1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/CommandLine.h" 30 31 #define DEBUG_TYPE "vectorutils" 32 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 /// Maximum factor for an interleaved memory access. 37 static cl::opt<unsigned> MaxInterleaveGroupFactor( 38 "max-interleave-group-factor", cl::Hidden, 39 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 40 cl::init(8)); 41 42 /// Return true if all of the intrinsic's arguments and return type are scalars 43 /// for the scalar form of the intrinsic, and vectors for the vector form of the 44 /// intrinsic (except operands that are marked as always being scalar by 45 /// isVectorIntrinsicWithScalarOpAtArg). 46 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 47 switch (ID) { 48 case Intrinsic::abs: // Begin integer bit-manipulation. 49 case Intrinsic::bswap: 50 case Intrinsic::bitreverse: 51 case Intrinsic::ctpop: 52 case Intrinsic::ctlz: 53 case Intrinsic::cttz: 54 case Intrinsic::fshl: 55 case Intrinsic::fshr: 56 case Intrinsic::smax: 57 case Intrinsic::smin: 58 case Intrinsic::umax: 59 case Intrinsic::umin: 60 case Intrinsic::sadd_sat: 61 case Intrinsic::ssub_sat: 62 case Intrinsic::uadd_sat: 63 case Intrinsic::usub_sat: 64 case Intrinsic::smul_fix: 65 case Intrinsic::smul_fix_sat: 66 case Intrinsic::umul_fix: 67 case Intrinsic::umul_fix_sat: 68 case Intrinsic::sqrt: // Begin floating-point. 69 case Intrinsic::asin: 70 case Intrinsic::acos: 71 case Intrinsic::atan: 72 case Intrinsic::sin: 73 case Intrinsic::cos: 74 case Intrinsic::tan: 75 case Intrinsic::sinh: 76 case Intrinsic::cosh: 77 case Intrinsic::tanh: 78 case Intrinsic::exp: 79 case Intrinsic::exp2: 80 case Intrinsic::log: 81 case Intrinsic::log10: 82 case Intrinsic::log2: 83 case Intrinsic::fabs: 84 case Intrinsic::minnum: 85 case Intrinsic::maxnum: 86 case Intrinsic::minimum: 87 case Intrinsic::maximum: 88 case Intrinsic::copysign: 89 case Intrinsic::floor: 90 case Intrinsic::ceil: 91 case Intrinsic::trunc: 92 case Intrinsic::rint: 93 case Intrinsic::nearbyint: 94 case Intrinsic::round: 95 case Intrinsic::roundeven: 96 case Intrinsic::pow: 97 case Intrinsic::fma: 98 case Intrinsic::fmuladd: 99 case Intrinsic::is_fpclass: 100 case Intrinsic::powi: 101 case Intrinsic::canonicalize: 102 case Intrinsic::fptosi_sat: 103 case Intrinsic::fptoui_sat: 104 case Intrinsic::lrint: 105 case Intrinsic::llrint: 106 case Intrinsic::ucmp: 107 case Intrinsic::scmp: 108 return true; 109 default: 110 return false; 111 } 112 } 113 114 /// Identifies if the vector form of the intrinsic has a scalar operand. 115 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, 116 unsigned ScalarOpdIdx) { 117 switch (ID) { 118 case Intrinsic::abs: 119 case Intrinsic::ctlz: 120 case Intrinsic::cttz: 121 case Intrinsic::is_fpclass: 122 case Intrinsic::powi: 123 return (ScalarOpdIdx == 1); 124 case Intrinsic::smul_fix: 125 case Intrinsic::smul_fix_sat: 126 case Intrinsic::umul_fix: 127 case Intrinsic::umul_fix_sat: 128 return (ScalarOpdIdx == 2); 129 default: 130 return false; 131 } 132 } 133 134 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, 135 int OpdIdx) { 136 assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!"); 137 138 switch (ID) { 139 case Intrinsic::fptosi_sat: 140 case Intrinsic::fptoui_sat: 141 case Intrinsic::lrint: 142 case Intrinsic::llrint: 143 case Intrinsic::ucmp: 144 case Intrinsic::scmp: 145 return OpdIdx == -1 || OpdIdx == 0; 146 case Intrinsic::is_fpclass: 147 return OpdIdx == 0; 148 case Intrinsic::powi: 149 return OpdIdx == -1 || OpdIdx == 1; 150 default: 151 return OpdIdx == -1; 152 } 153 } 154 155 /// Returns intrinsic ID for call. 156 /// For the input call instruction it finds mapping intrinsic and returns 157 /// its ID, in case it does not found it return not_intrinsic. 158 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 159 const TargetLibraryInfo *TLI) { 160 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); 161 if (ID == Intrinsic::not_intrinsic) 162 return Intrinsic::not_intrinsic; 163 164 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 165 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 166 ID == Intrinsic::experimental_noalias_scope_decl || 167 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) 168 return ID; 169 return Intrinsic::not_intrinsic; 170 } 171 172 /// Given a vector and an element number, see if the scalar value is 173 /// already around as a register, for example if it were inserted then extracted 174 /// from the vector. 175 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 176 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 177 VectorType *VTy = cast<VectorType>(V->getType()); 178 // For fixed-length vector, return poison for out of range access. 179 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 180 unsigned Width = FVTy->getNumElements(); 181 if (EltNo >= Width) 182 return PoisonValue::get(FVTy->getElementType()); 183 } 184 185 if (Constant *C = dyn_cast<Constant>(V)) 186 return C->getAggregateElement(EltNo); 187 188 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 189 // If this is an insert to a variable element, we don't know what it is. 190 if (!isa<ConstantInt>(III->getOperand(2))) 191 return nullptr; 192 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 193 194 // If this is an insert to the element we are looking for, return the 195 // inserted value. 196 if (EltNo == IIElt) 197 return III->getOperand(1); 198 199 // Guard against infinite loop on malformed, unreachable IR. 200 if (III == III->getOperand(0)) 201 return nullptr; 202 203 // Otherwise, the insertelement doesn't modify the value, recurse on its 204 // vector input. 205 return findScalarElement(III->getOperand(0), EltNo); 206 } 207 208 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 209 // Restrict the following transformation to fixed-length vector. 210 if (SVI && isa<FixedVectorType>(SVI->getType())) { 211 unsigned LHSWidth = 212 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); 213 int InEl = SVI->getMaskValue(EltNo); 214 if (InEl < 0) 215 return PoisonValue::get(VTy->getElementType()); 216 if (InEl < (int)LHSWidth) 217 return findScalarElement(SVI->getOperand(0), InEl); 218 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 219 } 220 221 // Extract a value from a vector add operation with a constant zero. 222 // TODO: Use getBinOpIdentity() to generalize this. 223 Value *Val; Constant *C; 224 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 225 if (Constant *Elt = C->getAggregateElement(EltNo)) 226 if (Elt->isNullValue()) 227 return findScalarElement(Val, EltNo); 228 229 // If the vector is a splat then we can trivially find the scalar element. 