1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 6 // See https://llvm.org/LICENSE.txt for license information. 7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 8 // 9 //===----------------------------------------------------------------------===// 10 /// 11 /// \file 12 /// This file defines the implementation for the loop cache analysis. 13 /// The implementation is largely based on the following paper: 14 /// 15 /// Compiler Optimizations for Improving Data Locality 16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng 17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf 18 /// 19 /// The general approach taken to estimate the number of cache lines used by the 20 /// memory references in an inner loop is: 21 /// 1. Partition memory references that exhibit temporal or spacial reuse 22 /// into reference groups. 23 /// 2. For each loop L in the a loop nest LN: 24 /// a. Compute the cost of the reference group 25 /// b. Compute the loop cost by summing up the reference groups costs 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Analysis/LoopCacheAnalysis.h" 29 #include "llvm/ADT/BreadthFirstIterator.h" 30 #include "llvm/ADT/Sequence.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/Delinearization.h" 34 #include "llvm/Analysis/DependenceAnalysis.h" 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-cache-cost" 44 45 static cl::opt<unsigned> DefaultTripCount( 46 "default-trip-count", cl::init(100), cl::Hidden, 47 cl::desc("Use this to specify the default trip count of a loop")); 48 49 // In this analysis two array references are considered to exhibit temporal 50 // reuse if they access either the same memory location, or a memory location 51 // with distance smaller than a configurable threshold. 52 static cl::opt<unsigned> TemporalReuseThreshold( 53 "temporal-reuse-threshold", cl::init(2), cl::Hidden, 54 cl::desc("Use this to specify the max. distance between array elements " 55 "accessed in a loop so that the elements are classified to have " 56 "temporal reuse")); 57 58 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a 59 /// nullptr if any loops in the loop vector supplied has more than one sibling. 60 /// The loop vector is expected to contain loops collected in breadth-first 61 /// order. 62 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { 63 assert(!Loops.empty() && "Expecting a non-empy loop vector"); 64 65 Loop *LastLoop = Loops.back(); 66 Loop *ParentLoop = LastLoop->getParentLoop(); 67 68 if (ParentLoop == nullptr) { 69 assert(Loops.size() == 1 && "Expecting a single loop"); 70 return LastLoop; 71 } 72 73 return (llvm::is_sorted(Loops, 74 [](const Loop *L1, const Loop *L2) { 75 return L1->getLoopDepth() < L2->getLoopDepth(); 76 })) 77 ? LastLoop 78 : nullptr; 79 } 80 81 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, 82 const Loop &L, ScalarEvolution &SE) { 83 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn); 84 if (!AR || !AR->isAffine()) 85 return false; 86 87 assert(AR->getLoop() && "AR should have a loop"); 88 89 // Check that start and increment are not add recurrences. 90 const SCEV *Start = AR->getStart(); 91 const SCEV *Step = AR->getStepRecurrence(SE); 92 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step)) 93 return false; 94 95 // Check that start and increment are both invariant in the loop. 96 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 97 return false; 98 99 const SCEV *StepRec = AR->getStepRecurrence(SE); 100 if (StepRec && SE.isKnownNegative(StepRec)) 101 StepRec = SE.getNegativeSCEV(StepRec); 102 103 return StepRec == &ElemSize; 104 } 105 106 /// Compute the trip count for the given loop \p L or assume a default value if 107 /// it is not a compile time constant. Return the SCEV expression for the trip 108 /// count. 