1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file "describes" induction and recurrence variables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/IVDescriptors.h" 14 #include "llvm/Analysis/DemandedBits.h" 15 #include "llvm/Analysis/LoopInfo.h" 16 #include "llvm/Analysis/ScalarEvolution.h" 17 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/IR/ValueHandle.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/KnownBits.h" 25 26 using namespace llvm; 27 using namespace llvm::PatternMatch; 28 29 #define DEBUG_TYPE "iv-descriptors" 30 31 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 32 SmallPtrSetImpl<Instruction *> &Set) { 33 for (const Use &Use : I->operands()) 34 if (!Set.count(dyn_cast<Instruction>(Use))) 35 return false; 36 return true; 37 } 38 39 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) { 40 switch (Kind) { 41 default: 42 break; 43 case RecurKind::Add: 44 case RecurKind::Mul: 45 case RecurKind::Or: 46 case RecurKind::And: 47 case RecurKind::Xor: 48 case RecurKind::SMax: 49 case RecurKind::SMin: 50 case RecurKind::UMax: 51 case RecurKind::UMin: 52 case RecurKind::IAnyOf: 53 case RecurKind::FAnyOf: 54 case RecurKind::IFindLastIV: 55 case RecurKind::FFindLastIV: 56 return true; 57 } 58 return false; 59 } 60 61 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) { 62 return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind); 63 } 64 65 /// Determines if Phi may have been type-promoted. If Phi has a single user 66 /// that ANDs the Phi with a type mask, return the user. RT is updated to 67 /// account for the narrower bit width represented by the mask, and the AND 68 /// instruction is added to CI. 69 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 70 SmallPtrSetImpl<Instruction *> &Visited, 71 SmallPtrSetImpl<Instruction *> &CI) { 72 if (!Phi->hasOneUse()) 73 return Phi; 74 75 const APInt *M = nullptr; 76 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 77 78 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 79 // with a new integer type of the corresponding bit width. 80 if (match(J, m_And(m_Instruction(I), m_APInt(M)))) { 81 int32_t Bits = (*M + 1).exactLogBase2(); 82 if (Bits > 0) { 83 RT = IntegerType::get(Phi->getContext(), Bits); 84 Visited.insert(Phi); 85 CI.insert(J); 86 return J; 87 } 88 } 89 return Phi; 90 } 91 92 /// Compute the minimal bit width needed to represent a reduction whose exit 93 /// instruction is given by Exit. 94 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 95 DemandedBits *DB, 96 AssumptionCache *AC, 97 DominatorTree *DT) { 98 bool IsSigned = false; 99 const DataLayout &DL = Exit->getDataLayout(); 100 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 101 102 if (DB) { 103 // Use the demanded bits analysis to determine the bits that are live out 104 // of the exit instruction, rounding up to the nearest power of two. If the 105 // use of demanded bits results in a smaller bit width, we know the value 106 // must be positive (i.e., IsSigned = false), because if this were not the 107 // case, the sign bit would have been demanded. 108 auto Mask = DB->getDemandedBits(Exit); 109 MaxBitWidth = Mask.getBitWidth() - Mask.countl_zero(); 110 } 111 112 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 113 // If demanded bits wasn't able to limit the bit width, we can try to use 114 // value tracking instead. This can be the case, for example, if the value 115 // may be negative. 116 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 117 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 118 MaxBitWidth = NumTypeBits - NumSignBits; 119 KnownBits Bits = computeKnownBits(Exit, DL); 120 if (!Bits.isNonNegative()) { 121 // If the value is not known to be non-negative, we set IsSigned to true, 122 // meaning that we will use sext instructions instead of zext 123 // instructions to restore the original type. 124 IsSigned = true; 125 // Make sure at least one sign bit is included in the result, so it 126 // will get properly sign-extended. 127 ++MaxBitWidth; 128 } 129 } 130 MaxBitWidth = llvm::bit_ceil(MaxBitWidth); 131 132 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 133 IsSigned); 134 } 135 136 /// Collect cast instructions that can be ignored in the vectorizer's cost 137 /// model, given a reduction exit value and the minimal type in which the 138 // reduction can be represented. Also search casts to the recurrence type 139 // to find the minimum width used by the recurrence. 140 static void collectCastInstrs(Loop *TheLoop, Instruction *Exit, 141 Type *RecurrenceType, 142 SmallPtrSetImpl<Instruction *> &Casts, 143 unsigned &MinWidthCastToRecurTy) { 144 145 SmallVector<Instruction *, 8> Worklist; 146 SmallPtrSet<Instruction *, 8> Visited; 147 Worklist.push_back(Exit); 148 MinWidthCastToRecurTy = -1U; 149 150 while (!Worklist.empty()) { 151 Instruction *Val = Worklist.pop_back_val(); 152 Visited.insert(Val); 153 if (auto *Cast = dyn_cast<CastInst>(Val)) { 154 if (Cast->getSrcTy() == RecurrenceType) { 155 // If the source type of a cast instruction is equal to the recurrence 156 // type, it will be eliminated, and should be ignored in the vectorizer 157 // cost model. 