xref: /llvm-project/llvm/lib/Analysis/Loads.cpp (revision 304a99091c84f303ff5037dc6bf5455e4cfde7a1)
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/AssumeBundleQueries.h"
16 #include "llvm/Analysis/LoopAccessAnalysis.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/MemoryBuiltins.h"
19 #include "llvm/Analysis/MemoryLocation.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/Operator.h"
26 
27 using namespace llvm;
28 
29 extern cl::opt<bool> UseDerefAtPointSemantics;
30 
31 static bool isAligned(const Value *Base, Align Alignment,
32                       const DataLayout &DL) {
33   return Base->getPointerAlignment(DL) >= Alignment;
34 }
35 
36 /// Test if V is always a pointer to allocated and suitably aligned memory for
37 /// a simple load or store.
38 static bool isDereferenceableAndAlignedPointer(
39     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
40     const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
41     const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited,
42     unsigned MaxDepth) {
43   assert(V->getType()->isPointerTy() && "Base must be pointer");
44 
45   // Recursion limit.
46   if (MaxDepth-- == 0)
47     return false;
48 
49   // Already visited?  Bail out, we've likely hit unreachable code.
50   if (!Visited.insert(V).second)
51     return false;
52 
53   // Note that it is not safe to speculate into a malloc'd region because
54   // malloc may return null.
55 
56   // For GEPs, determine if the indexing lands within the allocated object.
57   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
58     const Value *Base = GEP->getPointerOperand();
59 
60     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
61     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
62         !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
63              .isMinValue())
64       return false;
65 
66     // If the base pointer is dereferenceable for Offset+Size bytes, then the
67     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
68     // pointer is aligned to Align bytes, and the Offset is divisible by Align
69     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
70     // aligned to Align bytes.
71 
72     // Offset and Size may have different bit widths if we have visited an
73     // addrspacecast, so we can't do arithmetic directly on the APInt values.
74     return isDereferenceableAndAlignedPointer(
75         Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
76         CtxI, AC, DT, TLI, Visited, MaxDepth);
77   }
78 
79   // bitcast instructions are no-ops as far as dereferenceability is concerned.
80   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
81     if (BC->getSrcTy()->isPointerTy())
82       return isDereferenceableAndAlignedPointer(
83         BC->getOperand(0), Alignment, Size, DL, CtxI, AC, DT, TLI,
84           Visited, MaxDepth);
85   }
86 
87   // Recurse into both hands of select.
88   if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) {
89     return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment,
90                                               Size, DL, CtxI, AC, DT, TLI,
91                                               Visited, MaxDepth) &&
92            isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment,
93                                               Size, DL, CtxI, AC, DT, TLI,
94                                               Visited, MaxDepth);
95   }
96 
97   auto IsKnownDeref = [&]() {
98     bool CheckForNonNull, CheckForFreed;
99     if (!Size.ule(V->getPointerDereferenceableBytes(DL, CheckForNonNull,
100                                                     CheckForFreed)) ||
101         CheckForFreed)
102       return false;
103     if (CheckForNonNull &&
104         !isKnownNonZero(V, SimplifyQuery(DL, DT, AC, CtxI)))
105       return false;
106     // When using something like !dereferenceable on a load, the
107     // dereferenceability may only be valid on a specific control-flow path.
108     // If the instruction doesn't dominate the context instruction, we're
109     // asking about dereferenceability under the assumption that the
110     // instruction has been speculated to the point of the context instruction,
111     // in which case we don't know if the dereferenceability info still holds.
112     // We don't bother handling allocas here, as they aren't speculatable
113     // anyway.
114     auto *I = dyn_cast<Instruction>(V);
115     if (I && !isa<AllocaInst>(I))
116       return CtxI && isValidAssumeForContext(I, CtxI, DT);
117     return true;
118   };
119   if (IsKnownDeref()) {
120     // As we recursed through GEPs to get here, we've incrementally checked
121     // that each step advanced by a multiple of the alignment. If our base is
122     // properly aligned, then the original offset accessed must also be.
