1166 // AccessStrideInfo. 1167 LoopBlocksDFS DFS(TheLoop); 1168 DFS.perform(LI); 1169 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 1170 for (auto &I : *BB) { 1171 Value *Ptr = getLoadStorePointerOperand(&I); 1172 if (!Ptr) 1173 continue; 1174 Type *ElementTy = getLoadStoreType(&I); 1175 1176 // Currently, codegen doesn't support cases where the type size doesn't 1177 // match the alloc size. Skip them for now. 1178 uint64_t Size = DL.getTypeAllocSize(ElementTy); 1179 if (Size * 8 != DL.getTypeSizeInBits(ElementTy)) 1180 continue; 1181 1182 // We don't check wrapping here because we don't know yet if Ptr will be 1183 // part of a full group or a group with gaps. Checking wrapping for all 1184 // pointers (even those that end up in groups with no gaps) will be overly 1185 // conservative. For full groups, wrapping should be ok since if we would 1186 // wrap around the address space we would do a memory access at nullptr 1187 // even without the transformation. The wrapping checks are therefore 1188 // deferred until after we've formed the interleaved groups. 1189 int64_t Stride = 1190 getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, 1191 /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0); 1192 1193 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 1194 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, 1195 getLoadStoreAlignment(&I)); 1196 } 1197 } 1198 1199 // Analyze interleaved accesses and collect them into interleaved load and 1200 // store groups. 1201 // 1202 // When generating code for an interleaved load group, we effectively hoist all 1203 // loads in the group to the location of the first load in program order. When 1204 // generating code for an interleaved store group, we sink all stores to the 1205 // location of the last store. This code motion can change the order of load 1206 // and store instructions and may break dependences. 1207 // 1208 // The code generation strategy mentioned above ensures that we won't violate 1209 // any write-after-read (WAR) dependences. 1210 // 1211 // E.g., for the WAR dependence: a = A[i]; // (1) 1212 // A[i] = b; // (2) 1213 // 1214 // The store group of (2) is always inserted at or below (2), and the load 1215 // group of (1) is always inserted at or above (1). Thus, the instructions will 1216 // never be reordered. All other dependences are checked to ensure the 1217 // correctness of the instruction reordering. 1218 // 1219 // The algorithm visits all memory accesses in the loop in bottom-up program 1220 // order. Program order is established by traversing the blocks in the loop in 1221 // reverse postorder when collecting the accesses. 1222 // 1223 // We visit the memory accesses in bottom-up order because it can simplify the 1224 // construction of store groups in the presence of write-after-write (WAW) 1225 // dependences. 1226 // 1227 // E.g., for the WAW dependence: A[i] = a; // (1) 1228 // A[i] = b; // (2) 1229 // A[i + 1] = c; // (3) 1230 // 1231 // We will first create a store group with (3) and (2). (1) can't be added to 1232 // this group because it and (2) are dependent. However, (1) can be grouped 1233 // with other accesses that may precede it in program order. Note that a 1234 // bottom-up order does not imply that WAW dependences should not be checked. 1235 void InterleavedAccessInfo::analyzeInterleaving( 1236 bool EnablePredicatedInterleavedMemAccesses) { 1237 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 1238 const auto &Strides = LAI->getSymbolicStrides(); 1239 1240 // Holds all accesses with a constant stride. 1241 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 1242 collectConstStrideAccesses(AccessStrideInfo, Strides); 1243 1244 if (AccessStrideInfo.empty()) 1245 return; 1246 1247 // Collect the dependences in the loop. 1248 collectDependences(); 1249 1250 // Holds all interleaved store groups temporarily. 1251 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 1252 // Holds all interleaved load groups temporarily. 1253 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 1254 // Groups added to this set cannot have new members added. 