109 static const SCEV *computeTripCount(const Loop &L, const SCEV &ElemSize, 110 ScalarEvolution &SE) { 111 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); 112 const SCEV *TripCount = (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 113 isa<SCEVConstant>(BackedgeTakenCount)) 114 ? SE.getTripCountFromExitCount(BackedgeTakenCount) 115 : nullptr; 116 117 if (!TripCount) { 118 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() 119 << " could not be computed, using DefaultTripCount\n"); 120 TripCount = SE.getConstant(ElemSize.getType(), DefaultTripCount); 121 } 122 123 return TripCount; 124 } 125 126 //===----------------------------------------------------------------------===// 127 // IndexedReference implementation 128 // 129 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { 130 if (!R.IsValid) { 131 OS << R.StoreOrLoadInst; 132 OS << ", IsValid=false."; 133 return OS; 134 } 135 136 OS << *R.BasePointer; 137 for (const SCEV *Subscript : R.Subscripts) 138 OS << "[" << *Subscript << "]"; 139 140 OS << ", Sizes: "; 141 for (const SCEV *Size : R.Sizes) 142 OS << "[" << *Size << "]"; 143 144 return OS; 145 } 146 147 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, 148 const LoopInfo &LI, ScalarEvolution &SE) 149 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { 150 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && 151 "Expecting a load or store instruction"); 152 153 IsValid = delinearize(LI); 154 if (IsValid) 155 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this 156 << "\n"); 157 } 158 159 std::optional<bool> 160 IndexedReference::hasSpacialReuse(const IndexedReference &Other, unsigned CLS, 161 AAResults &AA) const { 162 assert(IsValid && "Expecting a valid reference"); 163 164 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 165 LLVM_DEBUG(dbgs().indent(2) 166 << "No spacial reuse: different base pointers\n"); 167 return false; 168 } 169 170 unsigned NumSubscripts = getNumSubscripts(); 171 if (NumSubscripts != Other.getNumSubscripts()) { 172 LLVM_DEBUG(dbgs().indent(2) 173 << "No spacial reuse: different number of subscripts\n"); 174 return false; 175 } 176 177 // all subscripts must be equal, except the leftmost one (the last one). 178 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) { 179 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { 180 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " 181 << "\n\t" << *getSubscript(SubNum) << "\n\t" 182 << *Other.getSubscript(SubNum) << "\n"); 183 return false; 184 } 185 } 186 187 // the difference between the last subscripts must be less than the cache line 188 // size. 189 const SCEV *LastSubscript = getLastSubscript(); 190 const SCEV *OtherLastSubscript = Other.getLastSubscript(); 191 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 192 SE.getMinusSCEV(LastSubscript, OtherLastSubscript)); 193 194 if (Diff == nullptr) { 195 LLVM_DEBUG(dbgs().indent(2) 196 << "No spacial reuse, difference between subscript:\n\t" 197 << *LastSubscript << "\n\t" << OtherLastSubscript 198 << "\nis not constant.\n"); 199 return std::nullopt; 200 } 201 202 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); 203 204 LLVM_DEBUG({ 205 if (InSameCacheLine) 206 dbgs().indent(2) << "Found spacial reuse.\n"; 207 else 208 dbgs().indent(2) << "No spacial reuse.\n"; 209 }); 210 211 return InSameCacheLine; 212 } 213 214 std::optional<bool> 215 IndexedReference::hasTemporalReuse(const IndexedReference &Other, 216 unsigned MaxDistance, const Loop &L, 217 DependenceInfo &DI, AAResults &AA) const { 218 assert(IsValid && "Expecting a valid reference"); 219 220 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 221 LLVM_DEBUG(dbgs().indent(2) 222 << "No temporal reuse: different base pointer\n"); 223 return false; 224 } 225 226 std::unique_ptr<Dependence> D = 227 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true); 228 229 if (D == nullptr) { 230 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n"); 231 return false; 232 } 233 234 if (D->isLoopIndependent()) { 235 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 236 return true; 237 } 238 239 // Check the dependence distance at every loop level. There is temporal reuse 240 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and 241 // it is zero at every other loop level. 