123     return isAligned(V, Alignment, DL);
124   }
125 
126   /// TODO refactor this function to be able to search independently for
127   /// Dereferencability and Alignment requirements.
128 
129 
130   if (const auto *Call = dyn_cast<CallBase>(V)) {
131     if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
132       return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
133                                                 AC, DT, TLI, Visited, MaxDepth);
134 
135     // If we have a call we can't recurse through, check to see if this is an
136     // allocation function for which we can establish an minimum object size.
137     // Such a minimum object size is analogous to a deref_or_null attribute in
138     // that we still need to prove the result non-null at point of use.
139     // NOTE: We can only use the object size as a base fact as we a) need to
140     // prove alignment too, and b) don't want the compile time impact of a
141     // separate recursive walk.
142     ObjectSizeOpts Opts;
143     // TODO: It may be okay to round to align, but that would imply that
144     // accessing slightly out of bounds was legal, and we're currently
145     // inconsistent about that.  For the moment, be conservative.
146     Opts.RoundToAlign = false;
147     Opts.NullIsUnknownSize = true;
148     uint64_t ObjSize;
149     if (getObjectSize(V, ObjSize, DL, TLI, Opts)) {
150       APInt KnownDerefBytes(Size.getBitWidth(), ObjSize);
151       if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
152           isKnownNonZero(V, SimplifyQuery(DL, DT, AC, CtxI)) &&
153           !V->canBeFreed()) {
154         // As we recursed through GEPs to get here, we've incrementally
155         // checked that each step advanced by a multiple of the alignment. If
156         // our base is properly aligned, then the original offset accessed
157         // must also be.
158         return isAligned(V, Alignment, DL);
159       }
160     }
161   }
162 
163   // For gc.relocate, look through relocations
164   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
165     return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(),
166                                               Alignment, Size, DL, CtxI, AC, DT,
167                                               TLI, Visited, MaxDepth);
168 
169   if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V))
170     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
171                                               Size, DL, CtxI, AC, DT, TLI,
172                                               Visited, MaxDepth);
173 
174   if (CtxI && (!UseDerefAtPointSemantics || !V->canBeFreed())) {
175     /// Look through assumes to see if both dereferencability and alignment can
176     /// be proven by an assume if needed.
177     RetainedKnowledge AlignRK;
178     RetainedKnowledge DerefRK;
179     bool IsAligned = V->getPointerAlignment(DL) >= Alignment;
180     if (getKnowledgeForValue(
181             V, {Attribute::Dereferenceable, Attribute::Alignment}, AC,
182             [&](RetainedKnowledge RK, Instruction *Assume, auto) {
183               if (!isValidAssumeForContext(Assume, CtxI, DT))
184                 return false;
185               if (RK.AttrKind == Attribute::Alignment)
186                 AlignRK = std::max(AlignRK, RK);
187               if (RK.AttrKind == Attribute::Dereferenceable)
188                 DerefRK = std::max(DerefRK, RK);
189               IsAligned |= AlignRK && AlignRK.ArgValue >= Alignment.value();
190               if (IsAligned && DerefRK &&
191                   DerefRK.ArgValue >= Size.getZExtValue())
192                 return true; // We have found what we needed so we stop looking
193               return false;  // Other assumes may have better information. so
194                              // keep looking
195             }))
196       return true;
197   }
198 
199   // If we don't know, assume the worst.
200   return false;
201 }
202 
203 bool llvm::isDereferenceableAndAlignedPointer(
204     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
205     const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
206     const TargetLibraryInfo *TLI) {
207   // Note: At the moment, Size can be zero.  This ends up being interpreted as
208   // a query of whether [Base, V] is dereferenceable and V is aligned (since
209   // that's what the implementation happened to do).  It's unclear if this is
210   // the desired semantic, but at least SelectionDAG does exercise this case.
