1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/iterator_range.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumeBundleQueries.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomConditionCache.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/Analysis/WithCache.h" 37 #include "llvm/IR/Argument.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/DiagnosticInfo.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/EHPersonalities.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GetElementPtrTypeIterator.h" 49 #include "llvm/IR/GlobalAlias.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/GlobalVariable.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/IntrinsicsAArch64.h" 58 #include "llvm/IR/IntrinsicsAMDGPU.h" 59 #include "llvm/IR/IntrinsicsRISCV.h" 60 #include "llvm/IR/IntrinsicsX86.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/ErrorHandling.h" 73 #include "llvm/Support/KnownBits.h" 74 #include "llvm/Support/MathExtras.h" 75 #include "llvm/TargetParser/RISCVTargetParser.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstdint> 79 #include <optional> 80 #include <utility> 81 82 using namespace llvm; 83 using namespace llvm::PatternMatch; 84 85 // Controls the number of uses of the value searched for possible 86 // dominating comparisons. 87 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 88 cl::Hidden, cl::init(20)); 89 90 91 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 92 /// returns the element type's bitwidth. 93 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 94 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 95 return BitWidth; 96 97 return DL.getPointerTypeSizeInBits(Ty); 98 } 99 100 // Given the provided Value and, potentially, a context instruction, return 101 // the preferred context instruction (if any). 102 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 103 // If we've been provided with a context instruction, then use that (provided 104 // it has been inserted). 105 if (CxtI && CxtI->getParent()) 106 return CxtI; 107 108 // If the value is really an already-inserted instruction, then use that. 109 CxtI = dyn_cast<Instruction>(V); 110 if (CxtI && CxtI->getParent()) 111 return CxtI; 112 113 return nullptr; 114 } 115 116 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 117 // If we've been provided with a context instruction, then use that (provided 118 // it has been inserted). 119 if (CxtI && CxtI->getParent()) 120 return CxtI; 121 122 // If the value is really an already-inserted instruction, then use that. 123 CxtI = dyn_cast<Instruction>(V1); 124 if (CxtI && CxtI->getParent()) 125 return CxtI; 126 127 CxtI = dyn_cast<Instruction>(V2); 128 if (CxtI && CxtI->getParent()) 129 return CxtI; 130 131 return nullptr; 132 } 133 134 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 135 const APInt &DemandedElts, 136 APInt &DemandedLHS, APInt &DemandedRHS) { 137 if (isa<ScalableVectorType>(Shuf->getType())) { 138 assert(DemandedElts == APInt(1,1)); 139 DemandedLHS = DemandedRHS = DemandedElts; 140 return true; 141 } 142 143 int NumElts = 144 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 145 return llvm::getShuffleDemandedElts(NumElts, Shuf->getShuffleMask(), 146 DemandedElts, DemandedLHS, DemandedRHS); 147 } 148 149 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 150 KnownBits &Known, unsigned Depth, 151 const SimplifyQuery &Q); 152 153 void llvm::computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 154 const SimplifyQuery &Q) { 155 // Since the number of lanes in a scalable vector is unknown at compile time, 156 // we track one bit which is implicitly broadcast to all lanes. This means 157 // that all lanes in a scalable vector are considered demanded. 158 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 159 APInt DemandedElts = 160 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 161 ::computeKnownBits(V, DemandedElts, Known, Depth, Q); 162 } 163 164 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT, bool UseInstrInfo) { 168 computeKnownBits( 169 V, Known, Depth, 170 SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo)); 171 } 172 173 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 174 unsigned Depth, AssumptionCache *AC, 175 const Instruction *CxtI, 176 const DominatorTree *DT, bool UseInstrInfo) { 177 return computeKnownBits( 178 V, Depth, SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo)); 179 } 180 181 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 182 const DataLayout &DL, unsigned Depth, 183 AssumptionCache *AC, const Instruction *CxtI, 184 const DominatorTree *DT, bool UseInstrInfo) { 185 return computeKnownBits( 186 V, DemandedElts, Depth, 187 SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo)); 188 } 189 190 static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS, 191 const SimplifyQuery &SQ) { 192 // Look for an inverted mask: (X & ~M) op (Y & M). 193 { 194 Value *M; 195 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 196 match(RHS, m_c_And(m_Specific(M), m_Value())) && 197 isGuaranteedNotToBeUndef(M, SQ.AC, SQ.CxtI, SQ.DT)) 198 return true; 199 } 200 201 // X op (Y & ~X) 202 if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) && 203 isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT)) 204 return true; 205 206 // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern 207 // for constant Y. 208 Value *Y; 209 if (match(RHS, 210 m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) && 211 isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT) && 212 isGuaranteedNotToBeUndef(Y, SQ.AC, SQ.CxtI, SQ.DT)) 213 return true; 214 215 // Peek through extends to find a 'not' of the other side: 216 // (ext Y) op ext(~Y) 217 if (match(LHS, m_ZExtOrSExt(m_Value(Y))) && 218 match(RHS, m_ZExtOrSExt(m_Not(m_Specific(Y)))) && 219 isGuaranteedNotToBeUndef(Y, SQ.AC, SQ.CxtI, SQ.DT)) 220 return true; 221 222 // Look for: (A & B) op ~(A | B) 223 { 224 Value *A, *B; 225 if (match(LHS, m_And(m_Value(A), m_Value(B))) && 226 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))) && 227 isGuaranteedNotToBeUndef(A, SQ.AC, SQ.CxtI, SQ.DT) && 228 isGuaranteedNotToBeUndef(B, SQ.AC, SQ.CxtI, SQ.DT)) 229 return true; 230 } 231 232 // Look for: (X << V) op (Y >> (BitWidth - V)) 233 // or (X >> V) op (Y << (BitWidth - V)) 234 { 235 const Value *V; 236 const APInt *R; 237 if (((match(RHS, m_Shl(m_Value(), m_Sub(m_APInt(R), m_Value(V)))) && 238 match(LHS, m_LShr(m_Value(), m_Specific(V)))) || 239 (match(RHS, m_LShr(m_Value(), m_Sub(m_APInt(R), m_Value(V)))) && 240 match(LHS, m_Shl(m_Value(), m_Specific(V))))) && 241 R->uge(LHS->getType()->getScalarSizeInBits())) 242 return true; 243 } 244 245 return false; 246 } 247 248 bool llvm::haveNoCommonBitsSet(const WithCache<const Value *> &LHSCache, 249 const WithCache<const Value *> &RHSCache, 250 const SimplifyQuery &SQ) { 251 const Value *LHS = LHSCache.getValue(); 252 const Value *RHS = RHSCache.getValue(); 253 254 assert(LHS->getType() == RHS->getType() && 255 "LHS and RHS should have the same type"); 256 assert(LHS->getType()->isIntOrIntVectorTy() && 257 "LHS and RHS should be integers"); 258 259 if (haveNoCommonBitsSetSpecialCases(LHS, RHS, SQ) || 260 haveNoCommonBitsSetSpecialCases(RHS, LHS, SQ)) 261 return true; 262 263 return KnownBits::haveNoCommonBitsSet(LHSCache.getKnownBits(SQ), 264 RHSCache.getKnownBits(SQ)); 265 } 266 267 bool llvm::isOnlyUsedInZeroComparison(const Instruction *I) { 268 return !I->user_empty() && all_of(I->users(), [](const User *U) { 269 return match(U, m_ICmp(m_Value(), m_Zero())); 270 }); 271 } 272 273 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 274 return !I->user_empty() && all_of(I->users(), [](const User *U) { 275 CmpPredicate P; 276 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 277 }); 278 } 279 280 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 281 bool OrZero, unsigned Depth, 282 AssumptionCache *AC, const Instruction *CxtI, 283 const DominatorTree *DT, bool UseInstrInfo) { 284 return ::isKnownToBeAPowerOfTwo( 285 V, OrZero, Depth, 286 SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo)); 287 } 288 289 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 290 const SimplifyQuery &Q, unsigned Depth); 291 292 bool llvm::isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, 293 unsigned Depth) { 294 return computeKnownBits(V, Depth, SQ).isNonNegative(); 295 } 296 297 bool llvm::isKnownPositive(const Value *V, const SimplifyQuery &SQ, 298 unsigned Depth) { 299 if (auto *CI = dyn_cast<ConstantInt>(V)) 300 return CI->getValue().isStrictlyPositive(); 301 302 // If `isKnownNonNegative` ever becomes more sophisticated, make sure to keep 303 // this updated. 304 KnownBits Known = computeKnownBits(V, Depth, SQ); 305 return Known.isNonNegative() && 306 (Known.isNonZero() || isKnownNonZero(V, SQ, Depth)); 307 } 308 309 bool llvm::isKnownNegative(const Value *V, const SimplifyQuery &SQ, 310 unsigned Depth) { 311 return computeKnownBits(V, Depth, SQ).isNegative(); 312 } 313 314 static bool isKnownNonEqual(const Value *V1, const Value *V2, 315 const APInt &DemandedElts, unsigned Depth, 316 const SimplifyQuery &Q); 317 318 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 319 const DataLayout &DL, AssumptionCache *AC, 320 const Instruction *CxtI, const DominatorTree *DT, 321 bool UseInstrInfo) { 322 // We don't support looking through casts. 323 if (V1 == V2 || V1->getType() != V2->getType()) 324 return false; 325 auto *FVTy = dyn_cast<FixedVectorType>(V1->getType()); 326 APInt DemandedElts = 327 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 328 return ::isKnownNonEqual( 329 V1, V2, DemandedElts, 0, 330 SimplifyQuery(DL, DT, AC, safeCxtI(V2, V1, CxtI), UseInstrInfo)); 331 } 332 333 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 334 const SimplifyQuery &SQ, unsigned Depth) { 335 KnownBits Known(Mask.getBitWidth()); 336 computeKnownBits(V, Known, Depth, SQ); 337 return Mask.isSubsetOf(Known.Zero); 338 } 339 340 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 341 unsigned Depth, const SimplifyQuery &Q); 342 343 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 344 const SimplifyQuery &Q) { 345 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 346 APInt DemandedElts = 347 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 348 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 349 } 350 351 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 352 unsigned Depth, AssumptionCache *AC, 353 const Instruction *CxtI, 354 const DominatorTree *DT, bool UseInstrInfo) { 355 return ::ComputeNumSignBits( 356 V, Depth, SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo)); 357 } 358 359 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, 360 unsigned Depth, AssumptionCache *AC, 361 const Instruction *CxtI, 362 const DominatorTree *DT) { 363 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); 364 return V->getType()->getScalarSizeInBits() - SignBits + 1; 365 } 366 367 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 368 bool NSW, bool NUW, 369 const APInt &DemandedElts, 370 KnownBits &KnownOut, KnownBits &Known2, 371 unsigned Depth, const SimplifyQuery &Q) { 372 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 373 374 // If one operand is unknown and we have no nowrap information, 375 // the result will be unknown independently of the second operand. 376 if (KnownOut.isUnknown() && !NSW && !NUW) 377 return; 378 379 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 380 KnownOut = KnownBits::computeForAddSub(Add, NSW, NUW, Known2, KnownOut); 381 } 382 383 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 384 bool NUW, const APInt &DemandedElts, 385 KnownBits &Known, KnownBits &Known2, 386 unsigned Depth, const SimplifyQuery &Q) { 387 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 388 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 389 390 bool isKnownNegative = false; 391 bool isKnownNonNegative = false; 392 // If the multiplication is known not to overflow, compute the sign bit. 393 if (NSW) { 394 if (Op0 == Op1) { 395 // The product of a number with itself is non-negative. 396 isKnownNonNegative = true; 397 } else { 398 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 399 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 400 bool isKnownNegativeOp1 = Known.isNegative(); 401 bool isKnownNegativeOp0 = Known2.isNegative(); 402 // The product of two numbers with the same sign is non-negative. 403 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 404 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 405 if (!isKnownNonNegative && NUW) { 406 // mul nuw nsw with a factor > 1 is non-negative. 407 KnownBits One = KnownBits::makeConstant(APInt(Known.getBitWidth(), 1)); 408 isKnownNonNegative = KnownBits::sgt(Known, One).value_or(false) || 409 KnownBits::sgt(Known2, One).value_or(false); 410 } 411 412 // The product of a negative number and a non-negative number is either 413 // negative or zero. 414 if (!isKnownNonNegative) 415 isKnownNegative = 416 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 417 Known2.isNonZero()) || 418 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 419 } 420 } 421 422 bool SelfMultiply = Op0 == Op1; 423 if (SelfMultiply) 424 SelfMultiply &= 425 isGuaranteedNotToBeUndef(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); 426 Known = KnownBits::mul(Known, Known2, SelfMultiply); 427 428 // Only make use of no-wrap flags if we failed to compute the sign bit 429 // directly. This matters if the multiplication always overflows, in 430 // which case we prefer to follow the result of the direct computation, 431 // though as the program is invoking undefined behaviour we can choose 432 // whatever we like here. 433 if (isKnownNonNegative && !Known.isNegative()) 434 Known.makeNonNegative(); 435 else if (isKnownNegative && !Known.isNonNegative()) 436 Known.makeNegative(); 437 } 438 439 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 440 KnownBits &Known) { 441 unsigned BitWidth = Known.getBitWidth(); 442 unsigned NumRanges = Ranges.getNumOperands() / 2; 443 assert(NumRanges >= 1); 444 445 Known.Zero.setAllBits(); 446 Known.One.setAllBits(); 447 448 for (unsigned i = 0; i < NumRanges; ++i) { 449 ConstantInt *Lower = 450 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 451 ConstantInt *Upper = 452 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 453 ConstantRange Range(Lower->getValue(), Upper->getValue()); 454 455 // The first CommonPrefixBits of all values in Range are equal. 456 unsigned CommonPrefixBits = 457 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countl_zero(); 458 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 459 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 460 Known.One &= UnsignedMax & Mask; 461 Known.Zero &= ~UnsignedMax & Mask; 462 } 463 } 464 465 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 466 SmallVector<const Value *, 16> WorkSet(1, I); 467 SmallPtrSet<const Value *, 32> Visited; 468 SmallPtrSet<const Value *, 16> EphValues; 469 470 // The instruction defining an assumption's condition itself is always 471 // considered ephemeral to that assumption (even if it has other 472 // non-ephemeral users). See r246696's test case for an example. 473 if (is_contained(I->operands(), E)) 474 return true; 475 476 while (!WorkSet.empty()) { 477 const Value *V = WorkSet.pop_back_val(); 478 if (!Visited.insert(V).second) 479 continue; 480 481 // If all uses of this value are ephemeral, then so is this value. 482 if (llvm::all_of(V->users(), [&](const User *U) { 483 return EphValues.count(U); 484 })) { 485 if (V == E) 486 return true; 487 488 if (V == I || (isa<Instruction>(V) && 489 !cast<Instruction>(V)->mayHaveSideEffects() && 490 !cast<Instruction>(V)->isTerminator())) { 491 EphValues.insert(V); 492 if (const User *U = dyn_cast<User>(V)) 493 append_range(WorkSet, U->operands()); 494 } 495 } 496 } 497 498 return false; 499 } 500 501 // Is this an intrinsic that cannot be speculated but also cannot trap? 502 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 503 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 504 return CI->isAssumeLikeIntrinsic(); 505 506 return false; 507 } 508 509 bool llvm::isValidAssumeForContext(const Instruction *Inv, 510 const Instruction *CxtI, 511 const DominatorTree *DT, 512 bool AllowEphemerals) { 513 // There are two restrictions on the use of an assume: 514 // 1. The assume must dominate the context (or the control flow must 515 // reach the assume whenever it reaches the context). 516 // 2. The context must not be in the assume's set of ephemeral values 517 // (otherwise we will use the assume to prove that the condition 518 // feeding the assume is trivially true, thus causing the removal of 519 // the assume). 520 521 if (Inv->getParent() == CxtI->getParent()) { 522 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 523 // in the BB. 524 if (Inv->comesBefore(CxtI)) 525 return true; 526 527 // Don't let an assume affect itself - this would cause the problems 528 // `isEphemeralValueOf` is trying to prevent, and it would also make 529 // the loop below go out of bounds. 530 if (!AllowEphemerals && Inv == CxtI) 531 return false; 532 533 // The context comes first, but they're both in the same block. 534 // Make sure there is nothing in between that might interrupt 535 // the control flow, not even CxtI itself. 536 // We limit the scan distance between the assume and its context instruction 537 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 538 // it can be adjusted if needed (could be turned into a cl::opt). 539 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 540 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 541 return false; 542 543 return AllowEphemerals || !isEphemeralValueOf(Inv, CxtI); 544 } 545 546 // Inv and CxtI are in different blocks. 547 if (DT) { 548 if (DT->dominates(Inv, CxtI)) 549 return true; 550 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor() || 551 Inv->getParent()->isEntryBlock()) { 552 // We don't have a DT, but this trivially dominates. 553 return true; 554 } 555 556 return false; 557 } 558 559 // TODO: cmpExcludesZero misses many cases where `RHS` is non-constant but 560 // we still have enough information about `RHS` to conclude non-zero. For 561 // example Pred=EQ, RHS=isKnownNonZero. cmpExcludesZero is called in loops 562 // so the extra compile time may not be worth it, but possibly a second API 563 // should be created for use outside of loops. 564 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 565 // v u> y implies v != 0. 566 if (Pred == ICmpInst::ICMP_UGT) 567 return true; 568 569 // Special-case v != 0 to also handle v != null. 570 if (Pred == ICmpInst::ICMP_NE) 571 return match(RHS, m_Zero()); 572 573 // All other predicates - rely on generic ConstantRange handling. 574 const APInt *C; 575 auto Zero = APInt::getZero(RHS->getType()->getScalarSizeInBits()); 576 if (match(RHS, m_APInt(C))) { 577 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 578 return !TrueValues.contains(Zero); 579 } 580 581 auto *VC = dyn_cast<ConstantDataVector>(RHS); 582 if (VC == nullptr) 583 return false; 584 585 for (unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem; 586 ++ElemIdx) { 587 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( 588 Pred, VC->getElementAsAPInt(ElemIdx)); 589 if (TrueValues.contains(Zero)) 590 return false; 591 } 592 return true; 593 } 594 595 static void breakSelfRecursivePHI(const Use *U, const PHINode *PHI, 596 Value *&ValOut, Instruction *&CtxIOut, 597 const PHINode **PhiOut = nullptr) { 598 ValOut = U->get(); 599 if (ValOut == PHI) 600 return; 601 CtxIOut = PHI->getIncomingBlock(*U)->getTerminator(); 602 if (PhiOut) 603 *PhiOut = PHI; 604 Value *V; 605 // If the Use is a select of this phi, compute analysis on other arm to break 606 // recursion. 607 // TODO: Min/Max 608 if (match(ValOut, m_Select(m_Value(), m_Specific(PHI), m_Value(V))) || 609 match(ValOut, m_Select(m_Value(), m_Value(V), m_Specific(PHI)))) 610 ValOut = V; 611 612 // Same for select, if this phi is 2-operand phi, compute analysis on other 613 // incoming value to break recursion. 614 // TODO: We could handle any number of incoming edges as long as we only have 615 // two unique values. 616 if (auto *IncPhi = dyn_cast<PHINode>(ValOut); 617 IncPhi && IncPhi->getNumIncomingValues() == 2) { 618 for (int Idx = 0; Idx < 2; ++Idx) { 619 if (IncPhi->getIncomingValue(Idx) == PHI) { 620 ValOut = IncPhi->getIncomingValue(1 - Idx); 621 if (PhiOut) 622 *PhiOut = IncPhi; 623 CtxIOut = IncPhi->getIncomingBlock(1 - Idx)->getTerminator(); 624 break; 625 } 626 } 627 } 628 } 629 630 static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q) { 631 // Use of assumptions is context-sensitive. If we don't have a context, we 632 // cannot use them! 633 if (!Q.AC || !Q.CxtI) 634 return false; 635 636 for (AssumptionCache::ResultElem &Elem : Q.AC->assumptionsFor(V)) { 637 if (!Elem.Assume) 638 continue; 639 640 AssumeInst *I = cast<AssumeInst>(Elem.Assume); 641 assert(I->getFunction() == Q.CxtI->getFunction() && 642 "Got assumption for the wrong function!"); 643 644 if (Elem.Index != AssumptionCache::ExprResultIdx) { 645 if (!V->getType()->isPointerTy()) 646 continue; 647 if (RetainedKnowledge RK = getKnowledgeFromBundle( 648 *I, I->bundle_op_info_begin()[Elem.Index])) { 649 if (RK.WasOn == V && 650 (RK.AttrKind == Attribute::NonNull || 651 (RK.AttrKind == Attribute::Dereferenceable && 652 !NullPointerIsDefined(Q.CxtI->getFunction(), 653 V->getType()->getPointerAddressSpace()))) && 654 isValidAssumeForContext(I, Q.CxtI, Q.DT)) 655 return true; 656 } 657 continue; 658 } 659 660 // Warning: This loop can end up being somewhat performance sensitive. 661 // We're running this loop for once for each value queried resulting in a 662 // runtime of ~O(#assumes * #values). 663 664 Value *RHS; 665 CmpPredicate Pred; 666 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 667 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 668 continue; 669 670 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 671 return true; 672 } 673 674 return false; 675 } 676 677 static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred, 678 Value *LHS, Value *RHS, KnownBits &Known, 679 const SimplifyQuery &Q) { 680 if (RHS->getType()->isPointerTy()) { 681 // Handle comparison of pointer to null explicitly, as it will not be 682 // covered by the m_APInt() logic below. 683 if (LHS == V && match(RHS, m_Zero())) { 684 switch (Pred) { 685 case ICmpInst::ICMP_EQ: 686 Known.setAllZero(); 687 break; 688 case ICmpInst::ICMP_SGE: 689 case ICmpInst::ICMP_SGT: 690 Known.makeNonNegative(); 691 break; 692 case ICmpInst::ICMP_SLT: 693 Known.makeNegative(); 694 break; 695 default: 696 break; 697 } 698 } 699 return; 700 } 701 702 unsigned BitWidth = Known.getBitWidth(); 703 auto m_V = 704 m_CombineOr(m_Specific(V), m_PtrToIntSameSize(Q.DL, m_Specific(V))); 705 706 Value *Y; 707 const APInt *Mask, *C; 708 uint64_t ShAmt; 709 switch (Pred) { 710 case ICmpInst::ICMP_EQ: 711 // assume(V = C) 712 if (match(LHS, m_V) && match(RHS, m_APInt(C))) { 713 Known = Known.unionWith(KnownBits::makeConstant(*C)); 714 // assume(V & Mask = C) 715 } else if (match(LHS, m_c_And(m_V, m_Value(Y))) && 716 match(RHS, m_APInt(C))) { 717 // For one bits in Mask, we can propagate bits from C to V. 718 Known.One |= *C; 719 if (match(Y, m_APInt(Mask))) 720 Known.Zero |= ~*C & *Mask; 721 // assume(V | Mask = C) 722 } else if (match(LHS, m_c_Or(m_V, m_Value(Y))) && match(RHS, m_APInt(C))) { 723 // For zero bits in Mask, we can propagate bits from C to V. 724 Known.Zero |= ~*C; 725 if (match(Y, m_APInt(Mask))) 726 Known.One |= *C & ~*Mask; 727 // assume(V ^ Mask = C) 728 } else if (match(LHS, m_Xor(m_V, m_APInt(Mask))) && 729 match(RHS, m_APInt(C))) { 730 // Equivalent to assume(V == Mask ^ C) 731 Known = Known.unionWith(KnownBits::makeConstant(*C ^ *Mask)); 732 // assume(V << ShAmt = C) 733 } else if (match(LHS, m_Shl(m_V, m_ConstantInt(ShAmt))) && 734 match(RHS, m_APInt(C)) && ShAmt < BitWidth) { 735 // For those bits in C that are known, we can propagate them to known 736 // bits in V shifted to the right by ShAmt. 737 KnownBits RHSKnown = KnownBits::makeConstant(*C); 738 RHSKnown.Zero.lshrInPlace(ShAmt); 739 RHSKnown.One.lshrInPlace(ShAmt); 740 Known = Known.unionWith(RHSKnown); 741 // assume(V >> ShAmt = C) 742 } else if (match(LHS, m_Shr(m_V, m_ConstantInt(ShAmt))) && 743 match(RHS, m_APInt(C)) && ShAmt < BitWidth) { 744 KnownBits RHSKnown = KnownBits::makeConstant(*C); 745 // For those bits in RHS that are known, we can propagate them to known 746 // bits in V shifted to the right by C. 747 Known.Zero |= RHSKnown.Zero << ShAmt; 748 Known.One |= RHSKnown.One << ShAmt; 749 } 750 break; 751 case ICmpInst::ICMP_NE: { 752 // assume (V & B != 0) where B is a power of 2 753 const APInt *BPow2; 754 if (match(LHS, m_And(m_V, m_Power2(BPow2))) && match(RHS, m_Zero())) 755 Known.One |= *BPow2; 756 break; 757 } 758 default: 759 if (match(RHS, m_APInt(C))) { 760 const APInt *Offset = nullptr; 761 if (match(LHS, m_CombineOr(m_V, m_AddLike(m_V, m_APInt(Offset))))) { 762 ConstantRange LHSRange = ConstantRange::makeAllowedICmpRegion(Pred, *C); 763 if (Offset) 764 LHSRange = LHSRange.sub(*Offset); 765 Known = Known.unionWith(LHSRange.toKnownBits()); 766 } 767 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 768 // X & Y u> C -> X u> C && Y u> C 769 // X nuw- Y u> C -> X u> C 770 if (match(LHS, m_c_And(m_V, m_Value())) || 771 match(LHS, m_NUWSub(m_V, m_Value()))) 772 Known.One.setHighBits( 773 (*C + (Pred == ICmpInst::ICMP_UGT)).countLeadingOnes()); 774 } 775 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 776 // X | Y u< C -> X u< C && Y u< C 777 // X nuw+ Y u< C -> X u< C && Y u< C 778 if (match(LHS, m_c_Or(m_V, m_Value())) || 779 match(LHS, m_c_NUWAdd(m_V, m_Value()))) { 780 Known.Zero.setHighBits( 781 (*C - (Pred == ICmpInst::ICMP_ULT)).countLeadingZeros()); 782 } 783 } 784 } 785 break; 786 } 787 } 788 789 static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp, 790 KnownBits &Known, 791 const SimplifyQuery &SQ, bool Invert) { 792 ICmpInst::Predicate Pred = 793 Invert ? Cmp->getInversePredicate() : Cmp->getPredicate(); 794 Value *LHS = Cmp->getOperand(0); 795 Value *RHS = Cmp->getOperand(1); 796 797 // Handle icmp pred (trunc V), C 798 if (match(LHS, m_Trunc(m_Specific(V)))) { 799 KnownBits DstKnown(LHS->getType()->getScalarSizeInBits()); 800 computeKnownBitsFromCmp(LHS, Pred, LHS, RHS, DstKnown, SQ); 801 Known = Known.unionWith(DstKnown.anyext(Known.getBitWidth())); 802 return; 803 } 804 805 computeKnownBitsFromCmp(V, Pred, LHS, RHS, Known, SQ); 806 } 807 808 static void computeKnownBitsFromCond(const Value *V, Value *Cond, 809 KnownBits &Known, unsigned Depth, 810 const SimplifyQuery &SQ, bool Invert) { 811 Value *A, *B; 812 if (Depth < MaxAnalysisRecursionDepth && 813 match(Cond, m_LogicalOp(m_Value(A), m_Value(B)))) { 814 KnownBits Known2(Known.getBitWidth()); 815 KnownBits Known3(Known.getBitWidth()); 816 computeKnownBitsFromCond(V, A, Known2, Depth + 1, SQ, Invert); 817 computeKnownBitsFromCond(V, B, Known3, Depth + 1, SQ, Invert); 818 if (Invert ? match(Cond, m_LogicalOr(m_Value(), m_Value())) 819 : match(Cond, m_LogicalAnd(m_Value(), m_Value()))) 820 Known2 = Known2.unionWith(Known3); 821 else 822 Known2 = Known2.intersectWith(Known3); 823 Known = Known.unionWith(Known2); 824 } 825 826 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) 827 computeKnownBitsFromICmpCond(V, Cmp, Known, SQ, Invert); 828 } 829 830 void llvm::computeKnownBitsFromContext(const Value *V, KnownBits &Known, 831 unsigned Depth, const SimplifyQuery &Q) { 832 // Handle injected condition. 833 if (Q.CC && Q.CC->AffectedValues.contains(V)) 834 computeKnownBitsFromCond(V, Q.CC->Cond, Known, Depth, Q, Q.CC->Invert); 835 836 if (!Q.CxtI) 837 return; 838 839 if (Q.DC && Q.DT) { 840 // Handle dominating conditions. 841 for (BranchInst *BI : Q.DC->conditionsFor(V)) { 842 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0)); 843 if (Q.DT->dominates(Edge0, Q.CxtI->getParent())) 844 computeKnownBitsFromCond(V, BI->getCondition(), Known, Depth, Q, 845 /*Invert*/ false); 846 847 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1)); 848 if (Q.DT->dominates(Edge1, Q.CxtI->getParent())) 849 computeKnownBitsFromCond(V, BI->getCondition(), Known, Depth, Q, 850 /*Invert*/ true); 851 } 852 853 if (Known.hasConflict()) 854 Known.resetAll(); 855 } 856 857 if (!Q.AC) 858 return; 859 860 unsigned BitWidth = Known.getBitWidth(); 861 862 // Note that the patterns below need to be kept in sync with the code 863 // in AssumptionCache::updateAffectedValues. 864 865 for (AssumptionCache::ResultElem &Elem : Q.AC->assumptionsFor(V)) { 866 if (!Elem.Assume) 867 continue; 868 869 AssumeInst *I = cast<AssumeInst>(Elem.Assume); 870 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 871 "Got assumption for the wrong function!"); 872 873 if (Elem.Index != AssumptionCache::ExprResultIdx) { 874 if (!V->getType()->isPointerTy()) 875 continue; 876 if (RetainedKnowledge RK = getKnowledgeFromBundle( 877 *I, I->bundle_op_info_begin()[Elem.Index])) { 878 // Allow AllowEphemerals in isValidAssumeForContext, as the CxtI might 879 // be the producer of the pointer in the bundle. At the moment, align 880 // assumptions aren't optimized away. 881 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment && 882 isPowerOf2_64(RK.ArgValue) && 883 isValidAssumeForContext(I, Q.CxtI, Q.DT, /*AllowEphemerals*/ true)) 884 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 885 } 886 continue; 887 } 888 889 // Warning: This loop can end up being somewhat performance sensitive. 890 // We're running this loop for once for each value queried resulting in a 891 // runtime of ~O(#assumes * #values). 892 893 Value *Arg = I->getArgOperand(0); 894 895 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 896 assert(BitWidth == 1 && "assume operand is not i1?"); 897 (void)BitWidth; 898 Known.setAllOnes(); 899 return; 900 } 901 if (match(Arg, m_Not(m_Specific(V))) && 902 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 903 assert(BitWidth == 1 && "assume operand is not i1?"); 904 (void)BitWidth; 905 Known.setAllZero(); 906 return; 907 } 908 909 // The remaining tests are all recursive, so bail out if we hit the limit. 910 if (Depth == MaxAnalysisRecursionDepth) 911 continue; 912 913 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 914 if (!Cmp) 915 continue; 916 917 if (!isValidAssumeForContext(I, Q.CxtI, Q.DT)) 918 continue; 919 920 computeKnownBitsFromICmpCond(V, Cmp, Known, Q, /*Invert=*/false); 921 } 922 923 // Conflicting assumption: Undefined behavior will occur on this execution 924 // path. 925 if (Known.hasConflict()) 926 Known.resetAll(); 927 } 928 929 /// Compute known bits from a shift operator, including those with a 930 /// non-constant shift amount. Known is the output of this function. Known2 is a 931 /// pre-allocated temporary with the same bit width as Known and on return 932 /// contains the known bit of the shift value source. KF is an 933 /// operator-specific function that, given the known-bits and a shift amount, 934 /// compute the implied known-bits of the shift operator's result respectively 935 /// for that shift amount. The results from calling KF are conservatively 936 /// combined for all permitted shift amounts. 937 static void computeKnownBitsFromShiftOperator( 938 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 939 KnownBits &Known2, unsigned Depth, const SimplifyQuery &Q, 940 function_ref<KnownBits(const KnownBits &, const KnownBits &, bool)> KF) { 941 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 942 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 943 // To limit compile-time impact, only query isKnownNonZero() if we know at 944 // least something about the shift amount. 945 bool ShAmtNonZero = 946 Known.isNonZero() || 947 (Known.getMaxValue().ult(Known.getBitWidth()) && 948 isKnownNonZero(I->getOperand(1), DemandedElts, Q, Depth + 1)); 949 Known = KF(Known2, Known, ShAmtNonZero); 950 } 951 952 static KnownBits 953 getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts, 954 const KnownBits &KnownLHS, const KnownBits &KnownRHS, 955 unsigned Depth, const SimplifyQuery &Q) { 956 unsigned BitWidth = KnownLHS.getBitWidth(); 957 KnownBits KnownOut(BitWidth); 958 bool IsAnd = false; 959 bool HasKnownOne = !KnownLHS.One.isZero() || !KnownRHS.One.isZero(); 960 Value *X = nullptr, *Y = nullptr; 961 962 switch (I->getOpcode()) { 963 case Instruction::And: 964 KnownOut = KnownLHS & KnownRHS; 965 IsAnd = true; 966 // and(x, -x) is common idioms that will clear all but lowest set 967 // bit. If we have a single known bit in x, we can clear all bits 968 // above it. 969 // TODO: instcombine often reassociates independent `and` which can hide 970 // this pattern. Try to match and(x, and(-x, y)) / and(and(x, y), -x). 971 if (HasKnownOne && match(I, m_c_And(m_Value(X), m_Neg(m_Deferred(X))))) { 972 // -(-x) == x so using whichever (LHS/RHS) gets us a better result. 973 if (KnownLHS.countMaxTrailingZeros() <= KnownRHS.countMaxTrailingZeros()) 974 KnownOut = KnownLHS.blsi(); 975 else 976 KnownOut = KnownRHS.blsi(); 977 } 978 break; 979 case Instruction::Or: 980 KnownOut = KnownLHS | KnownRHS; 981 break; 982 case Instruction::Xor: 983 KnownOut = KnownLHS ^ KnownRHS; 984 // xor(x, x-1) is common idioms that will clear all but lowest set 985 // bit. If we have a single known bit in x, we can clear all bits 986 // above it. 987 // TODO: xor(x, x-1) is often rewritting as xor(x, x-C) where C != 988 // -1 but for the purpose of demanded bits (xor(x, x-C) & 989 // Demanded) == (xor(x, x-1) & Demanded). Extend the xor pattern 990 // to use arbitrary C if xor(x, x-C) as the same as xor(x, x-1). 991 if (HasKnownOne && 992 match(I, m_c_Xor(m_Value(X), m_Add(m_Deferred(X), m_AllOnes())))) { 993 const KnownBits &XBits = I->getOperand(0) == X ? KnownLHS : KnownRHS; 994 KnownOut = XBits.blsmsk(); 995 } 996 break; 997 default: 998 llvm_unreachable("Invalid Op used in 'analyzeKnownBitsFromAndXorOr'"); 999 } 1000 1001 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1002 // xor/or(x, add (x, -1)) is an idiom that will always set the low bit. 1003 // here we handle the more general case of adding any odd number by 1004 // matching the form and/xor/or(x, add(x, y)) where y is odd. 1005 // TODO: This could be generalized to clearing any bit set in y where the 1006 // following bit is known to be unset in y. 1007 if (!KnownOut.Zero[0] && !KnownOut.One[0] && 1008 (match(I, m_c_BinOp(m_Value(X), m_c_Add(m_Deferred(X), m_Value(Y)))) || 1009 match(I, m_c_BinOp(m_Value(X), m_Sub(m_Deferred(X), m_Value(Y)))) || 1010 match(I, m_c_BinOp(m_Value(X), m_Sub(m_Value(Y), m_Deferred(X)))))) { 1011 KnownBits KnownY(BitWidth); 1012 computeKnownBits(Y, DemandedElts, KnownY, Depth + 1, Q); 1013 if (KnownY.countMinTrailingOnes() > 0) { 1014 if (IsAnd) 1015 KnownOut.Zero.setBit(0); 1016 else 1017 KnownOut.One.setBit(0); 1018 } 1019 } 1020 return KnownOut; 1021 } 1022 1023 static KnownBits computeKnownBitsForHorizontalOperation( 1024 const Operator *I, const APInt &DemandedElts, unsigned Depth, 1025 const SimplifyQuery &Q, 1026 const function_ref<KnownBits(const KnownBits &, const KnownBits &)> 1027 KnownBitsFunc) { 1028 APInt DemandedEltsLHS, DemandedEltsRHS; 1029 getHorizDemandedEltsForFirstOperand(Q.DL.getTypeSizeInBits(I->getType()), 1030 DemandedElts, DemandedEltsLHS, 1031 DemandedEltsRHS); 1032 1033 const auto ComputeForSingleOpFunc = 1034 [Depth, &Q, KnownBitsFunc](const Value *Op, APInt &DemandedEltsOp) { 1035 return KnownBitsFunc( 1036 computeKnownBits(Op, DemandedEltsOp, Depth + 1, Q), 1037 computeKnownBits(Op, DemandedEltsOp << 1, Depth + 1, Q)); 1038 }; 1039 1040 if (DemandedEltsRHS.isZero()) 1041 return ComputeForSingleOpFunc(I->getOperand(0), DemandedEltsLHS); 1042 if (DemandedEltsLHS.isZero()) 1043 return ComputeForSingleOpFunc(I->getOperand(1), DemandedEltsRHS); 1044 1045 return ComputeForSingleOpFunc(I->getOperand(0), DemandedEltsLHS) 1046 .intersectWith(ComputeForSingleOpFunc(I->getOperand(1), DemandedEltsRHS)); 1047 } 1048 1049 // Public so this can be used in `SimplifyDemandedUseBits`. 1050 KnownBits llvm::analyzeKnownBitsFromAndXorOr(const Operator *I, 1051 const KnownBits &KnownLHS, 1052 const KnownBits &KnownRHS, 1053 unsigned Depth, 1054 const SimplifyQuery &SQ) { 1055 auto *FVTy = dyn_cast<FixedVectorType>(I->getType()); 1056 APInt DemandedElts = 1057 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 1058 1059 return getKnownBitsFromAndXorOr(I, DemandedElts, KnownLHS, KnownRHS, Depth, 1060 SQ); 1061 } 1062 1063 ConstantRange llvm::getVScaleRange(const Function *F, unsigned BitWidth) { 1064 Attribute Attr = F->getFnAttribute(Attribute::VScaleRange); 1065 // Without vscale_range, we only know that vscale is non-zero. 1066 if (!Attr.isValid()) 1067 return ConstantRange(APInt(BitWidth, 1), APInt::getZero(BitWidth)); 1068 1069 unsigned AttrMin = Attr.getVScaleRangeMin(); 1070 // Minimum is larger than vscale width, result is always poison. 1071 if ((unsigned)llvm::bit_width(AttrMin) > BitWidth) 1072 return ConstantRange::getEmpty(BitWidth); 1073 1074 APInt Min(BitWidth, AttrMin); 1075 std::optional<unsigned> AttrMax = Attr.getVScaleRangeMax(); 1076 if (!AttrMax || (unsigned)llvm::bit_width(*AttrMax) > BitWidth) 1077 return ConstantRange(Min, APInt::getZero(BitWidth)); 1078 1079 return ConstantRange(Min, APInt(BitWidth, *AttrMax) + 1); 1080 } 1081 1082 void llvm::adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, 1083 Value *Arm, bool Invert, unsigned Depth, 1084 const SimplifyQuery &Q) { 1085 // If we have a constant arm, we are done. 1086 if (Known.isConstant()) 1087 return; 1088 1089 // See what condition implies about the bits of the select arm. 1090 KnownBits CondRes(Known.getBitWidth()); 1091 computeKnownBitsFromCond(Arm, Cond, CondRes, Depth + 1, Q, Invert); 1092 // If we don't get any information from the condition, no reason to 1093 // proceed. 1094 if (CondRes.isUnknown()) 1095 return; 1096 1097 // We can have conflict if the condition is dead. I.e if we have 1098 // (x | 64) < 32 ? (x | 64) : y 1099 // we will have conflict at bit 6 from the condition/the `or`. 1100 // In that case just return. Its not particularly important 1101 // what we do, as this select is going to be simplified soon. 1102 CondRes = CondRes.unionWith(Known); 1103 if (CondRes.hasConflict()) 1104 return; 1105 1106 // Finally make sure the information we found is valid. This is relatively 1107 // expensive so it's left for the very end. 1108 if (!isGuaranteedNotToBeUndef(Arm, Q.AC, Q.CxtI, Q.DT, Depth + 1)) 1109 return; 1110 1111 // Finally, we know we get information from the condition and its valid, 1112 // so return it. 1113 Known = CondRes; 1114 } 1115 1116 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 1117 // Returns the input and lower/upper bounds. 1118 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 1119 const APInt *&CLow, const APInt *&CHigh) { 1120 assert(isa<Operator>(Select) && 1121 cast<Operator>(Select)->getOpcode() == Instruction::Select && 1122 "Input should be a Select!"); 1123 1124 const Value *LHS = nullptr, *RHS = nullptr; 1125 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 1126 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 1127 return false; 1128 1129 if (!match(RHS, m_APInt(CLow))) 1130 return false; 1131 1132 const Value *LHS2 = nullptr, *RHS2 = nullptr; 1133 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 1134 if (getInverseMinMaxFlavor(SPF) != SPF2) 1135 return false; 1136 1137 if (!match(RHS2, m_APInt(CHigh))) 1138 return false; 1139 1140 if (SPF == SPF_SMIN) 1141 std::swap(CLow, CHigh); 1142 1143 In = LHS2; 1144 return CLow->sle(*CHigh); 1145 } 1146 1147 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, 1148 const APInt *&CLow, 1149 const APInt *&CHigh) { 1150 assert((II->getIntrinsicID() == Intrinsic::smin || 1151 II->getIntrinsicID() == Intrinsic::smax) && 1152 "Must be smin/smax"); 1153 1154 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 1155 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 1156 if (!InnerII || InnerII->getIntrinsicID() != InverseID || 1157 !match(II->getArgOperand(1), m_APInt(CLow)) || 1158 !match(InnerII->getArgOperand(1), m_APInt(CHigh))) 1159 return false; 1160 1161 if (II->getIntrinsicID() == Intrinsic::smin) 1162 std::swap(CLow, CHigh); 1163 return CLow->sle(*CHigh); 1164 } 1165 1166 static void unionWithMinMaxIntrinsicClamp(const IntrinsicInst *II, 1167 KnownBits &Known) { 1168 const APInt *CLow, *CHigh; 1169 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh)) 1170 Known = Known.unionWith( 1171 ConstantRange::getNonEmpty(*CLow, *CHigh + 1).toKnownBits()); 1172 } 1173 1174 static void computeKnownBitsFromOperator(const Operator *I, 1175 const APInt &DemandedElts, 1176 KnownBits &Known, unsigned Depth, 1177 const SimplifyQuery &Q) { 1178 unsigned BitWidth = Known.getBitWidth(); 1179 1180 KnownBits Known2(BitWidth); 1181 switch (I->getOpcode()) { 1182 default: break; 1183 case Instruction::Load: 1184 if (MDNode *MD = 1185 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1186 computeKnownBitsFromRangeMetadata(*MD, Known); 1187 break; 1188 case Instruction::And: 1189 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1190 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1191 1192 Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Depth, Q); 1193 break; 1194 case Instruction::Or: 1195 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1196 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1197 1198 Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Depth, Q); 1199 break; 1200 case Instruction::Xor: 1201 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1202 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1203 1204 Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Depth, Q); 1205 break; 1206 case Instruction::Mul: { 1207 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1208 bool NUW = Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(I)); 1209 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, NUW, 1210 DemandedElts, Known, Known2, Depth, Q); 1211 break; 1212 } 1213 case Instruction::UDiv: { 1214 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1215 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1216 Known = 1217 KnownBits::udiv(Known, Known2, Q.IIQ.isExact(cast<BinaryOperator>(I))); 1218 break; 1219 } 1220 case Instruction::SDiv: { 1221 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1222 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1223 Known = 1224 KnownBits::sdiv(Known, Known2, Q.IIQ.isExact(cast<BinaryOperator>(I))); 1225 break; 1226 } 1227 case Instruction::Select: { 1228 auto ComputeForArm = [&](Value *Arm, bool Invert) { 1229 KnownBits Res(Known.getBitWidth()); 1230 computeKnownBits(Arm, DemandedElts, Res, Depth + 1, Q); 1231 adjustKnownBitsForSelectArm(Res, I->getOperand(0), Arm, Invert, Depth, Q); 1232 return Res; 1233 }; 1234 // Only known if known in both the LHS and RHS. 1235 Known = 1236 ComputeForArm(I->getOperand(1), /*Invert=*/false) 1237 .intersectWith(ComputeForArm(I->getOperand(2), /*Invert=*/true)); 1238 break; 1239 } 1240 case Instruction::FPTrunc: 1241 case Instruction::FPExt: 1242 case Instruction::FPToUI: 1243 case Instruction::FPToSI: 1244 case Instruction::SIToFP: 1245 case Instruction::UIToFP: 1246 break; // Can't work with floating point. 1247 case Instruction::PtrToInt: 1248 case Instruction::IntToPtr: 1249 // Fall through and handle them the same as zext/trunc. 1250 [[fallthrough]]; 1251 case Instruction::ZExt: 1252 case Instruction::Trunc: { 1253 Type *SrcTy = I->getOperand(0)->getType(); 1254 1255 unsigned SrcBitWidth; 1256 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1257 // which fall through here. 1258 Type *ScalarTy = SrcTy->getScalarType(); 1259 SrcBitWidth = ScalarTy->isPointerTy() ? 1260 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1261 Q.DL.getTypeSizeInBits(ScalarTy); 1262 1263 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1264 Known = Known.anyextOrTrunc(SrcBitWidth); 1265 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1266 if (auto *Inst = dyn_cast<PossiblyNonNegInst>(I); 1267 Inst && Inst->hasNonNeg() && !Known.isNegative()) 1268 Known.makeNonNegative(); 1269 Known = Known.zextOrTrunc(BitWidth); 1270 break; 1271 } 1272 case Instruction::BitCast: { 1273 Type *SrcTy = I->getOperand(0)->getType(); 1274 if (SrcTy->isIntOrPtrTy() && 1275 // TODO: For now, not handling conversions like: 1276 // (bitcast i64 %x to <2 x i32>) 1277 !I->getType()->isVectorTy()) { 1278 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1279 break; 1280 } 1281 1282 const Value *V; 1283 // Handle bitcast from floating point to integer. 1284 if (match(I, m_ElementWiseBitCast(m_Value(V))) && 1285 V->getType()->isFPOrFPVectorTy()) { 1286 Type *FPType = V->getType()->getScalarType(); 1287 KnownFPClass Result = 1288 computeKnownFPClass(V, DemandedElts, fcAllFlags, Depth + 1, Q); 1289 FPClassTest FPClasses = Result.KnownFPClasses; 1290 1291 // TODO: Treat it as zero/poison if the use of I is unreachable. 1292 if (FPClasses == fcNone) 1293 break; 1294 1295 if (Result.isKnownNever(fcNormal | fcSubnormal | fcNan)) { 1296 Known.Zero.setAllBits(); 1297 Known.One.setAllBits(); 1298 1299 if (FPClasses & fcInf) 1300 Known = Known.intersectWith(KnownBits::makeConstant( 1301 APFloat::getInf(FPType->getFltSemantics()).bitcastToAPInt())); 1302 1303 if (FPClasses & fcZero) 1304 Known = Known.intersectWith(KnownBits::makeConstant( 1305 APInt::getZero(FPType->getScalarSizeInBits()))); 1306 1307 Known.Zero.clearSignBit(); 1308 Known.One.clearSignBit(); 1309 } 1310 1311 if (Result.SignBit) { 1312 if (*Result.SignBit) 1313 Known.makeNegative(); 1314 else 1315 Known.makeNonNegative(); 1316 } 1317 1318 break; 1319 } 1320 1321 // Handle cast from vector integer type to scalar or vector integer. 