xref: /llvm-project/llvm/lib/Analysis/MemorySSAUpdater.cpp (revision 46e04f7fe5c0f01ba452489bb966bdf2d560a63d)
1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/MemorySSA.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/Support/Debug.h"
22 #include <algorithm>
23 
24 #define DEBUG_TYPE "memoryssa"
25 using namespace llvm;
26 
27 // This is the marker algorithm from "Simple and Efficient Construction of
28 // Static Single Assignment Form"
29 // The simple, non-marker algorithm places phi nodes at any join
30 // Here, we place markers, and only place phi nodes if they end up necessary.
31 // They are only necessary if they break a cycle (IE we recursively visit
32 // ourselves again), or we discover, while getting the value of the operands,
33 // that there are two or more definitions needing to be merged.
34 // This still will leave non-minimal form in the case of irreducible control
35 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
36 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
37     BasicBlock *BB,
38     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
39   // First, do a cache lookup. Without this cache, certain CFG structures
40   // (like a series of if statements) take exponential time to visit.
41   auto Cached = CachedPreviousDef.find(BB);
42   if (Cached != CachedPreviousDef.end())
43     return Cached->second;
44 
45   // If this method is called from an unreachable block, return LoE.
46   if (!MSSA->DT->isReachableFromEntry(BB))
47     return MSSA->getLiveOnEntryDef();
48 
49   if (BasicBlock *Pred = BB->getUniquePredecessor()) {
50     VisitedBlocks.insert(BB);
51     // Single predecessor case, just recurse, we can only have one definition.
52     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
53     CachedPreviousDef.insert({BB, Result});
54     return Result;
55   }
56 
57   if (VisitedBlocks.count(BB)) {
58     // We hit our node again, meaning we had a cycle, we must insert a phi
59     // node to break it so we have an operand. The only case this will
60     // insert useless phis is if we have irreducible control flow.
61     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
62     CachedPreviousDef.insert({BB, Result});
63     return Result;
64   }
65 
66   if (VisitedBlocks.insert(BB).second) {
67     // Mark us visited so we can detect a cycle
68     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
69 
70     // Recurse to get the values in our predecessors for placement of a
71     // potential phi node. This will insert phi nodes if we cycle in order to
72     // break the cycle and have an operand.
73     bool UniqueIncomingAccess = true;
74     MemoryAccess *SingleAccess = nullptr;
75     for (auto *Pred : predecessors(BB)) {
76       if (MSSA->DT->isReachableFromEntry(Pred)) {
77         auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
78         if (!SingleAccess)
79           SingleAccess = IncomingAccess;
80         else if (IncomingAccess != SingleAccess)
81           UniqueIncomingAccess = false;
82         PhiOps.push_back(IncomingAccess);
83       } else
84         PhiOps.push_back(MSSA->getLiveOnEntryDef());
85     }
86 
87     // Now try to simplify the ops to avoid placing a phi.
88     // This may return null if we never created a phi yet, that's okay
89     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
90 
91     // See if we can avoid the phi by simplifying it.
92     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
93     // If we couldn't simplify, we may have to create a phi
94     if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
95       // A concrete Phi only exists if we created an empty one to break a cycle.
96       if (Phi) {
97         assert(Phi->operands().empty() && "Expected empty Phi");
98         Phi->replaceAllUsesWith(SingleAccess);
99         removeMemoryAccess(Phi);
100       }
101       Result = SingleAccess;
102     } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
103       if (!Phi)
104         Phi = MSSA->createMemoryPhi(BB);
105 
106       // See if the existing phi operands match what we need.
107       // Unlike normal SSA, we only allow one phi node per block, so we can't just
108       // create a new one.
109       if (Phi->getNumOperands() != 0) {
110         // FIXME: Figure out whether this is dead code and if so remove it.
111         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
112           // These will have been filled in by the recursive read we did above.
113           llvm::copy(PhiOps, Phi->op_begin());
114           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
115         }
116       } else {
117         unsigned i = 0;
118         for (auto *Pred : predecessors(BB))
119           Phi->addIncoming(&*PhiOps[i++], Pred);
120         InsertedPHIs.push_back(Phi);
121       }
122       Result = Phi;
123     }
124 
125     // Set ourselves up for the next variable by resetting visited state.
126     VisitedBlocks.erase(BB);
127     CachedPreviousDef.insert({BB, Result});
128     return Result;
129   }
130   llvm_unreachable("Should have hit one of the three cases above");
131 }
132 
133 // This starts at the memory access, and goes backwards in the block to find the
134 // previous definition. If a definition is not found the block of the access,
135 // it continues globally, creating phi nodes to ensure we have a single
136 // definition.
137 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
138   if (auto *LocalResult = getPreviousDefInBlock(MA))
139     return LocalResult;
140   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
141   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
142 }
143 
144 // This starts at the memory access, and goes backwards in the block to the find
145 // the previous definition. If the definition is not found in the block of the
146 // access, it returns nullptr.
147 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
148   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
149 
150   // It's possible there are no defs, or we got handed the first def to start.
151   if (Defs) {
152     // If this is a def, we can just use the def iterators.
153     if (!isa<MemoryUse>(MA)) {
154       auto Iter = MA->getReverseDefsIterator();
155       ++Iter;
156       if (Iter != Defs->rend())
157         return &*Iter;
158     } else {
159       // Otherwise, have to walk the all access iterator.
160       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
161       for (auto &U : make_range(++MA->getReverseIterator(), End))
162         if (!isa<MemoryUse>(U))
163           return cast<MemoryAccess>(&U);
164       // Note that if MA comes before Defs->begin(), we won't hit a def.
165       return nullptr;
166     }
167   }
168   return nullptr;
169 }
170 
171 // This starts at the end of block
172 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
173     BasicBlock *BB,
174     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
175   auto *Defs = MSSA->getWritableBlockDefs(BB);
176 
177   if (Defs) {
178     CachedPreviousDef.insert({BB, &*Defs->rbegin()});
179     return &*Defs->rbegin();
180   }
181 
182   return getPreviousDefRecursive(BB, CachedPreviousDef);
183 }
184 // Recurse over a set of phi uses to eliminate the trivial ones
185 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
186   if (!Phi)
187     return nullptr;
188   TrackingVH<MemoryAccess> Res(Phi);
189   SmallVector<TrackingVH<Value>, 8> Uses;
190   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
191   for (auto &U : Uses)
192     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
193       tryRemoveTrivialPhi(UsePhi);
194   return Res;
195 }
196 
197 // Eliminate trivial phis
198 // Phis are trivial if they are defined either by themselves, or all the same
199 // argument.