230 if (isa<ScalableVectorType>(VTy)) 231 if (Value *Splat = getSplatValue(V)) 232 if (EltNo < VTy->getElementCount().getKnownMinValue()) 233 return Splat; 234 235 // Otherwise, we don't know. 236 return nullptr; 237 } 238 239 int llvm::getSplatIndex(ArrayRef<int> Mask) { 240 int SplatIndex = -1; 241 for (int M : Mask) { 242 // Ignore invalid (undefined) mask elements. 243 if (M < 0) 244 continue; 245 246 // There can be only 1 non-negative mask element value if this is a splat. 247 if (SplatIndex != -1 && SplatIndex != M) 248 return -1; 249 250 // Initialize the splat index to the 1st non-negative mask element. 251 SplatIndex = M; 252 } 253 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 254 return SplatIndex; 255 } 256 257 /// Get splat value if the input is a splat vector or return nullptr. 258 /// This function is not fully general. It checks only 2 cases: 259 /// the input value is (1) a splat constant vector or (2) a sequence 260 /// of instructions that broadcasts a scalar at element 0. 261 Value *llvm::getSplatValue(const Value *V) { 262 if (isa<VectorType>(V->getType())) 263 if (auto *C = dyn_cast<Constant>(V)) 264 return C->getSplatValue(); 265 266 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 267 Value *Splat; 268 if (match(V, 269 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), 270 m_Value(), m_ZeroMask()))) 271 return Splat; 272 273 return nullptr; 274 } 275 276 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 277 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 278 279 if (isa<VectorType>(V->getType())) { 280 if (isa<UndefValue>(V)) 281 return true; 282 // FIXME: We can allow undefs, but if Index was specified, we may want to 283 // check that the constant is defined at that index. 284 if (auto *C = dyn_cast<Constant>(V)) 285 return C->getSplatValue() != nullptr; 286 } 287 288 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 289 // FIXME: We can safely allow undefs here. If Index was specified, we will 290 // check that the mask elt is defined at the required index. 291 if (!all_equal(Shuf->getShuffleMask())) 292 return false; 293 294 // Match any index. 295 if (Index == -1) 296 return true; 297 298 // Match a specific element. The mask should be defined at and match the 299 // specified index. 300 return Shuf->getMaskValue(Index) == Index; 301 } 302 303 // The remaining tests are all recursive, so bail out if we hit the limit. 304 if (Depth++ == MaxAnalysisRecursionDepth) 305 return false; 306 307 // If both operands of a binop are splats, the result is a splat. 308 Value *X, *Y, *Z; 309 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 310 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 311 312 // If all operands of a select are splats, the result is a splat. 313 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 314 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 315 isSplatValue(Z, Index, Depth); 316 317 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 318 319 return false; 320 } 321 322 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask, 323 const APInt &DemandedElts, APInt &DemandedLHS, 324 APInt &DemandedRHS, bool AllowUndefElts) { 325 DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth); 326 327 // Early out if we don't demand any elements. 328 if (DemandedElts.isZero()) 329 return true; 330 331 // Simple case of a shuffle with zeroinitializer. 332 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 333 DemandedLHS.setBit(0); 334 return true; 335 } 336 337 for (unsigned I = 0, E = Mask.size(); I != E; ++I) { 338 int M = Mask[I]; 339 assert((-1 <= M) && (M < (SrcWidth * 2)) && 340 "Invalid shuffle mask constant"); 341 342 if (!DemandedElts[I] || (AllowUndefElts && (M < 0))) 343 continue; 344 345 // For undef elements, we don't know anything about the common state of 346 // the shuffle result. 347 if (M < 0) 348 return false; 349 350 if (M < SrcWidth) 351 DemandedLHS.setBit(M); 352 else 353 DemandedRHS.setBit(M - SrcWidth); 354 } 355 356 return true; 357 } 358 359 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, 360 SmallVectorImpl<int> &ScaledMask) { 361 assert(Scale > 0 && "Unexpected scaling factor"); 362 363 // Fast-path: if no scaling, then it is just a copy. 364 if (Scale == 1) { 365 ScaledMask.assign(Mask.begin(), Mask.end()); 366 return; 367 } 368 369 ScaledMask.clear(); 370 for (int MaskElt : Mask) { 371 if (MaskElt >= 0) { 372 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && 373 "Overflowed 32-bits"); 374 } 375 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) 376 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); 377 } 378 } 379 380 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, 381 SmallVectorImpl<int> &ScaledMask) { 382 assert(Scale > 0 && "Unexpected scaling factor"); 383 384 // Fast-path: if no scaling, then it is just a copy. 385 if (Scale == 1) { 386 ScaledMask.assign(Mask.begin(), Mask.end()); 387 return true; 388 } 389 390 // We must map the original elements down evenly to a type with less elements. 391 int NumElts = Mask.size(); 392 if (NumElts % Scale != 0) 393 return false; 394 395 ScaledMask.clear(); 396 ScaledMask.reserve(NumElts / Scale); 397 398 // Step through the input mask by splitting into Scale-sized slices. 399 do { 400 ArrayRef<int> MaskSlice = Mask.take_front(Scale); 401 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); 402 403 // The first element of the slice determines how we evaluate this slice. 404 int SliceFront = MaskSlice.front(); 405 if (SliceFront < 0) { 406 // Negative values (undef or other "sentinel" values) must be equal across 407 // the entire slice. 408 if (!all_equal(MaskSlice)) 409 return false; 410 ScaledMask.push_back(SliceFront); 411 } else { 412 // A positive mask element must be cleanly divisible. 413 if (SliceFront % Scale != 0) 414 return false; 415 // Elements of the slice must be consecutive. 416 for (int i = 1; i < Scale; ++i) 417 if (MaskSlice[i] != SliceFront + i) 418 return false; 419 ScaledMask.push_back(SliceFront / Scale); 420 } 421 Mask = Mask.drop_front(Scale); 422 } while (!Mask.empty()); 423 424 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); 425 426 // All elements of the original mask can be scaled down to map to the elements 427 // of a mask with wider elements. 428 return true; 429 } 430 431 bool llvm::scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef<int> Mask, 432 SmallVectorImpl<int> &ScaledMask) { 433 unsigned NumSrcElts = Mask.size(); 434 assert(NumSrcElts > 0 && NumDstElts > 0 && "Unexpected scaling factor"); 435 436 // Fast-path: if no scaling, then it is just a copy. 437 if (NumSrcElts == NumDstElts) { 438 ScaledMask.assign(Mask.begin(), Mask.end()); 439 return true; 440 } 441 442 // Ensure we can find a whole scale factor. 