1322 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1323 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1324 !I->getType()->isIntOrIntVectorTy() || 1325 isa<ScalableVectorType>(I->getType())) 1326 break; 1327 1328 // Look through a cast from narrow vector elements to wider type. 1329 // Examples: v4i32 -> v2i64, v3i8 -> v24 1330 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1331 if (BitWidth % SubBitWidth == 0) { 1332 // Known bits are automatically intersected across demanded elements of a 1333 // vector. So for example, if a bit is computed as known zero, it must be 1334 // zero across all demanded elements of the vector. 1335 // 1336 // For this bitcast, each demanded element of the output is sub-divided 1337 // across a set of smaller vector elements in the source vector. To get 1338 // the known bits for an entire element of the output, compute the known 1339 // bits for each sub-element sequentially. This is done by shifting the 1340 // one-set-bit demanded elements parameter across the sub-elements for 1341 // consecutive calls to computeKnownBits. We are using the demanded 1342 // elements parameter as a mask operator. 1343 // 1344 // The known bits of each sub-element are then inserted into place 1345 // (dependent on endian) to form the full result of known bits. 1346 unsigned NumElts = DemandedElts.getBitWidth(); 1347 unsigned SubScale = BitWidth / SubBitWidth; 1348 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1349 for (unsigned i = 0; i != NumElts; ++i) { 1350 if (DemandedElts[i]) 1351 SubDemandedElts.setBit(i * SubScale); 1352 } 1353 1354 KnownBits KnownSrc(SubBitWidth); 1355 for (unsigned i = 0; i != SubScale; ++i) { 1356 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1357 Depth + 1, Q); 1358 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1359 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1360 } 1361 } 1362 break; 1363 } 1364 case Instruction::SExt: { 1365 // Compute the bits in the result that are not present in the input. 1366 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1367 1368 Known = Known.trunc(SrcBitWidth); 1369 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1370 // If the sign bit of the input is known set or clear, then we know the 1371 // top bits of the result. 1372 Known = Known.sext(BitWidth); 1373 break; 1374 } 1375 case Instruction::Shl: { 1376 bool NUW = Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(I)); 1377 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1378 auto KF = [NUW, NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt, 1379 bool ShAmtNonZero) { 1380 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero); 1381 }; 1382 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1383 KF); 1384 // Trailing zeros of a right-shifted constant never decrease. 1385 const APInt *C; 1386 if (match(I->getOperand(0), m_APInt(C))) 1387 Known.Zero.setLowBits(C->countr_zero()); 1388 break; 1389 } 1390 case Instruction::LShr: { 1391 bool Exact = Q.IIQ.isExact(cast<BinaryOperator>(I)); 1392 auto KF = [Exact](const KnownBits &KnownVal, const KnownBits &KnownAmt, 1393 bool ShAmtNonZero) { 1394 return KnownBits::lshr(KnownVal, KnownAmt, ShAmtNonZero, Exact); 1395 }; 1396 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1397 KF); 1398 // Leading zeros of a left-shifted constant never decrease. 1399 const APInt *C; 1400 if (match(I->getOperand(0), m_APInt(C))) 1401 Known.Zero.setHighBits(C->countl_zero()); 1402 break; 1403 } 1404 case Instruction::AShr: { 1405 bool Exact = Q.IIQ.isExact(cast<BinaryOperator>(I)); 1406 auto KF = [Exact](const KnownBits &KnownVal, const KnownBits &KnownAmt, 1407 bool ShAmtNonZero) { 1408 return KnownBits::ashr(KnownVal, KnownAmt, ShAmtNonZero, Exact); 1409 }; 1410 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1411 KF); 1412 break; 1413 } 1414 case Instruction::Sub: { 1415 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1416 bool NUW = Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(I)); 1417 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, NUW, 1418 DemandedElts, Known, Known2, Depth, Q); 1419 break; 1420 } 1421 case Instruction::Add: { 1422 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1423 bool NUW = Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(I)); 1424 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, NUW, 1425 DemandedElts, Known, Known2, Depth, Q); 1426 break; 1427 } 1428 case Instruction::SRem: 1429 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1430 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1431 Known = KnownBits::srem(Known, Known2); 1432 break; 1433 1434 case Instruction::URem: 1435 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1436 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1437 Known = KnownBits::urem(Known, Known2); 1438 break; 1439 case Instruction::Alloca: 1440 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1441 break; 1442 case Instruction::GetElementPtr: { 1443 // Analyze all of the subscripts of this getelementptr instruction 1444 // to determine if we can prove known low zero bits. 1445 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1446 // Accumulate the constant indices in a separate variable 1447 // to minimize the number of calls to computeForAddSub. 1448 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1449 1450 gep_type_iterator GTI = gep_type_begin(I); 1451 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1452 // TrailZ can only become smaller, short-circuit if we hit zero. 1453 if (Known.isUnknown()) 1454 break; 1455 1456 Value *Index = I->getOperand(i); 1457 1458 // Handle case when index is zero. 1459 Constant *CIndex = dyn_cast<Constant>(Index); 1460 if (CIndex && CIndex->isZeroValue()) 1461 continue; 1462 1463 if (StructType *STy = GTI.getStructTypeOrNull()) { 1464 // Handle struct member offset arithmetic. 1465 1466 assert(CIndex && 1467 "Access to structure field must be known at compile time"); 1468 1469 if (CIndex->getType()->isVectorTy()) 1470 Index = CIndex->getSplatValue(); 1471 1472 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1473 const StructLayout *SL = Q.DL.getStructLayout(STy); 1474 uint64_t Offset = SL->getElementOffset(Idx); 1475 AccConstIndices += Offset; 1476 continue; 1477 } 1478 1479 // Handle array index arithmetic. 1480 Type *IndexedTy = GTI.getIndexedType(); 1481 if (!IndexedTy->isSized()) { 1482 Known.resetAll(); 1483 break; 1484 } 1485 1486 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1487 KnownBits IndexBits(IndexBitWidth); 1488 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1489 TypeSize IndexTypeSize = GTI.getSequentialElementStride(Q.DL); 1490 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinValue(); 1491 KnownBits ScalingFactor(IndexBitWidth); 1492 // Multiply by current sizeof type. 1493 // &A[i] == A + i * sizeof(*A[i]). 1494 if (IndexTypeSize.isScalable()) { 1495 // For scalable types the only thing we know about sizeof is 1496 // that this is a multiple of the minimum size. 1497 ScalingFactor.Zero.setLowBits(llvm::countr_zero(TypeSizeInBytes)); 1498 } else if (IndexBits.isConstant()) { 1499 APInt IndexConst = IndexBits.getConstant(); 1500 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1501 IndexConst *= ScalingFactor; 1502 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1503 continue; 1504 } else { 1505 ScalingFactor = 1506 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1507 } 1508 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1509 1510 // If the offsets have a different width from the pointer, according 1511 // to the language reference we need to sign-extend or truncate them 1512 // to the width of the pointer. 1513 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1514 1515 // Note that inbounds does *not* guarantee nsw for the addition, as only 1516 // the offset is signed, while the base address is unsigned. 1517 Known = KnownBits::add(Known, IndexBits); 1518 } 1519 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1520 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1521 Known = KnownBits::add(Known, Index); 1522 } 1523 break; 1524 } 1525 case Instruction::PHI: { 1526 const PHINode *P = cast<PHINode>(I); 1527 BinaryOperator *BO = nullptr; 1528 Value *R = nullptr, *L = nullptr; 1529 if (matchSimpleRecurrence(P, BO, R, L)) { 1530 // Handle the case of a simple two-predecessor recurrence PHI. 1531 // There's a lot more that could theoretically be done here, but 1532 // this is sufficient to catch some interesting cases. 1533 unsigned Opcode = BO->getOpcode(); 1534 1535 switch (Opcode) { 1536 // If this is a shift recurrence, we know the bits being shifted in. We 1537 // can combine that with information about the start value of the 1538 // recurrence to conclude facts about the result. If this is a udiv 1539 // recurrence, we know that the result can never exceed either the 1540 // numerator or the start value, whichever is greater. 1541 case Instruction::LShr: 1542 case Instruction::AShr: 1543 case Instruction::Shl: 1544 case Instruction::UDiv: 1545 if (BO->getOperand(0) != I) 1546 break; 1547 [[fallthrough]]; 1548 1549 // For a urem recurrence, the result can never exceed the start value. The 1550 // phi could either be the numerator or the denominator. 1551 case Instruction::URem: { 1552 // We have matched a recurrence of the form: 1553 // %iv = [R, %entry], [%iv.next, %backedge] 1554 // %iv.next = shift_op %iv, L 1555 1556 // Recurse with the phi context to avoid concern about whether facts 1557 // inferred hold at original context instruction. TODO: It may be 1558 // correct to use the original context. IF warranted, explore and 1559 // add sufficient tests to cover. 1560 SimplifyQuery RecQ = Q.getWithoutCondContext(); 1561 RecQ.CxtI = P; 1562 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1563 switch (Opcode) { 1564 case Instruction::Shl: 1565 // A shl recurrence will only increase the tailing zeros 1566 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1567 break; 1568 case Instruction::LShr: 1569 case Instruction::UDiv: 1570 case Instruction::URem: 1571 // lshr, udiv, and urem recurrences will preserve the leading zeros of 1572 // the start value. 1573 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1574 break; 1575 case Instruction::AShr: 1576 // An ashr recurrence will extend the initial sign bit 1577 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1578 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1579 break; 1580 } 1581 break; 1582 } 1583 1584 // Check for operations that have the property that if 1585 // both their operands have low zero bits, the result 1586 // will have low zero bits. 1587 case Instruction::Add: 1588 case Instruction::Sub: 1589 case Instruction::And: 1590 case Instruction::Or: 1591 case Instruction::Mul: { 1592 // Change the context instruction to the "edge" that flows into the 1593 // phi. This is important because that is where the value is actually 1594 // "evaluated" even though it is used later somewhere else. (see also 1595 // D69571). 1596 SimplifyQuery RecQ = Q.getWithoutCondContext(); 1597 1598 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1599 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1600 Instruction *LInst = P->getIncomingBlock(1 - OpNum)->getTerminator(); 1601 1602 // Ok, we have a PHI of the form L op= R. Check for low 1603 // zero bits. 1604 RecQ.CxtI = RInst; 1605 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1606 1607 // We need to take the minimum number of known bits 1608 KnownBits Known3(BitWidth); 1609 RecQ.CxtI = LInst; 1610 computeKnownBits(L, DemandedElts, Known3, Depth + 1, RecQ); 1611 1612 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1613 Known3.countMinTrailingZeros())); 1614 1615 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1616 if (!OverflowOp || !Q.IIQ.hasNoSignedWrap(OverflowOp)) 1617 break; 1618 1619 switch (Opcode) { 1620 // If initial value of recurrence is nonnegative, and we are adding 1621 // a nonnegative number with nsw, the result can only be nonnegative 1622 // or poison value regardless of the number of times we execute the 1623 // add in phi recurrence. If initial value is negative and we are 1624 // adding a negative number with nsw, the result can only be 1625 // negative or poison value. Similar arguments apply to sub and mul. 1626 // 1627 // (add non-negative, non-negative) --> non-negative 1628 // (add negative, negative) --> negative 1629 case Instruction::Add: { 1630 if (Known2.isNonNegative() && Known3.isNonNegative()) 1631 Known.makeNonNegative(); 1632 else if (Known2.isNegative() && Known3.isNegative()) 1633 Known.makeNegative(); 1634 break; 1635 } 1636 1637 // (sub nsw non-negative, negative) --> non-negative 1638 // (sub nsw negative, non-negative) --> negative 1639 case Instruction::Sub: { 1640 if (BO->getOperand(0) != I) 1641 break; 1642 if (Known2.isNonNegative() && Known3.isNegative()) 1643 Known.makeNonNegative(); 1644 else if (Known2.isNegative() && Known3.isNonNegative()) 1645 Known.makeNegative(); 1646 break; 1647 } 1648 1649 // (mul nsw non-negative, non-negative) --> non-negative 1650 case Instruction::Mul: 1651 if (Known2.isNonNegative() && Known3.isNonNegative()) 1652 Known.makeNonNegative(); 1653 break; 1654 1655 default: 1656 break; 1657 } 1658 break; 1659 } 1660 1661 default: 1662 break; 1663 } 1664 } 1665 1666 // Unreachable blocks may have zero-operand PHI nodes. 1667 if (P->getNumIncomingValues() == 0) 1668 break; 1669 1670 // Otherwise take the unions of the known bit sets of the operands, 1671 // taking conservative care to avoid excessive recursion. 1672 if (Depth < MaxAnalysisRecursionDepth - 1 && Known.isUnknown()) { 1673 // Skip if every incoming value references to ourself. 1674 if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) 1675 break; 1676 1677 Known.Zero.setAllBits(); 1678 Known.One.setAllBits(); 1679 for (const Use &U : P->operands()) { 1680 Value *IncValue; 1681 const PHINode *CxtPhi; 1682 Instruction *CxtI; 1683 breakSelfRecursivePHI(&U, P, IncValue, CxtI, &CxtPhi); 1684 // Skip direct self references. 1685 if (IncValue == P) 1686 continue; 1687 1688 // Change the context instruction to the "edge" that flows into the 1689 // phi. This is important because that is where the value is actually 1690 // "evaluated" even though it is used later somewhere else. (see also 1691 // D69571). 1692 SimplifyQuery RecQ = Q.getWithoutCondContext().getWithInstruction(CxtI); 1693 1694 Known2 = KnownBits(BitWidth); 1695 1696 // Recurse, but cap the recursion to one level, because we don't 1697 // want to waste time spinning around in loops. 1698 // TODO: See if we can base recursion limiter on number of incoming phi 1699 // edges so we don't overly clamp analysis. 1700 computeKnownBits(IncValue, DemandedElts, Known2, 1701 MaxAnalysisRecursionDepth - 1, RecQ); 1702 1703 // See if we can further use a conditional branch into the phi 1704 // to help us determine the range of the value. 1705 if (!Known2.isConstant()) { 1706 CmpPredicate Pred; 1707 const APInt *RHSC; 1708 BasicBlock *TrueSucc, *FalseSucc; 1709 // TODO: Use RHS Value and compute range from its known bits. 1710 if (match(RecQ.CxtI, 1711 m_Br(m_c_ICmp(Pred, m_Specific(IncValue), m_APInt(RHSC)), 1712 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) { 1713 // Check for cases of duplicate successors. 1714 if ((TrueSucc == CxtPhi->getParent()) != 1715 (FalseSucc == CxtPhi->getParent())) { 1716 // If we're using the false successor, invert the predicate. 1717 if (FalseSucc == CxtPhi->getParent()) 1718 Pred = CmpInst::getInversePredicate(Pred); 1719 // Get the knownbits implied by the incoming phi condition. 1720 auto CR = ConstantRange::makeExactICmpRegion(Pred, *RHSC); 1721 KnownBits KnownUnion = Known2.unionWith(CR.toKnownBits()); 1722 // We can have conflicts here if we are analyzing deadcode (its 1723 // impossible for us reach this BB based the icmp). 1724 if (KnownUnion.hasConflict()) { 1725 // No reason to continue analyzing in a known dead region, so 1726 // just resetAll and break. This will cause us to also exit the 1727 // outer loop. 1728 Known.resetAll(); 1729 break; 1730 } 1731 Known2 = KnownUnion; 1732 } 1733 } 1734 } 1735 1736 Known = Known.intersectWith(Known2); 1737 // If all bits have been ruled out, there's no need to check 1738 // more operands. 1739 if (Known.isUnknown()) 1740 break; 1741 } 1742 } 1743 break; 1744 } 1745 case Instruction::Call: 1746 case Instruction::Invoke: { 1747 // If range metadata is attached to this call, set known bits from that, 1748 // and then intersect with known bits based on other properties of the 1749 // function. 1750 if (MDNode *MD = 1751 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1752 computeKnownBitsFromRangeMetadata(*MD, Known); 1753 1754 const auto *CB = cast<CallBase>(I); 1755 1756 if (std::optional<ConstantRange> Range = CB->getRange()) 1757 Known = Known.unionWith(Range->toKnownBits()); 1758 1759 if (const Value *RV = CB->getReturnedArgOperand()) { 1760 if (RV->getType() == I->getType()) { 1761 computeKnownBits(RV, Known2, Depth + 1, Q); 1762 Known = Known.unionWith(Known2); 1763 // If the function doesn't return properly for all input values 1764 // (e.g. unreachable exits) then there might be conflicts between the 1765 // argument value and the range metadata. Simply discard the known bits 1766 // in case of conflicts. 1767 if (Known.hasConflict()) 1768 Known.resetAll(); 1769 } 1770 } 1771 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1772 switch (II->getIntrinsicID()) { 1773 default: 1774 break; 1775 case Intrinsic::abs: { 1776 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1777 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1778 Known = Known2.abs(IntMinIsPoison); 1779 break; 1780 } 1781 case Intrinsic::bitreverse: 1782 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1783 Known.Zero |= Known2.Zero.reverseBits(); 1784 Known.One |= Known2.One.reverseBits(); 1785 break; 1786 case Intrinsic::bswap: 1787 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1788 Known.Zero |= Known2.Zero.byteSwap(); 1789 Known.One |= Known2.One.byteSwap(); 1790 break; 1791 case Intrinsic::ctlz: { 1792 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1793 // If we have a known 1, its position is our upper bound. 1794 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1795 // If this call is poison for 0 input, the result will be less than 2^n. 1796 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1797 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1798 unsigned LowBits = llvm::bit_width(PossibleLZ); 1799 Known.Zero.setBitsFrom(LowBits); 1800 break; 1801 } 1802 case Intrinsic::cttz: { 1803 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1804 // If we have a known 1, its position is our upper bound. 1805 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1806 // If this call is poison for 0 input, the result will be less than 2^n. 1807 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1808 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1809 unsigned LowBits = llvm::bit_width(PossibleTZ); 1810 Known.Zero.setBitsFrom(LowBits); 1811 break; 1812 } 1813 case Intrinsic::ctpop: { 1814 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1815 // We can bound the space the count needs. Also, bits known to be zero 1816 // can't contribute to the population. 1817 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1818 unsigned LowBits = llvm::bit_width(BitsPossiblySet); 1819 Known.Zero.setBitsFrom(LowBits); 1820 // TODO: we could bound KnownOne using the lower bound on the number 1821 // of bits which might be set provided by popcnt KnownOne2. 1822 break; 1823 } 1824 case Intrinsic::fshr: 1825 case Intrinsic::fshl: { 1826 const APInt *SA; 1827 if (!match(I->getOperand(2), m_APInt(SA))) 1828 break; 1829 1830 // Normalize to funnel shift left. 1831 uint64_t ShiftAmt = SA->urem(BitWidth); 1832 if (II->getIntrinsicID() == Intrinsic::fshr) 1833 ShiftAmt = BitWidth - ShiftAmt; 1834 1835 KnownBits Known3(BitWidth); 1836 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1837 computeKnownBits(I->getOperand(1), DemandedElts, Known3, Depth + 1, Q); 1838 1839 Known.Zero = 1840 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1841 Known.One = 1842 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1843 break; 1844 } 1845 case Intrinsic::uadd_sat: 1846 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1847 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1848 Known = KnownBits::uadd_sat(Known, Known2); 1849 break; 1850 case Intrinsic::usub_sat: 1851 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1852 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1853 Known = KnownBits::usub_sat(Known, Known2); 1854 break; 1855 case Intrinsic::sadd_sat: 1856 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1857 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1858 Known = KnownBits::sadd_sat(Known, Known2); 1859 break; 1860 case Intrinsic::ssub_sat: 1861 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1862 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1863 Known = KnownBits::ssub_sat(Known, Known2); 1864 break; 1865 // Vec reverse preserves bits from input vec. 1866 case Intrinsic::vector_reverse: 1867 computeKnownBits(I->getOperand(0), DemandedElts.reverseBits(), Known, 1868 Depth + 1, Q); 1869 break; 1870 // for min/max/and/or reduce, any bit common to each element in the 1871 // input vec is set in the output. 1872 case Intrinsic::vector_reduce_and: 1873 case Intrinsic::vector_reduce_or: 1874 case Intrinsic::vector_reduce_umax: 1875 case Intrinsic::vector_reduce_umin: 1876 case Intrinsic::vector_reduce_smax: 1877 case Intrinsic::vector_reduce_smin: 1878 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1879 break; 1880 case Intrinsic::vector_reduce_xor: { 1881 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1882 // The zeros common to all vecs are zero in the output. 1883 // If the number of elements is odd, then the common ones remain. If the 1884 // number of elements is even, then the common ones becomes zeros. 1885 auto *VecTy = cast<VectorType>(I->getOperand(0)->getType()); 1886 // Even, so the ones become zeros. 1887 bool EvenCnt = VecTy->getElementCount().isKnownEven(); 1888 if (EvenCnt) 1889 Known.Zero |= Known.One; 1890 // Maybe even element count so need to clear ones. 1891 if (VecTy->isScalableTy() || EvenCnt) 1892 Known.One.clearAllBits(); 1893 break; 1894 } 1895 case Intrinsic::umin: 1896 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1897 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1898 Known = KnownBits::umin(Known, Known2); 1899 break; 1900 case Intrinsic::umax: 1901 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1902 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1903 Known = KnownBits::umax(Known, Known2); 1904 break; 1905 case Intrinsic::smin: 1906 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1907 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1908 Known = KnownBits::smin(Known, Known2); 1909 unionWithMinMaxIntrinsicClamp(II, Known); 1910 break; 1911 case Intrinsic::smax: 1912 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1913 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1914 Known = KnownBits::smax(Known, Known2); 1915 unionWithMinMaxIntrinsicClamp(II, Known); 1916 break; 1917 case Intrinsic::ptrmask: { 1918 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1919 1920 const Value *Mask = I->getOperand(1); 1921 Known2 = KnownBits(Mask->getType()->getScalarSizeInBits()); 1922 computeKnownBits(Mask, DemandedElts, Known2, Depth + 1, Q); 1923 // TODO: 1-extend would be more precise. 1924 Known &= Known2.anyextOrTrunc(BitWidth); 1925 break; 1926 } 1927 case Intrinsic::x86_sse2_pmulh_w: 1928 case Intrinsic::x86_avx2_pmulh_w: 1929 case Intrinsic::x86_avx512_pmulh_w_512: 1930 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1931 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1932 Known = KnownBits::mulhs(Known, Known2); 1933 break; 1934 case Intrinsic::x86_sse2_pmulhu_w: 1935 case Intrinsic::x86_avx2_pmulhu_w: 1936 case Intrinsic::x86_avx512_pmulhu_w_512: 1937 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1938 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q); 1939 Known = KnownBits::mulhu(Known, Known2); 1940 break; 1941 case Intrinsic::x86_sse42_crc32_64_64: 1942 Known.Zero.setBitsFrom(32); 1943 break; 1944 case Intrinsic::x86_ssse3_phadd_d_128: 1945 case Intrinsic::x86_ssse3_phadd_w_128: 1946 case Intrinsic::x86_avx2_phadd_d: 1947 case Intrinsic::x86_avx2_phadd_w: { 1948 Known = computeKnownBitsForHorizontalOperation( 1949 I, DemandedElts, Depth, Q, 1950 [](const KnownBits &KnownLHS, const KnownBits &KnownRHS) { 1951 return KnownBits::add(KnownLHS, KnownRHS); 1952 }); 1953 break; 1954 } 1955 case Intrinsic::x86_ssse3_phadd_sw_128: 1956 case Intrinsic::x86_avx2_phadd_sw: { 1957 Known = computeKnownBitsForHorizontalOperation(I, DemandedElts, Depth, 1958 Q, KnownBits::sadd_sat); 1959 break; 1960 } 1961 case Intrinsic::x86_ssse3_phsub_d_128: 1962 case Intrinsic::x86_ssse3_phsub_w_128: 1963 case Intrinsic::x86_avx2_phsub_d: 1964 case Intrinsic::x86_avx2_phsub_w: { 1965 Known = computeKnownBitsForHorizontalOperation( 1966 I, DemandedElts, Depth, Q, 1967 [](const KnownBits &KnownLHS, const KnownBits &KnownRHS) { 1968 return KnownBits::sub(KnownLHS, KnownRHS); 1969 }); 1970 break; 1971 } 1972 case Intrinsic::x86_ssse3_phsub_sw_128: 1973 case Intrinsic::x86_avx2_phsub_sw: { 1974 Known = computeKnownBitsForHorizontalOperation(I, DemandedElts, Depth, 1975 Q, KnownBits::ssub_sat); 1976 break; 1977 } 1978 case Intrinsic::riscv_vsetvli: 1979 case Intrinsic::riscv_vsetvlimax: { 1980 bool HasAVL = II->getIntrinsicID() == Intrinsic::riscv_vsetvli; 1981 const ConstantRange Range = getVScaleRange(II->getFunction(), BitWidth); 1982 uint64_t SEW = RISCVVType::decodeVSEW( 1983 cast<ConstantInt>(II->getArgOperand(HasAVL))->getZExtValue()); 1984 RISCVII::VLMUL VLMUL = static_cast<RISCVII::VLMUL>( 1985 cast<ConstantInt>(II->getArgOperand(1 + HasAVL))->getZExtValue()); 1986 uint64_t MaxVLEN = 1987 Range.getUnsignedMax().getZExtValue() * RISCV::RVVBitsPerBlock; 1988 uint64_t MaxVL = MaxVLEN / RISCVVType::getSEWLMULRatio(SEW, VLMUL); 1989 1990 // Result of vsetvli must be not larger than AVL. 1991 if (HasAVL) 1992 if (auto *CI = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1993 MaxVL = std::min(MaxVL, CI->getZExtValue()); 1994 1995 unsigned KnownZeroFirstBit = Log2_32(MaxVL) + 1; 1996 if (BitWidth > KnownZeroFirstBit) 1997 Known.Zero.setBitsFrom(KnownZeroFirstBit); 1998 break; 1999 } 2000 case Intrinsic::vscale: { 2001 if (!II->getParent() || !II->getFunction()) 2002 break; 2003 2004 Known = getVScaleRange(II->getFunction(), BitWidth).toKnownBits(); 2005 break; 2006 } 2007 } 2008 } 2009 break; 2010 } 2011 case Instruction::ShuffleVector: { 2012 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 2013 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 2014 if (!Shuf) { 2015 Known.resetAll(); 2016 return; 2017 } 2018 // For undef elements, we don't know anything about the common state of 2019 // the shuffle result. 2020 APInt DemandedLHS, DemandedRHS; 2021 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 2022 Known.resetAll(); 2023 return; 2024 } 2025 Known.One.setAllBits(); 2026 Known.Zero.setAllBits(); 2027 if (!!DemandedLHS) { 2028 const Value *LHS = Shuf->getOperand(0); 2029 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 2030 // If we don't know any bits, early out. 2031 if (Known.isUnknown()) 2032 break; 2033 } 2034 if (!!DemandedRHS) { 2035 const Value *RHS = Shuf->getOperand(1); 2036 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 2037 Known = Known.intersectWith(Known2); 2038 } 2039 break; 2040 } 2041 case Instruction::InsertElement: { 2042 if (isa<ScalableVectorType>(I->getType())) { 2043 Known.resetAll(); 2044 return; 2045 } 2046 const Value *Vec = I->getOperand(0); 2047 const Value *Elt = I->getOperand(1); 2048 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 2049 unsigned NumElts = DemandedElts.getBitWidth(); 2050 APInt DemandedVecElts = DemandedElts; 2051 bool NeedsElt = true; 2052 // If we know the index we are inserting too, clear it from Vec check. 2053 if (CIdx && CIdx->getValue().ult(NumElts)) { 2054 DemandedVecElts.clearBit(CIdx->getZExtValue()); 2055 NeedsElt = DemandedElts[CIdx->getZExtValue()]; 2056 } 2057 2058 Known.One.setAllBits(); 2059 Known.Zero.setAllBits(); 2060 if (NeedsElt) { 2061 computeKnownBits(Elt, Known, Depth + 1, Q); 2062 // If we don't know any bits, early out. 2063 if (Known.isUnknown()) 2064 break; 2065 } 2066 2067 if (!DemandedVecElts.isZero()) { 2068 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 2069 Known = Known.intersectWith(Known2); 2070 } 2071 break; 2072 } 2073 case Instruction::ExtractElement: { 2074 // Look through extract element. If the index is non-constant or 2075 // out-of-range demand all elements, otherwise just the extracted element. 2076 const Value *Vec = I->getOperand(0); 2077 const Value *Idx = I->getOperand(1); 2078 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2079 if (isa<ScalableVectorType>(Vec->getType())) { 2080 // FIXME: there's probably *something* we can do with scalable vectors 2081 Known.resetAll(); 2082 break; 2083 } 2084 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 2085 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2086 if (CIdx && CIdx->getValue().ult(NumElts)) 2087 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2088 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 2089 break; 2090 } 2091 case Instruction::ExtractValue: 2092 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 2093 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 2094 if (EVI->getNumIndices() != 1) break; 2095 if (EVI->getIndices()[0] == 0) { 2096 switch (II->getIntrinsicID()) { 2097 default: break; 2098 case Intrinsic::uadd_with_overflow: 2099 case Intrinsic::sadd_with_overflow: 2100 computeKnownBitsAddSub( 2101 true, II->getArgOperand(0), II->getArgOperand(1), /*NSW=*/false, 2102 /* NUW=*/false, DemandedElts, Known, Known2, Depth, Q); 2103 break; 2104 case Intrinsic::usub_with_overflow: 2105 case Intrinsic::ssub_with_overflow: 2106 computeKnownBitsAddSub( 2107 false, II->getArgOperand(0), II->getArgOperand(1), /*NSW=*/false, 2108 /* NUW=*/false, DemandedElts, Known, Known2, Depth, Q); 2109 break; 2110 case Intrinsic::umul_with_overflow: 2111 case Intrinsic::smul_with_overflow: 2112 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 2113 false, DemandedElts, Known, Known2, Depth, Q); 2114 break; 2115 } 2116 } 2117 } 2118 break; 2119 case Instruction::Freeze: 2120 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 2121 Depth + 1)) 2122 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 2123 break; 2124 } 2125 } 2126 2127 /// Determine which bits of V are known to be either zero or one and return 2128 /// them. 2129 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 2130 unsigned Depth, const SimplifyQuery &Q) { 2131 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 2132 ::computeKnownBits(V, DemandedElts, Known, Depth, Q); 2133 return Known; 2134 } 2135 2136 /// Determine which bits of V are known to be either zero or one and return 2137 /// them. 2138 KnownBits llvm::computeKnownBits(const Value *V, unsigned Depth, 2139 const SimplifyQuery &Q) { 2140 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 2141 computeKnownBits(V, Known, Depth, Q); 2142 return Known; 2143 } 2144 2145 /// Determine which bits of V are known to be either zero or one and return 2146 /// them in the Known bit set. 2147 /// 2148 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 2149 /// we cannot optimize based on the assumption that it is zero without changing 2150 /// it to be an explicit zero. If we don't change it to zero, other code could 2151 /// optimized based on the contradictory assumption that it is non-zero. 2152 /// Because instcombine aggressively folds operations with undef args anyway, 2153 /// this won't lose us code quality. 2154 /// 2155 /// This function is defined on values with integer type, values with pointer 2156 /// type, and vectors of integers. In the case 2157 /// where V is a vector, known zero, and known one values are the 2158 /// same width as the vector element, and the bit is set only if it is true 2159 /// for all of the demanded elements in the vector specified by DemandedElts. 2160 void computeKnownBits(const Value *V, const APInt &DemandedElts, 2161 KnownBits &Known, unsigned Depth, 2162 const SimplifyQuery &Q) { 2163 if (!DemandedElts) { 2164 // No demanded elts, better to assume we don't know anything. 2165 Known.resetAll(); 2166 return; 2167 } 2168 2169 assert(V && "No Value?"); 2170 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2171 2172 #ifndef NDEBUG 2173 Type *Ty = V->getType(); 2174 unsigned BitWidth = Known.getBitWidth(); 2175 2176 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 2177 "Not integer or pointer type!"); 2178 2179 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2180 assert( 2181 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2182 "DemandedElt width should equal the fixed vector number of elements"); 2183 } else { 2184 assert(DemandedElts == APInt(1, 1) && 2185 "DemandedElt width should be 1 for scalars or scalable vectors"); 2186 } 2187 2188 Type *ScalarTy = Ty->getScalarType(); 2189 if (ScalarTy->isPointerTy()) { 2190 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 2191 "V and Known should have same BitWidth"); 2192 } else { 2193 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 2194 "V and Known should have same BitWidth"); 2195 } 2196 #endif 2197 2198 const APInt *C; 2199 if (match(V, m_APInt(C))) { 2200 // We know all of the bits for a scalar constant or a splat vector constant! 2201 Known = KnownBits::makeConstant(*C); 2202 return; 2203 } 2204 // Null and aggregate-zero are all-zeros. 2205 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 2206 Known.setAllZero(); 2207 return; 2208 } 2209 // Handle a constant vector by taking the intersection of the known bits of 2210 // each element. 2211 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 2212 assert(!isa<ScalableVectorType>(V->getType())); 2213 // We know that CDV must be a vector of integers. Take the intersection of 2214 // each element. 2215 Known.Zero.setAllBits(); Known.One.setAllBits(); 2216 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 2217 if (!DemandedElts[i]) 2218 continue; 2219 APInt Elt = CDV->getElementAsAPInt(i); 2220 Known.Zero &= ~Elt; 2221 Known.One &= Elt; 2222 } 2223 if (Known.hasConflict()) 2224 Known.resetAll(); 2225 return; 2226 } 2227 2228 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 2229 assert(!isa<ScalableVectorType>(V->getType())); 2230 // We know that CV must be a vector of integers. Take the intersection of 2231 // each element. 2232 Known.Zero.setAllBits(); Known.One.setAllBits(); 2233 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 2234 if (!DemandedElts[i]) 2235 continue; 2236 Constant *Element = CV->getAggregateElement(i); 2237 if (isa<PoisonValue>(Element)) 2238 continue; 2239 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 2240 if (!ElementCI) { 2241 Known.resetAll(); 2242 return; 2243 } 2244 const APInt &Elt = ElementCI->getValue(); 2245 Known.Zero &= ~Elt; 2246 Known.One &= Elt; 2247 } 2248 if (Known.hasConflict()) 2249 Known.resetAll(); 2250 return; 2251 } 2252 2253 // Start out not knowing anything. 2254 Known.resetAll(); 2255 2256 // We can't imply anything about undefs. 2257 if (isa<UndefValue>(V)) 2258 return; 2259 2260 // There's no point in looking through other users of ConstantData for 2261 // assumptions. Confirm that we've handled them all. 2262 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2263 2264 if (const auto *A = dyn_cast<Argument>(V)) 2265 if (std::optional<ConstantRange> Range = A->getRange()) 2266 Known = Range->toKnownBits(); 2267 2268 // All recursive calls that increase depth must come after this. 2269 if (Depth == MaxAnalysisRecursionDepth) 2270 return; 2271 2272 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2273 // the bits of its aliasee. 2274 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2275 if (!GA->isInterposable()) 2276 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2277 return; 2278 } 2279 2280 if (const Operator *I = dyn_cast<Operator>(V)) 2281 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2282 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2283 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) 2284 Known = CR->toKnownBits(); 2285 } 2286 2287 // Aligned pointers have trailing zeros - refine Known.Zero set 2288 if (isa<PointerType>(V->getType())) { 2289 Align Alignment = V->getPointerAlignment(Q.DL); 2290 Known.Zero.setLowBits(Log2(Alignment)); 2291 } 2292 2293 // computeKnownBitsFromContext strictly refines Known. 2294 // Therefore, we run them after computeKnownBitsFromOperator. 2295 2296 // Check whether we can determine known bits from context such as assumes. 2297 computeKnownBitsFromContext(V, Known, Depth, Q); 2298 } 2299 2300 /// Try to detect a recurrence that the value of the induction variable is 2301 /// always a power of two (or zero). 2302 static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, 2303 unsigned Depth, SimplifyQuery &Q) { 2304 BinaryOperator *BO = nullptr; 2305 Value *Start = nullptr, *Step = nullptr; 2306 if (!matchSimpleRecurrence(PN, BO, Start, Step)) 2307 return false; 2308 2309 // Initial value must be a power of two. 2310 for (const Use &U : PN->operands()) { 2311 if (U.get() == Start) { 2312 // Initial value comes from a different BB, need to adjust context 2313 // instruction for analysis. 2314 Q.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2315 if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q)) 2316 return false; 2317 } 2318 } 2319 2320 // Except for Mul, the induction variable must be on the left side of the 2321 // increment expression, otherwise its value can be arbitrary. 2322 if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step) 2323 return false; 2324 2325 Q.CxtI = BO->getParent()->getTerminator(); 2326 switch (BO->getOpcode()) { 2327 case Instruction::Mul: 2328 // Power of two is closed under multiplication. 2329 return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || 2330 Q.IIQ.hasNoSignedWrap(BO)) && 2331 isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q); 2332 case Instruction::SDiv: 2333 // Start value must not be signmask for signed division, so simply being a 2334 // power of two is not sufficient, and it has to be a constant. 2335 if (!match(Start, m_Power2()) || match(Start, m_SignMask())) 2336 return false; 2337 [[fallthrough]]; 2338 case Instruction::UDiv: 2339 // Divisor must be a power of two. 2340 // If OrZero is false, cannot guarantee induction variable is non-zero after 2341 // division, same for Shr, unless it is exact division. 2342 return (OrZero || Q.IIQ.isExact(BO)) && 2343 isKnownToBeAPowerOfTwo(Step, false, Depth, Q); 2344 case Instruction::Shl: 2345 return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO); 2346 case Instruction::AShr: 2347 if (!match(Start, m_Power2()) || match(Start, m_SignMask())) 2348 return false; 2349 [[fallthrough]]; 2350 case Instruction::LShr: 2351 return OrZero || Q.IIQ.isExact(BO); 2352 default: 2353 return false; 2354 } 2355 } 2356 2357 /// Return true if we can infer that \p V is known to be a power of 2 from 2358 /// dominating condition \p Cond (e.g., ctpop(V) == 1). 2359 static bool isImpliedToBeAPowerOfTwoFromCond(const Value *V, bool OrZero, 2360 const Value *Cond, 2361 bool CondIsTrue) { 2362 CmpPredicate Pred; 2363 const APInt *RHSC; 2364 if (!match(Cond, m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Specific(V)), 2365 m_APInt(RHSC)))) 2366 return false; 2367 if (!CondIsTrue) 2368 Pred = ICmpInst::getInversePredicate(Pred); 2369 // ctpop(V) u< 2 2370 if (OrZero && Pred == ICmpInst::ICMP_ULT && *RHSC == 2) 2371 return true; 2372 // ctpop(V) == 1 2373 return Pred == ICmpInst::ICMP_EQ && *RHSC == 1; 2374 } 2375 2376 /// Return true if the given value is known to have exactly one 2377 /// bit set when defined. For vectors return true if every element is known to 2378 /// be a power of two when defined. Supports values with integer or pointer 2379 /// types and vectors of integers. 2380 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2381 const SimplifyQuery &Q) { 2382 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2383 2384 if (isa<Constant>(V)) 2385 return OrZero ? match(V, m_Power2OrZero()) : match(V, m_Power2()); 2386 2387 // i1 is by definition a power of 2 or zero. 2388 if (OrZero && V->getType()->getScalarSizeInBits() == 1) 2389 return true; 2390 2391 // Try to infer from assumptions. 2392 if (Q.AC && Q.CxtI) { 2393 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 2394 if (!AssumeVH) 2395 continue; 2396 CallInst *I = cast<CallInst>(AssumeVH); 2397 if (isImpliedToBeAPowerOfTwoFromCond(V, OrZero, I->getArgOperand(0), 2398 /*CondIsTrue=*/true) && 2399 isValidAssumeForContext(I, Q.CxtI, Q.DT)) 2400 return true; 2401 } 2402 } 2403 2404 // Handle dominating conditions. 2405 if (Q.DC && Q.CxtI && Q.DT) { 2406 for (BranchInst *BI : Q.DC->conditionsFor(V)) { 2407 Value *Cond = BI->getCondition(); 2408 2409 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0)); 2410 if (isImpliedToBeAPowerOfTwoFromCond(V, OrZero, Cond, 2411 /*CondIsTrue=*/true) && 2412 Q.DT->dominates(Edge0, Q.CxtI->getParent())) 2413 return true; 2414 2415 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1)); 2416 if (isImpliedToBeAPowerOfTwoFromCond(V, OrZero, Cond, 2417 /*CondIsTrue=*/false) && 2418 Q.DT->dominates(Edge1, Q.CxtI->getParent())) 2419 return true; 2420 } 2421 } 2422 2423 auto *I = dyn_cast<Instruction>(V); 2424 if (!I) 2425 return false; 2426 2427 if (Q.CxtI && match(V, m_VScale())) { 2428 const Function *F = Q.CxtI->getFunction(); 2429 // The vscale_range indicates vscale is a power-of-two. 2430 return F->hasFnAttribute(Attribute::VScaleRange); 2431 } 2432 2433 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2434 // it is shifted off the end then the result is undefined. 2435 if (match(I, m_Shl(m_One(), m_Value()))) 2436 return true; 2437 2438 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2439 // the bottom. If it is shifted off the bottom then the result is undefined. 2440 if (match(I, m_LShr(m_SignMask(), m_Value()))) 2441 return true; 2442 2443 // The remaining tests are all recursive, so bail out if we hit the limit. 2444 if (Depth++ == MaxAnalysisRecursionDepth) 2445 return false; 2446 2447 switch (I->getOpcode()) { 2448 case Instruction::ZExt: 2449 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q); 2450 case Instruction::Trunc: 2451 return OrZero && isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q); 2452 case Instruction::Shl: 2453 if (OrZero || Q.IIQ.hasNoUnsignedWrap(I) || Q.IIQ.hasNoSignedWrap(I)) 2454 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q); 2455 return false; 2456 case Instruction::LShr: 2457 if (OrZero || Q.IIQ.isExact(cast<BinaryOperator>(I))) 2458 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q); 2459 return false; 2460 case Instruction::UDiv: 2461 if (Q.IIQ.isExact(cast<BinaryOperator>(I))) 2462 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q); 2463 return false; 2464 case Instruction::Mul: 2465 return isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Depth, Q) && 2466 isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q) && 2467 (OrZero || isKnownNonZero(I, Q, Depth)); 2468 case Instruction::And: 2469 // A power of two and'd with anything is a power of two or zero. 2470 if (OrZero && 2471 (isKnownToBeAPowerOfTwo(I->getOperand(1), /*OrZero*/ true, Depth, Q) || 2472 isKnownToBeAPowerOfTwo(I->getOperand(0), /*OrZero*/ true, Depth, Q))) 2473 return true; 2474 // X & (-X) is always a power of two or zero. 2475 if (match(I->getOperand(0), m_Neg(m_Specific(I->getOperand(1)))) || 2476 match(I->getOperand(1), m_Neg(m_Specific(I->getOperand(0))))) 2477 return OrZero || isKnownNonZero(I->getOperand(0), Q, Depth); 2478 return false; 2479 case Instruction::Add: { 2480 // Adding a power-of-two or zero to the same power-of-two or zero yields 2481 // either the original power-of-two, a larger power-of-two or zero. 2482 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2483 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2484 Q.IIQ.hasNoSignedWrap(VOBO)) { 2485 if (match(I->getOperand(0), 2486 m_c_And(m_Specific(I->getOperand(1)), m_Value())) && 2487 isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Depth, Q)) 2488 return true; 2489 if (match(I->getOperand(1), 2490 m_c_And(m_Specific(I->getOperand(0)), m_Value())) && 2491 isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q)) 2492 return true; 2493 2494 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2495 KnownBits LHSBits(BitWidth); 2496 computeKnownBits(I->getOperand(0), LHSBits, Depth, Q); 2497 2498 KnownBits RHSBits(BitWidth); 2499 computeKnownBits(I->getOperand(1), RHSBits, Depth, Q); 2500 // If i8 V is a power of two or zero: 2501 // ZeroBits: 1 1 1 0 1 1 1 1 2502 // ~ZeroBits: 0 0 0 1 0 0 0 0 2503 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2504 // If OrZero isn't set, we cannot give back a zero result. 2505 // Make sure either the LHS or RHS has a bit set. 2506 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2507 return true; 2508 } 2509 2510 // LShr(UINT_MAX, Y) + 1 is a power of two (if add is nuw) or zero. 2511 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO)) 2512 if (match(I, m_Add(m_LShr(m_AllOnes(), m_Value()), m_One()))) 2513 return true; 2514 return false; 2515 } 2516 case Instruction::Select: 2517 return isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Depth, Q) && 2518 isKnownToBeAPowerOfTwo(I->getOperand(2), OrZero, Depth, Q); 2519 case Instruction::PHI: { 2520 // A PHI node is power of two if all incoming values are power of two, or if 2521 // it is an induction variable where in each step its value is a power of 2522 // two. 2523 auto *PN = cast<PHINode>(I); 2524 SimplifyQuery RecQ = Q.getWithoutCondContext(); 2525 2526 // Check if it is an induction variable and always power of two. 2527 if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ)) 2528 return true; 2529 2530 // Recursively check all incoming values. Limit recursion to 2 levels, so 2531 // that search complexity is limited to number of operands^2. 