242 int LoopDepth = L.getLoopDepth(); 243 int Levels = D->getLevels(); 244 for (int Level = 1; Level <= Levels; ++Level) { 245 const SCEV *Distance = D->getDistance(Level); 246 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance); 247 248 if (SCEVConst == nullptr) { 249 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n"); 250 return std::nullopt; 251 } 252 253 const ConstantInt &CI = *SCEVConst->getValue(); 254 if (Level != LoopDepth && !CI.isZero()) { 255 LLVM_DEBUG(dbgs().indent(2) 256 << "No temporal reuse: distance is not zero at depth=" << Level 257 << "\n"); 258 return false; 259 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { 260 LLVM_DEBUG( 261 dbgs().indent(2) 262 << "No temporal reuse: distance is greater than MaxDistance at depth=" 263 << Level << "\n"); 264 return false; 265 } 266 } 267 268 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 269 return true; 270 } 271 272 CacheCostTy IndexedReference::computeRefCost(const Loop &L, 273 unsigned CLS) const { 274 assert(IsValid && "Expecting a valid reference"); 275 LLVM_DEBUG({ 276 dbgs().indent(2) << "Computing cache cost for:\n"; 277 dbgs().indent(4) << *this << "\n"; 278 }); 279 280 // If the indexed reference is loop invariant the cost is one. 281 if (isLoopInvariant(L)) { 282 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n"); 283 return 1; 284 } 285 286 const SCEV *TripCount = computeTripCount(L, *Sizes.back(), SE); 287 assert(TripCount && "Expecting valid TripCount"); 288 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); 289 290 const SCEV *RefCost = nullptr; 291 const SCEV *Stride = nullptr; 292 if (isConsecutive(L, Stride, CLS)) { 293 // If the indexed reference is 'consecutive' the cost is 294 // (TripCount*Stride)/CLS. 295 assert(Stride != nullptr && 296 "Stride should not be null for consecutive access!"); 297 Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType()); 298 const SCEV *CacheLineSize = SE.getConstant(WiderType, CLS); 299 Stride = SE.getNoopOrAnyExtend(Stride, WiderType); 300 TripCount = SE.getNoopOrZeroExtend(TripCount, WiderType); 301 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount); 302 // Round the fractional cost up to the nearest integer number. 303 // The impact is the most significant when cost is calculated 304 // to be a number less than one, because it makes more sense 305 // to say one cache line is used rather than zero cache line 306 // is used. 307 RefCost = SE.getUDivCeilSCEV(Numerator, CacheLineSize); 308 309 LLVM_DEBUG(dbgs().indent(4) 310 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" 311 << *RefCost << "\n"); 312 } else { 313 // If the indexed reference is not 'consecutive' the cost is proportional to 314 // the trip count and the depth of the dimension which the subject loop 315 // subscript is accessing. We try to estimate this by multiplying the cost 316 // by the trip counts of loops corresponding to the inner dimensions. For 317 // example, given the indexed reference 'A[i][j][k]', and assuming the 318 // i-loop is in the innermost position, the cost would be equal to the 319 // iterations of the i-loop multiplied by iterations of the j-loop. 320 RefCost = TripCount; 321 322 int Index = getSubscriptIndex(L); 323 assert(Index >= 0 && "Could not locate a valid Index"); 324 325 for (unsigned I = Index + 1; I < getNumSubscripts() - 1; ++I) { 326 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(I)); 327 assert(AR && AR->getLoop() && "Expecting valid loop"); 328 const SCEV *TripCount = 329 computeTripCount(*AR->getLoop(), *Sizes.back(), SE); 330 Type *WiderType = SE.getWiderType(RefCost->getType(), TripCount->getType()); 331 // For the multiplication result to fit, request a type twice as wide. 332 WiderType = WiderType->getExtendedType(); 333 RefCost = SE.getMulExpr(SE.getNoopOrZeroExtend(RefCost, WiderType), 334 SE.getNoopOrZeroExtend(TripCount, WiderType)); 335 } 336 337 LLVM_DEBUG(dbgs().indent(4) 338 << "Access is not consecutive: RefCost=" << *RefCost << "\n"); 339 } 340 assert(RefCost && "Expecting a valid RefCost"); 341 342 // Attempt to fold RefCost into a constant. 343 // CacheCostTy is a signed integer, but the tripcount value can be large 344 // and may not fit, so saturate/limit the value to the maximum signed 345 // integer value. 346 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost)) 347 return ConstantCost->getValue()->getLimitedValue( 348 std::numeric_limits<int64_t>::max()); 349 350 LLVM_DEBUG(dbgs().indent(4) 351 << "RefCost is not a constant! Setting to RefCost=InvalidCost " 352 "(invalid value).\n"); 353 354 return CacheCostTy::getInvalid(); 355 } 356 357 bool IndexedReference::tryDelinearizeFixedSize( 358 const SCEV *AccessFn, SmallVectorImpl<const SCEV *> &Subscripts) { 359 SmallVector<int, 4> ArraySizes; 360 if (!tryDelinearizeFixedSizeImpl(&SE, &StoreOrLoadInst, AccessFn, Subscripts, 361 ArraySizes)) 362 return false; 363 364 // Populate Sizes with scev expressions to be used in calculations later. 