211 
212   SmallPtrSet<const Value *, 32> Visited;
213   return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC,
214                                               DT, TLI, Visited, 16);
215 }
216 
217 bool llvm::isDereferenceableAndAlignedPointer(
218     const Value *V, Type *Ty, Align Alignment, const DataLayout &DL,
219     const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
220     const TargetLibraryInfo *TLI) {
221   // For unsized types or scalable vectors we don't know exactly how many bytes
222   // are dereferenced, so bail out.
223   if (!Ty->isSized() || Ty->isScalableTy())
224     return false;
225 
226   // When dereferenceability information is provided by a dereferenceable
227   // attribute, we know exactly how many bytes are dereferenceable. If we can
228   // determine the exact offset to the attributed variable, we can use that
229   // information here.
230 
231   APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
232                    DL.getTypeStoreSize(Ty));
233   return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
234                                             AC, DT, TLI);
235 }
236 
237 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
238                                     const DataLayout &DL,
239                                     const Instruction *CtxI,
240                                     AssumptionCache *AC,
241                                     const DominatorTree *DT,
242                                     const TargetLibraryInfo *TLI) {
243   return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, AC, DT,
244                                             TLI);
245 }
246 
247 /// Test if A and B will obviously have the same value.
248 ///
249 /// This includes recognizing that %t0 and %t1 will have the same
250 /// value in code like this:
251 /// \code
252 ///   %t0 = getelementptr \@a, 0, 3
253 ///   store i32 0, i32* %t0
254 ///   %t1 = getelementptr \@a, 0, 3
255 ///   %t2 = load i32* %t1
256 /// \endcode
257 ///
258 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
259   // Test if the values are trivially equivalent.
260   if (A == B)
261     return true;
262 
263   // Test if the values come from identical arithmetic instructions.
264   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
265   // this function is only used when one address use dominates the
266   // other, which means that they'll always either have the same
267   // value or one of them will have an undefined value.
268   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
269       isa<GetElementPtrInst>(A))
270     if (const Instruction *BI = dyn_cast<Instruction>(B))
271       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
272         return true;
273 
274   // Otherwise they may not be equivalent.
275   return false;
276 }
277 
278 bool llvm::isDereferenceableAndAlignedInLoop(
279     LoadInst *LI, Loop *L, ScalarEvolution &SE, DominatorTree &DT,
280     AssumptionCache *AC, SmallVectorImpl<const SCEVPredicate *> *Predicates) {
281   const Align Alignment = LI->getAlign();
282   auto &DL = LI->getDataLayout();
283   Value *Ptr = LI->getPointerOperand();
284   APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
285                 DL.getTypeStoreSize(LI->getType()).getFixedValue());
286 
287   // If given a uniform (i.e. non-varying) address, see if we can prove the
288   // access is safe within the loop w/o needing predication.
289   if (L->isLoopInvariant(Ptr))
290     return isDereferenceableAndAlignedPointer(
291         Ptr, Alignment, EltSize, DL, &*L->getHeader()->getFirstNonPHIIt(), AC,
292         &DT);
293 
294   const SCEV *PtrScev = SE.getSCEV(Ptr);
295   auto *AddRec = dyn_cast<SCEVAddRecExpr>(PtrScev);
296 
297   // Check to see if we have a repeating access pattern and it's possible
298   // to prove all accesses are well aligned.
299   if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
300     return false;
301 
302   auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
303   if (!Step)
304     return false;
305 
306   // For the moment, restrict ourselves to the case where the access size is a
307   // multiple of the requested alignment and the base is aligned.
308   // TODO: generalize if a case found which warrants
309   if (EltSize.urem(Alignment.value()) != 0)
310     return false;
311 
312   // TODO: Handle overlapping accesses.
