1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interface for lazy computation of value constraint 10 // information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LazyValueInfo.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/Passes.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueLattice.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/AssemblyAnnotationWriter.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/FormattedStream.h" 41 #include "llvm/Support/KnownBits.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <optional> 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "lazy-value-info" 48 49 // This is the number of worklist items we will process to try to discover an 50 // answer for a given value. 51 static const unsigned MaxProcessedPerValue = 500; 52 53 char LazyValueInfoWrapperPass::ID = 0; 54 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { 55 initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 56 } 57 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", 58 "Lazy Value Information Analysis", false, true) 59 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 60 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 61 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", 62 "Lazy Value Information Analysis", false, true) 63 64 namespace llvm { 65 FunctionPass *createLazyValueInfoPass() { 66 return new LazyValueInfoWrapperPass(); 67 } 68 } // namespace llvm 69 70 AnalysisKey LazyValueAnalysis::Key; 71 72 /// Returns true if this lattice value represents at most one possible value. 73 /// This is as precise as any lattice value can get while still representing 74 /// reachable code. 75 static bool hasSingleValue(const ValueLatticeElement &Val) { 76 if (Val.isConstantRange() && 77 Val.getConstantRange().isSingleElement()) 78 // Integer constants are single element ranges 79 return true; 80 if (Val.isConstant()) 81 // Non integer constants 82 return true; 83 return false; 84 } 85 86 //===----------------------------------------------------------------------===// 87 // LazyValueInfoCache Decl 88 //===----------------------------------------------------------------------===// 89 90 namespace { 91 /// A callback value handle updates the cache when values are erased. 92 class LazyValueInfoCache; 93 struct LVIValueHandle final : public CallbackVH { 94 LazyValueInfoCache *Parent; 95 96 LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr) 97 : CallbackVH(V), Parent(P) { } 98 99 void deleted() override; 100 void allUsesReplacedWith(Value *V) override { 101 deleted(); 102 } 103 }; 104 } // end anonymous namespace 105 106 namespace { 107 using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>; 108 109 /// This is the cache kept by LazyValueInfo which 110 /// maintains information about queries across the clients' queries. 111 class LazyValueInfoCache { 112 /// This is all of the cached information for one basic block. It contains 113 /// the per-value lattice elements, as well as a separate set for 114 /// overdefined values to reduce memory usage. Additionally pointers 115 /// dereferenced in the block are cached for nullability queries. 116 struct BlockCacheEntry { 117 SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements; 118 SmallDenseSet<AssertingVH<Value>, 4> OverDefined; 119 // std::nullopt indicates that the nonnull pointers for this basic block 120 // block have not been computed yet. 121 std::optional<NonNullPointerSet> NonNullPointers; 122 }; 123 124 /// Cached information per basic block. 125 DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>> 126 BlockCache; 127 /// Set of value handles used to erase values from the cache on deletion. 128 DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles; 129 130 const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const { 131 auto It = BlockCache.find_as(BB); 132 if (It == BlockCache.end()) 133 return nullptr; 134 return It->second.get(); 135 } 136 137 BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) { 138 auto It = BlockCache.find_as(BB); 139 if (It == BlockCache.end()) 140 It = BlockCache.insert({BB, std::make_unique<BlockCacheEntry>()}).first; 141 142 return It->second.get(); 143 } 144 145 void addValueHandle(Value *Val) { 146 auto HandleIt = ValueHandles.find_as(Val); 147 if (HandleIt == ValueHandles.end()) 148 ValueHandles.insert({Val, this}); 149 } 150 151 public: 152 void insertResult(Value *Val, BasicBlock *BB, 153 const ValueLatticeElement &Result) { 154 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 155 156 // Insert over-defined values into their own cache to reduce memory 157 // overhead. 158 if (Result.isOverdefined()) 159 Entry->OverDefined.insert(Val); 160 else 161 Entry->LatticeElements.insert({Val, Result}); 162 163 addValueHandle(Val); 164 } 165 166 std::optional<ValueLatticeElement> getCachedValueInfo(Value *V, 167 BasicBlock *BB) const { 168 const BlockCacheEntry *Entry = getBlockEntry(BB); 169 if (!Entry) 170 return std::nullopt; 171 172 if (Entry->OverDefined.count(V)) 173 return ValueLatticeElement::getOverdefined(); 174 175 auto LatticeIt = Entry->LatticeElements.find_as(V); 176 if (LatticeIt == Entry->LatticeElements.end()) 177 return std::nullopt; 178 179 return LatticeIt->second; 180 } 181 182 bool 183 isNonNullAtEndOfBlock(Value *V, BasicBlock *BB, 184 function_ref<NonNullPointerSet(BasicBlock *)> InitFn) { 185 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); 186 if (!Entry->NonNullPointers) { 187 Entry->NonNullPointers = InitFn(BB); 188 for (Value *V : *Entry->NonNullPointers) 189 addValueHandle(V); 190 } 191 192 return Entry->NonNullPointers->count(V); 193 } 194 195 /// clear - Empty the cache. 196 void clear() { 197 BlockCache.clear(); 198 ValueHandles.clear(); 199 } 200 201 /// Inform the cache that a given value has been deleted. 202 void eraseValue(Value *V); 203 204 /// This is part of the update interface to inform the cache 205 /// that a block has been deleted. 206 void eraseBlock(BasicBlock *BB); 207 208 /// Updates the cache to remove any influence an overdefined value in 209 /// OldSucc might have (unless also overdefined in NewSucc). This just 210 /// flushes elements from the cache and does not add any. 211 void threadEdgeImpl(BasicBlock *OldSucc, BasicBlock *NewSucc); 212 }; 213 } // namespace 214 215 void LazyValueInfoCache::eraseValue(Value *V) { 216 for (auto &Pair : BlockCache) { 217 Pair.second->LatticeElements.erase(V); 218 Pair.second->OverDefined.erase(V); 219 if (Pair.second->NonNullPointers) 220 Pair.second->NonNullPointers->erase(V); 221 } 222 223 auto HandleIt = ValueHandles.find_as(V); 224 if (HandleIt != ValueHandles.end()) 225 ValueHandles.erase(HandleIt); 226 } 227 228 void LVIValueHandle::deleted() { 229 // This erasure deallocates *this, so it MUST happen after we're done 230 // using any and all members of *this. 231 Parent->eraseValue(*this); 232 } 233 234 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { 235 BlockCache.erase(BB); 236 } 237 238 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, 239 BasicBlock *NewSucc) { 240 // When an edge in the graph has been threaded, values that we could not 241 // determine a value for before (i.e. were marked overdefined) may be 242 // possible to solve now. We do NOT try to proactively update these values. 243 // Instead, we clear their entries from the cache, and allow lazy updating to 244 // recompute them when needed. 245 246 // The updating process is fairly simple: we need to drop cached info 247 // for all values that were marked overdefined in OldSucc, and for those same 248 // values in any successor of OldSucc (except NewSucc) in which they were 249 // also marked overdefined. 250 std::vector<BasicBlock*> worklist; 251 worklist.push_back(OldSucc); 252 253 const BlockCacheEntry *Entry = getBlockEntry(OldSucc); 254 if (!Entry || Entry->OverDefined.empty()) 255 return; // Nothing to process here. 256 SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(), 257 Entry->OverDefined.end()); 258 259 // Use a worklist to perform a depth-first search of OldSucc's successors. 260 // NOTE: We do not need a visited list since any blocks we have already 261 // visited will have had their overdefined markers cleared already, and we 262 // thus won't loop to their successors. 263 while (!worklist.empty()) { 264 BasicBlock *ToUpdate = worklist.back(); 265 worklist.pop_back(); 266 267 // Skip blocks only accessible through NewSucc. 268 if (ToUpdate == NewSucc) continue; 269 270 // If a value was marked overdefined in OldSucc, and is here too... 271 auto OI = BlockCache.find_as(ToUpdate); 272 if (OI == BlockCache.end() || OI->second->OverDefined.empty()) 273 continue; 274 auto &ValueSet = OI->second->OverDefined; 275 276 bool changed = false; 277 for (Value *V : ValsToClear) { 278 if (!ValueSet.erase(V)) 279 continue; 280 281 // If we removed anything, then we potentially need to update 282 // blocks successors too. 283 changed = true; 284 } 285 286 if (!changed) continue; 287 288 llvm::append_range(worklist, successors(ToUpdate)); 289 } 290 } 291 292 namespace llvm { 293 namespace { 294 /// An assembly annotator class to print LazyValueCache information in 295 /// comments. 296 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { 297 LazyValueInfoImpl *LVIImpl; 298 // While analyzing which blocks we can solve values for, we need the dominator 299 // information. 300 DominatorTree &DT; 301 302 public: 303 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) 304 : LVIImpl(L), DT(DTree) {} 305 306 void emitBasicBlockStartAnnot(const BasicBlock *BB, 307 formatted_raw_ostream &OS) override; 308 309 void emitInstructionAnnot(const Instruction *I, 310 formatted_raw_ostream &OS) override; 311 }; 312 } // namespace 313 // The actual implementation of the lazy analysis and update. 