365 for (auto Idx : seq<unsigned>(1, Subscripts.size())) 366 Sizes.push_back( 367 SE.getConstant(Subscripts[Idx]->getType(), ArraySizes[Idx - 1])); 368 369 LLVM_DEBUG({ 370 dbgs() << "Delinearized subscripts of fixed-size array\n" 371 << "GEP:" << *getLoadStorePointerOperand(&StoreOrLoadInst) 372 << "\n"; 373 }); 374 return true; 375 } 376 377 bool IndexedReference::delinearize(const LoopInfo &LI) { 378 assert(Subscripts.empty() && "Subscripts should be empty"); 379 assert(Sizes.empty() && "Sizes should be empty"); 380 assert(!IsValid && "Should be called once from the constructor"); 381 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n"); 382 383 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst); 384 const BasicBlock *BB = StoreOrLoadInst.getParent(); 385 386 if (Loop *L = LI.getLoopFor(BB)) { 387 const SCEV *AccessFn = 388 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L); 389 390 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn)); 391 if (BasePointer == nullptr) { 392 LLVM_DEBUG( 393 dbgs().indent(2) 394 << "ERROR: failed to delinearize, can't identify base pointer\n"); 395 return false; 396 } 397 398 bool IsFixedSize = false; 399 // Try to delinearize fixed-size arrays. 400 if (tryDelinearizeFixedSize(AccessFn, Subscripts)) { 401 IsFixedSize = true; 402 // The last element of Sizes is the element size. 403 Sizes.push_back(ElemSize); 404 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() 405 << "', AccessFn: " << *AccessFn << "\n"); 406 } 407 408 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer); 409 410 // Try to delinearize parametric-size arrays. 411 if (!IsFixedSize) { 412 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() 413 << "', AccessFn: " << *AccessFn << "\n"); 414 llvm::delinearize(SE, AccessFn, Subscripts, Sizes, 415 SE.getElementSize(&StoreOrLoadInst)); 416 } 417 418 if (Subscripts.empty() || Sizes.empty() || 419 Subscripts.size() != Sizes.size()) { 420 // Attempt to determine whether we have a single dimensional array access. 421 // before giving up. 422 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) { 423 LLVM_DEBUG(dbgs().indent(2) 424 << "ERROR: failed to delinearize reference\n"); 425 Subscripts.clear(); 426 Sizes.clear(); 427 return false; 428 } 429 430 // The array may be accessed in reverse, for example: 431 // for (i = N; i > 0; i--) 432 // A[i] = 0; 433 // In this case, reconstruct the access function using the absolute value 434 // of the step recurrence. 435 const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn); 436 const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr; 437 438 if (StepRec && SE.isKnownNegative(StepRec)) 439 AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(), 440 SE.getNegativeSCEV(StepRec), 441 AccessFnAR->getLoop(), 442 AccessFnAR->getNoWrapFlags()); 443 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize); 444 Subscripts.push_back(Div); 445 Sizes.push_back(ElemSize); 446 } 447 448 return all_of(Subscripts, [&](const SCEV *Subscript) { 449 return isSimpleAddRecurrence(*Subscript, *L); 450 }); 451 } 452 453 return false; 454 } 455 456 bool IndexedReference::isLoopInvariant(const Loop &L) const { 457 Value *Addr = getPointerOperand(&StoreOrLoadInst); 458 assert(Addr != nullptr && "Expecting either a load or a store instruction"); 459 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable"); 460 461 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L)) 462 return true; 463 464 // The indexed reference is loop invariant if none of the coefficients use 465 // the loop induction variable. 466 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) { 467 return isCoeffForLoopZeroOrInvariant(*Subscript, L); 468 }); 469 470 return allCoeffForLoopAreZero; 471 } 472 473 bool IndexedReference::isConsecutive(const Loop &L, const SCEV *&Stride, 474 unsigned CLS) const { 475 // The indexed reference is 'consecutive' if the only coefficient that uses 476 // the loop induction variable is the last one... 477 const SCEV *LastSubscript = Subscripts.back(); 478 for (const SCEV *Subscript : Subscripts) { 479 if (Subscript == LastSubscript) 480 continue; 481 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L)) 482 return false; 483 } 484 485 // ...and the access stride is less than the cache line size. 486 const SCEV *Coeff = getLastCoefficient(); 487 const SCEV *ElemSize = Sizes.back(); 488 Type *WiderType = SE.getWiderType(Coeff->getType(), ElemSize->getType()); 489 // FIXME: This assumes that all values are signed integers which may 490 // be incorrect in unusual codes and incorrectly use sext instead of zext. 491 // for (uint32_t i = 0; i < 512; ++i) { 492 // uint8_t trunc = i; 493 // A[trunc] = 42; 494 // } 495 // This consecutively iterates twice over A. If `trunc` is sign-extended, 496 // we would conclude that this may iterate backwards over the array. 