xref: /llvm-project/llvm/lib/Analysis/VectorUtils.cpp (revision 1d8743359360d3d960d599e03e62537dc108aae2)
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/LoopIterator.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/CommandLine.h"
30 
31 #define DEBUG_TYPE "vectorutils"
32 
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35 
36 /// Maximum factor for an interleaved memory access.
37 static cl::opt<unsigned> MaxInterleaveGroupFactor(
38     "max-interleave-group-factor", cl::Hidden,
39     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
40     cl::init(8));
41 
42 /// Return true if all of the intrinsic's arguments and return type are scalars
43 /// for the scalar form of the intrinsic, and vectors for the vector form of the
44 /// intrinsic (except operands that are marked as always being scalar by
45 /// isVectorIntrinsicWithScalarOpAtArg).
46 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
47   switch (ID) {
48   case Intrinsic::abs:   // Begin integer bit-manipulation.
49   case Intrinsic::bswap:
50   case Intrinsic::bitreverse:
51   case Intrinsic::ctpop:
52   case Intrinsic::ctlz:
53   case Intrinsic::cttz:
54   case Intrinsic::fshl:
55   case Intrinsic::fshr:
56   case Intrinsic::smax:
57   case Intrinsic::smin:
58   case Intrinsic::umax:
59   case Intrinsic::umin:
60   case Intrinsic::sadd_sat:
61   case Intrinsic::ssub_sat:
62   case Intrinsic::uadd_sat:
63   case Intrinsic::usub_sat:
64   case Intrinsic::smul_fix:
65   case Intrinsic::smul_fix_sat:
66   case Intrinsic::umul_fix:
67   case Intrinsic::umul_fix_sat:
68   case Intrinsic::sqrt: // Begin floating-point.
69   case Intrinsic::sin:
70   case Intrinsic::cos:
71   case Intrinsic::tan:
72   case Intrinsic::exp:
73   case Intrinsic::exp2:
74   case Intrinsic::log:
75   case Intrinsic::log10:
76   case Intrinsic::log2:
77   case Intrinsic::fabs:
78   case Intrinsic::minnum:
79   case Intrinsic::maxnum:
80   case Intrinsic::minimum:
81   case Intrinsic::maximum:
82   case Intrinsic::copysign:
83   case Intrinsic::floor:
84   case Intrinsic::ceil:
85   case Intrinsic::trunc:
86   case Intrinsic::rint:
87   case Intrinsic::nearbyint:
88   case Intrinsic::round:
89   case Intrinsic::roundeven:
90   case Intrinsic::pow:
91   case Intrinsic::fma:
92   case Intrinsic::fmuladd:
93   case Intrinsic::is_fpclass:
94   case Intrinsic::powi:
95   case Intrinsic::canonicalize:
96   case Intrinsic::fptosi_sat:
97   case Intrinsic::fptoui_sat:
98   case Intrinsic::lrint:
99   case Intrinsic::llrint:
100     return true;
101   default:
102     return false;
103   }
104 }
105 
106 /// Identifies if the vector form of the intrinsic has a scalar operand.
107 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
108                                               unsigned ScalarOpdIdx) {
109   switch (ID) {
110   case Intrinsic::abs:
111   case Intrinsic::ctlz:
112   case Intrinsic::cttz:
113   case Intrinsic::is_fpclass:
114   case Intrinsic::powi:
115     return (ScalarOpdIdx == 1);
116   case Intrinsic::smul_fix:
117   case Intrinsic::smul_fix_sat:
118   case Intrinsic::umul_fix:
119   case Intrinsic::umul_fix_sat:
120     return (ScalarOpdIdx == 2);
121   default:
122     return false;
123   }
124 }
125 
126 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID,
127                                                   int OpdIdx) {
128   assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!");
129 
130   switch (ID) {
131   case Intrinsic::fptosi_sat:
132   case Intrinsic::fptoui_sat:
133   case Intrinsic::lrint:
134   case Intrinsic::llrint:
135     return OpdIdx == -1 || OpdIdx == 0;
136   case Intrinsic::is_fpclass:
137     return OpdIdx == 0;
138   case Intrinsic::powi:
139     return OpdIdx == -1 || OpdIdx == 1;
140   default:
141     return OpdIdx == -1;
142   }
143 }
144 
145 /// Returns intrinsic ID for call.
146 /// For the input call instruction it finds mapping intrinsic and returns
147 /// its ID, in case it does not found it return not_intrinsic.
148 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
149                                                 const TargetLibraryInfo *TLI) {
150   Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
151   if (ID == Intrinsic::not_intrinsic)
152     return Intrinsic::not_intrinsic;
153 
154   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
155       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
156       ID == Intrinsic::experimental_noalias_scope_decl ||
157       ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
158     return ID;
159   return Intrinsic::not_intrinsic;
160 }
161 
162 /// Given a vector and an element number, see if the scalar value is
163 /// already around as a register, for example if it were inserted then extracted
164 /// from the vector.
165 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
166   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
167   VectorType *VTy = cast<VectorType>(V->getType());
168   // For fixed-length vector, return undef for out of range access.
169   if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
170     unsigned Width = FVTy->getNumElements();
171     if (EltNo >= Width)
172       return UndefValue::get(FVTy->getElementType());
173   }
174 
175   if (Constant *C = dyn_cast<Constant>(V))
176     return C->getAggregateElement(EltNo);
177 
178   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
179     // If this is an insert to a variable element, we don't know what it is.
180     if (!isa<ConstantInt>(III->getOperand(2)))
181       return nullptr;
182     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
183 
184     // If this is an insert to the element we are looking for, return the
185     // inserted value.
186     if (EltNo == IIElt)
187       return III->getOperand(1);
188 
189     // Guard against infinite loop on malformed, unreachable IR.
190     if (III == III->getOperand(0))
191       return nullptr;
192 
193     // Otherwise, the insertelement doesn't modify the value, recurse on its
194     // vector input.
195     return findScalarElement(III->getOperand(0), EltNo);
196   }
197 
198   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
199   // Restrict the following transformation to fixed-length vector.
200   if (SVI && isa<FixedVectorType>(SVI->getType())) {
201     unsigned LHSWidth =
202         cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
203     int InEl = SVI->getMaskValue(EltNo);
204     if (InEl < 0)
205       return UndefValue::get(VTy->getElementType());
206     if (InEl < (int)LHSWidth)
207       return findScalarElement(SVI->getOperand(0), InEl);
208     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
209   }
210 
211   // Extract a value from a vector add operation with a constant zero.