314 class LazyValueInfoImpl { 315 316 /// Cached results from previous queries 317 LazyValueInfoCache TheCache; 318 319 /// This stack holds the state of the value solver during a query. 320 /// It basically emulates the callstack of the naive 321 /// recursive value lookup process. 322 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; 323 324 /// Keeps track of which block-value pairs are in BlockValueStack. 325 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; 326 327 /// Push BV onto BlockValueStack unless it's already in there. 328 /// Returns true on success. 329 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { 330 if (!BlockValueSet.insert(BV).second) 331 return false; // It's already in the stack. 332 333 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " 334 << BV.first->getName() << "\n"); 335 BlockValueStack.push_back(BV); 336 return true; 337 } 338 339 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. 340 const DataLayout &DL; ///< A mandatory DataLayout 341 342 /// Declaration of the llvm.experimental.guard() intrinsic, 343 /// if it exists in the module. 344 Function *GuardDecl; 345 346 std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB, 347 Instruction *CxtI); 348 std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, 349 BasicBlock *T, 350 Instruction *CxtI = nullptr); 351 352 // These methods process one work item and may add more. A false value 353 // returned means that the work item was not completely processed and must 354 // be revisited after going through the new items. 355 bool solveBlockValue(Value *Val, BasicBlock *BB); 356 std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, 357 BasicBlock *BB); 358 std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, 359 BasicBlock *BB); 360 std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, 361 BasicBlock *BB); 362 std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, 363 BasicBlock *BB); 364 std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI, 365 BasicBlock *BB); 366 std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( 367 Instruction *I, BasicBlock *BB, 368 std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> 369 OpFn); 370 std::optional<ValueLatticeElement> 371 solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB); 372 std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, 373 BasicBlock *BB); 374 std::optional<ValueLatticeElement> 375 solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB); 376 std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, 377 BasicBlock *BB); 378 std::optional<ValueLatticeElement> 379 solveBlockValueInsertElement(InsertElementInst *IEI, BasicBlock *BB); 380 std::optional<ValueLatticeElement> 381 solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB); 382 bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB); 383 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, 384 ValueLatticeElement &BBLV, 385 Instruction *BBI); 386 387 void solve(); 388 389 // For the following methods, if UseBlockValue is true, the function may 390 // push additional values to the worklist and return nullopt. If 391 // UseBlockValue is false, it will never return nullopt. 392 393 std::optional<ValueLatticeElement> 394 getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, Value *RHS, 395 const APInt &Offset, Instruction *CxtI, 396 bool UseBlockValue); 397 398 std::optional<ValueLatticeElement> 399 getValueFromICmpCondition(Value *Val, ICmpInst *ICI, bool isTrueDest, 400 bool UseBlockValue); 401 402 std::optional<ValueLatticeElement> 403 getValueFromCondition(Value *Val, Value *Cond, bool IsTrueDest, 404 bool UseBlockValue, unsigned Depth = 0); 405 406 std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, 407 BasicBlock *BBFrom, 408 BasicBlock *BBTo, 409 bool UseBlockValue); 410 411 public: 412 /// This is the query interface to determine the lattice value for the 413 /// specified Value* at the context instruction (if specified) or at the 414 /// start of the block. 415 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, 416 Instruction *CxtI = nullptr); 417 418 /// This is the query interface to determine the lattice value for the 419 /// specified Value* at the specified instruction using only information 420 /// from assumes/guards and range metadata. Unlike getValueInBlock(), no 421 /// recursive query is performed. 422 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); 423 424 /// This is the query interface to determine the lattice 425 /// value for the specified Value* that is true on the specified edge. 426 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, 427 BasicBlock *ToBB, 428 Instruction *CxtI = nullptr); 429 430 ValueLatticeElement getValueAtUse(const Use &U); 431 432 /// Complete flush all previously computed values 433 void clear() { 434 TheCache.clear(); 435 } 436 437 /// Printing the LazyValueInfo Analysis. 438 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 439 LazyValueInfoAnnotatedWriter Writer(this, DTree); 440 F.print(OS, &Writer); 441 } 442 443 /// This is part of the update interface to remove information related to this 444 /// value from the cache. 445 void forgetValue(Value *V) { TheCache.eraseValue(V); } 446 447 /// This is part of the update interface to inform the cache 448 /// that a block has been deleted. 449 void eraseBlock(BasicBlock *BB) { 450 TheCache.eraseBlock(BB); 451 } 452 453 /// This is the update interface to inform the cache that an edge from 454 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. 455 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); 456 457 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, 458 Function *GuardDecl) 459 : AC(AC), DL(DL), GuardDecl(GuardDecl) {} 460 }; 461 } // namespace llvm 462 463 void LazyValueInfoImpl::solve() { 464 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack = 465 BlockValueStack; 466 467 unsigned processedCount = 0; 468 while (!BlockValueStack.empty()) { 469 processedCount++; 470 // Abort if we have to process too many values to get a result for this one. 471 // Because of the design of the overdefined cache currently being per-block 472 // to avoid naming-related issues (IE it wants to try to give different 473 // results for the same name in different blocks), overdefined results don't 474 // get cached globally, which in turn means we will often try to rediscover 475 // the same overdefined result again and again. Once something like 476 // PredicateInfo is used in LVI or CVP, we should be able to make the 477 // overdefined cache global, and remove this throttle. 478 if (processedCount > MaxProcessedPerValue) { 479 LLVM_DEBUG( 480 dbgs() << "Giving up on stack because we are getting too deep\n"); 481 // Fill in the original values 482 while (!StartingStack.empty()) { 483 std::pair<BasicBlock *, Value *> &e = StartingStack.back(); 484 TheCache.insertResult(e.second, e.first, 485 ValueLatticeElement::getOverdefined()); 486 StartingStack.pop_back(); 487 } 488 BlockValueSet.clear(); 489 BlockValueStack.clear(); 490 return; 491 } 492 std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); 493 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); 494 unsigned StackSize = BlockValueStack.size(); 495 (void) StackSize; 496 497 if (solveBlockValue(e.second, e.first)) { 498 // The work item was completely processed. 499 assert(BlockValueStack.size() == StackSize && 500 BlockValueStack.back() == e && "Nothing should have been pushed!"); 501 #ifndef NDEBUG 502 std::optional<ValueLatticeElement> BBLV = 503 TheCache.getCachedValueInfo(e.second, e.first); 504 assert(BBLV && "Result should be in cache!"); 505 LLVM_DEBUG( 506 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " 507 << *BBLV << "\n"); 508 #endif 509 510 BlockValueStack.pop_back(); 511 BlockValueSet.erase(e); 512 } else { 513 // More work needs to be done before revisiting. 514 assert(BlockValueStack.size() == StackSize + 1 && 515 "Exactly one element should have been pushed!"); 516 } 517 } 518 } 519 520 std::optional<ValueLatticeElement> 521 LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB, 522 Instruction *CxtI) { 523 // If already a constant, there is nothing to compute. 524 if (Constant *VC = dyn_cast<Constant>(Val)) 525 return ValueLatticeElement::get(VC); 526 527 if (std::optional<ValueLatticeElement> OptLatticeVal = 528 TheCache.getCachedValueInfo(Val, BB)) { 529 intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI); 530 return OptLatticeVal; 531 } 532 533 // We have hit a cycle, assume overdefined. 534 if (!pushBlockValue({ BB, Val })) 535 return ValueLatticeElement::getOverdefined(); 536 537 // Yet to be resolved. 538 return std::nullopt; 539 } 540 541 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { 542 switch (BBI->getOpcode()) { 543 default: 544 break; 545 case Instruction::Call: 546 case Instruction::Invoke: 547 if (std::optional<ConstantRange> Range = cast<CallBase>(BBI)->getRange()) 548 return ValueLatticeElement::getRange(*Range); 549 [[fallthrough]]; 550 case Instruction::Load: 551 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) 552 if (isa<IntegerType>(BBI->getType())) { 553 return ValueLatticeElement::getRange( 554 getConstantRangeFromMetadata(*Ranges)); 555 } 556 break; 557 }; 558 // Nothing known - will be intersected with other facts 559 return ValueLatticeElement::getOverdefined(); 560 } 561 562 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { 563 assert(!isa<Constant>(Val) && "Value should not be constant"); 564 assert(!TheCache.getCachedValueInfo(Val, BB) && 565 "Value should not be in cache"); 566 567 // Hold off inserting this value into the Cache in case we have to return 568 // false and come back later. 