1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/CommandLine.h" 30 31 #define DEBUG_TYPE "vectorutils" 32 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 /// Maximum factor for an interleaved memory access. 37 static cl::opt<unsigned> MaxInterleaveGroupFactor( 38 "max-interleave-group-factor", cl::Hidden, 39 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 40 cl::init(8)); 41 42 /// Return true if all of the intrinsic's arguments and return type are scalars 43 /// for the scalar form of the intrinsic, and vectors for the vector form of the 44 /// intrinsic (except operands that are marked as always being scalar by 45 /// isVectorIntrinsicWithScalarOpAtArg). 46 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 47 switch (ID) { 48 case Intrinsic::abs: // Begin integer bit-manipulation. 49 case Intrinsic::bswap: 50 case Intrinsic::bitreverse: 51 case Intrinsic::ctpop: 52 case Intrinsic::ctlz: 53 case Intrinsic::cttz: 54 case Intrinsic::fshl: 55 case Intrinsic::fshr: 56 case Intrinsic::smax: 57 case Intrinsic::smin: 58 case Intrinsic::umax: 59 case Intrinsic::umin: 60 case Intrinsic::sadd_sat: 61 case Intrinsic::ssub_sat: 62 case Intrinsic::uadd_sat: 63 case Intrinsic::usub_sat: 64 case Intrinsic::smul_fix: 65 case Intrinsic::smul_fix_sat: 66 case Intrinsic::umul_fix: 67 case Intrinsic::umul_fix_sat: 68 case Intrinsic::sqrt: // Begin floating-point. 69 case Intrinsic::sin: 70 case Intrinsic::cos: 71 case Intrinsic::tan: 72 case Intrinsic::exp: 73 case Intrinsic::exp2: 74 case Intrinsic::log: 75 case Intrinsic::log10: 76 case Intrinsic::log2: 77 case Intrinsic::fabs: 78 case Intrinsic::minnum: 79 case Intrinsic::maxnum: 80 case Intrinsic::minimum: 81 case Intrinsic::maximum: 82 case Intrinsic::copysign: 83 case Intrinsic::floor: 84 case Intrinsic::ceil: 85 case Intrinsic::trunc: 86 case Intrinsic::rint: 87 case Intrinsic::nearbyint: 88 case Intrinsic::round: 89 case Intrinsic::roundeven: 90 case Intrinsic::pow: 91 case Intrinsic::fma: 92 case Intrinsic::fmuladd: 93 case Intrinsic::is_fpclass: 94 case Intrinsic::powi: 95 case Intrinsic::canonicalize: 96 case Intrinsic::fptosi_sat: 97 case Intrinsic::fptoui_sat: 98 case Intrinsic::lrint: 99 case Intrinsic::llrint: 100 return true; 101 default: 102 return false; 103 } 104 } 105 106 /// Identifies if the vector form of the intrinsic has a scalar operand. 107 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, 108 unsigned ScalarOpdIdx) { 109 switch (ID) { 110 case Intrinsic::abs: 111 case Intrinsic::ctlz: 112 case Intrinsic::cttz: 113 case Intrinsic::is_fpclass: 114 case Intrinsic::powi: 115 return (ScalarOpdIdx == 1); 116 case Intrinsic::smul_fix: 117 case Intrinsic::smul_fix_sat: 118 case Intrinsic::umul_fix: 119 case Intrinsic::umul_fix_sat: 120 return (ScalarOpdIdx == 2); 121 default: 122 return false; 123 } 124 } 125 126 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, 127 int OpdIdx) { 128 assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!"); 129 130 switch (ID) { 131 case Intrinsic::fptosi_sat: 132 case Intrinsic::fptoui_sat: 133 case Intrinsic::lrint: 134 case Intrinsic::llrint: 135 return OpdIdx == -1 || OpdIdx == 0; 136 case Intrinsic::is_fpclass: 137 return OpdIdx == 0; 138 case Intrinsic::powi: 139 return OpdIdx == -1 || OpdIdx == 1; 140 default: 141 return OpdIdx == -1; 142 } 143 } 144 145 /// Returns intrinsic ID for call. 146 /// For the input call instruction it finds mapping intrinsic and returns 147 /// its ID, in case it does not found it return not_intrinsic. 148 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 149 const TargetLibraryInfo *TLI) { 150 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); 151 if (ID == Intrinsic::not_intrinsic) 152 return Intrinsic::not_intrinsic; 153 154 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 155 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 156 ID == Intrinsic::experimental_noalias_scope_decl || 157 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) 158 return ID; 159 return Intrinsic::not_intrinsic; 160 } 161 162 /// Given a vector and an element number, see if the scalar value is 163 /// already around as a register, for example if it were inserted then extracted 164 /// from the vector. 165 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 166 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 167 VectorType *VTy = cast<VectorType>(V->getType()); 168 // For fixed-length vector, return undef for out of range access. 169 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 170 unsigned Width = FVTy->getNumElements(); 171 if (EltNo >= Width) 172 return UndefValue::get(FVTy->getElementType()); 173 } 174 175 if (Constant *C = dyn_cast<Constant>(V)) 176 return C->getAggregateElement(EltNo); 177 178 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 179 // If this is an insert to a variable element, we don't know what it is. 180 if (!isa<ConstantInt>(III->getOperand(2))) 181 return nullptr; 182 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 183 184 // If this is an insert to the element we are looking for, return the 185 // inserted value. 186 if (EltNo == IIElt) 187 return III->getOperand(1); 188 189 // Guard against infinite loop on malformed, unreachable IR. 190 if (III == III->getOperand(0)) 191 return nullptr; 192 193 // Otherwise, the insertelement doesn't modify the value, recurse on its 194 // vector input. 195 return findScalarElement(III->getOperand(0), EltNo); 196 } 197 198 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 199 // Restrict the following transformation to fixed-length vector. 200 if (SVI && isa<FixedVectorType>(SVI->getType())) { 201 unsigned LHSWidth = 202 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); 203 int InEl = SVI->getMaskValue(EltNo); 204 if (InEl < 0) 205 return UndefValue::get(VTy->getElementType()); 206 if (InEl < (int)LHSWidth) 207 return findScalarElement(SVI->getOperand(0), InEl); 208 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 209 } 210 211 // Extract a value from a vector add operation with a constant zero. 212 // TODO: Use getBinOpIdentity() to generalize this. 213 Value *Val; Constant *C; 214 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 215 if (Constant *Elt = C->getAggregateElement(EltNo)) 216 if (Elt->isNullValue()) 217 return findScalarElement(Val, EltNo); 218 219 // If the vector is a splat then we can trivially find the scalar element. 