313   if (EltSize.ugt(Step->getAPInt().abs()))
314     return false;
315 
316   const SCEV *MaxBECount =
317       Predicates ? SE.getPredicatedConstantMaxBackedgeTakenCount(L, *Predicates)
318                  : SE.getConstantMaxBackedgeTakenCount(L);
319   if (isa<SCEVCouldNotCompute>(MaxBECount))
320     return false;
321 
322   const auto &[AccessStart, AccessEnd] = getStartAndEndForAccess(
323       L, PtrScev, LI->getType(), MaxBECount, &SE, nullptr);
324   if (isa<SCEVCouldNotCompute>(AccessStart) ||
325       isa<SCEVCouldNotCompute>(AccessEnd))
326     return false;
327 
328   // Try to get the access size.
329   const SCEV *PtrDiff = SE.getMinusSCEV(AccessEnd, AccessStart);
330   APInt MaxPtrDiff = SE.getUnsignedRangeMax(PtrDiff);
331 
332   Value *Base = nullptr;
333   APInt AccessSize;
334   if (const SCEVUnknown *NewBase = dyn_cast<SCEVUnknown>(AccessStart)) {
335     Base = NewBase->getValue();
336     AccessSize = MaxPtrDiff;
337   } else if (auto *MinAdd = dyn_cast<SCEVAddExpr>(AccessStart)) {
338     if (MinAdd->getNumOperands() != 2)
339       return false;
340 
341     const auto *Offset = dyn_cast<SCEVConstant>(MinAdd->getOperand(0));
342     const auto *NewBase = dyn_cast<SCEVUnknown>(MinAdd->getOperand(1));
343     if (!Offset || !NewBase)
344       return false;
345 
346     // The following code below assumes the offset is unsigned, but GEP
347     // offsets are treated as signed so we can end up with a signed value
348     // here too. For example, suppose the initial PHI value is (i8 255),
349     // the offset will be treated as (i8 -1) and sign-extended to (i64 -1).
350     if (Offset->getAPInt().isNegative())
351       return false;
352 
353     // For the moment, restrict ourselves to the case where the offset is a
354     // multiple of the requested alignment and the base is aligned.
355     // TODO: generalize if a case found which warrants
356     if (Offset->getAPInt().urem(Alignment.value()) != 0)
357       return false;
358 
359     AccessSize = MaxPtrDiff + Offset->getAPInt();
360     Base = NewBase->getValue();
361   } else
362     return false;
363 
364   Instruction *HeaderFirstNonPHI = &*L->getHeader()->getFirstNonPHIIt();
365   return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
366                                             HeaderFirstNonPHI, AC, &DT);
367 }
368 
369 static bool suppressSpeculativeLoadForSanitizers(const Instruction &CtxI) {
370   const Function &F = *CtxI.getFunction();
371   // Speculative load may create a race that did not exist in the source.
372   return F.hasFnAttribute(Attribute::SanitizeThread) ||
373          // Speculative load may load data from dirty regions.
374          F.hasFnAttribute(Attribute::SanitizeAddress) ||
375          F.hasFnAttribute(Attribute::SanitizeHWAddress);
376 }
377 
378 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
379   return !LI.isUnordered() || suppressSpeculativeLoadForSanitizers(LI);
380 }
381 
382 /// Check if executing a load of this pointer value cannot trap.
383 ///
384 /// If DT and ScanFrom are specified this method performs context-sensitive
385 /// analysis and returns true if it is safe to load immediately before ScanFrom.
386 ///
387 /// If it is not obviously safe to load from the specified pointer, we do
388 /// a quick local scan of the basic block containing \c ScanFrom, to determine
389 /// if the address is already accessed.
390 ///
391 /// This uses the pointee type to determine how many bytes need to be safe to
392 /// load from the pointer.