497 // However, LoopCacheAnalysis is heuristic anyway and transformations must 498 // not result in wrong optimizations if the heuristic was incorrect. 499 Stride = SE.getMulExpr(SE.getNoopOrSignExtend(Coeff, WiderType), 500 SE.getNoopOrSignExtend(ElemSize, WiderType)); 501 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 502 503 Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride; 504 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); 505 } 506 507 int IndexedReference::getSubscriptIndex(const Loop &L) const { 508 for (auto Idx : seq<int>(0, getNumSubscripts())) { 509 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(Idx)); 510 if (AR && AR->getLoop() == &L) { 511 return Idx; 512 } 513 } 514 return -1; 515 } 516 517 const SCEV *IndexedReference::getLastCoefficient() const { 518 const SCEV *LastSubscript = getLastSubscript(); 519 auto *AR = cast<SCEVAddRecExpr>(LastSubscript); 520 return AR->getStepRecurrence(SE); 521 } 522 523 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, 524 const Loop &L) const { 525 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript); 526 return (AR != nullptr) ? AR->getLoop() != &L 527 : SE.isLoopInvariant(&Subscript, &L); 528 } 529 530 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, 531 const Loop &L) const { 532 if (!isa<SCEVAddRecExpr>(Subscript)) 533 return false; 534 535 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript); 536 assert(AR->getLoop() && "AR should have a loop"); 537 538 if (!AR->isAffine()) 539 return false; 540 541 const SCEV *Start = AR->getStart(); 542 const SCEV *Step = AR->getStepRecurrence(SE); 543 544 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 545 return false; 546 547 return true; 548 } 549 550 bool IndexedReference::isAliased(const IndexedReference &Other, 551 AAResults &AA) const { 552 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst); 553 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst); 554 return AA.isMustAlias(Loc1, Loc2); 555 } 556 557 //===----------------------------------------------------------------------===// 558 // CacheCost implementation 559 // 560 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { 561 for (const auto &LC : CC.LoopCosts) { 562 const Loop *L = LC.first; 563 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n"; 564 } 565 return OS; 566 } 567 568 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, 569 ScalarEvolution &SE, TargetTransformInfo &TTI, 570 AAResults &AA, DependenceInfo &DI, 571 std::optional<unsigned> TRT) 572 : Loops(Loops), TRT(TRT.value_or(TemporalReuseThreshold)), LI(LI), SE(SE), 573 TTI(TTI), AA(AA), DI(DI) { 574 assert(!Loops.empty() && "Expecting a non-empty loop vector."); 575 576 for (const Loop *L : Loops) { 577 unsigned TripCount = SE.getSmallConstantTripCount(L); 578 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; 579 TripCounts.push_back({L, TripCount}); 580 } 581 582 calculateCacheFootprint(); 583 } 584 585 std::unique_ptr<CacheCost> 586 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, 587 DependenceInfo &DI, std::optional<unsigned> TRT) { 588 if (!Root.isOutermost()) { 589 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n"); 590 return nullptr; 591 } 592 593 LoopVectorTy Loops; 594 append_range(Loops, breadth_first(&Root)); 595 596 if (!getInnerMostLoop(Loops)) { 597 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " 598 "than one innermost loop\n"); 599 return nullptr; 600 } 601 602 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT); 603 } 604 605 void CacheCost::calculateCacheFootprint() { 606 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n"); 607 ReferenceGroupsTy RefGroups; 608 if (!populateReferenceGroups(RefGroups)) 609 return; 610 611 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n"); 