1255 SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups; 1256 1257 // Search in bottom-up program order for pairs of accesses (A and B) that can 1258 // form interleaved load or store groups. In the algorithm below, access A 1259 // precedes access B in program order. We initialize a group for B in the 1260 // outer loop of the algorithm, and then in the inner loop, we attempt to 1261 // insert each A into B's group if: 1262 // 1263 // 1. A and B have the same stride, 1264 // 2. A and B have the same memory object size, and 1265 // 3. A belongs in B's group according to its distance from B. 1266 // 1267 // Special care is taken to ensure group formation will not break any 1268 // dependences. 1269 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 1270 BI != E; ++BI) { 1271 Instruction *B = BI->first; 1272 StrideDescriptor DesB = BI->second; 1273 1274 // Initialize a group for B if it has an allowable stride. Even if we don't 1275 // create a group for B, we continue with the bottom-up algorithm to ensure 1276 // we don't break any of B's dependences. 1277 InterleaveGroup<Instruction> *GroupB = nullptr; 1278 if (isStrided(DesB.Stride) && 1279 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 1280 GroupB = getInterleaveGroup(B); 1281 if (!GroupB) { 1282 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 1283 << '\n'); 1284 GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 1285 if (B->mayWriteToMemory()) 1286 StoreGroups.insert(GroupB); 1287 else 1288 LoadGroups.insert(GroupB); 1289 } 1290 } 1291 1292 for (auto AI = std::next(BI); AI != E; ++AI) { 1293 Instruction *A = AI->first; 1294 StrideDescriptor DesA = AI->second; 1295 1296 // Our code motion strategy implies that we can't have dependences 1297 // between accesses in an interleaved group and other accesses located 1298 // between the first and last member of the group. Note that this also 1299 // means that a group can't have more than one member at a given offset. 1300 // The accesses in a group can have dependences with other accesses, but 1301 // we must ensure we don't extend the boundaries of the group such that 1302 // we encompass those dependent accesses. 1303 // 1304 // For example, assume we have the sequence of accesses shown below in a 1305 // stride-2 loop: 1306 // 1307 // (1, 2) is a group | A[i] = a; // (1) 1308 // | A[i-1] = b; // (2) | 1309 // A[i-3] = c; // (3) 1310 // A[i] = d; // (4) | (2, 4) is not a group 1311 // 1312 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1313 // but not with (4). If we did, the dependent access (3) would be within 1314 // the boundaries of the (2, 4) group. 1315 auto DependentMember = [&](InterleaveGroup<Instruction> *Group, 1316 StrideEntry *A) -> Instruction * { 1317 for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) { 1318 Instruction *MemberOfGroupB = Group->getMember(Index); 1319 if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups( 1320 A, &*AccessStrideInfo.find(MemberOfGroupB))) 1321 return MemberOfGroupB; 1322 } 1323 return nullptr; 1324 }; 1325 1326 auto GroupA = getInterleaveGroup(A); 1327 // If A is a load, dependencies are tolerable, there's nothing to do here. 1328 // If both A and B belong to the same (store) group, they are independent, 1329 // even if dependencies have not been recorded. 1330 // If both GroupA and GroupB are null, there's nothing to do here. 1331 if (A->mayWriteToMemory() && GroupA != GroupB) { 1332 Instruction *DependentInst = nullptr; 1333 // If GroupB is a load group, we have to compare AI against all 1334 // members of GroupB because if any load within GroupB has a dependency 1335 // on AI, we need to mark GroupB as complete and also release the 1336 // store GroupA (if A belongs to one). The former prevents incorrect 1337 // hoisting of load B above store A while the latter prevents incorrect 1338 // sinking of store A below load B. 1339 if (GroupB && LoadGroups.contains(GroupB)) 1340 DependentInst = DependentMember(GroupB, &*AI); 1341 else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) 1342 DependentInst = B; 1343 1344 if (DependentInst) { 1345 // A has a store dependence on B (or on some load within GroupB) and 1346 // is part of a store group. Release A's group to prevent illegal 1347 // sinking of A below B. A will then be free to form another group 1348 // with instructions that precede it. 1349 if (GroupA && StoreGroups.contains(GroupA)) { 1350 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1351 "dependence between " 1352 << *A << " and " << *DependentInst << '\n'); 1353 StoreGroups.remove(GroupA); 1354 releaseGroup(GroupA); 1355 } 1356 // If B is a load and part of an interleave group, no earlier loads 1357 // can be added to B's interleave group, because this would mean the 1358 // DependentInst would move across store A. Mark the interleave group 1359 // as complete. 