200 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
201 // We recursively try to remove them.
202 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
203   assert(Phi && "Can only remove concrete Phi.");
204   auto OperRange = Phi->operands();
205   return tryRemoveTrivialPhi(Phi, OperRange);
206 }
207 template <class RangeType>
208 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
209                                                     RangeType &Operands) {
210   // Bail out on non-opt Phis.
211   if (NonOptPhis.count(Phi))
212     return Phi;
213 
214   // Detect equal or self arguments
215   MemoryAccess *Same = nullptr;
216   for (auto &Op : Operands) {
217     // If the same or self, good so far
218     if (Op == Phi || Op == Same)
219       continue;
220     // not the same, return the phi since it's not eliminatable by us
221     if (Same)
222       return Phi;
223     Same = cast<MemoryAccess>(&*Op);
224   }
225   // Never found a non-self reference, the phi is undef
226   if (Same == nullptr)
227     return MSSA->getLiveOnEntryDef();
228   if (Phi) {
229     Phi->replaceAllUsesWith(Same);
230     removeMemoryAccess(Phi);
231   }
232 
233   // We should only end up recursing in case we replaced something, in which
234   // case, we may have made other Phis trivial.
235   return recursePhi(Same);
236 }
237 
238 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
239   VisitedBlocks.clear();
240   InsertedPHIs.clear();
241   MU->setDefiningAccess(getPreviousDef(MU));
242 
243   // In cases without unreachable blocks, because uses do not create new
244   // may-defs, there are only two cases:
245   // 1. There was a def already below us, and therefore, we should not have
246   // created a phi node because it was already needed for the def.
247   //
248   // 2. There is no def below us, and therefore, there is no extra renaming work
249   // to do.
250 
251   // In cases with unreachable blocks, where the unnecessary Phis were
252   // optimized out, adding the Use may re-insert those Phis. Hence, when
253   // inserting Uses outside of the MSSA creation process, and new Phis were
254   // added, rename all uses if we are asked.
255 
256   if (!RenameUses && !InsertedPHIs.empty()) {
257     auto *Defs = MSSA->getBlockDefs(MU->getBlock());
258     (void)Defs;
259     assert((!Defs || (++Defs->begin() == Defs->end())) &&
260            "Block may have only a Phi or no defs");
261   }
262 
263   if (RenameUses && InsertedPHIs.size()) {
264     SmallPtrSet<BasicBlock *, 16> Visited;
265     BasicBlock *StartBlock = MU->getBlock();
266 
267     if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
268       MemoryAccess *FirstDef = &*Defs->begin();
269       // Convert to incoming value if it's a memorydef. A phi *is* already an
270       // incoming value.
271       if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
272         FirstDef = MD->getDefiningAccess();
273 
274       MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
275     }
276     // We just inserted a phi into this block, so the incoming value will
277     // become the phi anyway, so it does not matter what we pass.
278     for (auto &MP : InsertedPHIs)
279       if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
280         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
281   }
282 }
283 
284 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
285 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
286                                       MemoryAccess *NewDef) {
287   // Replace any operand with us an incoming block with the new defining
288   // access.
289   int i = MP->getBasicBlockIndex(BB);
290   assert(i != -1 && "Should have found the basic block in the phi");
291   // We can't just compare i against getNumOperands since one is signed and the
292   // other not. So use it to index into the block iterator.
293   for (const BasicBlock *BlockBB : llvm::drop_begin(MP->blocks(), i)) {
294     if (BlockBB != BB)
295       break;
296     MP->setIncomingValue(i, NewDef);
297     ++i;
298   }
299 }
300 
301 // A brief description of the algorithm:
302 // First, we compute what should define the new def, using the SSA
303 // construction algorithm.
304 // Then, we update the defs below us (and any new phi nodes) in the graph to
305 // point to the correct new defs, to ensure we only have one variable, and no
306 // disconnected stores.
307 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
308   // Don't bother updating dead code.
309   if (!MSSA->DT->isReachableFromEntry(MD->getBlock())) {
310     MD->setDefiningAccess(MSSA->getLiveOnEntryDef());
311     return;
312   }
313 
314   VisitedBlocks.clear();
315   InsertedPHIs.clear();
316 
317   // See if we had a local def, and if not, go hunting.
318   MemoryAccess *DefBefore = getPreviousDef(MD);
319   bool DefBeforeSameBlock = false;
320   if (DefBefore->getBlock() == MD->getBlock() &&
321       !(isa<MemoryPhi>(DefBefore) &&
322         llvm::is_contained(InsertedPHIs, DefBefore)))
323     DefBeforeSameBlock = true;
324 
325   // There is a def before us, which means we can replace any store/phi uses
326   // of that thing with us, since we are in the way of whatever was there
327   // before.
328   // We now define that def's memorydefs and memoryphis
329   if (DefBeforeSameBlock) {
330     DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
331       // Leave the MemoryUses alone.
332       // Also make sure we skip ourselves to avoid self references.
333       User *Usr = U.getUser();
334       return !isa<MemoryUse>(Usr) && Usr != MD;
335       // Defs are automatically unoptimized when the user is set to MD below,
336       // because the isOptimized() call will fail to find the same ID.
337     });
338   }
339 
340   // and that def is now our defining access.
341   MD->setDefiningAccess(DefBefore);
342 
343   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
344 
345   SmallSet<WeakVH, 8> ExistingPhis;
346 
347   // Remember the index where we may insert new phis.
348   unsigned NewPhiIndex = InsertedPHIs.size();
349   if (!DefBeforeSameBlock) {
350     // If there was a local def before us, we must have the same effect it
351     // did. Because every may-def is the same, any phis/etc we would create, it
352     // would also have created.  If there was no local def before us, we
353     // performed a global update, and have to search all successors and make
354     // sure we update the first def in each of them (following all paths until
355     // we hit the first def along each path). This may also insert phi nodes.
356     // TODO: There are other cases we can skip this work, such as when we have a
357     // single successor, and only used a straight line of single pred blocks
358     // backwards to find the def.  To make that work, we'd have to track whether
359     // getDefRecursive only ever used the single predecessor case.  These types
360     // of paths also only exist in between CFG simplifications.
361 
362     // If this is the first def in the block and this insert is in an arbitrary
363     // place, compute IDF and place phis.
364     SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
365 
366     // If this is the last Def in the block, we may need additional Phis.
367     // Compute IDF in all cases, as renaming needs to be done even when MD is
368     // not the last access, because it can introduce a new access past which a
369     // previous access was optimized; that access needs to be reoptimized.