443 assert(((NumSrcElts % NumDstElts) == 0 || (NumDstElts % NumSrcElts) == 0) && 444 "Unexpected scaling factor"); 445 446 if (NumSrcElts > NumDstElts) { 447 int Scale = NumSrcElts / NumDstElts; 448 return widenShuffleMaskElts(Scale, Mask, ScaledMask); 449 } 450 451 int Scale = NumDstElts / NumSrcElts; 452 narrowShuffleMaskElts(Scale, Mask, ScaledMask); 453 return true; 454 } 455 456 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask, 457 SmallVectorImpl<int> &ScaledMask) { 458 std::array<SmallVector<int, 16>, 2> TmpMasks; 459 SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1]; 460 ArrayRef<int> InputMask = Mask; 461 for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) { 462 while (widenShuffleMaskElts(Scale, InputMask, *Output)) { 463 InputMask = *Output; 464 std::swap(Output, Tmp); 465 } 466 } 467 ScaledMask.assign(InputMask.begin(), InputMask.end()); 468 } 469 470 void llvm::processShuffleMasks( 471 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, 472 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, 473 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, 474 function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) { 475 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs); 476 // Try to perform better estimation of the permutation. 477 // 1. Split the source/destination vectors into real registers. 478 // 2. Do the mask analysis to identify which real registers are 479 // permuted. 480 int Sz = Mask.size(); 481 unsigned SzDest = Sz / NumOfDestRegs; 482 unsigned SzSrc = Sz / NumOfSrcRegs; 483 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 484 auto &RegMasks = Res[I]; 485 RegMasks.assign(NumOfSrcRegs, {}); 486 // Check that the values in dest registers are in the one src 487 // register. 488 for (unsigned K = 0; K < SzDest; ++K) { 489 int Idx = I * SzDest + K; 490 if (Idx == Sz) 491 break; 492 if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem) 493 continue; 494 int SrcRegIdx = Mask[Idx] / SzSrc; 495 // Add a cost of PermuteTwoSrc for each new source register permute, 496 // if we have more than one source registers. 497 if (RegMasks[SrcRegIdx].empty()) 498 RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem); 499 RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc; 500 } 501 } 502 // Process split mask. 503 for (unsigned I = 0; I < NumOfUsedRegs; ++I) { 504 auto &Dest = Res[I]; 505 int NumSrcRegs = 506 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 507 switch (NumSrcRegs) { 508 case 0: 509 // No input vectors were used! 510 NoInputAction(); 511 break; 512 case 1: { 513 // Find the only mask with at least single undef mask elem. 514 auto *It = 515 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 516 unsigned SrcReg = std::distance(Dest.begin(), It); 517 SingleInputAction(*It, SrcReg, I); 518 break; 519 } 520 default: { 521 // The first mask is a permutation of a single register. Since we have >2 522 // input registers to shuffle, we merge the masks for 2 first registers 523 // and generate a shuffle of 2 registers rather than the reordering of the 524 // first register and then shuffle with the second register. Next, 525 // generate the shuffles of the resulting register + the remaining 526 // registers from the list. 527 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask, 528 ArrayRef<int> SecondMask) { 529 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { 530 if (SecondMask[Idx] != PoisonMaskElem) { 531 assert(FirstMask[Idx] == PoisonMaskElem && 532 "Expected undefined mask element."); 533 FirstMask[Idx] = SecondMask[Idx] + VF; 534 } 535 } 536 }; 537 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) { 538 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 539 if (Mask[Idx] != PoisonMaskElem) 540 Mask[Idx] = Idx; 541 } 542 }; 543 int SecondIdx; 544 do { 545 int FirstIdx = -1; 546 SecondIdx = -1; 547 MutableArrayRef<int> FirstMask, SecondMask; 548 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 549 SmallVectorImpl<int> &RegMask = Dest[I]; 550 if (RegMask.empty()) 551 continue; 552 553 if (FirstIdx == SecondIdx) { 554 FirstIdx = I; 555 FirstMask = RegMask; 556 continue; 557 } 558 SecondIdx = I; 559 SecondMask = RegMask; 560 CombineMasks(FirstMask, SecondMask); 561 ManyInputsAction(FirstMask, FirstIdx, SecondIdx); 562 NormalizeMask(FirstMask); 563 RegMask.clear(); 564 SecondMask = FirstMask; 565 SecondIdx = FirstIdx; 566 } 567 if (FirstIdx != SecondIdx && SecondIdx >= 0) { 568 CombineMasks(SecondMask, FirstMask); 569 ManyInputsAction(SecondMask, SecondIdx, FirstIdx); 570 Dest[FirstIdx].clear(); 571 NormalizeMask(SecondMask); 572 } 573 } while (SecondIdx >= 0); 574 break; 575 } 576 } 577 } 578 } 579 580 void llvm::getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, 581 const APInt &DemandedElts, 582 APInt &DemandedLHS, 583 APInt &DemandedRHS) { 584 assert(VectorBitWidth >= 128 && "Vectors smaller than 128 bit not supported"); 585 int NumLanes = VectorBitWidth / 128; 586 int NumElts = DemandedElts.getBitWidth(); 587 int NumEltsPerLane = NumElts / NumLanes; 588 int HalfEltsPerLane = NumEltsPerLane / 2; 589 590 DemandedLHS = APInt::getZero(NumElts); 591 DemandedRHS = APInt::getZero(NumElts); 592 593 // Map DemandedElts to the horizontal operands. 594 for (int Idx = 0; Idx != NumElts; ++Idx) { 595 if (!DemandedElts[Idx]) 596 continue; 597 int LaneIdx = (Idx / NumEltsPerLane) * NumEltsPerLane; 598 int LocalIdx = Idx % NumEltsPerLane; 599 if (LocalIdx < HalfEltsPerLane) { 600 DemandedLHS.setBit(LaneIdx + 2 * LocalIdx); 601 } else { 602 LocalIdx -= HalfEltsPerLane; 603 DemandedRHS.setBit(LaneIdx + 2 * LocalIdx); 604 } 605 } 606 } 607 608 MapVector<Instruction *, uint64_t> 609 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 610 const TargetTransformInfo *TTI) { 611 612 // DemandedBits will give us every value's live-out bits. But we want 613 // to ensure no extra casts would need to be inserted, so every DAG 614 // of connected values must have the same minimum bitwidth. 615 EquivalenceClasses<Value *> ECs; 616 SmallVector<Value *, 16> Worklist; 617 SmallPtrSet<Value *, 4> Roots; 618 SmallPtrSet<Value *, 16> Visited; 619 DenseMap<Value *, uint64_t> DBits; 620 SmallPtrSet<Instruction *, 4> InstructionSet; 621 MapVector<Instruction *, uint64_t> MinBWs; 622 623 // Determine the roots. We work bottom-up, from truncs or icmps. 624 bool SeenExtFromIllegalType = false; 625 for (auto *BB : Blocks) 626 for (auto &I : *BB) { 627 InstructionSet.insert(&I); 628 629 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 630 !TTI->isTypeLegal(I.getOperand(0)->getType())) 631 SeenExtFromIllegalType = true; 632 633 // Only deal with non-vector integers up to 64-bits wide. 634 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 635 !I.getType()->isVectorTy() && 636 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 637 // Don't make work for ourselves. If we know the loaded type is legal, 638 // don't add it to the worklist. 