569 std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); 570 if (!Res) 571 // Work pushed, will revisit 572 return false; 573 574 TheCache.insertResult(Val, BB, *Res); 575 return true; 576 } 577 578 std::optional<ValueLatticeElement> 579 LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) { 580 Instruction *BBI = dyn_cast<Instruction>(Val); 581 if (!BBI || BBI->getParent() != BB) 582 return solveBlockValueNonLocal(Val, BB); 583 584 if (PHINode *PN = dyn_cast<PHINode>(BBI)) 585 return solveBlockValuePHINode(PN, BB); 586 587 if (auto *SI = dyn_cast<SelectInst>(BBI)) 588 return solveBlockValueSelect(SI, BB); 589 590 // If this value is a nonnull pointer, record it's range and bailout. Note 591 // that for all other pointer typed values, we terminate the search at the 592 // definition. We could easily extend this to look through geps, bitcasts, 593 // and the like to prove non-nullness, but it's not clear that's worth it 594 // compile time wise. The context-insensitive value walk done inside 595 // isKnownNonZero gets most of the profitable cases at much less expense. 596 // This does mean that we have a sensitivity to where the defining 597 // instruction is placed, even if it could legally be hoisted much higher. 598 // That is unfortunate. 599 PointerType *PT = dyn_cast<PointerType>(BBI->getType()); 600 if (PT && isKnownNonZero(BBI, DL)) 601 return ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); 602 603 if (BBI->getType()->isIntOrIntVectorTy()) { 604 if (auto *CI = dyn_cast<CastInst>(BBI)) 605 return solveBlockValueCast(CI, BB); 606 607 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) 608 return solveBlockValueBinaryOp(BO, BB); 609 610 if (auto *IEI = dyn_cast<InsertElementInst>(BBI)) 611 return solveBlockValueInsertElement(IEI, BB); 612 613 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) 614 return solveBlockValueExtractValue(EVI, BB); 615 616 if (auto *II = dyn_cast<IntrinsicInst>(BBI)) 617 return solveBlockValueIntrinsic(II, BB); 618 } 619 620 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 621 << "' - unknown inst def found.\n"); 622 return getFromRangeMetadata(BBI); 623 } 624 625 static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) { 626 // TODO: Use NullPointerIsDefined instead. 627 if (Ptr->getType()->getPointerAddressSpace() == 0) 628 PtrSet.insert(getUnderlyingObject(Ptr)); 629 } 630 631 static void AddNonNullPointersByInstruction( 632 Instruction *I, NonNullPointerSet &PtrSet) { 633 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 634 AddNonNullPointer(L->getPointerOperand(), PtrSet); 635 } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { 636 AddNonNullPointer(S->getPointerOperand(), PtrSet); 637 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 638 if (MI->isVolatile()) return; 639 640 // FIXME: check whether it has a valuerange that excludes zero? 641 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); 642 if (!Len || Len->isZero()) return; 643 644 AddNonNullPointer(MI->getRawDest(), PtrSet); 645 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 646 AddNonNullPointer(MTI->getRawSource(), PtrSet); 647 } 648 } 649 650 bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) { 651 if (NullPointerIsDefined(BB->getParent(), 652 Val->getType()->getPointerAddressSpace())) 653 return false; 654 655 Val = Val->stripInBoundsOffsets(); 656 return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) { 657 NonNullPointerSet NonNullPointers; 658 for (Instruction &I : *BB) 659 AddNonNullPointersByInstruction(&I, NonNullPointers); 660 return NonNullPointers; 661 }); 662 } 663 664 std::optional<ValueLatticeElement> 665 LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) { 666 ValueLatticeElement Result; // Start Undefined. 667 668 // If this is the entry block, we must be asking about an argument. 669 if (BB->isEntryBlock()) { 670 assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); 671 if (std::optional<ConstantRange> Range = cast<Argument>(Val)->getRange()) 672 return ValueLatticeElement::getRange(*Range); 673 return ValueLatticeElement::getOverdefined(); 674 } 675 676 // Loop over all of our predecessors, merging what we know from them into 677 // result. If we encounter an unexplored predecessor, we eagerly explore it 678 // in a depth first manner. In practice, this has the effect of discovering 679 // paths we can't analyze eagerly without spending compile times analyzing 680 // other paths. This heuristic benefits from the fact that predecessors are 681 // frequently arranged such that dominating ones come first and we quickly 682 // find a path to function entry. TODO: We should consider explicitly 683 // canonicalizing to make this true rather than relying on this happy 684 // accident. 685 for (BasicBlock *Pred : predecessors(BB)) { 686 std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB); 687 if (!EdgeResult) 688 // Explore that input, then return here 689 return std::nullopt; 690 691 Result.mergeIn(*EdgeResult); 692 693 // If we hit overdefined, exit early. The BlockVals entry is already set 694 // to overdefined. 695 if (Result.isOverdefined()) { 696 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 697 << "' - overdefined because of pred '" 698 << Pred->getName() << "' (non local).\n"); 699 return Result; 700 } 701 } 702 703 // Return the merged value, which is more precise than 'overdefined'. 704 assert(!Result.isOverdefined()); 705 return Result; 706 } 707 708 std::optional<ValueLatticeElement> 709 LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) { 710 ValueLatticeElement Result; // Start Undefined. 711 712 // Loop over all of our predecessors, merging what we know from them into 713 // result. See the comment about the chosen traversal order in 714 // solveBlockValueNonLocal; the same reasoning applies here. 715 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 716 BasicBlock *PhiBB = PN->getIncomingBlock(i); 717 Value *PhiVal = PN->getIncomingValue(i); 718 // Note that we can provide PN as the context value to getEdgeValue, even 719 // though the results will be cached, because PN is the value being used as 720 // the cache key in the caller. 721 std::optional<ValueLatticeElement> EdgeResult = 722 getEdgeValue(PhiVal, PhiBB, BB, PN); 723 if (!EdgeResult) 724 // Explore that input, then return here 725 return std::nullopt; 726 727 Result.mergeIn(*EdgeResult); 728 729 // If we hit overdefined, exit early. The BlockVals entry is already set 730 // to overdefined. 731 if (Result.isOverdefined()) { 732 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 733 << "' - overdefined because of pred (local).\n"); 734 735 return Result; 736 } 737 } 738 739 // Return the merged value, which is more precise than 'overdefined'. 740 assert(!Result.isOverdefined() && "Possible PHI in entry block?"); 741 return Result; 742 } 743 744 // If we can determine a constraint on the value given conditions assumed by 745 // the program, intersect those constraints with BBLV 746 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( 747 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { 748 BBI = BBI ? BBI : dyn_cast<Instruction>(Val); 749 if (!BBI) 750 return; 751 752 BasicBlock *BB = BBI->getParent(); 753 for (auto &AssumeVH : AC->assumptionsFor(Val)) { 754 if (!AssumeVH) 755 continue; 756 757 // Only check assumes in the block of the context instruction. Other 758 // assumes will have already been taken into account when the value was 759 // propagated from predecessor blocks. 760 auto *I = cast<CallInst>(AssumeVH); 761 if (I->getParent() != BB || !isValidAssumeForContext(I, BBI)) 762 continue; 763 764 BBLV = BBLV.intersect(*getValueFromCondition(Val, I->getArgOperand(0), 765 /*IsTrueDest*/ true, 766 /*UseBlockValue*/ false)); 767 } 768 769 // If guards are not used in the module, don't spend time looking for them 770 if (GuardDecl && !GuardDecl->use_empty() && 771 BBI->getIterator() != BB->begin()) { 772 for (Instruction &I : 773 make_range(std::next(BBI->getIterator().getReverse()), BB->rend())) { 774 Value *Cond = nullptr; 775 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) 776 BBLV = BBLV.intersect(*getValueFromCondition(Val, Cond, 777 /*IsTrueDest*/ true, 778 /*UseBlockValue*/ false)); 779 } 780 } 781 782 if (BBLV.isOverdefined()) { 783 // Check whether we're checking at the terminator, and the pointer has 784 // been dereferenced in this block. 785 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 786 if (PTy && BB->getTerminator() == BBI && 787 isNonNullAtEndOfBlock(Val, BB)) 788 BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 789 } 790 } 791 792 std::optional<ValueLatticeElement> 793 LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) { 794 // Recurse on our inputs if needed 795 std::optional<ValueLatticeElement> OptTrueVal = 796 getBlockValue(SI->getTrueValue(), BB, SI); 797 if (!OptTrueVal) 798 return std::nullopt; 799 ValueLatticeElement &TrueVal = *OptTrueVal; 800 801 std::optional<ValueLatticeElement> OptFalseVal = 802 getBlockValue(SI->getFalseValue(), BB, SI); 803 if (!OptFalseVal) 804 return std::nullopt; 805 ValueLatticeElement &FalseVal = *OptFalseVal; 806 807 if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) { 808 const ConstantRange &TrueCR = TrueVal.asConstantRange(SI->getType()); 809 const ConstantRange &FalseCR = FalseVal.asConstantRange(SI->getType()); 810 Value *LHS = nullptr; 811 Value *RHS = nullptr; 812 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); 813 // Is this a min specifically of our two inputs? (Avoid the risk of 814 // ValueTracking getting smarter looking back past our immediate inputs.) 