612 for (const Loop *L : Loops) { 613 assert(llvm::none_of( 614 LoopCosts, 615 [L](const LoopCacheCostTy &LCC) { return LCC.first == L; }) && 616 "Should not add duplicate element"); 617 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups); 618 LoopCosts.push_back(std::make_pair(L, LoopCost)); 619 } 620 621 sortLoopCosts(); 622 RefGroups.clear(); 623 } 624 625 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { 626 assert(RefGroups.empty() && "Reference groups should be empty"); 627 628 unsigned CLS = TTI.getCacheLineSize(); 629 Loop *InnerMostLoop = getInnerMostLoop(Loops); 630 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop"); 631 632 for (BasicBlock *BB : InnerMostLoop->getBlocks()) { 633 for (Instruction &I : *BB) { 634 if (!isa<StoreInst>(I) && !isa<LoadInst>(I)) 635 continue; 636 637 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); 638 if (!R->isValid()) 639 continue; 640 641 bool Added = false; 642 for (ReferenceGroupTy &RefGroup : RefGroups) { 643 const IndexedReference &Representative = *RefGroup.front(); 644 LLVM_DEBUG({ 645 dbgs() << "References:\n"; 646 dbgs().indent(2) << *R << "\n"; 647 dbgs().indent(2) << Representative << "\n"; 648 }); 649 650 651 // FIXME: Both positive and negative access functions will be placed 652 // into the same reference group, resulting in a bi-directional array 653 // access such as: 654 // for (i = N; i > 0; i--) 655 // A[i] = A[N - i]; 656 // having the same cost calculation as a single dimention access pattern 657 // for (i = 0; i < N; i++) 658 // A[i] = A[i]; 659 // when in actuality, depending on the array size, the first example 660 // should have a cost closer to 2x the second due to the two cache 661 // access per iteration from opposite ends of the array 662 std::optional<bool> HasTemporalReuse = 663 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA); 664 std::optional<bool> HasSpacialReuse = 665 R->hasSpacialReuse(Representative, CLS, AA); 666 667 if ((HasTemporalReuse && *HasTemporalReuse) || 668 (HasSpacialReuse && *HasSpacialReuse)) { 669 RefGroup.push_back(std::move(R)); 670 Added = true; 671 break; 672 } 673 } 674 675 if (!Added) { 676 ReferenceGroupTy RG; 677 RG.push_back(std::move(R)); 678 RefGroups.push_back(std::move(RG)); 679 } 680 } 681 } 682 683 if (RefGroups.empty()) 684 return false; 685 686 LLVM_DEBUG({ 687 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n"; 688 int n = 1; 689 for (const ReferenceGroupTy &RG : RefGroups) { 690 dbgs().indent(2) << "RefGroup " << n << ":\n"; 691 for (const auto &IR : RG) 692 dbgs().indent(4) << *IR << "\n"; 693 n++; 694 } 695 dbgs() << "\n"; 696 }); 697 698 return true; 699 } 700 701 CacheCostTy 702 CacheCost::computeLoopCacheCost(const Loop &L, 703 const ReferenceGroupsTy &RefGroups) const { 704 if (!L.isLoopSimplifyForm()) 705 return CacheCostTy::getInvalid(); 706 707 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() 708 << "' as innermost loop.\n"); 709 710 // Compute the product of the trip counts of each other loop in the nest. 711 CacheCostTy TripCountsProduct = 1; 712 for (const auto &TC : TripCounts) { 713 if (TC.first == &L) 714 continue; 715 TripCountsProduct *= TC.second; 716 } 717 718 CacheCostTy LoopCost = 0; 719 for (const ReferenceGroupTy &RG : RefGroups) { 720 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); 721 LoopCost += RefGroupCost * TripCountsProduct; 722 } 723 724 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() 725 << "' has cost=" << LoopCost << "\n"); 726 727 return LoopCost; 728 } 729 730 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, 731 const Loop &L) const { 732 assert(!RG.empty() && "Reference group should have at least one member."); 733 734 const IndexedReference *Representative = RG.front().get(); 735 return Representative->computeRefCost(L, TTI.getCacheLineSize()); 736 } 737 738 //===----------------------------------------------------------------------===// 739 // LoopCachePrinterPass implementation 740 // 741 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, 742 LoopStandardAnalysisResults &AR, 743 LPMUpdater &U) { 744 Function *F = L.getHeader()->getParent(); 745 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); 746 747 if (auto CC = CacheCost::getCacheCost(L, AR, DI)) 748 OS << *CC; 749 750 return PreservedAnalyses::all(); 751 } 752