370     DefiningBlocks.insert(MD->getBlock());
371     for (const auto &VH : InsertedPHIs)
372       if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
373         DefiningBlocks.insert(RealPHI->getBlock());
374     ForwardIDFCalculator IDFs(*MSSA->DT);
375     SmallVector<BasicBlock *, 32> IDFBlocks;
376     IDFs.setDefiningBlocks(DefiningBlocks);
377     IDFs.calculate(IDFBlocks);
378     SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
379     for (auto *BBIDF : IDFBlocks) {
380       auto *MPhi = MSSA->getMemoryAccess(BBIDF);
381       if (!MPhi) {
382         MPhi = MSSA->createMemoryPhi(BBIDF);
383         NewInsertedPHIs.push_back(MPhi);
384       } else {
385         ExistingPhis.insert(MPhi);
386       }
387       // Add the phis created into the IDF blocks to NonOptPhis, so they are not
388       // optimized out as trivial by the call to getPreviousDefFromEnd below.
389       // Once they are complete, all these Phis are added to the FixupList, and
390       // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
391       // need fixing as well, and potentially be trivial before this insertion,
392       // hence add all IDF Phis. See PR43044.
393       NonOptPhis.insert(MPhi);
394     }
395     for (auto &MPhi : NewInsertedPHIs) {
396       auto *BBIDF = MPhi->getBlock();
397       for (auto *Pred : predecessors(BBIDF)) {
398         DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
399         MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
400       }
401     }
402 
403     // Re-take the index where we're adding the new phis, because the above call
404     // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
405     NewPhiIndex = InsertedPHIs.size();
406     for (auto &MPhi : NewInsertedPHIs) {
407       InsertedPHIs.push_back(&*MPhi);
408       FixupList.push_back(&*MPhi);
409     }
410 
411     FixupList.push_back(MD);
412   }
413 
414   // Remember the index where we stopped inserting new phis above, since the
415   // fixupDefs call in the loop below may insert more, that are already minimal.
416   unsigned NewPhiIndexEnd = InsertedPHIs.size();
417 
418   while (!FixupList.empty()) {
419     unsigned StartingPHISize = InsertedPHIs.size();
420     fixupDefs(FixupList);
421     FixupList.clear();
422     // Put any new phis on the fixup list, and process them
423     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
424   }
425 
426   // Optimize potentially non-minimal phis added in this method.
427   unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
428   if (NewPhiSize)
429     tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
430 
431   // Now that all fixups are done, rename all uses if we are asked. The defs are
432   // guaranteed to be in reachable code due to the check at the method entry.
433   BasicBlock *StartBlock = MD->getBlock();
434   if (RenameUses) {
435     SmallPtrSet<BasicBlock *, 16> Visited;
436     // We are guaranteed there is a def in the block, because we just got it
437     // handed to us in this function.
438     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
439     // Convert to incoming value if it's a memorydef. A phi *is* already an
440     // incoming value.
441     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
442       FirstDef = MD->getDefiningAccess();
443 
444     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
445     // We just inserted a phi into this block, so the incoming value will become
446     // the phi anyway, so it does not matter what we pass.
447     for (auto &MP : InsertedPHIs) {
448       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
449       if (Phi)
450         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
451     }
452     // Existing Phi blocks may need renaming too, if an access was previously
453     // optimized and the inserted Defs "covers" the Optimized value.
454     for (const auto &MP : ExistingPhis) {
455       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
456       if (Phi)
457         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
458     }
459   }
460 }
461 
462 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
463   SmallPtrSet<const BasicBlock *, 8> Seen;
464   SmallVector<const BasicBlock *, 16> Worklist;
465   for (const auto &Var : Vars) {
466     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
467     if (!NewDef)
468       continue;
469     // First, see if there is a local def after the operand.
470     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
471     auto DefIter = NewDef->getDefsIterator();
472 
473     // The temporary Phi is being fixed, unmark it for not to optimize.
474     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
475       NonOptPhis.erase(Phi);
476 
477     // If there is a local def after us, we only have to rename that.
478     if (++DefIter != Defs->end()) {
479       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
480       continue;
481     }
482 
483     // Otherwise, we need to search down through the CFG.
484     // For each of our successors, handle it directly if their is a phi, or
485     // place on the fixup worklist.
486     for (const auto *S : successors(NewDef->getBlock())) {
487       if (auto *MP = MSSA->getMemoryAccess(S))
488         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
489       else
490         Worklist.push_back(S);
491     }
492 
493     while (!Worklist.empty()) {
494       const BasicBlock *FixupBlock = Worklist.pop_back_val();
495 
496       // Get the first def in the block that isn't a phi node.
497       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
498         auto *FirstDef = &*Defs->begin();
499         // The loop above and below should have taken care of phi nodes
500         assert(!isa<MemoryPhi>(FirstDef) &&
501                "Should have already handled phi nodes!");
502         // We are now this def's defining access, make sure we actually dominate
503         // it
504         assert(MSSA->dominates(NewDef, FirstDef) &&
505                "Should have dominated the new access");
506 
507         // This may insert new phi nodes, because we are not guaranteed the
508         // block we are processing has a single pred, and depending where the
509         // store was inserted, it may require phi nodes below it.
510         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
511         return;
512       }
513       // We didn't find a def, so we must continue.
514       for (const auto *S : successors(FixupBlock)) {
515         // If there is a phi node, handle it.
516         // Otherwise, put the block on the worklist
517         if (auto *MP = MSSA->getMemoryAccess(S))
518           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
519         else {
520           // If we cycle, we should have ended up at a phi node that we already
521           // processed.  FIXME: Double check this
522           if (!Seen.insert(S).second)
523             continue;
524           Worklist.push_back(S);
525         }
526       }
527     }
528   }
529 }
530 
531 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
532   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
533     MPhi->unorderedDeleteIncomingBlock(From);
534     tryRemoveTrivialPhi(MPhi);
535   }
536 }
537 
538 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
539                                                       const BasicBlock *To) {
540   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
541     bool Found = false;
542     MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
543       if (From != B)
544         return false;
545       if (Found)
546         return true;
547       Found = true;
548       return false;
549     });
550     tryRemoveTrivialPhi(MPhi);
551   }
552 }
553 
554 /// If all arguments of a MemoryPHI are defined by the same incoming
555 /// argument, return that argument.