639 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 640 continue; 641 642 Worklist.push_back(&I); 643 Roots.insert(&I); 644 } 645 } 646 // Early exit. 647 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 648 return MinBWs; 649 650 // Now proceed breadth-first, unioning values together. 651 while (!Worklist.empty()) { 652 Value *Val = Worklist.pop_back_val(); 653 Value *Leader = ECs.getOrInsertLeaderValue(Val); 654 655 if (!Visited.insert(Val).second) 656 continue; 657 658 // Non-instructions terminate a chain successfully. 659 if (!isa<Instruction>(Val)) 660 continue; 661 Instruction *I = cast<Instruction>(Val); 662 663 // If we encounter a type that is larger than 64 bits, we can't represent 664 // it so bail out. 665 if (DB.getDemandedBits(I).getBitWidth() > 64) 666 return MapVector<Instruction *, uint64_t>(); 667 668 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 669 DBits[Leader] |= V; 670 DBits[I] = V; 671 672 // Casts, loads and instructions outside of our range terminate a chain 673 // successfully. 674 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 675 !InstructionSet.count(I)) 676 continue; 677 678 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 679 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 680 // transform anything that relies on them. 681 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 682 !I->getType()->isIntegerTy()) { 683 DBits[Leader] |= ~0ULL; 684 continue; 685 } 686 687 // We don't modify the types of PHIs. Reductions will already have been 688 // truncated if possible, and inductions' sizes will have been chosen by 689 // indvars. 690 if (isa<PHINode>(I)) 691 continue; 692 693 if (DBits[Leader] == ~0ULL) 694 // All bits demanded, no point continuing. 695 continue; 696 697 for (Value *O : cast<User>(I)->operands()) { 698 ECs.unionSets(Leader, O); 699 Worklist.push_back(O); 700 } 701 } 702 703 // Now we've discovered all values, walk them to see if there are 704 // any users we didn't see. If there are, we can't optimize that 705 // chain. 706 for (auto &I : DBits) 707 for (auto *U : I.first->users()) 708 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 709 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 710 711 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 712 uint64_t LeaderDemandedBits = 0; 713 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 714 LeaderDemandedBits |= DBits[M]; 715 716 uint64_t MinBW = llvm::bit_width(LeaderDemandedBits); 717 // Round up to a power of 2 718 MinBW = llvm::bit_ceil(MinBW); 719 720 // We don't modify the types of PHIs. Reductions will already have been 721 // truncated if possible, and inductions' sizes will have been chosen by 722 // indvars. 723 // If we are required to shrink a PHI, abandon this entire equivalence class. 724 bool Abort = false; 725 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 726 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) { 727 Abort = true; 728 break; 729 } 730 if (Abort) 731 continue; 732 733 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { 734 auto *MI = dyn_cast<Instruction>(M); 735 if (!MI) 736 continue; 737 Type *Ty = M->getType(); 738 if (Roots.count(M)) 739 Ty = MI->getOperand(0)->getType(); 740 741 if (MinBW >= Ty->getScalarSizeInBits()) 742 continue; 743 744 // If any of M's operands demand more bits than MinBW then M cannot be 745 // performed safely in MinBW. 746 if (any_of(MI->operands(), [&DB, MinBW](Use &U) { 747 auto *CI = dyn_cast<ConstantInt>(U); 748 // For constants shift amounts, check if the shift would result in 749 // poison. 750 if (CI && 751 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) && 752 U.getOperandNo() == 1) 753 return CI->uge(MinBW); 754 uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue()); 755 return bit_ceil(BW) > MinBW; 756 })) 757 continue; 758 759 MinBWs[MI] = MinBW; 760 } 761 } 762 763 return MinBWs; 764 } 765 766 /// Add all access groups in @p AccGroups to @p List. 767 template <typename ListT> 768 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 769 // Interpret an access group as a list containing itself. 770 if (AccGroups->getNumOperands() == 0) { 771 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 772 List.insert(AccGroups); 773 return; 774 } 775 776 for (const auto &AccGroupListOp : AccGroups->operands()) { 777 auto *Item = cast<MDNode>(AccGroupListOp.get()); 778 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 779 List.insert(Item); 780 } 781 } 782 783 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 784 if (!AccGroups1) 785 return AccGroups2; 786 if (!AccGroups2) 787 return AccGroups1; 788 if (AccGroups1 == AccGroups2) 789 return AccGroups1; 790 791 SmallSetVector<Metadata *, 4> Union; 792 addToAccessGroupList(Union, AccGroups1); 793 addToAccessGroupList(Union, AccGroups2); 794 795 if (Union.size() == 0) 796 return nullptr; 797 if (Union.size() == 1) 798 return cast<MDNode>(Union.front()); 799 800 LLVMContext &Ctx = AccGroups1->getContext(); 801 return MDNode::get(Ctx, Union.getArrayRef()); 802 } 803 804 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 805 const Instruction *Inst2) { 806 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 807 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 808 809 if (!MayAccessMem1 && !MayAccessMem2) 810 return nullptr; 811 if (!MayAccessMem1) 812 return Inst2->getMetadata(LLVMContext::MD_access_group); 813 if (!MayAccessMem2) 814 return Inst1->getMetadata(LLVMContext::MD_access_group); 815 816 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 817 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 818 if (!MD1 || !MD2) 819 return nullptr; 820 if (MD1 == MD2) 821 return MD1; 822 823 // Use set for scalable 'contains' check. 824 SmallPtrSet<Metadata *, 4> AccGroupSet2; 825 addToAccessGroupList(AccGroupSet2, MD2); 826 827 SmallVector<Metadata *, 4> Intersection; 828 if (MD1->getNumOperands() == 0) { 829 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 830 if (AccGroupSet2.count(MD1)) 831 Intersection.push_back(MD1); 832 } else { 833 for (const MDOperand &Node : MD1->operands()) { 834 auto *Item = cast<MDNode>(Node.get()); 835 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 836 if (AccGroupSet2.count(Item)) 837 Intersection.push_back(Item); 838 } 839 } 840 841 if (Intersection.size() == 0) 842 return nullptr; 843 if (Intersection.size() == 1) 844 return cast<MDNode>(Intersection.front()); 845 846 LLVMContext &Ctx = Inst1->getContext(); 847 return MDNode::get(Ctx, Intersection); 848 } 849 850 /// \returns \p I after propagating metadata from \p VL. 851 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 852 if (VL.empty()) 853 return Inst; 854 Instruction *I0 = cast<Instruction>(VL[0]); 855 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 856 I0->getAllMetadataOtherThanDebugLoc(Metadata); 857 858 