220 if (isa<ScalableVectorType>(VTy)) 221 if (Value *Splat = getSplatValue(V)) 222 if (EltNo < VTy->getElementCount().getKnownMinValue()) 223 return Splat; 224 225 // Otherwise, we don't know. 226 return nullptr; 227 } 228 229 int llvm::getSplatIndex(ArrayRef<int> Mask) { 230 int SplatIndex = -1; 231 for (int M : Mask) { 232 // Ignore invalid (undefined) mask elements. 233 if (M < 0) 234 continue; 235 236 // There can be only 1 non-negative mask element value if this is a splat. 237 if (SplatIndex != -1 && SplatIndex != M) 238 return -1; 239 240 // Initialize the splat index to the 1st non-negative mask element. 241 SplatIndex = M; 242 } 243 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 244 return SplatIndex; 245 } 246 247 /// Get splat value if the input is a splat vector or return nullptr. 248 /// This function is not fully general. It checks only 2 cases: 249 /// the input value is (1) a splat constant vector or (2) a sequence 250 /// of instructions that broadcasts a scalar at element 0. 251 Value *llvm::getSplatValue(const Value *V) { 252 if (isa<VectorType>(V->getType())) 253 if (auto *C = dyn_cast<Constant>(V)) 254 return C->getSplatValue(); 255 256 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 257 Value *Splat; 258 if (match(V, 259 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), 260 m_Value(), m_ZeroMask()))) 261 return Splat; 262 263 return nullptr; 264 } 265 266 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 267 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 268 269 if (isa<VectorType>(V->getType())) { 270 if (isa<UndefValue>(V)) 271 return true; 272 // FIXME: We can allow undefs, but if Index was specified, we may want to 273 // check that the constant is defined at that index. 274 if (auto *C = dyn_cast<Constant>(V)) 275 return C->getSplatValue() != nullptr; 276 } 277 278 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 279 // FIXME: We can safely allow undefs here. If Index was specified, we will 280 // check that the mask elt is defined at the required index. 281 if (!all_equal(Shuf->getShuffleMask())) 282 return false; 283 284 // Match any index. 285 if (Index == -1) 286 return true; 287 288 // Match a specific element. The mask should be defined at and match the 289 // specified index. 290 return Shuf->getMaskValue(Index) == Index; 291 } 292 293 // The remaining tests are all recursive, so bail out if we hit the limit. 294 if (Depth++ == MaxAnalysisRecursionDepth) 295 return false; 296 297 // If both operands of a binop are splats, the result is a splat. 298 Value *X, *Y, *Z; 299 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 300 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 301 302 // If all operands of a select are splats, the result is a splat. 303 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 304 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 305 isSplatValue(Z, Index, Depth); 306 307 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 308 309 return false; 310 } 311 312 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask, 313 const APInt &DemandedElts, APInt &DemandedLHS, 314 APInt &DemandedRHS, bool AllowUndefElts) { 315 DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth); 316 317 // Early out if we don't demand any elements. 318 if (DemandedElts.isZero()) 319 return true; 320 321 // Simple case of a shuffle with zeroinitializer. 322 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 323 DemandedLHS.setBit(0); 324 return true; 325 } 326 327 for (unsigned I = 0, E = Mask.size(); I != E; ++I) { 328 int M = Mask[I]; 329 assert((-1 <= M) && (M < (SrcWidth * 2)) && 330 "Invalid shuffle mask constant"); 331 332 if (!DemandedElts[I] || (AllowUndefElts && (M < 0))) 333 continue; 334 335 // For undef elements, we don't know anything about the common state of 336 // the shuffle result. 337 if (M < 0) 338 return false; 339 340 if (M < SrcWidth) 341 DemandedLHS.setBit(M); 342 else 343 DemandedRHS.setBit(M - SrcWidth); 344 } 345 346 return true; 347 } 348 349 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, 350 SmallVectorImpl<int> &ScaledMask) { 351 assert(Scale > 0 && "Unexpected scaling factor"); 352 353 // Fast-path: if no scaling, then it is just a copy. 354 if (Scale == 1) { 355 ScaledMask.assign(Mask.begin(), Mask.end()); 356 return; 357 } 358 359 ScaledMask.clear(); 360 for (int MaskElt : Mask) { 361 if (MaskElt >= 0) { 362 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && 363 "Overflowed 32-bits"); 364 } 365 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) 366 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); 367 } 368 } 369 370 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, 371 SmallVectorImpl<int> &ScaledMask) { 372 assert(Scale > 0 && "Unexpected scaling factor"); 373 374 // Fast-path: if no scaling, then it is just a copy. 375 if (Scale == 1) { 376 ScaledMask.assign(Mask.begin(), Mask.end()); 377 return true; 378 } 379 380 // We must map the original elements down evenly to a type with less elements. 381 int NumElts = Mask.size(); 382 if (NumElts % Scale != 0) 383 return false; 384 385 ScaledMask.clear(); 386 ScaledMask.reserve(NumElts / Scale); 387 388 // Step through the input mask by splitting into Scale-sized slices. 389 do { 390 ArrayRef<int> MaskSlice = Mask.take_front(Scale); 391 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); 392 393 // The first element of the slice determines how we evaluate this slice. 394 int SliceFront = MaskSlice.front(); 395 if (SliceFront < 0) { 396 // Negative values (undef or other "sentinel" values) must be equal across 397 // the entire slice. 398 if (!all_equal(MaskSlice)) 399 return false; 400 ScaledMask.push_back(SliceFront); 401 } else { 402 // A positive mask element must be cleanly divisible. 403 if (SliceFront % Scale != 0) 404 return false; 405 // Elements of the slice must be consecutive. 406 for (int i = 1; i < Scale; ++i) 407 if (MaskSlice[i] != SliceFront + i) 408 return false; 409 ScaledMask.push_back(SliceFront / Scale); 410 } 411 Mask = Mask.drop_front(Scale); 412 } while (!Mask.empty()); 413 414 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); 415 416 // All elements of the original mask can be scaled down to map to the elements 417 // of a mask with wider elements. 