1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/MustExecute.h" 10 #include "llvm/ADT/PostOrderIterator.h" 11 #include "llvm/ADT/StringExtras.h" 12 #include "llvm/Analysis/CFG.h" 13 #include "llvm/Analysis/InstructionSimplify.h" 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/Analysis/PostDominators.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/AssemblyAnnotationWriter.h" 18 #include "llvm/IR/Dominators.h" 19 #include "llvm/IR/InstIterator.h" 20 #include "llvm/IR/Module.h" 21 #include "llvm/IR/PassManager.h" 22 #include "llvm/Support/FormattedStream.h" 23 #include "llvm/Support/raw_ostream.h" 24 25 using namespace llvm; 26 27 #define DEBUG_TYPE "must-execute" 28 29 const DenseMap<BasicBlock *, ColorVector> & 30 LoopSafetyInfo::getBlockColors() const { 31 return BlockColors; 32 } 33 34 void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) { 35 ColorVector &ColorsForNewBlock = BlockColors[New]; 36 ColorVector &ColorsForOldBlock = BlockColors[Old]; 37 ColorsForNewBlock = ColorsForOldBlock; 38 } 39 40 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { 41 (void)BB; 42 return anyBlockMayThrow(); 43 } 44 45 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const { 46 return MayThrow; 47 } 48 49 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { 50 assert(CurLoop != nullptr && "CurLoop can't be null"); 51 BasicBlock *Header = CurLoop->getHeader(); 52 // Iterate over header and compute safety info. 53 HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header); 54 MayThrow = HeaderMayThrow; 55 // Iterate over loop instructions and compute safety info. 56 // Skip header as it has been computed and stored in HeaderMayThrow. 57 // The first block in loopinfo.Blocks is guaranteed to be the header. 58 assert(Header == *CurLoop->getBlocks().begin() && 59 "First block must be header"); 60 for (const BasicBlock *BB : llvm::drop_begin(CurLoop->blocks())) { 61 MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(BB); 62 if (MayThrow) 63 break; 64 } 65 66 computeBlockColors(CurLoop); 67 } 68 69 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { 70 return ICF.hasICF(BB); 71 } 72 73 bool ICFLoopSafetyInfo::anyBlockMayThrow() const { 74 return MayThrow; 75 } 76 77 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { 78 assert(CurLoop != nullptr && "CurLoop can't be null"); 79 ICF.clear(); 80 MW.clear(); 81 MayThrow = false; 82 // Figure out the fact that at least one block may throw. 83 for (const auto &BB : CurLoop->blocks()) 84 if (ICF.hasICF(&*BB)) { 85 MayThrow = true; 86 break; 87 } 88 computeBlockColors(CurLoop); 89 } 90 91 void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst, 92 const BasicBlock *BB) { 93 ICF.insertInstructionTo(Inst, BB); 94 MW.insertInstructionTo(Inst, BB); 95 } 96 97 void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) { 98 ICF.removeInstruction(Inst); 99 MW.removeInstruction(Inst); 100 } 101 102 void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) { 103 // Compute funclet colors if we might sink/hoist in a function with a funclet 104 // personality routine. 105 Function *Fn = CurLoop->getHeader()->getParent(); 106 if (Fn->hasPersonalityFn()) 107 if (Constant *PersonalityFn = Fn->getPersonalityFn()) 108 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn))) 109 BlockColors = colorEHFunclets(*Fn); 110 } 111 112 /// Return true if we can prove that the given ExitBlock is not reached on the 113 /// first iteration of the given loop. That is, the backedge of the loop must 114 /// be executed before the ExitBlock is executed in any dynamic execution trace. 