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 859 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 860 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 861 LLVMContext::MD_access_group, LLVMContext::MD_mmra}) { 862 MDNode *MD = I0->getMetadata(Kind); 863 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 864 const Instruction *IJ = cast<Instruction>(VL[J]); 865 MDNode *IMD = IJ->getMetadata(Kind); 866 867 switch (Kind) { 868 case LLVMContext::MD_mmra: { 869 MD = MMRAMetadata::combine(Inst->getContext(), MD, IMD); 870 break; 871 } 872 case LLVMContext::MD_tbaa: 873 MD = MDNode::getMostGenericTBAA(MD, IMD); 874 break; 875 case LLVMContext::MD_alias_scope: 876 MD = MDNode::getMostGenericAliasScope(MD, IMD); 877 break; 878 case LLVMContext::MD_fpmath: 879 MD = MDNode::getMostGenericFPMath(MD, IMD); 880 break; 881 case LLVMContext::MD_noalias: 882 case LLVMContext::MD_nontemporal: 883 case LLVMContext::MD_invariant_load: 884 MD = MDNode::intersect(MD, IMD); 885 break; 886 case LLVMContext::MD_access_group: 887 MD = intersectAccessGroups(Inst, IJ); 888 break; 889 default: 890 llvm_unreachable("unhandled metadata"); 891 } 892 } 893 894 Inst->setMetadata(Kind, MD); 895 } 896 897 return Inst; 898 } 899 900 Constant * 901 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 902 const InterleaveGroup<Instruction> &Group) { 903 // All 1's means mask is not needed. 904 if (Group.getNumMembers() == Group.getFactor()) 905 return nullptr; 906 907 // TODO: support reversed access. 908 assert(!Group.isReverse() && "Reversed group not supported."); 909 910 SmallVector<Constant *, 16> Mask; 911 for (unsigned i = 0; i < VF; i++) 912 for (unsigned j = 0; j < Group.getFactor(); ++j) { 913 unsigned HasMember = Group.getMember(j) ? 1 : 0; 914 Mask.push_back(Builder.getInt1(HasMember)); 915 } 916 917 return ConstantVector::get(Mask); 918 } 919 920 llvm::SmallVector<int, 16> 921 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { 922 SmallVector<int, 16> MaskVec; 923 for (unsigned i = 0; i < VF; i++) 924 for (unsigned j = 0; j < ReplicationFactor; j++) 925 MaskVec.push_back(i); 926 927 return MaskVec; 928 } 929 930 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, 931 unsigned NumVecs) { 932 SmallVector<int, 16> Mask; 933 for (unsigned i = 0; i < VF; i++) 934 for (unsigned j = 0; j < NumVecs; j++) 935 Mask.push_back(j * VF + i); 936 937 return Mask; 938 } 939 940 llvm::SmallVector<int, 16> 941 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { 942 SmallVector<int, 16> Mask; 943 for (unsigned i = 0; i < VF; i++) 944 Mask.push_back(Start + i * Stride); 945 946 return Mask; 947 } 948 949 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, 950 unsigned NumInts, 951 unsigned NumUndefs) { 952 SmallVector<int, 16> Mask; 953 for (unsigned i = 0; i < NumInts; i++) 954 Mask.push_back(Start + i); 955 956 for (unsigned i = 0; i < NumUndefs; i++) 957 Mask.push_back(-1); 958 959 return Mask; 960 } 961 962 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, 963 unsigned NumElts) { 964 // Avoid casts in the loop and make sure we have a reasonable number. 965 int NumEltsSigned = NumElts; 966 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); 967 968 // If the mask chooses an element from operand 1, reduce it to choose from the 969 // corresponding element of operand 0. Undef mask elements are unchanged. 970 SmallVector<int, 16> UnaryMask; 971 for (int MaskElt : Mask) { 972 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); 973 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; 974 UnaryMask.push_back(UnaryElt); 975 } 976 return UnaryMask; 977 } 978 979 /// A helper function for concatenating vectors. This function concatenates two 980 /// vectors having the same element type. If the second vector has fewer 981 /// elements than the first, it is padded with undefs. 982 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 983 Value *V2) { 984 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 985 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 986 assert(VecTy1 && VecTy2 && 987 VecTy1->getScalarType() == VecTy2->getScalarType() && 988 "Expect two vectors with the same element type"); 989 990 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); 991 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); 992 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 993 994 if (NumElts1 > NumElts2) { 995 // Extend with UNDEFs. 996 V2 = Builder.CreateShuffleVector( 997 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); 998 } 999 1000 return Builder.CreateShuffleVector( 1001 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); 1002 } 1003 1004 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 1005 ArrayRef<Value *> Vecs) { 1006 unsigned NumVecs = Vecs.size(); 1007 assert(NumVecs > 1 && "Should be at least two vectors"); 1008 1009 SmallVector<Value *, 8> ResList; 1010 ResList.append(Vecs.begin(), Vecs.end()); 1011 do { 1012 SmallVector<Value *, 8> TmpList; 1013 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 1014 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 1015 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 1016 "Only the last vector may have a different type"); 1017 1018 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 1019 } 1020 1021 // Push the last vector if the total number of vectors is odd. 1022 if (NumVecs % 2 != 0) 1023 TmpList.push_back(ResList[NumVecs - 1]); 1024 1025 ResList = TmpList; 1026 NumVecs = ResList.size(); 1027 } while (NumVecs > 1); 1028 1029 return ResList[0]; 1030 } 1031 1032 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 1033 assert(isa<VectorType>(Mask->getType()) && 1034 isa<IntegerType>(Mask->getType()->getScalarType()) && 1035 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1036 1 && 1037 "Mask must be a vector of i1"); 1038 1039 auto *ConstMask = dyn_cast<Constant>(Mask); 1040 if (!ConstMask) 1041 return false; 1042 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 1043 return true; 1044 if (isa<ScalableVectorType>(ConstMask->getType())) 1045 return false; 1046 for (unsigned 1047 I = 0, 1048 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1049 I != E; ++I) { 1050 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1051 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 1052 continue; 1053 return false; 1054 } 1055 return true; 1056 } 1057 1058 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 1059 assert(isa<VectorType>(Mask->getType()) && 1060 isa<IntegerType>(Mask->getType()->getScalarType()) && 1061 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1062 1 && 1063 "Mask must be a vector of i1"); 1064 1065 auto *ConstMask = dyn_cast<Constant>(Mask); 1066 if (!ConstMask) 1067 return false; 1068 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 1069 return true; 1070 if (isa<ScalableVectorType>(ConstMask->getType())) 1071 return false; 1072 for (unsigned 1073 I = 0, 1074 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1075 I != E; ++I) { 1076 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1077 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1078 continue; 1079 return false; 1080 } 1081 return true; 1082 } 1083 1084 bool llvm::maskContainsAllOneOrUndef(Value *Mask) { 1085 assert(isa<VectorType>(Mask->getType()) && 1086 isa<IntegerType>(Mask->getType()->getScalarType()) && 1087 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1088 1 && 1089 "Mask must be a vector of i1"); 1090 1091 auto *ConstMask = dyn_cast<Constant>(Mask); 1092 if (!ConstMask) 1093 return false; 1094 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 1095 return true; 1096 if (isa<ScalableVectorType>(ConstMask->getType())) 1097 return false; 1098 for (unsigned 1099 I = 0, 1100 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1101 I != E; ++I) { 1102 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1103 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1104 return true; 1105 } 1106 return false; 1107 } 1108 1109 /// TODO: This is a lot like known bits, but for 1110 /// vectors. Is there something we can common this with? 1111 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 1112 assert(isa<FixedVectorType>(Mask->getType()) && 1113 isa<IntegerType>(Mask->getType()->getScalarType()) && 1114 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1115 1 && 1116 "Mask must be a fixed width vector of i1"); 1117 1118 const unsigned VWidth = 1119 cast<FixedVectorType>(Mask->getType())->getNumElements(); 1120 APInt DemandedElts = APInt::getAllOnes(VWidth); 1121 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 1122 for (unsigned i = 0; i < VWidth; i++) 1123 if (CV->getAggregateElement(i)->isNullValue()) 1124 DemandedElts.clearBit(i); 1125 return DemandedElts; 1126 } 1127 1128 bool InterleavedAccessInfo::isStrided(int Stride) { 1129 unsigned Factor = std::abs(Stride); 1130 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1131 } 1132 1133 void InterleavedAccessInfo::collectConstStrideAccesses( 1134 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1135 const DenseMap<Value*, const SCEV*> &Strides) { 1136 auto &DL = TheLoop->getHeader()->getDataLayout(); 1137 1138 // Since it's desired that the load/store instructions be maintained in 1139 // "program order" for the interleaved access analysis, we have to visit the 1140 // blocks in the loop in reverse postorder (i.e., in a topological order). 1141 // Such an ordering will ensure that any load/store that may be executed 1142 // before a second load/store will precede the second load/store in 1143 // AccessStrideInfo. 1144 LoopBlocksDFS DFS(TheLoop); 1145 DFS.perform(LI); 1146 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 1147 for (auto &I : *BB) { 1148 Value *Ptr = getLoadStorePointerOperand(&I); 1149 if (!Ptr) 1150 continue; 1151 Type *ElementTy = getLoadStoreType(&I); 1152 1153 // Currently, codegen doesn't support cases where the type size doesn't 1154 // match the alloc size. Skip them for now. 1155 uint64_t Size = DL.getTypeAllocSize(ElementTy); 1156 if (Size * 8 != DL.getTypeSizeInBits(ElementTy)) 1157 continue; 1158 1159 // We don't check wrapping here because we don't know yet if Ptr will be 1160 // part of a full group or a group with gaps. Checking wrapping for all 1161 // pointers (even those that end up in groups with no gaps) will be overly 1162 // conservative. For full groups, wrapping should be ok since if we would 1163 // wrap around the address space we would do a memory access at nullptr 1164 // even without the transformation. The wrapping checks are therefore 1165 // deferred until after we've formed the interleaved groups. 1166 int64_t Stride = 1167 getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, 1168 /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0); 1169 1170 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 1171 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, 1172 getLoadStoreAlignment(&I)); 1173 } 1174 } 1175 1176 // Analyze interleaved accesses and collect them into interleaved load and 1177 // store groups. 1178 // 1179 // When generating code for an interleaved load group, we effectively hoist all 1180 // loads in the group to the location of the first load in program order. When 1181 // generating code for an interleaved store group, we sink all stores to the 1182 // location of the last store. This code motion can change the order of load 1183 // and store instructions and may break dependences. 1184 // 1185 // The code generation strategy mentioned above ensures that we won't violate 1186 // any write-after-read (WAR) dependences. 1187 // 1188 // E.g., for the WAR dependence: a = A[i]; // (1) 1189 // A[i] = b; // (2) 1190 // 1191 // The store group of (2) is always inserted at or below (2), and the load 1192 // group of (1) is always inserted at or above (1). Thus, the instructions will 1193 // never be reordered. All other dependences are checked to ensure the 1194 // correctness of the instruction reordering. 1195 // 1196 // The algorithm visits all memory accesses in the loop in bottom-up program 1197 // order. Program order is established by traversing the blocks in the loop in 1198 // reverse postorder when collecting the accesses. 1199 // 1200 // We visit the memory accesses in bottom-up order because it can simplify the 1201 // construction of store groups in the presence of write-after-write (WAW) 1202 // dependences. 1203 // 1204 // E.g., for the WAW dependence: A[i] = a; // (1) 1205 // A[i] = b; // (2) 1206 // A[i + 1] = c; // (3) 1207 // 1208 // We will first create a store group with (3) and (2). (1) can't be added to 1209 // this group because it and (2) are dependent. However, (1) can be grouped 1210 // with other accesses that may precede it in program order. Note that a 1211 // bottom-up order does not imply that WAW dependences should not be checked. 1212 void InterleavedAccessInfo::analyzeInterleaving( 1213 bool EnablePredicatedInterleavedMemAccesses) { 1214 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 1215 const auto &Strides = LAI->getSymbolicStrides(); 1216 1217 // Holds all accesses with a constant stride. 1218 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 1219 collectConstStrideAccesses(AccessStrideInfo, Strides); 1220 1221 if (AccessStrideInfo.empty()) 1222 return; 1223 1224 // Collect the dependences in the loop. 1225 collectDependences(); 1226 1227 // Holds all interleaved store groups temporarily. 1228 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 1229 // Holds all interleaved load groups temporarily. 1230 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 1231 // Groups added to this set cannot have new members added. 