393 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, const APInt &Size,
394                                        const DataLayout &DL,
395                                        Instruction *ScanFrom,
396                                        AssumptionCache *AC,
397                                        const DominatorTree *DT,
398                                        const TargetLibraryInfo *TLI) {
399   // If DT is not specified we can't make context-sensitive query
400   const Instruction* CtxI = DT ? ScanFrom : nullptr;
401   if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT,
402                                          TLI)) {
403     // With sanitizers `Dereferenceable` is not always enough for unconditional
404     // load.
405     if (!ScanFrom || !suppressSpeculativeLoadForSanitizers(*ScanFrom))
406       return true;
407   }
408 
409   if (!ScanFrom)
410     return false;
411 
412   if (Size.getBitWidth() > 64)
413     return false;
414   const TypeSize LoadSize = TypeSize::getFixed(Size.getZExtValue());
415 
416   // Otherwise, be a little bit aggressive by scanning the local block where we
417   // want to check to see if the pointer is already being loaded or stored
418   // from/to.  If so, the previous load or store would have already trapped,
419   // so there is no harm doing an extra load (also, CSE will later eliminate
420   // the load entirely).
421   BasicBlock::iterator BBI = ScanFrom->getIterator(),
422                        E = ScanFrom->getParent()->begin();
423 
424   // We can at least always strip pointer casts even though we can't use the
425   // base here.
426   V = V->stripPointerCasts();
427 
428   while (BBI != E) {
429     --BBI;
430 
431     // If we see a free or a call which may write to memory (i.e. which might do
432     // a free) the pointer could be marked invalid.
433     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
434         !isa<LifetimeIntrinsic>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
435       return false;
436 
437     Value *AccessedPtr;
438     Type *AccessedTy;
439     Align AccessedAlign;
440     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
441       // Ignore volatile loads. The execution of a volatile load cannot
442       // be used to prove an address is backed by regular memory; it can,
443       // for example, point to an MMIO register.
444       if (LI->isVolatile())
445         continue;
446       AccessedPtr = LI->getPointerOperand();
447       AccessedTy = LI->getType();
448       AccessedAlign = LI->getAlign();
449     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
450       // Ignore volatile stores (see comment for loads).
451       if (SI->isVolatile())
452         continue;
453       AccessedPtr = SI->getPointerOperand();
454       AccessedTy = SI->getValueOperand()->getType();
455       AccessedAlign = SI->getAlign();
456     } else
457       continue;
458 
459     if (AccessedAlign < Alignment)
460       continue;
461 
462     // Handle trivial cases.
463     if (AccessedPtr == V &&
464         TypeSize::isKnownLE(LoadSize, DL.getTypeStoreSize(AccessedTy)))
465       return true;
466 
467     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
468         TypeSize::isKnownLE(LoadSize, DL.getTypeStoreSize(AccessedTy)))
469       return true;
470   }
471   return false;
472 }
473 
474 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
475                                        const DataLayout &DL,
476                                        Instruction *ScanFrom,
477                                        AssumptionCache *AC,
478                                        const DominatorTree *DT,
479                                        const TargetLibraryInfo *TLI) {
480   TypeSize TySize = DL.getTypeStoreSize(Ty);
481   if (TySize.isScalable())
482     return false;
483   APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue());
484   return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, AC, DT,
485                                      TLI);
486 }
487 
488 /// DefMaxInstsToScan - the default number of maximum instructions
489 /// to scan in the block, used by FindAvailableLoadedValue().
490 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
491 /// threading in part by eliminating partially redundant loads.
492 /// At that point, the value of MaxInstsToScan was already set to '6'
493 /// without documented explanation.
494 cl::opt<unsigned>
495 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
496   cl::desc("Use this to specify the default maximum number of instructions "
497            "to scan backward from a given instruction, when searching for "
498            "available loaded value"));
499 
500 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB,
501                                       BasicBlock::iterator &ScanFrom,
502                                       unsigned MaxInstsToScan,
503                                       BatchAAResults *AA, bool *IsLoad,
504                                       unsigned *NumScanedInst) {
505   // Don't CSE load that is volatile or anything stronger than unordered.