418 return true; 419 } 420 421 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask, 422 SmallVectorImpl<int> &ScaledMask) { 423 std::array<SmallVector<int, 16>, 2> TmpMasks; 424 SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1]; 425 ArrayRef<int> InputMask = Mask; 426 for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) { 427 while (widenShuffleMaskElts(Scale, InputMask, *Output)) { 428 InputMask = *Output; 429 std::swap(Output, Tmp); 430 } 431 } 432 ScaledMask.assign(InputMask.begin(), InputMask.end()); 433 } 434 435 void llvm::processShuffleMasks( 436 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, 437 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, 438 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, 439 function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) { 440 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs); 441 // Try to perform better estimation of the permutation. 442 // 1. Split the source/destination vectors into real registers. 443 // 2. Do the mask analysis to identify which real registers are 444 // permuted. 445 int Sz = Mask.size(); 446 unsigned SzDest = Sz / NumOfDestRegs; 447 unsigned SzSrc = Sz / NumOfSrcRegs; 448 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 449 auto &RegMasks = Res[I]; 450 RegMasks.assign(NumOfSrcRegs, {}); 451 // Check that the values in dest registers are in the one src 452 // register. 453 for (unsigned K = 0; K < SzDest; ++K) { 454 int Idx = I * SzDest + K; 455 if (Idx == Sz) 456 break; 457 if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem) 458 continue; 459 int SrcRegIdx = Mask[Idx] / SzSrc; 460 // Add a cost of PermuteTwoSrc for each new source register permute, 461 // if we have more than one source registers. 462 if (RegMasks[SrcRegIdx].empty()) 463 RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem); 464 RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc; 465 } 466 } 467 // Process split mask. 468 for (unsigned I = 0; I < NumOfUsedRegs; ++I) { 469 auto &Dest = Res[I]; 470 int NumSrcRegs = 471 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 472 switch (NumSrcRegs) { 473 case 0: 474 // No input vectors were used! 475 NoInputAction(); 476 break; 477 case 1: { 478 // Find the only mask with at least single undef mask elem. 479 auto *It = 480 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 481 unsigned SrcReg = std::distance(Dest.begin(), It); 482 SingleInputAction(*It, SrcReg, I); 483 break; 484 } 485 default: { 486 // The first mask is a permutation of a single register. Since we have >2 487 // input registers to shuffle, we merge the masks for 2 first registers 488 // and generate a shuffle of 2 registers rather than the reordering of the 489 // first register and then shuffle with the second register. Next, 490 // generate the shuffles of the resulting register + the remaining 491 // registers from the list. 492 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask, 493 ArrayRef<int> SecondMask) { 494 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { 495 if (SecondMask[Idx] != PoisonMaskElem) { 496 assert(FirstMask[Idx] == PoisonMaskElem && 497 "Expected undefined mask element."); 498 FirstMask[Idx] = SecondMask[Idx] + VF; 499 } 500 } 501 }; 502 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) { 503 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 504 if (Mask[Idx] != PoisonMaskElem) 505 Mask[Idx] = Idx; 506 } 507 }; 508 int SecondIdx; 509 do { 510 int FirstIdx = -1; 511 SecondIdx = -1; 512 MutableArrayRef<int> FirstMask, SecondMask; 513 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 514 SmallVectorImpl<int> &RegMask = Dest[I]; 515 if (RegMask.empty()) 516 continue; 517 518 if (FirstIdx == SecondIdx) { 519 FirstIdx = I; 520 FirstMask = RegMask; 521 continue; 522 } 523 SecondIdx = I; 524 SecondMask = RegMask; 525 CombineMasks(FirstMask, SecondMask); 526 ManyInputsAction(FirstMask, FirstIdx, SecondIdx); 527 NormalizeMask(FirstMask); 528 RegMask.clear(); 529 SecondMask = FirstMask; 530 SecondIdx = FirstIdx; 531 } 532 if (FirstIdx != SecondIdx && SecondIdx >= 0) { 533 CombineMasks(SecondMask, FirstMask); 534 ManyInputsAction(SecondMask, SecondIdx, FirstIdx); 535 Dest[FirstIdx].clear(); 536 NormalizeMask(SecondMask); 537 } 538 } while (SecondIdx >= 0); 539 break; 540 } 541 } 542 } 543 } 544 545 MapVector<Instruction *, uint64_t> 546 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 547 const TargetTransformInfo *TTI) { 548 549 // DemandedBits will give us every value's live-out bits. But we want 550 // to ensure no extra casts would need to be inserted, so every DAG 551 // of connected values must have the same minimum bitwidth. 552 EquivalenceClasses<Value *> ECs; 553 SmallVector<Value *, 16> Worklist; 554 SmallPtrSet<Value *, 4> Roots; 555 SmallPtrSet<Value *, 16> Visited; 556 DenseMap<Value *, uint64_t> DBits; 557 SmallPtrSet<Instruction *, 4> InstructionSet; 558 MapVector<Instruction *, uint64_t> MinBWs; 559 560 // Determine the roots. We work bottom-up, from truncs or icmps. 561 bool SeenExtFromIllegalType = false; 562 for (auto *BB : Blocks) 563 for (auto &I : *BB) { 564 InstructionSet.insert(&I); 565 566 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 567 !TTI->isTypeLegal(I.getOperand(0)->getType())) 568 SeenExtFromIllegalType = true; 569 570 // Only deal with non-vector integers up to 64-bits wide. 571 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 572 !I.getType()->isVectorTy() && 573 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 574 // Don't make work for ourselves. If we know the loaded type is legal, 575 // don't add it to the worklist. 576 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 577 continue; 578 579 Worklist.push_back(&I); 580 Roots.insert(&I); 581 } 582 } 583 // Early exit. 584 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 585 return MinBWs; 586 587 // Now proceed breadth-first, unioning values together. 588 while (!Worklist.empty()) { 589 Value *Val = Worklist.pop_back_val(); 590 Value *Leader = ECs.getOrInsertLeaderValue(Val); 591 592 if (!Visited.insert(Val).second) 593 continue; 594 595 // Non-instructions terminate a chain successfully. 596 if (!isa<Instruction>(Val)) 597 continue; 598 Instruction *I = cast<Instruction>(Val); 599 600 // If we encounter a type that is larger than 64 bits, we can't represent 601 // it so bail out. 602 if (DB.getDemandedBits(I).getBitWidth() > 64) 603 return MapVector<Instruction *, uint64_t>(); 604 605 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 606 DBits[Leader] |= V; 607 DBits[I] = V; 608 609 // Casts, loads and instructions outside of our range terminate a chain 610 // successfully. 