212   // TODO: Use getBinOpIdentity() to generalize this.
213   Value *Val; Constant *C;
214   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
215     if (Constant *Elt = C->getAggregateElement(EltNo))
216       if (Elt->isNullValue())
217         return findScalarElement(Val, EltNo);
218 
219   // If the vector is a splat then we can trivially find the scalar element.
220   if (isa<ScalableVectorType>(VTy))
221     if (Value *Splat = getSplatValue(V))
222       if (EltNo < VTy->getElementCount().getKnownMinValue())
223         return Splat;
224 
225   // Otherwise, we don't know.
226   return nullptr;
227 }
228 
229 int llvm::getSplatIndex(ArrayRef<int> Mask) {
230   int SplatIndex = -1;
231   for (int M : Mask) {
232     // Ignore invalid (undefined) mask elements.
233     if (M < 0)
234       continue;
235 
236     // There can be only 1 non-negative mask element value if this is a splat.
237     if (SplatIndex != -1 && SplatIndex != M)
238       return -1;
239 
240     // Initialize the splat index to the 1st non-negative mask element.
241     SplatIndex = M;
242   }
243   assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
244   return SplatIndex;
245 }
246 
247 /// Get splat value if the input is a splat vector or return nullptr.
248 /// This function is not fully general. It checks only 2 cases:
249 /// the input value is (1) a splat constant vector or (2) a sequence
250 /// of instructions that broadcasts a scalar at element 0.
251 Value *llvm::getSplatValue(const Value *V) {
252   if (isa<VectorType>(V->getType()))
253     if (auto *C = dyn_cast<Constant>(V))
254       return C->getSplatValue();
255 
256   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
257   Value *Splat;
258   if (match(V,
259             m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
260                       m_Value(), m_ZeroMask())))
261     return Splat;
262 
263   return nullptr;
264 }
265 
266 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
267   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
268 
269   if (isa<VectorType>(V->getType())) {
270     if (isa<UndefValue>(V))
271       return true;
272     // FIXME: We can allow undefs, but if Index was specified, we may want to
273     //        check that the constant is defined at that index.
274     if (auto *C = dyn_cast<Constant>(V))
275       return C->getSplatValue() != nullptr;
276   }
277 
278   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
279     // FIXME: We can safely allow undefs here. If Index was specified, we will
280     //        check that the mask elt is defined at the required index.
281     if (!all_equal(Shuf->getShuffleMask()))
282       return false;
283 
284     // Match any index.
285     if (Index == -1)
286       return true;
287 
288     // Match a specific element. The mask should be defined at and match the
289     // specified index.
290     return Shuf->getMaskValue(Index) == Index;
291   }
292 
293   // The remaining tests are all recursive, so bail out if we hit the limit.
294   if (Depth++ == MaxAnalysisRecursionDepth)
295     return false;
296 
297   // If both operands of a binop are splats, the result is a splat.
298   Value *X, *Y, *Z;
299   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
300     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
301 
302   // If all operands of a select are splats, the result is a splat.
303   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
304     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
305            isSplatValue(Z, Index, Depth);
306 
307   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
308 
309   return false;
310 }
311 
312 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
313                                   const APInt &DemandedElts, APInt &DemandedLHS,
314                                   APInt &DemandedRHS, bool AllowUndefElts) {
315   DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth);
316 
317   // Early out if we don't demand any elements.
318   if (DemandedElts.isZero())
319     return true;
320 
321   // Simple case of a shuffle with zeroinitializer.
322   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
323     DemandedLHS.setBit(0);
324     return true;
325   }
326 
327   for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
328     int M = Mask[I];
329     assert((-1 <= M) && (M < (SrcWidth * 2)) &&
330            "Invalid shuffle mask constant");
331 
332     if (!DemandedElts[I] || (AllowUndefElts && (M < 0)))
333       continue;
334 
335     // For undef elements, we don't know anything about the common state of
336     // the shuffle result.
337     if (M < 0)
338       return false;
339 
340     if (M < SrcWidth)
341       DemandedLHS.setBit(M);
342     else
343       DemandedRHS.setBit(M - SrcWidth);
344   }
345 
346   return true;
347 }
348 
349 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
350                                  SmallVectorImpl<int> &ScaledMask) {
351   assert(Scale > 0 && "Unexpected scaling factor");
352 
353   // Fast-path: if no scaling, then it is just a copy.
354   if (Scale == 1) {
355     ScaledMask.assign(Mask.begin(), Mask.end());
356     return;
357   }
358 
359   ScaledMask.clear();
360   for (int MaskElt : Mask) {
361     if (MaskElt >= 0) {
362       assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
363              "Overflowed 32-bits");
364     }
365     for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
366       ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
367   }
368 }
369 
370 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
371                                 SmallVectorImpl<int> &ScaledMask) {
372   assert(Scale > 0 && "Unexpected scaling factor");
373 
374   // Fast-path: if no scaling, then it is just a copy.
375   if (Scale == 1) {
376     ScaledMask.assign(Mask.begin(), Mask.end());
377     return true;
378   }
379 
380   // We must map the original elements down evenly to a type with less elements.
381   int NumElts = Mask.size();
382   if (NumElts % Scale != 0)
383     return false;
384 
385   ScaledMask.clear();
386   ScaledMask.reserve(NumElts / Scale);
387 
388   // Step through the input mask by splitting into Scale-sized slices.
389   do {
390     ArrayRef<int> MaskSlice = Mask.take_front(Scale);
391     assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
392 
393     // The first element of the slice determines how we evaluate this slice.
394     int SliceFront = MaskSlice.front();
395     if (SliceFront < 0) {
396       // Negative values (undef or other "sentinel" values) must be equal across
397       // the entire slice.
398       if (!all_equal(MaskSlice))
399         return false;
400       ScaledMask.push_back(SliceFront);
401     } else {
402       // A positive mask element must be cleanly divisible.
403       if (SliceFront % Scale != 0)
404         return false;
405       // Elements of the slice must be consecutive.