2532 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2533 return llvm::all_of(PN->operands(), [&](const Use &U) { 2534 // Value is power of 2 if it is coming from PHI node itself by induction. 2535 if (U.get() == PN) 2536 return true; 2537 2538 // Change the context instruction to the incoming block where it is 2539 // evaluated. 2540 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2541 return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ); 2542 }); 2543 } 2544 case Instruction::Invoke: 2545 case Instruction::Call: { 2546 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 2547 switch (II->getIntrinsicID()) { 2548 case Intrinsic::umax: 2549 case Intrinsic::smax: 2550 case Intrinsic::umin: 2551 case Intrinsic::smin: 2552 return isKnownToBeAPowerOfTwo(II->getArgOperand(1), OrZero, Depth, Q) && 2553 isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Depth, Q); 2554 // bswap/bitreverse just move around bits, but don't change any 1s/0s 2555 // thus dont change pow2/non-pow2 status. 2556 case Intrinsic::bitreverse: 2557 case Intrinsic::bswap: 2558 return isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Depth, Q); 2559 case Intrinsic::fshr: 2560 case Intrinsic::fshl: 2561 // If Op0 == Op1, this is a rotate. is_pow2(rotate(x, y)) == is_pow2(x) 2562 if (II->getArgOperand(0) == II->getArgOperand(1)) 2563 return isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Depth, Q); 2564 break; 2565 default: 2566 break; 2567 } 2568 } 2569 return false; 2570 } 2571 default: 2572 return false; 2573 } 2574 } 2575 2576 /// Test whether a GEP's result is known to be non-null. 2577 /// 2578 /// Uses properties inherent in a GEP to try to determine whether it is known 2579 /// to be non-null. 2580 /// 2581 /// Currently this routine does not support vector GEPs. 2582 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2583 const SimplifyQuery &Q) { 2584 const Function *F = nullptr; 2585 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2586 F = I->getFunction(); 2587 2588 // If the gep is nuw or inbounds with invalid null pointer, then the GEP 2589 // may be null iff the base pointer is null and the offset is zero. 2590 if (!GEP->hasNoUnsignedWrap() && 2591 !(GEP->isInBounds() && 2592 !NullPointerIsDefined(F, GEP->getPointerAddressSpace()))) 2593 return false; 2594 2595 // FIXME: Support vector-GEPs. 2596 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2597 2598 // If the base pointer is non-null, we cannot walk to a null address with an 2599 // inbounds GEP in address space zero. 2600 if (isKnownNonZero(GEP->getPointerOperand(), Q, Depth)) 2601 return true; 2602 2603 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2604 // If so, then the GEP cannot produce a null pointer, as doing so would 2605 // inherently violate the inbounds contract within address space zero. 2606 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2607 GTI != GTE; ++GTI) { 2608 // Struct types are easy -- they must always be indexed by a constant. 2609 if (StructType *STy = GTI.getStructTypeOrNull()) { 2610 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2611 unsigned ElementIdx = OpC->getZExtValue(); 2612 const StructLayout *SL = Q.DL.getStructLayout(STy); 2613 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2614 if (ElementOffset > 0) 2615 return true; 2616 continue; 2617 } 2618 2619 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2620 if (GTI.getSequentialElementStride(Q.DL).isZero()) 2621 continue; 2622 2623 // Fast path the constant operand case both for efficiency and so we don't 2624 // increment Depth when just zipping down an all-constant GEP. 2625 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2626 if (!OpC->isZero()) 2627 return true; 2628 continue; 2629 } 2630 2631 // We post-increment Depth here because while isKnownNonZero increments it 2632 // as well, when we pop back up that increment won't persist. We don't want 2633 // to recurse 10k times just because we have 10k GEP operands. We don't 2634 // bail completely out because we want to handle constant GEPs regardless 2635 // of depth. 2636 if (Depth++ >= MaxAnalysisRecursionDepth) 2637 continue; 2638 2639 if (isKnownNonZero(GTI.getOperand(), Q, Depth)) 2640 return true; 2641 } 2642 2643 return false; 2644 } 2645 2646 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2647 const Instruction *CtxI, 2648 const DominatorTree *DT) { 2649 assert(!isa<Constant>(V) && "Called for constant?"); 2650 2651 if (!CtxI || !DT) 2652 return false; 2653 2654 unsigned NumUsesExplored = 0; 2655 for (auto &U : V->uses()) { 2656 // Avoid massive lists 2657 if (NumUsesExplored >= DomConditionsMaxUses) 2658 break; 2659 NumUsesExplored++; 2660 2661 const Instruction *UI = cast<Instruction>(U.getUser()); 2662 // If the value is used as an argument to a call or invoke, then argument 2663 // attributes may provide an answer about null-ness. 2664 if (V->getType()->isPointerTy()) { 2665 if (const auto *CB = dyn_cast<CallBase>(UI)) { 2666 if (CB->isArgOperand(&U) && 2667 CB->paramHasNonNullAttr(CB->getArgOperandNo(&U), 2668 /*AllowUndefOrPoison=*/false) && 2669 DT->dominates(CB, CtxI)) 2670 return true; 2671 } 2672 } 2673 2674 // If the value is used as a load/store, then the pointer must be non null. 2675 if (V == getLoadStorePointerOperand(UI)) { 2676 if (!NullPointerIsDefined(UI->getFunction(), 2677 V->getType()->getPointerAddressSpace()) && 2678 DT->dominates(UI, CtxI)) 2679 return true; 2680 } 2681 2682 if ((match(UI, m_IDiv(m_Value(), m_Specific(V))) || 2683 match(UI, m_IRem(m_Value(), m_Specific(V)))) && 2684 isValidAssumeForContext(UI, CtxI, DT)) 2685 return true; 2686 2687 // Consider only compare instructions uniquely controlling a branch 2688 Value *RHS; 2689 CmpPredicate Pred; 2690 if (!match(UI, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2691 continue; 2692 2693 bool NonNullIfTrue; 2694 if (cmpExcludesZero(Pred, RHS)) 2695 NonNullIfTrue = true; 2696 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2697 NonNullIfTrue = false; 2698 else 2699 continue; 2700 2701 SmallVector<const User *, 4> WorkList; 2702 SmallPtrSet<const User *, 4> Visited; 2703 for (const auto *CmpU : UI->users()) { 2704 assert(WorkList.empty() && "Should be!"); 2705 if (Visited.insert(CmpU).second) 2706 WorkList.push_back(CmpU); 2707 2708 while (!WorkList.empty()) { 2709 auto *Curr = WorkList.pop_back_val(); 2710 2711 // If a user is an AND, add all its users to the work list. We only 2712 // propagate "pred != null" condition through AND because it is only 2713 // correct to assume that all conditions of AND are met in true branch. 2714 // TODO: Support similar logic of OR and EQ predicate? 2715 if (NonNullIfTrue) 2716 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2717 for (const auto *CurrU : Curr->users()) 2718 if (Visited.insert(CurrU).second) 2719 WorkList.push_back(CurrU); 2720 continue; 2721 } 2722 2723 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2724 assert(BI->isConditional() && "uses a comparison!"); 2725 2726 BasicBlock *NonNullSuccessor = 2727 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2728 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2729 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2730 return true; 2731 } else if (NonNullIfTrue && isGuard(Curr) && 2732 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2733 return true; 2734 } 2735 } 2736 } 2737 } 2738 2739 return false; 2740 } 2741 2742 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2743 /// ensure that the value it's attached to is never Value? 'RangeType' is 2744 /// is the type of the value described by the range. 2745 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2746 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2747 assert(NumRanges >= 1); 2748 for (unsigned i = 0; i < NumRanges; ++i) { 2749 ConstantInt *Lower = 2750 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2751 ConstantInt *Upper = 2752 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2753 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2754 if (Range.contains(Value)) 2755 return false; 2756 } 2757 return true; 2758 } 2759 2760 /// Try to detect a recurrence that monotonically increases/decreases from a 2761 /// non-zero starting value. These are common as induction variables. 2762 static bool isNonZeroRecurrence(const PHINode *PN) { 2763 BinaryOperator *BO = nullptr; 2764 Value *Start = nullptr, *Step = nullptr; 2765 const APInt *StartC, *StepC; 2766 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2767 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2768 return false; 2769 2770 switch (BO->getOpcode()) { 2771 case Instruction::Add: 2772 // Starting from non-zero and stepping away from zero can never wrap back 2773 // to zero. 2774 return BO->hasNoUnsignedWrap() || 2775 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2776 StartC->isNegative() == StepC->isNegative()); 2777 case Instruction::Mul: 2778 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2779 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2780 case Instruction::Shl: 2781 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2782 case Instruction::AShr: 2783 case Instruction::LShr: 2784 return BO->isExact(); 2785 default: 2786 return false; 2787 } 2788 } 2789 2790 static bool matchOpWithOpEqZero(Value *Op0, Value *Op1) { 2791 return match(Op0, m_ZExtOrSExt(m_SpecificICmp(ICmpInst::ICMP_EQ, 2792 m_Specific(Op1), m_Zero()))) || 2793 match(Op1, m_ZExtOrSExt(m_SpecificICmp(ICmpInst::ICMP_EQ, 2794 m_Specific(Op0), m_Zero()))); 2795 } 2796 2797 static bool isNonZeroAdd(const APInt &DemandedElts, unsigned Depth, 2798 const SimplifyQuery &Q, unsigned BitWidth, Value *X, 2799 Value *Y, bool NSW, bool NUW) { 2800 // (X + (X != 0)) is non zero 2801 if (matchOpWithOpEqZero(X, Y)) 2802 return true; 2803 2804 if (NUW) 2805 return isKnownNonZero(Y, DemandedElts, Q, Depth) || 2806 isKnownNonZero(X, DemandedElts, Q, Depth); 2807 2808 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2809 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2810 2811 // If X and Y are both non-negative (as signed values) then their sum is not 2812 // zero unless both X and Y are zero. 2813 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2814 if (isKnownNonZero(Y, DemandedElts, Q, Depth) || 2815 isKnownNonZero(X, DemandedElts, Q, Depth)) 2816 return true; 2817 2818 // If X and Y are both negative (as signed values) then their sum is not 2819 // zero unless both X and Y equal INT_MIN. 2820 if (XKnown.isNegative() && YKnown.isNegative()) { 2821 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2822 // The sign bit of X is set. If some other bit is set then X is not equal 2823 // to INT_MIN. 2824 if (XKnown.One.intersects(Mask)) 2825 return true; 2826 // The sign bit of Y is set. If some other bit is set then Y is not equal 2827 // to INT_MIN. 2828 if (YKnown.One.intersects(Mask)) 2829 return true; 2830 } 2831 2832 // The sum of a non-negative number and a power of two is not zero. 2833 if (XKnown.isNonNegative() && 2834 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2835 return true; 2836 if (YKnown.isNonNegative() && 2837 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2838 return true; 2839 2840 return KnownBits::add(XKnown, YKnown, NSW, NUW).isNonZero(); 2841 } 2842 2843 static bool isNonZeroSub(const APInt &DemandedElts, unsigned Depth, 2844 const SimplifyQuery &Q, unsigned BitWidth, Value *X, 2845 Value *Y) { 2846 // (X - (X != 0)) is non zero 2847 // ((X != 0) - X) is non zero 2848 if (matchOpWithOpEqZero(X, Y)) 2849 return true; 2850 2851 // TODO: Move this case into isKnownNonEqual(). 2852 if (auto *C = dyn_cast<Constant>(X)) 2853 if (C->isNullValue() && isKnownNonZero(Y, DemandedElts, Q, Depth)) 2854 return true; 2855 2856 return ::isKnownNonEqual(X, Y, DemandedElts, Depth, Q); 2857 } 2858 2859 static bool isNonZeroMul(const APInt &DemandedElts, unsigned Depth, 2860 const SimplifyQuery &Q, unsigned BitWidth, Value *X, 2861 Value *Y, bool NSW, bool NUW) { 2862 // If X and Y are non-zero then so is X * Y as long as the multiplication 2863 // does not overflow. 2864 if (NSW || NUW) 2865 return isKnownNonZero(X, DemandedElts, Q, Depth) && 2866 isKnownNonZero(Y, DemandedElts, Q, Depth); 2867 2868 // If either X or Y is odd, then if the other is non-zero the result can't 2869 // be zero. 2870 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2871 if (XKnown.One[0]) 2872 return isKnownNonZero(Y, DemandedElts, Q, Depth); 2873 2874 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2875 if (YKnown.One[0]) 2876 return XKnown.isNonZero() || isKnownNonZero(X, DemandedElts, Q, Depth); 2877 2878 // If there exists any subset of X (sX) and subset of Y (sY) s.t sX * sY is 2879 // non-zero, then X * Y is non-zero. We can find sX and sY by just taking 2880 // the lowest known One of X and Y. If they are non-zero, the result 2881 // must be non-zero. We can check if LSB(X) * LSB(Y) != 0 by doing 2882 // X.CountLeadingZeros + Y.CountLeadingZeros < BitWidth. 2883 return (XKnown.countMaxTrailingZeros() + YKnown.countMaxTrailingZeros()) < 2884 BitWidth; 2885 } 2886 2887 static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts, 2888 unsigned Depth, const SimplifyQuery &Q, 2889 const KnownBits &KnownVal) { 2890 auto ShiftOp = [&](const APInt &Lhs, const APInt &Rhs) { 2891 switch (I->getOpcode()) { 2892 case Instruction::Shl: 2893 return Lhs.shl(Rhs); 2894 case Instruction::LShr: 2895 return Lhs.lshr(Rhs); 2896 case Instruction::AShr: 2897 return Lhs.ashr(Rhs); 2898 default: 2899 llvm_unreachable("Unknown Shift Opcode"); 2900 } 2901 }; 2902 2903 auto InvShiftOp = [&](const APInt &Lhs, const APInt &Rhs) { 2904 switch (I->getOpcode()) { 2905 case Instruction::Shl: 2906 return Lhs.lshr(Rhs); 2907 case Instruction::LShr: 2908 case Instruction::AShr: 2909 return Lhs.shl(Rhs); 2910 default: 2911 llvm_unreachable("Unknown Shift Opcode"); 2912 } 2913 }; 2914 2915 if (KnownVal.isUnknown()) 2916 return false; 2917 2918 KnownBits KnownCnt = 2919 computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q); 2920 APInt MaxShift = KnownCnt.getMaxValue(); 2921 unsigned NumBits = KnownVal.getBitWidth(); 2922 if (MaxShift.uge(NumBits)) 2923 return false; 2924 2925 if (!ShiftOp(KnownVal.One, MaxShift).isZero()) 2926 return true; 2927 2928 // If all of the bits shifted out are known to be zero, and Val is known 2929 // non-zero then at least one non-zero bit must remain. 2930 if (InvShiftOp(KnownVal.Zero, NumBits - MaxShift) 2931 .eq(InvShiftOp(APInt::getAllOnes(NumBits), NumBits - MaxShift)) && 2932 isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth)) 2933 return true; 2934 2935 return false; 2936 } 2937 2938 static bool isKnownNonZeroFromOperator(const Operator *I, 2939 const APInt &DemandedElts, 2940 unsigned Depth, const SimplifyQuery &Q) { 2941 unsigned BitWidth = getBitWidth(I->getType()->getScalarType(), Q.DL); 2942 switch (I->getOpcode()) { 2943 case Instruction::Alloca: 2944 // Alloca never returns null, malloc might. 2945 return I->getType()->getPointerAddressSpace() == 0; 2946 case Instruction::GetElementPtr: 2947 if (I->getType()->isPointerTy()) 2948 return isGEPKnownNonNull(cast<GEPOperator>(I), Depth, Q); 2949 break; 2950 case Instruction::BitCast: { 2951 // We need to be a bit careful here. We can only peek through the bitcast 2952 // if the scalar size of elements in the operand are smaller than and a 2953 // multiple of the size they are casting too. Take three cases: 2954 // 2955 // 1) Unsafe: 2956 // bitcast <2 x i16> %NonZero to <4 x i8> 2957 // 2958 // %NonZero can have 2 non-zero i16 elements, but isKnownNonZero on a 2959 // <4 x i8> requires that all 4 i8 elements be non-zero which isn't 2960 // guranteed (imagine just sign bit set in the 2 i16 elements). 2961 // 2962 // 2) Unsafe: 2963 // bitcast <4 x i3> %NonZero to <3 x i4> 2964 // 2965 // Even though the scalar size of the src (`i3`) is smaller than the 2966 // scalar size of the dst `i4`, because `i3` is not a multiple of `i4` 2967 // its possible for the `3 x i4` elements to be zero because there are 2968 // some elements in the destination that don't contain any full src 2969 // element. 2970 // 2971 // 3) Safe: 2972 // bitcast <4 x i8> %NonZero to <2 x i16> 2973 // 2974 // This is always safe as non-zero in the 4 i8 elements implies 2975 // non-zero in the combination of any two adjacent ones. Since i8 is a 2976 // multiple of i16, each i16 is guranteed to have 2 full i8 elements. 2977 // This all implies the 2 i16 elements are non-zero. 2978 Type *FromTy = I->getOperand(0)->getType(); 2979 if ((FromTy->isIntOrIntVectorTy() || FromTy->isPtrOrPtrVectorTy()) && 2980 (BitWidth % getBitWidth(FromTy->getScalarType(), Q.DL)) == 0) 2981 return isKnownNonZero(I->getOperand(0), Q, Depth); 2982 } break; 2983 case Instruction::IntToPtr: 2984 // Note that we have to take special care to avoid looking through 2985 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2986 // as casts that can alter the value, e.g., AddrSpaceCasts. 2987 if (!isa<ScalableVectorType>(I->getType()) && 2988 Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <= 2989 Q.DL.getTypeSizeInBits(I->getType()).getFixedValue()) 2990 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth); 2991 break; 2992 case Instruction::PtrToInt: 2993 // Similar to int2ptr above, we can look through ptr2int here if the cast 2994 // is a no-op or an extend and not a truncate. 2995 if (!isa<ScalableVectorType>(I->getType()) && 2996 Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <= 2997 Q.DL.getTypeSizeInBits(I->getType()).getFixedValue()) 2998 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth); 2999 break; 3000 case Instruction::Trunc: 3001 // nuw/nsw trunc preserves zero/non-zero status of input. 3002 if (auto *TI = dyn_cast<TruncInst>(I)) 3003 if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) 3004 return isKnownNonZero(TI->getOperand(0), DemandedElts, Q, Depth); 3005 break; 3006 3007 case Instruction::Sub: 3008 return isNonZeroSub(DemandedElts, Depth, Q, BitWidth, I->getOperand(0), 3009 I->getOperand(1)); 3010 case Instruction::Xor: 3011 // (X ^ (X != 0)) is non zero 3012 if (matchOpWithOpEqZero(I->getOperand(0), I->getOperand(1))) 3013 return true; 3014 break; 3015 case Instruction::Or: 3016 // (X | (X != 0)) is non zero 3017 if (matchOpWithOpEqZero(I->getOperand(0), I->getOperand(1))) 3018 return true; 3019 // X | Y != 0 if X != 0 or Y != 0. 3020 return isKnownNonZero(I->getOperand(1), DemandedElts, Q, Depth) || 3021 isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth); 3022 case Instruction::SExt: 3023 case Instruction::ZExt: 3024 // ext X != 0 if X != 0. 3025 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth); 3026 3027 case Instruction::Shl: { 3028 // shl nsw/nuw can't remove any non-zero bits. 3029 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(I); 3030 if (Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO)) 3031 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth); 3032 3033 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 3034 // if the lowest bit is shifted off the end. 3035 KnownBits Known(BitWidth); 3036 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth, Q); 3037 if (Known.One[0]) 3038 return true; 3039 3040 return isNonZeroShift(I, DemandedElts, Depth, Q, Known); 3041 } 3042 case Instruction::LShr: 3043 case Instruction::AShr: { 3044 // shr exact can only shift out zero bits. 3045 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(I); 3046 if (BO->isExact()) 3047 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth); 3048 3049 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 3050 // defined if the sign bit is shifted off the end. 3051 KnownBits Known = 3052 computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q); 3053 if (Known.isNegative()) 3054 return true; 3055 3056 return isNonZeroShift(I, DemandedElts, Depth, Q, Known); 3057 } 3058 case Instruction::UDiv: 3059 case Instruction::SDiv: { 3060 // X / Y 3061 // div exact can only produce a zero if the dividend is zero. 3062 if (cast<PossiblyExactOperator>(I)->isExact()) 3063 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth); 3064 3065 KnownBits XKnown = 3066 computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q); 3067 // If X is fully unknown we won't be able to figure anything out so don't 3068 // both computing knownbits for Y. 3069 if (XKnown.isUnknown()) 3070 return false; 3071 3072 KnownBits YKnown = 3073 computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q); 3074 if (I->getOpcode() == Instruction::SDiv) { 3075 // For signed division need to compare abs value of the operands. 3076 XKnown = XKnown.abs(/*IntMinIsPoison*/ false); 3077 YKnown = YKnown.abs(/*IntMinIsPoison*/ false); 3078 } 3079 // If X u>= Y then div is non zero (0/0 is UB). 3080 std::optional<bool> XUgeY = KnownBits::uge(XKnown, YKnown); 3081 // If X is total unknown or X u< Y we won't be able to prove non-zero 3082 // with compute known bits so just return early. 3083 return XUgeY && *XUgeY; 3084 } 3085 case Instruction::Add: { 3086 // X + Y. 3087 3088 // If Add has nuw wrap flag, then if either X or Y is non-zero the result is 3089 // non-zero. 3090 auto *BO = cast<OverflowingBinaryOperator>(I); 3091 return isNonZeroAdd(DemandedElts, Depth, Q, BitWidth, I->getOperand(0), 3092 I->getOperand(1), Q.IIQ.hasNoSignedWrap(BO), 3093 Q.IIQ.hasNoUnsignedWrap(BO)); 3094 } 3095 case Instruction::Mul: { 3096 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(I); 3097 return isNonZeroMul(DemandedElts, Depth, Q, BitWidth, I->getOperand(0), 3098 I->getOperand(1), Q.IIQ.hasNoSignedWrap(BO), 3099 Q.IIQ.hasNoUnsignedWrap(BO)); 3100 } 3101 case Instruction::Select: { 3102 // (C ? X : Y) != 0 if X != 0 and Y != 0. 3103 3104 // First check if the arm is non-zero using `isKnownNonZero`. If that fails, 3105 // then see if the select condition implies the arm is non-zero. For example 3106 // (X != 0 ? X : Y), we know the true arm is non-zero as the `X` "return" is 3107 // dominated by `X != 0`. 3108 auto SelectArmIsNonZero = [&](bool IsTrueArm) { 3109 Value *Op; 3110 Op = IsTrueArm ? I->getOperand(1) : I->getOperand(2); 3111 // Op is trivially non-zero. 3112 if (isKnownNonZero(Op, DemandedElts, Q, Depth)) 3113 return true; 3114 3115 // The condition of the select dominates the true/false arm. Check if the 3116 // condition implies that a given arm is non-zero. 3117 Value *X; 3118 CmpPredicate Pred; 3119 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_Specific(Op), m_Value(X)))) 3120 return false; 3121 3122 if (!IsTrueArm) 3123 Pred = ICmpInst::getInversePredicate(Pred); 3124 3125 return cmpExcludesZero(Pred, X); 3126 }; 3127 3128 if (SelectArmIsNonZero(/* IsTrueArm */ true) && 3129 SelectArmIsNonZero(/* IsTrueArm */ false)) 3130 return true; 3131 break; 3132 } 3133 case Instruction::PHI: { 3134 auto *PN = cast<PHINode>(I); 3135 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 3136 return true; 3137 3138 // Check if all incoming values are non-zero using recursion. 3139 SimplifyQuery RecQ = Q.getWithoutCondContext(); 3140 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 3141 return llvm::all_of(PN->operands(), [&](const Use &U) { 3142 if (U.get() == PN) 3143 return true; 3144 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 3145 // Check if the branch on the phi excludes zero. 3146 CmpPredicate Pred; 3147 Value *X; 3148 BasicBlock *TrueSucc, *FalseSucc; 3149 if (match(RecQ.CxtI, 3150 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)), 3151 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) { 3152 // Check for cases of duplicate successors. 3153 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) { 3154 // If we're using the false successor, invert the predicate. 3155 if (FalseSucc == PN->getParent()) 3156 Pred = CmpInst::getInversePredicate(Pred); 3157 if (cmpExcludesZero(Pred, X)) 3158 return true; 3159 } 3160 } 3161 // Finally recurse on the edge and check it directly. 3162 return isKnownNonZero(U.get(), DemandedElts, RecQ, NewDepth); 3163 }); 3164 } 3165 case Instruction::InsertElement: { 3166 if (isa<ScalableVectorType>(I->getType())) 3167 break; 3168 3169 const Value *Vec = I->getOperand(0); 3170 const Value *Elt = I->getOperand(1); 3171 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 3172 3173 unsigned NumElts = DemandedElts.getBitWidth(); 3174 APInt DemandedVecElts = DemandedElts; 3175 bool SkipElt = false; 3176 // If we know the index we are inserting too, clear it from Vec check. 3177 if (CIdx && CIdx->getValue().ult(NumElts)) { 3178 DemandedVecElts.clearBit(CIdx->getZExtValue()); 3179 SkipElt = !DemandedElts[CIdx->getZExtValue()]; 3180 } 3181 3182 // Result is zero if Elt is non-zero and rest of the demanded elts in Vec 3183 // are non-zero. 3184 return (SkipElt || isKnownNonZero(Elt, Q, Depth)) && 3185 (DemandedVecElts.isZero() || 3186 isKnownNonZero(Vec, DemandedVecElts, Q, Depth)); 3187 } 3188 case Instruction::ExtractElement: 3189 if (const auto *EEI = dyn_cast<ExtractElementInst>(I)) { 3190 const Value *Vec = EEI->getVectorOperand(); 3191 const Value *Idx = EEI->getIndexOperand(); 3192 auto *CIdx = dyn_cast<ConstantInt>(Idx); 3193 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 3194 unsigned NumElts = VecTy->getNumElements(); 3195 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 3196 if (CIdx && CIdx->getValue().ult(NumElts)) 3197 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 3198 return isKnownNonZero(Vec, DemandedVecElts, Q, Depth); 3199 } 3200 } 3201 break; 3202 case Instruction::ShuffleVector: { 3203 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 3204 if (!Shuf) 3205 break; 3206 APInt DemandedLHS, DemandedRHS; 3207 // For undef elements, we don't know anything about the common state of 3208 // the shuffle result. 3209 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3210 break; 3211 // If demanded elements for both vecs are non-zero, the shuffle is non-zero. 3212 return (DemandedRHS.isZero() || 3213 isKnownNonZero(Shuf->getOperand(1), DemandedRHS, Q, Depth)) && 3214 (DemandedLHS.isZero() || 3215 isKnownNonZero(Shuf->getOperand(0), DemandedLHS, Q, Depth)); 3216 } 3217 case Instruction::Freeze: 3218 return isKnownNonZero(I->getOperand(0), Q, Depth) && 3219 isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 3220 Depth); 3221 case Instruction::Load: { 3222 auto *LI = cast<LoadInst>(I); 3223 // A Load tagged with nonnull or dereferenceable with null pointer undefined 3224 // is never null. 3225 if (auto *PtrT = dyn_cast<PointerType>(I->getType())) { 3226 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull) || 3227 (Q.IIQ.getMetadata(LI, LLVMContext::MD_dereferenceable) && 3228 !NullPointerIsDefined(LI->getFunction(), PtrT->getAddressSpace()))) 3229 return true; 3230 } else if (MDNode *Ranges = Q.IIQ.getMetadata(LI, LLVMContext::MD_range)) { 3231 return rangeMetadataExcludesValue(Ranges, APInt::getZero(BitWidth)); 3232 } 3233 3234 // No need to fall through to computeKnownBits as range metadata is already 3235 // handled in isKnownNonZero. 3236 return false; 3237 } 3238 case Instruction::ExtractValue: { 3239 const WithOverflowInst *WO; 3240 if (match(I, m_ExtractValue<0>(m_WithOverflowInst(WO)))) { 3241 switch (WO->getBinaryOp()) { 3242 default: 3243 break; 3244 case Instruction::Add: 3245 return isNonZeroAdd(DemandedElts, Depth, Q, BitWidth, 3246 WO->getArgOperand(0), WO->getArgOperand(1), 3247 /*NSW=*/false, 3248 /*NUW=*/false); 3249 case Instruction::Sub: 3250 return isNonZeroSub(DemandedElts, Depth, Q, BitWidth, 3251 WO->getArgOperand(0), WO->getArgOperand(1)); 3252 case Instruction::Mul: 3253 return isNonZeroMul(DemandedElts, Depth, Q, BitWidth, 3254 WO->getArgOperand(0), WO->getArgOperand(1), 3255 /*NSW=*/false, /*NUW=*/false); 3256 break; 3257 } 3258 } 3259 break; 3260 } 3261 case Instruction::Call: 3262 case Instruction::Invoke: { 3263 const auto *Call = cast<CallBase>(I); 3264 if (I->getType()->isPointerTy()) { 3265 if (Call->isReturnNonNull()) 3266 return true; 3267 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 3268 return isKnownNonZero(RP, Q, Depth); 3269 } else { 3270 if (MDNode *Ranges = Q.IIQ.getMetadata(Call, LLVMContext::MD_range)) 3271 return rangeMetadataExcludesValue(Ranges, APInt::getZero(BitWidth)); 3272 if (std::optional<ConstantRange> Range = Call->getRange()) { 3273 const APInt ZeroValue(Range->getBitWidth(), 0); 3274 if (!Range->contains(ZeroValue)) 3275 return true; 3276 } 3277 if (const Value *RV = Call->getReturnedArgOperand()) 3278 if (RV->getType() == I->getType() && isKnownNonZero(RV, Q, Depth)) 3279 return true; 3280 } 3281 3282 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 3283 switch (II->getIntrinsicID()) { 3284 case Intrinsic::sshl_sat: 3285 case Intrinsic::ushl_sat: 3286 case Intrinsic::abs: 3287 case Intrinsic::bitreverse: 3288 case Intrinsic::bswap: 3289 case Intrinsic::ctpop: 3290 return isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth); 3291 // NB: We don't do usub_sat here as in any case we can prove its 3292 // non-zero, we will fold it to `sub nuw` in InstCombine. 3293 case Intrinsic::ssub_sat: 3294 return isNonZeroSub(DemandedElts, Depth, Q, BitWidth, 3295 II->getArgOperand(0), II->getArgOperand(1)); 3296 case Intrinsic::sadd_sat: 3297 return isNonZeroAdd(DemandedElts, Depth, Q, BitWidth, 3298 II->getArgOperand(0), II->getArgOperand(1), 3299 /*NSW=*/true, /* NUW=*/false); 3300 // Vec reverse preserves zero/non-zero status from input vec. 3301 case Intrinsic::vector_reverse: 3302 return isKnownNonZero(II->getArgOperand(0), DemandedElts.reverseBits(), 3303 Q, Depth); 3304 // umin/smin/smax/smin/or of all non-zero elements is always non-zero. 3305 case Intrinsic::vector_reduce_or: 3306 case Intrinsic::vector_reduce_umax: 3307 case Intrinsic::vector_reduce_umin: 3308 case Intrinsic::vector_reduce_smax: 3309 case Intrinsic::vector_reduce_smin: 3310 return isKnownNonZero(II->getArgOperand(0), Q, Depth); 3311 case Intrinsic::umax: 3312 case Intrinsic::uadd_sat: 3313 // umax(X, (X != 0)) is non zero 3314 // X +usat (X != 0) is non zero 3315 if (matchOpWithOpEqZero(II->getArgOperand(0), II->getArgOperand(1))) 3316 return true; 3317 3318 return isKnownNonZero(II->getArgOperand(1), DemandedElts, Q, Depth) || 3319 isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth); 3320 case Intrinsic::smax: { 3321 // If either arg is strictly positive the result is non-zero. Otherwise 3322 // the result is non-zero if both ops are non-zero. 3323 auto IsNonZero = [&](Value *Op, std::optional<bool> &OpNonZero, 3324 const KnownBits &OpKnown) { 3325 if (!OpNonZero.has_value()) 3326 OpNonZero = OpKnown.isNonZero() || 3327 isKnownNonZero(Op, DemandedElts, Q, Depth); 3328 return *OpNonZero; 3329 }; 3330 // Avoid re-computing isKnownNonZero. 3331 std::optional<bool> Op0NonZero, Op1NonZero; 3332 KnownBits Op1Known = 3333 computeKnownBits(II->getArgOperand(1), DemandedElts, Depth, Q); 3334 if (Op1Known.isNonNegative() && 3335 IsNonZero(II->getArgOperand(1), Op1NonZero, Op1Known)) 3336 return true; 3337 KnownBits Op0Known = 3338 computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q); 3339 if (Op0Known.isNonNegative() && 3340 IsNonZero(II->getArgOperand(0), Op0NonZero, Op0Known)) 3341 return true; 3342 return IsNonZero(II->getArgOperand(1), Op1NonZero, Op1Known) && 3343 IsNonZero(II->getArgOperand(0), Op0NonZero, Op0Known); 3344 } 3345 case Intrinsic::smin: { 3346 // If either arg is negative the result is non-zero. Otherwise 3347 // the result is non-zero if both ops are non-zero. 3348 KnownBits Op1Known = 3349 computeKnownBits(II->getArgOperand(1), DemandedElts, Depth, Q); 3350 if (Op1Known.isNegative()) 3351 return true; 3352 KnownBits Op0Known = 3353 computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q); 3354 if (Op0Known.isNegative()) 3355 return true; 3356 3357 if (Op1Known.isNonZero() && Op0Known.isNonZero()) 3358 return true; 3359 } 3360 [[fallthrough]]; 3361 case Intrinsic::umin: 3362 return isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth) && 3363 isKnownNonZero(II->getArgOperand(1), DemandedElts, Q, Depth); 3364 case Intrinsic::cttz: 3365 return computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q) 3366 .Zero[0]; 3367 case Intrinsic::ctlz: 3368 return computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q) 3369 .isNonNegative(); 3370 case Intrinsic::fshr: 3371 case Intrinsic::fshl: 3372 // If Op0 == Op1, this is a rotate. rotate(x, y) != 0 iff x != 0. 3373 if (II->getArgOperand(0) == II->getArgOperand(1)) 3374 return isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth); 3375 break; 3376 case Intrinsic::vscale: 3377 return true; 3378 case Intrinsic::experimental_get_vector_length: 3379 return isKnownNonZero(I->getOperand(0), Q, Depth); 3380 default: 3381 break; 3382 } 3383 break; 3384 } 3385 3386 return false; 3387 } 3388 } 3389 3390 KnownBits Known(BitWidth); 3391 computeKnownBits(I, DemandedElts, Known, Depth, Q); 3392 return Known.One != 0; 3393 } 3394 3395 /// Return true if the given value is known to be non-zero when defined. For 3396 /// vectors, return true if every demanded element is known to be non-zero when 3397 /// defined. For pointers, if the context instruction and dominator tree are 3398 /// specified, perform context-sensitive analysis and return true if the 3399 /// pointer couldn't possibly be null at the specified instruction. 3400 /// Supports values with integer or pointer type and vectors of integers. 3401 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 3402 const SimplifyQuery &Q, unsigned Depth) { 3403 Type *Ty = V->getType(); 3404 3405 #ifndef NDEBUG 3406 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3407 3408 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 3409 assert( 3410 FVTy->getNumElements() == DemandedElts.getBitWidth() && 3411 "DemandedElt width should equal the fixed vector number of elements"); 3412 } else { 3413 assert(DemandedElts == APInt(1, 1) && 3414 "DemandedElt width should be 1 for scalars"); 3415 } 3416 #endif 3417 3418 if (auto *C = dyn_cast<Constant>(V)) { 3419 if (C->isNullValue()) 3420 return false; 3421 if (isa<ConstantInt>(C)) 3422 // Must be non-zero due to null test above. 3423 return true; 3424 3425 // For constant vectors, check that all elements are poison or known 3426 // non-zero to determine that the whole vector is known non-zero. 3427 if (auto *VecTy = dyn_cast<FixedVectorType>(Ty)) { 3428 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 3429 if (!DemandedElts[i]) 3430 continue; 3431 Constant *Elt = C->getAggregateElement(i); 3432 if (!Elt || Elt->isNullValue()) 3433 return false; 3434 if (!isa<PoisonValue>(Elt) && !isa<ConstantInt>(Elt)) 3435 return false; 3436 } 3437 return true; 3438 } 3439 3440 // Constant ptrauth can be null, iff the base pointer can be. 3441 if (auto *CPA = dyn_cast<ConstantPtrAuth>(V)) 3442 return isKnownNonZero(CPA->getPointer(), DemandedElts, Q, Depth); 3443 3444 // A global variable in address space 0 is non null unless extern weak 3445 // or an absolute symbol reference. Other address spaces may have null as a 3446 // valid address for a global, so we can't assume anything. 3447 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 3448 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3449 GV->getType()->getAddressSpace() == 0) 3450 return true; 3451 } 3452 3453 // For constant expressions, fall through to the Operator code below. 3454 if (!isa<ConstantExpr>(V)) 3455 return false; 3456 } 3457 3458 if (const auto *A = dyn_cast<Argument>(V)) 3459 if (std::optional<ConstantRange> Range = A->getRange()) { 3460 const APInt ZeroValue(Range->getBitWidth(), 0); 3461 if (!Range->contains(ZeroValue)) 3462 return true; 3463 } 3464 3465 if (!isa<Constant>(V) && isKnownNonZeroFromAssume(V, Q)) 3466 return true; 3467 3468 // Some of the tests below are recursive, so bail out if we hit the limit. 3469 if (Depth++ >= MaxAnalysisRecursionDepth) 3470 return false; 3471 3472 // Check for pointer simplifications. 3473 3474 if (PointerType *PtrTy = dyn_cast<PointerType>(Ty)) { 3475 // A byval, inalloca may not be null in a non-default addres space. A 3476 // nonnull argument is assumed never 0. 3477 if (const Argument *A = dyn_cast<Argument>(V)) { 3478 if (((A->hasPassPointeeByValueCopyAttr() && 3479 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 3480 A->hasNonNullAttr())) 3481 return true; 3482 } 3483 } 3484 3485 if (const auto *I = dyn_cast<Operator>(V)) 3486 if (isKnownNonZeroFromOperator(I, DemandedElts, Depth, Q)) 3487 return true; 3488 3489 if (!isa<Constant>(V) && 3490 isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 3491 return true; 3492 3493 return false; 3494 } 3495 3496 bool llvm::isKnownNonZero(const Value *V, const SimplifyQuery &Q, 3497 unsigned Depth) { 3498 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 3499 APInt DemandedElts = 3500 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 3501 return ::isKnownNonZero(V, DemandedElts, Q, Depth); 3502 } 3503 3504 /// If the pair of operators are the same invertible function, return the 3505 /// the operands of the function corresponding to each input. Otherwise, 3506 /// return std::nullopt. An invertible function is one that is 1-to-1 and maps 3507 /// every input value to exactly one output value. This is equivalent to 3508 /// saying that Op1 and Op2 are equal exactly when the specified pair of 3509 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 3510 static std::optional<std::pair<Value*, Value*>> 3511 getInvertibleOperands(const Operator *Op1, 3512 const Operator *Op2) { 3513 if (Op1->getOpcode() != Op2->getOpcode()) 3514 return std::nullopt; 3515 3516 auto getOperands = [&](unsigned OpNum) -> auto { 3517 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 3518 }; 3519 3520 switch (Op1->getOpcode()) { 3521 default: 3522 break; 3523 case Instruction::Or: 3524 if (!cast<PossiblyDisjointInst>(Op1)->isDisjoint() || 3525 !cast<PossiblyDisjointInst>(Op2)->isDisjoint()) 3526 break; 3527 [[fallthrough]]; 3528 case Instruction::Xor: 3529 case Instruction::Add: { 3530 Value *Other; 3531 if (match(Op2, m_c_BinOp(m_Specific(Op1->getOperand(0)), m_Value(Other)))) 3532 return std::make_pair(Op1->getOperand(1), Other); 3533 if (match(Op2, m_c_BinOp(m_Specific(Op1->getOperand(1)), m_Value(Other)))) 3534 return std::make_pair(Op1->getOperand(0), Other); 3535 break; 3536 } 3537 case Instruction::Sub: 3538 if (Op1->getOperand(0) == Op2->getOperand(0)) 3539 return getOperands(1); 3540 if (Op1->getOperand(1) == Op2->getOperand(1)) 3541 return getOperands(0); 3542 break; 3543 case Instruction::Mul: { 3544 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 3545 // and N is the bitwdith. The nsw case is non-obvious, but proven by 3546 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 3547 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 3548 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 3549 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 3550 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 3551 break; 3552 3553 // Assume operand order has been canonicalized 3554 if (Op1->getOperand(1) == Op2->getOperand(1) && 3555 isa<ConstantInt>(Op1->getOperand(1)) && 3556 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 3557 return getOperands(0); 3558 break; 3559 } 3560 case Instruction::Shl: { 3561 // Same as multiplies, with the difference that we don't need to check 3562 // for a non-zero multiply. Shifts always multiply by non-zero. 3563 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 3564 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 3565 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 3566 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 3567 break; 3568 3569 if (Op1->getOperand(1) == Op2->getOperand(1)) 3570 return getOperands(0); 3571 break; 3572 } 3573 case Instruction::AShr: 3574 case Instruction::LShr: { 3575 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 3576 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 3577 if (!PEO1->isExact() || !PEO2->isExact()) 3578 break; 3579 3580 if (Op1->getOperand(1) == Op2->getOperand(1)) 3581 return getOperands(0); 3582 break; 3583 } 3584 case Instruction::SExt: 3585 case Instruction::ZExt: 3586 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 3587 return getOperands(0); 3588 break; 3589 case Instruction::PHI: { 3590 const PHINode *PN1 = cast<PHINode>(Op1); 3591 const PHINode *PN2 = cast<PHINode>(Op2); 3592 3593 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 3594 // are a single invertible function of the start values? Note that repeated 3595 // application of an invertible function is also invertible 3596 BinaryOperator *BO1 = nullptr; 3597 Value *Start1 = nullptr, *Step1 = nullptr; 3598 BinaryOperator *BO2 = nullptr; 3599 Value *Start2 = nullptr, *Step2 = nullptr; 3600 if (PN1->getParent() != PN2->getParent() || 3601 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 3602 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 3603 break; 3604 3605 auto Values = getInvertibleOperands(cast<Operator>(BO1), 3606 cast<Operator>(BO2)); 3607 if (!Values) 3608 break; 3609 3610 // We have to be careful of mutually defined recurrences here. Ex: 3611 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 3612 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 3613 // The invertibility of these is complicated, and not worth reasoning 3614 // about (yet?). 3615 if (Values->first != PN1 || Values->second != PN2) 3616 break; 3617 3618 return std::make_pair(Start1, Start2); 3619 } 3620 } 3621 return std::nullopt; 3622 } 3623 3624 /// Return true if V1 == (binop V2, X), where X is known non-zero. 3625 /// Only handle a small subset of binops where (binop V2, X) with non-zero X 3626 /// implies V2 != V1. 3627 static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2, 3628 const APInt &DemandedElts, unsigned Depth, 3629 const SimplifyQuery &Q) { 3630 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 3631 if (!BO) 3632 return false; 3633 switch (BO->getOpcode()) { 3634 default: 3635 break; 3636 case Instruction::Or: 3637 if (!cast<PossiblyDisjointInst>(V1)->isDisjoint()) 3638 break; 3639 [[fallthrough]]; 3640 case Instruction::Xor: 3641 case Instruction::Add: 3642 Value *Op = nullptr; 3643 if (V2 == BO->getOperand(0)) 3644 Op = BO->getOperand(1); 3645 else if (V2 == BO->getOperand(1)) 3646 Op = BO->getOperand(0); 3647 else 3648 return false; 3649 return isKnownNonZero(Op, DemandedElts, Q, Depth + 1); 3650 } 3651 return false; 3652 } 3653 3654 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 3655 /// the multiplication is nuw or nsw. 3656 static bool isNonEqualMul(const Value *V1, const Value *V2, 3657 const APInt &DemandedElts, unsigned Depth, 3658 const SimplifyQuery &Q) { 3659 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 3660 const APInt *C; 3661 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 3662 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 3663 !C->isZero() && !C->isOne() && 3664 isKnownNonZero(V1, DemandedElts, Q, Depth + 1); 3665 } 3666 return false; 3667 } 3668 3669 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 3670 /// the shift is nuw or nsw. 3671 static bool isNonEqualShl(const Value *V1, const Value *V2, 3672 const APInt &DemandedElts, unsigned Depth, 3673 const SimplifyQuery &Q) { 3674 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 3675 const APInt *C; 3676 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 3677 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 3678 !C->isZero() && isKnownNonZero(V1, DemandedElts, Q, Depth + 1); 3679 } 3680 return false; 3681 } 3682 3683 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 3684 const APInt &DemandedElts, unsigned Depth, 3685 const SimplifyQuery &Q) { 3686 // Check two PHIs are in same block. 3687 if (PN1->getParent() != PN2->getParent()) 3688 return false; 3689 3690 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 3691 bool UsedFullRecursion = false; 3692 for (const BasicBlock *IncomBB : PN1->blocks()) { 3693 if (!VisitedBBs.insert(IncomBB).second) 3694 continue; // Don't reprocess blocks that we have dealt with already. 3695 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 3696 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 3697 const APInt *C1, *C2; 3698 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 3699 continue; 3700 3701 // Only one pair of phi operands is allowed for full recursion. 3702 if (UsedFullRecursion) 3703 return false; 3704 3705 SimplifyQuery RecQ = Q.getWithoutCondContext(); 3706 RecQ.CxtI = IncomBB->getTerminator(); 3707 if (!isKnownNonEqual(IV1, IV2, DemandedElts, Depth + 1, RecQ)) 3708 return false; 3709 UsedFullRecursion = true; 3710 } 3711 return true; 3712 } 3713 3714 static bool isNonEqualSelect(const Value *V1, const Value *V2, 3715 const APInt &DemandedElts, unsigned Depth, 3716 const SimplifyQuery &Q) { 3717 const SelectInst *SI1 = dyn_cast<SelectInst>(V1); 3718 if (!SI1) 3719 return false; 3720 3721 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) { 3722 const Value *Cond1 = SI1->getCondition(); 3723 const Value *Cond2 = SI2->getCondition(); 3724 if (Cond1 == Cond2) 3725 return isKnownNonEqual(SI1->getTrueValue(), SI2->getTrueValue(), 3726 DemandedElts, Depth + 1, Q) && 3727 isKnownNonEqual(SI1->getFalseValue(), SI2->getFalseValue(), 3728 DemandedElts, Depth + 1, Q); 3729 } 3730 return isKnownNonEqual(SI1->getTrueValue(), V2, DemandedElts, Depth + 1, Q) && 3731 isKnownNonEqual(SI1->getFalseValue(), V2, DemandedElts, Depth + 1, Q); 3732 } 3733 3734 // Check to see if A is both a GEP and is the incoming value for a PHI in the 3735 // loop, and B is either a ptr or another GEP. If the PHI has 2 incoming values, 3736 // one of them being the recursive GEP A and the other a ptr at same base and at 3737 // the same/higher offset than B we are only incrementing the pointer further in 3738 // loop if offset of recursive GEP is greater than 0. 