611 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 612 !InstructionSet.count(I)) 613 continue; 614 615 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 616 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 617 // transform anything that relies on them. 618 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 619 !I->getType()->isIntegerTy()) { 620 DBits[Leader] |= ~0ULL; 621 continue; 622 } 623 624 // We don't modify the types of PHIs. Reductions will already have been 625 // truncated if possible, and inductions' sizes will have been chosen by 626 // indvars. 627 if (isa<PHINode>(I)) 628 continue; 629 630 if (DBits[Leader] == ~0ULL) 631 // All bits demanded, no point continuing. 632 continue; 633 634 for (Value *O : cast<User>(I)->operands()) { 635 ECs.unionSets(Leader, O); 636 Worklist.push_back(O); 637 } 638 } 639 640 // Now we've discovered all values, walk them to see if there are 641 // any users we didn't see. If there are, we can't optimize that 642 // chain. 643 for (auto &I : DBits) 644 for (auto *U : I.first->users()) 645 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 646 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 647 648 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 649 uint64_t LeaderDemandedBits = 0; 650 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 651 LeaderDemandedBits |= DBits[M]; 652 653 uint64_t MinBW = llvm::bit_width(LeaderDemandedBits); 654 // Round up to a power of 2 655 MinBW = llvm::bit_ceil(MinBW); 656 657 // We don't modify the types of PHIs. Reductions will already have been 658 // truncated if possible, and inductions' sizes will have been chosen by 659 // indvars. 660 // If we are required to shrink a PHI, abandon this entire equivalence class. 661 bool Abort = false; 662 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 663 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) { 664 Abort = true; 665 break; 666 } 667 if (Abort) 668 continue; 669 670 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { 671 auto *MI = dyn_cast<Instruction>(M); 672 if (!MI) 673 continue; 674 Type *Ty = M->getType(); 675 if (Roots.count(M)) 676 Ty = MI->getOperand(0)->getType(); 677 678 if (MinBW >= Ty->getScalarSizeInBits()) 679 continue; 680 681 // If any of M's operands demand more bits than MinBW then M cannot be 682 // performed safely in MinBW. 683 if (any_of(MI->operands(), [&DB, MinBW](Use &U) { 684 auto *CI = dyn_cast<ConstantInt>(U); 685 // For constants shift amounts, check if the shift would result in 686 // poison. 687 if (CI && 688 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) && 689 U.getOperandNo() == 1) 690 return CI->uge(MinBW); 691 uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue()); 692 return bit_ceil(BW) > MinBW; 693 })) 694 continue; 695 696 MinBWs[MI] = MinBW; 697 } 698 } 699 700 return MinBWs; 701 } 702 703 /// Add all access groups in @p AccGroups to @p List. 704 template <typename ListT> 705 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 706 // Interpret an access group as a list containing itself. 707 if (AccGroups->getNumOperands() == 0) { 708 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 709 List.insert(AccGroups); 710 return; 711 } 712 713 for (const auto &AccGroupListOp : AccGroups->operands()) { 714 auto *Item = cast<MDNode>(AccGroupListOp.get()); 715 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 716 List.insert(Item); 717 } 718 } 719 720 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 721 if (!AccGroups1) 722 return AccGroups2; 723 if (!AccGroups2) 724 return AccGroups1; 725 if (AccGroups1 == AccGroups2) 726 return AccGroups1; 727 728 SmallSetVector<Metadata *, 4> Union; 729 addToAccessGroupList(Union, AccGroups1); 730 addToAccessGroupList(Union, AccGroups2); 731 732 if (Union.size() == 0) 733 return nullptr; 734 if (Union.size() == 1) 735 return cast<MDNode>(Union.front()); 736 737 LLVMContext &Ctx = AccGroups1->getContext(); 738 return MDNode::get(Ctx, Union.getArrayRef()); 739 } 740 741 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 742 const Instruction *Inst2) { 743 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 744 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 745 746 if (!MayAccessMem1 && !MayAccessMem2) 747 return nullptr; 748 if (!MayAccessMem1) 749 return Inst2->getMetadata(LLVMContext::MD_access_group); 750 if (!MayAccessMem2) 751 return Inst1->getMetadata(LLVMContext::MD_access_group); 752 753 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 754 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 755 if (!MD1 || !MD2) 756 return nullptr; 757 if (MD1 == MD2) 758 return MD1; 759 760 // Use set for scalable 'contains' check. 761 SmallPtrSet<Metadata *, 4> AccGroupSet2; 762 addToAccessGroupList(AccGroupSet2, MD2); 763 764 SmallVector<Metadata *, 4> Intersection; 765 if (MD1->getNumOperands() == 0) { 766 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 767 if (AccGroupSet2.count(MD1)) 768 Intersection.push_back(MD1); 769 } else { 770 for (const MDOperand &Node : MD1->operands()) { 771 auto *Item = cast<MDNode>(Node.get()); 772 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 773 if (AccGroupSet2.count(Item)) 774 Intersection.push_back(Item); 775 } 776 } 777 778 if (Intersection.size() == 0) 779 return nullptr; 780 if (Intersection.size() == 1) 781 return cast<MDNode>(Intersection.front()); 782 783 LLVMContext &Ctx = Inst1->getContext(); 784 return MDNode::get(Ctx, Intersection); 785 } 786 787 /// \returns \p I after propagating metadata from \p VL. 788 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 789 if (VL.empty()) 790 return Inst; 791 Instruction *I0 = cast<Instruction>(VL[0]); 792 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 793 I0->getAllMetadataOtherThanDebugLoc(Metadata); 794 795 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 796 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 797 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 798 LLVMContext::MD_access_group, LLVMContext::MD_mmra}) { 799 MDNode *MD = I0->getMetadata(Kind); 800 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 801 const Instruction *IJ = cast<Instruction>(VL[J]); 802 MDNode *IMD = IJ->getMetadata(Kind); 803 804 switch (Kind) { 805 case LLVMContext::MD_mmra: { 806 MD = MMRAMetadata::combine(Inst->getContext(), MD, IMD); 807 break; 808 } 809 case LLVMContext::MD_tbaa: 810 MD = MDNode::getMostGenericTBAA(MD, IMD); 811 break; 812 case LLVMContext::MD_alias_scope: 813 MD = MDNode::getMostGenericAliasScope(MD, IMD); 814 break; 815 case LLVMContext::MD_fpmath: 816 MD = MDNode::getMostGenericFPMath(MD, IMD); 817 break; 818 case LLVMContext::MD_noalias: 819 case LLVMContext::MD_nontemporal: 820 case LLVMContext::MD_invariant_load: 821 MD = MDNode::intersect(MD, IMD); 822 break; 823 case LLVMContext::MD_access_group: 824 MD = intersectAccessGroups(Inst, IJ); 825 break; 826 default: 827 llvm_unreachable("unhandled metadata"); 828 } 829 } 830 831 Inst->setMetadata(Kind, MD); 832 } 833 834 return Inst; 835 } 836 837 Constant * 838 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 839 const InterleaveGroup<Instruction> &Group) { 840 // All 1's means mask is not needed. 