115 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock, 116 const DominatorTree *DT, 117 const Loop *CurLoop) { 118 auto *CondExitBlock = ExitBlock->getSinglePredecessor(); 119 if (!CondExitBlock) 120 // expect unique exits 121 return false; 122 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block"); 123 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator()); 124 if (!BI || !BI->isConditional()) 125 return false; 126 // If condition is constant and false leads to ExitBlock then we always 127 // execute the true branch. 128 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) 129 return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock; 130 auto *Cond = dyn_cast<CmpInst>(BI->getCondition()); 131 if (!Cond) 132 return false; 133 // todo: this would be a lot more powerful if we used scev, but all the 134 // plumbing is currently missing to pass a pointer in from the pass 135 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known 136 ICmpInst::Predicate Pred = Cond->getPredicate(); 137 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0)); 138 auto *RHS = Cond->getOperand(1); 139 if (!LHS || LHS->getParent() != CurLoop->getHeader()) { 140 Pred = Cond->getSwappedPredicate(); 141 LHS = dyn_cast<PHINode>(Cond->getOperand(1)); 142 RHS = Cond->getOperand(0); 143 if (!LHS || LHS->getParent() != CurLoop->getHeader()) 144 return false; 145 } 146 147 auto DL = ExitBlock->getModule()->getDataLayout(); 148 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 149 auto *SimpleValOrNull = simplifyCmpInst( 150 Pred, IVStart, RHS, {DL, /*TLI*/ nullptr, DT, /*AC*/ nullptr, BI}); 151 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull); 152 if (!SimpleCst) 153 return false; 154 if (ExitBlock == BI->getSuccessor(0)) 155 return SimpleCst->isZeroValue(); 156 assert(ExitBlock == BI->getSuccessor(1) && "implied by above"); 157 return SimpleCst->isAllOnesValue(); 158 } 159 160 /// Collect all blocks from \p CurLoop which lie on all possible paths from 161 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set 162 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty. 163 /// Note: It's possible that we encounter Irreducible control flow, due to 164 /// which, we may find that a few predecessors of \p BB are not a part of the 165 /// \p CurLoop. We only return Predecessors that are a part of \p CurLoop. 166 static void collectTransitivePredecessors( 167 const Loop *CurLoop, const BasicBlock *BB, 168 SmallPtrSetImpl<const BasicBlock *> &Predecessors) { 169 assert(Predecessors.empty() && "Garbage in predecessors set?"); 170 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 171 if (BB == CurLoop->getHeader()) 172 return; 173 SmallVector<const BasicBlock *, 4> WorkList; 174 for (const auto *Pred : predecessors(BB)) { 175 if (!CurLoop->contains(Pred)) 176 continue; 177 Predecessors.insert(Pred); 178 WorkList.push_back(Pred); 179 } 180 while (!WorkList.empty()) { 181 auto *Pred = WorkList.pop_back_val(); 182 assert(CurLoop->contains(Pred) && "Should only reach loop blocks!"); 183 // We are not interested in backedges and we don't want to leave loop. 184 if (Pred == CurLoop->getHeader()) 185 continue; 186 // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all 187 // blocks of this inner loop, even those that are always executed AFTER the 188 // BB. It may make our analysis more conservative than it could be, see test 189 // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll. 190 // We can ignore backedge of all loops containing BB to get a sligtly more 191 // optimistic result. 