xref: /llvm-project/llvm/lib/Analysis/LoopUnrollAnalyzer.cpp (revision 963a6d9c69c9d18b57543f751d5de05f9578dc1d)
1 //===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements UnrolledInstAnalyzer class. It's used for predicting
11 // potential effects that loop unrolling might have, such as enabling constant
12 // propagation and other optimizations.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
17 #include "llvm/IR/Dominators.h"
18 
19 using namespace llvm;
20 
21 /// \brief Try to simplify instruction \param I using its SCEV expression.
22 ///
23 /// The idea is that some AddRec expressions become constants, which then
24 /// could trigger folding of other instructions. However, that only happens
25 /// for expressions whose start value is also constant, which isn't always the
26 /// case. In another common and important case the start value is just some
27 /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
28 /// it along with the base address instead.
29 bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) {
30   if (!SE.isSCEVable(I->getType()))
31     return false;
32 
33   const SCEV *S = SE.getSCEV(I);
34   if (auto *SC = dyn_cast<SCEVConstant>(S)) {
35     SimplifiedValues[I] = SC->getValue();
36     return true;
37   }
38 
39   auto *AR = dyn_cast<SCEVAddRecExpr>(S);
40   if (!AR || AR->getLoop() != L)
41     return false;
42 
43   const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
44   // Check if the AddRec expression becomes a constant.
45   if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
46     SimplifiedValues[I] = SC->getValue();
47     return true;
48   }
49 
50   // Check if the offset from the base address becomes a constant.
51   auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
52   if (!Base)
53     return false;
54   auto *Offset =
55       dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
56   if (!Offset)
57     return false;
58   SimplifiedAddress Address;
59   Address.Base = Base->getValue();
60   Address.Offset = Offset->getValue();
61   SimplifiedAddresses[I] = Address;
62   return false;
63 }
64 
65 /// Try to simplify binary operator I.
66 ///
67 /// TODO: Probably it's worth to hoist the code for estimating the
68 /// simplifications effects to a separate class, since we have a very similar
69 /// code in InlineCost already.
70 bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) {
71   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
72   if (!isa<Constant>(LHS))
73     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
74       LHS = SimpleLHS;
75   if (!isa<Constant>(RHS))
76     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
77       RHS = SimpleRHS;
78 
79   Value *SimpleV = nullptr;
80   const DataLayout &DL = I.getModule()->getDataLayout();
81   if (auto FI = dyn_cast<FPMathOperator>(&I))
82     SimpleV =
83         SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
84   else
85     SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
86 
87   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
88     SimplifiedValues[&I] = C;
89 
90   if (SimpleV)
91     return true;
92   return Base::visitBinaryOperator(I);
93 }
94 
95 /// Try to fold load I.
96 bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) {
97   Value *AddrOp = I.getPointerOperand();
98 
99   auto AddressIt = SimplifiedAddresses.find(AddrOp);
100   if (AddressIt == SimplifiedAddresses.end())
101     return false;
102   ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
103 
104   auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
105   // We're only interested in loads that can be completely folded to a
106   // constant.
107   if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
108     return false;
109 
110   ConstantDataSequential *CDS =
111       dyn_cast<ConstantDataSequential>(GV->getInitializer());
112   if (!CDS)
113     return false;
114 
115   // We might have a vector load from an array. FIXME: for now we just bail
116   // out in this case, but we should be able to resolve and simplify such
117   // loads.
118   if(!CDS->isElementTypeCompatible(I.getType()))
119     return false;
120 
121   int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
122   assert(SimplifiedAddrOp->getValue().getActiveBits() < 64 &&
123          "Unexpectedly large index value.");
124   int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize;
125   if (Index >= CDS->getNumElements()) {
126     // FIXME: For now we conservatively ignore out of bound accesses, but
127     // we're allowed to perform the optimization in this case.
128     return false;
129   }
130 
131   Constant *CV = CDS->getElementAsConstant(Index);
132   assert(CV && "Constant expected.");
133   SimplifiedValues[&I] = CV;
134 
135   return true;
136 }
137 
138 /// Try to simplify cast instruction.
139 bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) {
140   // Propagate constants through casts.
141   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
142   if (!COp)
143     COp = SimplifiedValues.lookup(I.getOperand(0));
144   if (COp)
145     if (Constant *C =
146             ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
147       SimplifiedValues[&I] = C;
148       return true;
149     }
150 
151   return Base::visitCastInst(I);
152 }
153 
154 /// Try to simplify cmp instruction.
155 bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) {
156   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
157 
158   // First try to handle simplified comparisons.
159   if (!isa<Constant>(LHS))
160     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
161       LHS = SimpleLHS;
162   if (!isa<Constant>(RHS))
163     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
164       RHS = SimpleRHS;
165 
166   if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
167     auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
168     if (SimplifiedLHS != SimplifiedAddresses.end()) {
169       auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
170       if (SimplifiedRHS != SimplifiedAddresses.end()) {
171         SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
172         SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
173         if (LHSAddr.Base == RHSAddr.Base) {
174           LHS = LHSAddr.Offset;
175           RHS = RHSAddr.Offset;
176         }
177       }
178     }
179   }
180 
181   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
182     if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
183       if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
184         SimplifiedValues[&I] = C;
185         return true;
186       }
187     }
188   }
189 
190   return Base::visitCmpInst(I);
191 }
192 
193 bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) {
194   // Run base visitor first. This way we can gather some useful for later
195   // analysis information.
196   if (Base::visitPHINode(PN))
197     return true;
198 
199   // The loop induction PHI nodes are definitionally free.
200   return PN.getParent() == L->getHeader();
201 }
202