556 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
557   MemoryAccess *MA = nullptr;
558 
559   for (auto &Arg : MP->operands()) {
560     if (!MA)
561       MA = cast<MemoryAccess>(Arg);
562     else if (MA != Arg)
563       return nullptr;
564   }
565   return MA;
566 }
567 
568 static MemoryAccess *getNewDefiningAccessForClone(
569     MemoryAccess *MA, const ValueToValueMapTy &VMap, PhiToDefMap &MPhiMap,
570     MemorySSA *MSSA, function_ref<bool(BasicBlock *BB)> IsInClonedRegion) {
571   MemoryAccess *InsnDefining = MA;
572   if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
573     if (MSSA->isLiveOnEntryDef(DefMUD))
574       return DefMUD;
575 
576     // If the MemoryDef is not part of the cloned region, leave it alone.
577     Instruction *DefMUDI = DefMUD->getMemoryInst();
578     assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
579     if (!IsInClonedRegion(DefMUDI->getParent()))
580       return DefMUD;
581 
582     auto *NewDefMUDI = cast_or_null<Instruction>(VMap.lookup(DefMUDI));
583     InsnDefining = NewDefMUDI ? MSSA->getMemoryAccess(NewDefMUDI) : nullptr;
584     if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
585       // The clone was simplified, it's no longer a MemoryDef, look up.
586       InsnDefining = getNewDefiningAccessForClone(
587           DefMUD->getDefiningAccess(), VMap, MPhiMap, MSSA, IsInClonedRegion);
588     }
589   } else {
590     MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
591     if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
592       InsnDefining = NewDefPhi;
593   }
594   assert(InsnDefining && "Defining instruction cannot be nullptr.");
595   return InsnDefining;
596 }
597 
598 void MemorySSAUpdater::cloneUsesAndDefs(
599     BasicBlock *BB, BasicBlock *NewBB, const ValueToValueMapTy &VMap,
600     PhiToDefMap &MPhiMap, function_ref<bool(BasicBlock *)> IsInClonedRegion,
601     bool CloneWasSimplified) {
602   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
603   if (!Acc)
604     return;
605   for (const MemoryAccess &MA : *Acc) {
606     if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
607       Instruction *Insn = MUD->getMemoryInst();
608       // Entry does not exist if the clone of the block did not clone all
609       // instructions. This occurs in LoopRotate when cloning instructions
610       // from the old header to the old preheader. The cloned instruction may
611       // also be a simplified Value, not an Instruction (see LoopRotate).
612       // Also in LoopRotate, even when it's an instruction, due to it being
613       // simplified, it may be a Use rather than a Def, so we cannot use MUD as
614       // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
615       if (Instruction *NewInsn =
616               dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
617         MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
618             NewInsn,
619             getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
620                                          MPhiMap, MSSA, IsInClonedRegion),
621             /*Template=*/CloneWasSimplified ? nullptr : MUD,
622             /*CreationMustSucceed=*/false);
623         if (NewUseOrDef)
624           MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
625       }
626     }
627   }
628 }
629 
630 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
631     BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
632   auto *MPhi = MSSA->getMemoryAccess(Header);
633   if (!MPhi)
634     return;
635 
636   // Create phi node in the backedge block and populate it with the same
637   // incoming values as MPhi. Skip incoming values coming from Preheader.
638   auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
639   bool HasUniqueIncomingValue = true;
640   MemoryAccess *UniqueValue = nullptr;
641   for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
642     BasicBlock *IBB = MPhi->getIncomingBlock(I);
643     MemoryAccess *IV = MPhi->getIncomingValue(I);
644     if (IBB != Preheader) {
645       NewMPhi->addIncoming(IV, IBB);
646       if (HasUniqueIncomingValue) {
647         if (!UniqueValue)
648           UniqueValue = IV;
649         else if (UniqueValue != IV)
650           HasUniqueIncomingValue = false;
651       }
652     }
653   }
654 
655   // Update incoming edges into MPhi. Remove all but the incoming edge from
656   // Preheader. Add an edge from NewMPhi
657   auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
658   MPhi->setIncomingValue(0, AccFromPreheader);
659   MPhi->setIncomingBlock(0, Preheader);
660   for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
661     MPhi->unorderedDeleteIncoming(I);
662   MPhi->addIncoming(NewMPhi, BEBlock);
663 
664   // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
665   // replaced with the unique value.
666   tryRemoveTrivialPhi(NewMPhi);
667 }
668 
669 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
670                                            ArrayRef<BasicBlock *> ExitBlocks,
671                                            const ValueToValueMapTy &VMap,
672                                            bool IgnoreIncomingWithNoClones) {
673   SmallSetVector<BasicBlock *, 16> Blocks;
674   for (BasicBlock *BB : concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
675     Blocks.insert(BB);
676 
677   auto IsInClonedRegion = [&](BasicBlock *BB) { return Blocks.contains(BB); };
678 
679   PhiToDefMap MPhiMap;
680   auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
681     assert(Phi && NewPhi && "Invalid Phi nodes.");
682     BasicBlock *NewPhiBB = NewPhi->getBlock();
683     SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
684                                                pred_end(NewPhiBB));
685     for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
686       MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
687       BasicBlock *IncBB = Phi->getIncomingBlock(It);
688 
689       if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
690         IncBB = NewIncBB;
691       else if (IgnoreIncomingWithNoClones)
692         continue;
693 
694       // Now we have IncBB, and will need to add incoming from it to NewPhi.
695 
696       // If IncBB is not a predecessor of NewPhiBB, then do not add it.
697       // NewPhiBB was cloned without that edge.
698       if (!NewPhiBBPreds.count(IncBB))
699         continue;
700 
701       // Determine incoming value and add it as incoming from IncBB.
702       NewPhi->addIncoming(getNewDefiningAccessForClone(IncomingAccess, VMap,
703                                                        MPhiMap, MSSA,
704                                                        IsInClonedRegion),
705                           IncBB);
706     }
707     if (auto *SingleAccess = onlySingleValue(NewPhi)) {
708       MPhiMap[Phi] = SingleAccess;
709       removeMemoryAccess(NewPhi);
710     }
711   };
712 
713   auto ProcessBlock = [&](BasicBlock *BB) {
714     BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
715     if (!NewBlock)
716       return;
717 
718     assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
719            "Cloned block should have no accesses");
720 
721     // Add MemoryPhi.
722     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
723       MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
724       MPhiMap[MPhi] = NewPhi;
725     }
726     // Update Uses and Defs.