841 if (Group.getNumMembers() == Group.getFactor()) 842 return nullptr; 843 844 // TODO: support reversed access. 845 assert(!Group.isReverse() && "Reversed group not supported."); 846 847 SmallVector<Constant *, 16> Mask; 848 for (unsigned i = 0; i < VF; i++) 849 for (unsigned j = 0; j < Group.getFactor(); ++j) { 850 unsigned HasMember = Group.getMember(j) ? 1 : 0; 851 Mask.push_back(Builder.getInt1(HasMember)); 852 } 853 854 return ConstantVector::get(Mask); 855 } 856 857 llvm::SmallVector<int, 16> 858 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { 859 SmallVector<int, 16> MaskVec; 860 for (unsigned i = 0; i < VF; i++) 861 for (unsigned j = 0; j < ReplicationFactor; j++) 862 MaskVec.push_back(i); 863 864 return MaskVec; 865 } 866 867 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, 868 unsigned NumVecs) { 869 SmallVector<int, 16> Mask; 870 for (unsigned i = 0; i < VF; i++) 871 for (unsigned j = 0; j < NumVecs; j++) 872 Mask.push_back(j * VF + i); 873 874 return Mask; 875 } 876 877 llvm::SmallVector<int, 16> 878 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { 879 SmallVector<int, 16> Mask; 880 for (unsigned i = 0; i < VF; i++) 881 Mask.push_back(Start + i * Stride); 882 883 return Mask; 884 } 885 886 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, 887 unsigned NumInts, 888 unsigned NumUndefs) { 889 SmallVector<int, 16> Mask; 890 for (unsigned i = 0; i < NumInts; i++) 891 Mask.push_back(Start + i); 892 893 for (unsigned i = 0; i < NumUndefs; i++) 894 Mask.push_back(-1); 895 896 return Mask; 897 } 898 899 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, 900 unsigned NumElts) { 901 // Avoid casts in the loop and make sure we have a reasonable number. 902 int NumEltsSigned = NumElts; 903 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); 904 905 // If the mask chooses an element from operand 1, reduce it to choose from the 906 // corresponding element of operand 0. Undef mask elements are unchanged. 907 SmallVector<int, 16> UnaryMask; 908 for (int MaskElt : Mask) { 909 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); 910 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; 911 UnaryMask.push_back(UnaryElt); 912 } 913 return UnaryMask; 914 } 915 916 /// A helper function for concatenating vectors. This function concatenates two 917 /// vectors having the same element type. If the second vector has fewer 918 /// elements than the first, it is padded with undefs. 919 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 920 Value *V2) { 921 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 922 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 923 assert(VecTy1 && VecTy2 && 924 VecTy1->getScalarType() == VecTy2->getScalarType() && 925 "Expect two vectors with the same element type"); 926 927 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); 928 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); 929 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 930 931 if (NumElts1 > NumElts2) { 932 // Extend with UNDEFs. 933 V2 = Builder.CreateShuffleVector( 934 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); 935 } 936 937 return Builder.CreateShuffleVector( 938 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); 939 } 940 941 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 942 ArrayRef<Value *> Vecs) { 943 unsigned NumVecs = Vecs.size(); 944 assert(NumVecs > 1 && "Should be at least two vectors"); 945 946 SmallVector<Value *, 8> ResList; 947 ResList.append(Vecs.begin(), Vecs.end()); 948 do { 949 SmallVector<Value *, 8> TmpList; 950 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 951 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 952 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 953 "Only the last vector may have a different type"); 954 955 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 956 } 957 958 // Push the last vector if the total number of vectors is odd. 959 if (NumVecs % 2 != 0) 960 TmpList.push_back(ResList[NumVecs - 1]); 961 962 ResList = TmpList; 963 NumVecs = ResList.size(); 964 } while (NumVecs > 1); 965 966 return ResList[0]; 967 } 968 969 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 970 assert(isa<VectorType>(Mask->getType()) && 971 isa<IntegerType>(Mask->getType()->getScalarType()) && 972 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 973 1 && 974 "Mask must be a vector of i1"); 975 976 auto *ConstMask = dyn_cast<Constant>(Mask); 977 if (!ConstMask) 978 return false; 979 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 980 return true; 981 if (isa<ScalableVectorType>(ConstMask->getType())) 982 return false; 983 for (unsigned 984 I = 0, 985 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 986 I != E; ++I) { 987 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 988 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 989 continue; 990 return false; 991 } 992 return true; 993 } 994 995 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 996 assert(isa<VectorType>(Mask->getType()) && 997 isa<IntegerType>(Mask->getType()->getScalarType()) && 998 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 999 1 && 1000 "Mask must be a vector of i1"); 1001 1002 auto *ConstMask = dyn_cast<Constant>(Mask); 1003 if (!ConstMask) 1004 return false; 1005 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 1006 return true; 1007 if (isa<ScalableVectorType>(ConstMask->getType())) 1008 return false; 1009 for (unsigned 1010 I = 0, 1011 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1012 I != E; ++I) { 1013 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1014 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1015 continue; 1016 return false; 1017 } 1018 return true; 1019 } 1020 1021 bool llvm::maskContainsAllOneOrUndef(Value *Mask) { 1022 assert(isa<VectorType>(Mask->getType()) && 1023 isa<IntegerType>(Mask->getType()->getScalarType()) && 1024 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1025 1 && 1026 "Mask must be a vector of i1"); 1027 1028 auto *ConstMask = dyn_cast<Constant>(Mask); 1029 if (!ConstMask) 1030 return false; 1031 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 1032 return true; 1033 if (isa<ScalableVectorType>(ConstMask->getType())) 