3739 static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B, 3740 const SimplifyQuery &Q) { 3741 if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy()) 3742 return false; 3743 3744 auto *GEPA = dyn_cast<GEPOperator>(A); 3745 if (!GEPA || GEPA->getNumIndices() != 1 || !isa<Constant>(GEPA->idx_begin())) 3746 return false; 3747 3748 // Handle 2 incoming PHI values with one being a recursive GEP. 3749 auto *PN = dyn_cast<PHINode>(GEPA->getPointerOperand()); 3750 if (!PN || PN->getNumIncomingValues() != 2) 3751 return false; 3752 3753 // Search for the recursive GEP as an incoming operand, and record that as 3754 // Step. 3755 Value *Start = nullptr; 3756 Value *Step = const_cast<Value *>(A); 3757 if (PN->getIncomingValue(0) == Step) 3758 Start = PN->getIncomingValue(1); 3759 else if (PN->getIncomingValue(1) == Step) 3760 Start = PN->getIncomingValue(0); 3761 else 3762 return false; 3763 3764 // Other incoming node base should match the B base. 3765 // StartOffset >= OffsetB && StepOffset > 0? 3766 // StartOffset <= OffsetB && StepOffset < 0? 3767 // Is non-equal if above are true. 3768 // We use stripAndAccumulateInBoundsConstantOffsets to restrict the 3769 // optimisation to inbounds GEPs only. 3770 unsigned IndexWidth = Q.DL.getIndexTypeSizeInBits(Start->getType()); 3771 APInt StartOffset(IndexWidth, 0); 3772 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.DL, StartOffset); 3773 APInt StepOffset(IndexWidth, 0); 3774 Step = Step->stripAndAccumulateInBoundsConstantOffsets(Q.DL, StepOffset); 3775 3776 // Check if Base Pointer of Step matches the PHI. 3777 if (Step != PN) 3778 return false; 3779 APInt OffsetB(IndexWidth, 0); 3780 B = B->stripAndAccumulateInBoundsConstantOffsets(Q.DL, OffsetB); 3781 return Start == B && 3782 ((StartOffset.sge(OffsetB) && StepOffset.isStrictlyPositive()) || 3783 (StartOffset.sle(OffsetB) && StepOffset.isNegative())); 3784 } 3785 3786 /// Return true if it is known that V1 != V2. 3787 static bool isKnownNonEqual(const Value *V1, const Value *V2, 3788 const APInt &DemandedElts, unsigned Depth, 3789 const SimplifyQuery &Q) { 3790 if (V1 == V2) 3791 return false; 3792 if (V1->getType() != V2->getType()) 3793 // We can't look through casts yet. 3794 return false; 3795 3796 if (Depth >= MaxAnalysisRecursionDepth) 3797 return false; 3798 3799 // See if we can recurse through (exactly one of) our operands. This 3800 // requires our operation be 1-to-1 and map every input value to exactly 3801 // one output value. Such an operation is invertible. 3802 auto *O1 = dyn_cast<Operator>(V1); 3803 auto *O2 = dyn_cast<Operator>(V2); 3804 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 3805 if (auto Values = getInvertibleOperands(O1, O2)) 3806 return isKnownNonEqual(Values->first, Values->second, DemandedElts, 3807 Depth + 1, Q); 3808 3809 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 3810 const PHINode *PN2 = cast<PHINode>(V2); 3811 // FIXME: This is missing a generalization to handle the case where one is 3812 // a PHI and another one isn't. 3813 if (isNonEqualPHIs(PN1, PN2, DemandedElts, Depth, Q)) 3814 return true; 3815 }; 3816 } 3817 3818 if (isModifyingBinopOfNonZero(V1, V2, DemandedElts, Depth, Q) || 3819 isModifyingBinopOfNonZero(V2, V1, DemandedElts, Depth, Q)) 3820 return true; 3821 3822 if (isNonEqualMul(V1, V2, DemandedElts, Depth, Q) || 3823 isNonEqualMul(V2, V1, DemandedElts, Depth, Q)) 3824 return true; 3825 3826 if (isNonEqualShl(V1, V2, DemandedElts, Depth, Q) || 3827 isNonEqualShl(V2, V1, DemandedElts, Depth, Q)) 3828 return true; 3829 3830 if (V1->getType()->isIntOrIntVectorTy()) { 3831 // Are any known bits in V1 contradictory to known bits in V2? If V1 3832 // has a known zero where V2 has a known one, they must not be equal. 3833 KnownBits Known1 = computeKnownBits(V1, DemandedElts, Depth, Q); 3834 if (!Known1.isUnknown()) { 3835 KnownBits Known2 = computeKnownBits(V2, DemandedElts, Depth, Q); 3836 if (Known1.Zero.intersects(Known2.One) || 3837 Known2.Zero.intersects(Known1.One)) 3838 return true; 3839 } 3840 } 3841 3842 if (isNonEqualSelect(V1, V2, DemandedElts, Depth, Q) || 3843 isNonEqualSelect(V2, V1, DemandedElts, Depth, Q)) 3844 return true; 3845 3846 if (isNonEqualPointersWithRecursiveGEP(V1, V2, Q) || 3847 isNonEqualPointersWithRecursiveGEP(V2, V1, Q)) 3848 return true; 3849 3850 Value *A, *B; 3851 // PtrToInts are NonEqual if their Ptrs are NonEqual. 3852 // Check PtrToInt type matches the pointer size. 3853 if (match(V1, m_PtrToIntSameSize(Q.DL, m_Value(A))) && 3854 match(V2, m_PtrToIntSameSize(Q.DL, m_Value(B)))) 3855 return isKnownNonEqual(A, B, DemandedElts, Depth + 1, Q); 3856 3857 return false; 3858 } 3859 3860 /// For vector constants, loop over the elements and find the constant with the 3861 /// minimum number of sign bits. Return 0 if the value is not a vector constant 3862 /// or if any element was not analyzed; otherwise, return the count for the 3863 /// element with the minimum number of sign bits. 3864 static unsigned computeNumSignBitsVectorConstant(const Value *V, 3865 const APInt &DemandedElts, 3866 unsigned TyBits) { 3867 const auto *CV = dyn_cast<Constant>(V); 3868 if (!CV || !isa<FixedVectorType>(CV->getType())) 3869 return 0; 3870 3871 unsigned MinSignBits = TyBits; 3872 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 3873 for (unsigned i = 0; i != NumElts; ++i) { 3874 if (!DemandedElts[i]) 3875 continue; 3876 // If we find a non-ConstantInt, bail out. 3877 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 3878 if (!Elt) 3879 return 0; 3880 3881 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 3882 } 3883 3884 return MinSignBits; 3885 } 3886 3887 static unsigned ComputeNumSignBitsImpl(const Value *V, 3888 const APInt &DemandedElts, 3889 unsigned Depth, const SimplifyQuery &Q); 3890 3891 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 3892 unsigned Depth, const SimplifyQuery &Q) { 3893 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 3894 assert(Result > 0 && "At least one sign bit needs to be present!"); 3895 return Result; 3896 } 3897 3898 /// Return the number of times the sign bit of the register is replicated into 3899 /// the other bits. We know that at least 1 bit is always equal to the sign bit 3900 /// (itself), but other cases can give us information. For example, immediately 3901 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 3902 /// other, so we return 3. For vectors, return the number of sign bits for the 3903 /// vector element with the minimum number of known sign bits of the demanded 3904 /// elements in the vector specified by DemandedElts. 3905 static unsigned ComputeNumSignBitsImpl(const Value *V, 3906 const APInt &DemandedElts, 3907 unsigned Depth, const SimplifyQuery &Q) { 3908 Type *Ty = V->getType(); 3909 #ifndef NDEBUG 3910 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3911 3912 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 3913 assert( 3914 FVTy->getNumElements() == DemandedElts.getBitWidth() && 3915 "DemandedElt width should equal the fixed vector number of elements"); 3916 } else { 3917 assert(DemandedElts == APInt(1, 1) && 3918 "DemandedElt width should be 1 for scalars"); 3919 } 3920 #endif 3921 3922 // We return the minimum number of sign bits that are guaranteed to be present 3923 // in V, so for undef we have to conservatively return 1. We don't have the 3924 // same behavior for poison though -- that's a FIXME today. 3925 3926 Type *ScalarTy = Ty->getScalarType(); 3927 unsigned TyBits = ScalarTy->isPointerTy() ? 3928 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 3929 Q.DL.getTypeSizeInBits(ScalarTy); 3930 3931 unsigned Tmp, Tmp2; 3932 unsigned FirstAnswer = 1; 3933 3934 // Note that ConstantInt is handled by the general computeKnownBits case 3935 // below. 3936 3937 if (Depth == MaxAnalysisRecursionDepth) 3938 return 1; 3939 3940 if (auto *U = dyn_cast<Operator>(V)) { 3941 switch (Operator::getOpcode(V)) { 3942 default: break; 3943 case Instruction::SExt: 3944 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 3945 return ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q) + 3946 Tmp; 3947 3948 case Instruction::SDiv: { 3949 const APInt *Denominator; 3950 // sdiv X, C -> adds log(C) sign bits. 3951 if (match(U->getOperand(1), m_APInt(Denominator))) { 3952 3953 // Ignore non-positive denominator. 3954 if (!Denominator->isStrictlyPositive()) 3955 break; 3956 3957 // Calculate the incoming numerator bits. 3958 unsigned NumBits = 3959 ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q); 3960 3961 // Add floor(log(C)) bits to the numerator bits. 3962 return std::min(TyBits, NumBits + Denominator->logBase2()); 3963 } 3964 break; 3965 } 3966 3967 case Instruction::SRem: { 3968 Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q); 3969 3970 const APInt *Denominator; 3971 // srem X, C -> we know that the result is within [-C+1,C) when C is a 3972 // positive constant. This let us put a lower bound on the number of sign 3973 // bits. 3974 if (match(U->getOperand(1), m_APInt(Denominator))) { 3975 3976 // Ignore non-positive denominator. 3977 if (Denominator->isStrictlyPositive()) { 3978 // Calculate the leading sign bit constraints by examining the 3979 // denominator. Given that the denominator is positive, there are two 3980 // cases: 3981 // 3982 // 1. The numerator is positive. The result range is [0,C) and 3983 // [0,C) u< (1 << ceilLogBase2(C)). 3984 // 3985 // 2. The numerator is negative. Then the result range is (-C,0] and 3986 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3987 // 3988 // Thus a lower bound on the number of sign bits is `TyBits - 3989 // ceilLogBase2(C)`. 3990 3991 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3992 Tmp = std::max(Tmp, ResBits); 3993 } 3994 } 3995 return Tmp; 3996 } 3997 3998 case Instruction::AShr: { 3999 Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q); 4000 // ashr X, C -> adds C sign bits. Vectors too. 4001 const APInt *ShAmt; 4002 if (match(U->getOperand(1), m_APInt(ShAmt))) { 4003 if (ShAmt->uge(TyBits)) 4004 break; // Bad shift. 4005 unsigned ShAmtLimited = ShAmt->getZExtValue(); 4006 Tmp += ShAmtLimited; 4007 if (Tmp > TyBits) Tmp = TyBits; 4008 } 4009 return Tmp; 4010 } 4011 case Instruction::Shl: { 4012 const APInt *ShAmt; 4013 Value *X = nullptr; 4014 if (match(U->getOperand(1), m_APInt(ShAmt))) { 4015 // shl destroys sign bits. 4016 if (ShAmt->uge(TyBits)) 4017 break; // Bad shift. 4018 // We can look through a zext (more or less treating it as a sext) if 4019 // all extended bits are shifted out. 4020 if (match(U->getOperand(0), m_ZExt(m_Value(X))) && 4021 ShAmt->uge(TyBits - X->getType()->getScalarSizeInBits())) { 4022 Tmp = ComputeNumSignBits(X, DemandedElts, Depth + 1, Q); 4023 Tmp += TyBits - X->getType()->getScalarSizeInBits(); 4024 } else 4025 Tmp = 4026 ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q); 4027 if (ShAmt->uge(Tmp)) 4028 break; // Shifted all sign bits out. 4029 Tmp2 = ShAmt->getZExtValue(); 4030 return Tmp - Tmp2; 4031 } 4032 break; 4033 } 4034 case Instruction::And: 4035 case Instruction::Or: 4036 case Instruction::Xor: // NOT is handled here. 4037 // Logical binary ops preserve the number of sign bits at the worst. 4038 Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q); 4039 if (Tmp != 1) { 4040 Tmp2 = ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q); 4041 FirstAnswer = std::min(Tmp, Tmp2); 4042 // We computed what we know about the sign bits as our first 4043 // answer. Now proceed to the generic code that uses 4044 // computeKnownBits, and pick whichever answer is better. 4045 } 4046 break; 4047 4048 case Instruction::Select: { 4049 // If we have a clamp pattern, we know that the number of sign bits will 4050 // be the minimum of the clamp min/max range. 4051 const Value *X; 4052 const APInt *CLow, *CHigh; 4053 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 4054 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 4055 4056 Tmp = ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q); 4057 if (Tmp == 1) 4058 break; 4059 Tmp2 = ComputeNumSignBits(U->getOperand(2), DemandedElts, Depth + 1, Q); 4060 return std::min(Tmp, Tmp2); 4061 } 4062 4063 case Instruction::Add: 4064 // Add can have at most one carry bit. Thus we know that the output 4065 // is, at worst, one more bit than the inputs. 4066 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 4067 if (Tmp == 1) break; 4068 4069 // Special case decrementing a value (ADD X, -1): 4070 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 4071 if (CRHS->isAllOnesValue()) { 4072 KnownBits Known(TyBits); 4073 computeKnownBits(U->getOperand(0), DemandedElts, Known, Depth + 1, Q); 4074 4075 // If the input is known to be 0 or 1, the output is 0/-1, which is 4076 // all sign bits set. 4077 if ((Known.Zero | 1).isAllOnes()) 4078 return TyBits; 4079 4080 // If we are subtracting one from a positive number, there is no carry 4081 // out of the result. 4082 if (Known.isNonNegative()) 4083 return Tmp; 4084 } 4085 4086 Tmp2 = ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q); 4087 if (Tmp2 == 1) 4088 break; 4089 return std::min(Tmp, Tmp2) - 1; 4090 4091 case Instruction::Sub: 4092 Tmp2 = ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q); 4093 if (Tmp2 == 1) 4094 break; 4095 4096 // Handle NEG. 4097 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 4098 if (CLHS->isNullValue()) { 4099 KnownBits Known(TyBits); 4100 computeKnownBits(U->getOperand(1), DemandedElts, Known, Depth + 1, Q); 4101 // If the input is known to be 0 or 1, the output is 0/-1, which is 4102 // all sign bits set. 4103 if ((Known.Zero | 1).isAllOnes()) 4104 return TyBits; 4105 4106 // If the input is known to be positive (the sign bit is known clear), 4107 // the output of the NEG has the same number of sign bits as the 4108 // input. 4109 if (Known.isNonNegative()) 4110 return Tmp2; 4111 4112 // Otherwise, we treat this like a SUB. 4113 } 4114 4115 // Sub can have at most one carry bit. Thus we know that the output 4116 // is, at worst, one more bit than the inputs. 4117 Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q); 4118 if (Tmp == 1) 4119 break; 4120 return std::min(Tmp, Tmp2) - 1; 4121 4122 case Instruction::Mul: { 4123 // The output of the Mul can be at most twice the valid bits in the 4124 // inputs. 4125 unsigned SignBitsOp0 = 4126 ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q); 4127 if (SignBitsOp0 == 1) 4128 break; 4129 unsigned SignBitsOp1 = 4130 ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q); 4131 if (SignBitsOp1 == 1) 4132 break; 4133 unsigned OutValidBits = 4134 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 4135 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 4136 } 4137 4138 case Instruction::PHI: { 4139 const PHINode *PN = cast<PHINode>(U); 4140 unsigned NumIncomingValues = PN->getNumIncomingValues(); 4141 // Don't analyze large in-degree PHIs. 4142 if (NumIncomingValues > 4) break; 4143 // Unreachable blocks may have zero-operand PHI nodes. 4144 if (NumIncomingValues == 0) break; 4145 4146 // Take the minimum of all incoming values. This can't infinitely loop 4147 // because of our depth threshold. 4148 SimplifyQuery RecQ = Q.getWithoutCondContext(); 4149 Tmp = TyBits; 4150 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 4151 if (Tmp == 1) return Tmp; 4152 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 4153 Tmp = std::min(Tmp, ComputeNumSignBits(PN->getIncomingValue(i), 4154 DemandedElts, Depth + 1, RecQ)); 4155 } 4156 return Tmp; 4157 } 4158 4159 case Instruction::Trunc: { 4160 // If the input contained enough sign bits that some remain after the 4161 // truncation, then we can make use of that. Otherwise we don't know 4162 // anything. 4163 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 4164 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits(); 4165 if (Tmp > (OperandTyBits - TyBits)) 4166 return Tmp - (OperandTyBits - TyBits); 4167 4168 return 1; 4169 } 4170 4171 case Instruction::ExtractElement: 4172 // Look through extract element. At the moment we keep this simple and 4173 // skip tracking the specific element. But at least we might find 4174 // information valid for all elements of the vector (for example if vector 4175 // is sign extended, shifted, etc). 4176 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 4177 4178 case Instruction::ShuffleVector: { 4179 // Collect the minimum number of sign bits that are shared by every vector 4180 // element referenced by the shuffle. 4181 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 4182 if (!Shuf) { 4183 // FIXME: Add support for shufflevector constant expressions. 4184 return 1; 4185 } 4186 APInt DemandedLHS, DemandedRHS; 4187 // For undef elements, we don't know anything about the common state of 4188 // the shuffle result. 4189 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 4190 return 1; 4191 Tmp = std::numeric_limits<unsigned>::max(); 4192 if (!!DemandedLHS) { 4193 const Value *LHS = Shuf->getOperand(0); 4194 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 4195 } 4196 // If we don't know anything, early out and try computeKnownBits 4197 // fall-back. 4198 if (Tmp == 1) 4199 break; 4200 if (!!DemandedRHS) { 4201 const Value *RHS = Shuf->getOperand(1); 4202 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 4203 Tmp = std::min(Tmp, Tmp2); 4204 } 4205 // If we don't know anything, early out and try computeKnownBits 4206 // fall-back. 4207 if (Tmp == 1) 4208 break; 4209 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 4210 return Tmp; 4211 } 4212 case Instruction::Call: { 4213 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 4214 switch (II->getIntrinsicID()) { 4215 default: 4216 break; 4217 case Intrinsic::abs: 4218 Tmp = 4219 ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q); 4220 if (Tmp == 1) 4221 break; 4222 4223 // Absolute value reduces number of sign bits by at most 1. 4224 return Tmp - 1; 4225 case Intrinsic::smin: 4226 case Intrinsic::smax: { 4227 const APInt *CLow, *CHigh; 4228 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh)) 4229 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 4230 } 4231 } 4232 } 4233 } 4234 } 4235 } 4236 4237 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4238 // use this information. 4239 4240 // If we can examine all elements of a vector constant successfully, we're 4241 // done (we can't do any better than that). If not, keep trying. 4242 if (unsigned VecSignBits = 4243 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 4244 return VecSignBits; 4245 4246 KnownBits Known(TyBits); 4247 computeKnownBits(V, DemandedElts, Known, Depth, Q); 4248 4249 // If we know that the sign bit is either zero or one, determine the number of 4250 // identical bits in the top of the input value. 4251 return std::max(FirstAnswer, Known.countMinSignBits()); 4252 } 4253 4254 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 4255 const TargetLibraryInfo *TLI) { 4256 const Function *F = CB.getCalledFunction(); 4257 if (!F) 4258 return Intrinsic::not_intrinsic; 4259 4260 if (F->isIntrinsic()) 4261 return F->getIntrinsicID(); 4262 4263 // We are going to infer semantics of a library function based on mapping it 4264 // to an LLVM intrinsic. Check that the library function is available from 4265 // this callbase and in this environment. 4266 LibFunc Func; 4267 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 4268 !CB.onlyReadsMemory()) 4269 return Intrinsic::not_intrinsic; 4270 4271 switch (Func) { 4272 default: 4273 break; 4274 case LibFunc_sin: 4275 case LibFunc_sinf: 4276 case LibFunc_sinl: 4277 return Intrinsic::sin; 4278 case LibFunc_cos: 4279 case LibFunc_cosf: 4280 case LibFunc_cosl: 4281 return Intrinsic::cos; 4282 case LibFunc_tan: 4283 case LibFunc_tanf: 4284 case LibFunc_tanl: 4285 return Intrinsic::tan; 4286 case LibFunc_asin: 4287 case LibFunc_asinf: 4288 case LibFunc_asinl: 4289 return Intrinsic::asin; 4290 case LibFunc_acos: 4291 case LibFunc_acosf: 4292 case LibFunc_acosl: 4293 return Intrinsic::acos; 4294 case LibFunc_atan: 4295 case LibFunc_atanf: 4296 case LibFunc_atanl: 4297 return Intrinsic::atan; 4298 case LibFunc_atan2: 4299 case LibFunc_atan2f: 4300 case LibFunc_atan2l: 4301 return Intrinsic::atan2; 4302 case LibFunc_sinh: 4303 case LibFunc_sinhf: 4304 case LibFunc_sinhl: 4305 return Intrinsic::sinh; 4306 case LibFunc_cosh: 4307 case LibFunc_coshf: 4308 case LibFunc_coshl: 4309 return Intrinsic::cosh; 4310 case LibFunc_tanh: 4311 case LibFunc_tanhf: 4312 case LibFunc_tanhl: 4313 return Intrinsic::tanh; 4314 case LibFunc_exp: 4315 case LibFunc_expf: 4316 case LibFunc_expl: 4317 return Intrinsic::exp; 4318 case LibFunc_exp2: 4319 case LibFunc_exp2f: 4320 case LibFunc_exp2l: 4321 return Intrinsic::exp2; 4322 case LibFunc_exp10: 4323 case LibFunc_exp10f: 4324 case LibFunc_exp10l: 4325 return Intrinsic::exp10; 4326 case LibFunc_log: 4327 case LibFunc_logf: 4328 case LibFunc_logl: 4329 return Intrinsic::log; 4330 case LibFunc_log10: 4331 case LibFunc_log10f: 4332 case LibFunc_log10l: 4333 return Intrinsic::log10; 4334 case LibFunc_log2: 4335 case LibFunc_log2f: 4336 case LibFunc_log2l: 4337 return Intrinsic::log2; 4338 case LibFunc_fabs: 4339 case LibFunc_fabsf: 4340 case LibFunc_fabsl: 4341 return Intrinsic::fabs; 4342 case LibFunc_fmin: 4343 case LibFunc_fminf: 4344 case LibFunc_fminl: 4345 return Intrinsic::minnum; 4346 case LibFunc_fmax: 4347 case LibFunc_fmaxf: 4348 case LibFunc_fmaxl: 4349 return Intrinsic::maxnum; 4350 case LibFunc_copysign: 4351 case LibFunc_copysignf: 4352 case LibFunc_copysignl: 4353 return Intrinsic::copysign; 4354 case LibFunc_floor: 4355 case LibFunc_floorf: 4356 case LibFunc_floorl: 4357 return Intrinsic::floor; 4358 case LibFunc_ceil: 4359 case LibFunc_ceilf: 4360 case LibFunc_ceill: 4361 return Intrinsic::ceil; 4362 case LibFunc_trunc: 4363 case LibFunc_truncf: 4364 case LibFunc_truncl: 4365 return Intrinsic::trunc; 4366 case LibFunc_rint: 4367 case LibFunc_rintf: 4368 case LibFunc_rintl: 4369 return Intrinsic::rint; 4370 case LibFunc_nearbyint: 4371 case LibFunc_nearbyintf: 4372 case LibFunc_nearbyintl: 4373 return Intrinsic::nearbyint; 4374 case LibFunc_round: 4375 case LibFunc_roundf: 4376 case LibFunc_roundl: 4377 return Intrinsic::round; 4378 case LibFunc_roundeven: 4379 case LibFunc_roundevenf: 4380 case LibFunc_roundevenl: 4381 return Intrinsic::roundeven; 4382 case LibFunc_pow: 4383 case LibFunc_powf: 4384 case LibFunc_powl: 4385 return Intrinsic::pow; 4386 case LibFunc_sqrt: 4387 case LibFunc_sqrtf: 4388 case LibFunc_sqrtl: 4389 return Intrinsic::sqrt; 4390 } 4391 4392 return Intrinsic::not_intrinsic; 4393 } 4394 4395 /// Return true if it's possible to assume IEEE treatment of input denormals in 4396 /// \p F for \p Val. 4397 static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) { 4398 Ty = Ty->getScalarType(); 4399 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE; 4400 } 4401 4402 static bool inputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty) { 4403 Ty = Ty->getScalarType(); 4404 DenormalMode Mode = F.getDenormalMode(Ty->getFltSemantics()); 4405 return Mode.Input == DenormalMode::IEEE || 4406 Mode.Input == DenormalMode::PositiveZero; 4407 } 4408 4409 static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty) { 4410 Ty = Ty->getScalarType(); 4411 DenormalMode Mode = F.getDenormalMode(Ty->getFltSemantics()); 4412 return Mode.Output == DenormalMode::IEEE || 4413 Mode.Output == DenormalMode::PositiveZero; 4414 } 4415 4416 bool KnownFPClass::isKnownNeverLogicalZero(const Function &F, Type *Ty) const { 4417 return isKnownNeverZero() && 4418 (isKnownNeverSubnormal() || inputDenormalIsIEEE(F, Ty)); 4419 } 4420 4421 bool KnownFPClass::isKnownNeverLogicalNegZero(const Function &F, 4422 Type *Ty) const { 4423 return isKnownNeverNegZero() && 4424 (isKnownNeverNegSubnormal() || inputDenormalIsIEEEOrPosZero(F, Ty)); 4425 } 4426 4427 bool KnownFPClass::isKnownNeverLogicalPosZero(const Function &F, 4428 Type *Ty) const { 4429 if (!isKnownNeverPosZero()) 4430 return false; 4431 4432 // If we know there are no denormals, nothing can be flushed to zero. 4433 if (isKnownNeverSubnormal()) 4434 return true; 4435 4436 DenormalMode Mode = F.getDenormalMode(Ty->getScalarType()->getFltSemantics()); 4437 switch (Mode.Input) { 4438 case DenormalMode::IEEE: 4439 return true; 4440 case DenormalMode::PreserveSign: 4441 // Negative subnormal won't flush to +0 4442 return isKnownNeverPosSubnormal(); 4443 case DenormalMode::PositiveZero: 4444 default: 4445 // Both positive and negative subnormal could flush to +0 4446 return false; 4447 } 4448 4449 llvm_unreachable("covered switch over denormal mode"); 4450 } 4451 4452 void KnownFPClass::propagateDenormal(const KnownFPClass &Src, const Function &F, 4453 Type *Ty) { 4454 KnownFPClasses = Src.KnownFPClasses; 4455 // If we aren't assuming the source can't be a zero, we don't have to check if 4456 // a denormal input could be flushed. 4457 if (!Src.isKnownNeverPosZero() && !Src.isKnownNeverNegZero()) 4458 return; 4459 4460 // If we know the input can't be a denormal, it can't be flushed to 0. 4461 if (Src.isKnownNeverSubnormal()) 4462 return; 4463 4464 DenormalMode Mode = F.getDenormalMode(Ty->getScalarType()->getFltSemantics()); 4465 4466 if (!Src.isKnownNeverPosSubnormal() && Mode != DenormalMode::getIEEE()) 4467 KnownFPClasses |= fcPosZero; 4468 4469 if (!Src.isKnownNeverNegSubnormal() && Mode != DenormalMode::getIEEE()) { 4470 if (Mode != DenormalMode::getPositiveZero()) 4471 KnownFPClasses |= fcNegZero; 4472 4473 if (Mode.Input == DenormalMode::PositiveZero || 4474 Mode.Output == DenormalMode::PositiveZero || 4475 Mode.Input == DenormalMode::Dynamic || 4476 Mode.Output == DenormalMode::Dynamic) 4477 KnownFPClasses |= fcPosZero; 4478 } 4479 } 4480 4481 void KnownFPClass::propagateCanonicalizingSrc(const KnownFPClass &Src, 4482 const Function &F, Type *Ty) { 4483 propagateDenormal(Src, F, Ty); 4484 propagateNaN(Src, /*PreserveSign=*/true); 4485 } 4486 4487 /// Given an exploded icmp instruction, return true if the comparison only 4488 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if 4489 /// the result of the comparison is true when the input value is signed. 4490 bool llvm::isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, 4491 bool &TrueIfSigned) { 4492 switch (Pred) { 4493 case ICmpInst::ICMP_SLT: // True if LHS s< 0 4494 TrueIfSigned = true; 4495 return RHS.isZero(); 4496 case ICmpInst::ICMP_SLE: // True if LHS s<= -1 4497 TrueIfSigned = true; 4498 return RHS.isAllOnes(); 4499 case ICmpInst::ICMP_SGT: // True if LHS s> -1 4500 TrueIfSigned = false; 4501 return RHS.isAllOnes(); 4502 case ICmpInst::ICMP_SGE: // True if LHS s>= 0 4503 TrueIfSigned = false; 4504 return RHS.isZero(); 4505 case ICmpInst::ICMP_UGT: 4506 // True if LHS u> RHS and RHS == sign-bit-mask - 1 4507 TrueIfSigned = true; 4508 return RHS.isMaxSignedValue(); 4509 case ICmpInst::ICMP_UGE: 4510 // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc) 4511 TrueIfSigned = true; 4512 return RHS.isMinSignedValue(); 4513 case ICmpInst::ICMP_ULT: 4514 // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc) 4515 TrueIfSigned = false; 4516 return RHS.isMinSignedValue(); 4517 case ICmpInst::ICMP_ULE: 4518 // True if LHS u<= RHS and RHS == sign-bit-mask - 1 4519 TrueIfSigned = false; 4520 return RHS.isMaxSignedValue(); 4521 default: 4522 return false; 4523 } 4524 } 4525 4526 /// Returns a pair of values, which if passed to llvm.is.fpclass, returns the 4527 /// same result as an fcmp with the given operands. 4528 std::pair<Value *, FPClassTest> llvm::fcmpToClassTest(FCmpInst::Predicate Pred, 4529 const Function &F, 4530 Value *LHS, Value *RHS, 4531 bool LookThroughSrc) { 4532 const APFloat *ConstRHS; 4533 if (!match(RHS, m_APFloatAllowPoison(ConstRHS))) 4534 return {nullptr, fcAllFlags}; 4535 4536 return fcmpToClassTest(Pred, F, LHS, ConstRHS, LookThroughSrc); 4537 } 4538 4539 std::pair<Value *, FPClassTest> 4540 llvm::fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS, 4541 const APFloat *ConstRHS, bool LookThroughSrc) { 4542 4543 auto [Src, ClassIfTrue, ClassIfFalse] = 4544 fcmpImpliesClass(Pred, F, LHS, *ConstRHS, LookThroughSrc); 4545 if (Src && ClassIfTrue == ~ClassIfFalse) 4546 return {Src, ClassIfTrue}; 4547 return {nullptr, fcAllFlags}; 4548 } 4549 4550 /// Return the return value for fcmpImpliesClass for a compare that produces an 4551 /// exact class test. 4552 static std::tuple<Value *, FPClassTest, FPClassTest> exactClass(Value *V, 4553 FPClassTest M) { 4554 return {V, M, ~M}; 4555 } 4556 4557 std::tuple<Value *, FPClassTest, FPClassTest> 4558 llvm::fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, 4559 FPClassTest RHSClass, bool LookThroughSrc) { 4560 assert(RHSClass != fcNone); 4561 Value *Src = LHS; 4562 4563 if (Pred == FCmpInst::FCMP_TRUE) 4564 return exactClass(Src, fcAllFlags); 4565 4566 if (Pred == FCmpInst::FCMP_FALSE) 4567 return exactClass(Src, fcNone); 4568 4569 const FPClassTest OrigClass = RHSClass; 4570 4571 const bool IsNegativeRHS = (RHSClass & fcNegative) == RHSClass; 4572 const bool IsPositiveRHS = (RHSClass & fcPositive) == RHSClass; 4573 const bool IsNaN = (RHSClass & ~fcNan) == fcNone; 4574 4575 if (IsNaN) { 4576 // fcmp o__ x, nan -> false 4577 // fcmp u__ x, nan -> true 4578 return exactClass(Src, CmpInst::isOrdered(Pred) ? fcNone : fcAllFlags); 4579 } 4580 4581 // fcmp ord x, zero|normal|subnormal|inf -> ~fcNan 4582 if (Pred == FCmpInst::FCMP_ORD) 4583 return exactClass(Src, ~fcNan); 4584 4585 // fcmp uno x, zero|normal|subnormal|inf -> fcNan 4586 if (Pred == FCmpInst::FCMP_UNO) 4587 return exactClass(Src, fcNan); 4588 4589 const bool IsFabs = LookThroughSrc && match(LHS, m_FAbs(m_Value(Src))); 4590 if (IsFabs) 4591 RHSClass = llvm::inverse_fabs(RHSClass); 4592 4593 const bool IsZero = (OrigClass & fcZero) == OrigClass; 4594 if (IsZero) { 4595 assert(Pred != FCmpInst::FCMP_ORD && Pred != FCmpInst::FCMP_UNO); 4596 // Compares with fcNone are only exactly equal to fcZero if input denormals 4597 // are not flushed. 4598 // TODO: Handle DAZ by expanding masks to cover subnormal cases. 4599 if (!inputDenormalIsIEEE(F, LHS->getType())) 4600 return {nullptr, fcAllFlags, fcAllFlags}; 4601 4602 switch (Pred) { 4603 case FCmpInst::FCMP_OEQ: // Match x == 0.0 4604 return exactClass(Src, fcZero); 4605 case FCmpInst::FCMP_UEQ: // Match isnan(x) || (x == 0.0) 4606 return exactClass(Src, fcZero | fcNan); 4607 case FCmpInst::FCMP_UNE: // Match (x != 0.0) 4608 return exactClass(Src, ~fcZero); 4609 case FCmpInst::FCMP_ONE: // Match !isnan(x) && x != 0.0 4610 return exactClass(Src, ~fcNan & ~fcZero); 4611 case FCmpInst::FCMP_ORD: 4612 // Canonical form of ord/uno is with a zero. We could also handle 4613 // non-canonical other non-NaN constants or LHS == RHS. 4614 return exactClass(Src, ~fcNan); 4615 case FCmpInst::FCMP_UNO: 4616 return exactClass(Src, fcNan); 4617 case FCmpInst::FCMP_OGT: // x > 0 4618 return exactClass(Src, fcPosSubnormal | fcPosNormal | fcPosInf); 4619 case FCmpInst::FCMP_UGT: // isnan(x) || x > 0 4620 return exactClass(Src, fcPosSubnormal | fcPosNormal | fcPosInf | fcNan); 4621 case FCmpInst::FCMP_OGE: // x >= 0 4622 return exactClass(Src, fcPositive | fcNegZero); 4623 case FCmpInst::FCMP_UGE: // isnan(x) || x >= 0 4624 return exactClass(Src, fcPositive | fcNegZero | fcNan); 4625 case FCmpInst::FCMP_OLT: // x < 0 4626 return exactClass(Src, fcNegSubnormal | fcNegNormal | fcNegInf); 4627 case FCmpInst::FCMP_ULT: // isnan(x) || x < 0 4628 return exactClass(Src, fcNegSubnormal | fcNegNormal | fcNegInf | fcNan); 4629 case FCmpInst::FCMP_OLE: // x <= 0 4630 return exactClass(Src, fcNegative | fcPosZero); 4631 case FCmpInst::FCMP_ULE: // isnan(x) || x <= 0 4632 return exactClass(Src, fcNegative | fcPosZero | fcNan); 4633 default: 4634 llvm_unreachable("all compare types are handled"); 4635 } 4636 4637 return {nullptr, fcAllFlags, fcAllFlags}; 4638 } 4639 4640 const bool IsDenormalRHS = (OrigClass & fcSubnormal) == OrigClass; 4641 4642 const bool IsInf = (OrigClass & fcInf) == OrigClass; 4643 if (IsInf) { 4644 FPClassTest Mask = fcAllFlags; 4645 4646 switch (Pred) { 4647 case FCmpInst::FCMP_OEQ: 4648 case FCmpInst::FCMP_UNE: { 4649 // Match __builtin_isinf patterns 4650 // 4651 // fcmp oeq x, +inf -> is_fpclass x, fcPosInf 4652 // fcmp oeq fabs(x), +inf -> is_fpclass x, fcInf 4653 // fcmp oeq x, -inf -> is_fpclass x, fcNegInf 4654 // fcmp oeq fabs(x), -inf -> is_fpclass x, 0 -> false 4655 // 4656 // fcmp une x, +inf -> is_fpclass x, ~fcPosInf 4657 // fcmp une fabs(x), +inf -> is_fpclass x, ~fcInf 4658 // fcmp une x, -inf -> is_fpclass x, ~fcNegInf 4659 // fcmp une fabs(x), -inf -> is_fpclass x, fcAllFlags -> true 4660 if (IsNegativeRHS) { 4661 Mask = fcNegInf; 4662 if (IsFabs) 4663 Mask = fcNone; 4664 } else { 4665 Mask = fcPosInf; 4666 if (IsFabs) 4667 Mask |= fcNegInf; 4668 } 4669 break; 4670 } 4671 case FCmpInst::FCMP_ONE: 4672 case FCmpInst::FCMP_UEQ: { 4673 // Match __builtin_isinf patterns 4674 // fcmp one x, -inf -> is_fpclass x, fcNegInf 4675 // fcmp one fabs(x), -inf -> is_fpclass x, ~fcNegInf & ~fcNan 4676 // fcmp one x, +inf -> is_fpclass x, ~fcNegInf & ~fcNan 4677 // fcmp one fabs(x), +inf -> is_fpclass x, ~fcInf & fcNan 4678 // 4679 // fcmp ueq x, +inf -> is_fpclass x, fcPosInf|fcNan 4680 // fcmp ueq (fabs x), +inf -> is_fpclass x, fcInf|fcNan 4681 // fcmp ueq x, -inf -> is_fpclass x, fcNegInf|fcNan 4682 // fcmp ueq fabs(x), -inf -> is_fpclass x, fcNan 4683 if (IsNegativeRHS) { 4684 Mask = ~fcNegInf & ~fcNan; 4685 if (IsFabs) 4686 Mask = ~fcNan; 4687 } else { 4688 Mask = ~fcPosInf & ~fcNan; 4689 if (IsFabs) 4690 Mask &= ~fcNegInf; 4691 } 4692 4693 break; 4694 } 4695 case FCmpInst::FCMP_OLT: 4696 case FCmpInst::FCMP_UGE: { 4697 if (IsNegativeRHS) { 4698 // No value is ordered and less than negative infinity. 4699 // All values are unordered with or at least negative infinity. 4700 // fcmp olt x, -inf -> false 4701 // fcmp uge x, -inf -> true 4702 Mask = fcNone; 4703 break; 4704 } 4705 4706 // fcmp olt fabs(x), +inf -> fcFinite 4707 // fcmp uge fabs(x), +inf -> ~fcFinite 4708 // fcmp olt x, +inf -> fcFinite|fcNegInf 4709 // fcmp uge x, +inf -> ~(fcFinite|fcNegInf) 4710 Mask = fcFinite; 4711 if (!IsFabs) 4712 Mask |= fcNegInf; 4713 break; 4714 } 4715 case FCmpInst::FCMP_OGE: 4716 case FCmpInst::FCMP_ULT: { 4717 if (IsNegativeRHS) { 4718 // fcmp oge x, -inf -> ~fcNan 4719 // fcmp oge fabs(x), -inf -> ~fcNan 4720 // fcmp ult x, -inf -> fcNan 4721 // fcmp ult fabs(x), -inf -> fcNan 4722 Mask = ~fcNan; 4723 break; 4724 } 4725 4726 // fcmp oge fabs(x), +inf -> fcInf 4727 // fcmp oge x, +inf -> fcPosInf 4728 // fcmp ult fabs(x), +inf -> ~fcInf 4729 // fcmp ult x, +inf -> ~fcPosInf 4730 Mask = fcPosInf; 4731 if (IsFabs) 4732 Mask |= fcNegInf; 4733 break; 4734 } 4735 case FCmpInst::FCMP_OGT: 4736 case FCmpInst::FCMP_ULE: { 4737 if (IsNegativeRHS) { 4738 // fcmp ogt x, -inf -> fcmp one x, -inf 4739 // fcmp ogt fabs(x), -inf -> fcmp ord x, x 4740 // fcmp ule x, -inf -> fcmp ueq x, -inf 4741 // fcmp ule fabs(x), -inf -> fcmp uno x, x 4742 Mask = IsFabs ? ~fcNan : ~(fcNegInf | fcNan); 4743 break; 4744 } 4745 4746 // No value is ordered and greater than infinity. 4747 Mask = fcNone; 4748 break; 4749 } 4750 case FCmpInst::FCMP_OLE: 4751 case FCmpInst::FCMP_UGT: { 4752 if (IsNegativeRHS) { 4753 Mask = IsFabs ? fcNone : fcNegInf; 4754 break; 4755 } 4756 4757 // fcmp ole x, +inf -> fcmp ord x, x 4758 // fcmp ole fabs(x), +inf -> fcmp ord x, x 4759 // fcmp ole x, -inf -> fcmp oeq x, -inf 4760 // fcmp ole fabs(x), -inf -> false 4761 Mask = ~fcNan; 4762 break; 4763 } 4764 default: 4765 llvm_unreachable("all compare types are handled"); 4766 } 4767 4768 // Invert the comparison for the unordered cases. 4769 if (FCmpInst::isUnordered(Pred)) 4770 Mask = ~Mask; 4771 4772 return exactClass(Src, Mask); 4773 } 4774 4775 if (Pred == FCmpInst::FCMP_OEQ) 4776 return {Src, RHSClass, fcAllFlags}; 4777 4778 if (Pred == FCmpInst::FCMP_UEQ) { 4779 FPClassTest Class = RHSClass | fcNan; 4780 return {Src, Class, ~fcNan}; 4781 } 4782 4783 if (Pred == FCmpInst::FCMP_ONE) 4784 return {Src, ~fcNan, RHSClass | fcNan}; 4785 4786 if (Pred == FCmpInst::FCMP_UNE) 4787 return {Src, fcAllFlags, RHSClass}; 4788 4789 assert((RHSClass == fcNone || RHSClass == fcPosNormal || 4790 RHSClass == fcNegNormal || RHSClass == fcNormal || 4791 RHSClass == fcPosSubnormal || RHSClass == fcNegSubnormal || 4792 RHSClass == fcSubnormal) && 4793 "should have been recognized as an exact class test"); 4794 4795 if (IsNegativeRHS) { 4796 // TODO: Handle fneg(fabs) 4797 if (IsFabs) { 4798 // fabs(x) o> -k -> fcmp ord x, x 4799 // fabs(x) u> -k -> true 4800 // fabs(x) o< -k -> false 4801 // fabs(x) u< -k -> fcmp uno x, x 4802 switch (Pred) { 4803 case FCmpInst::FCMP_OGT: 4804 case FCmpInst::FCMP_OGE: 4805 return {Src, ~fcNan, fcNan}; 4806 case FCmpInst::FCMP_UGT: 4807 case FCmpInst::FCMP_UGE: 4808 return {Src, fcAllFlags, fcNone}; 4809 case FCmpInst::FCMP_OLT: 4810 case FCmpInst::FCMP_OLE: 4811 return {Src, fcNone, fcAllFlags}; 4812 case FCmpInst::FCMP_ULT: 4813 case FCmpInst::FCMP_ULE: 4814 return {Src, fcNan, ~fcNan}; 4815 default: 4816 break; 4817 } 4818 4819 return {nullptr, fcAllFlags, fcAllFlags}; 4820 } 4821 4822 FPClassTest ClassesLE = fcNegInf | fcNegNormal; 4823 FPClassTest ClassesGE = fcPositive | fcNegZero | fcNegSubnormal; 4824 4825 if (IsDenormalRHS) 4826 ClassesLE |= fcNegSubnormal; 4827 else 4828 ClassesGE |= fcNegNormal; 4829 4830 switch (Pred) { 4831 case FCmpInst::FCMP_OGT: 4832 case FCmpInst::FCMP_OGE: 4833 return {Src, ClassesGE, ~ClassesGE | RHSClass}; 4834 case FCmpInst::FCMP_UGT: 4835 case FCmpInst::FCMP_UGE: 4836 return {Src, ClassesGE | fcNan, ~(ClassesGE | fcNan) | RHSClass}; 4837 case FCmpInst::FCMP_OLT: 4838 case FCmpInst::FCMP_OLE: 4839 return {Src, ClassesLE, ~ClassesLE | RHSClass}; 4840 case FCmpInst::FCMP_ULT: 4841 case FCmpInst::FCMP_ULE: 4842 return {Src, ClassesLE | fcNan, ~(ClassesLE | fcNan) | RHSClass}; 4843 default: 4844 break; 4845 } 4846 } else if (IsPositiveRHS) { 4847 FPClassTest ClassesGE = fcPosNormal | fcPosInf; 4848 FPClassTest ClassesLE = fcNegative | fcPosZero | fcPosSubnormal; 4849 if (IsDenormalRHS) 4850 ClassesGE |= fcPosSubnormal; 4851 else 4852 ClassesLE |= fcPosNormal; 4853 4854 if (IsFabs) { 4855 ClassesGE = llvm::inverse_fabs(ClassesGE); 4856 ClassesLE = llvm::inverse_fabs(ClassesLE); 4857 } 4858 4859 switch (Pred) { 4860 case FCmpInst::FCMP_OGT: 4861 case FCmpInst::FCMP_OGE: 4862 return {Src, ClassesGE, ~ClassesGE | RHSClass}; 4863 case FCmpInst::FCMP_UGT: 4864 case FCmpInst::FCMP_UGE: 4865 return {Src, ClassesGE | fcNan, ~(ClassesGE | fcNan) | RHSClass}; 4866 case FCmpInst::FCMP_OLT: 4867 case FCmpInst::FCMP_OLE: 4868 return {Src, ClassesLE, ~ClassesLE | RHSClass}; 4869 case FCmpInst::FCMP_ULT: 4870 case FCmpInst::FCMP_ULE: 4871 return {Src, ClassesLE | fcNan, ~(ClassesLE | fcNan) | RHSClass}; 4872 default: 4873 break; 4874 } 4875 } 4876 4877 return {nullptr, fcAllFlags, fcAllFlags}; 4878 } 4879 4880 std::tuple<Value *, FPClassTest, FPClassTest> 4881 llvm::fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, 4882 const APFloat &ConstRHS, bool LookThroughSrc) { 4883 // We can refine checks against smallest normal / largest denormal to an 4884 // exact class test. 4885 if (!ConstRHS.isNegative() && ConstRHS.isSmallestNormalized()) { 4886 Value *Src = LHS; 4887 const bool IsFabs = LookThroughSrc && match(LHS, m_FAbs(m_Value(Src))); 4888 4889 FPClassTest Mask; 4890 // Match pattern that's used in __builtin_isnormal. 4891 switch (Pred) { 4892 case FCmpInst::FCMP_OLT: 4893 case FCmpInst::FCMP_UGE: { 4894 // fcmp olt x, smallest_normal -> fcNegInf|fcNegNormal|fcSubnormal|fcZero 4895 // fcmp olt fabs(x), smallest_normal -> fcSubnormal|fcZero 4896 // fcmp uge x, smallest_normal -> fcNan|fcPosNormal|fcPosInf 4897 // fcmp uge fabs(x), smallest_normal -> ~(fcSubnormal|fcZero) 4898 Mask = fcZero | fcSubnormal; 4899 if (!IsFabs) 4900 Mask |= fcNegNormal | fcNegInf; 4901 4902 break; 4903 } 4904 case FCmpInst::FCMP_OGE: 4905 case FCmpInst::FCMP_ULT: { 4906 // fcmp oge x, smallest_normal -> fcPosNormal | fcPosInf 4907 // fcmp oge fabs(x), smallest_normal -> fcInf | fcNormal 4908 // fcmp ult x, smallest_normal -> ~(fcPosNormal | fcPosInf) 4909 // fcmp ult fabs(x), smallest_normal -> ~(fcInf | fcNormal) 4910 Mask = fcPosInf | fcPosNormal; 4911 if (IsFabs) 4912 Mask |= fcNegInf | fcNegNormal; 4913 break; 4914 } 4915 default: 4916 return fcmpImpliesClass(Pred, F, LHS, ConstRHS.classify(), 4917 LookThroughSrc); 4918 } 4919 4920 // Invert the comparison for the unordered cases. 4921 if (FCmpInst::isUnordered(Pred)) 4922 Mask = ~Mask; 4923 4924 return exactClass(Src, Mask); 4925 } 4926 4927 return fcmpImpliesClass(Pred, F, LHS, ConstRHS.classify(), LookThroughSrc); 4928 } 4929 4930 std::tuple<Value *, FPClassTest, FPClassTest> 4931 llvm::fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, 4932 Value *RHS, bool LookThroughSrc) { 4933 const APFloat *ConstRHS; 4934 if (!match(RHS, m_APFloatAllowPoison(ConstRHS))) 4935 return {nullptr, fcAllFlags, fcAllFlags}; 4936 4937 // TODO: Just call computeKnownFPClass for RHS to handle non-constants. 4938 return fcmpImpliesClass(Pred, F, LHS, *ConstRHS, LookThroughSrc); 4939 } 4940 4941 static void computeKnownFPClassFromCond(const Value *V, Value *Cond, 4942 unsigned Depth, bool CondIsTrue, 4943 const Instruction *CxtI, 4944 KnownFPClass &KnownFromContext) { 4945 Value *A, *B; 4946 if (Depth < MaxAnalysisRecursionDepth && 4947 (CondIsTrue ? match(Cond, m_LogicalAnd(m_Value(A), m_Value(B))) 4948 : match(Cond, m_LogicalOr(m_Value(A), m_Value(B))))) { 4949 computeKnownFPClassFromCond(V, A, Depth + 1, CondIsTrue, CxtI, 4950 KnownFromContext); 4951 computeKnownFPClassFromCond(V, B, Depth + 1, CondIsTrue, CxtI, 4952 KnownFromContext); 4953 return; 4954 } 4955 CmpPredicate Pred; 4956 Value *LHS; 4957 uint64_t ClassVal = 0; 4958 const APFloat *CRHS; 4959 const APInt *RHS; 4960 if (match(Cond, m_FCmp(Pred, m_Value(LHS), m_APFloat(CRHS)))) { 4961 auto [CmpVal, MaskIfTrue, MaskIfFalse] = fcmpImpliesClass( 4962 Pred, *CxtI->getParent()->getParent(), LHS, *CRHS, LHS != V); 4963 if (CmpVal == V) 4964 KnownFromContext.knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse)); 4965 } else if (match(Cond, m_Intrinsic<Intrinsic::is_fpclass>( 4966 m_Specific(V), m_ConstantInt(ClassVal)))) { 4967 FPClassTest Mask = static_cast<FPClassTest>(ClassVal); 4968 KnownFromContext.knownNot(CondIsTrue ? ~Mask : Mask); 4969 } else if (match(Cond, m_ICmp(Pred, m_ElementWiseBitCast(m_Specific(V)), 4970 m_APInt(RHS)))) { 4971 bool TrueIfSigned; 4972 if (!isSignBitCheck(Pred, *RHS, TrueIfSigned)) 4973 return; 4974 if (TrueIfSigned == CondIsTrue) 4975 KnownFromContext.signBitMustBeOne(); 4976 else 4977 KnownFromContext.signBitMustBeZero(); 4978 } 4979 } 4980 4981 static KnownFPClass computeKnownFPClassFromContext(const Value *V, 4982 const SimplifyQuery &Q) { 4983 KnownFPClass KnownFromContext; 4984 4985 if (!Q.CxtI) 4986 return KnownFromContext; 4987 4988 if (Q.DC && Q.DT) { 4989 // Handle dominating conditions. 4990 for (BranchInst *BI : Q.DC->conditionsFor(V)) { 4991 Value *Cond = BI->getCondition(); 4992 4993 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0)); 4994 if (Q.DT->dominates(Edge0, Q.CxtI->getParent())) 4995 computeKnownFPClassFromCond(V, Cond, /*Depth=*/0, /*CondIsTrue=*/true, 4996 Q.CxtI, KnownFromContext); 4997 4998 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1)); 4999 if (Q.DT->dominates(Edge1, Q.CxtI->getParent())) 5000 computeKnownFPClassFromCond(V, Cond, /*Depth=*/0, /*CondIsTrue=*/false, 5001 Q.CxtI, KnownFromContext); 5002 } 5003 } 5004 5005 if (!Q.AC) 5006 return KnownFromContext; 5007 5008 // Try to restrict the floating-point classes based on information from 5009 // assumptions. 5010 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 5011 if (!AssumeVH) 5012 continue; 5013 CallInst *I = cast<CallInst>(AssumeVH); 5014 5015 assert(I->getFunction() == Q.CxtI->getParent()->getParent() && 5016 "Got assumption for the wrong function!"); 5017 assert(I->getIntrinsicID() == Intrinsic::assume && 5018 "must be an assume intrinsic"); 5019 5020 if (!isValidAssumeForContext(I, Q.CxtI, Q.DT)) 5021 continue; 5022 5023 computeKnownFPClassFromCond(V, I->getArgOperand(0), /*Depth=*/0, 5024 /*CondIsTrue=*/true, Q.CxtI, KnownFromContext); 5025 } 5026 5027 return KnownFromContext; 5028 } 5029 5030 void computeKnownFPClass(const Value *V, const APInt &DemandedElts, 5031 FPClassTest InterestedClasses, KnownFPClass &Known, 5032 unsigned Depth, const SimplifyQuery &Q); 5033 5034 static void computeKnownFPClass(const Value *V, KnownFPClass &Known, 5035 FPClassTest InterestedClasses, unsigned Depth, 5036 const SimplifyQuery &Q) { 5037 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 5038 APInt DemandedElts = 5039 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 5040 computeKnownFPClass(V, DemandedElts, InterestedClasses, Known, Depth, Q); 5041 } 5042 5043 static void computeKnownFPClassForFPTrunc(const Operator *Op, 5044 const APInt &DemandedElts, 5045 FPClassTest InterestedClasses, 5046 KnownFPClass &Known, unsigned Depth, 5047 const SimplifyQuery &Q) { 5048 if ((InterestedClasses & 5049 (KnownFPClass::OrderedLessThanZeroMask | fcNan)) == fcNone) 5050 return; 5051 5052 KnownFPClass KnownSrc; 5053 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses, 5054 KnownSrc, Depth + 1, Q); 5055 5056 // Sign should be preserved 5057 // TODO: Handle cannot be ordered greater than zero 5058 if (KnownSrc.cannotBeOrderedLessThanZero()) 5059 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask); 5060 5061 Known.propagateNaN(KnownSrc, true); 5062 5063 // Infinity needs a range check. 5064 } 5065 5066 void computeKnownFPClass(const Value *V, const APInt &DemandedElts, 5067 FPClassTest InterestedClasses, KnownFPClass &Known, 5068 unsigned Depth, const SimplifyQuery &Q) { 5069 assert(Known.isUnknown() && "should not be called with known information"); 5070 5071 if (!DemandedElts) { 5072 // No demanded elts, better to assume we don't know anything. 