192 for (const auto *PredPred : predecessors(Pred)) 193 if (CurLoop->contains(PredPred) && Predecessors.insert(PredPred).second) 194 WorkList.push_back(PredPred); 195 } 196 } 197 198 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop, 199 const BasicBlock *BB, 200 const DominatorTree *DT) const { 201 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 202 203 // Fast path: header is always reached once the loop is entered. 204 if (BB == CurLoop->getHeader()) 205 return true; 206 207 // Collect all transitive predecessors of BB in the same loop. This set will 208 // be a subset of the blocks within the loop. 209 SmallPtrSet<const BasicBlock *, 4> Predecessors; 210 collectTransitivePredecessors(CurLoop, BB, Predecessors); 211 212 // Bail out if a latch block is part of the predecessor set. In this case 213 // we may take the backedge to the header and not execute other latch 214 // successors. 215 for (const BasicBlock *Pred : predecessors(CurLoop->getHeader())) 216 // Predecessors only contains loop blocks, so we don't have to worry about 217 // preheader predecessors here. 218 if (Predecessors.contains(Pred)) 219 return false; 220 221 // Make sure that all successors of, all predecessors of BB which are not 222 // dominated by BB, are either: 223 // 1) BB, 224 // 2) Also predecessors of BB, 225 // 3) Exit blocks which are not taken on 1st iteration. 226 // Memoize blocks we've already checked. 227 SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors; 228 for (const auto *Pred : Predecessors) { 229 // Predecessor block may throw, so it has a side exit. 230 if (blockMayThrow(Pred)) 231 return false; 232 233 // BB dominates Pred, so if Pred runs, BB must run. 234 // This is true when Pred is a loop latch. 235 if (DT->dominates(BB, Pred)) 236 continue; 237 238 for (const auto *Succ : successors(Pred)) 239 if (CheckedSuccessors.insert(Succ).second && 240 Succ != BB && !Predecessors.count(Succ)) 241 // By discharging conditions that are not executed on the 1st iteration, 242 // we guarantee that *at least* on the first iteration all paths from 243 // header that *may* execute will lead us to the block of interest. So 244 // that if we had virtually peeled one iteration away, in this peeled 245 // iteration the set of predecessors would contain only paths from 246 // header to BB without any exiting edges that may execute. 247 // 248 // TODO: We only do it for exiting edges currently. We could use the 249 // same function to skip some of the edges within the loop if we know 250 // that they will not be taken on the 1st iteration. 251 // 252 // TODO: If we somehow know the number of iterations in loop, the same 253 // check may be done for any arbitrary N-th iteration as long as N is 254 // not greater than minimum number of iterations in this loop. 255 if (CurLoop->contains(Succ) || 256 !CanProveNotTakenFirstIteration(Succ, DT, CurLoop)) 257 return false; 258 } 259 260 // All predecessors can only lead us to BB. 261 return true; 262 } 263 264 /// Returns true if the instruction in a loop is guaranteed to execute at least 265 /// once. 266 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, 267 const DominatorTree *DT, 268 const Loop *CurLoop) const { 269 // If the instruction is in the header block for the loop (which is very 270 // common), it is always guaranteed to dominate the exit blocks. Since this 271 // is a common case, and can save some work, check it now. 272 if (Inst.getParent() == CurLoop->getHeader()) 273 // If there's a throw in the header block, we can't guarantee we'll reach 274 // Inst unless we can prove that Inst comes before the potential implicit 275 // exit. At the moment, we use a (cheap) hack for the common case where 276 // the instruction of interest is the first one in the block. 