1232 SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups; 1233 1234 // Search in bottom-up program order for pairs of accesses (A and B) that can 1235 // form interleaved load or store groups. In the algorithm below, access A 1236 // precedes access B in program order. We initialize a group for B in the 1237 // outer loop of the algorithm, and then in the inner loop, we attempt to 1238 // insert each A into B's group if: 1239 // 1240 // 1. A and B have the same stride, 1241 // 2. A and B have the same memory object size, and 1242 // 3. A belongs in B's group according to its distance from B. 1243 // 1244 // Special care is taken to ensure group formation will not break any 1245 // dependences. 1246 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 1247 BI != E; ++BI) { 1248 Instruction *B = BI->first; 1249 StrideDescriptor DesB = BI->second; 1250 1251 // Initialize a group for B if it has an allowable stride. Even if we don't 1252 // create a group for B, we continue with the bottom-up algorithm to ensure 1253 // we don't break any of B's dependences. 1254 InterleaveGroup<Instruction> *GroupB = nullptr; 1255 if (isStrided(DesB.Stride) && 1256 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 1257 GroupB = getInterleaveGroup(B); 1258 if (!GroupB) { 1259 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 1260 << '\n'); 1261 GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 1262 if (B->mayWriteToMemory()) 1263 StoreGroups.insert(GroupB); 1264 else 1265 LoadGroups.insert(GroupB); 1266 } 1267 } 1268 1269 for (auto AI = std::next(BI); AI != E; ++AI) { 1270 Instruction *A = AI->first; 1271 StrideDescriptor DesA = AI->second; 1272 1273 // Our code motion strategy implies that we can't have dependences 1274 // between accesses in an interleaved group and other accesses located 1275 // between the first and last member of the group. Note that this also 1276 // means that a group can't have more than one member at a given offset. 1277 // The accesses in a group can have dependences with other accesses, but 1278 // we must ensure we don't extend the boundaries of the group such that 1279 // we encompass those dependent accesses. 1280 // 1281 // For example, assume we have the sequence of accesses shown below in a 1282 // stride-2 loop: 1283 // 1284 // (1, 2) is a group | A[i] = a; // (1) 1285 // | A[i-1] = b; // (2) | 1286 // A[i-3] = c; // (3) 1287 // A[i] = d; // (4) | (2, 4) is not a group 1288 // 1289 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1290 // but not with (4). If we did, the dependent access (3) would be within 1291 // the boundaries of the (2, 4) group. 1292 auto DependentMember = [&](InterleaveGroup<Instruction> *Group, 1293 StrideEntry *A) -> Instruction * { 1294 for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) { 1295 Instruction *MemberOfGroupB = Group->getMember(Index); 1296 if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups( 1297 A, &*AccessStrideInfo.find(MemberOfGroupB))) 1298 return MemberOfGroupB; 1299 } 1300 return nullptr; 1301 }; 1302 1303 auto GroupA = getInterleaveGroup(A); 1304 // If A is a load, dependencies are tolerable, there's nothing to do here. 1305 // If both A and B belong to the same (store) group, they are independent, 1306 // even if dependencies have not been recorded. 1307 // If both GroupA and GroupB are null, there's nothing to do here. 1308 if (A->mayWriteToMemory() && GroupA != GroupB) { 1309 Instruction *DependentInst = nullptr; 1310 // If GroupB is a load group, we have to compare AI against all 1311 // members of GroupB because if any load within GroupB has a dependency 1312 // on AI, we need to mark GroupB as complete and also release the 1313 // store GroupA (if A belongs to one). The former prevents incorrect 1314 // hoisting of load B above store A while the latter prevents incorrect 1315 // sinking of store A below load B. 1316 if (GroupB && LoadGroups.contains(GroupB)) 1317 DependentInst = DependentMember(GroupB, &*AI); 1318 else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) 1319 DependentInst = B; 1320 1321 if (DependentInst) { 1322 // A has a store dependence on B (or on some load within GroupB) and 1323 // is part of a store group. Release A's group to prevent illegal 1324 // sinking of A below B. A will then be free to form another group 1325 // with instructions that precede it. 1326 if (GroupA && StoreGroups.contains(GroupA)) { 1327 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1328 "dependence between " 1329 << *A << " and " << *DependentInst << '\n'); 1330 StoreGroups.remove(GroupA); 1331 releaseGroup(GroupA); 1332 } 1333 // If B is a load and part of an interleave group, no earlier loads 1334 // can be added to B's interleave group, because this would mean the 1335 // DependentInst would move across store A. Mark the interleave group 1336 // as complete. 1337 if (GroupB && LoadGroups.contains(GroupB)) { 1338 LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B 1339 << " as complete.\n"); 1340 CompletedLoadGroups.insert(GroupB); 1341 } 1342 } 1343 } 1344 if (CompletedLoadGroups.contains(GroupB)) { 1345 // Skip trying to add A to B, continue to look for other conflicting A's 1346 // in groups to be released. 1347 continue; 1348 } 1349 1350 // At this point, we've checked for illegal code motion. If either A or B 1351 // isn't strided, there's nothing left to do. 1352 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1353 continue; 1354 1355 // Ignore A if it's already in a group or isn't the same kind of memory 1356 // operation as B. 1357 // Note that mayReadFromMemory() isn't mutually exclusive to 1358 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1359 // here, canVectorizeMemory() should have returned false - except for the 1360 // case we asked for optimization remarks. 1361 if (isInterleaved(A) || 1362 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1363 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1364 continue; 1365 1366 // Check rules 1 and 2. Ignore A if its stride or size is different from 1367 // that of B. 1368 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1369 continue; 1370 1371 // Ignore A if the memory object of A and B don't belong to the same 1372 // address space 1373 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1374 continue; 1375 1376 // Calculate the distance from A to B. 1377 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1378 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1379 if (!DistToB) 1380 continue; 1381 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1382 1383 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1384 // size. 1385 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1386 continue; 1387 1388 // All members of a predicated interleave-group must have the same predicate, 1389 // and currently must reside in the same BB. 1390 BasicBlock *BlockA = A->getParent(); 1391 BasicBlock *BlockB = B->getParent(); 1392 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1393 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1394 continue; 1395 1396 // The index of A is the index of B plus A's distance to B in multiples 1397 // of the size. 1398 int IndexA = 1399 GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1400 1401 // Try to insert A into B's group. 