815 if (SelectPatternResult::isMinOrMax(SPR.Flavor) && 816 ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) || 817 (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) { 818 ConstantRange ResultCR = [&]() { 819 switch (SPR.Flavor) { 820 default: 821 llvm_unreachable("unexpected minmax type!"); 822 case SPF_SMIN: /// Signed minimum 823 return TrueCR.smin(FalseCR); 824 case SPF_UMIN: /// Unsigned minimum 825 return TrueCR.umin(FalseCR); 826 case SPF_SMAX: /// Signed maximum 827 return TrueCR.smax(FalseCR); 828 case SPF_UMAX: /// Unsigned maximum 829 return TrueCR.umax(FalseCR); 830 }; 831 }(); 832 return ValueLatticeElement::getRange( 833 ResultCR, TrueVal.isConstantRangeIncludingUndef() || 834 FalseVal.isConstantRangeIncludingUndef()); 835 } 836 837 if (SPR.Flavor == SPF_ABS) { 838 if (LHS == SI->getTrueValue()) 839 return ValueLatticeElement::getRange( 840 TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef()); 841 if (LHS == SI->getFalseValue()) 842 return ValueLatticeElement::getRange( 843 FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef()); 844 } 845 846 if (SPR.Flavor == SPF_NABS) { 847 ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth())); 848 if (LHS == SI->getTrueValue()) 849 return ValueLatticeElement::getRange( 850 Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 851 if (LHS == SI->getFalseValue()) 852 return ValueLatticeElement::getRange( 853 Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 854 } 855 } 856 857 // Can we constrain the facts about the true and false values by using the 858 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). 859 // TODO: We could potentially refine an overdefined true value above. 860 Value *Cond = SI->getCondition(); 861 // If the value is undef, a different value may be chosen in 862 // the select condition. 863 if (isGuaranteedNotToBeUndef(Cond, AC)) { 864 TrueVal = 865 TrueVal.intersect(*getValueFromCondition(SI->getTrueValue(), Cond, 866 /*IsTrueDest*/ true, 867 /*UseBlockValue*/ false)); 868 FalseVal = 869 FalseVal.intersect(*getValueFromCondition(SI->getFalseValue(), Cond, 870 /*IsTrueDest*/ false, 871 /*UseBlockValue*/ false)); 872 } 873 874 ValueLatticeElement Result = TrueVal; 875 Result.mergeIn(FalseVal); 876 return Result; 877 } 878 879 std::optional<ConstantRange> 880 LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) { 881 std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI); 882 if (!OptVal) 883 return std::nullopt; 884 return OptVal->asConstantRange(V->getType()); 885 } 886 887 std::optional<ValueLatticeElement> 888 LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) { 889 // Filter out casts we don't know how to reason about before attempting to 890 // recurse on our operand. This can cut a long search short if we know we're 891 // not going to be able to get any useful information anways. 892 switch (CI->getOpcode()) { 893 case Instruction::Trunc: 894 case Instruction::SExt: 895 case Instruction::ZExt: 896 break; 897 default: 898 // Unhandled instructions are overdefined. 899 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 900 << "' - overdefined (unknown cast).\n"); 901 return ValueLatticeElement::getOverdefined(); 902 } 903 904 // Figure out the range of the LHS. If that fails, we still apply the 905 // transfer rule on the full set since we may be able to locally infer 906 // interesting facts. 907 std::optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB); 908 if (!LHSRes) 909 // More work to do before applying this transfer rule. 910 return std::nullopt; 911 const ConstantRange &LHSRange = *LHSRes; 912 913 const unsigned ResultBitWidth = CI->getType()->getScalarSizeInBits(); 914 915 // NOTE: We're currently limited by the set of operations that ConstantRange 916 // can evaluate symbolically. Enhancing that set will allows us to analyze 917 // more definitions. 918 return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), 919 ResultBitWidth)); 920 } 921 922 std::optional<ValueLatticeElement> 923 LazyValueInfoImpl::solveBlockValueBinaryOpImpl( 924 Instruction *I, BasicBlock *BB, 925 std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> 926 OpFn) { 927 Value *LHS = I->getOperand(0); 928 Value *RHS = I->getOperand(1); 929 930 auto ThreadBinOpOverSelect = 931 [&](Value *X, const ConstantRange &CRX, SelectInst *Y, 932 bool XIsLHS) -> std::optional<ValueLatticeElement> { 933 Value *Cond = Y->getCondition(); 934 // Only handle selects with constant values. 935 Constant *TrueC = dyn_cast<Constant>(Y->getTrueValue()); 936 if (!TrueC) 937 return std::nullopt; 938 Constant *FalseC = dyn_cast<Constant>(Y->getFalseValue()); 939 if (!FalseC) 940 return std::nullopt; 941 if (!isGuaranteedNotToBeUndef(Cond, AC)) 942 return std::nullopt; 943 944 ConstantRange TrueX = 945 CRX.intersectWith(getValueFromCondition(X, Cond, /*CondIsTrue=*/true, 946 /*UseBlockValue=*/false) 947 ->asConstantRange(X->getType())); 948 ConstantRange FalseX = 949 CRX.intersectWith(getValueFromCondition(X, Cond, /*CondIsTrue=*/false, 950 /*UseBlockValue=*/false) 951 ->asConstantRange(X->getType())); 952 ConstantRange TrueY = TrueC->toConstantRange(); 953 ConstantRange FalseY = FalseC->toConstantRange(); 954 955 if (XIsLHS) 956 return ValueLatticeElement::getRange( 957 OpFn(TrueX, TrueY).unionWith(OpFn(FalseX, FalseY))); 958 return ValueLatticeElement::getRange( 959 OpFn(TrueY, TrueX).unionWith(OpFn(FalseY, FalseX))); 960 }; 961 962 // Figure out the ranges of the operands. If that fails, use a 963 // conservative range, but apply the transfer rule anyways. This 964 // lets us pick up facts from expressions like "and i32 (call i32 965 // @foo()), 32" 966 std::optional<ConstantRange> LHSRes = getRangeFor(LHS, I, BB); 967 if (!LHSRes) 968 return std::nullopt; 969 970 // Try to thread binop over rhs select 971 if (auto *SI = dyn_cast<SelectInst>(RHS)) { 972 if (auto Res = ThreadBinOpOverSelect(LHS, *LHSRes, SI, /*XIsLHS=*/true)) 973 return *Res; 974 } 975 976 std::optional<ConstantRange> RHSRes = getRangeFor(RHS, I, BB); 977 if (!RHSRes) 978 return std::nullopt; 979 980 // Try to thread binop over lhs select 981 if (auto *SI = dyn_cast<SelectInst>(LHS)) { 982 if (auto Res = ThreadBinOpOverSelect(RHS, *RHSRes, SI, /*XIsLHS=*/false)) 983 return *Res; 984 } 985 986 const ConstantRange &LHSRange = *LHSRes; 987 const ConstantRange &RHSRange = *RHSRes; 988 return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); 989 } 990 991 std::optional<ValueLatticeElement> 992 LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) { 993 assert(BO->getOperand(0)->getType()->isSized() && 994 "all operands to binary operators are sized"); 995 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { 996 unsigned NoWrapKind = OBO->getNoWrapKind(); 997 return solveBlockValueBinaryOpImpl( 998 BO, BB, 999 [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { 1000 return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); 1001 }); 1002 } 1003 1004 return solveBlockValueBinaryOpImpl( 1005 BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { 1006 return CR1.binaryOp(BO->getOpcode(), CR2); 1007 }); 1008 } 1009 1010 std::optional<ValueLatticeElement> 1011 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, 1012 BasicBlock *BB) { 1013 return solveBlockValueBinaryOpImpl( 1014 WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { 1015 return CR1.binaryOp(WO->getBinaryOp(), CR2); 1016 }); 1017 } 1018 1019 std::optional<ValueLatticeElement> 1020 LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) { 1021 ValueLatticeElement MetadataVal = getFromRangeMetadata(II); 1022 if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { 1023 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1024 << "' - unknown intrinsic.\n"); 1025 return MetadataVal; 1026 } 1027 1028 SmallVector<ConstantRange, 2> OpRanges; 1029 for (Value *Op : II->args()) { 1030 std::optional<ConstantRange> Range = getRangeFor(Op, II, BB); 1031 if (!Range) 1032 return std::nullopt; 1033 OpRanges.push_back(*Range); 1034 } 1035 1036 return ValueLatticeElement::getRange( 1037 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges)) 1038 .intersect(MetadataVal); 1039 } 1040 1041 std::optional<ValueLatticeElement> 1042 LazyValueInfoImpl::solveBlockValueInsertElement(InsertElementInst *IEI, 1043 BasicBlock *BB) { 1044 std::optional<ValueLatticeElement> OptEltVal = 1045 getBlockValue(IEI->getOperand(1), BB, IEI); 1046 if (!OptEltVal) 1047 return std::nullopt; 1048 ValueLatticeElement &Res = *OptEltVal; 1049 1050 std::optional<ValueLatticeElement> OptVecVal = 1051 getBlockValue(IEI->getOperand(0), BB, IEI); 1052 if (!OptVecVal) 1053 return std::nullopt; 1054 1055 // Bail out if the inserted element is a constant expression. Unlike other 1056 // ValueLattice types, these are not considered an implicit splat when a 1057 // vector type is used. 1058 // We could call ConstantFoldInsertElementInstruction here to handle these. 1059 if (OptEltVal->isConstant()) 1060 return ValueLatticeElement::getOverdefined(); 1061 1062 Res.mergeIn(*OptVecVal); 1063 return Res; 1064 } 1065 1066 std::optional<ValueLatticeElement> 1067 LazyValueInfoImpl::solveBlockValueExtractValue(ExtractValueInst *EVI, 1068 BasicBlock *BB) { 1069 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1070 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) 1071 return solveBlockValueOverflowIntrinsic(WO, BB); 1072 1073 // Handle extractvalue of insertvalue to allow further simplification 1074 // based on replaced with.overflow intrinsics. 1075 if (Value *V = simplifyExtractValueInst( 1076 EVI->getAggregateOperand(), EVI->getIndices(), 1077 EVI->getDataLayout())) 1078 return getBlockValue(V, BB, EVI); 1079 1080 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1081 << "' - overdefined (unknown extractvalue).\n"); 1082 return ValueLatticeElement::getOverdefined(); 1083 } 1084 1085 static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val, 1086 ICmpInst::Predicate Pred) { 1087 if (LHS == Val) 1088 return true; 1089 1090 // Handle range checking idiom produced by InstCombine. We will subtract the 1091 // offset from the allowed range for RHS in this case. 1092 const APInt *C; 1093 if (match(LHS, m_AddLike(m_Specific(Val), m_APInt(C)))) { 1094 Offset = *C; 1095 return true; 1096 } 1097 1098 // Handle the symmetric case. This appears in saturation patterns like 1099 // (x == 16) ? 