277 return !HeaderMayThrow || 278 &*Inst.getParent()->getFirstNonPHIOrDbg() == &Inst; 279 280 // If there is a path from header to exit or latch that doesn't lead to our 281 // instruction's block, return false. 282 return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); 283 } 284 285 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, 286 const DominatorTree *DT, 287 const Loop *CurLoop) const { 288 return !ICF.isDominatedByICFIFromSameBlock(&Inst) && 289 allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); 290 } 291 292 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB, 293 const Loop *CurLoop) const { 294 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 295 296 // Fast path: there are no instructions before header. 297 if (BB == CurLoop->getHeader()) 298 return true; 299 300 // Collect all transitive predecessors of BB in the same loop. This set will 301 // be a subset of the blocks within the loop. 302 SmallPtrSet<const BasicBlock *, 4> Predecessors; 303 collectTransitivePredecessors(CurLoop, BB, Predecessors); 304 // Find if there any instruction in either predecessor that could write 305 // to memory. 306 for (const auto *Pred : Predecessors) 307 if (MW.mayWriteToMemory(Pred)) 308 return false; 309 return true; 310 } 311 312 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I, 313 const Loop *CurLoop) const { 314 auto *BB = I.getParent(); 315 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 316 return !MW.isDominatedByMemoryWriteFromSameBlock(&I) && 317 doesNotWriteMemoryBefore(BB, CurLoop); 318 } 319 320 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { 321 // TODO: merge these two routines. For the moment, we display the best 322 // result obtained by *either* implementation. This is a bit unfair since no 323 // caller actually gets the full power at the moment. 324 SimpleLoopSafetyInfo LSI; 325 LSI.computeLoopSafetyInfo(L); 326 return LSI.isGuaranteedToExecute(I, DT, L) || 327 isGuaranteedToExecuteForEveryIteration(&I, L); 328 } 329 330 namespace { 331 /// An assembly annotator class to print must execute information in 332 /// comments. 333 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter { 334 DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec; 335 336 public: 337 MustExecuteAnnotatedWriter(const Function &F, 338 DominatorTree &DT, LoopInfo &LI) { 339 for (const auto &I: instructions(F)) { 340 Loop *L = LI.getLoopFor(I.getParent()); 341 while (L) { 342 if (isMustExecuteIn(I, L, &DT)) { 343 MustExec[&I].push_back(L); 344 } 345 L = L->getParentLoop(); 346 }; 347 } 348 } 349 MustExecuteAnnotatedWriter(const Module &M, 350 DominatorTree &DT, LoopInfo &LI) { 351 for (const auto &F : M) 352 for (const auto &I: instructions(F)) { 353 Loop *L = LI.getLoopFor(I.getParent()); 354 while (L) { 355 if (isMustExecuteIn(I, L, &DT)) { 356 MustExec[&I].push_back(L); 357 } 358 L = L->getParentLoop(); 359 }; 360 } 361 } 362 363 364 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override { 365 if (!MustExec.count(&V)) 366 return; 367 368 const auto &Loops = MustExec.lookup(&V); 369 const auto NumLoops = Loops.size(); 370 if (NumLoops > 1) 371 OS << " ; (mustexec in " << NumLoops << " loops: "; 372 else 373 OS << " ; (mustexec in: "; 374 375 ListSeparator LS; 376 for (const Loop *L : Loops) 377 OS << LS << L->getHeader()->getName(); 378 OS << ")"; 379 } 380 }; 381 } // namespace 382 383 /// Return true if \p L might be an endless loop. 384 static bool maybeEndlessLoop(const Loop &L) { 385 if (L.