406       for (int i = 1; i < Scale; ++i)
407         if (MaskSlice[i] != SliceFront + i)
408           return false;
409       ScaledMask.push_back(SliceFront / Scale);
410     }
411     Mask = Mask.drop_front(Scale);
412   } while (!Mask.empty());
413 
414   assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
415 
416   // All elements of the original mask can be scaled down to map to the elements
417   // of a mask with wider elements.
418   return true;
419 }
420 
421 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
422                                         SmallVectorImpl<int> &ScaledMask) {
423   std::array<SmallVector<int, 16>, 2> TmpMasks;
424   SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1];
425   ArrayRef<int> InputMask = Mask;
426   for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) {
427     while (widenShuffleMaskElts(Scale, InputMask, *Output)) {
428       InputMask = *Output;
429       std::swap(Output, Tmp);
430     }
431   }
432   ScaledMask.assign(InputMask.begin(), InputMask.end());
433 }
434 
435 void llvm::processShuffleMasks(
436     ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
437     unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
438     function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
439     function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) {
440   SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs);
441   // Try to perform better estimation of the permutation.
442   // 1. Split the source/destination vectors into real registers.
443   // 2. Do the mask analysis to identify which real registers are
444   // permuted.
445   int Sz = Mask.size();
446   unsigned SzDest = Sz / NumOfDestRegs;
447   unsigned SzSrc = Sz / NumOfSrcRegs;
448   for (unsigned I = 0; I < NumOfDestRegs; ++I) {
449     auto &RegMasks = Res[I];
450     RegMasks.assign(NumOfSrcRegs, {});
451     // Check that the values in dest registers are in the one src
452     // register.
453     for (unsigned K = 0; K < SzDest; ++K) {
454       int Idx = I * SzDest + K;
455       if (Idx == Sz)
456         break;
457       if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem)
458         continue;
459       int SrcRegIdx = Mask[Idx] / SzSrc;
460       // Add a cost of PermuteTwoSrc for each new source register permute,
461       // if we have more than one source registers.
462       if (RegMasks[SrcRegIdx].empty())
463         RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem);
464       RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc;
465     }
466   }
467   // Process split mask.
468   for (unsigned I = 0; I < NumOfUsedRegs; ++I) {
469     auto &Dest = Res[I];
470     int NumSrcRegs =
471         count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
472     switch (NumSrcRegs) {
473     case 0:
474       // No input vectors were used!
475       NoInputAction();
476       break;
477     case 1: {
478       // Find the only mask with at least single undef mask elem.
479       auto *It =
480           find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
481       unsigned SrcReg = std::distance(Dest.begin(), It);
482       SingleInputAction(*It, SrcReg, I);
483       break;
484     }
485     default: {
486       // The first mask is a permutation of a single register. Since we have >2
487       // input registers to shuffle, we merge the masks for 2 first registers
488       // and generate a shuffle of 2 registers rather than the reordering of the
489       // first register and then shuffle with the second register. Next,
490       // generate the shuffles of the resulting register + the remaining
491       // registers from the list.
492       auto &&CombineMasks = [](MutableArrayRef<int> FirstMask,
493                                ArrayRef<int> SecondMask) {
494         for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) {
495           if (SecondMask[Idx] != PoisonMaskElem) {
496             assert(FirstMask[Idx] == PoisonMaskElem &&
497                    "Expected undefined mask element.");
498             FirstMask[Idx] = SecondMask[Idx] + VF;
499           }
500         }
501       };
502       auto &&NormalizeMask = [](MutableArrayRef<int> Mask) {
503         for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
504           if (Mask[Idx] != PoisonMaskElem)
505             Mask[Idx] = Idx;
506         }
507       };
508       int SecondIdx;
509       do {
510         int FirstIdx = -1;
511         SecondIdx = -1;
512         MutableArrayRef<int> FirstMask, SecondMask;
513         for (unsigned I = 0; I < NumOfDestRegs; ++I) {
514           SmallVectorImpl<int> &RegMask = Dest[I];
515           if (RegMask.empty())
516             continue;
517 
518           if (FirstIdx == SecondIdx) {
519             FirstIdx = I;
520             FirstMask = RegMask;
521             continue;
522           }
523           SecondIdx = I;
524           SecondMask = RegMask;
525           CombineMasks(FirstMask, SecondMask);
526           ManyInputsAction(FirstMask, FirstIdx, SecondIdx);
527           NormalizeMask(FirstMask);
528           RegMask.clear();
529           SecondMask = FirstMask;
530           SecondIdx = FirstIdx;
531         }
532         if (FirstIdx != SecondIdx && SecondIdx >= 0) {
533           CombineMasks(SecondMask, FirstMask);
534           ManyInputsAction(SecondMask, SecondIdx, FirstIdx);
535           Dest[FirstIdx].clear();
536           NormalizeMask(SecondMask);
537         }
538       } while (SecondIdx >= 0);
539       break;
540     }
541     }
542   }
543 }
544 
545 MapVector<Instruction *, uint64_t>
546 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
547                                const TargetTransformInfo *TTI) {
548 
549   // DemandedBits will give us every value's live-out bits. But we want
550   // to ensure no extra casts would need to be inserted, so every DAG
551   // of connected values must have the same minimum bitwidth.
552   EquivalenceClasses<Value *> ECs;
553   SmallVector<Value *, 16> Worklist;
554   SmallPtrSet<Value *, 4> Roots;
555   SmallPtrSet<Value *, 16> Visited;
556   DenseMap<Value *, uint64_t> DBits;
557   SmallPtrSet<Instruction *, 4> InstructionSet;
558   MapVector<Instruction *, uint64_t> MinBWs;
559 
560   // Determine the roots. We work bottom-up, from truncs or icmps.
561   bool SeenExtFromIllegalType = false;
562   for (auto *BB : Blocks)
563     for (auto &I : *BB) {
564       InstructionSet.insert(&I);
565 
566       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
567           !TTI->isTypeLegal(I.getOperand(0)->getType()))
568         SeenExtFromIllegalType = true;
569 
570       // Only deal with non-vector integers up to 64-bits wide.
571       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
572           !I.getType()->isVectorTy() &&
573           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
574         // Don't make work for ourselves. If we know the loaded type is legal,
575         // don't add it to the worklist.
576         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
577           continue;
578 
579         Worklist.push_back(&I);
580         Roots.insert(&I);
581       }
582     }
583   // Early exit.
584   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
585     return MinBWs;
586 
587   // Now proceed breadth-first, unioning values together.