1034 return false; 1035 for (unsigned 1036 I = 0, 1037 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1038 I != E; ++I) { 1039 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1040 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1041 return true; 1042 } 1043 return false; 1044 } 1045 1046 /// TODO: This is a lot like known bits, but for 1047 /// vectors. Is there something we can common this with? 1048 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 1049 assert(isa<FixedVectorType>(Mask->getType()) && 1050 isa<IntegerType>(Mask->getType()->getScalarType()) && 1051 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1052 1 && 1053 "Mask must be a fixed width vector of i1"); 1054 1055 const unsigned VWidth = 1056 cast<FixedVectorType>(Mask->getType())->getNumElements(); 1057 APInt DemandedElts = APInt::getAllOnes(VWidth); 1058 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 1059 for (unsigned i = 0; i < VWidth; i++) 1060 if (CV->getAggregateElement(i)->isNullValue()) 1061 DemandedElts.clearBit(i); 1062 return DemandedElts; 1063 } 1064 1065 bool InterleavedAccessInfo::isStrided(int Stride) { 1066 unsigned Factor = std::abs(Stride); 1067 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1068 } 1069 1070 void InterleavedAccessInfo::collectConstStrideAccesses( 1071 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1072 const DenseMap<Value*, const SCEV*> &Strides) { 1073 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 1074 1075 // Since it's desired that the load/store instructions be maintained in 1076 // "program order" for the interleaved access analysis, we have to visit the 1077 // blocks in the loop in reverse postorder (i.e., in a topological order). 1078 // Such an ordering will ensure that any load/store that may be executed 1079 // before a second load/store will precede the second load/store in 1080 // AccessStrideInfo. 1081 LoopBlocksDFS DFS(TheLoop); 1082 DFS.perform(LI); 1083 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 1084 for (auto &I : *BB) { 1085 Value *Ptr = getLoadStorePointerOperand(&I); 1086 if (!Ptr) 1087 continue; 1088 Type *ElementTy = getLoadStoreType(&I); 1089 1090 // Currently, codegen doesn't support cases where the type size doesn't 1091 // match the alloc size. Skip them for now. 1092 uint64_t Size = DL.getTypeAllocSize(ElementTy); 1093 if (Size * 8 != DL.getTypeSizeInBits(ElementTy)) 1094 continue; 1095 1096 // We don't check wrapping here because we don't know yet if Ptr will be 1097 // part of a full group or a group with gaps. Checking wrapping for all 1098 // pointers (even those that end up in groups with no gaps) will be overly 1099 // conservative. For full groups, wrapping should be ok since if we would 1100 // wrap around the address space we would do a memory access at nullptr 1101 // even without the transformation. The wrapping checks are therefore 1102 // deferred until after we've formed the interleaved groups. 1103 int64_t Stride = 1104 getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, 1105 /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0); 1106 1107 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 1108 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, 1109 getLoadStoreAlignment(&I)); 1110 } 1111 } 1112 1113 // Analyze interleaved accesses and collect them into interleaved load and 1114 // store groups. 1115 // 1116 // When generating code for an interleaved load group, we effectively hoist all 1117 // loads in the group to the location of the first load in program order. When 1118 // generating code for an interleaved store group, we sink all stores to the 1119 // location of the last store. This code motion can change the order of load 1120 // and store instructions and may break dependences. 1121 // 1122 // The code generation strategy mentioned above ensures that we won't violate 1123 // any write-after-read (WAR) dependences. 1124 // 1125 // E.g., for the WAR dependence: a = A[i]; // (1) 1126 // A[i] = b; // (2) 1127 // 1128 // The store group of (2) is always inserted at or below (2), and the load 1129 // group of (1) is always inserted at or above (1). Thus, the instructions will 1130 // never be reordered. All other dependences are checked to ensure the 1131 // correctness of the instruction reordering. 1132 // 1133 // The algorithm visits all memory accesses in the loop in bottom-up program 1134 // order. Program order is established by traversing the blocks in the loop in 1135 // reverse postorder when collecting the accesses. 1136 // 1137 // We visit the memory accesses in bottom-up order because it can simplify the 1138 // construction of store groups in the presence of write-after-write (WAW) 1139 // dependences. 1140 // 1141 // E.g., for the WAW dependence: A[i] = a; // (1) 1142 // A[i] = b; // (2) 1143 // A[i + 1] = c; // (3) 1144 // 1145 // We will first create a store group with (3) and (2). (1) can't be added to 1146 // this group because it and (2) are dependent. However, (1) can be grouped 1147 // with other accesses that may precede it in program order. Note that a 1148 // bottom-up order does not imply that WAW dependences should not be checked. 1149 void InterleavedAccessInfo::analyzeInterleaving( 1150 bool EnablePredicatedInterleavedMemAccesses) { 1151 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 1152 const auto &Strides = LAI->getSymbolicStrides(); 1153 1154 // Holds all accesses with a constant stride. 1155 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 1156 collectConstStrideAccesses(AccessStrideInfo, Strides); 1157 1158 if (AccessStrideInfo.empty()) 1159 return; 1160 1161 // Collect the dependences in the loop. 1162 collectDependences(); 1163 1164 // Holds all interleaved store groups temporarily. 1165 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 1166 // Holds all interleaved load groups temporarily. 1167 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 1168 // Groups added to this set cannot have new members added. 1169 SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups; 1170 1171 // Search in bottom-up program order for pairs of accesses (A and B) that can 1172 // form interleaved load or store groups. In the algorithm below, access A 1173 // precedes access B in program order. We initialize a group for B in the 1174 // outer loop of the algorithm, and then in the inner loop, we attempt to 1175 // insert each A into B's group if: 1176 // 1177 // 1. A and B have the same stride, 1178 // 2. A and B have the same memory object size, and 1179 // 3. A belongs in B's group according to its distance from B. 1180 // 1181 // Special care is taken to ensure group formation will not break any 1182 // dependences. 