5073 Known.resetAll(); 5074 return; 5075 } 5076 5077 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 5078 5079 if (auto *CFP = dyn_cast<ConstantFP>(V)) { 5080 Known.KnownFPClasses = CFP->getValueAPF().classify(); 5081 Known.SignBit = CFP->isNegative(); 5082 return; 5083 } 5084 5085 if (isa<ConstantAggregateZero>(V)) { 5086 Known.KnownFPClasses = fcPosZero; 5087 Known.SignBit = false; 5088 return; 5089 } 5090 5091 if (isa<PoisonValue>(V)) { 5092 Known.KnownFPClasses = fcNone; 5093 Known.SignBit = false; 5094 return; 5095 } 5096 5097 // Try to handle fixed width vector constants 5098 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 5099 const Constant *CV = dyn_cast<Constant>(V); 5100 if (VFVTy && CV) { 5101 Known.KnownFPClasses = fcNone; 5102 bool SignBitAllZero = true; 5103 bool SignBitAllOne = true; 5104 5105 // For vectors, verify that each element is not NaN. 5106 unsigned NumElts = VFVTy->getNumElements(); 5107 for (unsigned i = 0; i != NumElts; ++i) { 5108 if (!DemandedElts[i]) 5109 continue; 5110 5111 Constant *Elt = CV->getAggregateElement(i); 5112 if (!Elt) { 5113 Known = KnownFPClass(); 5114 return; 5115 } 5116 if (isa<PoisonValue>(Elt)) 5117 continue; 5118 auto *CElt = dyn_cast<ConstantFP>(Elt); 5119 if (!CElt) { 5120 Known = KnownFPClass(); 5121 return; 5122 } 5123 5124 const APFloat &C = CElt->getValueAPF(); 5125 Known.KnownFPClasses |= C.classify(); 5126 if (C.isNegative()) 5127 SignBitAllZero = false; 5128 else 5129 SignBitAllOne = false; 5130 } 5131 if (SignBitAllOne != SignBitAllZero) 5132 Known.SignBit = SignBitAllOne; 5133 return; 5134 } 5135 5136 FPClassTest KnownNotFromFlags = fcNone; 5137 if (const auto *CB = dyn_cast<CallBase>(V)) 5138 KnownNotFromFlags |= CB->getRetNoFPClass(); 5139 else if (const auto *Arg = dyn_cast<Argument>(V)) 5140 KnownNotFromFlags |= Arg->getNoFPClass(); 5141 5142 const Operator *Op = dyn_cast<Operator>(V); 5143 if (const FPMathOperator *FPOp = dyn_cast_or_null<FPMathOperator>(Op)) { 5144 if (FPOp->hasNoNaNs()) 5145 KnownNotFromFlags |= fcNan; 5146 if (FPOp->hasNoInfs()) 5147 KnownNotFromFlags |= fcInf; 5148 } 5149 5150 KnownFPClass AssumedClasses = computeKnownFPClassFromContext(V, Q); 5151 KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses; 5152 5153 // We no longer need to find out about these bits from inputs if we can 5154 // assume this from flags/attributes. 5155 InterestedClasses &= ~KnownNotFromFlags; 5156 5157 auto ClearClassesFromFlags = make_scope_exit([=, &Known] { 5158 Known.knownNot(KnownNotFromFlags); 5159 if (!Known.SignBit && AssumedClasses.SignBit) { 5160 if (*AssumedClasses.SignBit) 5161 Known.signBitMustBeOne(); 5162 else 5163 Known.signBitMustBeZero(); 5164 } 5165 }); 5166 5167 if (!Op) 5168 return; 5169 5170 // All recursive calls that increase depth must come after this. 5171 if (Depth == MaxAnalysisRecursionDepth) 5172 return; 5173 5174 const unsigned Opc = Op->getOpcode(); 5175 switch (Opc) { 5176 case Instruction::FNeg: { 5177 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses, 5178 Known, Depth + 1, Q); 5179 Known.fneg(); 5180 break; 5181 } 5182 case Instruction::Select: { 5183 Value *Cond = Op->getOperand(0); 5184 Value *LHS = Op->getOperand(1); 5185 Value *RHS = Op->getOperand(2); 5186 5187 FPClassTest FilterLHS = fcAllFlags; 5188 FPClassTest FilterRHS = fcAllFlags; 5189 5190 Value *TestedValue = nullptr; 5191 FPClassTest MaskIfTrue = fcAllFlags; 5192 FPClassTest MaskIfFalse = fcAllFlags; 5193 uint64_t ClassVal = 0; 5194 const Function *F = cast<Instruction>(Op)->getFunction(); 5195 CmpPredicate Pred; 5196 Value *CmpLHS, *CmpRHS; 5197 if (F && match(Cond, m_FCmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) { 5198 // If the select filters out a value based on the class, it no longer 5199 // participates in the class of the result 5200 5201 // TODO: In some degenerate cases we can infer something if we try again 5202 // without looking through sign operations. 5203 bool LookThroughFAbsFNeg = CmpLHS != LHS && CmpLHS != RHS; 5204 std::tie(TestedValue, MaskIfTrue, MaskIfFalse) = 5205 fcmpImpliesClass(Pred, *F, CmpLHS, CmpRHS, LookThroughFAbsFNeg); 5206 } else if (match(Cond, 5207 m_Intrinsic<Intrinsic::is_fpclass>( 5208 m_Value(TestedValue), m_ConstantInt(ClassVal)))) { 5209 FPClassTest TestedMask = static_cast<FPClassTest>(ClassVal); 5210 MaskIfTrue = TestedMask; 5211 MaskIfFalse = ~TestedMask; 5212 } 5213 5214 if (TestedValue == LHS) { 5215 // match !isnan(x) ? x : y 5216 FilterLHS = MaskIfTrue; 5217 } else if (TestedValue == RHS) { // && IsExactClass 5218 // match !isnan(x) ? y : x 5219 FilterRHS = MaskIfFalse; 5220 } 5221 5222 KnownFPClass Known2; 5223 computeKnownFPClass(LHS, DemandedElts, InterestedClasses & FilterLHS, Known, 5224 Depth + 1, Q); 5225 Known.KnownFPClasses &= FilterLHS; 5226 5227 computeKnownFPClass(RHS, DemandedElts, InterestedClasses & FilterRHS, 5228 Known2, Depth + 1, Q); 5229 Known2.KnownFPClasses &= FilterRHS; 5230 5231 Known |= Known2; 5232 break; 5233 } 5234 case Instruction::Call: { 5235 const CallInst *II = cast<CallInst>(Op); 5236 const Intrinsic::ID IID = II->getIntrinsicID(); 5237 switch (IID) { 5238 case Intrinsic::fabs: { 5239 if ((InterestedClasses & (fcNan | fcPositive)) != fcNone) { 5240 // If we only care about the sign bit we don't need to inspect the 5241 // operand. 5242 computeKnownFPClass(II->getArgOperand(0), DemandedElts, 5243 InterestedClasses, Known, Depth + 1, Q); 5244 } 5245 5246 Known.fabs(); 5247 break; 5248 } 5249 case Intrinsic::copysign: { 5250 KnownFPClass KnownSign; 5251 5252 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses, 5253 Known, Depth + 1, Q); 5254 computeKnownFPClass(II->getArgOperand(1), DemandedElts, InterestedClasses, 5255 KnownSign, Depth + 1, Q); 5256 Known.copysign(KnownSign); 5257 break; 5258 } 5259 case Intrinsic::fma: 5260 case Intrinsic::fmuladd: { 5261 if ((InterestedClasses & fcNegative) == fcNone) 5262 break; 5263 5264 if (II->getArgOperand(0) != II->getArgOperand(1)) 5265 break; 5266 5267 // The multiply cannot be -0 and therefore the add can't be -0 5268 Known.knownNot(fcNegZero); 5269 5270 // x * x + y is non-negative if y is non-negative. 5271 KnownFPClass KnownAddend; 5272 computeKnownFPClass(II->getArgOperand(2), DemandedElts, InterestedClasses, 5273 KnownAddend, Depth + 1, Q); 5274 5275 if (KnownAddend.cannotBeOrderedLessThanZero()) 5276 Known.knownNot(fcNegative); 5277 break; 5278 } 5279 case Intrinsic::sqrt: 5280 case Intrinsic::experimental_constrained_sqrt: { 5281 KnownFPClass KnownSrc; 5282 FPClassTest InterestedSrcs = InterestedClasses; 5283 if (InterestedClasses & fcNan) 5284 InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask; 5285 5286 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs, 5287 KnownSrc, Depth + 1, Q); 5288 5289 if (KnownSrc.isKnownNeverPosInfinity()) 5290 Known.knownNot(fcPosInf); 5291 if (KnownSrc.isKnownNever(fcSNan)) 5292 Known.knownNot(fcSNan); 5293 5294 // Any negative value besides -0 returns a nan. 5295 if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero()) 5296 Known.knownNot(fcNan); 5297 5298 // The only negative value that can be returned is -0 for -0 inputs. 5299 Known.knownNot(fcNegInf | fcNegSubnormal | fcNegNormal); 5300 5301 // If the input denormal mode could be PreserveSign, a negative 5302 // subnormal input could produce a negative zero output. 5303 const Function *F = II->getFunction(); 5304 if (Q.IIQ.hasNoSignedZeros(II) || 5305 (F && KnownSrc.isKnownNeverLogicalNegZero(*F, II->getType()))) 5306 Known.knownNot(fcNegZero); 5307 5308 break; 5309 } 5310 case Intrinsic::sin: 5311 case Intrinsic::cos: { 5312 // Return NaN on infinite inputs. 5313 KnownFPClass KnownSrc; 5314 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses, 5315 KnownSrc, Depth + 1, Q); 5316 Known.knownNot(fcInf); 5317 if (KnownSrc.isKnownNeverNaN() && KnownSrc.isKnownNeverInfinity()) 5318 Known.knownNot(fcNan); 5319 break; 5320 } 5321 case Intrinsic::maxnum: 5322 case Intrinsic::minnum: 5323 case Intrinsic::minimum: 5324 case Intrinsic::maximum: { 5325 KnownFPClass KnownLHS, KnownRHS; 5326 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses, 5327 KnownLHS, Depth + 1, Q); 5328 computeKnownFPClass(II->getArgOperand(1), DemandedElts, InterestedClasses, 5329 KnownRHS, Depth + 1, Q); 5330 5331 bool NeverNaN = KnownLHS.isKnownNeverNaN() || KnownRHS.isKnownNeverNaN(); 5332 Known = KnownLHS | KnownRHS; 5333 5334 // If either operand is not NaN, the result is not NaN. 5335 if (NeverNaN && (IID == Intrinsic::minnum || IID == Intrinsic::maxnum)) 5336 Known.knownNot(fcNan); 5337 5338 if (IID == Intrinsic::maxnum) { 5339 // If at least one operand is known to be positive, the result must be 5340 // positive. 5341 if ((KnownLHS.cannotBeOrderedLessThanZero() && 5342 KnownLHS.isKnownNeverNaN()) || 5343 (KnownRHS.cannotBeOrderedLessThanZero() && 5344 KnownRHS.isKnownNeverNaN())) 5345 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask); 5346 } else if (IID == Intrinsic::maximum) { 5347 // If at least one operand is known to be positive, the result must be 5348 // positive. 5349 if (KnownLHS.cannotBeOrderedLessThanZero() || 5350 KnownRHS.cannotBeOrderedLessThanZero()) 5351 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask); 5352 } else if (IID == Intrinsic::minnum) { 5353 // If at least one operand is known to be negative, the result must be 5354 // negative. 5355 if ((KnownLHS.cannotBeOrderedGreaterThanZero() && 5356 KnownLHS.isKnownNeverNaN()) || 5357 (KnownRHS.cannotBeOrderedGreaterThanZero() && 5358 KnownRHS.isKnownNeverNaN())) 5359 Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask); 5360 } else { 5361 // If at least one operand is known to be negative, the result must be 5362 // negative. 5363 if (KnownLHS.cannotBeOrderedGreaterThanZero() || 5364 KnownRHS.cannotBeOrderedGreaterThanZero()) 5365 Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask); 5366 } 5367 5368 // Fixup zero handling if denormals could be returned as a zero. 5369 // 5370 // As there's no spec for denormal flushing, be conservative with the 5371 // treatment of denormals that could be flushed to zero. For older 5372 // subtargets on AMDGPU the min/max instructions would not flush the 5373 // output and return the original value. 5374 // 5375 if ((Known.KnownFPClasses & fcZero) != fcNone && 5376 !Known.isKnownNeverSubnormal()) { 5377 const Function *Parent = II->getFunction(); 5378 if (!Parent) 5379 break; 5380 5381 DenormalMode Mode = Parent->getDenormalMode( 5382 II->getType()->getScalarType()->getFltSemantics()); 5383 if (Mode != DenormalMode::getIEEE()) 5384 Known.KnownFPClasses |= fcZero; 5385 } 5386 5387 if (Known.isKnownNeverNaN()) { 5388 if (KnownLHS.SignBit && KnownRHS.SignBit && 5389 *KnownLHS.SignBit == *KnownRHS.SignBit) { 5390 if (*KnownLHS.SignBit) 5391 Known.signBitMustBeOne(); 5392 else 5393 Known.signBitMustBeZero(); 5394 } else if ((IID == Intrinsic::maximum || IID == Intrinsic::minimum) || 5395 ((KnownLHS.isKnownNeverNegZero() || 5396 KnownRHS.isKnownNeverPosZero()) && 5397 (KnownLHS.isKnownNeverPosZero() || 5398 KnownRHS.isKnownNeverNegZero()))) { 5399 if ((IID == Intrinsic::maximum || IID == Intrinsic::maxnum) && 5400 (KnownLHS.SignBit == false || KnownRHS.SignBit == false)) 5401 Known.signBitMustBeZero(); 5402 else if ((IID == Intrinsic::minimum || IID == Intrinsic::minnum) && 5403 (KnownLHS.SignBit == true || KnownRHS.SignBit == true)) 5404 Known.signBitMustBeOne(); 5405 } 5406 } 5407 break; 5408 } 5409 case Intrinsic::canonicalize: { 5410 KnownFPClass KnownSrc; 5411 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses, 5412 KnownSrc, Depth + 1, Q); 5413 5414 // This is essentially a stronger form of 5415 // propagateCanonicalizingSrc. Other "canonicalizing" operations don't 5416 // actually have an IR canonicalization guarantee. 5417 5418 // Canonicalize may flush denormals to zero, so we have to consider the 5419 // denormal mode to preserve known-not-0 knowledge. 5420 Known.KnownFPClasses = KnownSrc.KnownFPClasses | fcZero | fcQNan; 5421 5422 // Stronger version of propagateNaN 5423 // Canonicalize is guaranteed to quiet signaling nans. 5424 if (KnownSrc.isKnownNeverNaN()) 5425 Known.knownNot(fcNan); 5426 else 5427 Known.knownNot(fcSNan); 5428 5429 const Function *F = II->getFunction(); 5430 if (!F) 5431 break; 5432 5433 // If the parent function flushes denormals, the canonical output cannot 5434 // be a denormal. 5435 const fltSemantics &FPType = 5436 II->getType()->getScalarType()->getFltSemantics(); 5437 DenormalMode DenormMode = F->getDenormalMode(FPType); 5438 if (DenormMode == DenormalMode::getIEEE()) { 5439 if (KnownSrc.isKnownNever(fcPosZero)) 5440 Known.knownNot(fcPosZero); 5441 if (KnownSrc.isKnownNever(fcNegZero)) 5442 Known.knownNot(fcNegZero); 5443 break; 5444 } 5445 5446 if (DenormMode.inputsAreZero() || DenormMode.outputsAreZero()) 5447 Known.knownNot(fcSubnormal); 5448 5449 if (DenormMode.Input == DenormalMode::PositiveZero || 5450 (DenormMode.Output == DenormalMode::PositiveZero && 5451 DenormMode.Input == DenormalMode::IEEE)) 5452 Known.knownNot(fcNegZero); 5453 5454 break; 5455 } 5456 case Intrinsic::vector_reduce_fmax: 5457 case Intrinsic::vector_reduce_fmin: 5458 case Intrinsic::vector_reduce_fmaximum: 5459 case Intrinsic::vector_reduce_fminimum: { 5460 // reduce min/max will choose an element from one of the vector elements, 5461 // so we can infer and class information that is common to all elements. 5462 Known = computeKnownFPClass(II->getArgOperand(0), II->getFastMathFlags(), 5463 InterestedClasses, Depth + 1, Q); 5464 // Can only propagate sign if output is never NaN. 5465 if (!Known.isKnownNeverNaN()) 5466 Known.SignBit.reset(); 5467 break; 5468 } 5469 // reverse preserves all characteristics of the input vec's element. 5470 case Intrinsic::vector_reverse: 5471 Known = computeKnownFPClass( 5472 II->getArgOperand(0), DemandedElts.reverseBits(), 5473 II->getFastMathFlags(), InterestedClasses, Depth + 1, Q); 5474 break; 5475 case Intrinsic::trunc: 5476 case Intrinsic::floor: 5477 case Intrinsic::ceil: 5478 case Intrinsic::rint: 5479 case Intrinsic::nearbyint: 5480 case Intrinsic::round: 5481 case Intrinsic::roundeven: { 5482 KnownFPClass KnownSrc; 5483 FPClassTest InterestedSrcs = InterestedClasses; 5484 if (InterestedSrcs & fcPosFinite) 5485 InterestedSrcs |= fcPosFinite; 5486 if (InterestedSrcs & fcNegFinite) 5487 InterestedSrcs |= fcNegFinite; 5488 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs, 5489 KnownSrc, Depth + 1, Q); 5490 5491 // Integer results cannot be subnormal. 5492 Known.knownNot(fcSubnormal); 5493 5494 Known.propagateNaN(KnownSrc, true); 5495 5496 // Pass through infinities, except PPC_FP128 is a special case for 5497 // intrinsics other than trunc. 5498 if (IID == Intrinsic::trunc || !V->getType()->isMultiUnitFPType()) { 5499 if (KnownSrc.isKnownNeverPosInfinity()) 5500 Known.knownNot(fcPosInf); 5501 if (KnownSrc.isKnownNeverNegInfinity()) 5502 Known.knownNot(fcNegInf); 5503 } 5504 5505 // Negative round ups to 0 produce -0 5506 if (KnownSrc.isKnownNever(fcPosFinite)) 5507 Known.knownNot(fcPosFinite); 5508 if (KnownSrc.isKnownNever(fcNegFinite)) 5509 Known.knownNot(fcNegFinite); 5510 5511 break; 5512 } 5513 case Intrinsic::exp: 5514 case Intrinsic::exp2: 5515 case Intrinsic::exp10: { 5516 Known.knownNot(fcNegative); 5517 if ((InterestedClasses & fcNan) == fcNone) 5518 break; 5519 5520 KnownFPClass KnownSrc; 5521 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses, 5522 KnownSrc, Depth + 1, Q); 5523 if (KnownSrc.isKnownNeverNaN()) { 5524 Known.knownNot(fcNan); 5525 Known.signBitMustBeZero(); 5526 } 5527 5528 break; 5529 } 5530 case Intrinsic::fptrunc_round: { 5531 computeKnownFPClassForFPTrunc(Op, DemandedElts, InterestedClasses, Known, 5532 Depth, Q); 5533 break; 5534 } 5535 case Intrinsic::log: 5536 case Intrinsic::log10: 5537 case Intrinsic::log2: 5538 case Intrinsic::experimental_constrained_log: 5539 case Intrinsic::experimental_constrained_log10: 5540 case Intrinsic::experimental_constrained_log2: { 5541 // log(+inf) -> +inf 5542 // log([+-]0.0) -> -inf 5543 // log(-inf) -> nan 5544 // log(-x) -> nan 5545 if ((InterestedClasses & (fcNan | fcInf)) == fcNone) 5546 break; 5547 5548 FPClassTest InterestedSrcs = InterestedClasses; 5549 if ((InterestedClasses & fcNegInf) != fcNone) 5550 InterestedSrcs |= fcZero | fcSubnormal; 5551 if ((InterestedClasses & fcNan) != fcNone) 5552 InterestedSrcs |= fcNan | (fcNegative & ~fcNan); 5553 5554 KnownFPClass KnownSrc; 5555 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs, 5556 KnownSrc, Depth + 1, Q); 5557 5558 if (KnownSrc.isKnownNeverPosInfinity()) 5559 Known.knownNot(fcPosInf); 5560 5561 if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero()) 5562 Known.knownNot(fcNan); 5563 5564 const Function *F = II->getFunction(); 5565 if (F && KnownSrc.isKnownNeverLogicalZero(*F, II->getType())) 5566 Known.knownNot(fcNegInf); 5567 5568 break; 5569 } 5570 case Intrinsic::powi: { 5571 if ((InterestedClasses & fcNegative) == fcNone) 5572 break; 5573 5574 const Value *Exp = II->getArgOperand(1); 5575 Type *ExpTy = Exp->getType(); 5576 unsigned BitWidth = ExpTy->getScalarType()->getIntegerBitWidth(); 5577 KnownBits ExponentKnownBits(BitWidth); 5578 computeKnownBits(Exp, isa<VectorType>(ExpTy) ? DemandedElts : APInt(1, 1), 5579 ExponentKnownBits, Depth + 1, Q); 5580 5581 if (ExponentKnownBits.Zero[0]) { // Is even 5582 Known.knownNot(fcNegative); 5583 break; 5584 } 5585 5586 // Given that exp is an integer, here are the 5587 // ways that pow can return a negative value: 5588 // 5589 // pow(-x, exp) --> negative if exp is odd and x is negative. 5590 // pow(-0, exp) --> -inf if exp is negative odd. 5591 // pow(-0, exp) --> -0 if exp is positive odd. 5592 // pow(-inf, exp) --> -0 if exp is negative odd. 5593 // pow(-inf, exp) --> -inf if exp is positive odd. 5594 KnownFPClass KnownSrc; 5595 computeKnownFPClass(II->getArgOperand(0), DemandedElts, fcNegative, 5596 KnownSrc, Depth + 1, Q); 5597 if (KnownSrc.isKnownNever(fcNegative)) 5598 Known.knownNot(fcNegative); 5599 break; 5600 } 5601 case Intrinsic::ldexp: { 5602 KnownFPClass KnownSrc; 5603 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses, 5604 KnownSrc, Depth + 1, Q); 5605 Known.propagateNaN(KnownSrc, /*PropagateSign=*/true); 5606 5607 // Sign is preserved, but underflows may produce zeroes. 5608 if (KnownSrc.isKnownNever(fcNegative)) 5609 Known.knownNot(fcNegative); 5610 else if (KnownSrc.cannotBeOrderedLessThanZero()) 5611 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask); 5612 5613 if (KnownSrc.isKnownNever(fcPositive)) 5614 Known.knownNot(fcPositive); 5615 else if (KnownSrc.cannotBeOrderedGreaterThanZero()) 5616 Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask); 5617 5618 // Can refine inf/zero handling based on the exponent operand. 5619 const FPClassTest ExpInfoMask = fcZero | fcSubnormal | fcInf; 5620 if ((InterestedClasses & ExpInfoMask) == fcNone) 5621 break; 5622 if ((KnownSrc.KnownFPClasses & ExpInfoMask) == fcNone) 5623 break; 5624 5625 const fltSemantics &Flt = 5626 II->getType()->getScalarType()->getFltSemantics(); 5627 unsigned Precision = APFloat::semanticsPrecision(Flt); 5628 const Value *ExpArg = II->getArgOperand(1); 5629 ConstantRange ExpRange = computeConstantRange( 5630 ExpArg, true, Q.IIQ.UseInstrInfo, Q.AC, Q.CxtI, Q.DT, Depth + 1); 5631 5632 const int MantissaBits = Precision - 1; 5633 if (ExpRange.getSignedMin().sge(static_cast<int64_t>(MantissaBits))) 5634 Known.knownNot(fcSubnormal); 5635 5636 const Function *F = II->getFunction(); 5637 const APInt *ConstVal = ExpRange.getSingleElement(); 5638 if (ConstVal && ConstVal->isZero()) { 5639 // ldexp(x, 0) -> x, so propagate everything. 5640 Known.propagateCanonicalizingSrc(KnownSrc, *F, II->getType()); 5641 } else if (ExpRange.isAllNegative()) { 5642 // If we know the power is <= 0, can't introduce inf 5643 if (KnownSrc.isKnownNeverPosInfinity()) 5644 Known.knownNot(fcPosInf); 5645 if (KnownSrc.isKnownNeverNegInfinity()) 5646 Known.knownNot(fcNegInf); 5647 } else if (ExpRange.isAllNonNegative()) { 5648 // If we know the power is >= 0, can't introduce subnormal or zero 5649 if (KnownSrc.isKnownNeverPosSubnormal()) 5650 Known.knownNot(fcPosSubnormal); 5651 if (KnownSrc.isKnownNeverNegSubnormal()) 5652 Known.knownNot(fcNegSubnormal); 5653 if (F && KnownSrc.isKnownNeverLogicalPosZero(*F, II->getType())) 5654 Known.knownNot(fcPosZero); 5655 if (F && KnownSrc.isKnownNeverLogicalNegZero(*F, II->getType())) 5656 Known.knownNot(fcNegZero); 5657 } 5658 5659 break; 5660 } 5661 case Intrinsic::arithmetic_fence: { 5662 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses, 5663 Known, Depth + 1, Q); 5664 break; 5665 } 5666 case Intrinsic::experimental_constrained_sitofp: 5667 case Intrinsic::experimental_constrained_uitofp: 5668 // Cannot produce nan 5669 Known.knownNot(fcNan); 5670 5671 // sitofp and uitofp turn into +0.0 for zero. 5672 Known.knownNot(fcNegZero); 5673 5674 // Integers cannot be subnormal 5675 Known.knownNot(fcSubnormal); 5676 5677 if (IID == Intrinsic::experimental_constrained_uitofp) 5678 Known.signBitMustBeZero(); 5679 5680 // TODO: Copy inf handling from instructions 5681 break; 5682 default: 5683 break; 5684 } 5685 5686 break; 5687 } 5688 case Instruction::FAdd: 5689 case Instruction::FSub: { 5690 KnownFPClass KnownLHS, KnownRHS; 5691 bool WantNegative = 5692 Op->getOpcode() == Instruction::FAdd && 5693 (InterestedClasses & KnownFPClass::OrderedLessThanZeroMask) != fcNone; 5694 bool WantNaN = (InterestedClasses & fcNan) != fcNone; 5695 bool WantNegZero = (InterestedClasses & fcNegZero) != fcNone; 5696 5697 if (!WantNaN && !WantNegative && !WantNegZero) 5698 break; 5699 5700 FPClassTest InterestedSrcs = InterestedClasses; 5701 if (WantNegative) 5702 InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask; 5703 if (InterestedClasses & fcNan) 5704 InterestedSrcs |= fcInf; 5705 computeKnownFPClass(Op->getOperand(1), DemandedElts, InterestedSrcs, 5706 KnownRHS, Depth + 1, Q); 5707 5708 if ((WantNaN && KnownRHS.isKnownNeverNaN()) || 5709 (WantNegative && KnownRHS.cannotBeOrderedLessThanZero()) || 5710 WantNegZero || Opc == Instruction::FSub) { 5711 5712 // RHS is canonically cheaper to compute. Skip inspecting the LHS if 5713 // there's no point. 5714 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedSrcs, 5715 KnownLHS, Depth + 1, Q); 5716 // Adding positive and negative infinity produces NaN. 5717 // TODO: Check sign of infinities. 5718 if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() && 5719 (KnownLHS.isKnownNeverInfinity() || KnownRHS.isKnownNeverInfinity())) 5720 Known.knownNot(fcNan); 5721 5722 // FIXME: Context function should always be passed in separately 5723 const Function *F = cast<Instruction>(Op)->getFunction(); 5724 5725 if (Op->getOpcode() == Instruction::FAdd) { 5726 if (KnownLHS.cannotBeOrderedLessThanZero() && 5727 KnownRHS.cannotBeOrderedLessThanZero()) 5728 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask); 5729 if (!F) 5730 break; 5731 5732 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 5733 if ((KnownLHS.isKnownNeverLogicalNegZero(*F, Op->getType()) || 5734 KnownRHS.isKnownNeverLogicalNegZero(*F, Op->getType())) && 5735 // Make sure output negative denormal can't flush to -0 5736 outputDenormalIsIEEEOrPosZero(*F, Op->getType())) 5737 Known.knownNot(fcNegZero); 5738 } else { 5739 if (!F) 5740 break; 5741 5742 // Only fsub -0, +0 can return -0 5743 if ((KnownLHS.isKnownNeverLogicalNegZero(*F, Op->getType()) || 5744 KnownRHS.isKnownNeverLogicalPosZero(*F, Op->getType())) && 5745 // Make sure output negative denormal can't flush to -0 5746 outputDenormalIsIEEEOrPosZero(*F, Op->getType())) 5747 Known.knownNot(fcNegZero); 5748 } 5749 } 5750 5751 break; 5752 } 5753 case Instruction::FMul: { 5754 // X * X is always non-negative or a NaN. 5755 if (Op->getOperand(0) == Op->getOperand(1)) 5756 Known.knownNot(fcNegative); 5757 5758 if ((InterestedClasses & fcNan) != fcNan) 5759 break; 5760 5761 // fcSubnormal is only needed in case of DAZ. 5762 const FPClassTest NeedForNan = fcNan | fcInf | fcZero | fcSubnormal; 5763 5764 KnownFPClass KnownLHS, KnownRHS; 5765 computeKnownFPClass(Op->getOperand(1), DemandedElts, NeedForNan, KnownRHS, 5766 Depth + 1, Q); 5767 if (!KnownRHS.isKnownNeverNaN()) 5768 break; 5769 5770 computeKnownFPClass(Op->getOperand(0), DemandedElts, NeedForNan, KnownLHS, 5771 Depth + 1, Q); 5772 if (!KnownLHS.isKnownNeverNaN()) 5773 break; 5774 5775 if (KnownLHS.SignBit && KnownRHS.SignBit) { 5776 if (*KnownLHS.SignBit == *KnownRHS.SignBit) 5777 Known.signBitMustBeZero(); 5778 else 5779 Known.signBitMustBeOne(); 5780 } 5781 5782 // If 0 * +/-inf produces NaN. 5783 if (KnownLHS.isKnownNeverInfinity() && KnownRHS.isKnownNeverInfinity()) { 5784 Known.knownNot(fcNan); 5785 break; 5786 } 5787 5788 const Function *F = cast<Instruction>(Op)->getFunction(); 5789 if (!F) 5790 break; 5791 5792 if ((KnownRHS.isKnownNeverInfinity() || 5793 KnownLHS.isKnownNeverLogicalZero(*F, Op->getType())) && 5794 (KnownLHS.isKnownNeverInfinity() || 5795 KnownRHS.isKnownNeverLogicalZero(*F, Op->getType()))) 5796 Known.knownNot(fcNan); 5797 5798 break; 5799 } 5800 case Instruction::FDiv: 5801 case Instruction::FRem: { 5802 if (Op->getOperand(0) == Op->getOperand(1)) { 5803 // TODO: Could filter out snan if we inspect the operand 5804 if (Op->getOpcode() == Instruction::FDiv) { 5805 // X / X is always exactly 1.0 or a NaN. 5806 Known.KnownFPClasses = fcNan | fcPosNormal; 5807 } else { 5808 // X % X is always exactly [+-]0.0 or a NaN. 5809 Known.KnownFPClasses = fcNan | fcZero; 5810 } 5811 5812 break; 5813 } 5814 5815 const bool WantNan = (InterestedClasses & fcNan) != fcNone; 5816 const bool WantNegative = (InterestedClasses & fcNegative) != fcNone; 5817 const bool WantPositive = 5818 Opc == Instruction::FRem && (InterestedClasses & fcPositive) != fcNone; 5819 if (!WantNan && !WantNegative && !WantPositive) 5820 break; 5821 5822 KnownFPClass KnownLHS, KnownRHS; 5823 5824 computeKnownFPClass(Op->getOperand(1), DemandedElts, 5825 fcNan | fcInf | fcZero | fcNegative, KnownRHS, 5826 Depth + 1, Q); 5827 5828 bool KnowSomethingUseful = 5829 KnownRHS.isKnownNeverNaN() || KnownRHS.isKnownNever(fcNegative); 5830 5831 if (KnowSomethingUseful || WantPositive) { 5832 const FPClassTest InterestedLHS = 5833 WantPositive ? fcAllFlags 5834 : fcNan | fcInf | fcZero | fcSubnormal | fcNegative; 5835 5836 computeKnownFPClass(Op->getOperand(0), DemandedElts, 5837 InterestedClasses & InterestedLHS, KnownLHS, 5838 Depth + 1, Q); 5839 } 5840 5841 const Function *F = cast<Instruction>(Op)->getFunction(); 5842 5843 if (Op->getOpcode() == Instruction::FDiv) { 5844 // Only 0/0, Inf/Inf produce NaN. 5845 if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() && 5846 (KnownLHS.isKnownNeverInfinity() || 5847 KnownRHS.isKnownNeverInfinity()) && 5848 ((F && KnownLHS.isKnownNeverLogicalZero(*F, Op->getType())) || 5849 (F && KnownRHS.isKnownNeverLogicalZero(*F, Op->getType())))) { 5850 Known.knownNot(fcNan); 5851 } 5852 5853 // X / -0.0 is -Inf (or NaN). 5854 // +X / +X is +X 5855 if (KnownLHS.isKnownNever(fcNegative) && KnownRHS.isKnownNever(fcNegative)) 5856 Known.knownNot(fcNegative); 5857 } else { 5858 // Inf REM x and x REM 0 produce NaN. 5859 if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() && 5860 KnownLHS.isKnownNeverInfinity() && F && 5861 KnownRHS.isKnownNeverLogicalZero(*F, Op->getType())) { 5862 Known.knownNot(fcNan); 5863 } 5864 5865 // The sign for frem is the same as the first operand. 5866 if (KnownLHS.cannotBeOrderedLessThanZero()) 5867 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask); 5868 if (KnownLHS.cannotBeOrderedGreaterThanZero()) 5869 Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask); 5870 5871 // See if we can be more aggressive about the sign of 0. 5872 if (KnownLHS.isKnownNever(fcNegative)) 5873 Known.knownNot(fcNegative); 5874 if (KnownLHS.isKnownNever(fcPositive)) 5875 Known.knownNot(fcPositive); 5876 } 5877 5878 break; 5879 } 5880 case Instruction::FPExt: { 5881 // Infinity, nan and zero propagate from source. 5882 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses, 5883 Known, Depth + 1, Q); 5884 5885 const fltSemantics &DstTy = 5886 Op->getType()->getScalarType()->getFltSemantics(); 5887 const fltSemantics &SrcTy = 5888 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics(); 5889 5890 // All subnormal inputs should be in the normal range in the result type. 5891 if (APFloat::isRepresentableAsNormalIn(SrcTy, DstTy)) { 5892 if (Known.KnownFPClasses & fcPosSubnormal) 5893 Known.KnownFPClasses |= fcPosNormal; 5894 if (Known.KnownFPClasses & fcNegSubnormal) 5895 Known.KnownFPClasses |= fcNegNormal; 5896 Known.knownNot(fcSubnormal); 5897 } 5898 5899 // Sign bit of a nan isn't guaranteed. 5900 if (!Known.isKnownNeverNaN()) 5901 Known.SignBit = std::nullopt; 5902 break; 5903 } 5904 case Instruction::FPTrunc: { 5905 computeKnownFPClassForFPTrunc(Op, DemandedElts, InterestedClasses, Known, 5906 Depth, Q); 5907 break; 5908 } 5909 case Instruction::SIToFP: 5910 case Instruction::UIToFP: { 5911 // Cannot produce nan 5912 Known.knownNot(fcNan); 5913 5914 // Integers cannot be subnormal 5915 Known.knownNot(fcSubnormal); 5916 5917 // sitofp and uitofp turn into +0.0 for zero. 5918 Known.knownNot(fcNegZero); 5919 if (Op->getOpcode() == Instruction::UIToFP) 5920 Known.signBitMustBeZero(); 5921 5922 if (InterestedClasses & fcInf) { 5923 // Get width of largest magnitude integer (remove a bit if signed). 5924 // This still works for a signed minimum value because the largest FP 5925 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 5926 int IntSize = Op->getOperand(0)->getType()->getScalarSizeInBits(); 5927 if (Op->getOpcode() == Instruction::SIToFP) 5928 --IntSize; 5929 5930 // If the exponent of the largest finite FP value can hold the largest 5931 // integer, the result of the cast must be finite. 5932 Type *FPTy = Op->getType()->getScalarType(); 5933 if (ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize) 5934 Known.knownNot(fcInf); 5935 } 5936 5937 break; 5938 } 5939 case Instruction::ExtractElement: { 5940 // Look through extract element. If the index is non-constant or 5941 // out-of-range demand all elements, otherwise just the extracted element. 5942 const Value *Vec = Op->getOperand(0); 5943 const Value *Idx = Op->getOperand(1); 5944 auto *CIdx = dyn_cast<ConstantInt>(Idx); 5945 5946 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 5947 unsigned NumElts = VecTy->getNumElements(); 5948 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 5949 if (CIdx && CIdx->getValue().ult(NumElts)) 5950 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 5951 return computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known, 5952 Depth + 1, Q); 5953 } 5954 5955 break; 5956 } 5957 case Instruction::InsertElement: { 5958 if (isa<ScalableVectorType>(Op->getType())) 5959 return; 5960 5961 const Value *Vec = Op->getOperand(0); 5962 const Value *Elt = Op->getOperand(1); 5963 auto *CIdx = dyn_cast<ConstantInt>(Op->getOperand(2)); 5964 unsigned NumElts = DemandedElts.getBitWidth(); 5965 APInt DemandedVecElts = DemandedElts; 5966 bool NeedsElt = true; 5967 // If we know the index we are inserting to, clear it from Vec check. 5968 if (CIdx && CIdx->getValue().ult(NumElts)) { 5969 DemandedVecElts.clearBit(CIdx->getZExtValue()); 5970 NeedsElt = DemandedElts[CIdx->getZExtValue()]; 5971 } 5972 5973 // Do we demand the inserted element? 5974 if (NeedsElt) { 5975 computeKnownFPClass(Elt, Known, InterestedClasses, Depth + 1, Q); 5976 // If we don't know any bits, early out. 5977 if (Known.isUnknown()) 5978 break; 5979 } else { 5980 Known.KnownFPClasses = fcNone; 5981 } 5982 5983 // Do we need anymore elements from Vec? 5984 if (!DemandedVecElts.isZero()) { 5985 KnownFPClass Known2; 5986 computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known2, 5987 Depth + 1, Q); 5988 Known |= Known2; 5989 } 5990 5991 break; 5992 } 5993 case Instruction::ShuffleVector: { 5994 // For undef elements, we don't know anything about the common state of 5995 // the shuffle result. 5996 APInt DemandedLHS, DemandedRHS; 5997 auto *Shuf = dyn_cast<ShuffleVectorInst>(Op); 5998 if (!Shuf || !getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 5999 return; 6000 6001 if (!!DemandedLHS) { 6002 const Value *LHS = Shuf->getOperand(0); 6003 computeKnownFPClass(LHS, DemandedLHS, InterestedClasses, Known, 6004 Depth + 1, Q); 6005 6006 // If we don't know any bits, early out. 6007 if (Known.isUnknown()) 6008 break; 6009 } else { 6010 Known.KnownFPClasses = fcNone; 6011 } 6012 6013 if (!!DemandedRHS) { 6014 KnownFPClass Known2; 6015 const Value *RHS = Shuf->getOperand(1); 6016 computeKnownFPClass(RHS, DemandedRHS, InterestedClasses, Known2, 6017 Depth + 1, Q); 6018 Known |= Known2; 6019 } 6020 6021 break; 6022 } 6023 case Instruction::ExtractValue: { 6024 const ExtractValueInst *Extract = cast<ExtractValueInst>(Op); 6025 ArrayRef<unsigned> Indices = Extract->getIndices(); 6026 const Value *Src = Extract->getAggregateOperand(); 6027 if (isa<StructType>(Src->getType()) && Indices.size() == 1 && 6028 Indices[0] == 0) { 6029 if (const auto *II = dyn_cast<IntrinsicInst>(Src)) { 6030 switch (II->getIntrinsicID()) { 6031 case Intrinsic::frexp: { 6032 Known.knownNot(fcSubnormal); 6033 6034 KnownFPClass KnownSrc; 6035 computeKnownFPClass(II->getArgOperand(0), DemandedElts, 6036 InterestedClasses, KnownSrc, Depth + 1, Q); 6037 6038 const Function *F = cast<Instruction>(Op)->getFunction(); 6039 6040 if (KnownSrc.isKnownNever(fcNegative)) 6041 Known.knownNot(fcNegative); 6042 else { 6043 if (F && KnownSrc.isKnownNeverLogicalNegZero(*F, Op->getType())) 6044 Known.knownNot(fcNegZero); 6045 if (KnownSrc.isKnownNever(fcNegInf)) 6046 Known.knownNot(fcNegInf); 6047 } 6048 6049 if (KnownSrc.isKnownNever(fcPositive)) 6050 Known.knownNot(fcPositive); 6051 else { 6052 if (F && KnownSrc.isKnownNeverLogicalPosZero(*F, Op->getType())) 6053 Known.knownNot(fcPosZero); 6054 if (KnownSrc.isKnownNever(fcPosInf)) 6055 Known.knownNot(fcPosInf); 6056 } 6057 6058 Known.propagateNaN(KnownSrc); 6059 return; 6060 } 6061 default: 6062 break; 6063 } 6064 } 6065 } 6066 6067 computeKnownFPClass(Src, DemandedElts, InterestedClasses, Known, Depth + 1, 6068 Q); 6069 break; 6070 } 6071 case Instruction::PHI: { 6072 const PHINode *P = cast<PHINode>(Op); 6073 // Unreachable blocks may have zero-operand PHI nodes. 6074 if (P->getNumIncomingValues() == 0) 6075 break; 6076 6077 // Otherwise take the unions of the known bit sets of the operands, 6078 // taking conservative care to avoid excessive recursion. 6079 const unsigned PhiRecursionLimit = MaxAnalysisRecursionDepth - 2; 6080 6081 if (Depth < PhiRecursionLimit) { 6082 // Skip if every incoming value references to ourself. 6083 if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) 6084 break; 6085 6086 bool First = true; 6087 6088 for (const Use &U : P->operands()) { 6089 Value *IncValue; 6090 Instruction *CxtI; 6091 breakSelfRecursivePHI(&U, P, IncValue, CxtI); 6092 // Skip direct self references. 6093 if (IncValue == P) 6094 continue; 6095 6096 KnownFPClass KnownSrc; 6097 // Recurse, but cap the recursion to two levels, because we don't want 6098 // to waste time spinning around in loops. We need at least depth 2 to 6099 // detect known sign bits. 6100 computeKnownFPClass(IncValue, DemandedElts, InterestedClasses, KnownSrc, 6101 PhiRecursionLimit, 6102 Q.getWithoutCondContext().getWithInstruction(CxtI)); 6103 6104 if (First) { 6105 Known = KnownSrc; 6106 First = false; 6107 } else { 6108 Known |= KnownSrc; 6109 } 6110 6111 if (Known.KnownFPClasses == fcAllFlags) 6112 break; 6113 } 6114 } 6115 6116 break; 6117 } 6118 case Instruction::BitCast: { 6119 const Value *Src; 6120 if (!match(Op, m_ElementWiseBitCast(m_Value(Src))) || 6121 !Src->getType()->isIntOrIntVectorTy()) 6122 break; 6123 6124 const Type *Ty = Op->getType()->getScalarType(); 6125 KnownBits Bits(Ty->getScalarSizeInBits()); 6126 computeKnownBits(Src, DemandedElts, Bits, Depth + 1, Q); 6127 6128 // Transfer information from the sign bit. 6129 if (Bits.isNonNegative()) 6130 Known.signBitMustBeZero(); 6131 else if (Bits.isNegative()) 6132 Known.signBitMustBeOne(); 6133 6134 if (Ty->isIEEE()) { 6135 // IEEE floats are NaN when all bits of the exponent plus at least one of 6136 // the fraction bits are 1. This means: 6137 // - If we assume unknown bits are 0 and the value is NaN, it will 6138 // always be NaN 6139 // - If we assume unknown bits are 1 and the value is not NaN, it can 6140 // never be NaN 6141 if (APFloat(Ty->getFltSemantics(), Bits.One).isNaN()) 6142 Known.KnownFPClasses = fcNan; 6143 else if (!APFloat(Ty->getFltSemantics(), ~Bits.Zero).isNaN()) 6144 Known.knownNot(fcNan); 6145 6146 // Build KnownBits representing Inf and check if it must be equal or 6147 // unequal to this value. 6148 auto InfKB = KnownBits::makeConstant( 6149 APFloat::getInf(Ty->getFltSemantics()).bitcastToAPInt()); 6150 InfKB.Zero.clearSignBit(); 6151 if (const auto InfResult = KnownBits::eq(Bits, InfKB)) { 6152 assert(!InfResult.value()); 6153 Known.knownNot(fcInf); 6154 } else if (Bits == InfKB) { 6155 Known.KnownFPClasses = fcInf; 6156 } 6157 6158 // Build KnownBits representing Zero and check if it must be equal or 6159 // unequal to this value. 6160 auto ZeroKB = KnownBits::makeConstant( 6161 APFloat::getZero(Ty->getFltSemantics()).bitcastToAPInt()); 6162 ZeroKB.Zero.clearSignBit(); 6163 if (const auto ZeroResult = KnownBits::eq(Bits, ZeroKB)) { 6164 assert(!ZeroResult.value()); 6165 Known.knownNot(fcZero); 6166 } else if (Bits == ZeroKB) { 6167 Known.KnownFPClasses = fcZero; 6168 } 6169 } 6170 6171 break; 6172 } 6173 default: 6174 break; 6175 } 6176 } 6177 6178 KnownFPClass llvm::computeKnownFPClass(const Value *V, 6179 const APInt &DemandedElts, 6180 FPClassTest InterestedClasses, 6181 unsigned Depth, 6182 const SimplifyQuery &SQ) { 6183 KnownFPClass KnownClasses; 6184 ::computeKnownFPClass(V, DemandedElts, InterestedClasses, KnownClasses, Depth, 6185 SQ); 6186 return KnownClasses; 6187 } 6188 6189 KnownFPClass llvm::computeKnownFPClass(const Value *V, 6190 FPClassTest InterestedClasses, 6191 unsigned Depth, 6192 const SimplifyQuery &SQ) { 6193 KnownFPClass Known; 6194 ::computeKnownFPClass(V, Known, InterestedClasses, Depth, SQ); 6195 return Known; 6196 } 6197 6198 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 6199 6200 // All byte-wide stores are splatable, even of arbitrary variables. 6201 if (V->getType()->isIntegerTy(8)) 6202 return V; 6203 6204 LLVMContext &Ctx = V->getContext(); 6205 6206 // Undef don't care. 6207 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 6208 if (isa<UndefValue>(V)) 6209 return UndefInt8; 6210 6211 // Return poison for zero-sized type. 6212 if (DL.getTypeStoreSize(V->getType()).isZero()) 6213 return PoisonValue::get(Type::getInt8Ty(Ctx)); 6214 6215 Constant *C = dyn_cast<Constant>(V); 6216 if (!C) { 6217 // Conceptually, we could handle things like: 6218 // %a = zext i8 %X to i16 6219 // %b = shl i16 %a, 8 6220 // %c = or i16 %a, %b 6221 // but until there is an example that actually needs this, it doesn't seem 6222 // worth worrying about. 6223 return nullptr; 6224 } 6225 6226 // Handle 'null' ConstantArrayZero etc. 6227 if (C->isNullValue()) 6228 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 6229 6230 // Constant floating-point values can be handled as integer values if the 6231 // corresponding integer value is "byteable". An important case is 0.0. 6232 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 6233 Type *Ty = nullptr; 6234 if (CFP->getType()->isHalfTy()) 6235 Ty = Type::getInt16Ty(Ctx); 6236 else if (CFP->getType()->isFloatTy()) 6237 Ty = Type::getInt32Ty(Ctx); 6238 else if (CFP->getType()->isDoubleTy()) 6239 Ty = Type::getInt64Ty(Ctx); 6240 // Don't handle long double formats, which have strange constraints. 6241 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 6242 : nullptr; 6243 } 6244 6245 // We can handle constant integers that are multiple of 8 bits. 6246 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 6247 if (CI->getBitWidth() % 8 == 0) { 6248 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 6249 if (!CI->getValue().isSplat(8)) 6250 return nullptr; 6251 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 6252 } 6253 } 6254 6255 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 6256 if (CE->getOpcode() == Instruction::IntToPtr) { 6257 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 6258 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 6259 if (Constant *Op = ConstantFoldIntegerCast( 6260 CE->getOperand(0), Type::getIntNTy(Ctx, BitWidth), false, DL)) 6261 return isBytewiseValue(Op, DL); 6262 } 6263 } 6264 } 6265 6266 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 6267 if (LHS == RHS) 6268 return LHS; 6269 if (!LHS || !RHS) 6270 return nullptr; 6271 if (LHS == UndefInt8) 6272 return RHS; 6273 if (RHS == UndefInt8) 6274 return LHS; 6275 return nullptr; 6276 }; 6277 6278 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 6279 Value *Val = UndefInt8; 6280 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 6281 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 6282 return nullptr; 6283 return Val; 6284 } 6285 6286 if (isa<ConstantAggregate>(C)) { 6287 Value *Val = UndefInt8; 6288 for (Value *Op : C->operands()) 6289 if (!(Val = Merge(Val, isBytewiseValue(Op, DL)))) 6290 return nullptr; 6291 return Val; 6292 } 6293 6294 // Don't try to handle the handful of other constants. 6295 return nullptr; 6296 } 6297 6298 // This is the recursive version of BuildSubAggregate. It takes a few different 6299 // arguments. Idxs is the index within the nested struct From that we are 6300 // looking at now (which is of type IndexedType). IdxSkip is the number of 6301 // indices from Idxs that should be left out when inserting into the resulting 6302 // struct. To is the result struct built so far, new insertvalue instructions 6303 // build on that. 6304 static Value *BuildSubAggregate(Value *From, Value *To, Type *IndexedType, 6305 SmallVectorImpl<unsigned> &Idxs, 6306 unsigned IdxSkip, 6307 BasicBlock::iterator InsertBefore) { 6308 StructType *STy = dyn_cast<StructType>(IndexedType); 6309 if (STy) { 6310 // Save the original To argument so we can modify it 6311 Value *OrigTo = To; 6312 // General case, the type indexed by Idxs is a struct 6313 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 6314 // Process each struct element recursively 6315 Idxs.push_back(i); 6316 Value *PrevTo = To; 6317 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 6318 InsertBefore); 6319 Idxs.pop_back(); 6320 if (!To) { 6321 // Couldn't find any inserted value for this index? Cleanup 6322 while (PrevTo != OrigTo) { 6323 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 6324 PrevTo = Del->getAggregateOperand(); 6325 Del->eraseFromParent(); 6326 } 6327 // Stop processing elements 6328 break; 6329 } 6330 } 6331 // If we successfully found a value for each of our subaggregates 6332 if (To) 6333 return To; 6334 } 6335 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 6336 // the struct's elements had a value that was inserted directly. In the latter 6337 // case, perhaps we can't determine each of the subelements individually, but 6338 // we might be able to find the complete struct somewhere. 6339 6340 // Find the value that is at that particular spot 6341 Value *V = FindInsertedValue(From, Idxs); 6342 6343 if (!V) 6344 return nullptr; 6345 6346 // Insert the value in the new (sub) aggregate 6347 return InsertValueInst::Create(To, V, ArrayRef(Idxs).slice(IdxSkip), "tmp", 6348 InsertBefore); 6349 } 6350 6351 // This helper takes a nested struct and extracts a part of it (which is again a 6352 // struct) into a new value. For example, given the struct: 6353 // { a, { b, { c, d }, e } } 6354 // and the indices "1, 1" this returns 6355 // { c, d }. 6356 // 6357 // It does this by inserting an insertvalue for each element in the resulting 6358 // struct, as opposed to just inserting a single struct. This will only work if 6359 // each of the elements of the substruct are known (ie, inserted into From by an 6360 // insertvalue instruction somewhere). 6361 // 6362 // All inserted insertvalue instructions are inserted before InsertBefore 6363 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 6364 BasicBlock::iterator InsertBefore) { 6365 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 6366 idx_range); 6367 Value *To = PoisonValue::get(IndexedType); 6368 SmallVector<unsigned, 10> Idxs(idx_range); 6369 unsigned IdxSkip = Idxs.size(); 6370 6371 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 6372 } 6373 6374 /// Given an aggregate and a sequence of indices, see if the scalar value 6375 /// indexed is already around as a register, for example if it was inserted 6376 /// directly into the aggregate. 6377 /// 6378 /// If InsertBefore is not null, this function will duplicate (modified) 6379 /// insertvalues when a part of a nested struct is extracted. 6380 Value * 6381 llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 6382 std::optional<BasicBlock::iterator> InsertBefore) { 6383 // Nothing to index? Just return V then (this is useful at the end of our 6384 // recursion). 6385 if (idx_range.empty()) 6386 return V; 6387 // We have indices, so V should have an indexable type. 6388 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 6389 "Not looking at a struct or array?"); 6390 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 6391 "Invalid indices for type?"); 6392 6393 if (Constant *C = dyn_cast<Constant>(V)) { 6394 C = C->getAggregateElement(idx_range[0]); 6395 if (!C) return nullptr; 6396 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 6397 } 6398 6399 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 6400 // Loop the indices for the insertvalue instruction in parallel with the 6401 // requested indices 6402 const unsigned *req_idx = idx_range.begin(); 6403 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 6404 i != e; ++i, ++req_idx) { 6405 if (req_idx == idx_range.end()) { 6406 // We can't handle this without inserting insertvalues 6407 if (!InsertBefore) 6408 return nullptr; 6409 6410 // The requested index identifies a part of a nested aggregate. Handle 6411 // this specially. For example, 6412 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 6413 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 6414 // %C = extractvalue {i32, { i32, i32 } } %B, 1 6415 // This can be changed into 6416 // %A = insertvalue {i32, i32 } undef, i32 10, 0 6417 // %C = insertvalue {i32, i32 } %A, i32 11, 1 6418 // which allows the unused 0,0 element from the nested struct to be 6419 // removed. 