588   while (!Worklist.empty()) {
589     Value *Val = Worklist.pop_back_val();
590     Value *Leader = ECs.getOrInsertLeaderValue(Val);
591 
592     if (!Visited.insert(Val).second)
593       continue;
594 
595     // Non-instructions terminate a chain successfully.
596     if (!isa<Instruction>(Val))
597       continue;
598     Instruction *I = cast<Instruction>(Val);
599 
600     // If we encounter a type that is larger than 64 bits, we can't represent
601     // it so bail out.
602     if (DB.getDemandedBits(I).getBitWidth() > 64)
603       return MapVector<Instruction *, uint64_t>();
604 
605     uint64_t V = DB.getDemandedBits(I).getZExtValue();
606     DBits[Leader] |= V;
607     DBits[I] = V;
608 
609     // Casts, loads and instructions outside of our range terminate a chain
610     // successfully.
611     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
612         !InstructionSet.count(I))
613       continue;
614 
615     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
616     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
617     // transform anything that relies on them.
618     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
619         !I->getType()->isIntegerTy()) {
620       DBits[Leader] |= ~0ULL;
621       continue;
622     }
623 
624     // We don't modify the types of PHIs. Reductions will already have been
625     // truncated if possible, and inductions' sizes will have been chosen by
626     // indvars.
627     if (isa<PHINode>(I))
628       continue;
629 
630     if (DBits[Leader] == ~0ULL)
631       // All bits demanded, no point continuing.
632       continue;
633 
634     for (Value *O : cast<User>(I)->operands()) {
635       ECs.unionSets(Leader, O);
636       Worklist.push_back(O);
637     }
638   }
639 
640   // Now we've discovered all values, walk them to see if there are
641   // any users we didn't see. If there are, we can't optimize that
642   // chain.
643   for (auto &I : DBits)
644     for (auto *U : I.first->users())
645       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
646         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
647 
648   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
649     uint64_t LeaderDemandedBits = 0;
650     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
651       LeaderDemandedBits |= DBits[M];
652 
653     uint64_t MinBW = llvm::bit_width(LeaderDemandedBits);
654     // Round up to a power of 2
655     MinBW = llvm::bit_ceil(MinBW);
656 
657     // We don't modify the types of PHIs. Reductions will already have been
658     // truncated if possible, and inductions' sizes will have been chosen by
659     // indvars.
660     // If we are required to shrink a PHI, abandon this entire equivalence class.
661     bool Abort = false;
662     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
663       if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
664         Abort = true;
665         break;
666       }
667     if (Abort)
668       continue;
669 
670     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
671       auto *MI = dyn_cast<Instruction>(M);
672       if (!MI)
673         continue;
674       Type *Ty = M->getType();
675       if (Roots.count(M))
676         Ty = MI->getOperand(0)->getType();
677 
678       if (MinBW >= Ty->getScalarSizeInBits())
679         continue;
680 
681       // If any of M's operands demand more bits than MinBW then M cannot be
682       // performed safely in MinBW.
683       if (any_of(MI->operands(), [&DB, MinBW](Use &U) {
684             auto *CI = dyn_cast<ConstantInt>(U);
685             // For constants shift amounts, check if the shift would result in
686             // poison.
687             if (CI &&
688                 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) &&
689                 U.getOperandNo() == 1)
690               return CI->uge(MinBW);
691             uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue());
692             return bit_ceil(BW) > MinBW;
693           }))
694         continue;
695 
696       MinBWs[MI] = MinBW;
697     }
698   }
699 
700   return MinBWs;
701 }
702 
703 /// Add all access groups in @p AccGroups to @p List.
704 template <typename ListT>
705 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
706   // Interpret an access group as a list containing itself.
707   if (AccGroups->getNumOperands() == 0) {
708     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
709     List.insert(AccGroups);
710     return;
711   }
712 
713   for (const auto &AccGroupListOp : AccGroups->operands()) {
714     auto *Item = cast<MDNode>(AccGroupListOp.get());
715     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
716     List.insert(Item);
717   }
718 }
719 
720 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
721   if (!AccGroups1)
722     return AccGroups2;
723   if (!AccGroups2)
724     return AccGroups1;
725   if (AccGroups1 == AccGroups2)
726     return AccGroups1;
727 
728   SmallSetVector<Metadata *, 4> Union;
729   addToAccessGroupList(Union, AccGroups1);
730   addToAccessGroupList(Union, AccGroups2);
731 
732   if (Union.size() == 0)
733     return nullptr;
734   if (Union.size() == 1)
735     return cast<MDNode>(Union.front());
736 
737   LLVMContext &Ctx = AccGroups1->getContext();
738   return MDNode::get(Ctx, Union.getArrayRef());
739 }
740 
741 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
742                                     const Instruction *Inst2) {
743   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
744   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
745 
746   if (!MayAccessMem1 && !MayAccessMem2)
747     return nullptr;
748   if (!MayAccessMem1)
749     return Inst2->getMetadata(LLVMContext::MD_access_group);
750   if (!MayAccessMem2)
751     return Inst1->getMetadata(LLVMContext::MD_access_group);
752 
753   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
754   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
755   if (!MD1 || !MD2)
756     return nullptr;
757   if (MD1 == MD2)
758     return MD1;
759 
760   // Use set for scalable 'contains' check.
761   SmallPtrSet<Metadata *, 4> AccGroupSet2;
762   addToAccessGroupList(AccGroupSet2, MD2);
763 
764   SmallVector<Metadata *, 4> Intersection;
765   if (MD1->getNumOperands() == 0) {
766     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
767     if (AccGroupSet2.count(MD1))
768       Intersection.push_back(MD1);
769   } else {
770     for (const MDOperand &Node : MD1->operands()) {
771       auto *Item = cast<MDNode>(Node.get());
772       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
773       if (AccGroupSet2.count(Item))
774         Intersection.push_back(Item);
775     }
776   }
777 
778   if (Intersection.size() == 0)
779     return nullptr;
780   if (Intersection.size() == 1)
781     return cast<MDNode>(Intersection.front());
782 
783   LLVMContext &Ctx = Inst1->getContext();
784   return MDNode::get(Ctx, Intersection);
785 }
786 
787 /// \returns \p I after propagating metadata from \p VL.