1360 if (GroupB && LoadGroups.contains(GroupB)) { 1361 LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B 1362 << " as complete.\n"); 1363 CompletedLoadGroups.insert(GroupB); 1364 } 1365 } 1366 } 1367 if (CompletedLoadGroups.contains(GroupB)) { 1368 // Skip trying to add A to B, continue to look for other conflicting A's 1369 // in groups to be released. 1370 continue; 1371 } 1372 1373 // At this point, we've checked for illegal code motion. If either A or B 1374 // isn't strided, there's nothing left to do. 1375 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1376 continue; 1377 1378 // Ignore A if it's already in a group or isn't the same kind of memory 1379 // operation as B. 1380 // Note that mayReadFromMemory() isn't mutually exclusive to 1381 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1382 // here, canVectorizeMemory() should have returned false - except for the 1383 // case we asked for optimization remarks. 1384 if (isInterleaved(A) || 1385 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1386 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1387 continue; 1388 1389 // Check rules 1 and 2. Ignore A if its stride or size is different from 1390 // that of B. 1391 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1392 continue; 1393 1394 // Ignore A if the memory object of A and B don't belong to the same 1395 // address space 1396 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1397 continue; 1398 1399 // Calculate the distance from A to B. 1400 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1401 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1402 if (!DistToB) 1403 continue; 1404 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1405 1406 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1407 // size. 1408 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1409 continue; 1410 1411 // All members of a predicated interleave-group must have the same predicate, 1412 // and currently must reside in the same BB. 1413 BasicBlock *BlockA = A->getParent(); 1414 BasicBlock *BlockB = B->getParent(); 1415 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1416 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1417 continue; 1418 1419 // The index of A is the index of B plus A's distance to B in multiples 1420 // of the size. 1421 int IndexA = 1422 GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1423 1424 // Try to insert A into B's group. 1425 if (GroupB->insertMember(A, IndexA, DesA.Alignment)) { 1426 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1427 << " into the interleave group with" << *B 1428 << '\n'); 1429 InterleaveGroupMap[A] = GroupB; 1430 1431 // Set the first load in program order as the insert position. 1432 if (A->mayReadFromMemory()) 1433 GroupB->setInsertPos(A); 1434 } 1435 } // Iteration over A accesses. 1436 } // Iteration over B accesses. 1437 1438 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, 1439 int Index, 1440 const char *FirstOrLast) -> bool { 1441 Instruction *Member = Group->getMember(Index); 1442 assert(Member && "Group member does not exist"); 1443 Value *MemberPtr = getLoadStorePointerOperand(Member); 1444 Type *AccessTy = getLoadStoreType(Member); 1445 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, 1446 /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0)) 1447 return false; 1448 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 1449 << FirstOrLast 1450 << " group member potentially pointer-wrapping.\n"); 1451 releaseGroup(Group); 1452 return true; 1453 }; 1454 1455 // Remove interleaved groups with gaps whose memory 1456 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1457 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1458 // not check wrapping (see documentation there). 1459 // FORNOW we use Assume=false; 1460 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1461 // of runtime SCEV assumptions checks (thereby potentially failing to 1462 // vectorize altogether). 1463 // Additional optional optimizations: 1464 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1465 // wrap then we can deduce that all pointers in the group don't wrap. 1466 // This means that we can forcefully peel the loop in order to only have to 1467 // check the first pointer for no-wrap. When we'll change to use Assume=true 1468 // we'll only need at most one runtime check per interleaved group. 