1402 if (GroupB->insertMember(A, IndexA, DesA.Alignment)) { 1403 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1404 << " into the interleave group with" << *B 1405 << '\n'); 1406 InterleaveGroupMap[A] = GroupB; 1407 1408 // Set the first load in program order as the insert position. 1409 if (A->mayReadFromMemory()) 1410 GroupB->setInsertPos(A); 1411 } 1412 } // Iteration over A accesses. 1413 } // Iteration over B accesses. 1414 1415 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, 1416 int Index, 1417 const char *FirstOrLast) -> bool { 1418 Instruction *Member = Group->getMember(Index); 1419 assert(Member && "Group member does not exist"); 1420 Value *MemberPtr = getLoadStorePointerOperand(Member); 1421 Type *AccessTy = getLoadStoreType(Member); 1422 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, 1423 /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0)) 1424 return false; 1425 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 1426 << FirstOrLast 1427 << " group member potentially pointer-wrapping.\n"); 1428 releaseGroup(Group); 1429 return true; 1430 }; 1431 1432 // Remove interleaved groups with gaps whose memory 1433 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1434 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1435 // not check wrapping (see documentation there). 1436 // FORNOW we use Assume=false; 1437 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1438 // of runtime SCEV assumptions checks (thereby potentially failing to 1439 // vectorize altogether). 1440 // Additional optional optimizations: 1441 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1442 // wrap then we can deduce that all pointers in the group don't wrap. 1443 // This means that we can forcefully peel the loop in order to only have to 1444 // check the first pointer for no-wrap. When we'll change to use Assume=true 1445 // we'll only need at most one runtime check per interleaved group. 1446 for (auto *Group : LoadGroups) { 1447 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1448 // load would wrap around the address space we would do a memory access at 1449 // nullptr even without the transformation. 1450 if (Group->getNumMembers() == Group->getFactor()) 1451 continue; 1452 1453 // Case 2: If first and last members of the group don't wrap this implies 1454 // that all the pointers in the group don't wrap. 1455 // So we check only group member 0 (which is always guaranteed to exist), 1456 // and group member Factor - 1; If the latter doesn't exist we rely on 1457 // peeling (if it is a non-reversed access -- see Case 3). 1458 if (InvalidateGroupIfMemberMayWrap(Group, 0, "first")) 1459 continue; 1460 if (Group->getMember(Group->getFactor() - 1)) 1461 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, "last"); 1462 else { 1463 // Case 3: A non-reversed interleaved load group with gaps: We need 1464 // to execute at least one scalar epilogue iteration. This will ensure 1465 // we don't speculatively access memory out-of-bounds. We only need 1466 // to look for a member at index factor - 1, since every group must have 1467 // a member at index zero. 1468 if (Group->isReverse()) { 1469 LLVM_DEBUG( 1470 dbgs() << "LV: Invalidate candidate interleaved group due to " 1471 "a reverse access with gaps.\n"); 1472 releaseGroup(Group); 1473 continue; 1474 } 1475 LLVM_DEBUG( 1476 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1477 RequiresScalarEpilogue = true; 1478 } 1479 } 1480 1481 for (auto *Group : StoreGroups) { 1482 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1483 // store would wrap around the address space we would do a memory access at 1484 // nullptr even without the transformation. 1485 if (Group->getNumMembers() == Group->getFactor()) 1486 continue; 1487 1488 // Interleave-store-group with gaps is implemented using masked wide store. 1489 // Remove interleaved store groups with gaps if 1490 // masked-interleaved-accesses are not enabled by the target. 1491 if (!EnablePredicatedInterleavedMemAccesses) { 1492 LLVM_DEBUG( 1493 dbgs() << "LV: Invalidate candidate interleaved store group due " 1494 "to gaps.\n"); 1495 releaseGroup(Group); 1496 continue; 1497 } 1498 1499 // Case 2: If first and last members of the group don't wrap this implies 1500 // that all the pointers in the group don't wrap. 1501 // So we check only group member 0 (which is always guaranteed to exist), 1502 // and the last group member. Case 3 (scalar epilog) is not relevant for 1503 // stores with gaps, which are implemented with masked-store (rather than 1504 // speculative access, as in loads). 1505 if (InvalidateGroupIfMemberMayWrap(Group, 0, "first")) 1506 continue; 1507 for (int Index = Group->getFactor() - 1; Index > 0; Index--) 1508 if (Group->getMember(Index)) { 1509 InvalidateGroupIfMemberMayWrap(Group, Index, "last"); 1510 break; 1511 } 1512 } 1513 } 1514 1515 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1516 // If no group had triggered the requirement to create an epilogue loop, 1517 // there is nothing to do. 1518 if (!requiresScalarEpilogue()) 1519 return; 1520 1521 // Release groups requiring scalar epilogues. Note that this also removes them 1522 // from InterleaveGroups. 1523 bool ReleasedGroup = InterleaveGroups.remove_if([&](auto *Group) { 1524 if (!Group->requiresScalarEpilogue()) 1525 return false; 1526 LLVM_DEBUG( 1527 dbgs() 1528 << "LV: Invalidate candidate interleaved group due to gaps that " 1529 "require a scalar epilogue (not allowed under optsize) and cannot " 1530 "be masked (not enabled). \n"); 1531 releaseGroupWithoutRemovingFromSet(Group); 1532 return true; 1533 }); 1534 assert(ReleasedGroup && "At least one group must be invalidated, as a " 1535 "scalar epilogue was required"); 1536 (void)ReleasedGroup; 1537 RequiresScalarEpilogue = false; 1538 } 1539 1540 template <typename InstT> 1541 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1542 llvm_unreachable("addMetadata can only be used for Instruction"); 1543 } 1544 1545 namespace llvm { 1546 template <> 1547 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1548 SmallVector<Value *, 4> VL; 1549 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1550 [](std::pair<int, Instruction *> p) { return p.second; }); 1551 propagateMetadata(NewInst, VL); 1552 } 1553 } // namespace llvm 1554