16 : (x + 1). 1100 if (match(Val, m_AddLike(m_Specific(LHS), m_APInt(C)))) { 1101 Offset = -*C; 1102 return true; 1103 } 1104 1105 // If (x | y) < C, then (x < C) && (y < C). 1106 if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) && 1107 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)) 1108 return true; 1109 1110 // If (x & y) > C, then (x > C) && (y > C). 1111 if (match(LHS, m_c_And(m_Specific(Val), m_Value())) && 1112 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)) 1113 return true; 1114 1115 return false; 1116 } 1117 1118 /// Get value range for a "(Val + Offset) Pred RHS" condition. 1119 std::optional<ValueLatticeElement> 1120 LazyValueInfoImpl::getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, 1121 Value *RHS, 1122 const APInt &Offset, 1123 Instruction *CxtI, 1124 bool UseBlockValue) { 1125 ConstantRange RHSRange(RHS->getType()->getScalarSizeInBits(), 1126 /*isFullSet=*/true); 1127 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1128 RHSRange = ConstantRange(CI->getValue()); 1129 } else if (UseBlockValue) { 1130 std::optional<ValueLatticeElement> R = 1131 getBlockValue(RHS, CxtI->getParent(), CxtI); 1132 if (!R) 1133 return std::nullopt; 1134 RHSRange = R->asConstantRange(RHS->getType()); 1135 } 1136 1137 ConstantRange TrueValues = 1138 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 1139 return ValueLatticeElement::getRange(TrueValues.subtract(Offset)); 1140 } 1141 1142 static std::optional<ConstantRange> 1143 getRangeViaSLT(CmpInst::Predicate Pred, APInt RHS, 1144 function_ref<std::optional<ConstantRange>(const APInt &)> Fn) { 1145 bool Invert = false; 1146 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 1147 Pred = ICmpInst::getInversePredicate(Pred); 1148 Invert = true; 1149 } 1150 if (Pred == ICmpInst::ICMP_SLE) { 1151 Pred = ICmpInst::ICMP_SLT; 1152 if (RHS.isMaxSignedValue()) 1153 return std::nullopt; // Could also return full/empty here, if we wanted. 1154 ++RHS; 1155 } 1156 assert(Pred == ICmpInst::ICMP_SLT && "Must be signed predicate"); 1157 if (auto CR = Fn(RHS)) 1158 return Invert ? CR->inverse() : CR; 1159 return std::nullopt; 1160 } 1161 1162 /// Get value range for a "ctpop(Val) Pred RHS" condition. 1163 static ValueLatticeElement getValueFromICmpCtpop(ICmpInst::Predicate Pred, 1164 Value *RHS) { 1165 unsigned BitWidth = RHS->getType()->getScalarSizeInBits(); 1166 1167 auto *RHSConst = dyn_cast<ConstantInt>(RHS); 1168 if (!RHSConst) 1169 return ValueLatticeElement::getOverdefined(); 1170 1171 ConstantRange ResValRange = 1172 ConstantRange::makeExactICmpRegion(Pred, RHSConst->getValue()); 1173 1174 unsigned ResMin = ResValRange.getUnsignedMin().getLimitedValue(BitWidth); 1175 unsigned ResMax = ResValRange.getUnsignedMax().getLimitedValue(BitWidth); 1176 1177 APInt ValMin = APInt::getLowBitsSet(BitWidth, ResMin); 1178 APInt ValMax = APInt::getHighBitsSet(BitWidth, ResMax); 1179 return ValueLatticeElement::getRange( 1180 ConstantRange::getNonEmpty(std::move(ValMin), ValMax + 1)); 1181 } 1182 1183 std::optional<ValueLatticeElement> LazyValueInfoImpl::getValueFromICmpCondition( 1184 Value *Val, ICmpInst *ICI, bool isTrueDest, bool UseBlockValue) { 1185 Value *LHS = ICI->getOperand(0); 1186 Value *RHS = ICI->getOperand(1); 1187 1188 // Get the predicate that must hold along the considered edge. 1189 CmpInst::Predicate EdgePred = 1190 isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate(); 1191 1192 if (isa<Constant>(RHS)) { 1193 if (ICI->isEquality() && LHS == Val) { 1194 if (EdgePred == ICmpInst::ICMP_EQ) 1195 return ValueLatticeElement::get(cast<Constant>(RHS)); 1196 else if (!isa<UndefValue>(RHS)) 1197 return ValueLatticeElement::getNot(cast<Constant>(RHS)); 1198 } 1199 } 1200 1201 Type *Ty = Val->getType(); 1202 if (!Ty->isIntegerTy()) 1203 return ValueLatticeElement::getOverdefined(); 1204 1205 unsigned BitWidth = Ty->getScalarSizeInBits(); 1206 APInt Offset(BitWidth, 0); 1207 if (matchICmpOperand(Offset, LHS, Val, EdgePred)) 1208 return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset, ICI, 1209 UseBlockValue); 1210 1211 CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred); 1212 if (matchICmpOperand(Offset, RHS, Val, SwappedPred)) 1213 return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset, ICI, 1214 UseBlockValue); 1215 1216 if (match(LHS, m_Intrinsic<Intrinsic::ctpop>(m_Specific(Val)))) 1217 return getValueFromICmpCtpop(EdgePred, RHS); 1218 1219 const APInt *Mask, *C; 1220 if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) && 1221 match(RHS, m_APInt(C))) { 1222 // If (Val & Mask) == C then all the masked bits are known and we can 1223 // compute a value range based on that. 1224 if (EdgePred == ICmpInst::ICMP_EQ) { 1225 KnownBits Known; 1226 Known.Zero = ~*C & *Mask; 1227 Known.One = *C & *Mask; 1228 return ValueLatticeElement::getRange( 1229 ConstantRange::fromKnownBits(Known, /*IsSigned*/ false)); 1230 } 1231 1232 if (EdgePred == ICmpInst::ICMP_NE) 1233 return ValueLatticeElement::getRange( 1234 ConstantRange::makeMaskNotEqualRange(*Mask, *C)); 1235 } 1236 1237 // If (X urem Modulus) >= C, then X >= C. 1238 // If trunc X >= C, then X >= C. 1239 // TODO: An upper bound could be computed as well. 1240 if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()), 1241 m_Trunc(m_Specific(Val)))) && 1242 match(RHS, m_APInt(C))) { 1243 // Use the icmp region so we don't have to deal with different predicates. 1244 ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C); 1245 if (!CR.isEmptySet()) 1246 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( 1247 CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0))); 1248 } 1249 1250 // Recognize: 1251 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, C << ShAmtC 1252 // Preconditions: (C << ShAmtC) >> ShAmtC == C 1253 const APInt *ShAmtC; 1254 if (CmpInst::isSigned(EdgePred) && 1255 match(LHS, m_AShr(m_Specific(Val), m_APInt(ShAmtC))) && 1256 match(RHS, m_APInt(C))) { 1257 auto CR = getRangeViaSLT( 1258 EdgePred, *C, [&](const APInt &RHS) -> std::optional<ConstantRange> { 1259 APInt New = RHS << *ShAmtC; 1260 if ((New.ashr(*ShAmtC)) != RHS) 1261 return std::nullopt; 1262 return ConstantRange::getNonEmpty( 1263 APInt::getSignedMinValue(New.getBitWidth()), New); 1264 }); 1265 if (CR) 1266 return ValueLatticeElement::getRange(*CR); 1267 } 1268 1269 // a - b or ptrtoint(a) - ptrtoint(b) ==/!= 0 if a ==/!= b 1270 Value *X, *Y; 1271 if (ICI->isEquality() && match(Val, m_Sub(m_Value(X), m_Value(Y)))) { 1272 // Peek through ptrtoints 1273 match(X, m_PtrToIntSameSize(DL, m_Value(X))); 1274 match(Y, m_PtrToIntSameSize(DL, m_Value(Y))); 1275 if ((X == LHS && Y == RHS) || (X == RHS && Y == LHS)) { 1276 Constant *NullVal = Constant::getNullValue(Val->getType()); 1277 if (EdgePred == ICmpInst::ICMP_EQ) 1278 return ValueLatticeElement::get(NullVal); 1279 return ValueLatticeElement::getNot(NullVal); 1280 } 1281 } 1282 1283 return ValueLatticeElement::getOverdefined(); 1284 } 1285 1286 // Handle conditions of the form 1287 // extractvalue(op.with.overflow(%x, C), 1). 1288 static ValueLatticeElement getValueFromOverflowCondition( 1289 Value *Val, WithOverflowInst *WO, bool IsTrueDest) { 1290 // TODO: This only works with a constant RHS for now. We could also compute 1291 // the range of the RHS, but this doesn't fit into the current structure of 1292 // the edge value calculation. 1293 const APInt *C; 1294 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) 1295 return ValueLatticeElement::getOverdefined(); 1296 1297 // Calculate the possible values of %x for which no overflow occurs. 1298 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 1299 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 1300 1301 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is 1302 // constrained to it's inverse (all values that might cause overflow). 1303 if (IsTrueDest) 1304 NWR = NWR.inverse(); 1305 return ValueLatticeElement::getRange(NWR); 1306 } 1307 1308 std::optional<ValueLatticeElement> 1309 LazyValueInfoImpl::getValueFromCondition(Value *Val, Value *Cond, 1310 bool IsTrueDest, bool UseBlockValue, 1311 unsigned Depth) { 1312 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) 1313 return getValueFromICmpCondition(Val, ICI, IsTrueDest, UseBlockValue); 1314 1315 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) 1316 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1317 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) 1318 return getValueFromOverflowCondition(Val, WO, IsTrueDest); 1319 1320 if (++Depth == MaxAnalysisRecursionDepth) 1321 return ValueLatticeElement::getOverdefined(); 1322 1323 Value *N; 1324 if (match(Cond, m_Not(m_Value(N)))) 1325 return getValueFromCondition(Val, N, !IsTrueDest, UseBlockValue, Depth); 1326 1327 Value *L, *R; 1328 bool IsAnd; 1329 if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))) 1330 IsAnd = true; 1331 else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) 1332 IsAnd = false; 1333 else 1334 return ValueLatticeElement::getOverdefined(); 1335 1336 std::optional<ValueLatticeElement> LV = 1337 getValueFromCondition(Val, L, IsTrueDest, UseBlockValue, Depth); 1338 if (!LV) 1339 return std::nullopt; 1340 std::optional<ValueLatticeElement> RV = 1341 getValueFromCondition(Val, R, IsTrueDest, UseBlockValue, Depth); 1342 if (!RV) 1343 return std::nullopt; 1344 1345 // if (L && R) -> intersect L and R 1346 // if (!(L || R)) -> intersect !L and !R 1347 // if (L || R) -> union L and R 1348 // if (!(L && R)) -> union !L and !R 1349 if (IsTrueDest ^ IsAnd) { 1350 LV->mergeIn(*RV); 1351 return *LV; 1352 } 1353 1354 return LV->intersect(*RV); 1355 } 1356 1357 // Return true if Usr has Op as an operand, otherwise false. 