788 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
789   if (VL.empty())
790     return Inst;
791   Instruction *I0 = cast<Instruction>(VL[0]);
792   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
793   I0->getAllMetadataOtherThanDebugLoc(Metadata);
794 
795   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
796                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
797                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
798                     LLVMContext::MD_access_group, LLVMContext::MD_mmra}) {
799     MDNode *MD = I0->getMetadata(Kind);
800     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
801       const Instruction *IJ = cast<Instruction>(VL[J]);
802       MDNode *IMD = IJ->getMetadata(Kind);
803 
804       switch (Kind) {
805       case LLVMContext::MD_mmra: {
806         MD = MMRAMetadata::combine(Inst->getContext(), MD, IMD);
807         break;
808       }
809       case LLVMContext::MD_tbaa:
810         MD = MDNode::getMostGenericTBAA(MD, IMD);
811         break;
812       case LLVMContext::MD_alias_scope:
813         MD = MDNode::getMostGenericAliasScope(MD, IMD);
814         break;
815       case LLVMContext::MD_fpmath:
816         MD = MDNode::getMostGenericFPMath(MD, IMD);
817         break;
818       case LLVMContext::MD_noalias:
819       case LLVMContext::MD_nontemporal:
820       case LLVMContext::MD_invariant_load:
821         MD = MDNode::intersect(MD, IMD);
822         break;
823       case LLVMContext::MD_access_group:
824         MD = intersectAccessGroups(Inst, IJ);
825         break;
826       default:
827         llvm_unreachable("unhandled metadata");
828       }
829     }
830 
831     Inst->setMetadata(Kind, MD);
832   }
833 
834   return Inst;
835 }
836 
837 Constant *
838 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
839                            const InterleaveGroup<Instruction> &Group) {
840   // All 1's means mask is not needed.
841   if (Group.getNumMembers() == Group.getFactor())
842     return nullptr;
843 
844   // TODO: support reversed access.
845   assert(!Group.isReverse() && "Reversed group not supported.");
846 
847   SmallVector<Constant *, 16> Mask;
848   for (unsigned i = 0; i < VF; i++)
849     for (unsigned j = 0; j < Group.getFactor(); ++j) {
850       unsigned HasMember = Group.getMember(j) ? 1 : 0;
851       Mask.push_back(Builder.getInt1(HasMember));
852     }
853 
854   return ConstantVector::get(Mask);
855 }
856 
857 llvm::SmallVector<int, 16>
858 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
859   SmallVector<int, 16> MaskVec;
860   for (unsigned i = 0; i < VF; i++)
861     for (unsigned j = 0; j < ReplicationFactor; j++)
862       MaskVec.push_back(i);
863 
864   return MaskVec;
865 }
866 
867 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
868                                                       unsigned NumVecs) {
869   SmallVector<int, 16> Mask;
870   for (unsigned i = 0; i < VF; i++)
871     for (unsigned j = 0; j < NumVecs; j++)
872       Mask.push_back(j * VF + i);
873 
874   return Mask;
875 }
876 
877 llvm::SmallVector<int, 16>
878 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
879   SmallVector<int, 16> Mask;
880   for (unsigned i = 0; i < VF; i++)
881     Mask.push_back(Start + i * Stride);
882 
883   return Mask;
884 }
885 
886 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
887                                                       unsigned NumInts,
888                                                       unsigned NumUndefs) {
889   SmallVector<int, 16> Mask;
890   for (unsigned i = 0; i < NumInts; i++)
891     Mask.push_back(Start + i);
892 
893   for (unsigned i = 0; i < NumUndefs; i++)
894     Mask.push_back(-1);
895 
896   return Mask;
897 }
898 
899 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
900                                                  unsigned NumElts) {
901   // Avoid casts in the loop and make sure we have a reasonable number.
902   int NumEltsSigned = NumElts;
903   assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
904 
905   // If the mask chooses an element from operand 1, reduce it to choose from the
906   // corresponding element of operand 0. Undef mask elements are unchanged.
907   SmallVector<int, 16> UnaryMask;
908   for (int MaskElt : Mask) {
909     assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
910     int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
911     UnaryMask.push_back(UnaryElt);
912   }
913   return UnaryMask;
914 }
915 
916 /// A helper function for concatenating vectors. This function concatenates two
917 /// vectors having the same element type. If the second vector has fewer
918 /// elements than the first, it is padded with undefs.
919 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
920                                     Value *V2) {
921   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
922   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
923   assert(VecTy1 && VecTy2 &&
924          VecTy1->getScalarType() == VecTy2->getScalarType() &&
925          "Expect two vectors with the same element type");
926 
927   unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
928   unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
929   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
930 
931   if (NumElts1 > NumElts2) {
932     // Extend with UNDEFs.
933     V2 = Builder.CreateShuffleVector(
934         V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
935   }
936 
937   return Builder.CreateShuffleVector(
938       V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
939 }
940 
941 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
942                                 ArrayRef<Value *> Vecs) {
943   unsigned NumVecs = Vecs.size();
944   assert(NumVecs > 1 && "Should be at least two vectors");
945 
946   SmallVector<Value *, 8> ResList;
947   ResList.append(Vecs.begin(), Vecs.end());
948   do {
949     SmallVector<Value *, 8> TmpList;
950     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
951       Value *V0 = ResList[i], *V1 = ResList[i + 1];
952       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
953              "Only the last vector may have a different type");
954 
955       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
956     }
957 
958     // Push the last vector if the total number of vectors is odd.
