1 //===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements UnrolledInstAnalyzer class. It's used for predicting 10 // potential effects that loop unrolling might have, such as enabling constant 11 // propagation and other optimizations. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/IR/Operator.h" 21 22 using namespace llvm; 23 24 /// Try to simplify instruction \param I using its SCEV expression. 25 /// 26 /// The idea is that some AddRec expressions become constants, which then 27 /// could trigger folding of other instructions. However, that only happens 28 /// for expressions whose start value is also constant, which isn't always the 29 /// case. In another common and important case the start value is just some 30 /// address (i.e. SCEVUnknown) - in this case we compute the offset and save 31 /// it along with the base address instead. 32 bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) { 33 if (!SE.isSCEVable(I->getType())) 34 return false; 35 36 const SCEV *S = SE.getSCEV(I); 37 if (auto *SC = dyn_cast<SCEVConstant>(S)) { 38 SimplifiedValues[I] = SC->getValue(); 39 return true; 40 } 41 42 // If we have a loop invariant computation, we only need to compute it once. 43 // Given that, all but the first occurance are free. 44 if (!IterationNumber->isZero() && SE.isLoopInvariant(S, L)) 45 return true; 46 47 auto *AR = dyn_cast<SCEVAddRecExpr>(S); 48 if (!AR || AR->getLoop() != L) 49 return false; 50 51 const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE); 52 // Check if the AddRec expression becomes a constant. 53 if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) { 54 SimplifiedValues[I] = SC->getValue(); 55 return true; 56 } 57 58 // Check if the offset from the base address becomes a constant. 59 auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S)); 60 if (!Base) 61 return false; 62 std::optional<APInt> Offset = 63 SE.computeConstantDifference(ValueAtIteration, Base); 64 if (!Offset) 65 return false; 66 SimplifiedAddress Address; 67 Address.Base = Base->getValue(); 68 Address.Offset = *Offset; 69 SimplifiedAddresses[I] = Address; 70 return false; 71 } 72 73 /// Try to simplify binary operator I. 74 /// 75 /// TODO: Probably it's worth to hoist the code for estimating the 76 /// simplifications effects to a separate class, since we have a very similar 77 /// code in InlineCost already. 78 bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) { 79 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 80 if (!isa<Constant>(LHS)) 81 if (Value *SimpleLHS = SimplifiedValues.lookup(LHS)) 82 LHS = SimpleLHS; 83 if (!isa<Constant>(RHS)) 84 if (Value *SimpleRHS = SimplifiedValues.lookup(RHS)) 85 RHS = SimpleRHS; 86 87 Value *SimpleV = nullptr; 88 const DataLayout &DL = I.getDataLayout(); 89 if (auto FI = dyn_cast<FPMathOperator>(&I)) 90 SimpleV = 91 simplifyBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); 92 else 93 SimpleV = simplifyBinOp(I.getOpcode(), LHS, RHS, DL); 94 95 if (SimpleV) { 96 SimplifiedValues[&I] = SimpleV; 97 return true; 98 } 99 return Base::visitBinaryOperator(I); 100 } 101 102 /// Try to fold load I. 103 bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) { 104 Value *AddrOp = I.getPointerOperand(); 105 106 auto AddressIt = SimplifiedAddresses.find(AddrOp); 107 if (AddressIt == SimplifiedAddresses.end()) 108 return false; 109 110 auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base); 111 // We're only interested in loads that can be completely folded to a 112 // constant. 113 if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant()) 114 return false; 115 116 Constant *Res = 117 ConstantFoldLoadFromConst(GV->getInitializer(), I.getType(), 118 AddressIt->second.Offset, I.getDataLayout()); 119 if (!Res) 120 return false; 121 122 SimplifiedValues[&I] = Res; 123 return true; 124 } 125 126 /// Try to simplify cast instruction. 127 bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) { 128 Value *Op = I.getOperand(0); 129 if (Value *Simplified = SimplifiedValues.lookup(Op)) 130 Op = Simplified; 131 132 // The cast can be invalid, because SimplifiedValues contains results of SCEV 133 // analysis, which operates on integers (and, e.g., might convert i8* null to 134 // i32 0). 135 if (CastInst::castIsValid(I.getOpcode(), Op, I.getType())) { 136 const DataLayout &DL = I.getDataLayout(); 137 if (Value *V = simplifyCastInst(I.getOpcode(), Op, I.getType(), DL)) { 138 SimplifiedValues[&I] = V; 139 return true; 140 } 141 } 142 143 return Base::visitCastInst(I); 144 } 145 146 /// Try to simplify cmp instruction. 147 bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) { 148 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 149 150 // First try to handle simplified comparisons. 151 if (!isa<Constant>(LHS)) 152 if (Value *SimpleLHS = SimplifiedValues.lookup(LHS)) 153 LHS = SimpleLHS; 154 if (!isa<Constant>(RHS)) 155 if (Value *SimpleRHS = SimplifiedValues.lookup(RHS)) 156 RHS = SimpleRHS; 157 158 if (!isa<Constant>(LHS) && !isa<Constant>(RHS) && !I.isSigned()) { 159 auto SimplifiedLHS = SimplifiedAddresses.find(LHS); 160 if (SimplifiedLHS != SimplifiedAddresses.end()) { 161 auto SimplifiedRHS = SimplifiedAddresses.find(RHS); 162 if (SimplifiedRHS != SimplifiedAddresses.end()) { 163 SimplifiedAddress &LHSAddr = SimplifiedLHS->second; 164 SimplifiedAddress &RHSAddr = SimplifiedRHS->second; 165 if (LHSAddr.Base == RHSAddr.Base) { 166 // FIXME: This is only correct for equality predicates. For 167 // unsigned predicates, this only holds if we have nowrap flags, 168 // which we don't track (for nuw it's valid as-is, for nusw it 169 // requires converting the predicated to signed). As this is used only 170 // for cost modelling, this is not a correctness issue. 171 bool Res = ICmpInst::compare(LHSAddr.Offset, RHSAddr.Offset, 172 I.getPredicate()); 173 SimplifiedValues[&I] = ConstantInt::getBool(I.getType(), Res); 174 return true; 175 } 176 } 177 } 178 } 179 180 const DataLayout &DL = I.getDataLayout(); 181 if (Value *V = simplifyCmpInst(I.getPredicate(), LHS, RHS, DL)) { 182 SimplifiedValues[&I] = V; 183 return true; 184 } 185 186 return Base::visitCmpInst(I); 187 } 188 189 bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) { 190 // Run base visitor first. This way we can gather some useful for later 191 // analysis information. 192 if (Base::visitPHINode(PN)) 193 return true; 194 195 // The loop induction PHI nodes are definitionally free. 196 return PN.getParent() == L->getHeader(); 197 } 198 199 bool UnrolledInstAnalyzer::visitInstruction(Instruction &I) { 200 return simplifyInstWithSCEV(&I); 201 } 202