1358 static bool usesOperand(User *Usr, Value *Op) { 1359 return is_contained(Usr->operands(), Op); 1360 } 1361 1362 // Return true if the instruction type of Val is supported by 1363 // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only. 1364 // Call this before calling constantFoldUser() to find out if it's even worth 1365 // attempting to call it. 1366 static bool isOperationFoldable(User *Usr) { 1367 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr); 1368 } 1369 1370 // Check if Usr can be simplified to an integer constant when the value of one 1371 // of its operands Op is an integer constant OpConstVal. If so, return it as an 1372 // lattice value range with a single element or otherwise return an overdefined 1373 // lattice value. 1374 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, 1375 const APInt &OpConstVal, 1376 const DataLayout &DL) { 1377 assert(isOperationFoldable(Usr) && "Precondition"); 1378 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); 1379 // Check if Usr can be simplified to a constant. 1380 if (auto *CI = dyn_cast<CastInst>(Usr)) { 1381 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); 1382 if (auto *C = dyn_cast_or_null<ConstantInt>( 1383 simplifyCastInst(CI->getOpcode(), OpConst, 1384 CI->getDestTy(), DL))) { 1385 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1386 } 1387 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { 1388 bool Op0Match = BO->getOperand(0) == Op; 1389 bool Op1Match = BO->getOperand(1) == Op; 1390 assert((Op0Match || Op1Match) && 1391 "Operand 0 nor Operand 1 isn't a match"); 1392 Value *LHS = Op0Match ? OpConst : BO->getOperand(0); 1393 Value *RHS = Op1Match ? OpConst : BO->getOperand(1); 1394 if (auto *C = dyn_cast_or_null<ConstantInt>( 1395 simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { 1396 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1397 } 1398 } else if (isa<FreezeInst>(Usr)) { 1399 assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op"); 1400 return ValueLatticeElement::getRange(ConstantRange(OpConstVal)); 1401 } 1402 return ValueLatticeElement::getOverdefined(); 1403 } 1404 1405 /// Compute the value of Val on the edge BBFrom -> BBTo. 1406 std::optional<ValueLatticeElement> 1407 LazyValueInfoImpl::getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, 1408 BasicBlock *BBTo, bool UseBlockValue) { 1409 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we 1410 // know that v != 0. 1411 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { 1412 // If this is a conditional branch and only one successor goes to BBTo, then 1413 // we may be able to infer something from the condition. 1414 if (BI->isConditional() && 1415 BI->getSuccessor(0) != BI->getSuccessor(1)) { 1416 bool isTrueDest = BI->getSuccessor(0) == BBTo; 1417 assert(BI->getSuccessor(!isTrueDest) == BBTo && 1418 "BBTo isn't a successor of BBFrom"); 1419 Value *Condition = BI->getCondition(); 1420 1421 // If V is the condition of the branch itself, then we know exactly what 1422 // it is. 1423 // NB: The condition on a `br` can't be a vector type. 1424 if (Condition == Val) 1425 return ValueLatticeElement::get(ConstantInt::get( 1426 Type::getInt1Ty(Val->getContext()), isTrueDest)); 1427 1428 // If the condition of the branch is an equality comparison, we may be 1429 // able to infer the value. 1430 std::optional<ValueLatticeElement> Result = 1431 getValueFromCondition(Val, Condition, isTrueDest, UseBlockValue); 1432 if (!Result) 1433 return std::nullopt; 1434 1435 if (!Result->isOverdefined()) 1436 return Result; 1437 1438 if (User *Usr = dyn_cast<User>(Val)) { 1439 assert(Result->isOverdefined() && "Result isn't overdefined"); 1440 // Check with isOperationFoldable() first to avoid linearly iterating 1441 // over the operands unnecessarily which can be expensive for 1442 // instructions with many operands. 1443 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { 1444 const DataLayout &DL = BBTo->getDataLayout(); 1445 if (usesOperand(Usr, Condition)) { 1446 // If Val has Condition as an operand and Val can be folded into a 1447 // constant with either Condition == true or Condition == false, 1448 // propagate the constant. 1449 // eg. 1450 // ; %Val is true on the edge to %then. 1451 // %Val = and i1 %Condition, true. 1452 // br %Condition, label %then, label %else 1453 APInt ConditionVal(1, isTrueDest ? 1 : 0); 1454 Result = constantFoldUser(Usr, Condition, ConditionVal, DL); 1455 } else { 1456 // If one of Val's operand has an inferred value, we may be able to 1457 // infer the value of Val. 1458 // eg. 1459 // ; %Val is 94 on the edge to %then. 1460 // %Val = add i8 %Op, 1 1461 // %Condition = icmp eq i8 %Op, 93 1462 // br i1 %Condition, label %then, label %else 1463 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { 1464 Value *Op = Usr->getOperand(i); 1465 ValueLatticeElement OpLatticeVal = *getValueFromCondition( 1466 Op, Condition, isTrueDest, /*UseBlockValue*/ false); 1467 if (std::optional<APInt> OpConst = 1468 OpLatticeVal.asConstantInteger()) { 1469 Result = constantFoldUser(Usr, Op, *OpConst, DL); 1470 break; 1471 } 1472 } 1473 } 1474 } 1475 } 1476 if (!Result->isOverdefined()) 1477 return Result; 1478 } 1479 } 1480 1481 // If the edge was formed by a switch on the value, then we may know exactly 1482 // what it is. 1483 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { 1484 Value *Condition = SI->getCondition(); 1485 if (!isa<IntegerType>(Val->getType())) 1486 return ValueLatticeElement::getOverdefined(); 1487 bool ValUsesConditionAndMayBeFoldable = false; 1488 if (Condition != Val) { 1489 // Check if Val has Condition as an operand. 1490 if (User *Usr = dyn_cast<User>(Val)) 1491 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && 1492 usesOperand(Usr, Condition); 1493 if (!ValUsesConditionAndMayBeFoldable) 1494 return ValueLatticeElement::getOverdefined(); 1495 } 1496 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && 1497 "Condition != Val nor Val doesn't use Condition"); 1498 1499 bool DefaultCase = SI->getDefaultDest() == BBTo; 1500 unsigned BitWidth = Val->getType()->getIntegerBitWidth(); 1501 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); 1502 1503 for (auto Case : SI->cases()) { 1504 APInt CaseValue = Case.getCaseValue()->getValue(); 1505 ConstantRange EdgeVal(CaseValue); 1506 if (ValUsesConditionAndMayBeFoldable) { 1507 User *Usr = cast<User>(Val); 1508 const DataLayout &DL = BBTo->getDataLayout(); 1509 ValueLatticeElement EdgeLatticeVal = 1510 constantFoldUser(Usr, Condition, CaseValue, DL); 1511 if (EdgeLatticeVal.isOverdefined()) 1512 return ValueLatticeElement::getOverdefined(); 1513 EdgeVal = EdgeLatticeVal.getConstantRange(); 1514 } 1515 if (DefaultCase) { 1516 // It is possible that the default destination is the destination of 1517 // some cases. We cannot perform difference for those cases. 1518 // We know Condition != CaseValue in BBTo. In some cases we can use 1519 // this to infer Val == f(Condition) is != f(CaseValue). For now, we 1520 // only do this when f is identity (i.e. Val == Condition), but we 1521 // should be able to do this for any injective f. 1522 if (Case.getCaseSuccessor() != BBTo && Condition == Val) 1523 EdgesVals = EdgesVals.difference(EdgeVal); 1524 } else if (Case.getCaseSuccessor() == BBTo) 1525 EdgesVals = EdgesVals.unionWith(EdgeVal); 1526 } 1527 return ValueLatticeElement::getRange(std::move(EdgesVals)); 1528 } 1529 return ValueLatticeElement::getOverdefined(); 1530 } 1531 1532 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at 1533 /// the basic block if the edge does not constrain Val. 1534 std::optional<ValueLatticeElement> 1535 LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, 1536 BasicBlock *BBTo, Instruction *CxtI) { 1537 // If already a constant, there is nothing to compute. 1538 if (Constant *VC = dyn_cast<Constant>(Val)) 1539 return ValueLatticeElement::get(VC); 1540 1541 std::optional<ValueLatticeElement> LocalResult = 1542 getEdgeValueLocal(Val, BBFrom, BBTo, /*UseBlockValue*/ true); 1543 if (!LocalResult) 1544 return std::nullopt; 1545 1546 if (hasSingleValue(*LocalResult)) 1547 // Can't get any more precise here 1548 return LocalResult; 1549 1550 std::optional<ValueLatticeElement> OptInBlock = 1551 getBlockValue(Val, BBFrom, BBFrom->getTerminator()); 1552 if (!OptInBlock) 1553 return std::nullopt; 1554 ValueLatticeElement &InBlock = *OptInBlock; 1555 1556 // We can use the context instruction (generically the ultimate instruction 1557 // the calling pass is trying to simplify) here, even though the result of 1558 // this function is generally cached when called from the solve* functions 1559 // (and that cached result might be used with queries using a different 1560 // context instruction), because when this function is called from the solve* 1561 // functions, the context instruction is not provided. When called from 1562 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, 1563 // but then the result is not cached. 