959     if (NumVecs % 2 != 0)
960       TmpList.push_back(ResList[NumVecs - 1]);
961 
962     ResList = TmpList;
963     NumVecs = ResList.size();
964   } while (NumVecs > 1);
965 
966   return ResList[0];
967 }
968 
969 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
970   assert(isa<VectorType>(Mask->getType()) &&
971          isa<IntegerType>(Mask->getType()->getScalarType()) &&
972          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
973              1 &&
974          "Mask must be a vector of i1");
975 
976   auto *ConstMask = dyn_cast<Constant>(Mask);
977   if (!ConstMask)
978     return false;
979   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
980     return true;
981   if (isa<ScalableVectorType>(ConstMask->getType()))
982     return false;
983   for (unsigned
984            I = 0,
985            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
986        I != E; ++I) {
987     if (auto *MaskElt = ConstMask->getAggregateElement(I))
988       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
989         continue;
990     return false;
991   }
992   return true;
993 }
994 
995 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
996   assert(isa<VectorType>(Mask->getType()) &&
997          isa<IntegerType>(Mask->getType()->getScalarType()) &&
998          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
999              1 &&
1000          "Mask must be a vector of i1");
1001 
1002   auto *ConstMask = dyn_cast<Constant>(Mask);
1003   if (!ConstMask)
1004     return false;
1005   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1006     return true;
1007   if (isa<ScalableVectorType>(ConstMask->getType()))
1008     return false;
1009   for (unsigned
1010            I = 0,
1011            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1012        I != E; ++I) {
1013     if (auto *MaskElt = ConstMask->getAggregateElement(I))
1014       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1015         continue;
1016     return false;
1017   }
1018   return true;
1019 }
1020 
1021 bool llvm::maskContainsAllOneOrUndef(Value *Mask) {
1022   assert(isa<VectorType>(Mask->getType()) &&
1023          isa<IntegerType>(Mask->getType()->getScalarType()) &&
1024          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1025              1 &&
1026          "Mask must be a vector of i1");
1027 
1028   auto *ConstMask = dyn_cast<Constant>(Mask);
1029   if (!ConstMask)
1030     return false;
1031   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1032     return true;
1033   if (isa<ScalableVectorType>(ConstMask->getType()))
1034     return false;
1035   for (unsigned
1036            I = 0,
1037            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1038        I != E; ++I) {
1039     if (auto *MaskElt = ConstMask->getAggregateElement(I))
1040       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1041         return true;
1042   }
1043   return false;
1044 }
1045 
1046 /// TODO: This is a lot like known bits, but for
1047 /// vectors.  Is there something we can common this with?
1048 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
1049   assert(isa<FixedVectorType>(Mask->getType()) &&
1050          isa<IntegerType>(Mask->getType()->getScalarType()) &&
1051          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1052              1 &&
1053          "Mask must be a fixed width vector of i1");
1054 
1055   const unsigned VWidth =
1056       cast<FixedVectorType>(Mask->getType())->getNumElements();
1057   APInt DemandedElts = APInt::getAllOnes(VWidth);
1058   if (auto *CV = dyn_cast<ConstantVector>(Mask))
1059     for (unsigned i = 0; i < VWidth; i++)
1060       if (CV->getAggregateElement(i)->isNullValue())
1061         DemandedElts.clearBit(i);
1062   return DemandedElts;
1063 }
1064 
1065 bool InterleavedAccessInfo::isStrided(int Stride) {
1066   unsigned Factor = std::abs(Stride);
1067   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1068 }
1069 
1070 void InterleavedAccessInfo::collectConstStrideAccesses(
1071     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1072     const DenseMap<Value*, const SCEV*> &Strides) {
1073   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1074 
1075   // Since it's desired that the load/store instructions be maintained in
1076   // "program order" for the interleaved access analysis, we have to visit the
1077   // blocks in the loop in reverse postorder (i.e., in a topological order).
1078   // Such an ordering will ensure that any load/store that may be executed
1079   // before a second load/store will precede the second load/store in
1080   // AccessStrideInfo.
1081   LoopBlocksDFS DFS(TheLoop);
1082   DFS.perform(LI);
1083   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
1084     for (auto &I : *BB) {
1085       Value *Ptr = getLoadStorePointerOperand(&I);
1086       if (!Ptr)
1087         continue;
1088       Type *ElementTy = getLoadStoreType(&I);
1089 
1090       // Currently, codegen doesn't support cases where the type size doesn't
1091       // match the alloc size. Skip them for now.
1092       uint64_t Size = DL.getTypeAllocSize(ElementTy);
1093       if (Size * 8 != DL.getTypeSizeInBits(ElementTy))
1094         continue;
1095 
1096       // We don't check wrapping here because we don't know yet if Ptr will be
1097       // part of a full group or a group with gaps. Checking wrapping for all
1098       // pointers (even those that end up in groups with no gaps) will be overly
1099       // conservative. For full groups, wrapping should be ok since if we would
1100       // wrap around the address space we would do a memory access at nullptr
1101       // even without the transformation. The wrapping checks are therefore
1102       // deferred until after we've formed the interleaved groups.
1103       int64_t Stride =
1104         getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
1105                      /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0);
1106 
1107       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
1108       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
1109                                               getLoadStoreAlignment(&I));
1110     }
1111 }
1112 
1113 // Analyze interleaved accesses and collect them into interleaved load and
1114 // store groups.
1115 //
1116 // When generating code for an interleaved load group, we effectively hoist all
1117 // loads in the group to the location of the first load in program order. When
1118 // generating code for an interleaved store group, we sink all stores to the
1119 // location of the last store. This code motion can change the order of load
1120 // and store instructions and may break dependences.
1121 //
1122 // The code generation strategy mentioned above ensures that we won't violate
1123 // any write-after-read (WAR) dependences.
1124 //
1125 // E.g., for the WAR dependence:  a = A[i];      // (1)
1126 //                                A[i] = b;      // (2)
1127 //
1128 // The store group of (2) is always inserted at or below (2), and the load
1129 // group of (1) is always inserted at or above (1). Thus, the instructions will
1130 // never be reordered. All other dependences are checked to ensure the
1131 // correctness of the instruction reordering.
1132 //
1133 // The algorithm visits all memory accesses in the loop in bottom-up program
1134 // order. Program order is established by traversing the blocks in the loop in
1135 // reverse postorder when collecting the accesses.
1136 //
1137 // We visit the memory accesses in bottom-up order because it can simplify the
1138 // construction of store groups in the presence of write-after-write (WAW)
1139 // dependences.
1140 //
1141 // E.g., for the WAW dependence:  A[i] = a;      // (1)
1142 //                                A[i] = b;      // (2)
1143 //                                A[i + 1] = c;  // (3)
1144 //
1145 // We will first create a store group with (3) and (2). (1) can't be added to
1146 // this group because it and (2) are dependent. However, (1) can be grouped
1147 // with other accesses that may precede it in program order. Note that a
1148 // bottom-up order does not imply that WAW dependences should not be checked.
1149 void InterleavedAccessInfo::analyzeInterleaving(
1150                                  bool EnablePredicatedInterleavedMemAccesses) {
1151   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1152   const auto &Strides = LAI->getSymbolicStrides();
1153 
1154   // Holds all accesses with a constant stride.