1183 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 1184 BI != E; ++BI) { 1185 Instruction *B = BI->first; 1186 StrideDescriptor DesB = BI->second; 1187 1188 // Initialize a group for B if it has an allowable stride. Even if we don't 1189 // create a group for B, we continue with the bottom-up algorithm to ensure 1190 // we don't break any of B's dependences. 1191 InterleaveGroup<Instruction> *GroupB = nullptr; 1192 if (isStrided(DesB.Stride) && 1193 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 1194 GroupB = getInterleaveGroup(B); 1195 if (!GroupB) { 1196 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 1197 << '\n'); 1198 GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 1199 if (B->mayWriteToMemory()) 1200 StoreGroups.insert(GroupB); 1201 else 1202 LoadGroups.insert(GroupB); 1203 } 1204 } 1205 1206 for (auto AI = std::next(BI); AI != E; ++AI) { 1207 Instruction *A = AI->first; 1208 StrideDescriptor DesA = AI->second; 1209 1210 // Our code motion strategy implies that we can't have dependences 1211 // between accesses in an interleaved group and other accesses located 1212 // between the first and last member of the group. Note that this also 1213 // means that a group can't have more than one member at a given offset. 1214 // The accesses in a group can have dependences with other accesses, but 1215 // we must ensure we don't extend the boundaries of the group such that 1216 // we encompass those dependent accesses. 1217 // 1218 // For example, assume we have the sequence of accesses shown below in a 1219 // stride-2 loop: 1220 // 1221 // (1, 2) is a group | A[i] = a; // (1) 1222 // | A[i-1] = b; // (2) | 1223 // A[i-3] = c; // (3) 1224 // A[i] = d; // (4) | (2, 4) is not a group 1225 // 1226 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1227 // but not with (4). If we did, the dependent access (3) would be within 1228 // the boundaries of the (2, 4) group. 1229 auto DependentMember = [&](InterleaveGroup<Instruction> *Group, 1230 StrideEntry *A) -> Instruction * { 1231 for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) { 1232 Instruction *MemberOfGroupB = Group->getMember(Index); 1233 if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups( 1234 A, &*AccessStrideInfo.find(MemberOfGroupB))) 1235 return MemberOfGroupB; 1236 } 1237 return nullptr; 1238 }; 1239 1240 auto GroupA = getInterleaveGroup(A); 1241 // If A is a load, dependencies are tolerable, there's nothing to do here. 1242 // If both A and B belong to the same (store) group, they are independent, 1243 // even if dependencies have not been recorded. 1244 // If both GroupA and GroupB are null, there's nothing to do here. 1245 if (A->mayWriteToMemory() && GroupA != GroupB) { 1246 Instruction *DependentInst = nullptr; 1247 // If GroupB is a load group, we have to compare AI against all 1248 // members of GroupB because if any load within GroupB has a dependency 1249 // on AI, we need to mark GroupB as complete and also release the 1250 // store GroupA (if A belongs to one). The former prevents incorrect 1251 // hoisting of load B above store A while the latter prevents incorrect 1252 // sinking of store A below load B. 1253 if (GroupB && LoadGroups.contains(GroupB)) 1254 DependentInst = DependentMember(GroupB, &*AI); 1255 else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) 1256 DependentInst = B; 1257 1258 if (DependentInst) { 1259 // A has a store dependence on B (or on some load within GroupB) and 1260 // is part of a store group. Release A's group to prevent illegal 1261 // sinking of A below B. A will then be free to form another group 1262 // with instructions that precede it. 1263 if (GroupA && StoreGroups.contains(GroupA)) { 1264 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1265 "dependence between " 1266 << *A << " and " << *DependentInst << '\n'); 1267 StoreGroups.remove(GroupA); 1268 releaseGroup(GroupA); 1269 } 1270 // If B is a load and part of an interleave group, no earlier loads 1271 // can be added to B's interleave group, because this would mean the 1272 // DependentInst would move across store A. Mark the interleave group 1273 // as complete. 1274 if (GroupB && LoadGroups.contains(GroupB)) { 1275 LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B 1276 << " as complete.\n"); 1277 CompletedLoadGroups.insert(GroupB); 1278 } 1279 } 1280 } 1281 if (CompletedLoadGroups.contains(GroupB)) { 1282 // Skip trying to add A to B, continue to look for other conflicting A's 1283 // in groups to be released. 1284 continue; 1285 } 1286 1287 // At this point, we've checked for illegal code motion. If either A or B 1288 // isn't strided, there's nothing left to do. 1289 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1290 continue; 1291 1292 // Ignore A if it's already in a group or isn't the same kind of memory 1293 // operation as B. 1294 // Note that mayReadFromMemory() isn't mutually exclusive to 1295 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1296 // here, canVectorizeMemory() should have returned false - except for the 1297 // case we asked for optimization remarks. 1298 if (isInterleaved(A) || 1299 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1300 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1301 continue; 1302 1303 // Check rules 1 and 2. Ignore A if its stride or size is different from 1304 // that of B. 1305 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1306 continue; 1307 1308 // Ignore A if the memory object of A and B don't belong to the same 1309 // address space 1310 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1311 continue; 1312 1313 // Calculate the distance from A to B. 1314 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1315 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1316 if (!DistToB) 1317 continue; 1318 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1319 1320 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1321 // size. 1322 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1323 continue; 1324 1325 // All members of a predicated interleave-group must have the same predicate, 1326 // and currently must reside in the same BB. 1327 BasicBlock *BlockA = A->getParent(); 1328 BasicBlock *BlockB = B->getParent(); 1329 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1330 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1331 continue; 1332 1333 // The index of A is the index of B plus A's distance to B in multiples 1334 // of the size. 1335 int IndexA = 1336 GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1337 1338 // Try to insert A into B's group. 