1564 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); 1565 1566 return LocalResult->intersect(InBlock); 1567 } 1568 1569 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, 1570 Instruction *CxtI) { 1571 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" 1572 << BB->getName() << "'\n"); 1573 1574 assert(BlockValueStack.empty() && BlockValueSet.empty()); 1575 std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI); 1576 if (!OptResult) { 1577 solve(); 1578 OptResult = getBlockValue(V, BB, CxtI); 1579 assert(OptResult && "Value not available after solving"); 1580 } 1581 1582 ValueLatticeElement Result = *OptResult; 1583 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1584 return Result; 1585 } 1586 1587 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { 1588 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() 1589 << "'\n"); 1590 1591 if (auto *C = dyn_cast<Constant>(V)) 1592 return ValueLatticeElement::get(C); 1593 1594 ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); 1595 if (auto *I = dyn_cast<Instruction>(V)) 1596 Result = getFromRangeMetadata(I); 1597 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1598 1599 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1600 return Result; 1601 } 1602 1603 ValueLatticeElement LazyValueInfoImpl:: 1604 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, 1605 Instruction *CxtI) { 1606 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" 1607 << FromBB->getName() << "' to '" << ToBB->getName() 1608 << "'\n"); 1609 1610 std::optional<ValueLatticeElement> Result = 1611 getEdgeValue(V, FromBB, ToBB, CxtI); 1612 while (!Result) { 1613 // As the worklist only explicitly tracks block values (but not edge values) 1614 // we may have to call solve() multiple times, as the edge value calculation 1615 // may request additional block values. 1616 solve(); 1617 Result = getEdgeValue(V, FromBB, ToBB, CxtI); 1618 } 1619 1620 LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n"); 1621 return *Result; 1622 } 1623 1624 ValueLatticeElement LazyValueInfoImpl::getValueAtUse(const Use &U) { 1625 Value *V = U.get(); 1626 auto *CxtI = cast<Instruction>(U.getUser()); 1627 ValueLatticeElement VL = getValueInBlock(V, CxtI->getParent(), CxtI); 1628 1629 // Check whether the only (possibly transitive) use of the value is in a 1630 // position where V can be constrained by a select or branch condition. 1631 const Use *CurrU = &U; 1632 // TODO: Increase limit? 1633 const unsigned MaxUsesToInspect = 3; 1634 for (unsigned I = 0; I < MaxUsesToInspect; ++I) { 1635 std::optional<ValueLatticeElement> CondVal; 1636 auto *CurrI = cast<Instruction>(CurrU->getUser()); 1637 if (auto *SI = dyn_cast<SelectInst>(CurrI)) { 1638 // If the value is undef, a different value may be chosen in 1639 // the select condition and at use. 1640 if (!isGuaranteedNotToBeUndef(SI->getCondition(), AC)) 1641 break; 1642 if (CurrU->getOperandNo() == 1) 1643 CondVal = 1644 *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ true, 1645 /*UseBlockValue*/ false); 1646 else if (CurrU->getOperandNo() == 2) 1647 CondVal = 1648 *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ false, 1649 /*UseBlockValue*/ false); 1650 } else if (auto *PHI = dyn_cast<PHINode>(CurrI)) { 1651 // TODO: Use non-local query? 1652 CondVal = *getEdgeValueLocal(V, PHI->getIncomingBlock(*CurrU), 1653 PHI->getParent(), /*UseBlockValue*/ false); 1654 } 1655 if (CondVal) 1656 VL = VL.intersect(*CondVal); 1657 1658 // Only follow one-use chain, to allow direct intersection of conditions. 1659 // If there are multiple uses, we would have to intersect with the union of 1660 // all conditions at different uses. 1661 // Stop walking if we hit a non-speculatable instruction. Even if the 1662 // result is only used under a specific condition, executing the 1663 // instruction itself may cause side effects or UB already. 1664 // This also disallows looking through phi nodes: If the phi node is part 1665 // of a cycle, we might end up reasoning about values from different cycle 1666 // iterations (PR60629). 1667 if (!CurrI->hasOneUse() || 1668 !isSafeToSpeculativelyExecuteWithVariableReplaced(CurrI)) 1669 break; 1670 CurrU = &*CurrI->use_begin(); 1671 } 1672 return VL; 1673 } 1674 1675 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1676 BasicBlock *NewSucc) { 1677 TheCache.threadEdgeImpl(OldSucc, NewSucc); 1678 } 1679 1680 //===----------------------------------------------------------------------===// 1681 // LazyValueInfo Impl 1682 //===----------------------------------------------------------------------===// 1683 1684 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { 1685 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1686 1687 if (auto *Impl = Info.getImpl()) 1688 Impl->clear(); 1689 1690 // Fully lazy. 1691 return false; 1692 } 1693 1694 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1695 AU.setPreservesAll(); 1696 AU.addRequired<AssumptionCacheTracker>(); 1697 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1698 } 1699 1700 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } 1701 1702 /// This lazily constructs the LazyValueInfoImpl. 1703 LazyValueInfoImpl &LazyValueInfo::getOrCreateImpl(const Module *M) { 1704 if (!PImpl) { 1705 assert(M && "getCache() called with a null Module"); 1706 const DataLayout &DL = M->getDataLayout(); 1707 Function *GuardDecl = 1708 Intrinsic::getDeclarationIfExists(M, Intrinsic::experimental_guard); 1709 PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl); 1710 } 1711 return *static_cast<LazyValueInfoImpl *>(PImpl); 1712 } 1713 1714 LazyValueInfoImpl *LazyValueInfo::getImpl() { 1715 if (!PImpl) 1716 return nullptr; 1717 return static_cast<LazyValueInfoImpl *>(PImpl); 1718 } 1719 1720 LazyValueInfo::~LazyValueInfo() { releaseMemory(); } 1721 1722 void LazyValueInfo::releaseMemory() { 1723 // If the cache was allocated, free it. 1724 if (auto *Impl = getImpl()) { 1725 delete &*Impl; 1726 PImpl = nullptr; 1727 } 1728 } 1729 1730 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, 1731 FunctionAnalysisManager::Invalidator &Inv) { 1732 // We need to invalidate if we have either failed to preserve this analyses 1733 // result directly or if any of its dependencies have been invalidated. 1734 auto PAC = PA.getChecker<LazyValueAnalysis>(); 1735 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) 1736 return true; 1737 1738 return false; 1739 } 1740 1741 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } 1742 1743 LazyValueInfo LazyValueAnalysis::run(Function &F, 1744 FunctionAnalysisManager &FAM) { 1745 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1746 1747 return LazyValueInfo(&AC, &F.getDataLayout()); 1748 } 1749 1750 /// Returns true if we can statically tell that this value will never be a 1751 /// "useful" constant. In practice, this means we've got something like an 1752 /// alloca or a malloc call for which a comparison against a constant can 1753 /// only be guarding dead code. Note that we are potentially giving up some 1754 /// precision in dead code (a constant result) in favour of avoiding a 1755 /// expensive search for a easily answered common query. 1756 static bool isKnownNonConstant(Value *V) { 1757 V = V->stripPointerCasts(); 1758 // The return val of alloc cannot be a Constant. 1759 if (isa<AllocaInst>(V)) 1760 return true; 1761 return false; 1762 } 1763 1764 Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) { 1765 // Bail out early if V is known not to be a Constant. 1766 if (isKnownNonConstant(V)) 1767 return nullptr; 1768 1769 BasicBlock *BB = CxtI->getParent(); 1770 ValueLatticeElement Result = 1771 getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI); 1772 1773 if (Result.isConstant()) 1774 return Result.getConstant(); 1775 if (Result.isConstantRange()) { 1776 const ConstantRange &CR = Result.getConstantRange(); 1777 if (const APInt *SingleVal = CR.getSingleElement()) 1778 return ConstantInt::get(V->getType(), *SingleVal); 1779 } 1780 return nullptr; 1781 } 1782 1783 ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI, 1784 bool UndefAllowed) { 1785 BasicBlock *BB = CxtI->getParent(); 1786 ValueLatticeElement Result = 1787 getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI); 1788 return Result.asConstantRange(V->getType(), UndefAllowed); 1789 } 1790 1791 ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U, 1792 bool UndefAllowed) { 1793 auto *Inst = cast<Instruction>(U.getUser()); 1794 ValueLatticeElement Result = 1795 getOrCreateImpl(Inst->getModule()).getValueAtUse(U); 1796 return Result.asConstantRange(U->getType(), UndefAllowed); 1797 } 1798 1799 /// Determine whether the specified value is known to be a 1800 /// constant on the specified edge. Return null if not. 1801 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, 1802 BasicBlock *ToBB, 1803 Instruction *CxtI) { 1804 Module *M = FromBB->getModule(); 1805 ValueLatticeElement Result = 1806 getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1807 1808 if (Result.isConstant()) 1809 return Result.getConstant(); 1810 if (Result.isConstantRange()) { 1811 const ConstantRange &CR = Result.getConstantRange(); 1812 if (const APInt *SingleVal = CR.getSingleElement()) 1813 return ConstantInt::get(V->getType(), *SingleVal); 1814 } 1815 return nullptr; 1816 } 1817 1818 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, 1819 BasicBlock *FromBB, 1820 BasicBlock *ToBB, 1821 Instruction *CxtI) { 1822 Module *M = FromBB->getModule(); 1823 ValueLatticeElement Result = 1824 getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1825 // TODO: Should undef be allowed here? 1826 return Result.asConstantRange(V->getType(), /*UndefAllowed*/ true); 1827 } 1828 1829 static Constant *getPredicateResult(CmpInst::Predicate Pred, Constant *C, 1830 const ValueLatticeElement &Val, 1831 const DataLayout &DL) { 1832 // If we know the value is a constant, evaluate the conditional. 1833 if (Val.isConstant()) 1834 return ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL); 1835 1836 Type *ResTy = CmpInst::makeCmpResultType(C->getType()); 1837 if (Val.isConstantRange()) { 1838 const ConstantRange &CR = Val.getConstantRange(); 1839 ConstantRange RHS = C->toConstantRange(); 1840 if (CR.icmp(Pred, RHS)) 1841 return ConstantInt::getTrue(ResTy); 1842 if (CR.icmp(CmpInst::getInversePredicate(Pred), RHS)) 1843 return ConstantInt::getFalse(ResTy); 1844 return nullptr; 1845 } 1846 1847 if (Val.isNotConstant()) { 1848 // If this is an equality comparison, we can try to fold it knowing that 1849 // "V != C1". 