727     cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap, IsInClonedRegion);
728   };
729 
730   for (auto *BB : Blocks)
731     ProcessBlock(BB);
732 
733   for (auto *BB : Blocks)
734     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
735       if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
736         FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
737 }
738 
739 void MemorySSAUpdater::updateForClonedBlockIntoPred(
740     BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
741   // All defs/phis from outside BB that are used in BB, are valid uses in P1.
742   // Since those defs/phis must have dominated BB, and also dominate P1.
743   // Defs from BB being used in BB will be replaced with the cloned defs from
744   // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
745   // incoming def into the Phi from P1.
746   // Instructions cloned into the predecessor are in practice sometimes
747   // simplified, so disable the use of the template, and create an access from
748   // scratch.
749   PhiToDefMap MPhiMap;
750   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
751     MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
752   cloneUsesAndDefs(
753       BB, P1, VM, MPhiMap, [&](BasicBlock *CheckBB) { return BB == CheckBB; },
754       /*CloneWasSimplified=*/true);
755 }
756 
757 template <typename Iter>
758 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
759     ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
760     DominatorTree &DT) {
761   SmallVector<CFGUpdate, 4> Updates;
762   // Update/insert phis in all successors of exit blocks.
763   for (auto *Exit : ExitBlocks)
764     for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
765       if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
766         BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
767         Updates.push_back({DT.Insert, NewExit, ExitSucc});
768       }
769   applyInsertUpdates(Updates, DT);
770 }
771 
772 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
773     ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
774     DominatorTree &DT) {
775   const ValueToValueMapTy *const Arr[] = {&VMap};
776   privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
777                                        std::end(Arr), DT);
778 }
779 
780 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
781     ArrayRef<BasicBlock *> ExitBlocks,
782     ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
783   auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
784     return I.get();
785   };
786   using MappedIteratorType =
787       mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
788                       decltype(GetPtr)>;
789   auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
790   auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
791   privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
792 }
793 
794 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
795                                     DominatorTree &DT, bool UpdateDT) {
796   SmallVector<CFGUpdate, 4> DeleteUpdates;
797   SmallVector<CFGUpdate, 4> RevDeleteUpdates;
798   SmallVector<CFGUpdate, 4> InsertUpdates;
799   for (const auto &Update : Updates) {
800     if (Update.getKind() == DT.Insert)
801       InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
802     else {
803       DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()});
804       RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
805     }
806   }
807 
808   if (!DeleteUpdates.empty()) {
809     if (!InsertUpdates.empty()) {
810       if (!UpdateDT) {
811         SmallVector<CFGUpdate, 0> Empty;
812         // Deletes are reversed applied, because this CFGView is pretending the
813         // deletes did not happen yet, hence the edges still exist.
814         DT.applyUpdates(Empty, RevDeleteUpdates);
815       } else {
816         // Apply all updates, with the RevDeleteUpdates as PostCFGView.
817         DT.applyUpdates(Updates, RevDeleteUpdates);
818       }
819 
820       // Note: the MSSA update below doesn't distinguish between a GD with
821       // (RevDelete,false) and (Delete, true), but this matters for the DT
822       // updates above; for "children" purposes they are equivalent; but the
823       // updates themselves convey the desired update, used inside DT only.
824       GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
825       applyInsertUpdates(InsertUpdates, DT, &GD);
826       // Update DT to redelete edges; this matches the real CFG so we can
827       // perform the standard update without a postview of the CFG.
828       DT.applyUpdates(DeleteUpdates);
829     } else {
830       if (UpdateDT)
831         DT.applyUpdates(DeleteUpdates);
832     }
833   } else {
834     if (UpdateDT)
835       DT.applyUpdates(Updates);
836     GraphDiff<BasicBlock *> GD;
837     applyInsertUpdates(InsertUpdates, DT, &GD);
838   }
839 
840   // Update for deleted edges
841   for (auto &Update : DeleteUpdates)
842     removeEdge(Update.getFrom(), Update.getTo());
843 }
844 
845 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
846                                           DominatorTree &DT) {
847   GraphDiff<BasicBlock *> GD;
848   applyInsertUpdates(Updates, DT, &GD);
849 }
850 
851 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
852                                           DominatorTree &DT,
853                                           const GraphDiff<BasicBlock *> *GD) {
854   // Get recursive last Def, assuming well formed MSSA and updated DT.
855   auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
856     while (true) {
857       MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
858       // Return last Def or Phi in BB, if it exists.
859       if (Defs)
860         return &*(--Defs->end());
861 
862       // Check number of predecessors, we only care if there's more than one.
863       unsigned Count = 0;
864       BasicBlock *Pred = nullptr;
865       for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
866         Pred = Pi;
867         Count++;
868         if (Count == 2)
869           break;
870       }
871 
872       // If BB has multiple predecessors, get last definition from IDom.
873       if (Count != 1) {
874         // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
875         // DT is invalidated. Return LoE as its last def. This will be added to
876         // MemoryPhi node, and later deleted when the block is deleted.
877         if (!DT.getNode(BB))
878           return MSSA->getLiveOnEntryDef();
879         if (auto *IDom = DT.getNode(BB)->getIDom())
880           if (IDom->getBlock() != BB) {
881             BB = IDom->getBlock();
882             continue;
883           }
884         return MSSA->getLiveOnEntryDef();
885       } else {
886         // Single predecessor, BB cannot be dead. GetLastDef of Pred.
887         assert(Count == 1 && Pred && "Single predecessor expected.");
888         // BB can be unreachable though, return LoE if that is the case.
889         if (!DT.getNode(BB))
890           return MSSA->getLiveOnEntryDef();
891         BB = Pred;
892       }
893     };
894     llvm_unreachable("Unable to get last definition.");
895   };
896 
897   // Get nearest IDom given a set of blocks.
898   // TODO: this can be optimized by starting the search at the node with the
899   // lowest level (highest in the tree).
900   auto FindNearestCommonDominator =
901       [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
902     BasicBlock *PrevIDom = *BBSet.begin();
903     for (auto *BB : BBSet)
904       PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
905     return PrevIDom;
906   };
907 
908   // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
909   // include CurrIDom.
910   auto GetNoLongerDomBlocks =
911       [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
912           SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
913         if (PrevIDom == CurrIDom)
914           return;
915         BlocksPrevDom.push_back(PrevIDom);
916         BasicBlock *NextIDom = PrevIDom;
917         while (BasicBlock *UpIDom =
918                    DT.getNode(NextIDom)->getIDom()->getBlock()) {
919           if (UpIDom == CurrIDom)
920             break;
921           BlocksPrevDom.push_back(UpIDom);
922           NextIDom = UpIDom;
923         }
924       };
925 
926   // Map a BB to its predecessors: added + previously existing. To get a
927   // deterministic order, store predecessors as SetVectors. The order in each
928   // will be defined by the order in Updates (fixed) and the order given by
929   // children<> (also fixed). Since we further iterate over these ordered sets,
930   // we lose the information of multiple edges possibly existing between two
931   // blocks, so we'll keep and EdgeCount map for that.