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn)) 386 return false; 387 // TODO: Actually try to prove it is not. 388 // TODO: If maybeEndlessLoop is going to be expensive, cache it. 389 return true; 390 } 391 392 bool llvm::mayContainIrreducibleControl(const Function &F, const LoopInfo *LI) { 393 if (!LI) 394 return false; 395 using RPOTraversal = ReversePostOrderTraversal<const Function *>; 396 RPOTraversal FuncRPOT(&F); 397 return containsIrreducibleCFG<const BasicBlock *, const RPOTraversal, 398 const LoopInfo>(FuncRPOT, *LI); 399 } 400 401 /// Lookup \p Key in \p Map and return the result, potentially after 402 /// initializing the optional through \p Fn(\p args). 403 template <typename K, typename V, typename FnTy, typename... ArgsTy> 404 static V getOrCreateCachedOptional(K Key, DenseMap<K, std::optional<V>> &Map, 405 FnTy &&Fn, ArgsTy &&...args) { 406 std::optional<V> &OptVal = Map[Key]; 407 if (!OptVal) 408 OptVal = Fn(std::forward<ArgsTy>(args)...); 409 return *OptVal; 410 } 411 412 const BasicBlock * 413 MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock *InitBB) { 414 const LoopInfo *LI = LIGetter(*InitBB->getParent()); 415 const PostDominatorTree *PDT = PDTGetter(*InitBB->getParent()); 416 417 LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB->getName() 418 << (LI ? " [LI]" : "") << (PDT ? " [PDT]" : "")); 419 420 const Function &F = *InitBB->getParent(); 421 const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr; 422 const BasicBlock *HeaderBB = L ? L->getHeader() : InitBB; 423 bool WillReturnAndNoThrow = (F.hasFnAttribute(Attribute::WillReturn) || 424 (L && !maybeEndlessLoop(*L))) && 425 F.doesNotThrow(); 426 LLVM_DEBUG(dbgs() << (L ? " [in loop]" : "") 427 << (WillReturnAndNoThrow ? " [WillReturn] [NoUnwind]" : "") 428 << "\n"); 429 430 // Determine the adjacent blocks in the given direction but exclude (self) 431 // loops under certain circumstances. 432 SmallVector<const BasicBlock *, 8> Worklist; 433 for (const BasicBlock *SuccBB : successors(InitBB)) { 434 bool IsLatch = SuccBB == HeaderBB; 435 // Loop latches are ignored in forward propagation if the loop cannot be 436 // endless and may not throw: control has to go somewhere. 437 if (!WillReturnAndNoThrow || !IsLatch) 438 Worklist.push_back(SuccBB); 439 } 440 LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist.size() << "\n"); 441 442 // If there are no other adjacent blocks, there is no join point. 443 if (Worklist.empty()) 444 return nullptr; 445 446 // If there is one adjacent block, it is the join point. 447 if (Worklist.size() == 1) 448 return Worklist[0]; 449 450 // Try to determine a join block through the help of the post-dominance 451 // tree. If no tree was provided, we perform simple pattern matching for one 452 // block conditionals and one block loops only. 453 const BasicBlock *JoinBB = nullptr; 454 if (PDT) 455 if (const auto *InitNode = PDT->getNode(InitBB)) 456 if (const auto *IDomNode = InitNode->getIDom()) 457 JoinBB = IDomNode->getBlock(); 458 459 if (!JoinBB && Worklist.size() == 2) { 460 const BasicBlock *Succ0 = Worklist[0]; 461 const BasicBlock *Succ1 = Worklist[1]; 462 const BasicBlock *Succ0UniqueSucc = Succ0->getUniqueSuccessor(); 463 const BasicBlock *Succ1UniqueSucc = Succ1->getUniqueSuccessor(); 464 if (Succ0UniqueSucc == InitBB) { 465 // InitBB -> Succ0 -> InitBB 466 // InitBB -> Succ1 = JoinBB 467 JoinBB = Succ1; 468 } else if (Succ1UniqueSucc == InitBB) { 469 // InitBB -> Succ1 -> InitBB 470 // InitBB -> Succ0 = JoinBB 471 JoinBB = Succ0; 472 } else if (Succ0 == Succ1UniqueSucc) { 473 // InitBB -> Succ0 = JoinBB 474 // InitBB -> Succ1 -> Succ0 = JoinBB 475 JoinBB = Succ0; 476 } else if (Succ1 == Succ0UniqueSucc) { 477 // InitBB -> Succ0 -> Succ1 = JoinBB 478 // InitBB -> Succ1 = JoinBB 479 JoinBB = Succ1; 480 } else if (Succ0UniqueSucc == Succ1UniqueSucc) { 481 // InitBB -> Succ0 -> JoinBB 482 // InitBB -> Succ1 -> JoinBB 