6420 return BuildSubAggregate(V, ArrayRef(idx_range.begin(), req_idx), 6421 *InsertBefore); 6422 } 6423 6424 // This insert value inserts something else than what we are looking for. 6425 // See if the (aggregate) value inserted into has the value we are 6426 // looking for, then. 6427 if (*req_idx != *i) 6428 return FindInsertedValue(I->getAggregateOperand(), idx_range, 6429 InsertBefore); 6430 } 6431 // If we end up here, the indices of the insertvalue match with those 6432 // requested (though possibly only partially). Now we recursively look at 6433 // the inserted value, passing any remaining indices. 6434 return FindInsertedValue(I->getInsertedValueOperand(), 6435 ArrayRef(req_idx, idx_range.end()), InsertBefore); 6436 } 6437 6438 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 6439 // If we're extracting a value from an aggregate that was extracted from 6440 // something else, we can extract from that something else directly instead. 6441 // However, we will need to chain I's indices with the requested indices. 6442 6443 // Calculate the number of indices required 6444 unsigned size = I->getNumIndices() + idx_range.size(); 6445 // Allocate some space to put the new indices in 6446 SmallVector<unsigned, 5> Idxs; 6447 Idxs.reserve(size); 6448 // Add indices from the extract value instruction 6449 Idxs.append(I->idx_begin(), I->idx_end()); 6450 6451 // Add requested indices 6452 Idxs.append(idx_range.begin(), idx_range.end()); 6453 6454 assert(Idxs.size() == size 6455 && "Number of indices added not correct?"); 6456 6457 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 6458 } 6459 // Otherwise, we don't know (such as, extracting from a function return value 6460 // or load instruction) 6461 return nullptr; 6462 } 6463 6464 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 6465 unsigned CharSize) { 6466 // Make sure the GEP has exactly three arguments. 6467 if (GEP->getNumOperands() != 3) 6468 return false; 6469 6470 // Make sure the index-ee is a pointer to array of \p CharSize integers. 6471 // CharSize. 6472 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 6473 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 6474 return false; 6475 6476 // Check to make sure that the first operand of the GEP is an integer and 6477 // has value 0 so that we are sure we're indexing into the initializer. 6478 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 6479 if (!FirstIdx || !FirstIdx->isZero()) 6480 return false; 6481 6482 return true; 6483 } 6484 6485 // If V refers to an initialized global constant, set Slice either to 6486 // its initializer if the size of its elements equals ElementSize, or, 6487 // for ElementSize == 8, to its representation as an array of unsiged 6488 // char. Return true on success. 6489 // Offset is in the unit "nr of ElementSize sized elements". 6490 bool llvm::getConstantDataArrayInfo(const Value *V, 6491 ConstantDataArraySlice &Slice, 6492 unsigned ElementSize, uint64_t Offset) { 6493 assert(V && "V should not be null."); 6494 assert((ElementSize % 8) == 0 && 6495 "ElementSize expected to be a multiple of the size of a byte."); 6496 unsigned ElementSizeInBytes = ElementSize / 8; 6497 6498 // Drill down into the pointer expression V, ignoring any intervening 6499 // casts, and determine the identity of the object it references along 6500 // with the cumulative byte offset into it. 6501 const GlobalVariable *GV = 6502 dyn_cast<GlobalVariable>(getUnderlyingObject(V)); 6503 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 6504 // Fail if V is not based on constant global object. 6505 return false; 6506 6507 const DataLayout &DL = GV->getDataLayout(); 6508 APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0); 6509 6510 if (GV != V->stripAndAccumulateConstantOffsets(DL, Off, 6511 /*AllowNonInbounds*/ true)) 6512 // Fail if a constant offset could not be determined. 6513 return false; 6514 6515 uint64_t StartIdx = Off.getLimitedValue(); 6516 if (StartIdx == UINT64_MAX) 6517 // Fail if the constant offset is excessive. 6518 return false; 6519 6520 // Off/StartIdx is in the unit of bytes. So we need to convert to number of 6521 // elements. Simply bail out if that isn't possible. 6522 if ((StartIdx % ElementSizeInBytes) != 0) 6523 return false; 6524 6525 Offset += StartIdx / ElementSizeInBytes; 6526 ConstantDataArray *Array = nullptr; 6527 ArrayType *ArrayTy = nullptr; 6528 6529 if (GV->getInitializer()->isNullValue()) { 6530 Type *GVTy = GV->getValueType(); 6531 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedValue(); 6532 uint64_t Length = SizeInBytes / ElementSizeInBytes; 6533 6534 Slice.Array = nullptr; 6535 Slice.Offset = 0; 6536 // Return an empty Slice for undersized constants to let callers 6537 // transform even undefined library calls into simpler, well-defined 6538 // expressions. This is preferable to making the calls although it 6539 // prevents sanitizers from detecting such calls. 6540 Slice.Length = Length < Offset ? 0 : Length - Offset; 6541 return true; 6542 } 6543 6544 auto *Init = const_cast<Constant *>(GV->getInitializer()); 6545 if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) { 6546 Type *InitElTy = ArrayInit->getElementType(); 6547 if (InitElTy->isIntegerTy(ElementSize)) { 6548 // If Init is an initializer for an array of the expected type 6549 // and size, use it as is. 6550 Array = ArrayInit; 6551 ArrayTy = ArrayInit->getType(); 6552 } 6553 } 6554 6555 if (!Array) { 6556 if (ElementSize != 8) 6557 // TODO: Handle conversions to larger integral types. 6558 return false; 6559 6560 // Otherwise extract the portion of the initializer starting 6561 // at Offset as an array of bytes, and reset Offset. 6562 Init = ReadByteArrayFromGlobal(GV, Offset); 6563 if (!Init) 6564 return false; 6565 6566 Offset = 0; 6567 Array = dyn_cast<ConstantDataArray>(Init); 6568 ArrayTy = dyn_cast<ArrayType>(Init->getType()); 6569 } 6570 6571 uint64_t NumElts = ArrayTy->getArrayNumElements(); 6572 if (Offset > NumElts) 6573 return false; 6574 6575 Slice.Array = Array; 6576 Slice.Offset = Offset; 6577 Slice.Length = NumElts - Offset; 6578 return true; 6579 } 6580 6581 /// Extract bytes from the initializer of the constant array V, which need 6582 /// not be a nul-terminated string. On success, store the bytes in Str and 6583 /// return true. When TrimAtNul is set, Str will contain only the bytes up 6584 /// to but not including the first nul. Return false on failure. 6585 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 6586 bool TrimAtNul) { 6587 ConstantDataArraySlice Slice; 6588 if (!getConstantDataArrayInfo(V, Slice, 8)) 6589 return false; 6590 6591 if (Slice.Array == nullptr) { 6592 if (TrimAtNul) { 6593 // Return a nul-terminated string even for an empty Slice. This is 6594 // safe because all existing SimplifyLibcalls callers require string 6595 // arguments and the behavior of the functions they fold is undefined 6596 // otherwise. Folding the calls this way is preferable to making 6597 // the undefined library calls, even though it prevents sanitizers 6598 // from reporting such calls. 6599 Str = StringRef(); 6600 return true; 6601 } 6602 if (Slice.Length == 1) { 6603 Str = StringRef("", 1); 6604 return true; 6605 } 6606 // We cannot instantiate a StringRef as we do not have an appropriate string 6607 // of 0s at hand. 6608 return false; 6609 } 6610 6611 // Start out with the entire array in the StringRef. 6612 Str = Slice.Array->getAsString(); 6613 // Skip over 'offset' bytes. 6614 Str = Str.substr(Slice.Offset); 6615 6616 if (TrimAtNul) { 6617 // Trim off the \0 and anything after it. If the array is not nul 6618 // terminated, we just return the whole end of string. The client may know 6619 // some other way that the string is length-bound. 6620 Str = Str.substr(0, Str.find('\0')); 6621 } 6622 return true; 6623 } 6624 6625 // These next two are very similar to the above, but also look through PHI 6626 // nodes. 6627 // TODO: See if we can integrate these two together. 6628 6629 /// If we can compute the length of the string pointed to by 6630 /// the specified pointer, return 'len+1'. If we can't, return 0. 6631 static uint64_t GetStringLengthH(const Value *V, 6632 SmallPtrSetImpl<const PHINode*> &PHIs, 6633 unsigned CharSize) { 6634 // Look through noop bitcast instructions. 6635 V = V->stripPointerCasts(); 6636 6637 // If this is a PHI node, there are two cases: either we have already seen it 6638 // or we haven't. 6639 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 6640 if (!PHIs.insert(PN).second) 6641 return ~0ULL; // already in the set. 6642 6643 // If it was new, see if all the input strings are the same length. 6644 uint64_t LenSoFar = ~0ULL; 6645 for (Value *IncValue : PN->incoming_values()) { 6646 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 6647 if (Len == 0) return 0; // Unknown length -> unknown. 6648 6649 if (Len == ~0ULL) continue; 6650 6651 if (Len != LenSoFar && LenSoFar != ~0ULL) 6652 return 0; // Disagree -> unknown. 6653 LenSoFar = Len; 6654 } 6655 6656 // Success, all agree. 6657 return LenSoFar; 6658 } 6659 6660 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 6661 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 6662 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 6663 if (Len1 == 0) return 0; 6664 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 6665 if (Len2 == 0) return 0; 6666 if (Len1 == ~0ULL) return Len2; 6667 if (Len2 == ~0ULL) return Len1; 6668 if (Len1 != Len2) return 0; 6669 return Len1; 6670 } 6671 6672 // Otherwise, see if we can read the string. 6673 ConstantDataArraySlice Slice; 6674 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 6675 return 0; 6676 6677 if (Slice.Array == nullptr) 6678 // Zeroinitializer (including an empty one). 6679 return 1; 6680 6681 // Search for the first nul character. Return a conservative result even 6682 // when there is no nul. This is safe since otherwise the string function 6683 // being folded such as strlen is undefined, and can be preferable to 6684 // making the undefined library call. 6685 unsigned NullIndex = 0; 6686 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 6687 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 6688 break; 6689 } 6690 6691 return NullIndex + 1; 6692 } 6693 6694 /// If we can compute the length of the string pointed to by 6695 /// the specified pointer, return 'len+1'. If we can't, return 0. 6696 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 6697 if (!V->getType()->isPointerTy()) 6698 return 0; 6699 6700 SmallPtrSet<const PHINode*, 32> PHIs; 6701 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 6702 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 6703 // an empty string as a length. 6704 return Len == ~0ULL ? 1 : Len; 6705 } 6706 6707 const Value * 6708 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 6709 bool MustPreserveNullness) { 6710 assert(Call && 6711 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 6712 if (const Value *RV = Call->getReturnedArgOperand()) 6713 return RV; 6714 // This can be used only as a aliasing property. 6715 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 6716 Call, MustPreserveNullness)) 6717 return Call->getArgOperand(0); 6718 return nullptr; 6719 } 6720 6721 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 6722 const CallBase *Call, bool MustPreserveNullness) { 6723 switch (Call->getIntrinsicID()) { 6724 case Intrinsic::launder_invariant_group: 6725 case Intrinsic::strip_invariant_group: 6726 case Intrinsic::aarch64_irg: 6727 case Intrinsic::aarch64_tagp: 6728 // The amdgcn_make_buffer_rsrc function does not alter the address of the 6729 // input pointer (and thus preserve null-ness for the purposes of escape 6730 // analysis, which is where the MustPreserveNullness flag comes in to play). 6731 // However, it will not necessarily map ptr addrspace(N) null to ptr 6732 // addrspace(8) null, aka the "null descriptor", which has "all loads return 6733 // 0, all stores are dropped" semantics. Given the context of this intrinsic 6734 // list, no one should be relying on such a strict interpretation of 6735 // MustPreserveNullness (and, at time of writing, they are not), but we 6736 // document this fact out of an abundance of caution. 6737 case Intrinsic::amdgcn_make_buffer_rsrc: 6738 return true; 6739 case Intrinsic::ptrmask: 6740 return !MustPreserveNullness; 6741 case Intrinsic::threadlocal_address: 6742 // The underlying variable changes with thread ID. The Thread ID may change 6743 // at coroutine suspend points. 6744 return !Call->getParent()->getParent()->isPresplitCoroutine(); 6745 default: 6746 return false; 6747 } 6748 } 6749 6750 /// \p PN defines a loop-variant pointer to an object. Check if the 6751 /// previous iteration of the loop was referring to the same object as \p PN. 6752 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 6753 const LoopInfo *LI) { 6754 // Find the loop-defined value. 6755 Loop *L = LI->getLoopFor(PN->getParent()); 6756 if (PN->getNumIncomingValues() != 2) 6757 return true; 6758 6759 // Find the value from previous iteration. 6760 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 6761 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 6762 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 6763 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 6764 return true; 6765 6766 // If a new pointer is loaded in the loop, the pointer references a different 6767 // object in every iteration. E.g.: 6768 // for (i) 6769 // int *p = a[i]; 6770 // ... 6771 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 6772 if (!L->isLoopInvariant(Load->getPointerOperand())) 6773 return false; 6774 return true; 6775 } 6776 6777 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 6778 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 6779 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 6780 const Value *PtrOp = GEP->getPointerOperand(); 6781 if (!PtrOp->getType()->isPointerTy()) // Only handle scalar pointer base. 6782 return V; 6783 V = PtrOp; 6784 } else if (Operator::getOpcode(V) == Instruction::BitCast || 6785 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 6786 Value *NewV = cast<Operator>(V)->getOperand(0); 6787 if (!NewV->getType()->isPointerTy()) 6788 return V; 6789 V = NewV; 6790 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 6791 if (GA->isInterposable()) 6792 return V; 6793 V = GA->getAliasee(); 6794 } else { 6795 if (auto *PHI = dyn_cast<PHINode>(V)) { 6796 // Look through single-arg phi nodes created by LCSSA. 6797 if (PHI->getNumIncomingValues() == 1) { 6798 V = PHI->getIncomingValue(0); 6799 continue; 6800 } 6801 } else if (auto *Call = dyn_cast<CallBase>(V)) { 6802 // CaptureTracking can know about special capturing properties of some 6803 // intrinsics like launder.invariant.group, that can't be expressed with 6804 // the attributes, but have properties like returning aliasing pointer. 6805 // Because some analysis may assume that nocaptured pointer is not 6806 // returned from some special intrinsic (because function would have to 6807 // be marked with returns attribute), it is crucial to use this function 6808 // because it should be in sync with CaptureTracking. Not using it may 6809 // cause weird miscompilations where 2 aliasing pointers are assumed to 6810 // noalias. 6811 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 6812 V = RP; 6813 continue; 6814 } 6815 } 6816 6817 return V; 6818 } 6819 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 6820 } 6821 return V; 6822 } 6823 6824 void llvm::getUnderlyingObjects(const Value *V, 6825 SmallVectorImpl<const Value *> &Objects, 6826 const LoopInfo *LI, unsigned MaxLookup) { 6827 SmallPtrSet<const Value *, 4> Visited; 6828 SmallVector<const Value *, 4> Worklist; 6829 Worklist.push_back(V); 6830 do { 6831 const Value *P = Worklist.pop_back_val(); 6832 P = getUnderlyingObject(P, MaxLookup); 6833 6834 if (!Visited.insert(P).second) 6835 continue; 6836 6837 if (auto *SI = dyn_cast<SelectInst>(P)) { 6838 Worklist.push_back(SI->getTrueValue()); 6839 Worklist.push_back(SI->getFalseValue()); 6840 continue; 6841 } 6842 6843 if (auto *PN = dyn_cast<PHINode>(P)) { 6844 // If this PHI changes the underlying object in every iteration of the 6845 // loop, don't look through it. Consider: 6846 // int **A; 6847 // for (i) { 6848 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 6849 // Curr = A[i]; 6850 // *Prev, *Curr; 6851 // 6852 // Prev is tracking Curr one iteration behind so they refer to different 6853 // underlying objects. 6854 if (!LI || !LI->isLoopHeader(PN->getParent()) || 6855 isSameUnderlyingObjectInLoop(PN, LI)) 6856 append_range(Worklist, PN->incoming_values()); 6857 else 6858 Objects.push_back(P); 6859 continue; 6860 } 6861 6862 Objects.push_back(P); 6863 } while (!Worklist.empty()); 6864 } 6865 6866 const Value *llvm::getUnderlyingObjectAggressive(const Value *V) { 6867 const unsigned MaxVisited = 8; 6868 6869 SmallPtrSet<const Value *, 8> Visited; 6870 SmallVector<const Value *, 8> Worklist; 6871 Worklist.push_back(V); 6872 const Value *Object = nullptr; 6873 // Used as fallback if we can't find a common underlying object through 6874 // recursion. 6875 bool First = true; 6876 const Value *FirstObject = getUnderlyingObject(V); 6877 do { 6878 const Value *P = Worklist.pop_back_val(); 6879 P = First ? FirstObject : getUnderlyingObject(P); 6880 First = false; 6881 6882 if (!Visited.insert(P).second) 6883 continue; 6884 6885 if (Visited.size() == MaxVisited) 6886 return FirstObject; 6887 6888 if (auto *SI = dyn_cast<SelectInst>(P)) { 6889 Worklist.push_back(SI->getTrueValue()); 6890 Worklist.push_back(SI->getFalseValue()); 6891 continue; 6892 } 6893 6894 if (auto *PN = dyn_cast<PHINode>(P)) { 6895 append_range(Worklist, PN->incoming_values()); 6896 continue; 6897 } 6898 6899 if (!Object) 6900 Object = P; 6901 else if (Object != P) 6902 return FirstObject; 6903 } while (!Worklist.empty()); 6904 6905 return Object ? Object : FirstObject; 6906 } 6907 6908 /// This is the function that does the work of looking through basic 6909 /// ptrtoint+arithmetic+inttoptr sequences. 6910 static const Value *getUnderlyingObjectFromInt(const Value *V) { 6911 do { 6912 if (const Operator *U = dyn_cast<Operator>(V)) { 6913 // If we find a ptrtoint, we can transfer control back to the 6914 // regular getUnderlyingObjectFromInt. 6915 if (U->getOpcode() == Instruction::PtrToInt) 6916 return U->getOperand(0); 6917 // If we find an add of a constant, a multiplied value, or a phi, it's 6918 // likely that the other operand will lead us to the base 6919 // object. We don't have to worry about the case where the 6920 // object address is somehow being computed by the multiply, 6921 // because our callers only care when the result is an 6922 // identifiable object. 6923 if (U->getOpcode() != Instruction::Add || 6924 (!isa<ConstantInt>(U->getOperand(1)) && 6925 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 6926 !isa<PHINode>(U->getOperand(1)))) 6927 return V; 6928 V = U->getOperand(0); 6929 } else { 6930 return V; 6931 } 6932 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 6933 } while (true); 6934 } 6935 6936 /// This is a wrapper around getUnderlyingObjects and adds support for basic 6937 /// ptrtoint+arithmetic+inttoptr sequences. 6938 /// It returns false if unidentified object is found in getUnderlyingObjects. 6939 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 6940 SmallVectorImpl<Value *> &Objects) { 6941 SmallPtrSet<const Value *, 16> Visited; 6942 SmallVector<const Value *, 4> Working(1, V); 6943 do { 6944 V = Working.pop_back_val(); 6945 6946 SmallVector<const Value *, 4> Objs; 6947 getUnderlyingObjects(V, Objs); 6948 6949 for (const Value *V : Objs) { 6950 if (!Visited.insert(V).second) 6951 continue; 6952 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 6953 const Value *O = 6954 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 6955 if (O->getType()->isPointerTy()) { 6956 Working.push_back(O); 6957 continue; 6958 } 6959 } 6960 // If getUnderlyingObjects fails to find an identifiable object, 6961 // getUnderlyingObjectsForCodeGen also fails for safety. 6962 if (!isIdentifiedObject(V)) { 6963 Objects.clear(); 6964 return false; 6965 } 6966 Objects.push_back(const_cast<Value *>(V)); 6967 } 6968 } while (!Working.empty()); 6969 return true; 6970 } 6971 6972 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 6973 AllocaInst *Result = nullptr; 6974 SmallPtrSet<Value *, 4> Visited; 6975 SmallVector<Value *, 4> Worklist; 6976 6977 auto AddWork = [&](Value *V) { 6978 if (Visited.insert(V).second) 6979 Worklist.push_back(V); 6980 }; 6981 6982 AddWork(V); 6983 do { 6984 V = Worklist.pop_back_val(); 6985 assert(Visited.count(V)); 6986 6987 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 6988 if (Result && Result != AI) 6989 return nullptr; 6990 Result = AI; 6991 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 6992 AddWork(CI->getOperand(0)); 6993 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 6994 for (Value *IncValue : PN->incoming_values()) 6995 AddWork(IncValue); 6996 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 6997 AddWork(SI->getTrueValue()); 6998 AddWork(SI->getFalseValue()); 6999 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 7000 if (OffsetZero && !GEP->hasAllZeroIndices()) 7001 return nullptr; 7002 AddWork(GEP->getPointerOperand()); 7003 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 7004 Value *Returned = CB->getReturnedArgOperand(); 7005 if (Returned) 7006 AddWork(Returned); 7007 else 7008 return nullptr; 7009 } else { 7010 return nullptr; 7011 } 7012 } while (!Worklist.empty()); 7013 7014 return Result; 7015 } 7016 7017 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 7018 const Value *V, bool AllowLifetime, bool AllowDroppable) { 7019 for (const User *U : V->users()) { 7020 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 7021 if (!II) 7022 return false; 7023 7024 if (AllowLifetime && II->isLifetimeStartOrEnd()) 7025 continue; 7026 7027 if (AllowDroppable && II->isDroppable()) 7028 continue; 7029 7030 return false; 7031 } 7032 return true; 7033 } 7034 7035 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 7036 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 7037 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 7038 } 7039 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 7040 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 7041 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 7042 } 7043 7044 bool llvm::isNotCrossLaneOperation(const Instruction *I) { 7045 if (auto *II = dyn_cast<IntrinsicInst>(I)) 7046 return isTriviallyVectorizable(II->getIntrinsicID()); 7047 auto *Shuffle = dyn_cast<ShuffleVectorInst>(I); 7048 return (!Shuffle || Shuffle->isSelect()) && 7049 !isa<CallBase, BitCastInst, ExtractElementInst>(I); 7050 } 7051 7052 bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst, 7053 const Instruction *CtxI, 7054 AssumptionCache *AC, 7055 const DominatorTree *DT, 7056 const TargetLibraryInfo *TLI, 7057 bool UseVariableInfo) { 7058 return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI, 7059 AC, DT, TLI, UseVariableInfo); 7060 } 7061 7062 bool llvm::isSafeToSpeculativelyExecuteWithOpcode( 7063 unsigned Opcode, const Instruction *Inst, const Instruction *CtxI, 7064 AssumptionCache *AC, const DominatorTree *DT, const TargetLibraryInfo *TLI, 7065 bool UseVariableInfo) { 7066 #ifndef NDEBUG 7067 if (Inst->getOpcode() != Opcode) { 7068 // Check that the operands are actually compatible with the Opcode override. 7069 auto hasEqualReturnAndLeadingOperandTypes = 7070 [](const Instruction *Inst, unsigned NumLeadingOperands) { 7071 if (Inst->getNumOperands() < NumLeadingOperands) 7072 return false; 7073 const Type *ExpectedType = Inst->getType(); 7074 for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp) 7075 if (Inst->getOperand(ItOp)->getType() != ExpectedType) 7076 return false; 7077 return true; 7078 }; 7079 assert(!Instruction::isBinaryOp(Opcode) || 7080 hasEqualReturnAndLeadingOperandTypes(Inst, 2)); 7081 assert(!Instruction::isUnaryOp(Opcode) || 7082 hasEqualReturnAndLeadingOperandTypes(Inst, 1)); 7083 } 7084 #endif 7085 7086 switch (Opcode) { 7087 default: 7088 return true; 7089 case Instruction::UDiv: 7090 case Instruction::URem: { 7091 // x / y is undefined if y == 0. 7092 const APInt *V; 7093 if (match(Inst->getOperand(1), m_APInt(V))) 7094 return *V != 0; 7095 return false; 7096 } 7097 case Instruction::SDiv: 7098 case Instruction::SRem: { 7099 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 7100 const APInt *Numerator, *Denominator; 7101 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 7102 return false; 7103 // We cannot hoist this division if the denominator is 0. 7104 if (*Denominator == 0) 7105 return false; 7106 // It's safe to hoist if the denominator is not 0 or -1. 7107 if (!Denominator->isAllOnes()) 7108 return true; 7109 // At this point we know that the denominator is -1. It is safe to hoist as 7110 // long we know that the numerator is not INT_MIN. 7111 if (match(Inst->getOperand(0), m_APInt(Numerator))) 7112 return !Numerator->isMinSignedValue(); 7113 // The numerator *might* be MinSignedValue. 7114 return false; 7115 } 7116 case Instruction::Load: { 7117 if (!UseVariableInfo) 7118 return false; 7119 7120 const LoadInst *LI = dyn_cast<LoadInst>(Inst); 7121 if (!LI) 7122 return false; 7123 if (mustSuppressSpeculation(*LI)) 7124 return false; 7125 const DataLayout &DL = LI->getDataLayout(); 7126 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 7127 LI->getType(), LI->getAlign(), DL, 7128 CtxI, AC, DT, TLI); 7129 } 7130 case Instruction::Call: { 7131 auto *CI = dyn_cast<const CallInst>(Inst); 7132 if (!CI) 7133 return false; 7134 const Function *Callee = CI->getCalledFunction(); 7135 7136 // The called function could have undefined behavior or side-effects, even 7137 // if marked readnone nounwind. 7138 return Callee && Callee->isSpeculatable(); 7139 } 7140 case Instruction::VAArg: 7141 case Instruction::Alloca: 7142 case Instruction::Invoke: 7143 case Instruction::CallBr: 7144 case Instruction::PHI: 7145 case Instruction::Store: 7146 case Instruction::Ret: 7147 case Instruction::Br: 7148 case Instruction::IndirectBr: 7149 case Instruction::Switch: 7150 case Instruction::Unreachable: 7151 case Instruction::Fence: 7152 case Instruction::AtomicRMW: 7153 case Instruction::AtomicCmpXchg: 7154 case Instruction::LandingPad: 7155 case Instruction::Resume: 7156 case Instruction::CatchSwitch: 7157 case Instruction::CatchPad: 7158 case Instruction::CatchRet: 7159 case Instruction::CleanupPad: 7160 case Instruction::CleanupRet: 7161 return false; // Misc instructions which have effects 7162 } 7163 } 7164 7165 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) { 7166 if (I.mayReadOrWriteMemory()) 7167 // Memory dependency possible 7168 return true; 7169 if (!isSafeToSpeculativelyExecute(&I)) 7170 // Can't move above a maythrow call or infinite loop. Or if an 7171 // inalloca alloca, above a stacksave call. 7172 return true; 7173 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7174 // 1) Can't reorder two inf-loop calls, even if readonly 7175 // 2) Also can't reorder an inf-loop call below a instruction which isn't 7176 // safe to speculative execute. (Inverse of above) 7177 return true; 7178 return false; 7179 } 7180 7181 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 7182 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 7183 switch (OR) { 7184 case ConstantRange::OverflowResult::MayOverflow: 7185 return OverflowResult::MayOverflow; 7186 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 7187 return OverflowResult::AlwaysOverflowsLow; 7188 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 7189 return OverflowResult::AlwaysOverflowsHigh; 7190 case ConstantRange::OverflowResult::NeverOverflows: 7191 return OverflowResult::NeverOverflows; 7192 } 7193 llvm_unreachable("Unknown OverflowResult"); 7194 } 7195 7196 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 7197 ConstantRange 7198 llvm::computeConstantRangeIncludingKnownBits(const WithCache<const Value *> &V, 7199 bool ForSigned, 7200 const SimplifyQuery &SQ) { 7201 ConstantRange CR1 = 7202 ConstantRange::fromKnownBits(V.getKnownBits(SQ), ForSigned); 7203 ConstantRange CR2 = computeConstantRange(V, ForSigned, SQ.IIQ.UseInstrInfo); 7204 ConstantRange::PreferredRangeType RangeType = 7205 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 7206 return CR1.intersectWith(CR2, RangeType); 7207 } 7208 7209 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 7210 const Value *RHS, 7211 const SimplifyQuery &SQ, 7212 bool IsNSW) { 7213 KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, SQ); 7214 KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, SQ); 7215 7216 // mul nsw of two non-negative numbers is also nuw. 7217 if (IsNSW && LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) 7218 return OverflowResult::NeverOverflows; 7219 7220 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 7221 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 7222 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 7223 } 7224 7225 OverflowResult llvm::computeOverflowForSignedMul(const Value *LHS, 7226 const Value *RHS, 7227 const SimplifyQuery &SQ) { 7228 // Multiplying n * m significant bits yields a result of n + m significant 7229 // bits. If the total number of significant bits does not exceed the 7230 // result bit width (minus 1), there is no overflow. 7231 // This means if we have enough leading sign bits in the operands 7232 // we can guarantee that the result does not overflow. 7233 // Ref: "Hacker's Delight" by Henry Warren 7234 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 7235 7236 // Note that underestimating the number of sign bits gives a more 7237 // conservative answer. 7238 unsigned SignBits = 7239 ::ComputeNumSignBits(LHS, 0, SQ) + ::ComputeNumSignBits(RHS, 0, SQ); 7240 7241 // First handle the easy case: if we have enough sign bits there's 7242 // definitely no overflow. 7243 if (SignBits > BitWidth + 1) 7244 return OverflowResult::NeverOverflows; 7245 7246 // There are two ambiguous cases where there can be no overflow: 7247 // SignBits == BitWidth + 1 and 7248 // SignBits == BitWidth 7249 // The second case is difficult to check, therefore we only handle the 7250 // first case. 7251 if (SignBits == BitWidth + 1) { 7252 // It overflows only when both arguments are negative and the true 7253 // product is exactly the minimum negative number. 7254 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 7255 // For simplicity we just check if at least one side is not negative. 7256 KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, SQ); 7257 KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, SQ); 7258 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 7259 return OverflowResult::NeverOverflows; 7260 } 7261 return OverflowResult::MayOverflow; 7262 } 7263 7264 OverflowResult 7265 llvm::computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS, 7266 const WithCache<const Value *> &RHS, 7267 const SimplifyQuery &SQ) { 7268 ConstantRange LHSRange = 7269 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/false, SQ); 7270 ConstantRange RHSRange = 7271 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/false, SQ); 7272 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 7273 } 7274 7275 static OverflowResult 7276 computeOverflowForSignedAdd(const WithCache<const Value *> &LHS, 7277 const WithCache<const Value *> &RHS, 7278 const AddOperator *Add, const SimplifyQuery &SQ) { 7279 if (Add && Add->hasNoSignedWrap()) { 7280 return OverflowResult::NeverOverflows; 7281 } 7282 7283 // If LHS and RHS each have at least two sign bits, the addition will look 7284 // like 7285 // 7286 // XX..... + 7287 // YY..... 7288 // 7289 // If the carry into the most significant position is 0, X and Y can't both 7290 // be 1 and therefore the carry out of the addition is also 0. 7291 // 7292 // If the carry into the most significant position is 1, X and Y can't both 7293 // be 0 and therefore the carry out of the addition is also 1. 7294 // 7295 // Since the carry into the most significant position is always equal to 7296 // the carry out of the addition, there is no signed overflow. 7297 if (::ComputeNumSignBits(LHS, 0, SQ) > 1 && 7298 ::ComputeNumSignBits(RHS, 0, SQ) > 1) 7299 return OverflowResult::NeverOverflows; 7300 7301 ConstantRange LHSRange = 7302 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/true, SQ); 7303 ConstantRange RHSRange = 7304 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/true, SQ); 7305 OverflowResult OR = 7306 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 7307 if (OR != OverflowResult::MayOverflow) 7308 return OR; 7309 7310 // The remaining code needs Add to be available. Early returns if not so. 7311 if (!Add) 7312 return OverflowResult::MayOverflow; 7313 7314 // If the sign of Add is the same as at least one of the operands, this add 7315 // CANNOT overflow. If this can be determined from the known bits of the 7316 // operands the above signedAddMayOverflow() check will have already done so. 7317 // The only other way to improve on the known bits is from an assumption, so 7318 // call computeKnownBitsFromContext() directly. 7319 bool LHSOrRHSKnownNonNegative = 7320 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 7321 bool LHSOrRHSKnownNegative = 7322 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 7323 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 7324 KnownBits AddKnown(LHSRange.getBitWidth()); 7325 computeKnownBitsFromContext(Add, AddKnown, /*Depth=*/0, SQ); 7326 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 7327 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 7328 return OverflowResult::NeverOverflows; 7329 } 7330 7331 return OverflowResult::MayOverflow; 7332 } 7333 7334 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 7335 const Value *RHS, 7336 const SimplifyQuery &SQ) { 7337 // X - (X % ?) 7338 // The remainder of a value can't have greater magnitude than itself, 7339 // so the subtraction can't overflow. 7340 7341 // X - (X -nuw ?) 7342 // In the minimal case, this would simplify to "?", so there's no subtract 7343 // at all. But if this analysis is used to peek through casts, for example, 7344 // then determining no-overflow may allow other transforms. 7345 7346 // TODO: There are other patterns like this. 7347 // See simplifyICmpWithBinOpOnLHS() for candidates. 7348 if (match(RHS, m_URem(m_Specific(LHS), m_Value())) || 7349 match(RHS, m_NUWSub(m_Specific(LHS), m_Value()))) 7350 if (isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT)) 7351 return OverflowResult::NeverOverflows; 7352 7353 if (auto C = isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, SQ.CxtI, 7354 SQ.DL)) { 7355 if (*C) 7356 return OverflowResult::NeverOverflows; 7357 return OverflowResult::AlwaysOverflowsLow; 7358 } 7359 7360 ConstantRange LHSRange = 7361 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/false, SQ); 7362 ConstantRange RHSRange = 7363 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/false, SQ); 7364 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 7365 } 7366 7367 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 7368 const Value *RHS, 7369 const SimplifyQuery &SQ) { 7370 // X - (X % ?) 7371 // The remainder of a value can't have greater magnitude than itself, 7372 // so the subtraction can't overflow. 7373 7374 // X - (X -nsw ?) 7375 // In the minimal case, this would simplify to "?", so there's no subtract 7376 // at all. But if this analysis is used to peek through casts, for example, 7377 // then determining no-overflow may allow other transforms. 7378 if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) || 7379 match(RHS, m_NSWSub(m_Specific(LHS), m_Value()))) 7380 if (isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT)) 7381 return OverflowResult::NeverOverflows; 7382 7383 // If LHS and RHS each have at least two sign bits, the subtraction 7384 // cannot overflow. 7385 if (::ComputeNumSignBits(LHS, 0, SQ) > 1 && 7386 ::ComputeNumSignBits(RHS, 0, SQ) > 1) 7387 return OverflowResult::NeverOverflows; 7388 7389 ConstantRange LHSRange = 7390 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/true, SQ); 7391 ConstantRange RHSRange = 7392 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/true, SQ); 7393 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 7394 } 7395 7396 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 7397 const DominatorTree &DT) { 7398 SmallVector<const BranchInst *, 2> GuardingBranches; 7399 SmallVector<const ExtractValueInst *, 2> Results; 7400 7401 for (const User *U : WO->users()) { 7402 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 7403 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 7404 7405 if (EVI->getIndices()[0] == 0) 7406 Results.push_back(EVI); 7407 else { 7408 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 7409 7410 for (const auto *U : EVI->users()) 7411 if (const auto *B = dyn_cast<BranchInst>(U)) { 7412 assert(B->isConditional() && "How else is it using an i1?"); 7413 GuardingBranches.push_back(B); 7414 } 7415 } 7416 } else { 7417 // We are using the aggregate directly in a way we don't want to analyze 7418 // here (storing it to a global, say). 7419 return false; 7420 } 7421 } 7422 7423 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 7424 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 7425 if (!NoWrapEdge.isSingleEdge()) 7426 return false; 7427 7428 // Check if all users of the add are provably no-wrap. 7429 for (const auto *Result : Results) { 7430 // If the extractvalue itself is not executed on overflow, the we don't 7431 // need to check each use separately, since domination is transitive. 7432 if (DT.dominates(NoWrapEdge, Result->getParent())) 7433 continue; 7434 7435 for (const auto &RU : Result->uses()) 7436 if (!DT.dominates(NoWrapEdge, RU)) 7437 return false; 7438 } 7439 7440 return true; 7441 }; 7442 7443 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 7444 } 7445 7446 /// Shifts return poison if shiftwidth is larger than the bitwidth. 7447 static bool shiftAmountKnownInRange(const Value *ShiftAmount) { 7448 auto *C = dyn_cast<Constant>(ShiftAmount); 7449 if (!C) 7450 return false; 7451 7452 // Shifts return poison if shiftwidth is larger than the bitwidth. 7453 SmallVector<const Constant *, 4> ShiftAmounts; 7454 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 7455 unsigned NumElts = FVTy->getNumElements(); 7456 for (unsigned i = 0; i < NumElts; ++i) 7457 ShiftAmounts.push_back(C->getAggregateElement(i)); 7458 } else if (isa<ScalableVectorType>(C->getType())) 7459 return false; // Can't tell, just return false to be safe 7460 else 7461 ShiftAmounts.push_back(C); 7462 7463 bool Safe = llvm::all_of(ShiftAmounts, [](const Constant *C) { 7464 auto *CI = dyn_cast_or_null<ConstantInt>(C); 7465 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 7466 }); 7467 7468 return Safe; 7469 } 7470 7471 enum class UndefPoisonKind { 7472 PoisonOnly = (1 << 0), 7473 UndefOnly = (1 << 1), 7474 UndefOrPoison = PoisonOnly | UndefOnly, 7475 }; 7476 7477 static bool includesPoison(UndefPoisonKind Kind) { 7478 return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0; 7479 } 7480 7481 static bool includesUndef(UndefPoisonKind Kind) { 7482 return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0; 7483 } 7484 7485 static bool canCreateUndefOrPoison(const Operator *Op, UndefPoisonKind Kind, 7486 bool ConsiderFlagsAndMetadata) { 7487 7488 if (ConsiderFlagsAndMetadata && includesPoison(Kind) && 7489 Op->hasPoisonGeneratingAnnotations()) 7490 return true; 7491 7492 unsigned Opcode = Op->getOpcode(); 7493 7494 // Check whether opcode is a poison/undef-generating operation 7495 switch (Opcode) { 7496 case Instruction::Shl: 7497 case Instruction::AShr: 7498 case Instruction::LShr: 7499 return includesPoison(Kind) && !shiftAmountKnownInRange(Op->getOperand(1)); 7500 case Instruction::FPToSI: 7501 case Instruction::FPToUI: 7502 // fptosi/ui yields poison if the resulting value does not fit in the 7503 // destination type. 7504 return true; 7505 case Instruction::Call: 7506 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 7507 switch (II->getIntrinsicID()) { 7508 // TODO: Add more intrinsics. 7509 case Intrinsic::ctlz: 7510 case Intrinsic::cttz: 7511 case Intrinsic::abs: 7512 if (cast<ConstantInt>(II->getArgOperand(1))->isNullValue()) 7513 return false; 7514 break; 7515 case Intrinsic::ctpop: 7516 case Intrinsic::bswap: 7517 case Intrinsic::bitreverse: 7518 case Intrinsic::fshl: 7519 case Intrinsic::fshr: 7520 case Intrinsic::smax: 7521 case Intrinsic::smin: 7522 case Intrinsic::umax: 7523 case Intrinsic::umin: 7524 case Intrinsic::ptrmask: 7525 case Intrinsic::fptoui_sat: 7526 case Intrinsic::fptosi_sat: 7527 case Intrinsic::sadd_with_overflow: 7528 case Intrinsic::ssub_with_overflow: 7529 case Intrinsic::smul_with_overflow: 7530 case Intrinsic::uadd_with_overflow: 7531 case Intrinsic::usub_with_overflow: 7532 case Intrinsic::umul_with_overflow: 7533 case Intrinsic::sadd_sat: 7534 case Intrinsic::uadd_sat: 7535 case Intrinsic::ssub_sat: 7536 case Intrinsic::usub_sat: 7537 return false; 7538 case Intrinsic::sshl_sat: 7539 case Intrinsic::ushl_sat: 7540 return includesPoison(Kind) && 7541 !shiftAmountKnownInRange(II->getArgOperand(1)); 7542 case Intrinsic::fma: 7543 case Intrinsic::fmuladd: 7544 case Intrinsic::sqrt: 7545 case Intrinsic::powi: 7546 case Intrinsic::sin: 7547 case Intrinsic::cos: 7548 case Intrinsic::pow: 7549 case Intrinsic::log: 7550 case Intrinsic::log10: 7551 case Intrinsic::log2: 7552 case Intrinsic::exp: 7553 case Intrinsic::exp2: 7554 case Intrinsic::exp10: 7555 case Intrinsic::fabs: 7556 case Intrinsic::copysign: 7557 case Intrinsic::floor: 7558 case Intrinsic::ceil: 7559 case Intrinsic::trunc: 7560 case Intrinsic::rint: 7561 case Intrinsic::nearbyint: 7562 case Intrinsic::round: 7563 case Intrinsic::roundeven: 7564 case Intrinsic::fptrunc_round: 7565 case Intrinsic::canonicalize: 7566 case Intrinsic::arithmetic_fence: 7567 case Intrinsic::minnum: 7568 case Intrinsic::maxnum: 7569 case Intrinsic::minimum: 7570 case Intrinsic::maximum: 7571 case Intrinsic::is_fpclass: 7572 case Intrinsic::ldexp: 7573 case Intrinsic::frexp: 7574 return false; 7575 case Intrinsic::lround: 7576 case Intrinsic::llround: 7577 case Intrinsic::lrint: 7578 case Intrinsic::llrint: 7579 // If the value doesn't fit an unspecified value is returned (but this 7580 // is not poison). 7581 return false; 7582 } 7583 } 7584 [[fallthrough]]; 7585 case Instruction::CallBr: 7586 case Instruction::Invoke: { 7587 const auto *CB = cast<CallBase>(Op); 7588 return !CB->hasRetAttr(Attribute::NoUndef); 7589 } 7590 case Instruction::InsertElement: 7591 case Instruction::ExtractElement: { 7592 // If index exceeds the length of the vector, it returns poison 7593 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 7594 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 7595 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 7596 if (includesPoison(Kind)) 7597 return !Idx || 7598 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()); 7599 return false; 7600 } 7601 case Instruction::ShuffleVector: { 7602 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 7603 ? cast<ConstantExpr>(Op)->getShuffleMask() 7604 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 7605 return includesPoison(Kind) && is_contained(Mask, PoisonMaskElem); 7606 } 7607 case Instruction::FNeg: 7608 case Instruction::PHI: 7609 case Instruction::Select: 7610 case Instruction::URem: 7611 case Instruction::SRem: 7612 case Instruction::ExtractValue: 7613 case Instruction::InsertValue: 7614 case Instruction::Freeze: 7615 case Instruction::ICmp: 7616 case Instruction::FCmp: 7617 case Instruction::FAdd: 7618 case Instruction::FSub: 7619 case Instruction::FMul: 7620 case Instruction::FDiv: 7621 case Instruction::FRem: 7622 return false; 7623 case Instruction::GetElementPtr: 7624 // inbounds is handled above 7625 // TODO: what about inrange on constexpr? 7626 return false; 7627 default: { 7628 const auto *CE = dyn_cast<ConstantExpr>(Op); 7629 if (isa<CastInst>(Op) || (CE && CE->isCast())) 7630 return false; 7631 else if (Instruction::isBinaryOp(Opcode)) 7632 return false; 7633 // Be conservative and return true. 7634 return true; 7635 } 7636 } 7637 } 7638 7639 bool llvm::canCreateUndefOrPoison(const Operator *Op, 7640 bool ConsiderFlagsAndMetadata) { 7641 return ::canCreateUndefOrPoison(Op, UndefPoisonKind::UndefOrPoison, 7642 ConsiderFlagsAndMetadata); 7643 } 7644 7645 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata) { 7646 return ::canCreateUndefOrPoison(Op, UndefPoisonKind::PoisonOnly, 7647 ConsiderFlagsAndMetadata); 7648 } 7649 7650 static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V, 7651 unsigned Depth) { 7652 if (ValAssumedPoison == V) 7653 return true; 7654 7655 const unsigned MaxDepth = 2; 7656 if (Depth >= MaxDepth) 7657 return false; 7658 7659 if (const auto *I = dyn_cast<Instruction>(V)) { 7660 if (any_of(I->operands(), [=](const Use &Op) { 7661 return propagatesPoison(Op) && 7662 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 7663 })) 7664 return true; 7665 7666 // V = extractvalue V0, idx 7667 // V2 = extractvalue V0, idx2 7668 // V0's elements are all poison or not. (e.g., add_with_overflow) 7669 const WithOverflowInst *II; 7670 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 7671 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 7672 llvm::is_contained(II->args(), ValAssumedPoison))) 7673 return true; 7674 } 7675 return false; 7676 } 7677 7678 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 7679 unsigned Depth) { 7680 if (isGuaranteedNotToBePoison(ValAssumedPoison)) 7681 return true; 7682 7683 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 7684 return true; 7685 7686 const unsigned MaxDepth = 2; 7687 if (Depth >= MaxDepth) 7688 return false; 7689 7690 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 7691 if (I && !canCreatePoison(cast<Operator>(I))) { 7692 return all_of(I->operands(), [=](const Value *Op) { 7693 return impliesPoison(Op, V, Depth + 1); 7694 }); 7695 } 7696 return false; 7697 } 7698 7699 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 7700 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 7701 } 7702 7703 static bool programUndefinedIfUndefOrPoison(const Value *V, bool PoisonOnly); 7704 7705 static bool isGuaranteedNotToBeUndefOrPoison( 7706 const Value *V, AssumptionCache *AC, const Instruction *CtxI, 7707 const DominatorTree *DT, unsigned Depth, UndefPoisonKind Kind) { 7708 if (Depth >= MaxAnalysisRecursionDepth) 7709 return false; 7710 7711 if (isa<MetadataAsValue>(V)) 7712 return false; 7713 7714 if (const auto *A = dyn_cast<Argument>(V)) { 7715 if (A->hasAttribute(Attribute::NoUndef) || 7716 A->hasAttribute(Attribute::Dereferenceable) || 7717 A->hasAttribute(Attribute::DereferenceableOrNull)) 7718 return true; 7719 } 7720 7721 if (auto *C = dyn_cast<Constant>(V)) { 7722 if (isa<PoisonValue>(C)) 7723 return !includesPoison(Kind); 7724 7725 if (isa<UndefValue>(C)) 7726 return !includesUndef(Kind); 7727 7728 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 7729 isa<ConstantPointerNull>(C) || isa<Function>(C)) 7730 return true; 7731 7732 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) { 7733 if (includesUndef(Kind) && C->containsUndefElement()) 7734 return false; 7735 if (includesPoison(Kind) && C->containsPoisonElement()) 7736 return false; 7737 return !C->containsConstantExpression(); 7738 } 7739 } 7740 7741 // Strip cast operations from a pointer value. 