932   // An alternate implementation could keep unordered set for the predecessors,
933   // traverse either Updates or children<> each time to get  the deterministic
934   // order, and drop the usage of EdgeCount. This alternate approach would still
935   // require querying the maps for each predecessor, and children<> call has
936   // additional computation inside for creating the snapshot-graph predecessors.
937   // As such, we favor using a little additional storage and less compute time.
938   // This decision can be revisited if we find the alternative more favorable.
939 
940   struct PredInfo {
941     SmallSetVector<BasicBlock *, 2> Added;
942     SmallSetVector<BasicBlock *, 2> Prev;
943   };
944   SmallDenseMap<BasicBlock *, PredInfo> PredMap;
945 
946   for (const auto &Edge : Updates) {
947     BasicBlock *BB = Edge.getTo();
948     auto &AddedBlockSet = PredMap[BB].Added;
949     AddedBlockSet.insert(Edge.getFrom());
950   }
951 
952   // Store all existing predecessor for each BB, at least one must exist.
953   SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
954   SmallPtrSet<BasicBlock *, 2> NewBlocks;
955   for (auto &BBPredPair : PredMap) {
956     auto *BB = BBPredPair.first;
957     const auto &AddedBlockSet = BBPredPair.second.Added;
958     auto &PrevBlockSet = BBPredPair.second.Prev;
959     for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
960       if (!AddedBlockSet.count(Pi))
961         PrevBlockSet.insert(Pi);
962       EdgeCountMap[{Pi, BB}]++;
963     }
964 
965     if (PrevBlockSet.empty()) {
966       assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
967       LLVM_DEBUG(
968           dbgs()
969           << "Adding a predecessor to a block with no predecessors. "
970              "This must be an edge added to a new, likely cloned, block. "
971              "Its memory accesses must be already correct, assuming completed "
972              "via the updateExitBlocksForClonedLoop API. "
973              "Assert a single such edge is added so no phi addition or "
974              "additional processing is required.\n");
975       assert(AddedBlockSet.size() == 1 &&
976              "Can only handle adding one predecessor to a new block.");
977       // Need to remove new blocks from PredMap. Remove below to not invalidate
978       // iterator here.
979       NewBlocks.insert(BB);
980     }
981   }
982   // Nothing to process for new/cloned blocks.
983   for (auto *BB : NewBlocks)
984     PredMap.erase(BB);
985 
986   SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
987   SmallVector<WeakVH, 8> InsertedPhis;
988 
989   // First create MemoryPhis in all blocks that don't have one. Create in the
990   // order found in Updates, not in PredMap, to get deterministic numbering.
991   for (const auto &Edge : Updates) {
992     BasicBlock *BB = Edge.getTo();
993     if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
994       InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
995   }
996 
997   // Now we'll fill in the MemoryPhis with the right incoming values.
998   for (auto &BBPredPair : PredMap) {
999     auto *BB = BBPredPair.first;
1000     const auto &PrevBlockSet = BBPredPair.second.Prev;
1001     const auto &AddedBlockSet = BBPredPair.second.Added;
1002     assert(!PrevBlockSet.empty() &&
1003            "At least one previous predecessor must exist.");
1004 
1005     // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
1006     // keeping this map before the loop. We can reuse already populated entries
1007     // if an edge is added from the same predecessor to two different blocks,
1008     // and this does happen in rotate. Note that the map needs to be updated
1009     // when deleting non-necessary phis below, if the phi is in the map by
1010     // replacing the value with DefP1.
1011     SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
1012     for (auto *AddedPred : AddedBlockSet) {
1013       auto *DefPn = GetLastDef(AddedPred);
1014       assert(DefPn != nullptr && "Unable to find last definition.");
1015       LastDefAddedPred[AddedPred] = DefPn;
1016     }
1017 
1018     MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
1019     // If Phi is not empty, add an incoming edge from each added pred. Must
1020     // still compute blocks with defs to replace for this block below.
1021     if (NewPhi->getNumOperands()) {
1022       for (auto *Pred : AddedBlockSet) {
1023         auto *LastDefForPred = LastDefAddedPred[Pred];
1024         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1025           NewPhi->addIncoming(LastDefForPred, Pred);
1026       }
1027     } else {
1028       // Pick any existing predecessor and get its definition. All other
1029       // existing predecessors should have the same one, since no phi existed.
1030       auto *P1 = *PrevBlockSet.begin();
1031       MemoryAccess *DefP1 = GetLastDef(P1);
1032 
1033       // Check DefP1 against all Defs in LastDefPredPair. If all the same,
1034       // nothing to add.
1035       bool InsertPhi = false;
1036       for (auto LastDefPredPair : LastDefAddedPred)
1037         if (DefP1 != LastDefPredPair.second) {
1038           InsertPhi = true;
1039           break;
1040         }
1041       if (!InsertPhi) {
1042         // Since NewPhi may be used in other newly added Phis, replace all uses
1043         // of NewPhi with the definition coming from all predecessors (DefP1),
1044         // before deleting it.
1045         NewPhi->replaceAllUsesWith(DefP1);
1046         removeMemoryAccess(NewPhi);
1047         continue;
1048       }
1049 
1050       // Update Phi with new values for new predecessors and old value for all
1051       // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
1052       // sets, the order of entries in NewPhi is deterministic.
1053       for (auto *Pred : AddedBlockSet) {
1054         auto *LastDefForPred = LastDefAddedPred[Pred];
1055         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1056           NewPhi->addIncoming(LastDefForPred, Pred);
1057       }
1058       for (auto *Pred : PrevBlockSet)
1059         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1060           NewPhi->addIncoming(DefP1, Pred);
1061     }
1062 
1063     // Get all blocks that used to dominate BB and no longer do after adding
1064     // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1065     assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
1066     BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
1067     assert(PrevIDom && "Previous IDom should exists");
1068     BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
1069     assert(NewIDom && "BB should have a new valid idom");
1070     assert(DT.dominates(NewIDom, PrevIDom) &&
1071            "New idom should dominate old idom");
1072     GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
1073   }
1074 
1075   tryRemoveTrivialPhis(InsertedPhis);
1076   // Create the set of blocks that now have a definition. We'll use this to
1077   // compute IDF and add Phis there next.