1469 for (auto *Group : LoadGroups) { 1470 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1471 // load would wrap around the address space we would do a memory access at 1472 // nullptr even without the transformation. 1473 if (Group->getNumMembers() == Group->getFactor()) 1474 continue; 1475 1476 // Case 2: If first and last members of the group don't wrap this implies 1477 // that all the pointers in the group don't wrap. 1478 // So we check only group member 0 (which is always guaranteed to exist), 1479 // and group member Factor - 1; If the latter doesn't exist we rely on 1480 // peeling (if it is a non-reversed access -- see Case 3). 1481 if (InvalidateGroupIfMemberMayWrap(Group, 0, "first")) 1482 continue; 1483 if (Group->getMember(Group->getFactor() - 1)) 1484 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, "last"); 1485 else { 1486 // Case 3: A non-reversed interleaved load group with gaps: We need 1487 // to execute at least one scalar epilogue iteration. This will ensure 1488 // we don't speculatively access memory out-of-bounds. We only need 1489 // to look for a member at index factor - 1, since every group must have 1490 // a member at index zero. 1491 if (Group->isReverse()) { 1492 LLVM_DEBUG( 1493 dbgs() << "LV: Invalidate candidate interleaved group due to " 1494 "a reverse access with gaps.\n"); 1495 releaseGroup(Group); 1496 continue; 1497 } 1498 LLVM_DEBUG( 1499 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1500 RequiresScalarEpilogue = true; 1501 } 1502 } 1503 1504 for (auto *Group : StoreGroups) { 1505 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1506 // store would wrap around the address space we would do a memory access at 1507 // nullptr even without the transformation. 1508 if (Group->getNumMembers() == Group->getFactor()) 1509 continue; 1510 1511 // Interleave-store-group with gaps is implemented using masked wide store. 1512 // Remove interleaved store groups with gaps if 1513 // masked-interleaved-accesses are not enabled by the target. 1514 if (!EnablePredicatedInterleavedMemAccesses) { 1515 LLVM_DEBUG( 1516 dbgs() << "LV: Invalidate candidate interleaved store group due " 1517 "to gaps.\n"); 1518 releaseGroup(Group); 1519 continue; 1520 } 1521 1522 // Case 2: If first and last members of the group don't wrap this implies 1523 // that all the pointers in the group don't wrap. 1524 // So we check only group member 0 (which is always guaranteed to exist), 1525 // and the last group member. Case 3 (scalar epilog) is not relevant for 1526 // stores with gaps, which are implemented with masked-store (rather than 1527 // speculative access, as in loads). 1528 if (InvalidateGroupIfMemberMayWrap(Group, 0, "first")) 1529 continue; 1530 for (int Index = Group->getFactor() - 1; Index > 0; Index--) 1531 if (Group->getMember(Index)) { 1532 InvalidateGroupIfMemberMayWrap(Group, Index, "last"); 1533 break; 1534 } 1535 } 1536 } 1537 1538 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1539 // If no group had triggered the requirement to create an epilogue loop, 1540 // there is nothing to do. 1541 if (!requiresScalarEpilogue()) 1542 return; 1543 1544 // Release groups requiring scalar epilogues. Note that this also removes them 1545 // from InterleaveGroups. 1546 bool ReleasedGroup = InterleaveGroups.remove_if([&](auto *Group) { 1547 if (!Group->requiresScalarEpilogue()) 1548 return false; 1549 LLVM_DEBUG( 1550 dbgs() 1551 << "LV: Invalidate candidate interleaved group due to gaps that " 1552 "require a scalar epilogue (not allowed under optsize) and cannot " 1553 "be masked (not enabled). \n"); 1554 releaseGroupWithoutRemovingFromSet(Group); 1555 return true; 1556 }); 1557 assert(ReleasedGroup && "At least one group must be invalidated, as a " 1558 "scalar epilogue was required"); 1559 (void)ReleasedGroup; 1560 RequiresScalarEpilogue = false; 1561 } 1562 1563 template <typename InstT> 1564 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1565 llvm_unreachable("addMetadata can only be used for Instruction"); 1566 } 1567 1568 namespace llvm { 1569 template <> 1570 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1571 SmallVector<Value *, 4> VL; 1572 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1573 [](std::pair<int, Instruction *> p) { return p.second; }); 1574 propagateMetadata(NewInst, VL); 1575 } 1576 } // namespace llvm 1577