7742 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 7743 // inbounds with zero offset. To guarantee that the result isn't poison, the 7744 // stripped pointer is checked as it has to be pointing into an allocated 7745 // object or be null `null` to ensure `inbounds` getelement pointers with a 7746 // zero offset could not produce poison. 7747 // It can strip off addrspacecast that do not change bit representation as 7748 // well. We believe that such addrspacecast is equivalent to no-op. 7749 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 7750 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 7751 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 7752 return true; 7753 7754 auto OpCheck = [&](const Value *V) { 7755 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, Kind); 7756 }; 7757 7758 if (auto *Opr = dyn_cast<Operator>(V)) { 7759 // If the value is a freeze instruction, then it can never 7760 // be undef or poison. 7761 if (isa<FreezeInst>(V)) 7762 return true; 7763 7764 if (const auto *CB = dyn_cast<CallBase>(V)) { 7765 if (CB->hasRetAttr(Attribute::NoUndef) || 7766 CB->hasRetAttr(Attribute::Dereferenceable) || 7767 CB->hasRetAttr(Attribute::DereferenceableOrNull)) 7768 return true; 7769 } 7770 7771 if (const auto *PN = dyn_cast<PHINode>(V)) { 7772 unsigned Num = PN->getNumIncomingValues(); 7773 bool IsWellDefined = true; 7774 for (unsigned i = 0; i < Num; ++i) { 7775 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 7776 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 7777 DT, Depth + 1, Kind)) { 7778 IsWellDefined = false; 7779 break; 7780 } 7781 } 7782 if (IsWellDefined) 7783 return true; 7784 } else if (!::canCreateUndefOrPoison(Opr, Kind, 7785 /*ConsiderFlagsAndMetadata*/ true) && 7786 all_of(Opr->operands(), OpCheck)) 7787 return true; 7788 } 7789 7790 if (auto *I = dyn_cast<LoadInst>(V)) 7791 if (I->hasMetadata(LLVMContext::MD_noundef) || 7792 I->hasMetadata(LLVMContext::MD_dereferenceable) || 7793 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null)) 7794 return true; 7795 7796 if (programUndefinedIfUndefOrPoison(V, !includesUndef(Kind))) 7797 return true; 7798 7799 // CxtI may be null or a cloned instruction. 7800 if (!CtxI || !CtxI->getParent() || !DT) 7801 return false; 7802 7803 auto *DNode = DT->getNode(CtxI->getParent()); 7804 if (!DNode) 7805 // Unreachable block 7806 return false; 7807 7808 // If V is used as a branch condition before reaching CtxI, V cannot be 7809 // undef or poison. 7810 // br V, BB1, BB2 7811 // BB1: 7812 // CtxI ; V cannot be undef or poison here 7813 auto *Dominator = DNode->getIDom(); 7814 // This check is purely for compile time reasons: we can skip the IDom walk 7815 // if what we are checking for includes undef and the value is not an integer. 7816 if (!includesUndef(Kind) || V->getType()->isIntegerTy()) 7817 while (Dominator) { 7818 auto *TI = Dominator->getBlock()->getTerminator(); 7819 7820 Value *Cond = nullptr; 7821 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) { 7822 if (BI->isConditional()) 7823 Cond = BI->getCondition(); 7824 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) { 7825 Cond = SI->getCondition(); 7826 } 7827 7828 if (Cond) { 7829 if (Cond == V) 7830 return true; 7831 else if (!includesUndef(Kind) && isa<Operator>(Cond)) { 7832 // For poison, we can analyze further 7833 auto *Opr = cast<Operator>(Cond); 7834 if (any_of(Opr->operands(), [V](const Use &U) { 7835 return V == U && propagatesPoison(U); 7836 })) 7837 return true; 7838 } 7839 } 7840 7841 Dominator = Dominator->getIDom(); 7842 } 7843 7844 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 7845 return true; 7846 7847 return false; 7848 } 7849 7850 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 7851 const Instruction *CtxI, 7852 const DominatorTree *DT, 7853 unsigned Depth) { 7854 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, 7855 UndefPoisonKind::UndefOrPoison); 7856 } 7857 7858 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 7859 const Instruction *CtxI, 7860 const DominatorTree *DT, unsigned Depth) { 7861 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, 7862 UndefPoisonKind::PoisonOnly); 7863 } 7864 7865 bool llvm::isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC, 7866 const Instruction *CtxI, 7867 const DominatorTree *DT, unsigned Depth) { 7868 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, 7869 UndefPoisonKind::UndefOnly); 7870 } 7871 7872 /// Return true if undefined behavior would provably be executed on the path to 7873 /// OnPathTo if Root produced a posion result. Note that this doesn't say 7874 /// anything about whether OnPathTo is actually executed or whether Root is 7875 /// actually poison. This can be used to assess whether a new use of Root can 7876 /// be added at a location which is control equivalent with OnPathTo (such as 7877 /// immediately before it) without introducing UB which didn't previously 7878 /// exist. Note that a false result conveys no information. 7879 bool llvm::mustExecuteUBIfPoisonOnPathTo(Instruction *Root, 7880 Instruction *OnPathTo, 7881 DominatorTree *DT) { 7882 // Basic approach is to assume Root is poison, propagate poison forward 7883 // through all users we can easily track, and then check whether any of those 7884 // users are provable UB and must execute before out exiting block might 7885 // exit. 7886 7887 // The set of all recursive users we've visited (which are assumed to all be 7888 // poison because of said visit) 7889 SmallSet<const Value *, 16> KnownPoison; 7890 SmallVector<const Instruction*, 16> Worklist; 7891 Worklist.push_back(Root); 7892 while (!Worklist.empty()) { 7893 const Instruction *I = Worklist.pop_back_val(); 7894 7895 // If we know this must trigger UB on a path leading our target. 7896 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) 7897 return true; 7898 7899 // If we can't analyze propagation through this instruction, just skip it 7900 // and transitive users. Safe as false is a conservative result. 7901 if (I != Root && !any_of(I->operands(), [&KnownPoison](const Use &U) { 7902 return KnownPoison.contains(U) && propagatesPoison(U); 7903 })) 7904 continue; 7905 7906 if (KnownPoison.insert(I).second) 7907 for (const User *User : I->users()) 7908 Worklist.push_back(cast<Instruction>(User)); 7909 } 7910 7911 // Might be non-UB, or might have a path we couldn't prove must execute on 7912 // way to exiting bb. 7913 return false; 7914 } 7915 7916 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 7917 const SimplifyQuery &SQ) { 7918 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 7919 Add, SQ); 7920 } 7921 7922 OverflowResult 7923 llvm::computeOverflowForSignedAdd(const WithCache<const Value *> &LHS, 7924 const WithCache<const Value *> &RHS, 7925 const SimplifyQuery &SQ) { 7926 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, SQ); 7927 } 7928 7929 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 7930 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 7931 // of time because it's possible for another thread to interfere with it for an 7932 // arbitrary length of time, but programs aren't allowed to rely on that. 7933 7934 // If there is no successor, then execution can't transfer to it. 7935 if (isa<ReturnInst>(I)) 7936 return false; 7937 if (isa<UnreachableInst>(I)) 7938 return false; 7939 7940 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 7941 // Instruction::willReturn. 7942 // 7943 // FIXME: Move this check into Instruction::willReturn. 7944 if (isa<CatchPadInst>(I)) { 7945 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 7946 default: 7947 // A catchpad may invoke exception object constructors and such, which 7948 // in some languages can be arbitrary code, so be conservative by default. 7949 return false; 7950 case EHPersonality::CoreCLR: 7951 // For CoreCLR, it just involves a type test. 7952 return true; 7953 } 7954 } 7955 7956 // An instruction that returns without throwing must transfer control flow 7957 // to a successor. 7958 return !I->mayThrow() && I->willReturn(); 7959 } 7960 7961 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 7962 // TODO: This is slightly conservative for invoke instruction since exiting 7963 // via an exception *is* normal control for them. 7964 for (const Instruction &I : *BB) 7965 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7966 return false; 7967 return true; 7968 } 7969 7970 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 7971 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 7972 unsigned ScanLimit) { 7973 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 7974 ScanLimit); 7975 } 7976 7977 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 7978 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 7979 assert(ScanLimit && "scan limit must be non-zero"); 7980 for (const Instruction &I : Range) { 7981 if (isa<DbgInfoIntrinsic>(I)) 7982 continue; 7983 if (--ScanLimit == 0) 7984 return false; 7985 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7986 return false; 7987 } 7988 return true; 7989 } 7990 7991 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 7992 const Loop *L) { 7993 // The loop header is guaranteed to be executed for every iteration. 7994 // 7995 // FIXME: Relax this constraint to cover all basic blocks that are 7996 // guaranteed to be executed at every iteration. 7997 if (I->getParent() != L->getHeader()) return false; 7998 7999 for (const Instruction &LI : *L->getHeader()) { 8000 if (&LI == I) return true; 8001 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 8002 } 8003 llvm_unreachable("Instruction not contained in its own parent basic block."); 8004 } 8005 8006 bool llvm::propagatesPoison(const Use &PoisonOp) { 8007 const Operator *I = cast<Operator>(PoisonOp.getUser()); 8008 switch (I->getOpcode()) { 8009 case Instruction::Freeze: 8010 case Instruction::PHI: 8011 case Instruction::Invoke: 8012 return false; 8013 case Instruction::Select: 8014 return PoisonOp.getOperandNo() == 0; 8015 case Instruction::Call: 8016 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 8017 switch (II->getIntrinsicID()) { 8018 // TODO: Add more intrinsics. 8019 case Intrinsic::sadd_with_overflow: 8020 case Intrinsic::ssub_with_overflow: 8021 case Intrinsic::smul_with_overflow: 8022 case Intrinsic::uadd_with_overflow: 8023 case Intrinsic::usub_with_overflow: 8024 case Intrinsic::umul_with_overflow: 8025 // If an input is a vector containing a poison element, the 8026 // two output vectors (calculated results, overflow bits)' 8027 // corresponding lanes are poison. 8028 return true; 8029 case Intrinsic::ctpop: 8030 case Intrinsic::ctlz: 8031 case Intrinsic::cttz: 8032 case Intrinsic::abs: 8033 case Intrinsic::smax: 8034 case Intrinsic::smin: 8035 case Intrinsic::umax: 8036 case Intrinsic::umin: 8037 case Intrinsic::bitreverse: 8038 case Intrinsic::bswap: 8039 case Intrinsic::sadd_sat: 8040 case Intrinsic::ssub_sat: 8041 case Intrinsic::sshl_sat: 8042 case Intrinsic::uadd_sat: 8043 case Intrinsic::usub_sat: 8044 case Intrinsic::ushl_sat: 8045 return true; 8046 } 8047 } 8048 return false; 8049 case Instruction::ICmp: 8050 case Instruction::FCmp: 8051 case Instruction::GetElementPtr: 8052 return true; 8053 default: 8054 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 8055 return true; 8056 8057 // Be conservative and return false. 8058 return false; 8059 } 8060 } 8061 8062 /// Enumerates all operands of \p I that are guaranteed to not be undef or 8063 /// poison. If the callback \p Handle returns true, stop processing and return 8064 /// true. Otherwise, return false. 8065 template <typename CallableT> 8066 static bool handleGuaranteedWellDefinedOps(const Instruction *I, 8067 const CallableT &Handle) { 8068 switch (I->getOpcode()) { 8069 case Instruction::Store: 8070 if (Handle(cast<StoreInst>(I)->getPointerOperand())) 8071 return true; 8072 break; 8073 8074 case Instruction::Load: 8075 if (Handle(cast<LoadInst>(I)->getPointerOperand())) 8076 return true; 8077 break; 8078 8079 // Since dereferenceable attribute imply noundef, atomic operations 8080 // also implicitly have noundef pointers too 8081 case Instruction::AtomicCmpXchg: 8082 if (Handle(cast<AtomicCmpXchgInst>(I)->getPointerOperand())) 8083 return true; 8084 break; 8085 8086 case Instruction::AtomicRMW: 8087 if (Handle(cast<AtomicRMWInst>(I)->getPointerOperand())) 8088 return true; 8089 break; 8090 8091 case Instruction::Call: 8092 case Instruction::Invoke: { 8093 const CallBase *CB = cast<CallBase>(I); 8094 if (CB->isIndirectCall() && Handle(CB->getCalledOperand())) 8095 return true; 8096 for (unsigned i = 0; i < CB->arg_size(); ++i) 8097 if ((CB->paramHasAttr(i, Attribute::NoUndef) || 8098 CB->paramHasAttr(i, Attribute::Dereferenceable) || 8099 CB->paramHasAttr(i, Attribute::DereferenceableOrNull)) && 8100 Handle(CB->getArgOperand(i))) 8101 return true; 8102 break; 8103 } 8104 case Instruction::Ret: 8105 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef) && 8106 Handle(I->getOperand(0))) 8107 return true; 8108 break; 8109 case Instruction::Switch: 8110 if (Handle(cast<SwitchInst>(I)->getCondition())) 8111 return true; 8112 break; 8113 case Instruction::Br: { 8114 auto *BR = cast<BranchInst>(I); 8115 if (BR->isConditional() && Handle(BR->getCondition())) 8116 return true; 8117 break; 8118 } 8119 default: 8120 break; 8121 } 8122 8123 return false; 8124 } 8125 8126 void llvm::getGuaranteedWellDefinedOps( 8127 const Instruction *I, SmallVectorImpl<const Value *> &Operands) { 8128 handleGuaranteedWellDefinedOps(I, [&](const Value *V) { 8129 Operands.push_back(V); 8130 return false; 8131 }); 8132 } 8133 8134 /// Enumerates all operands of \p I that are guaranteed to not be poison. 8135 template <typename CallableT> 8136 static bool handleGuaranteedNonPoisonOps(const Instruction *I, 8137 const CallableT &Handle) { 8138 if (handleGuaranteedWellDefinedOps(I, Handle)) 8139 return true; 8140 switch (I->getOpcode()) { 8141 // Divisors of these operations are allowed to be partially undef. 8142 case Instruction::UDiv: 8143 case Instruction::SDiv: 8144 case Instruction::URem: 8145 case Instruction::SRem: 8146 return Handle(I->getOperand(1)); 8147 default: 8148 return false; 8149 } 8150 } 8151 8152 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 8153 SmallVectorImpl<const Value *> &Operands) { 8154 handleGuaranteedNonPoisonOps(I, [&](const Value *V) { 8155 Operands.push_back(V); 8156 return false; 8157 }); 8158 } 8159 8160 bool llvm::mustTriggerUB(const Instruction *I, 8161 const SmallPtrSetImpl<const Value *> &KnownPoison) { 8162 return handleGuaranteedNonPoisonOps( 8163 I, [&](const Value *V) { return KnownPoison.count(V); }); 8164 } 8165 8166 static bool programUndefinedIfUndefOrPoison(const Value *V, 8167 bool PoisonOnly) { 8168 // We currently only look for uses of values within the same basic 8169 // block, as that makes it easier to guarantee that the uses will be 8170 // executed given that Inst is executed. 8171 // 8172 // FIXME: Expand this to consider uses beyond the same basic block. To do 8173 // this, look out for the distinction between post-dominance and strong 8174 // post-dominance. 8175 const BasicBlock *BB = nullptr; 8176 BasicBlock::const_iterator Begin; 8177 if (const auto *Inst = dyn_cast<Instruction>(V)) { 8178 BB = Inst->getParent(); 8179 Begin = Inst->getIterator(); 8180 Begin++; 8181 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 8182 if (Arg->getParent()->isDeclaration()) 8183 return false; 8184 BB = &Arg->getParent()->getEntryBlock(); 8185 Begin = BB->begin(); 8186 } else { 8187 return false; 8188 } 8189 8190 // Limit number of instructions we look at, to avoid scanning through large 8191 // blocks. The current limit is chosen arbitrarily. 8192 unsigned ScanLimit = 32; 8193 BasicBlock::const_iterator End = BB->end(); 8194 8195 if (!PoisonOnly) { 8196 // Since undef does not propagate eagerly, be conservative & just check 8197 // whether a value is directly passed to an instruction that must take 8198 // well-defined operands. 8199 8200 for (const auto &I : make_range(Begin, End)) { 8201 if (isa<DbgInfoIntrinsic>(I)) 8202 continue; 8203 if (--ScanLimit == 0) 8204 break; 8205 8206 if (handleGuaranteedWellDefinedOps(&I, [V](const Value *WellDefinedOp) { 8207 return WellDefinedOp == V; 8208 })) 8209 return true; 8210 8211 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 8212 break; 8213 } 8214 return false; 8215 } 8216 8217 // Set of instructions that we have proved will yield poison if Inst 8218 // does. 8219 SmallSet<const Value *, 16> YieldsPoison; 8220 SmallSet<const BasicBlock *, 4> Visited; 8221 8222 YieldsPoison.insert(V); 8223 Visited.insert(BB); 8224 8225 while (true) { 8226 for (const auto &I : make_range(Begin, End)) { 8227 if (isa<DbgInfoIntrinsic>(I)) 8228 continue; 8229 if (--ScanLimit == 0) 8230 return false; 8231 if (mustTriggerUB(&I, YieldsPoison)) 8232 return true; 8233 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 8234 return false; 8235 8236 // If an operand is poison and propagates it, mark I as yielding poison. 8237 for (const Use &Op : I.operands()) { 8238 if (YieldsPoison.count(Op) && propagatesPoison(Op)) { 8239 YieldsPoison.insert(&I); 8240 break; 8241 } 8242 } 8243 8244 // Special handling for select, which returns poison if its operand 0 is 8245 // poison (handled in the loop above) *or* if both its true/false operands 8246 // are poison (handled here). 8247 if (I.getOpcode() == Instruction::Select && 8248 YieldsPoison.count(I.getOperand(1)) && 8249 YieldsPoison.count(I.getOperand(2))) { 8250 YieldsPoison.insert(&I); 8251 } 8252 } 8253 8254 BB = BB->getSingleSuccessor(); 8255 if (!BB || !Visited.insert(BB).second) 8256 break; 8257 8258 Begin = BB->getFirstNonPHIIt(); 8259 End = BB->end(); 8260 } 8261 return false; 8262 } 8263 8264 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 8265 return ::programUndefinedIfUndefOrPoison(Inst, false); 8266 } 8267 8268 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 8269 return ::programUndefinedIfUndefOrPoison(Inst, true); 8270 } 8271 8272 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 8273 if (FMF.noNaNs()) 8274 return true; 8275 8276 if (auto *C = dyn_cast<ConstantFP>(V)) 8277 return !C->isNaN(); 8278 8279 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 8280 if (!C->getElementType()->isFloatingPointTy()) 8281 return false; 8282 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 8283 if (C->getElementAsAPFloat(I).isNaN()) 8284 return false; 8285 } 8286 return true; 8287 } 8288 8289 if (isa<ConstantAggregateZero>(V)) 8290 return true; 8291 8292 return false; 8293 } 8294 8295 static bool isKnownNonZero(const Value *V) { 8296 if (auto *C = dyn_cast<ConstantFP>(V)) 8297 return !C->isZero(); 8298 8299 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 8300 if (!C->getElementType()->isFloatingPointTy()) 8301 return false; 8302 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 8303 if (C->getElementAsAPFloat(I).isZero()) 8304 return false; 8305 } 8306 return true; 8307 } 8308 8309 return false; 8310 } 8311 8312 /// Match clamp pattern for float types without care about NaNs or signed zeros. 8313 /// Given non-min/max outer cmp/select from the clamp pattern this 8314 /// function recognizes if it can be substitued by a "canonical" min/max 8315 /// pattern. 8316 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 8317 Value *CmpLHS, Value *CmpRHS, 8318 Value *TrueVal, Value *FalseVal, 8319 Value *&LHS, Value *&RHS) { 8320 // Try to match 8321 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 8322 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 8323 // and return description of the outer Max/Min. 8324 8325 // First, check if select has inverse order: 8326 if (CmpRHS == FalseVal) { 8327 std::swap(TrueVal, FalseVal); 8328 Pred = CmpInst::getInversePredicate(Pred); 8329 } 8330 8331 // Assume success now. If there's no match, callers should not use these anyway. 8332 LHS = TrueVal; 8333 RHS = FalseVal; 8334 8335 const APFloat *FC1; 8336 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 8337 return {SPF_UNKNOWN, SPNB_NA, false}; 8338 8339 const APFloat *FC2; 8340 switch (Pred) { 8341 case CmpInst::FCMP_OLT: 8342 case CmpInst::FCMP_OLE: 8343 case CmpInst::FCMP_ULT: 8344 case CmpInst::FCMP_ULE: 8345 if (match(FalseVal, m_OrdOrUnordFMin(m_Specific(CmpLHS), m_APFloat(FC2))) && 8346 *FC1 < *FC2) 8347 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 8348 break; 8349 case CmpInst::FCMP_OGT: 8350 case CmpInst::FCMP_OGE: 8351 case CmpInst::FCMP_UGT: 8352 case CmpInst::FCMP_UGE: 8353 if (match(FalseVal, m_OrdOrUnordFMax(m_Specific(CmpLHS), m_APFloat(FC2))) && 8354 *FC1 > *FC2) 8355 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 8356 break; 8357 default: 8358 break; 8359 } 8360 8361 return {SPF_UNKNOWN, SPNB_NA, false}; 8362 } 8363 8364 /// Recognize variations of: 8365 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 8366 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 8367 Value *CmpLHS, Value *CmpRHS, 8368 Value *TrueVal, Value *FalseVal) { 8369 // Swap the select operands and predicate to match the patterns below. 8370 if (CmpRHS != TrueVal) { 8371 Pred = ICmpInst::getSwappedPredicate(Pred); 8372 std::swap(TrueVal, FalseVal); 8373 } 8374 const APInt *C1; 8375 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 8376 const APInt *C2; 8377 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 8378 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 8379 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 8380 return {SPF_SMAX, SPNB_NA, false}; 8381 8382 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 8383 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 8384 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 8385 return {SPF_SMIN, SPNB_NA, false}; 8386 8387 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 8388 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 8389 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 8390 return {SPF_UMAX, SPNB_NA, false}; 8391 8392 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 8393 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 8394 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 8395 return {SPF_UMIN, SPNB_NA, false}; 8396 } 8397 return {SPF_UNKNOWN, SPNB_NA, false}; 8398 } 8399 8400 /// Recognize variations of: 8401 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 8402 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 8403 Value *CmpLHS, Value *CmpRHS, 8404 Value *TVal, Value *FVal, 8405 unsigned Depth) { 8406 // TODO: Allow FP min/max with nnan/nsz. 8407 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 8408 8409 Value *A = nullptr, *B = nullptr; 8410 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 8411 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 8412 return {SPF_UNKNOWN, SPNB_NA, false}; 8413 8414 Value *C = nullptr, *D = nullptr; 8415 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 8416 if (L.Flavor != R.Flavor) 8417 return {SPF_UNKNOWN, SPNB_NA, false}; 8418 8419 // We have something like: x Pred y ? min(a, b) : min(c, d). 8420 // Try to match the compare to the min/max operations of the select operands. 8421 // First, make sure we have the right compare predicate. 8422 switch (L.Flavor) { 8423 case SPF_SMIN: 8424 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 8425 Pred = ICmpInst::getSwappedPredicate(Pred); 8426 std::swap(CmpLHS, CmpRHS); 8427 } 8428 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 8429 break; 8430 return {SPF_UNKNOWN, SPNB_NA, false}; 8431 case SPF_SMAX: 8432 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 8433 Pred = ICmpInst::getSwappedPredicate(Pred); 8434 std::swap(CmpLHS, CmpRHS); 8435 } 8436 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 8437 break; 8438 return {SPF_UNKNOWN, SPNB_NA, false}; 8439 case SPF_UMIN: 8440 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 8441 Pred = ICmpInst::getSwappedPredicate(Pred); 8442 std::swap(CmpLHS, CmpRHS); 8443 } 8444 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 8445 break; 8446 return {SPF_UNKNOWN, SPNB_NA, false}; 8447 case SPF_UMAX: 8448 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 8449 Pred = ICmpInst::getSwappedPredicate(Pred); 8450 std::swap(CmpLHS, CmpRHS); 8451 } 8452 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 8453 break; 8454 return {SPF_UNKNOWN, SPNB_NA, false}; 8455 default: 8456 return {SPF_UNKNOWN, SPNB_NA, false}; 8457 } 8458 8459 // If there is a common operand in the already matched min/max and the other 8460 // min/max operands match the compare operands (either directly or inverted), 8461 // then this is min/max of the same flavor. 8462 8463 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 8464 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 8465 if (D == B) { 8466 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 8467 match(A, m_Not(m_Specific(CmpRHS))))) 8468 return {L.Flavor, SPNB_NA, false}; 8469 } 8470 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 8471 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 8472 if (C == B) { 8473 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 8474 match(A, m_Not(m_Specific(CmpRHS))))) 8475 return {L.Flavor, SPNB_NA, false}; 8476 } 8477 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 8478 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 8479 if (D == A) { 8480 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 8481 match(B, m_Not(m_Specific(CmpRHS))))) 8482 return {L.Flavor, SPNB_NA, false}; 8483 } 8484 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 8485 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 8486 if (C == A) { 8487 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 8488 match(B, m_Not(m_Specific(CmpRHS))))) 8489 return {L.Flavor, SPNB_NA, false}; 8490 } 8491 8492 return {SPF_UNKNOWN, SPNB_NA, false}; 8493 } 8494 8495 /// If the input value is the result of a 'not' op, constant integer, or vector 8496 /// splat of a constant integer, return the bitwise-not source value. 8497 /// TODO: This could be extended to handle non-splat vector integer constants. 8498 static Value *getNotValue(Value *V) { 8499 Value *NotV; 8500 if (match(V, m_Not(m_Value(NotV)))) 8501 return NotV; 8502 8503 const APInt *C; 8504 if (match(V, m_APInt(C))) 8505 return ConstantInt::get(V->getType(), ~(*C)); 8506 8507 return nullptr; 8508 } 8509 8510 /// Match non-obvious integer minimum and maximum sequences. 8511 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 8512 Value *CmpLHS, Value *CmpRHS, 8513 Value *TrueVal, Value *FalseVal, 8514 Value *&LHS, Value *&RHS, 8515 unsigned Depth) { 8516 // Assume success. If there's no match, callers should not use these anyway. 8517 LHS = TrueVal; 8518 RHS = FalseVal; 8519 8520 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 8521 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 8522 return SPR; 8523 8524 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 8525 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 8526 return SPR; 8527 8528 // Look through 'not' ops to find disguised min/max. 8529 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 8530 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 8531 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 8532 switch (Pred) { 8533 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 8534 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 8535 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 8536 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 8537 default: break; 8538 } 8539 } 8540 8541 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 8542 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 8543 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 8544 switch (Pred) { 8545 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 8546 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 8547 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 8548 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 8549 default: break; 8550 } 8551 } 8552 8553 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 8554 return {SPF_UNKNOWN, SPNB_NA, false}; 8555 8556 const APInt *C1; 8557 if (!match(CmpRHS, m_APInt(C1))) 8558 return {SPF_UNKNOWN, SPNB_NA, false}; 8559 8560 // An unsigned min/max can be written with a signed compare. 8561 const APInt *C2; 8562 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 8563 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 8564 // Is the sign bit set? 8565 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 8566 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 8567 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 8568 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 8569 8570 // Is the sign bit clear? 8571 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 8572 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 8573 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 8574 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 8575 } 8576 8577 return {SPF_UNKNOWN, SPNB_NA, false}; 8578 } 8579 8580 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW, 8581 bool AllowPoison) { 8582 assert(X && Y && "Invalid operand"); 8583 8584 auto IsNegationOf = [&](const Value *X, const Value *Y) { 8585 if (!match(X, m_Neg(m_Specific(Y)))) 8586 return false; 8587 8588 auto *BO = cast<BinaryOperator>(X); 8589 if (NeedNSW && !BO->hasNoSignedWrap()) 8590 return false; 8591 8592 auto *Zero = cast<Constant>(BO->getOperand(0)); 8593 if (!AllowPoison && !Zero->isNullValue()) 8594 return false; 8595 8596 return true; 8597 }; 8598 8599 // X = -Y or Y = -X 8600 if (IsNegationOf(X, Y) || IsNegationOf(Y, X)) 8601 return true; 8602 8603 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 8604 Value *A, *B; 8605 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 8606 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 8607 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 8608 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 8609 } 8610 8611 bool llvm::isKnownInversion(const Value *X, const Value *Y) { 8612 // Handle X = icmp pred A, B, Y = icmp pred A, C. 8613 Value *A, *B, *C; 8614 CmpPredicate Pred1, Pred2; 8615 if (!match(X, m_ICmp(Pred1, m_Value(A), m_Value(B))) || 8616 !match(Y, m_c_ICmp(Pred2, m_Specific(A), m_Value(C)))) 8617 return false; 8618 8619 // They must both have samesign flag or not. 8620 if (cast<ICmpInst>(X)->hasSameSign() != cast<ICmpInst>(Y)->hasSameSign()) 8621 return false; 8622 8623 if (B == C) 8624 return Pred1 == ICmpInst::getInversePredicate(Pred2); 8625 8626 // Try to infer the relationship from constant ranges. 8627 const APInt *RHSC1, *RHSC2; 8628 if (!match(B, m_APInt(RHSC1)) || !match(C, m_APInt(RHSC2))) 8629 return false; 8630 8631 // Sign bits of two RHSCs should match. 8632 if (cast<ICmpInst>(X)->hasSameSign() && 8633 RHSC1->isNonNegative() != RHSC2->isNonNegative()) 8634 return false; 8635 8636 const auto CR1 = ConstantRange::makeExactICmpRegion(Pred1, *RHSC1); 8637 const auto CR2 = ConstantRange::makeExactICmpRegion(Pred2, *RHSC2); 8638 8639 return CR1.inverse() == CR2; 8640 } 8641 8642 SelectPatternResult llvm::getSelectPattern(CmpInst::Predicate Pred, 8643 SelectPatternNaNBehavior NaNBehavior, 8644 bool Ordered) { 8645 switch (Pred) { 8646 default: 8647 return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 8648 case ICmpInst::ICMP_UGT: 8649 case ICmpInst::ICMP_UGE: 8650 return {SPF_UMAX, SPNB_NA, false}; 8651 case ICmpInst::ICMP_SGT: 8652 case ICmpInst::ICMP_SGE: 8653 return {SPF_SMAX, SPNB_NA, false}; 8654 case ICmpInst::ICMP_ULT: 8655 case ICmpInst::ICMP_ULE: 8656 return {SPF_UMIN, SPNB_NA, false}; 8657 case ICmpInst::ICMP_SLT: 8658 case ICmpInst::ICMP_SLE: 8659 return {SPF_SMIN, SPNB_NA, false}; 8660 case FCmpInst::FCMP_UGT: 8661 case FCmpInst::FCMP_UGE: 8662 case FCmpInst::FCMP_OGT: 8663 case FCmpInst::FCMP_OGE: 8664 return {SPF_FMAXNUM, NaNBehavior, Ordered}; 8665 case FCmpInst::FCMP_ULT: 8666 case FCmpInst::FCMP_ULE: 8667 case FCmpInst::FCMP_OLT: 8668 case FCmpInst::FCMP_OLE: 8669 return {SPF_FMINNUM, NaNBehavior, Ordered}; 8670 } 8671 } 8672 8673 std::optional<std::pair<CmpPredicate, Constant *>> 8674 llvm::getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C) { 8675 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 8676 "Only for relational integer predicates."); 8677 if (isa<UndefValue>(C)) 8678 return std::nullopt; 8679 8680 Type *Type = C->getType(); 8681 bool IsSigned = ICmpInst::isSigned(Pred); 8682 8683 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 8684 bool WillIncrement = 8685 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 8686 8687 // Check if the constant operand can be safely incremented/decremented 8688 // without overflowing/underflowing. 8689 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 8690 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 8691 }; 8692 8693 Constant *SafeReplacementConstant = nullptr; 8694 if (auto *CI = dyn_cast<ConstantInt>(C)) { 8695 // Bail out if the constant can't be safely incremented/decremented. 8696 if (!ConstantIsOk(CI)) 8697 return std::nullopt; 8698 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 8699 unsigned NumElts = FVTy->getNumElements(); 8700 for (unsigned i = 0; i != NumElts; ++i) { 8701 Constant *Elt = C->getAggregateElement(i); 8702 if (!Elt) 8703 return std::nullopt; 8704 8705 if (isa<UndefValue>(Elt)) 8706 continue; 8707 8708 // Bail out if we can't determine if this constant is min/max or if we 8709 // know that this constant is min/max. 8710 auto *CI = dyn_cast<ConstantInt>(Elt); 8711 if (!CI || !ConstantIsOk(CI)) 8712 return std::nullopt; 8713 8714 if (!SafeReplacementConstant) 8715 SafeReplacementConstant = CI; 8716 } 8717 } else if (isa<VectorType>(C->getType())) { 8718 // Handle scalable splat 8719 Value *SplatC = C->getSplatValue(); 8720 auto *CI = dyn_cast_or_null<ConstantInt>(SplatC); 8721 // Bail out if the constant can't be safely incremented/decremented. 8722 if (!CI || !ConstantIsOk(CI)) 8723 return std::nullopt; 8724 } else { 8725 // ConstantExpr? 8726 return std::nullopt; 8727 } 8728 8729 // It may not be safe to change a compare predicate in the presence of 8730 // undefined elements, so replace those elements with the first safe constant 8731 // that we found. 8732 // TODO: in case of poison, it is safe; let's replace undefs only. 8733 if (C->containsUndefOrPoisonElement()) { 8734 assert(SafeReplacementConstant && "Replacement constant not set"); 8735 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 8736 } 8737 8738 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 8739 8740 // Increment or decrement the constant. 8741 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 8742 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 8743 8744 return std::make_pair(NewPred, NewC); 8745 } 8746 8747 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 8748 FastMathFlags FMF, 8749 Value *CmpLHS, Value *CmpRHS, 8750 Value *TrueVal, Value *FalseVal, 8751 Value *&LHS, Value *&RHS, 8752 unsigned Depth) { 8753 bool HasMismatchedZeros = false; 8754 if (CmpInst::isFPPredicate(Pred)) { 8755 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 8756 // 0.0 operand, set the compare's 0.0 operands to that same value for the 8757 // purpose of identifying min/max. Disregard vector constants with undefined 8758 // elements because those can not be back-propagated for analysis. 8759 Value *OutputZeroVal = nullptr; 8760 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 8761 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 8762 OutputZeroVal = TrueVal; 8763 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 8764 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 8765 OutputZeroVal = FalseVal; 8766 8767 if (OutputZeroVal) { 8768 if (match(CmpLHS, m_AnyZeroFP()) && CmpLHS != OutputZeroVal) { 8769 HasMismatchedZeros = true; 8770 CmpLHS = OutputZeroVal; 8771 } 8772 if (match(CmpRHS, m_AnyZeroFP()) && CmpRHS != OutputZeroVal) { 8773 HasMismatchedZeros = true; 8774 CmpRHS = OutputZeroVal; 8775 } 8776 } 8777 } 8778 8779 LHS = CmpLHS; 8780 RHS = CmpRHS; 8781 8782 // Signed zero may return inconsistent results between implementations. 8783 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 8784 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 8785 // Therefore, we behave conservatively and only proceed if at least one of the 8786 // operands is known to not be zero or if we don't care about signed zero. 8787 switch (Pred) { 8788 default: break; 8789 case CmpInst::FCMP_OGT: case CmpInst::FCMP_OLT: 8790 case CmpInst::FCMP_UGT: case CmpInst::FCMP_ULT: 8791 if (!HasMismatchedZeros) 8792 break; 8793 [[fallthrough]]; 8794 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 8795 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 8796 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 8797 !isKnownNonZero(CmpRHS)) 8798 return {SPF_UNKNOWN, SPNB_NA, false}; 8799 } 8800 8801 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 8802 bool Ordered = false; 8803 8804 // When given one NaN and one non-NaN input: 8805 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 8806 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 8807 // ordered comparison fails), which could be NaN or non-NaN. 8808 // so here we discover exactly what NaN behavior is required/accepted. 8809 if (CmpInst::isFPPredicate(Pred)) { 8810 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 8811 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 8812 8813 if (LHSSafe && RHSSafe) { 8814 // Both operands are known non-NaN. 8815 NaNBehavior = SPNB_RETURNS_ANY; 8816 } else if (CmpInst::isOrdered(Pred)) { 8817 // An ordered comparison will return false when given a NaN, so it 8818 // returns the RHS. 8819 Ordered = true; 8820 if (LHSSafe) 8821 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 8822 NaNBehavior = SPNB_RETURNS_NAN; 8823 else if (RHSSafe) 8824 NaNBehavior = SPNB_RETURNS_OTHER; 8825 else 8826 // Completely unsafe. 8827 return {SPF_UNKNOWN, SPNB_NA, false}; 8828 } else { 8829 Ordered = false; 8830 // An unordered comparison will return true when given a NaN, so it 8831 // returns the LHS. 8832 if (LHSSafe) 8833 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 8834 NaNBehavior = SPNB_RETURNS_OTHER; 8835 else if (RHSSafe) 8836 NaNBehavior = SPNB_RETURNS_NAN; 8837 else 8838 // Completely unsafe. 8839 return {SPF_UNKNOWN, SPNB_NA, false}; 8840 } 8841 } 8842 8843 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 8844 std::swap(CmpLHS, CmpRHS); 8845 Pred = CmpInst::getSwappedPredicate(Pred); 8846 if (NaNBehavior == SPNB_RETURNS_NAN) 8847 NaNBehavior = SPNB_RETURNS_OTHER; 8848 else if (NaNBehavior == SPNB_RETURNS_OTHER) 8849 NaNBehavior = SPNB_RETURNS_NAN; 8850 Ordered = !Ordered; 8851 } 8852 8853 // ([if]cmp X, Y) ? X : Y 8854 if (TrueVal == CmpLHS && FalseVal == CmpRHS) 8855 return getSelectPattern(Pred, NaNBehavior, Ordered); 8856 8857 if (isKnownNegation(TrueVal, FalseVal)) { 8858 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 8859 // match against either LHS or sext(LHS). 8860 auto MaybeSExtCmpLHS = 8861 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 8862 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 8863 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 8864 if (match(TrueVal, MaybeSExtCmpLHS)) { 8865 // Set the return values. If the compare uses the negated value (-X >s 0), 8866 // swap the return values because the negated value is always 'RHS'. 8867 LHS = TrueVal; 8868 RHS = FalseVal; 8869 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 8870 std::swap(LHS, RHS); 8871 8872 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 8873 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 8874 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 8875 return {SPF_ABS, SPNB_NA, false}; 8876 8877 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 8878 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 8879 return {SPF_ABS, SPNB_NA, false}; 8880 8881 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 8882 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 8883 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 8884 return {SPF_NABS, SPNB_NA, false}; 8885 } 8886 else if (match(FalseVal, MaybeSExtCmpLHS)) { 8887 // Set the return values. If the compare uses the negated value (-X >s 0), 8888 // swap the return values because the negated value is always 'RHS'. 8889 LHS = FalseVal; 8890 RHS = TrueVal; 8891 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 8892 std::swap(LHS, RHS); 8893 8894 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 8895 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 8896 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 8897 return {SPF_NABS, SPNB_NA, false}; 8898 8899 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 8900 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 8901 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 8902 return {SPF_ABS, SPNB_NA, false}; 8903 } 8904 } 8905 8906 if (CmpInst::isIntPredicate(Pred)) 8907 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 8908 8909 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 8910 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 8911 // semantics than minNum. Be conservative in such case. 8912 if (NaNBehavior != SPNB_RETURNS_ANY || 8913 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 8914 !isKnownNonZero(CmpRHS))) 8915 return {SPF_UNKNOWN, SPNB_NA, false}; 8916 8917 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 8918 } 8919 8920 static Value *lookThroughCastConst(CmpInst *CmpI, Type *SrcTy, Constant *C, 8921 Instruction::CastOps *CastOp) { 8922 const DataLayout &DL = CmpI->getDataLayout(); 8923 8924 Constant *CastedTo = nullptr; 8925 switch (*CastOp) { 8926 case Instruction::ZExt: 8927 if (CmpI->isUnsigned()) 8928 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 8929 break; 8930 case Instruction::SExt: 8931 if (CmpI->isSigned()) 8932 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 8933 break; 8934 case Instruction::Trunc: 8935 Constant *CmpConst; 8936 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 8937 CmpConst->getType() == SrcTy) { 8938 // Here we have the following case: 8939 // 8940 // %cond = cmp iN %x, CmpConst 8941 // %tr = trunc iN %x to iK 8942 // %narrowsel = select i1 %cond, iK %t, iK C 8943 // 8944 // We can always move trunc after select operation: 8945 // 8946 // %cond = cmp iN %x, CmpConst 8947 // %widesel = select i1 %cond, iN %x, iN CmpConst 8948 // %tr = trunc iN %widesel to iK 8949 // 8950 // Note that C could be extended in any way because we don't care about 8951 // upper bits after truncation. It can't be abs pattern, because it would 8952 // look like: 8953 // 8954 // select i1 %cond, x, -x. 8955 // 8956 // So only min/max pattern could be matched. Such match requires widened C 8957 // == CmpConst. That is why set widened C = CmpConst, condition trunc 8958 // CmpConst == C is checked below. 8959 CastedTo = CmpConst; 8960 } else { 8961 unsigned ExtOp = CmpI->isSigned() ? Instruction::SExt : Instruction::ZExt; 8962 CastedTo = ConstantFoldCastOperand(ExtOp, C, SrcTy, DL); 8963 } 8964 break; 8965 case Instruction::FPTrunc: 8966 CastedTo = ConstantFoldCastOperand(Instruction::FPExt, C, SrcTy, DL); 8967 break; 8968 case Instruction::FPExt: 8969 CastedTo = ConstantFoldCastOperand(Instruction::FPTrunc, C, SrcTy, DL); 8970 break; 8971 case Instruction::FPToUI: 8972 CastedTo = ConstantFoldCastOperand(Instruction::UIToFP, C, SrcTy, DL); 8973 break; 8974 case Instruction::FPToSI: 8975 CastedTo = ConstantFoldCastOperand(Instruction::SIToFP, C, SrcTy, DL); 8976 break; 8977 case Instruction::UIToFP: 8978 CastedTo = ConstantFoldCastOperand(Instruction::FPToUI, C, SrcTy, DL); 8979 break; 8980 case Instruction::SIToFP: 8981 CastedTo = ConstantFoldCastOperand(Instruction::FPToSI, C, SrcTy, DL); 8982 break; 8983 default: 8984 break; 8985 } 8986 8987 if (!CastedTo) 8988 return nullptr; 8989 8990 // Make sure the cast doesn't lose any information. 8991 Constant *CastedBack = 8992 ConstantFoldCastOperand(*CastOp, CastedTo, C->getType(), DL); 8993 if (CastedBack && CastedBack != C) 8994 return nullptr; 8995 8996 return CastedTo; 8997 } 8998 8999 /// Helps to match a select pattern in case of a type mismatch. 9000 /// 9001 /// The function processes the case when type of true and false values of a 9002 /// select instruction differs from type of the cmp instruction operands because 9003 /// of a cast instruction. The function checks if it is legal to move the cast 9004 /// operation after "select". If yes, it returns the new second value of 9005 /// "select" (with the assumption that cast is moved): 9006 /// 1. As operand of cast instruction when both values of "select" are same cast 9007 /// instructions. 9008 /// 2. As restored constant (by applying reverse cast operation) when the first 9009 /// value of the "select" is a cast operation and the second value is a 9010 /// constant. It is implemented in lookThroughCastConst(). 9011 /// 3. As one operand is cast instruction and the other is not. The operands in 9012 /// sel(cmp) are in different type integer. 