1078   SmallVector<BasicBlock *, 8> BlocksToProcess;
1079   for (auto &VH : InsertedPhis)
1080     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1081       BlocksToProcess.push_back(MPhi->getBlock());
1082 
1083   // Compute IDF and add Phis in all IDF blocks that do not have one.
1084   SmallVector<BasicBlock *, 32> IDFBlocks;
1085   if (!BlocksToProcess.empty()) {
1086     ForwardIDFCalculator IDFs(DT, GD);
1087     SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
1088                                                  BlocksToProcess.end());
1089     IDFs.setDefiningBlocks(DefiningBlocks);
1090     IDFs.calculate(IDFBlocks);
1091 
1092     SmallSetVector<MemoryPhi *, 4> PhisToFill;
1093     // First create all needed Phis.
1094     for (auto *BBIDF : IDFBlocks)
1095       if (!MSSA->getMemoryAccess(BBIDF)) {
1096         auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
1097         InsertedPhis.push_back(IDFPhi);
1098         PhisToFill.insert(IDFPhi);
1099       }
1100     // Then update or insert their correct incoming values.
1101     for (auto *BBIDF : IDFBlocks) {
1102       auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1103       assert(IDFPhi && "Phi must exist");
1104       if (!PhisToFill.count(IDFPhi)) {
1105         // Update existing Phi.
1106         // FIXME: some updates may be redundant, try to optimize and skip some.
1107         for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1108           IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1109       } else {
1110         for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF))
1111           IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1112       }
1113     }
1114   }
1115 
1116   // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1117   // longer dominate, replace those with the closest dominating def.
1118   // This will also update optimized accesses, as they're also uses.
1119   for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1120     if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1121       for (auto &DefToReplaceUses : *DefsList) {
1122         BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1123         for (Use &U : llvm::make_early_inc_range(DefToReplaceUses.uses())) {
1124           MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
1125           if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1126             BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1127             if (!DT.dominates(DominatingBlock, DominatedBlock))
1128               U.set(GetLastDef(DominatedBlock));
1129           } else {
1130             BasicBlock *DominatedBlock = Usr->getBlock();
1131             if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1132               if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1133                 U.set(DomBlPhi);
1134               else {
1135                 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1136                 assert(IDom && "Block must have a valid IDom.");
1137                 U.set(GetLastDef(IDom->getBlock()));
1138               }
1139               cast<MemoryUseOrDef>(Usr)->resetOptimized();
1140             }
1141           }
1142         }
1143       }
1144     }
1145   }
1146   tryRemoveTrivialPhis(InsertedPhis);
1147 }
1148 
1149 // Move What before Where in the MemorySSA IR.
1150 template <class WhereType>
1151 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1152                               WhereType Where) {
1153   // Mark MemoryPhi users of What not to be optimized.
1154   for (auto *U : What->users())
1155     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1156       NonOptPhis.insert(PhiUser);
1157 
1158   // Replace all our users with our defining access.
1159   What->replaceAllUsesWith(What->getDefiningAccess());
1160 
1161   // Let MemorySSA take care of moving it around in the lists.
1162   MSSA->moveTo(What, BB, Where);
1163 
1164   // Now reinsert it into the IR and do whatever fixups needed.
1165   if (auto *MD = dyn_cast<MemoryDef>(What))
1166     insertDef(MD, /*RenameUses=*/true);
1167   else
1168     insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
1169 
1170   // Clear dangling pointers. We added all MemoryPhi users, but not all
1171   // of them are removed by fixupDefs().
1172   NonOptPhis.clear();
1173 }
1174 
1175 // Move What before Where in the MemorySSA IR.
1176 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1177   moveTo(What, Where->getBlock(), Where->getIterator());
1178 }
1179 
1180 // Move What after Where in the MemorySSA IR.
1181 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1182   moveTo(What, Where->getBlock(), ++Where->getIterator());
1183 }
1184 
1185 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1186                                    MemorySSA::InsertionPlace Where) {
1187   if (Where != MemorySSA::InsertionPlace::BeforeTerminator)
1188     return moveTo(What, BB, Where);
1189 
1190   if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator()))
1191     return moveBefore(What, Where);
1192   else
1193     return moveTo(What, BB, MemorySSA::InsertionPlace::End);
1194 }
1195 
1196 // All accesses in To used to be in From. Move to end and update access lists.
1197 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1198                                        Instruction *Start) {
1199 
1200   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1201   if (!Accs)
1202     return;
1203 
1204   assert(Start->getParent() == To && "Incorrect Start instruction");
1205   MemoryAccess *FirstInNew = nullptr;
1206   for (Instruction &I : make_range(Start->getIterator(), To->end()))
1207     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1208       break;
1209   if (FirstInNew) {
1210     auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1211     do {
1212       auto NextIt = ++MUD->getIterator();
1213       MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1214                                     ? nullptr
1215                                     : cast<MemoryUseOrDef>(&*NextIt);
1216       MSSA->moveTo(MUD, To, MemorySSA::End);
1217       // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
1218       // to retrieve it again.
1219       Accs = MSSA->getWritableBlockAccesses(From);
1220       MUD = NextMUD;
1221     } while (MUD);
1222   }
1223 
1224   // If all accesses were moved and only a trivial Phi remains, we try to remove
1225   // that Phi. This is needed when From is going to be deleted.
1226   auto *Defs = MSSA->getWritableBlockDefs(From);
1227   if (Defs && !Defs->empty())
1228     if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
1229       tryRemoveTrivialPhi(Phi);
1230 }
1231 
1232 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1233                                                 BasicBlock *To,
1234                                                 Instruction *Start) {
1235   assert(MSSA->getBlockAccesses(To) == nullptr &&
1236          "To block is expected to be free of MemoryAccesses.");
1237   moveAllAccesses(From, To, Start);
1238   for (BasicBlock *Succ : successors(To))
1239     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1240       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1241 }
1242 
1243 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1244                                                Instruction *Start) {
1245   assert(From->getUniquePredecessor() == To &&
1246          "From block is expected to have a single predecessor (To).");
1247   moveAllAccesses(From, To, Start);
1248   for (BasicBlock *Succ : successors(From))
1249     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1250       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1251 }
1252 
1253 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1254     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1255     bool IdenticalEdgesWereMerged) {
1256   assert(!MSSA->getWritableBlockAccesses(New) &&
1257          "Access list should be null for a new block.");
1258   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1259   if (!Phi)
1260     return;
1261   if (Old->hasNPredecessors(1)) {
1262     assert(pred_size(New) == Preds.size() &&
1263            "Should have moved all predecessors.");
1264     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1265   } else {
1266     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1267                              "new immediate predecessor.");
1268     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1269     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1270     // Currently only support the case of removing a single incoming edge when
1271     // identical edges were not merged.