1155   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1156   collectConstStrideAccesses(AccessStrideInfo, Strides);
1157 
1158   if (AccessStrideInfo.empty())
1159     return;
1160 
1161   // Collect the dependences in the loop.
1162   collectDependences();
1163 
1164   // Holds all interleaved store groups temporarily.
1165   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1166   // Holds all interleaved load groups temporarily.
1167   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1168   // Groups added to this set cannot have new members added.
1169   SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups;
1170 
1171   // Search in bottom-up program order for pairs of accesses (A and B) that can
1172   // form interleaved load or store groups. In the algorithm below, access A
1173   // precedes access B in program order. We initialize a group for B in the
1174   // outer loop of the algorithm, and then in the inner loop, we attempt to
1175   // insert each A into B's group if:
1176   //
1177   //  1. A and B have the same stride,
1178   //  2. A and B have the same memory object size, and
1179   //  3. A belongs in B's group according to its distance from B.
1180   //
1181   // Special care is taken to ensure group formation will not break any
1182   // dependences.
1183   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1184        BI != E; ++BI) {
1185     Instruction *B = BI->first;
1186     StrideDescriptor DesB = BI->second;
1187 
1188     // Initialize a group for B if it has an allowable stride. Even if we don't
1189     // create a group for B, we continue with the bottom-up algorithm to ensure
1190     // we don't break any of B's dependences.
1191     InterleaveGroup<Instruction> *GroupB = nullptr;
1192     if (isStrided(DesB.Stride) &&
1193         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1194       GroupB = getInterleaveGroup(B);
1195       if (!GroupB) {
1196         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1197                           << '\n');
1198         GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1199         if (B->mayWriteToMemory())
1200           StoreGroups.insert(GroupB);
1201         else
1202           LoadGroups.insert(GroupB);
1203       }
1204     }
1205 
1206     for (auto AI = std::next(BI); AI != E; ++AI) {
1207       Instruction *A = AI->first;
1208       StrideDescriptor DesA = AI->second;
1209 
1210       // Our code motion strategy implies that we can't have dependences
1211       // between accesses in an interleaved group and other accesses located
1212       // between the first and last member of the group. Note that this also
1213       // means that a group can't have more than one member at a given offset.
1214       // The accesses in a group can have dependences with other accesses, but
1215       // we must ensure we don't extend the boundaries of the group such that
1216       // we encompass those dependent accesses.
1217       //
1218       // For example, assume we have the sequence of accesses shown below in a
1219       // stride-2 loop:
1220       //
1221       //  (1, 2) is a group | A[i]   = a;  // (1)
1222       //                    | A[i-1] = b;  // (2) |
1223       //                      A[i-3] = c;  // (3)
1224       //                      A[i]   = d;  // (4) | (2, 4) is not a group
1225       //
1226       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1227       // but not with (4). If we did, the dependent access (3) would be within
1228       // the boundaries of the (2, 4) group.
1229       auto DependentMember = [&](InterleaveGroup<Instruction> *Group,
1230                                  StrideEntry *A) -> Instruction * {
1231         for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) {
1232           Instruction *MemberOfGroupB = Group->getMember(Index);
1233           if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups(
1234                                     A, &*AccessStrideInfo.find(MemberOfGroupB)))
1235             return MemberOfGroupB;
1236         }
1237         return nullptr;
1238       };
1239 
1240       auto GroupA = getInterleaveGroup(A);
1241       // If A is a load, dependencies are tolerable, there's nothing to do here.
1242       // If both A and B belong to the same (store) group, they are independent,
1243       // even if dependencies have not been recorded.
1244       // If both GroupA and GroupB are null, there's nothing to do here.
1245       if (A->mayWriteToMemory() && GroupA != GroupB) {
1246         Instruction *DependentInst = nullptr;
1247         // If GroupB is a load group, we have to compare AI against all
1248         // members of GroupB because if any load within GroupB has a dependency
1249         // on AI, we need to mark GroupB as complete and also release the
1250         // store GroupA (if A belongs to one). The former prevents incorrect
1251         // hoisting of load B above store A while the latter prevents incorrect
1252         // sinking of store A below load B.
1253         if (GroupB && LoadGroups.contains(GroupB))
1254           DependentInst = DependentMember(GroupB, &*AI);
1255         else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI))
1256           DependentInst = B;
1257 
1258         if (DependentInst) {
1259           // A has a store dependence on B (or on some load within GroupB) and
1260           // is part of a store group. Release A's group to prevent illegal
1261           // sinking of A below B. A will then be free to form another group
1262           // with instructions that precede it.
1263           if (GroupA && StoreGroups.contains(GroupA)) {
1264             LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1265                                  "dependence between "
1266                               << *A << " and " << *DependentInst << '\n');
1267             StoreGroups.remove(GroupA);
1268             releaseGroup(GroupA);
1269           }
1270           // If B is a load and part of an interleave group, no earlier loads
1271           // can be added to B's interleave group, because this would mean the
1272           // DependentInst would move across store A. Mark the interleave group
1273           // as complete.
1274           if (GroupB && LoadGroups.contains(GroupB)) {
1275             LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B
1276                               << " as complete.\n");
1277             CompletedLoadGroups.insert(GroupB);
1278           }
1279         }
1280       }
1281       if (CompletedLoadGroups.contains(GroupB)) {
1282         // Skip trying to add A to B, continue to look for other conflicting A's
1283         // in groups to be released.
1284         continue;
1285       }
1286 
1287       // At this point, we've checked for illegal code motion. If either A or B
1288       // isn't strided, there's nothing left to do.
1289       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1290         continue;
1291 
1292       // Ignore A if it's already in a group or isn't the same kind of memory
1293       // operation as B.
1294       // Note that mayReadFromMemory() isn't mutually exclusive to
1295       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1296       // here, canVectorizeMemory() should have returned false - except for the
1297       // case we asked for optimization remarks.
1298       if (isInterleaved(A) ||
1299           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1300           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1301         continue;
1302 
1303       // Check rules 1 and 2. Ignore A if its stride or size is different from
1304       // that of B.
1305       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1306         continue;
1307 
1308       // Ignore A if the memory object of A and B don't belong to the same
1309       // address space
1310       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1311         continue;
1312 
1313       // Calculate the distance from A to B.
1314       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1315           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1316       if (!DistToB)
1317         continue;
1318       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1319 
1320       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1321       // size.