9013 /// NOTE: We return only the new second value because the first value could be 9014 /// accessed as operand of cast instruction. 9015 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 9016 Instruction::CastOps *CastOp) { 9017 auto *Cast1 = dyn_cast<CastInst>(V1); 9018 if (!Cast1) 9019 return nullptr; 9020 9021 *CastOp = Cast1->getOpcode(); 9022 Type *SrcTy = Cast1->getSrcTy(); 9023 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 9024 // If V1 and V2 are both the same cast from the same type, look through V1. 9025 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 9026 return Cast2->getOperand(0); 9027 return nullptr; 9028 } 9029 9030 auto *C = dyn_cast<Constant>(V2); 9031 if (C) 9032 return lookThroughCastConst(CmpI, SrcTy, C, CastOp); 9033 9034 Value *CastedTo = nullptr; 9035 if (*CastOp == Instruction::Trunc) { 9036 if (match(CmpI->getOperand(1), m_ZExtOrSExt(m_Specific(V2)))) { 9037 // Here we have the following case: 9038 // %y_ext = sext iK %y to iN 9039 // %cond = cmp iN %x, %y_ext 9040 // %tr = trunc iN %x to iK 9041 // %narrowsel = select i1 %cond, iK %tr, iK %y 9042 // 9043 // We can always move trunc after select operation: 9044 // %y_ext = sext iK %y to iN 9045 // %cond = cmp iN %x, %y_ext 9046 // %widesel = select i1 %cond, iN %x, iN %y_ext 9047 // %tr = trunc iN %widesel to iK 9048 assert(V2->getType() == Cast1->getType() && 9049 "V2 and Cast1 should be the same type."); 9050 CastedTo = CmpI->getOperand(1); 9051 } 9052 } 9053 9054 return CastedTo; 9055 } 9056 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 9057 Instruction::CastOps *CastOp, 9058 unsigned Depth) { 9059 if (Depth >= MaxAnalysisRecursionDepth) 9060 return {SPF_UNKNOWN, SPNB_NA, false}; 9061 9062 SelectInst *SI = dyn_cast<SelectInst>(V); 9063 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 9064 9065 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 9066 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 9067 9068 Value *TrueVal = SI->getTrueValue(); 9069 Value *FalseVal = SI->getFalseValue(); 9070 9071 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 9072 CastOp, Depth); 9073 } 9074 9075 SelectPatternResult llvm::matchDecomposedSelectPattern( 9076 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 9077 Instruction::CastOps *CastOp, unsigned Depth) { 9078 CmpInst::Predicate Pred = CmpI->getPredicate(); 9079 Value *CmpLHS = CmpI->getOperand(0); 9080 Value *CmpRHS = CmpI->getOperand(1); 9081 FastMathFlags FMF; 9082 if (isa<FPMathOperator>(CmpI)) 9083 FMF = CmpI->getFastMathFlags(); 9084 9085 // Bail out early. 9086 if (CmpI->isEquality()) 9087 return {SPF_UNKNOWN, SPNB_NA, false}; 9088 9089 // Deal with type mismatches. 9090 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 9091 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 9092 // If this is a potential fmin/fmax with a cast to integer, then ignore 9093 // -0.0 because there is no corresponding integer value. 9094 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 9095 FMF.setNoSignedZeros(); 9096 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 9097 cast<CastInst>(TrueVal)->getOperand(0), C, 9098 LHS, RHS, Depth); 9099 } 9100 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 9101 // If this is a potential fmin/fmax with a cast to integer, then ignore 9102 // -0.0 because there is no corresponding integer value. 9103 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 9104 FMF.setNoSignedZeros(); 9105 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 9106 C, cast<CastInst>(FalseVal)->getOperand(0), 9107 LHS, RHS, Depth); 9108 } 9109 } 9110 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 9111 LHS, RHS, Depth); 9112 } 9113 9114 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 9115 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 9116 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 9117 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 9118 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 9119 if (SPF == SPF_FMINNUM) 9120 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 9121 if (SPF == SPF_FMAXNUM) 9122 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 9123 llvm_unreachable("unhandled!"); 9124 } 9125 9126 Intrinsic::ID llvm::getMinMaxIntrinsic(SelectPatternFlavor SPF) { 9127 switch (SPF) { 9128 case SelectPatternFlavor::SPF_UMIN: 9129 return Intrinsic::umin; 9130 case SelectPatternFlavor::SPF_UMAX: 9131 return Intrinsic::umax; 9132 case SelectPatternFlavor::SPF_SMIN: 9133 return Intrinsic::smin; 9134 case SelectPatternFlavor::SPF_SMAX: 9135 return Intrinsic::smax; 9136 default: 9137 llvm_unreachable("Unexpected SPF"); 9138 } 9139 } 9140 9141 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 9142 if (SPF == SPF_SMIN) return SPF_SMAX; 9143 if (SPF == SPF_UMIN) return SPF_UMAX; 9144 if (SPF == SPF_SMAX) return SPF_SMIN; 9145 if (SPF == SPF_UMAX) return SPF_UMIN; 9146 llvm_unreachable("unhandled!"); 9147 } 9148 9149 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 9150 switch (MinMaxID) { 9151 case Intrinsic::smax: return Intrinsic::smin; 9152 case Intrinsic::smin: return Intrinsic::smax; 9153 case Intrinsic::umax: return Intrinsic::umin; 9154 case Intrinsic::umin: return Intrinsic::umax; 9155 // Please note that next four intrinsics may produce the same result for 9156 // original and inverted case even if X != Y due to NaN is handled specially. 9157 case Intrinsic::maximum: return Intrinsic::minimum; 9158 case Intrinsic::minimum: return Intrinsic::maximum; 9159 case Intrinsic::maxnum: return Intrinsic::minnum; 9160 case Intrinsic::minnum: return Intrinsic::maxnum; 9161 default: llvm_unreachable("Unexpected intrinsic"); 9162 } 9163 } 9164 9165 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 9166 switch (SPF) { 9167 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 9168 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 9169 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 9170 case SPF_UMIN: return APInt::getMinValue(BitWidth); 9171 default: llvm_unreachable("Unexpected flavor"); 9172 } 9173 } 9174 9175 std::pair<Intrinsic::ID, bool> 9176 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 9177 // Check if VL contains select instructions that can be folded into a min/max 9178 // vector intrinsic and return the intrinsic if it is possible. 9179 // TODO: Support floating point min/max. 9180 bool AllCmpSingleUse = true; 9181 SelectPatternResult SelectPattern; 9182 SelectPattern.Flavor = SPF_UNKNOWN; 9183 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 9184 Value *LHS, *RHS; 9185 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 9186 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor)) 9187 return false; 9188 if (SelectPattern.Flavor != SPF_UNKNOWN && 9189 SelectPattern.Flavor != CurrentPattern.Flavor) 9190 return false; 9191 SelectPattern = CurrentPattern; 9192 AllCmpSingleUse &= 9193 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 9194 return true; 9195 })) { 9196 switch (SelectPattern.Flavor) { 9197 case SPF_SMIN: 9198 return {Intrinsic::smin, AllCmpSingleUse}; 9199 case SPF_UMIN: 9200 return {Intrinsic::umin, AllCmpSingleUse}; 9201 case SPF_SMAX: 9202 return {Intrinsic::smax, AllCmpSingleUse}; 9203 case SPF_UMAX: 9204 return {Intrinsic::umax, AllCmpSingleUse}; 9205 case SPF_FMAXNUM: 9206 return {Intrinsic::maxnum, AllCmpSingleUse}; 9207 case SPF_FMINNUM: 9208 return {Intrinsic::minnum, AllCmpSingleUse}; 9209 default: 9210 llvm_unreachable("unexpected select pattern flavor"); 9211 } 9212 } 9213 return {Intrinsic::not_intrinsic, false}; 9214 } 9215 9216 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 9217 Value *&Start, Value *&Step) { 9218 // Handle the case of a simple two-predecessor recurrence PHI. 9219 // There's a lot more that could theoretically be done here, but 9220 // this is sufficient to catch some interesting cases. 9221 if (P->getNumIncomingValues() != 2) 9222 return false; 9223 9224 for (unsigned i = 0; i != 2; ++i) { 9225 Value *L = P->getIncomingValue(i); 9226 Value *R = P->getIncomingValue(!i); 9227 auto *LU = dyn_cast<BinaryOperator>(L); 9228 if (!LU) 9229 continue; 9230 unsigned Opcode = LU->getOpcode(); 9231 9232 switch (Opcode) { 9233 default: 9234 continue; 9235 // TODO: Expand list -- xor, gep, uadd.sat etc. 9236 case Instruction::LShr: 9237 case Instruction::AShr: 9238 case Instruction::Shl: 9239 case Instruction::Add: 9240 case Instruction::Sub: 9241 case Instruction::UDiv: 9242 case Instruction::URem: 9243 case Instruction::And: 9244 case Instruction::Or: 9245 case Instruction::Mul: 9246 case Instruction::FMul: { 9247 Value *LL = LU->getOperand(0); 9248 Value *LR = LU->getOperand(1); 9249 // Find a recurrence. 9250 if (LL == P) 9251 L = LR; 9252 else if (LR == P) 9253 L = LL; 9254 else 9255 continue; // Check for recurrence with L and R flipped. 9256 9257 break; // Match! 9258 } 9259 }; 9260 9261 // We have matched a recurrence of the form: 9262 // %iv = [R, %entry], [%iv.next, %backedge] 9263 // %iv.next = binop %iv, L 9264 // OR 9265 // %iv = [R, %entry], [%iv.next, %backedge] 9266 // %iv.next = binop L, %iv 9267 BO = LU; 9268 Start = R; 9269 Step = L; 9270 return true; 9271 } 9272 return false; 9273 } 9274 9275 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 9276 Value *&Start, Value *&Step) { 9277 BinaryOperator *BO = nullptr; 9278 P = dyn_cast<PHINode>(I->getOperand(0)); 9279 if (!P) 9280 P = dyn_cast<PHINode>(I->getOperand(1)); 9281 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 9282 } 9283 9284 /// Return true if "icmp Pred LHS RHS" is always true. 9285 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 9286 const Value *RHS) { 9287 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 9288 return true; 9289 9290 switch (Pred) { 9291 default: 9292 return false; 9293 9294 case CmpInst::ICMP_SLE: { 9295 const APInt *C; 9296 9297 // LHS s<= LHS +_{nsw} C if C >= 0 9298 // LHS s<= LHS | C if C >= 0 9299 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))) || 9300 match(RHS, m_Or(m_Specific(LHS), m_APInt(C)))) 9301 return !C->isNegative(); 9302 9303 // LHS s<= smax(LHS, V) for any V 9304 if (match(RHS, m_c_SMax(m_Specific(LHS), m_Value()))) 9305 return true; 9306 9307 // smin(RHS, V) s<= RHS for any V 9308 if (match(LHS, m_c_SMin(m_Specific(RHS), m_Value()))) 9309 return true; 9310 9311 // Match A to (X +_{nsw} CA) and B to (X +_{nsw} CB) 9312 const Value *X; 9313 const APInt *CLHS, *CRHS; 9314 if (match(LHS, m_NSWAddLike(m_Value(X), m_APInt(CLHS))) && 9315 match(RHS, m_NSWAddLike(m_Specific(X), m_APInt(CRHS)))) 9316 return CLHS->sle(*CRHS); 9317 9318 return false; 9319 } 9320 9321 case CmpInst::ICMP_ULE: { 9322 // LHS u<= LHS +_{nuw} V for any V 9323 if (match(RHS, m_c_Add(m_Specific(LHS), m_Value())) && 9324 cast<OverflowingBinaryOperator>(RHS)->hasNoUnsignedWrap()) 9325 return true; 9326 9327 // LHS u<= LHS | V for any V 9328 if (match(RHS, m_c_Or(m_Specific(LHS), m_Value()))) 9329 return true; 9330 9331 // LHS u<= umax(LHS, V) for any V 9332 if (match(RHS, m_c_UMax(m_Specific(LHS), m_Value()))) 9333 return true; 9334 9335 // RHS >> V u<= RHS for any V 9336 if (match(LHS, m_LShr(m_Specific(RHS), m_Value()))) 9337 return true; 9338 9339 // RHS u/ C_ugt_1 u<= RHS 9340 const APInt *C; 9341 if (match(LHS, m_UDiv(m_Specific(RHS), m_APInt(C))) && C->ugt(1)) 9342 return true; 9343 9344 // RHS & V u<= RHS for any V 9345 if (match(LHS, m_c_And(m_Specific(RHS), m_Value()))) 9346 return true; 9347 9348 // umin(RHS, V) u<= RHS for any V 9349 if (match(LHS, m_c_UMin(m_Specific(RHS), m_Value()))) 9350 return true; 9351 9352 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 9353 const Value *X; 9354 const APInt *CLHS, *CRHS; 9355 if (match(LHS, m_NUWAddLike(m_Value(X), m_APInt(CLHS))) && 9356 match(RHS, m_NUWAddLike(m_Specific(X), m_APInt(CRHS)))) 9357 return CLHS->ule(*CRHS); 9358 9359 return false; 9360 } 9361 } 9362 } 9363 9364 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 9365 /// ALHS ARHS" is true. Otherwise, return std::nullopt. 9366 static std::optional<bool> 9367 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 9368 const Value *ARHS, const Value *BLHS, const Value *BRHS) { 9369 switch (Pred) { 9370 default: 9371 return std::nullopt; 9372 9373 case CmpInst::ICMP_SLT: 9374 case CmpInst::ICMP_SLE: 9375 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS) && 9376 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS)) 9377 return true; 9378 return std::nullopt; 9379 9380 case CmpInst::ICMP_SGT: 9381 case CmpInst::ICMP_SGE: 9382 if (isTruePredicate(CmpInst::ICMP_SLE, ALHS, BLHS) && 9383 isTruePredicate(CmpInst::ICMP_SLE, BRHS, ARHS)) 9384 return true; 9385 return std::nullopt; 9386 9387 case CmpInst::ICMP_ULT: 9388 case CmpInst::ICMP_ULE: 9389 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS) && 9390 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS)) 9391 return true; 9392 return std::nullopt; 9393 9394 case CmpInst::ICMP_UGT: 9395 case CmpInst::ICMP_UGE: 9396 if (isTruePredicate(CmpInst::ICMP_ULE, ALHS, BLHS) && 9397 isTruePredicate(CmpInst::ICMP_ULE, BRHS, ARHS)) 9398 return true; 9399 return std::nullopt; 9400 } 9401 } 9402 9403 /// Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true. 9404 /// Return false if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is false. 9405 /// Otherwise, return std::nullopt if we can't infer anything. 9406 static std::optional<bool> 9407 isImpliedCondCommonOperandWithCR(CmpPredicate LPred, const ConstantRange &LCR, 9408 CmpPredicate RPred, const ConstantRange &RCR) { 9409 auto CRImpliesPred = [&](ConstantRange CR, 9410 CmpInst::Predicate Pred) -> std::optional<bool> { 9411 // If all true values for lhs and true for rhs, lhs implies rhs 9412 if (CR.icmp(Pred, RCR)) 9413 return true; 9414 9415 // If there is no overlap, lhs implies not rhs 9416 if (CR.icmp(CmpInst::getInversePredicate(Pred), RCR)) 9417 return false; 9418 9419 return std::nullopt; 9420 }; 9421 if (auto Res = CRImpliesPred(ConstantRange::makeAllowedICmpRegion(LPred, LCR), 9422 RPred)) 9423 return Res; 9424 if (LPred.hasSameSign() ^ RPred.hasSameSign()) { 9425 LPred = LPred.hasSameSign() ? ICmpInst::getFlippedSignednessPredicate(LPred) 9426 : static_cast<CmpInst::Predicate>(LPred); 9427 RPred = RPred.hasSameSign() ? ICmpInst::getFlippedSignednessPredicate(RPred) 9428 : static_cast<CmpInst::Predicate>(RPred); 9429 return CRImpliesPred(ConstantRange::makeAllowedICmpRegion(LPred, LCR), 9430 RPred); 9431 } 9432 return std::nullopt; 9433 } 9434 9435 /// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") 9436 /// is true. Return false if LHS implies RHS is false. Otherwise, return 9437 /// std::nullopt if we can't infer anything. 9438 static std::optional<bool> 9439 isImpliedCondICmps(const ICmpInst *LHS, CmpPredicate RPred, const Value *R0, 9440 const Value *R1, const DataLayout &DL, bool LHSIsTrue) { 9441 Value *L0 = LHS->getOperand(0); 9442 Value *L1 = LHS->getOperand(1); 9443 9444 // The rest of the logic assumes the LHS condition is true. If that's not the 9445 // case, invert the predicate to make it so. 9446 CmpPredicate LPred = 9447 LHSIsTrue ? LHS->getCmpPredicate() : LHS->getInverseCmpPredicate(); 9448 9449 // We can have non-canonical operands, so try to normalize any common operand 9450 // to L0/R0. 9451 if (L0 == R1) { 9452 std::swap(R0, R1); 9453 RPred = ICmpInst::getSwappedCmpPredicate(RPred); 9454 } 9455 if (R0 == L1) { 9456 std::swap(L0, L1); 9457 LPred = ICmpInst::getSwappedCmpPredicate(LPred); 9458 } 9459 if (L1 == R1) { 9460 // If we have L0 == R0 and L1 == R1, then make L1/R1 the constants. 9461 if (L0 != R0 || match(L0, m_ImmConstant())) { 9462 std::swap(L0, L1); 9463 LPred = ICmpInst::getSwappedCmpPredicate(LPred); 9464 std::swap(R0, R1); 9465 RPred = ICmpInst::getSwappedCmpPredicate(RPred); 9466 } 9467 } 9468 9469 // See if we can infer anything if operand-0 matches and we have at least one 9470 // constant. 9471 const APInt *Unused; 9472 if (L0 == R0 && (match(L1, m_APInt(Unused)) || match(R1, m_APInt(Unused)))) { 9473 // Potential TODO: We could also further use the constant range of L0/R0 to 9474 // further constraint the constant ranges. At the moment this leads to 9475 // several regressions related to not transforming `multi_use(A + C0) eq/ne 9476 // C1` (see discussion: D58633). 9477 ConstantRange LCR = computeConstantRange( 9478 L1, ICmpInst::isSigned(LPred), /* UseInstrInfo=*/true, /*AC=*/nullptr, 9479 /*CxtI=*/nullptr, /*DT=*/nullptr, MaxAnalysisRecursionDepth - 1); 9480 ConstantRange RCR = computeConstantRange( 9481 R1, ICmpInst::isSigned(RPred), /* UseInstrInfo=*/true, /*AC=*/nullptr, 9482 /*CxtI=*/nullptr, /*DT=*/nullptr, MaxAnalysisRecursionDepth - 1); 9483 // Even if L1/R1 are not both constant, we can still sometimes deduce 9484 // relationship from a single constant. For example X u> Y implies X != 0. 9485 if (auto R = isImpliedCondCommonOperandWithCR(LPred, LCR, RPred, RCR)) 9486 return R; 9487 // If both L1/R1 were exact constant ranges and we didn't get anything 9488 // here, we won't be able to deduce this. 9489 if (match(L1, m_APInt(Unused)) && match(R1, m_APInt(Unused))) 9490 return std::nullopt; 9491 } 9492 9493 // Can we infer anything when the two compares have matching operands? 9494 if (L0 == R0 && L1 == R1) 9495 return ICmpInst::isImpliedByMatchingCmp(LPred, RPred); 9496 9497 // It only really makes sense in the context of signed comparison for "X - Y 9498 // must be positive if X >= Y and no overflow". 9499 // Take SGT as an example: L0:x > L1:y and C >= 0 9500 // ==> R0:(x -nsw y) < R1:(-C) is false 9501 CmpInst::Predicate SignedLPred = LPred.getPreferredSignedPredicate(); 9502 if ((SignedLPred == ICmpInst::ICMP_SGT || 9503 SignedLPred == ICmpInst::ICMP_SGE) && 9504 match(R0, m_NSWSub(m_Specific(L0), m_Specific(L1)))) { 9505 if (match(R1, m_NonPositive()) && 9506 ICmpInst::isImpliedByMatchingCmp(SignedLPred, RPred) == false) 9507 return false; 9508 } 9509 9510 // Take SLT as an example: L0:x < L1:y and C <= 0 9511 // ==> R0:(x -nsw y) < R1:(-C) is true 9512 if ((SignedLPred == ICmpInst::ICMP_SLT || 9513 SignedLPred == ICmpInst::ICMP_SLE) && 9514 match(R0, m_NSWSub(m_Specific(L0), m_Specific(L1)))) { 9515 if (match(R1, m_NonNegative()) && 9516 ICmpInst::isImpliedByMatchingCmp(SignedLPred, RPred) == true) 9517 return true; 9518 } 9519 9520 // L0 = R0 = L1 + R1, L0 >=u L1 implies R0 >=u R1, L0 <u L1 implies R0 <u R1 9521 if (L0 == R0 && 9522 (LPred == ICmpInst::ICMP_ULT || LPred == ICmpInst::ICMP_UGE) && 9523 (RPred == ICmpInst::ICMP_ULT || RPred == ICmpInst::ICMP_UGE) && 9524 match(L0, m_c_Add(m_Specific(L1), m_Specific(R1)))) 9525 return CmpPredicate::getMatching(LPred, RPred).has_value(); 9526 9527 if (auto P = CmpPredicate::getMatching(LPred, RPred)) 9528 return isImpliedCondOperands(*P, L0, L1, R0, R1); 9529 9530 return std::nullopt; 9531 } 9532 9533 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 9534 /// false. Otherwise, return std::nullopt if we can't infer anything. We 9535 /// expect the RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' 9536 /// instruction. 9537 static std::optional<bool> 9538 isImpliedCondAndOr(const Instruction *LHS, CmpPredicate RHSPred, 9539 const Value *RHSOp0, const Value *RHSOp1, 9540 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 9541 // The LHS must be an 'or', 'and', or a 'select' instruction. 9542 assert((LHS->getOpcode() == Instruction::And || 9543 LHS->getOpcode() == Instruction::Or || 9544 LHS->getOpcode() == Instruction::Select) && 9545 "Expected LHS to be 'and', 'or', or 'select'."); 9546 9547 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 9548 9549 // If the result of an 'or' is false, then we know both legs of the 'or' are 9550 // false. Similarly, if the result of an 'and' is true, then we know both 9551 // legs of the 'and' are true. 9552 const Value *ALHS, *ARHS; 9553 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 9554 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 9555 // FIXME: Make this non-recursion. 9556 if (std::optional<bool> Implication = isImpliedCondition( 9557 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 9558 return Implication; 9559 if (std::optional<bool> Implication = isImpliedCondition( 9560 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 9561 return Implication; 9562 return std::nullopt; 9563 } 9564 return std::nullopt; 9565 } 9566 9567 std::optional<bool> 9568 llvm::isImpliedCondition(const Value *LHS, CmpPredicate RHSPred, 9569 const Value *RHSOp0, const Value *RHSOp1, 9570 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 9571 // Bail out when we hit the limit. 9572 if (Depth == MaxAnalysisRecursionDepth) 9573 return std::nullopt; 9574 9575 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 9576 // example. 9577 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 9578 return std::nullopt; 9579 9580 assert(LHS->getType()->isIntOrIntVectorTy(1) && 9581 "Expected integer type only!"); 9582 9583 // Match not 9584 if (match(LHS, m_Not(m_Value(LHS)))) 9585 LHSIsTrue = !LHSIsTrue; 9586 9587 // Both LHS and RHS are icmps. 9588 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 9589 if (LHSCmp) 9590 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue); 9591 9592 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 9593 /// the RHS to be an icmp. 9594 /// FIXME: Add support for and/or/select on the RHS. 9595 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 9596 if ((LHSI->getOpcode() == Instruction::And || 9597 LHSI->getOpcode() == Instruction::Or || 9598 LHSI->getOpcode() == Instruction::Select)) 9599 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 9600 Depth); 9601 } 9602 return std::nullopt; 9603 } 9604 9605 std::optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 9606 const DataLayout &DL, 9607 bool LHSIsTrue, unsigned Depth) { 9608 // LHS ==> RHS by definition 9609 if (LHS == RHS) 9610 return LHSIsTrue; 9611 9612 // Match not 9613 bool InvertRHS = false; 9614 if (match(RHS, m_Not(m_Value(RHS)))) { 9615 if (LHS == RHS) 9616 return !LHSIsTrue; 9617 InvertRHS = true; 9618 } 9619 9620 if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS)) { 9621 if (auto Implied = isImpliedCondition( 9622 LHS, RHSCmp->getCmpPredicate(), RHSCmp->getOperand(0), 9623 RHSCmp->getOperand(1), DL, LHSIsTrue, Depth)) 9624 return InvertRHS ? !*Implied : *Implied; 9625 return std::nullopt; 9626 } 9627 9628 if (Depth == MaxAnalysisRecursionDepth) 9629 return std::nullopt; 9630 9631 // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2 9632 // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2 9633 const Value *RHS1, *RHS2; 9634 if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) { 9635 if (std::optional<bool> Imp = 9636 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 9637 if (*Imp == true) 9638 return !InvertRHS; 9639 if (std::optional<bool> Imp = 9640 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 9641 if (*Imp == true) 9642 return !InvertRHS; 9643 } 9644 if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) { 9645 if (std::optional<bool> Imp = 9646 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 9647 if (*Imp == false) 9648 return InvertRHS; 9649 if (std::optional<bool> Imp = 9650 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 9651 if (*Imp == false) 9652 return InvertRHS; 9653 } 9654 9655 return std::nullopt; 9656 } 9657 9658 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 9659 // condition dominating ContextI or nullptr, if no condition is found. 9660 static std::pair<Value *, bool> 9661 getDomPredecessorCondition(const Instruction *ContextI) { 9662 if (!ContextI || !ContextI->getParent()) 9663 return {nullptr, false}; 9664 9665 // TODO: This is a poor/cheap way to determine dominance. Should we use a 9666 // dominator tree (eg, from a SimplifyQuery) instead? 9667 const BasicBlock *ContextBB = ContextI->getParent(); 9668 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 9669 if (!PredBB) 9670 return {nullptr, false}; 9671 9672 // We need a conditional branch in the predecessor. 9673 Value *PredCond; 9674 BasicBlock *TrueBB, *FalseBB; 9675 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 9676 return {nullptr, false}; 9677 9678 // The branch should get simplified. Don't bother simplifying this condition. 9679 if (TrueBB == FalseBB) 9680 return {nullptr, false}; 9681 9682 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 9683 "Predecessor block does not point to successor?"); 9684 9685 // Is this condition implied by the predecessor condition? 9686 return {PredCond, TrueBB == ContextBB}; 9687 } 9688 9689 std::optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 9690 const Instruction *ContextI, 9691 const DataLayout &DL) { 9692 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 9693 auto PredCond = getDomPredecessorCondition(ContextI); 9694 if (PredCond.first) 9695 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 9696 return std::nullopt; 9697 } 9698 9699 std::optional<bool> llvm::isImpliedByDomCondition(CmpPredicate Pred, 9700 const Value *LHS, 9701 const Value *RHS, 9702 const Instruction *ContextI, 9703 const DataLayout &DL) { 9704 auto PredCond = getDomPredecessorCondition(ContextI); 9705 if (PredCond.first) 9706 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 9707 PredCond.second); 9708 return std::nullopt; 9709 } 9710 9711 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 9712 APInt &Upper, const InstrInfoQuery &IIQ, 9713 bool PreferSignedRange) { 9714 unsigned Width = Lower.getBitWidth(); 9715 const APInt *C; 9716 switch (BO.getOpcode()) { 9717 case Instruction::Add: 9718 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 9719 bool HasNSW = IIQ.hasNoSignedWrap(&BO); 9720 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); 9721 9722 // If the caller expects a signed compare, then try to use a signed range. 9723 // Otherwise if both no-wraps are set, use the unsigned range because it 9724 // is never larger than the signed range. Example: 9725 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. 9726 if (PreferSignedRange && HasNSW && HasNUW) 9727 HasNUW = false; 9728 9729 if (HasNUW) { 9730 // 'add nuw x, C' produces [C, UINT_MAX]. 9731 Lower = *C; 9732 } else if (HasNSW) { 9733 if (C->isNegative()) { 9734 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 9735 Lower = APInt::getSignedMinValue(Width); 9736 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 9737 } else { 9738 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 9739 Lower = APInt::getSignedMinValue(Width) + *C; 9740 Upper = APInt::getSignedMaxValue(Width) + 1; 9741 } 9742 } 9743 } 9744 break; 9745 9746 case Instruction::And: 9747 if (match(BO.getOperand(1), m_APInt(C))) 9748 // 'and x, C' produces [0, C]. 9749 Upper = *C + 1; 9750 // X & -X is a power of two or zero. So we can cap the value at max power of 9751 // two. 9752 if (match(BO.getOperand(0), m_Neg(m_Specific(BO.getOperand(1)))) || 9753 match(BO.getOperand(1), m_Neg(m_Specific(BO.getOperand(0))))) 9754 Upper = APInt::getSignedMinValue(Width) + 1; 9755 break; 9756 9757 case Instruction::Or: 9758 if (match(BO.getOperand(1), m_APInt(C))) 9759 // 'or x, C' produces [C, UINT_MAX]. 9760 Lower = *C; 9761 break; 9762 9763 case Instruction::AShr: 9764 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 9765 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 9766 Lower = APInt::getSignedMinValue(Width).ashr(*C); 9767 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 9768 } else if (match(BO.getOperand(0), m_APInt(C))) { 9769 unsigned ShiftAmount = Width - 1; 9770 if (!C->isZero() && IIQ.isExact(&BO)) 9771 ShiftAmount = C->countr_zero(); 9772 if (C->isNegative()) { 9773 // 'ashr C, x' produces [C, C >> (Width-1)] 9774 Lower = *C; 9775 Upper = C->ashr(ShiftAmount) + 1; 9776 } else { 9777 // 'ashr C, x' produces [C >> (Width-1), C] 9778 Lower = C->ashr(ShiftAmount); 9779 Upper = *C + 1; 9780 } 9781 } 9782 break; 9783 9784 case Instruction::LShr: 9785 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 9786 // 'lshr x, C' produces [0, UINT_MAX >> C]. 9787 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 9788 } else if (match(BO.getOperand(0), m_APInt(C))) { 9789 // 'lshr C, x' produces [C >> (Width-1), C]. 9790 unsigned ShiftAmount = Width - 1; 9791 if (!C->isZero() && IIQ.isExact(&BO)) 9792 ShiftAmount = C->countr_zero(); 9793 Lower = C->lshr(ShiftAmount); 9794 Upper = *C + 1; 9795 } 9796 break; 9797 9798 case Instruction::Shl: 9799 if (match(BO.getOperand(0), m_APInt(C))) { 9800 if (IIQ.hasNoUnsignedWrap(&BO)) { 9801 // 'shl nuw C, x' produces [C, C << CLZ(C)] 9802 Lower = *C; 9803 Upper = Lower.shl(Lower.countl_zero()) + 1; 9804 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 9805 if (C->isNegative()) { 9806 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 9807 unsigned ShiftAmount = C->countl_one() - 1; 9808 Lower = C->shl(ShiftAmount); 9809 Upper = *C + 1; 9810 } else { 9811 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 9812 unsigned ShiftAmount = C->countl_zero() - 1; 9813 Lower = *C; 9814 Upper = C->shl(ShiftAmount) + 1; 9815 } 9816 } else { 9817 // If lowbit is set, value can never be zero. 9818 if ((*C)[0]) 9819 Lower = APInt::getOneBitSet(Width, 0); 9820 // If we are shifting a constant the largest it can be is if the longest 9821 // sequence of consecutive ones is shifted to the highbits (breaking 9822 // ties for which sequence is higher). At the moment we take a liberal 9823 // upper bound on this by just popcounting the constant. 9824 // TODO: There may be a bitwise trick for it longest/highest 9825 // consecutative sequence of ones (naive method is O(Width) loop). 9826 Upper = APInt::getHighBitsSet(Width, C->popcount()) + 1; 9827 } 9828 } else if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 9829 Upper = APInt::getBitsSetFrom(Width, C->getZExtValue()) + 1; 9830 } 9831 break; 9832 9833 case Instruction::SDiv: 9834 if (match(BO.getOperand(1), m_APInt(C))) { 9835 APInt IntMin = APInt::getSignedMinValue(Width); 9836 APInt IntMax = APInt::getSignedMaxValue(Width); 9837 if (C->isAllOnes()) { 9838 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 9839 // where C != -1 and C != 0 and C != 1 9840 Lower = IntMin + 1; 9841 Upper = IntMax + 1; 9842 } else if (C->countl_zero() < Width - 1) { 9843 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 9844 // where C != -1 and C != 0 and C != 1 9845 Lower = IntMin.sdiv(*C); 9846 Upper = IntMax.sdiv(*C); 9847 if (Lower.sgt(Upper)) 9848 std::swap(Lower, Upper); 9849 Upper = Upper + 1; 9850 assert(Upper != Lower && "Upper part of range has wrapped!"); 9851 } 9852 } else if (match(BO.getOperand(0), m_APInt(C))) { 9853 if (C->isMinSignedValue()) { 9854 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 9855 Lower = *C; 9856 Upper = Lower.lshr(1) + 1; 9857 } else { 9858 // 'sdiv C, x' produces [-|C|, |C|]. 9859 Upper = C->abs() + 1; 9860 Lower = (-Upper) + 1; 9861 } 9862 } 9863 break; 9864 9865 case Instruction::UDiv: 9866 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 9867 // 'udiv x, C' produces [0, UINT_MAX / C]. 9868 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 9869 } else if (match(BO.getOperand(0), m_APInt(C))) { 9870 // 'udiv C, x' produces [0, C]. 9871 Upper = *C + 1; 9872 } 9873 break; 9874 9875 case Instruction::SRem: 9876 if (match(BO.getOperand(1), m_APInt(C))) { 9877 // 'srem x, C' produces (-|C|, |C|). 9878 Upper = C->abs(); 9879 Lower = (-Upper) + 1; 9880 } else if (match(BO.getOperand(0), m_APInt(C))) { 9881 if (C->isNegative()) { 9882 // 'srem -|C|, x' produces [-|C|, 0]. 9883 Upper = 1; 9884 Lower = *C; 9885 } else { 9886 // 'srem |C|, x' produces [0, |C|]. 9887 Upper = *C + 1; 9888 } 9889 } 9890 break; 9891 9892 case Instruction::URem: 9893 if (match(BO.getOperand(1), m_APInt(C))) 9894 // 'urem x, C' produces [0, C). 9895 Upper = *C; 9896 else if (match(BO.getOperand(0), m_APInt(C))) 9897 // 'urem C, x' produces [0, C]. 9898 Upper = *C + 1; 9899 break; 9900 9901 default: 9902 break; 9903 } 9904 } 9905 9906 static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II, 9907 bool UseInstrInfo) { 9908 unsigned Width = II.getType()->getScalarSizeInBits(); 9909 const APInt *C; 9910 switch (II.getIntrinsicID()) { 9911 case Intrinsic::ctlz: 9912 case Intrinsic::cttz: { 9913 APInt Upper(Width, Width); 9914 if (!UseInstrInfo || !match(II.getArgOperand(1), m_One())) 9915 Upper += 1; 9916 // Maximum of set/clear bits is the bit width. 9917 return ConstantRange::getNonEmpty(APInt::getZero(Width), Upper); 9918 } 9919 case Intrinsic::ctpop: 9920 // Maximum of set/clear bits is the bit width. 9921 return ConstantRange::getNonEmpty(APInt::getZero(Width), 9922 APInt(Width, Width) + 1); 9923 case Intrinsic::uadd_sat: 9924 // uadd.sat(x, C) produces [C, UINT_MAX]. 9925 if (match(II.getOperand(0), m_APInt(C)) || 9926 match(II.getOperand(1), m_APInt(C))) 9927 return ConstantRange::getNonEmpty(*C, APInt::getZero(Width)); 9928 break; 9929 case Intrinsic::sadd_sat: 9930 if (match(II.getOperand(0), m_APInt(C)) || 9931 match(II.getOperand(1), m_APInt(C))) { 9932 if (C->isNegative()) 9933 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 9934 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width), 9935 APInt::getSignedMaxValue(Width) + *C + 9936 1); 9937 9938 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 9939 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width) + *C, 9940 APInt::getSignedMaxValue(Width) + 1); 9941 } 9942 break; 9943 case Intrinsic::usub_sat: 9944 // usub.sat(C, x) produces [0, C]. 9945 if (match(II.getOperand(0), m_APInt(C))) 9946 return ConstantRange::getNonEmpty(APInt::getZero(Width), *C + 1); 9947 9948 // usub.sat(x, C) produces [0, UINT_MAX - C]. 9949 if (match(II.getOperand(1), m_APInt(C))) 9950 return ConstantRange::getNonEmpty(APInt::getZero(Width), 9951 APInt::getMaxValue(Width) - *C + 1); 9952 break; 9953 case Intrinsic::ssub_sat: 9954 if (match(II.getOperand(0), m_APInt(C))) { 9955 if (C->isNegative()) 9956 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 9957 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width), 9958 *C - APInt::getSignedMinValue(Width) + 9959 1); 9960 9961 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 9962 return ConstantRange::getNonEmpty(*C - APInt::getSignedMaxValue(Width), 9963 APInt::getSignedMaxValue(Width) + 1); 9964 } else if (match(II.getOperand(1), m_APInt(C))) { 9965 if (C->isNegative()) 9966 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 9967 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width) - *C, 9968 APInt::getSignedMaxValue(Width) + 1); 9969 9970 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 9971 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width), 9972 APInt::getSignedMaxValue(Width) - *C + 9973 1); 9974 } 9975 break; 9976 case Intrinsic::umin: 9977 case Intrinsic::umax: 9978 case Intrinsic::smin: 9979 case Intrinsic::smax: 9980 if (!match(II.getOperand(0), m_APInt(C)) && 9981 !match(II.getOperand(1), m_APInt(C))) 9982 break; 9983 9984 switch (II.getIntrinsicID()) { 9985 case Intrinsic::umin: 9986 return ConstantRange::getNonEmpty(APInt::getZero(Width), *C + 1); 9987 case Intrinsic::umax: 9988 return ConstantRange::getNonEmpty(*C, APInt::getZero(Width)); 9989 case Intrinsic::smin: 9990 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width), 9991 *C + 1); 9992 case Intrinsic::smax: 9993 return ConstantRange::getNonEmpty(*C, 9994 APInt::getSignedMaxValue(Width) + 1); 9995 default: 9996 llvm_unreachable("Must be min/max intrinsic"); 9997 } 9998 break; 9999 case Intrinsic::abs: 10000 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 10001 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 10002 if (match(II.getOperand(1), m_One())) 10003 return ConstantRange::getNonEmpty(APInt::getZero(Width), 10004 APInt::getSignedMaxValue(Width) + 1); 10005 10006 return ConstantRange::getNonEmpty(APInt::getZero(Width), 10007 APInt::getSignedMinValue(Width) + 1); 10008 case Intrinsic::vscale: 10009 if (!II.getParent() || !II.getFunction()) 10010 break; 10011 return getVScaleRange(II.getFunction(), Width); 10012 case Intrinsic::scmp: 10013 case Intrinsic::ucmp: 10014 return ConstantRange::getNonEmpty(APInt::getAllOnes(Width), 10015 APInt(Width, 2)); 10016 default: 10017 break; 10018 } 10019 10020 return ConstantRange::getFull(Width); 10021 } 10022 10023 static ConstantRange getRangeForSelectPattern(const SelectInst &SI, 10024 const InstrInfoQuery &IIQ) { 10025 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 10026 const Value *LHS = nullptr, *RHS = nullptr; 10027 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 10028 if (R.Flavor == SPF_UNKNOWN) 10029 return ConstantRange::getFull(BitWidth); 10030 10031 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 10032 // If the negation part of the abs (in RHS) has the NSW flag, 10033 // then the result of abs(X) is [0..SIGNED_MAX], 10034 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 10035 if (match(RHS, m_Neg(m_Specific(LHS))) && 10036 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 10037 return ConstantRange::getNonEmpty(APInt::getZero(BitWidth), 10038 APInt::getSignedMaxValue(BitWidth) + 1); 10039 10040 return ConstantRange::getNonEmpty(APInt::getZero(BitWidth), 10041 APInt::getSignedMinValue(BitWidth) + 1); 10042 } 10043 10044 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 10045 // The result of -abs(X) is <= 0. 10046 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth), 10047 APInt(BitWidth, 1)); 10048 } 10049 10050 const APInt *C; 10051 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 10052 return ConstantRange::getFull(BitWidth); 10053 10054 switch (R.Flavor) { 10055 case SPF_UMIN: 10056 return ConstantRange::getNonEmpty(APInt::getZero(BitWidth), *C + 1); 10057 case SPF_UMAX: 10058 return ConstantRange::getNonEmpty(*C, APInt::getZero(BitWidth)); 10059 case SPF_SMIN: 10060 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth), 10061 *C + 1); 10062 case SPF_SMAX: 10063 return ConstantRange::getNonEmpty(*C, 10064 APInt::getSignedMaxValue(BitWidth) + 1); 10065 default: 10066 return ConstantRange::getFull(BitWidth); 10067 } 10068 } 10069 10070 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { 10071 // The maximum representable value of a half is 65504. For floats the maximum 10072 // value is 3.4e38 which requires roughly 129 bits. 10073 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 10074 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) 10075 return; 10076 if (isa<FPToSIInst>(I) && BitWidth >= 17) { 10077 Lower = APInt(BitWidth, -65504, true); 10078 Upper = APInt(BitWidth, 65505); 10079 } 10080 10081 if (isa<FPToUIInst>(I) && BitWidth >= 16) { 10082 // For a fptoui the lower limit is left as 0. 10083 Upper = APInt(BitWidth, 65505); 10084 } 10085 } 10086 10087 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, 10088 bool UseInstrInfo, AssumptionCache *AC, 10089 const Instruction *CtxI, 10090 const DominatorTree *DT, 10091 unsigned Depth) { 10092 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 10093 10094 if (Depth == MaxAnalysisRecursionDepth) 10095 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 10096 10097 if (auto *C = dyn_cast<Constant>(V)) 10098 return C->toConstantRange(); 10099 10100 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 10101 InstrInfoQuery IIQ(UseInstrInfo); 10102 ConstantRange CR = ConstantRange::getFull(BitWidth); 10103 if (auto *BO = dyn_cast<BinaryOperator>(V)) { 10104 APInt Lower = APInt(BitWidth, 0); 10105 APInt Upper = APInt(BitWidth, 0); 10106 // TODO: Return ConstantRange. 10107 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); 10108 CR = ConstantRange::getNonEmpty(Lower, Upper); 10109 } else if (auto *II = dyn_cast<IntrinsicInst>(V)) 10110 CR = getRangeForIntrinsic(*II, UseInstrInfo); 10111 else if (auto *SI = dyn_cast<SelectInst>(V)) { 10112 ConstantRange CRTrue = computeConstantRange( 10113 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT, Depth + 1); 10114 ConstantRange CRFalse = computeConstantRange( 10115 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT, Depth + 1); 10116 CR = CRTrue.unionWith(CRFalse); 10117 CR = CR.intersectWith(getRangeForSelectPattern(*SI, IIQ)); 10118 } else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) { 10119 APInt Lower = APInt(BitWidth, 0); 10120 APInt Upper = APInt(BitWidth, 0); 10121 // TODO: Return ConstantRange. 10122 setLimitForFPToI(cast<Instruction>(V), Lower, Upper); 10123 CR = ConstantRange::getNonEmpty(Lower, Upper); 10124 } else if (const auto *A = dyn_cast<Argument>(V)) 10125 if (std::optional<ConstantRange> Range = A->getRange()) 10126 CR = *Range; 10127 10128 if (auto *I = dyn_cast<Instruction>(V)) { 10129 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 10130 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 10131 10132 if (const auto *CB = dyn_cast<CallBase>(V)) 10133 if (std::optional<ConstantRange> Range = CB->getRange()) 10134 CR = CR.intersectWith(*Range); 10135 } 10136 10137 if (CtxI && AC) { 10138 // Try to restrict the range based on information from assumptions. 10139 for (auto &AssumeVH : AC->assumptionsFor(V)) { 10140 if (!AssumeVH) 10141 continue; 10142 CallInst *I = cast<CallInst>(AssumeVH); 10143 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 10144 "Got assumption for the wrong function!"); 10145 assert(I->getIntrinsicID() == Intrinsic::assume && 10146 "must be an assume intrinsic"); 10147 10148 if (!isValidAssumeForContext(I, CtxI, DT)) 10149 continue; 10150 Value *Arg = I->getArgOperand(0); 10151 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 10152 // Currently we just use information from comparisons. 10153 if (!Cmp || Cmp->getOperand(0) != V) 10154 continue; 10155 // TODO: Set "ForSigned" parameter via Cmp->isSigned()? 10156 ConstantRange RHS = 10157 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, 10158 UseInstrInfo, AC, I, DT, Depth + 1); 10159 CR = CR.intersectWith( 10160 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 10161 } 10162 } 10163 10164 return CR; 10165 } 10166 10167 static void 10168 addValueAffectedByCondition(Value *V, 10169 function_ref<void(Value *)> InsertAffected) { 10170 assert(V != nullptr); 10171 if (isa<Argument>(V) || isa<GlobalValue>(V)) { 10172 InsertAffected(V); 10173 } else if (auto *I = dyn_cast<Instruction>(V)) { 10174 InsertAffected(V); 10175 10176 // Peek through unary operators to find the source of the condition. 10177 Value *Op; 10178 if (match(I, m_CombineOr(m_PtrToInt(m_Value(Op)), m_Trunc(m_Value(Op))))) { 10179 if (isa<Instruction>(Op) || isa<Argument>(Op)) 10180 InsertAffected(Op); 10181 } 10182 } 10183 } 10184 10185 void llvm::findValuesAffectedByCondition( 10186 Value *Cond, bool IsAssume, function_ref<void(Value *)> InsertAffected) { 10187 auto AddAffected = [&InsertAffected](Value *V) { 10188 addValueAffectedByCondition(V, InsertAffected); 10189 }; 10190 10191 auto AddCmpOperands = [&AddAffected, IsAssume](Value *LHS, Value *RHS) { 10192 if (IsAssume) { 10193 AddAffected(LHS); 10194 AddAffected(RHS); 10195 } else if (match(RHS, m_Constant())) 10196 AddAffected(LHS); 10197 }; 10198 10199 SmallVector<Value *, 8> Worklist; 10200 SmallPtrSet<Value *, 8> Visited; 10201 Worklist.push_back(Cond); 10202 while (!Worklist.empty()) { 10203 Value *V = Worklist.pop_back_val(); 10204 if (!Visited.insert(V).second) 10205 continue; 10206 10207 CmpPredicate Pred; 10208 Value *A, *B, *X; 10209 10210 if (IsAssume) { 10211 AddAffected(V); 10212 if (match(V, m_Not(m_Value(X)))) 10213 AddAffected(X); 10214 } 10215 10216 if (match(V, m_LogicalOp(m_Value(A), m_Value(B)))) { 10217 // assume(A && B) is split to -> assume(A); assume(B); 10218 // assume(!(A || B)) is split to -> assume(!A); assume(!B); 10219 // Finally, assume(A || B) / assume(!(A && B)) generally don't provide 10220 // enough information to be worth handling (intersection of information as 10221 // opposed to union). 10222 if (!IsAssume) { 10223 Worklist.push_back(A); 10224 Worklist.push_back(B); 10225 } 10226 } else if (match(V, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 10227 AddCmpOperands(A, B); 10228 10229 bool HasRHSC = match(B, m_ConstantInt()); 10230 if (ICmpInst::isEquality(Pred)) { 10231 if (HasRHSC) { 10232 Value *Y; 10233 // (X & C) or (X | C) or (X ^ C). 10234 // (X << C) or (X >>_s C) or (X >>_u C). 10235 if (match(A, m_BitwiseLogic(m_Value(X), m_ConstantInt())) || 10236 match(A, m_Shift(m_Value(X), m_ConstantInt()))) 10237 AddAffected(X); 10238 else if (match(A, m_And(m_Value(X), m_Value(Y))) || 10239 match(A, m_Or(m_Value(X), m_Value(Y)))) { 10240 AddAffected(X); 10241 AddAffected(Y); 10242 } 10243 } 10244 } else { 10245 if (HasRHSC) { 10246 // Handle (A + C1) u< C2, which is the canonical form of 10247 // A > C3 && A < C4. 10248 if (match(A, m_AddLike(m_Value(X), m_ConstantInt()))) 10249 AddAffected(X); 10250 10251 if (ICmpInst::isUnsigned(Pred)) { 10252 Value *Y; 10253 // X & Y u> C -> X >u C && Y >u C 10254 // X | Y u< C -> X u< C && Y u< C 10255 // X nuw+ Y u< C -> X u< C && Y u< C 10256 if (match(A, m_And(m_Value(X), m_Value(Y))) || 10257 match(A, m_Or(m_Value(X), m_Value(Y))) || 10258 match(A, m_NUWAdd(m_Value(X), m_Value(Y)))) { 10259 AddAffected(X); 10260 AddAffected(Y); 10261 } 10262 // X nuw- Y u> C -> X u> C 10263 if (match(A, m_NUWSub(m_Value(X), m_Value()))) 10264 AddAffected(X); 10265 } 10266 } 10267 10268 // Handle icmp slt/sgt (bitcast X to int), 0/-1, which is supported 10269 // by computeKnownFPClass(). 10270 if (match(A, m_ElementWiseBitCast(m_Value(X)))) { 10271 if (Pred == ICmpInst::ICMP_SLT && match(B, m_Zero())) 10272 InsertAffected(X); 10273 else if (Pred == ICmpInst::ICMP_SGT && match(B, m_AllOnes())) 10274 InsertAffected(X); 10275 } 10276 } 10277 10278 if (HasRHSC && match(A, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))) 10279 AddAffected(X); 10280 } else if (match(V, m_FCmp(Pred, m_Value(A), m_Value(B)))) { 10281 AddCmpOperands(A, B); 10282 10283 // fcmp fneg(x), y 10284 // fcmp fabs(x), y 10285 // fcmp fneg(fabs(x)), y 10286 if (match(A, m_FNeg(m_Value(A)))) 10287 AddAffected(A); 10288 if (match(A, m_FAbs(m_Value(A)))) 10289 AddAffected(A); 10290 10291 } else if (match(V, m_Intrinsic<Intrinsic::is_fpclass>(m_Value(A), 10292 m_Value()))) { 10293 // Handle patterns that computeKnownFPClass() support. 10294 AddAffected(A); 10295 } 10296 } 10297 } 10298