1339 if (GroupB->insertMember(A, IndexA, DesA.Alignment)) { 1340 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1341 << " into the interleave group with" << *B 1342 << '\n'); 1343 InterleaveGroupMap[A] = GroupB; 1344 1345 // Set the first load in program order as the insert position. 1346 if (A->mayReadFromMemory()) 1347 GroupB->setInsertPos(A); 1348 } 1349 } // Iteration over A accesses. 1350 } // Iteration over B accesses. 1351 1352 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, 1353 int Index, 1354 std::string FirstOrLast) -> bool { 1355 Instruction *Member = Group->getMember(Index); 1356 assert(Member && "Group member does not exist"); 1357 Value *MemberPtr = getLoadStorePointerOperand(Member); 1358 Type *AccessTy = getLoadStoreType(Member); 1359 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, 1360 /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0)) 1361 return false; 1362 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 1363 << FirstOrLast 1364 << " group member potentially pointer-wrapping.\n"); 1365 releaseGroup(Group); 1366 return true; 1367 }; 1368 1369 // Remove interleaved groups with gaps whose memory 1370 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1371 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1372 // not check wrapping (see documentation there). 1373 // FORNOW we use Assume=false; 1374 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1375 // of runtime SCEV assumptions checks (thereby potentially failing to 1376 // vectorize altogether). 1377 // Additional optional optimizations: 1378 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1379 // wrap then we can deduce that all pointers in the group don't wrap. 1380 // This means that we can forcefully peel the loop in order to only have to 1381 // check the first pointer for no-wrap. When we'll change to use Assume=true 1382 // we'll only need at most one runtime check per interleaved group. 1383 for (auto *Group : LoadGroups) { 1384 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1385 // load would wrap around the address space we would do a memory access at 1386 // nullptr even without the transformation. 1387 if (Group->getNumMembers() == Group->getFactor()) 1388 continue; 1389 1390 // Case 2: If first and last members of the group don't wrap this implies 1391 // that all the pointers in the group don't wrap. 1392 // So we check only group member 0 (which is always guaranteed to exist), 1393 // and group member Factor - 1; If the latter doesn't exist we rely on 1394 // peeling (if it is a non-reversed accsess -- see Case 3). 1395 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) 1396 continue; 1397 if (Group->getMember(Group->getFactor() - 1)) 1398 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, 1399 std::string("last")); 1400 else { 1401 // Case 3: A non-reversed interleaved load group with gaps: We need 1402 // to execute at least one scalar epilogue iteration. This will ensure 1403 // we don't speculatively access memory out-of-bounds. We only need 1404 // to look for a member at index factor - 1, since every group must have 1405 // a member at index zero. 1406 if (Group->isReverse()) { 1407 LLVM_DEBUG( 1408 dbgs() << "LV: Invalidate candidate interleaved group due to " 1409 "a reverse access with gaps.\n"); 1410 releaseGroup(Group); 1411 continue; 1412 } 1413 LLVM_DEBUG( 1414 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1415 RequiresScalarEpilogue = true; 1416 } 1417 } 1418 1419 for (auto *Group : StoreGroups) { 1420 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1421 // store would wrap around the address space we would do a memory access at 1422 // nullptr even without the transformation. 1423 if (Group->getNumMembers() == Group->getFactor()) 1424 continue; 1425 1426 // Interleave-store-group with gaps is implemented using masked wide store. 1427 // Remove interleaved store groups with gaps if 1428 // masked-interleaved-accesses are not enabled by the target. 1429 if (!EnablePredicatedInterleavedMemAccesses) { 1430 LLVM_DEBUG( 1431 dbgs() << "LV: Invalidate candidate interleaved store group due " 1432 "to gaps.\n"); 1433 releaseGroup(Group); 1434 continue; 1435 } 1436 1437 // Case 2: If first and last members of the group don't wrap this implies 1438 // that all the pointers in the group don't wrap. 1439 // So we check only group member 0 (which is always guaranteed to exist), 1440 // and the last group member. Case 3 (scalar epilog) is not relevant for 1441 // stores with gaps, which are implemented with masked-store (rather than 1442 // speculative access, as in loads). 1443 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) 1444 continue; 1445 for (int Index = Group->getFactor() - 1; Index > 0; Index--) 1446 if (Group->getMember(Index)) { 1447 InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last")); 1448 break; 1449 } 1450 } 1451 } 1452 1453 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1454 // If no group had triggered the requirement to create an epilogue loop, 1455 // there is nothing to do. 1456 if (!requiresScalarEpilogue()) 1457 return; 1458 1459 bool ReleasedGroup = false; 1460 // Release groups requiring scalar epilogues. Note that this also removes them 1461 // from InterleaveGroups. 1462 for (auto *Group : make_early_inc_range(InterleaveGroups)) { 1463 if (!Group->requiresScalarEpilogue()) 1464 continue; 1465 LLVM_DEBUG( 1466 dbgs() 1467 << "LV: Invalidate candidate interleaved group due to gaps that " 1468 "require a scalar epilogue (not allowed under optsize) and cannot " 1469 "be masked (not enabled). \n"); 1470 releaseGroup(Group); 1471 ReleasedGroup = true; 1472 } 1473 assert(ReleasedGroup && "At least one group must be invalidated, as a " 1474 "scalar epilogue was required"); 1475 (void)ReleasedGroup; 1476 RequiresScalarEpilogue = false; 1477 } 1478 1479 template <typename InstT> 1480 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1481 llvm_unreachable("addMetadata can only be used for Instruction"); 1482 } 1483 1484 namespace llvm { 1485 template <> 1486 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1487 SmallVector<Value *, 4> VL; 1488 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1489 [](std::pair<int, Instruction *> p) { return p.second; }); 1490 propagateMetadata(NewInst, VL); 1491 } 1492 } // namespace llvm 1493