506   if (!Load->isUnordered())
507     return nullptr;
508 
509   MemoryLocation Loc = MemoryLocation::get(Load);
510   return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(),
511                                    ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad,
512                                    NumScanedInst);
513 }
514 
515 // Check if the load and the store have the same base, constant offsets and
516 // non-overlapping access ranges.
517 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr,
518                                               Type *LoadTy,
519                                               const Value *StorePtr,
520                                               Type *StoreTy,
521                                               const DataLayout &DL) {
522   APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0);
523   APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0);
524   const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
525       DL, LoadOffset, /* AllowNonInbounds */ false);
526   const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
527       DL, StoreOffset, /* AllowNonInbounds */ false);
528   if (LoadBase != StoreBase)
529     return false;
530   auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
531   auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
532   ConstantRange LoadRange(LoadOffset,
533                           LoadOffset + LoadAccessSize.toRaw());
534   ConstantRange StoreRange(StoreOffset,
535                            StoreOffset + StoreAccessSize.toRaw());
536   return LoadRange.intersectWith(StoreRange).isEmptySet();
537 }
538 
539 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr,
540                                     Type *AccessTy, bool AtLeastAtomic,
541                                     const DataLayout &DL, bool *IsLoadCSE) {
542   // If this is a load of Ptr, the loaded value is available.
543   // (This is true even if the load is volatile or atomic, although
544   // those cases are unlikely.)
545   if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
546     // We can value forward from an atomic to a non-atomic, but not the
547     // other way around.
548     if (LI->isAtomic() < AtLeastAtomic)
549       return nullptr;
550 
551     Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts();
552     if (!AreEquivalentAddressValues(LoadPtr, Ptr))
553       return nullptr;
554 
555     if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
556       if (IsLoadCSE)
557         *IsLoadCSE = true;
558       return LI;
559     }
560   }
561 
562   // If this is a store through Ptr, the value is available!
563   // (This is true even if the store is volatile or atomic, although
564   // those cases are unlikely.)
565   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
566     // We can value forward from an atomic to a non-atomic, but not the
567     // other way around.
568     if (SI->isAtomic() < AtLeastAtomic)
569       return nullptr;
570 
571     Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
572     if (!AreEquivalentAddressValues(StorePtr, Ptr))
573       return nullptr;
574 
575     if (IsLoadCSE)
576       *IsLoadCSE = false;
577 
578     Value *Val = SI->getValueOperand();
579     if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL))
580       return Val;
581 
582     TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType());
583     TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy);
584     if (TypeSize::isKnownLE(LoadSize, StoreSize))
585       if (auto *C = dyn_cast<Constant>(Val))
586         return ConstantFoldLoadFromConst(C, AccessTy, DL);
587   }
588 
589   if (auto *MSI = dyn_cast<MemSetInst>(Inst)) {
590     // Don't forward from (non-atomic) memset to atomic load.
591     if (AtLeastAtomic)
592       return nullptr;
593 
594     // Only handle constant memsets.
595     auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
596     auto *Len = dyn_cast<ConstantInt>(MSI->getLength());
597     if (!Val || !Len)
598       return nullptr;
599 
600     // TODO: Handle offsets.
601     Value *Dst = MSI->getDest();
602     if (!AreEquivalentAddressValues(Dst, Ptr))
603       return nullptr;
604 
605     if (IsLoadCSE)
606       *IsLoadCSE = false;
607 
608     TypeSize LoadTypeSize = DL.getTypeSizeInBits(AccessTy);
609     if (LoadTypeSize.isScalable())
610       return nullptr;
611 
612     // Make sure the read bytes are contained in the memset.