1322       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1323         continue;
1324 
1325       // All members of a predicated interleave-group must have the same predicate,
1326       // and currently must reside in the same BB.
1327       BasicBlock *BlockA = A->getParent();
1328       BasicBlock *BlockB = B->getParent();
1329       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1330           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1331         continue;
1332 
1333       // The index of A is the index of B plus A's distance to B in multiples
1334       // of the size.
1335       int IndexA =
1336           GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1337 
1338       // Try to insert A into B's group.
1339       if (GroupB->insertMember(A, IndexA, DesA.Alignment)) {
1340         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1341                           << "    into the interleave group with" << *B
1342                           << '\n');
1343         InterleaveGroupMap[A] = GroupB;
1344 
1345         // Set the first load in program order as the insert position.
1346         if (A->mayReadFromMemory())
1347           GroupB->setInsertPos(A);
1348       }
1349     } // Iteration over A accesses.
1350   }   // Iteration over B accesses.
1351 
1352   auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
1353                                             int Index,
1354                                             std::string FirstOrLast) -> bool {
1355     Instruction *Member = Group->getMember(Index);
1356     assert(Member && "Group member does not exist");
1357     Value *MemberPtr = getLoadStorePointerOperand(Member);
1358     Type *AccessTy = getLoadStoreType(Member);
1359     if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1360                      /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0))
1361       return false;
1362     LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
1363                       << FirstOrLast
1364                       << " group member potentially pointer-wrapping.\n");
1365     releaseGroup(Group);
1366     return true;
1367   };
1368 
1369   // Remove interleaved groups with gaps whose memory
1370   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1371   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1372   // not check wrapping (see documentation there).
1373   // FORNOW we use Assume=false;
1374   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1375   // of runtime SCEV assumptions checks (thereby potentially failing to
1376   // vectorize altogether).
1377   // Additional optional optimizations:
1378   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1379   // wrap then we can deduce that all pointers in the group don't wrap.
1380   // This means that we can forcefully peel the loop in order to only have to
1381   // check the first pointer for no-wrap. When we'll change to use Assume=true
1382   // we'll only need at most one runtime check per interleaved group.
1383   for (auto *Group : LoadGroups) {
1384     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1385     // load would wrap around the address space we would do a memory access at
1386     // nullptr even without the transformation.
1387     if (Group->getNumMembers() == Group->getFactor())
1388       continue;
1389 
1390     // Case 2: If first and last members of the group don't wrap this implies
1391     // that all the pointers in the group don't wrap.
1392     // So we check only group member 0 (which is always guaranteed to exist),
1393     // and group member Factor - 1; If the latter doesn't exist we rely on
1394     // peeling (if it is a non-reversed accsess -- see Case 3).
1395     if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1396       continue;
1397     if (Group->getMember(Group->getFactor() - 1))
1398       InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1,
1399                                      std::string("last"));
1400     else {
1401       // Case 3: A non-reversed interleaved load group with gaps: We need
1402       // to execute at least one scalar epilogue iteration. This will ensure
1403       // we don't speculatively access memory out-of-bounds. We only need
1404       // to look for a member at index factor - 1, since every group must have
1405       // a member at index zero.
1406       if (Group->isReverse()) {
1407         LLVM_DEBUG(
1408             dbgs() << "LV: Invalidate candidate interleaved group due to "
1409                       "a reverse access with gaps.\n");
1410         releaseGroup(Group);
1411         continue;
1412       }
1413       LLVM_DEBUG(
1414           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1415       RequiresScalarEpilogue = true;
1416     }
1417   }
1418 
1419   for (auto *Group : StoreGroups) {
1420     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1421     // store would wrap around the address space we would do a memory access at
1422     // nullptr even without the transformation.
1423     if (Group->getNumMembers() == Group->getFactor())
1424       continue;
1425 
1426     // Interleave-store-group with gaps is implemented using masked wide store.
1427     // Remove interleaved store groups with gaps if
1428     // masked-interleaved-accesses are not enabled by the target.
1429     if (!EnablePredicatedInterleavedMemAccesses) {
1430       LLVM_DEBUG(
1431           dbgs() << "LV: Invalidate candidate interleaved store group due "
1432                     "to gaps.\n");
1433       releaseGroup(Group);
1434       continue;
1435     }
1436 
1437     // Case 2: If first and last members of the group don't wrap this implies
1438     // that all the pointers in the group don't wrap.
1439     // So we check only group member 0 (which is always guaranteed to exist),
1440     // and the last group member. Case 3 (scalar epilog) is not relevant for
1441     // stores with gaps, which are implemented with masked-store (rather than
1442     // speculative access, as in loads).
1443     if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1444       continue;
1445     for (int Index = Group->getFactor() - 1; Index > 0; Index--)
1446       if (Group->getMember(Index)) {
1447         InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last"));
1448         break;
1449       }
1450   }
1451 }
1452 
1453 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1454   // If no group had triggered the requirement to create an epilogue loop,
1455   // there is nothing to do.
1456   if (!requiresScalarEpilogue())
1457     return;
1458 
1459   bool ReleasedGroup = false;
1460   // Release groups requiring scalar epilogues. Note that this also removes them
1461   // from InterleaveGroups.
1462   for (auto *Group : make_early_inc_range(InterleaveGroups)) {
1463     if (!Group->requiresScalarEpilogue())
1464       continue;
1465     LLVM_DEBUG(
1466         dbgs()
1467         << "LV: Invalidate candidate interleaved group due to gaps that "
1468            "require a scalar epilogue (not allowed under optsize) and cannot "
1469            "be masked (not enabled). \n");
1470     releaseGroup(Group);
1471     ReleasedGroup = true;
1472   }
1473   assert(ReleasedGroup && "At least one group must be invalidated, as a "
1474                           "scalar epilogue was required");
1475   (void)ReleasedGroup;
1476   RequiresScalarEpilogue = false;
1477 }
1478 
1479 template <typename InstT>
1480 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1481   llvm_unreachable("addMetadata can only be used for Instruction");
1482 }
1483 
1484 namespace llvm {
1485 template <>
1486 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1487   SmallVector<Value *, 4> VL;
1488   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1489                  [](std::pair<int, Instruction *> p) { return p.second; });
1490   propagateMetadata(NewInst, VL);
1491 }
1492 } // namespace llvm
1493