1272     if (!IdenticalEdgesWereMerged)
1273       assert(PredsSet.size() == Preds.size() &&
1274              "If identical edges were not merged, we cannot have duplicate "
1275              "blocks in the predecessors");
1276     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1277       if (PredsSet.count(B)) {
1278         NewPhi->addIncoming(MA, B);
1279         if (!IdenticalEdgesWereMerged)
1280           PredsSet.erase(B);
1281         return true;
1282       }
1283       return false;
1284     });
1285     Phi->addIncoming(NewPhi, New);
1286     tryRemoveTrivialPhi(NewPhi);
1287   }
1288 }
1289 
1290 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1291   assert(!MSSA->isLiveOnEntryDef(MA) &&
1292          "Trying to remove the live on entry def");
1293   // We can only delete phi nodes if they have no uses, or we can replace all
1294   // uses with a single definition.
1295   MemoryAccess *NewDefTarget = nullptr;
1296   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1297     // Note that it is sufficient to know that all edges of the phi node have
1298     // the same argument.  If they do, by the definition of dominance frontiers
1299     // (which we used to place this phi), that argument must dominate this phi,
1300     // and thus, must dominate the phi's uses, and so we will not hit the assert
1301     // below.
1302     NewDefTarget = onlySingleValue(MP);
1303     assert((NewDefTarget || MP->use_empty()) &&
1304            "We can't delete this memory phi");
1305   } else {
1306     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1307   }
1308 
1309   SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1310 
1311   // Re-point the uses at our defining access
1312   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1313     // Reset optimized on users of this store, and reset the uses.
1314     // A few notes:
1315     // 1. This is a slightly modified version of RAUW to avoid walking the
1316     // uses twice here.
1317     // 2. If we wanted to be complete, we would have to reset the optimized
1318     // flags on users of phi nodes if doing the below makes a phi node have all
1319     // the same arguments. Instead, we prefer users to removeMemoryAccess those
1320     // phi nodes, because doing it here would be N^3.
1321     if (MA->hasValueHandle())
1322       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1323     // Note: We assume MemorySSA is not used in metadata since it's not really
1324     // part of the IR.
1325 
1326     assert(NewDefTarget != MA && "Going into an infinite loop");
1327     while (!MA->use_empty()) {
1328       Use &U = *MA->use_begin();
1329       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1330         MUD->resetOptimized();
1331       if (OptimizePhis)
1332         if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1333           PhisToCheck.insert(MP);
1334       U.set(NewDefTarget);
1335     }
1336   }
1337 
1338   // The call below to erase will destroy MA, so we can't change the order we
1339   // are doing things here
1340   MSSA->removeFromLookups(MA);
1341   MSSA->removeFromLists(MA);
1342 
1343   // Optionally optimize Phi uses. This will recursively remove trivial phis.
1344   if (!PhisToCheck.empty()) {
1345     SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1346                                            PhisToCheck.end()};
1347     PhisToCheck.clear();
1348 
1349     unsigned PhisSize = PhisToOptimize.size();
1350     while (PhisSize-- > 0)
1351       if (MemoryPhi *MP =
1352               cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
1353         tryRemoveTrivialPhi(MP);
1354   }
1355 }
1356 
1357 void MemorySSAUpdater::removeBlocks(
1358     const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1359   // First delete all uses of BB in MemoryPhis.
1360   for (BasicBlock *BB : DeadBlocks) {
1361     Instruction *TI = BB->getTerminator();
1362     assert(TI && "Basic block expected to have a terminator instruction");
1363     for (BasicBlock *Succ : successors(TI))
1364       if (!DeadBlocks.count(Succ))
1365         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1366           MP->unorderedDeleteIncomingBlock(BB);
1367           tryRemoveTrivialPhi(MP);
1368         }
1369     // Drop all references of all accesses in BB
1370     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1371       for (MemoryAccess &MA : *Acc)
1372         MA.dropAllReferences();
1373   }
1374 
1375   // Next, delete all memory accesses in each block
1376   for (BasicBlock *BB : DeadBlocks) {
1377     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1378     if (!Acc)
1379       continue;
1380     for (MemoryAccess &MA : llvm::make_early_inc_range(*Acc)) {
1381       MSSA->removeFromLookups(&MA);
1382       MSSA->removeFromLists(&MA);
1383     }
1384   }
1385 }
1386 
1387 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1388   for (const auto &VH : UpdatedPHIs)
1389     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1390       tryRemoveTrivialPhi(MPhi);
1391 }
1392 
1393 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1394   const BasicBlock *BB = I->getParent();
1395   // Remove memory accesses in BB for I and all following instructions.
1396   auto BBI = I->getIterator(), BBE = BB->end();
1397   // FIXME: If this becomes too expensive, iterate until the first instruction
1398   // with a memory access, then iterate over MemoryAccesses.
1399   while (BBI != BBE)
1400     removeMemoryAccess(&*(BBI++));
1401   // Update phis in BB's successors to remove BB.
1402   SmallVector<WeakVH, 16> UpdatedPHIs;
1403   for (const BasicBlock *Successor : successors(BB)) {
1404     removeDuplicatePhiEdgesBetween(BB, Successor);
1405     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1406       MPhi->unorderedDeleteIncomingBlock(BB);
1407       UpdatedPHIs.push_back(MPhi);
1408     }
1409   }
1410   // Optimize trivial phis.
1411   tryRemoveTrivialPhis(UpdatedPHIs);
1412 }
1413 
1414 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1415     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1416     MemorySSA::InsertionPlace Point, bool CreationMustSucceed) {
1417   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(
1418       I, Definition, /*Template=*/nullptr, CreationMustSucceed);
1419   if (NewAccess)
1420     MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1421   return NewAccess;
1422 }
1423 
1424 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1425     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1426   assert(I->getParent() == InsertPt->getBlock() &&
1427          "New and old access must be in the same block");
1428   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1429   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1430                               InsertPt->getIterator());
1431   return NewAccess;
1432 }
1433 
1434 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1435     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1436   assert(I->getParent() == InsertPt->getBlock() &&
1437          "New and old access must be in the same block");
1438   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1439   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1440                               ++InsertPt->getIterator());
1441   return NewAccess;
1442 }
1443