1850 if (Pred == ICmpInst::ICMP_EQ) { 1851 // !C1 == C -> false iff C1 == C. 1852 Constant *Res = ConstantFoldCompareInstOperands( 1853 ICmpInst::ICMP_NE, Val.getNotConstant(), C, DL); 1854 if (Res && Res->isNullValue()) 1855 return ConstantInt::getFalse(ResTy); 1856 } else if (Pred == ICmpInst::ICMP_NE) { 1857 // !C1 != C -> true iff C1 == C. 1858 Constant *Res = ConstantFoldCompareInstOperands( 1859 ICmpInst::ICMP_NE, Val.getNotConstant(), C, DL); 1860 if (Res && Res->isNullValue()) 1861 return ConstantInt::getTrue(ResTy); 1862 } 1863 return nullptr; 1864 } 1865 1866 return nullptr; 1867 } 1868 1869 /// Determine whether the specified value comparison with a constant is known to 1870 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. 1871 Constant *LazyValueInfo::getPredicateOnEdge(CmpInst::Predicate Pred, Value *V, 1872 Constant *C, BasicBlock *FromBB, 1873 BasicBlock *ToBB, 1874 Instruction *CxtI) { 1875 Module *M = FromBB->getModule(); 1876 ValueLatticeElement Result = 1877 getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); 1878 1879 return getPredicateResult(Pred, C, Result, M->getDataLayout()); 1880 } 1881 1882 Constant *LazyValueInfo::getPredicateAt(CmpInst::Predicate Pred, Value *V, 1883 Constant *C, Instruction *CxtI, 1884 bool UseBlockValue) { 1885 // Is or is not NonNull are common predicates being queried. If 1886 // isKnownNonZero can tell us the result of the predicate, we can 1887 // return it quickly. But this is only a fastpath, and falling 1888 // through would still be correct. 1889 Module *M = CxtI->getModule(); 1890 const DataLayout &DL = M->getDataLayout(); 1891 if (V->getType()->isPointerTy() && C->isNullValue() && 1892 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { 1893 Type *ResTy = CmpInst::makeCmpResultType(C->getType()); 1894 if (Pred == ICmpInst::ICMP_EQ) 1895 return ConstantInt::getFalse(ResTy); 1896 else if (Pred == ICmpInst::ICMP_NE) 1897 return ConstantInt::getTrue(ResTy); 1898 } 1899 1900 auto &Impl = getOrCreateImpl(M); 1901 ValueLatticeElement Result = 1902 UseBlockValue ? Impl.getValueInBlock(V, CxtI->getParent(), CxtI) 1903 : Impl.getValueAt(V, CxtI); 1904 Constant *Ret = getPredicateResult(Pred, C, Result, DL); 1905 if (Ret) 1906 return Ret; 1907 1908 // Note: The following bit of code is somewhat distinct from the rest of LVI; 1909 // LVI as a whole tries to compute a lattice value which is conservatively 1910 // correct at a given location. In this case, we have a predicate which we 1911 // weren't able to prove about the merged result, and we're pushing that 1912 // predicate back along each incoming edge to see if we can prove it 1913 // separately for each input. As a motivating example, consider: 1914 // bb1: 1915 // %v1 = ... ; constantrange<1, 5> 1916 // br label %merge 1917 // bb2: 1918 // %v2 = ... ; constantrange<10, 20> 1919 // br label %merge 1920 // merge: 1921 // %phi = phi [%v1, %v2] ; constantrange<1,20> 1922 // %pred = icmp eq i32 %phi, 8 1923 // We can't tell from the lattice value for '%phi' that '%pred' is false 1924 // along each path, but by checking the predicate over each input separately, 1925 // we can. 1926 // We limit the search to one step backwards from the current BB and value. 1927 // We could consider extending this to search further backwards through the 1928 // CFG and/or value graph, but there are non-obvious compile time vs quality 1929 // tradeoffs. 1930 BasicBlock *BB = CxtI->getParent(); 1931 1932 // Function entry or an unreachable block. Bail to avoid confusing 1933 // analysis below. 1934 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1935 if (PI == PE) 1936 return nullptr; 1937 1938 // If V is a PHI node in the same block as the context, we need to ask 1939 // questions about the predicate as applied to the incoming value along 1940 // each edge. This is useful for eliminating cases where the predicate is 1941 // known along all incoming edges. 1942 if (auto *PHI = dyn_cast<PHINode>(V)) 1943 if (PHI->getParent() == BB) { 1944 Constant *Baseline = nullptr; 1945 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { 1946 Value *Incoming = PHI->getIncomingValue(i); 1947 BasicBlock *PredBB = PHI->getIncomingBlock(i); 1948 // Note that PredBB may be BB itself. 1949 Constant *Result = 1950 getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI); 1951 1952 // Keep going as long as we've seen a consistent known result for 1953 // all inputs. 1954 Baseline = (i == 0) ? Result /* First iteration */ 1955 : (Baseline == Result ? Baseline 1956 : nullptr); /* All others */ 1957 if (!Baseline) 1958 break; 1959 } 1960 if (Baseline) 1961 return Baseline; 1962 } 1963 1964 // For a comparison where the V is outside this block, it's possible 1965 // that we've branched on it before. Look to see if the value is known 1966 // on all incoming edges. 1967 if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) { 1968 // For predecessor edge, determine if the comparison is true or false 1969 // on that edge. If they're all true or all false, we can conclude 1970 // the value of the comparison in this block. 1971 Constant *Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1972 if (Baseline) { 1973 // Check that all remaining incoming values match the first one. 1974 while (++PI != PE) { 1975 Constant *Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1976 if (Ret != Baseline) 1977 break; 1978 } 1979 // If we terminated early, then one of the values didn't match. 1980 if (PI == PE) { 1981 return Baseline; 1982 } 1983 } 1984 } 1985 1986 return nullptr; 1987 } 1988 1989 Constant *LazyValueInfo::getPredicateAt(CmpInst::Predicate Pred, Value *LHS, 1990 Value *RHS, Instruction *CxtI, 1991 bool UseBlockValue) { 1992 if (auto *C = dyn_cast<Constant>(RHS)) 1993 return getPredicateAt(Pred, LHS, C, CxtI, UseBlockValue); 1994 if (auto *C = dyn_cast<Constant>(LHS)) 1995 return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI, 1996 UseBlockValue); 1997 1998 // Got two non-Constant values. Try to determine the comparison results based 1999 // on the block values of the two operands, e.g. because they have 2000 // non-overlapping ranges. 2001 if (UseBlockValue) { 2002 Module *M = CxtI->getModule(); 2003 ValueLatticeElement L = 2004 getOrCreateImpl(M).getValueInBlock(LHS, CxtI->getParent(), CxtI); 2005 if (L.isOverdefined()) 2006 return nullptr; 2007 2008 ValueLatticeElement R = 2009 getOrCreateImpl(M).getValueInBlock(RHS, CxtI->getParent(), CxtI); 2010 Type *Ty = CmpInst::makeCmpResultType(LHS->getType()); 2011 return L.getCompare(Pred, Ty, R, M->getDataLayout()); 2012 } 2013 return nullptr; 2014 } 2015 2016 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 2017 BasicBlock *NewSucc) { 2018 if (auto *Impl = getImpl()) 2019 Impl->threadEdge(PredBB, OldSucc, NewSucc); 2020 } 2021 2022 void LazyValueInfo::forgetValue(Value *V) { 2023 if (auto *Impl = getImpl()) 2024 Impl->forgetValue(V); 2025 } 2026 2027 void LazyValueInfo::eraseBlock(BasicBlock *BB) { 2028 if (auto *Impl = getImpl()) 2029 Impl->eraseBlock(BB); 2030 } 2031 2032 void LazyValueInfo::clear() { 2033 if (auto *Impl = getImpl()) 2034 Impl->clear(); 2035 } 2036 2037 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 2038 if (auto *Impl = getImpl()) 2039 Impl->printLVI(F, DTree, OS); 2040 } 2041 2042 // Print the LVI for the function arguments at the start of each basic block. 2043 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( 2044 const BasicBlock *BB, formatted_raw_ostream &OS) { 2045 // Find if there are latticevalues defined for arguments of the function. 2046 auto *F = BB->getParent(); 2047 for (const auto &Arg : F->args()) { 2048 ValueLatticeElement Result = LVIImpl->getValueInBlock( 2049 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); 2050 if (Result.isUnknown()) 2051 continue; 2052 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; 2053 } 2054 } 2055 2056 // This function prints the LVI analysis for the instruction I at the beginning 2057 // of various basic blocks. It relies on calculated values that are stored in 2058 // the LazyValueInfoCache, and in the absence of cached values, recalculate the 2059 // LazyValueInfo for `I`, and print that info. 2060 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( 2061 const Instruction *I, formatted_raw_ostream &OS) { 2062 2063 auto *ParentBB = I->getParent(); 2064 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; 2065 // We can generate (solve) LVI values only for blocks that are dominated by 2066 // the I's parent. However, to avoid generating LVI for all dominating blocks, 2067 // that contain redundant/uninteresting information, we print LVI for 2068 // blocks that may use this LVI information (such as immediate successor 2069 // blocks, and blocks that contain uses of `I`). 2070 auto printResult = [&](const BasicBlock *BB) { 2071 if (!BlocksContainingLVI.insert(BB).second) 2072 return; 2073 ValueLatticeElement Result = LVIImpl->getValueInBlock( 2074 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); 2075 OS << "; LatticeVal for: '" << *I << "' in BB: '"; 2076 BB->printAsOperand(OS, false); 2077 OS << "' is: " << Result << "\n"; 2078 }; 2079 2080 printResult(ParentBB); 2081 // Print the LVI analysis results for the immediate successor blocks, that 2082 // are dominated by `ParentBB`. 2083 for (const auto *BBSucc : successors(ParentBB)) 2084 if (DT.dominates(ParentBB, BBSucc)) 2085 printResult(BBSucc); 2086 2087 // Print LVI in blocks where `I` is used. 2088 for (const auto *U : I->users()) 2089 if (auto *UseI = dyn_cast<Instruction>(U)) 2090 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) 2091 printResult(UseI->getParent()); 2092 2093 } 2094 2095 PreservedAnalyses LazyValueInfoPrinterPass::run(Function &F, 2096 FunctionAnalysisManager &AM) { 2097 OS << "LVI for function '" << F.getName() << "':\n"; 2098 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 2099 auto &DTree = AM.getResult<DominatorTreeAnalysis>(F); 2100 LVI.printLVI(F, DTree, OS); 2101 return PreservedAnalyses::all(); 2102 } 2103