483 JoinBB = Succ0UniqueSucc; 484 } 485 } 486 487 if (!JoinBB && L) 488 JoinBB = L->getUniqueExitBlock(); 489 490 if (!JoinBB) 491 return nullptr; 492 493 LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB->getName() << "\n"); 494 495 // In forward direction we check if control will for sure reach JoinBB from 496 // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control 497 // are: infinite loops and instructions that do not necessarily transfer 498 // execution to their successor. To check for them we traverse the CFG from 499 // the adjacent blocks to the JoinBB, looking at all intermediate blocks. 500 501 // If we know the function is "will-return" and "no-throw" there is no need 502 // for futher checks. 503 if (!F.hasFnAttribute(Attribute::WillReturn) || !F.doesNotThrow()) { 504 505 auto BlockTransfersExecutionToSuccessor = [](const BasicBlock *BB) { 506 return isGuaranteedToTransferExecutionToSuccessor(BB); 507 }; 508 509 SmallPtrSet<const BasicBlock *, 16> Visited; 510 while (!Worklist.empty()) { 511 const BasicBlock *ToBB = Worklist.pop_back_val(); 512 if (ToBB == JoinBB) 513 continue; 514 515 // Make sure all loops in-between are finite. 516 if (!Visited.insert(ToBB).second) { 517 if (!F.hasFnAttribute(Attribute::WillReturn)) { 518 if (!LI) 519 return nullptr; 520 521 bool MayContainIrreducibleControl = getOrCreateCachedOptional( 522 &F, IrreducibleControlMap, mayContainIrreducibleControl, F, LI); 523 if (MayContainIrreducibleControl) 524 return nullptr; 525 526 const Loop *L = LI->getLoopFor(ToBB); 527 if (L && maybeEndlessLoop(*L)) 528 return nullptr; 529 } 530 531 continue; 532 } 533 534 // Make sure the block has no instructions that could stop control 535 // transfer. 536 bool TransfersExecution = getOrCreateCachedOptional( 537 ToBB, BlockTransferMap, BlockTransfersExecutionToSuccessor, ToBB); 538 if (!TransfersExecution) 539 return nullptr; 540 541 append_range(Worklist, successors(ToBB)); 542 } 543 } 544 545 LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB->getName() << "\n"); 546 return JoinBB; 547 } 548 const BasicBlock * 549 MustBeExecutedContextExplorer::findBackwardJoinPoint(const BasicBlock *InitBB) { 550 const LoopInfo *LI = LIGetter(*InitBB->getParent()); 551 const DominatorTree *DT = DTGetter(*InitBB->getParent()); 552 LLVM_DEBUG(dbgs() << "\tFind backward join point for " << InitBB->getName() 553 << (LI ? " [LI]" : "") << (DT ? " [DT]" : "")); 554 555 // Try to determine a join block through the help of the dominance tree. If no 556 // tree was provided, we perform simple pattern matching for one block 557 // conditionals only. 558 if (DT) 559 if (const auto *InitNode = DT->getNode(InitBB)) 560 if (const auto *IDomNode = InitNode->getIDom()) 561 return IDomNode->getBlock(); 562 563 const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr; 564 const BasicBlock *HeaderBB = L ? L->getHeader() : nullptr; 565 566 // Determine the predecessor blocks but ignore backedges. 567 SmallVector<const BasicBlock *, 8> Worklist; 568 for (const BasicBlock *PredBB : predecessors(InitBB)) { 569 bool IsBackedge = 570 (PredBB == InitBB) || (HeaderBB == InitBB && L->contains(PredBB)); 571 // Loop backedges are ignored in backwards propagation: control has to come 572 // from somewhere. 573 if (!IsBackedge) 574 Worklist.push_back(PredBB); 575 } 576 577 // If there are no other predecessor blocks, there is no join point. 578 if (Worklist.empty()) 579 return nullptr; 580 581 // If there is one predecessor block, it is the join point. 