613     uint64_t LoadSize = LoadTypeSize.getFixedValue();
614     if ((Len->getValue() * 8).ult(LoadSize))
615       return nullptr;
616 
617     APInt Splat = LoadSize >= 8 ? APInt::getSplat(LoadSize, Val->getValue())
618                                 : Val->getValue().trunc(LoadSize);
619     ConstantInt *SplatC = ConstantInt::get(MSI->getContext(), Splat);
620     if (CastInst::isBitOrNoopPointerCastable(SplatC->getType(), AccessTy, DL))
621       return SplatC;
622 
623     return nullptr;
624   }
625 
626   return nullptr;
627 }
628 
629 Value *llvm::findAvailablePtrLoadStore(
630     const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic,
631     BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan,
632     BatchAAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) {
633   if (MaxInstsToScan == 0)
634     MaxInstsToScan = ~0U;
635 
636   const DataLayout &DL = ScanBB->getDataLayout();
637   const Value *StrippedPtr = Loc.Ptr->stripPointerCasts();
638 
639   while (ScanFrom != ScanBB->begin()) {
640     // We must ignore debug info directives when counting (otherwise they
641     // would affect codegen).
642     Instruction *Inst = &*--ScanFrom;
643     if (Inst->isDebugOrPseudoInst())
644       continue;
645 
646     // Restore ScanFrom to expected value in case next test succeeds
647     ScanFrom++;
648 
649     if (NumScanedInst)
650       ++(*NumScanedInst);
651 
652     // Don't scan huge blocks.
653     if (MaxInstsToScan-- == 0)
654       return nullptr;
655 
656     --ScanFrom;
657 
658     if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy,
659                                                  AtLeastAtomic, DL, IsLoadCSE))
660       return Available;
661 
662     // Try to get the store size for the type.
663     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
664       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
665 
666       // If both StrippedPtr and StorePtr reach all the way to an alloca or
667       // global and they are different, ignore the store. This is a trivial form
668       // of alias analysis that is important for reg2mem'd code.
669       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
670           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
671           StrippedPtr != StorePtr)
672         continue;
673 
674       if (!AA) {
675         // When AA isn't available, but if the load and the store have the same
676         // base, constant offsets and non-overlapping access ranges, ignore the
677         // store. This is a simple form of alias analysis that is used by the
678         // inliner. FIXME: use BasicAA if possible.
679         if (areNonOverlapSameBaseLoadAndStore(
680                 Loc.Ptr, AccessTy, SI->getPointerOperand(),
681                 SI->getValueOperand()->getType(), DL))
682           continue;
683       } else {
684         // If we have alias analysis and it says the store won't modify the
685         // loaded value, ignore the store.
686         if (!isModSet(AA->getModRefInfo(SI, Loc)))
687           continue;
688       }
689 
690       // Otherwise the store that may or may not alias the pointer, bail out.
691       ++ScanFrom;
692       return nullptr;
693     }
694 
695     // If this is some other instruction that may clobber Ptr, bail out.
696     if (Inst->mayWriteToMemory()) {
697       // If alias analysis claims that it really won't modify the load,
698       // ignore it.
699       if (AA && !isModSet(AA->getModRefInfo(Inst, Loc)))
700         continue;
701 
702       // May modify the pointer, bail out.
703       ++ScanFrom;
704       return nullptr;
705     }
706   }
707 
708   // Got to the start of the block, we didn't find it, but are done for this
709   // block.
710   return nullptr;
711 }
712 
713 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BatchAAResults &AA,
714                                       bool *IsLoadCSE,
715                                       unsigned MaxInstsToScan) {
716   const DataLayout &DL = Load->getDataLayout();
717   Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts();
718   BasicBlock *ScanBB = Load->getParent();
719   Type *AccessTy = Load->getType();
720   bool AtLeastAtomic = Load->isAtomic();
721 
722   if (!Load->isUnordered())
723     return nullptr;
724 
725   // Try to find an available value first, and delay expensive alias analysis
726   // queries until later.