582 if (Worklist.size() == 1) 583 return Worklist[0]; 584 585 const BasicBlock *JoinBB = nullptr; 586 if (Worklist.size() == 2) { 587 const BasicBlock *Pred0 = Worklist[0]; 588 const BasicBlock *Pred1 = Worklist[1]; 589 const BasicBlock *Pred0UniquePred = Pred0->getUniquePredecessor(); 590 const BasicBlock *Pred1UniquePred = Pred1->getUniquePredecessor(); 591 if (Pred0 == Pred1UniquePred) { 592 // InitBB <- Pred0 = JoinBB 593 // InitBB <- Pred1 <- Pred0 = JoinBB 594 JoinBB = Pred0; 595 } else if (Pred1 == Pred0UniquePred) { 596 // InitBB <- Pred0 <- Pred1 = JoinBB 597 // InitBB <- Pred1 = JoinBB 598 JoinBB = Pred1; 599 } else if (Pred0UniquePred == Pred1UniquePred) { 600 // InitBB <- Pred0 <- JoinBB 601 // InitBB <- Pred1 <- JoinBB 602 JoinBB = Pred0UniquePred; 603 } 604 } 605 606 if (!JoinBB && L) 607 JoinBB = L->getHeader(); 608 609 // In backwards direction there is no need to show termination of previous 610 // instructions. If they do not terminate, the code afterward is dead, making 611 // any information/transformation correct anyway. 612 return JoinBB; 613 } 614 615 const Instruction * 616 MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction( 617 MustBeExecutedIterator &It, const Instruction *PP) { 618 if (!PP) 619 return PP; 620 LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n"); 621 622 // If we explore only inside a given basic block we stop at terminators. 623 if (!ExploreInterBlock && PP->isTerminator()) { 624 LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n"); 625 return nullptr; 626 } 627 628 // If we do not traverse the call graph we check if we can make progress in 629 // the current function. First, check if the instruction is guaranteed to 630 // transfer execution to the successor. 631 bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP); 632 if (!TransfersExecution) 633 return nullptr; 634 635 // If this is not a terminator we know that there is a single instruction 636 // after this one that is executed next if control is transfered. If not, 637 // we can try to go back to a call site we entered earlier. If none exists, we 638 // do not know any instruction that has to be executd next. 639 if (!PP->isTerminator()) { 640 const Instruction *NextPP = PP->getNextNode(); 641 LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n"); 642 return NextPP; 643 } 644 645 // Finally, we have to handle terminators, trivial ones first. 646 assert(PP->isTerminator() && "Expected a terminator!"); 647 648 // A terminator without a successor is not handled yet. 649 if (PP->getNumSuccessors() == 0) { 650 LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n"); 651 return nullptr; 652 } 653 654 // A terminator with a single successor, we will continue at the beginning of 655 // that one. 656 if (PP->getNumSuccessors() == 1) { 657 LLVM_DEBUG( 658 dbgs() << "\tUnconditional terminator, continue with successor\n"); 659 return &PP->getSuccessor(0)->front(); 660 } 661 662 // Multiple successors mean we need to find the join point where control flow 663 // converges again. We use the findForwardJoinPoint helper function with 664 // information about the function and helper analyses, if available. 665 if (const BasicBlock *JoinBB = findForwardJoinPoint(PP->getParent())) 666 return &JoinBB->front(); 667 668 LLVM_DEBUG(dbgs() << "\tNo join point found\n"); 669 return nullptr; 670 } 671 672 const Instruction * 673 MustBeExecutedContextExplorer::getMustBeExecutedPrevInstruction( 674 MustBeExecutedIterator &It, const Instruction *PP) { 675 if (!PP) 676 return PP; 677 678 bool IsFirst = !(PP->getPrevNode()); 679 LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP 680 << (IsFirst ? " [IsFirst]" : "") << "\n"); 681 682 // If we explore only inside a given basic block we stop at the first 683 // instruction. 