727   Value *Available = nullptr;
728   SmallVector<Instruction *> MustNotAliasInsts;
729   for (Instruction &Inst : make_range(++Load->getReverseIterator(),
730                                       ScanBB->rend())) {
731     if (Inst.isDebugOrPseudoInst())
732       continue;
733 
734     if (MaxInstsToScan-- == 0)
735       return nullptr;
736 
737     Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy,
738                                       AtLeastAtomic, DL, IsLoadCSE);
739     if (Available)
740       break;
741 
742     if (Inst.mayWriteToMemory())
743       MustNotAliasInsts.push_back(&Inst);
744   }
745 
746   // If we found an available value, ensure that the instructions in between
747   // did not modify the memory location.
748   if (Available) {
749     MemoryLocation Loc = MemoryLocation::get(Load);
750     for (Instruction *Inst : MustNotAliasInsts)
751       if (isModSet(AA.getModRefInfo(Inst, Loc)))
752         return nullptr;
753   }
754 
755   return Available;
756 }
757 
758 // Returns true if a use is either in an ICmp/PtrToInt or a Phi/Select that only
759 // feeds into them.
760 static bool isPointerUseReplacable(const Use &U) {
761   unsigned Limit = 40;
762   SmallVector<const User *> Worklist({U.getUser()});
763   SmallPtrSet<const User *, 8> Visited;
764 
765   while (!Worklist.empty() && --Limit) {
766     auto *User = Worklist.pop_back_val();
767     if (!Visited.insert(User).second)
768       continue;
769     if (isa<ICmpInst, PtrToIntInst>(User))
770       continue;
771     if (isa<PHINode, SelectInst>(User))
772       Worklist.append(User->user_begin(), User->user_end());
773     else
774       return false;
775   }
776 
777   return Limit != 0;
778 }
779 
780 // Returns true if `To` is a null pointer, constant dereferenceable pointer or
781 // both pointers have the same underlying objects.
782 static bool isPointerAlwaysReplaceable(const Value *From, const Value *To,
783                                        const DataLayout &DL) {
784   // This is not strictly correct, but we do it for now to retain important
785   // optimizations.
786   if (isa<ConstantPointerNull>(To))
787     return true;
788   if (isa<Constant>(To) &&
789       isDereferenceablePointer(To, Type::getInt8Ty(To->getContext()), DL))
790     return true;
791   return getUnderlyingObjectAggressive(From) ==
792          getUnderlyingObjectAggressive(To);
793 }
794 
795 bool llvm::canReplacePointersInUseIfEqual(const Use &U, const Value *To,
796                                           const DataLayout &DL) {
797   assert(U->getType() == To->getType() && "values must have matching types");
798   // Not a pointer, just return true.
799   if (!To->getType()->isPointerTy())
800     return true;
801 
802   if (isPointerAlwaysReplaceable(&*U, To, DL))
803     return true;
804   return isPointerUseReplacable(U);
805 }
806 
807 bool llvm::canReplacePointersIfEqual(const Value *From, const Value *To,
808                                      const DataLayout &DL) {
809   assert(From->getType() == To->getType() && "values must have matching types");
810   // Not a pointer, just return true.
811   if (!From->getType()->isPointerTy())
812     return true;
813 
814   return isPointerAlwaysReplaceable(From, To, DL);
815 }
816 
817 bool llvm::isDereferenceableReadOnlyLoop(
818     Loop *L, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
819     SmallVectorImpl<const SCEVPredicate *> *Predicates) {
820   for (BasicBlock *BB : L->blocks()) {
821     for (Instruction &I : *BB) {
822       if (auto *LI = dyn_cast<LoadInst>(&I)) {
823         if (!isDereferenceableAndAlignedInLoop(LI, L, *SE, *DT, AC, Predicates))
824           return false;
825       } else if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
826         return false;
827     }
828   }
829   return true;
830 }
831