684 if (!ExploreInterBlock && IsFirst) { 685 LLVM_DEBUG(dbgs() << "\tReached block front in intra-block mode, done\n"); 686 return nullptr; 687 } 688 689 // The block and function that contains the current position. 690 const BasicBlock *PPBlock = PP->getParent(); 691 692 // If we are inside a block we know what instruction was executed before, the 693 // previous one. 694 if (!IsFirst) { 695 const Instruction *PrevPP = PP->getPrevNode(); 696 LLVM_DEBUG( 697 dbgs() << "\tIntermediate instruction, continue with previous\n"); 698 // We did not enter a callee so we simply return the previous instruction. 699 return PrevPP; 700 } 701 702 // Finally, we have to handle the case where the program point is the first in 703 // a block but not in the function. We use the findBackwardJoinPoint helper 704 // function with information about the function and helper analyses, if 705 // available. 706 if (const BasicBlock *JoinBB = findBackwardJoinPoint(PPBlock)) 707 return &JoinBB->back(); 708 709 LLVM_DEBUG(dbgs() << "\tNo join point found\n"); 710 return nullptr; 711 } 712 713 MustBeExecutedIterator::MustBeExecutedIterator( 714 MustBeExecutedContextExplorer &Explorer, const Instruction *I) 715 : Explorer(Explorer), CurInst(I) { 716 reset(I); 717 } 718 719 void MustBeExecutedIterator::reset(const Instruction *I) { 720 Visited.clear(); 721 resetInstruction(I); 722 } 723 724 void MustBeExecutedIterator::resetInstruction(const Instruction *I) { 725 CurInst = I; 726 Head = Tail = nullptr; 727 Visited.insert({I, ExplorationDirection::FORWARD}); 728 Visited.insert({I, ExplorationDirection::BACKWARD}); 729 if (Explorer.ExploreCFGForward) 730 Head = I; 731 if (Explorer.ExploreCFGBackward) 732 Tail = I; 733 } 734 735 const Instruction *MustBeExecutedIterator::advance() { 736 assert(CurInst && "Cannot advance an end iterator!"); 737 Head = Explorer.getMustBeExecutedNextInstruction(*this, Head); 738 if (Head && Visited.insert({Head, ExplorationDirection ::FORWARD}).second) 739 return Head; 740 Head = nullptr; 741 742 Tail = Explorer.getMustBeExecutedPrevInstruction(*this, Tail); 743 if (Tail && Visited.insert({Tail, ExplorationDirection ::BACKWARD}).second) 744 return Tail; 745 Tail = nullptr; 746 return nullptr; 747 } 748 749 PreservedAnalyses MustExecutePrinterPass::run(Function &F, 750 FunctionAnalysisManager &AM) { 751 auto &LI = AM.getResult<LoopAnalysis>(F); 752 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 753 754 MustExecuteAnnotatedWriter Writer(F, DT, LI); 755 F.print(OS, &Writer); 756 return PreservedAnalyses::all(); 757 } 758 759 PreservedAnalyses 760 MustBeExecutedContextPrinterPass::run(Module &M, ModuleAnalysisManager &AM) { 761 FunctionAnalysisManager &FAM = 762 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 763 GetterTy<const LoopInfo> LIGetter = [&](const Function &F) { 764 return &FAM.getResult<LoopAnalysis>(const_cast<Function &>(F)); 765 }; 766 GetterTy<const DominatorTree> DTGetter = [&](const Function &F) { 767 return &FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(F)); 768 }; 769 GetterTy<const PostDominatorTree> PDTGetter = [&](const Function &F) { 770 return &FAM.getResult<PostDominatorTreeAnalysis>(const_cast<Function &>(F)); 771 }; 772 773 MustBeExecutedContextExplorer Explorer( 774 /* ExploreInterBlock */ true, 775 /* ExploreCFGForward */ true, 776 /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter); 777 778 for (Function &F : M) { 779 for (Instruction &I : instructions(F)) { 780 OS << "-- Explore context of: " << I << "\n"; 781 for (const Instruction *CI : Explorer.range(&I)) 782 OS << " [F: " << CI->getFunction()->getName() << "] " << *CI << "\n"; 783 } 784 } 785 return PreservedAnalyses::all(); 786 } 787