158 Casts.insert(Cast); 159 continue; 160 } 161 if (Cast->getDestTy() == RecurrenceType) { 162 // The minimum width used by the recurrence is found by checking for 163 // casts on its operands. The minimum width is used by the vectorizer 164 // when finding the widest type for in-loop reductions without any 165 // loads/stores. 166 MinWidthCastToRecurTy = std::min<unsigned>( 167 MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits()); 168 continue; 169 } 170 } 171 // Add all operands to the work list if they are loop-varying values that 172 // we haven't yet visited. 173 for (Value *O : cast<User>(Val)->operands()) 174 if (auto *I = dyn_cast<Instruction>(O)) 175 if (TheLoop->contains(I) && !Visited.count(I)) 176 Worklist.push_back(I); 177 } 178 } 179 180 // Check if a given Phi node can be recognized as an ordered reduction for 181 // vectorizing floating point operations without unsafe math. 182 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst, 183 Instruction *Exit, PHINode *Phi) { 184 // Currently only FAdd and FMulAdd are supported. 185 if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd) 186 return false; 187 188 if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd) 189 return false; 190 191 if (Kind == RecurKind::FMulAdd && 192 !RecurrenceDescriptor::isFMulAddIntrinsic(Exit)) 193 return false; 194 195 // Ensure the exit instruction has only one user other than the reduction PHI 196 if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3)) 197 return false; 198 199 // The only pattern accepted is the one in which the reduction PHI 200 // is used as one of the operands of the exit instruction 201 auto *Op0 = Exit->getOperand(0); 202 auto *Op1 = Exit->getOperand(1); 203 if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi) 204 return false; 205 if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi) 206 return false; 207 208 LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi 209 << ", ExitInst: " << *Exit << "\n"); 210 211 return true; 212 } 213 214 bool RecurrenceDescriptor::AddReductionVar( 215 PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF, 216 RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC, 217 DominatorTree *DT, ScalarEvolution *SE) { 218 if (Phi->getNumIncomingValues() != 2) 219 return false; 220 221 // Reduction variables are only found in the loop header block. 222 if (Phi->getParent() != TheLoop->getHeader()) 223 return false; 224 225 // Obtain the reduction start value from the value that comes from the loop 226 // preheader. 227 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 228 229 // ExitInstruction is the single value which is used outside the loop. 230 // We only allow for a single reduction value to be used outside the loop. 231 // This includes users of the reduction, variables (which form a cycle 232 // which ends in the phi node). 233 Instruction *ExitInstruction = nullptr; 234 235 // Variable to keep last visited store instruction. By the end of the 236 // algorithm this variable will be either empty or having intermediate 237 // reduction value stored in invariant address. 238 StoreInst *IntermediateStore = nullptr; 239 240 // Indicates that we found a reduction operation in our scan. 241 bool FoundReduxOp = false; 242 243 // We start with the PHI node and scan for all of the users of this 244 // instruction. All users must be instructions that can be used as reduction 245 // variables (such as ADD). We must have a single out-of-block user. The cycle 246 // must include the original PHI. 247 bool FoundStartPHI = false; 248 249 // To recognize min/max patterns formed by a icmp select sequence, we store 250 // the number of instruction we saw from the recognized min/max pattern, 251 // to make sure we only see exactly the two instructions. 252 unsigned NumCmpSelectPatternInst = 0; 253 InstDesc ReduxDesc(false, nullptr); 254 255 // Data used for determining if the recurrence has been type-promoted. 256 Type *RecurrenceType = Phi->getType(); 257 SmallPtrSet<Instruction *, 4> CastInsts; 258 unsigned MinWidthCastToRecurrenceType; 259 Instruction *Start = Phi; 260 bool IsSigned = false; 261 262 SmallPtrSet<Instruction *, 8> VisitedInsts; 263 SmallVector<Instruction *, 8> Worklist; 264 265 // Return early if the recurrence kind does not match the type of Phi. If the 266 // recurrence kind is arithmetic, we attempt to look through AND operations 267 // resulting from the type promotion performed by InstCombine. Vector 268 // operations are not limited to the legal integer widths, so we may be able 269 // to evaluate the reduction in the narrower width. 270 if (RecurrenceType->isFloatingPointTy()) { 271 if (!isFloatingPointRecurrenceKind(Kind)) 272 return false; 273 } else if (RecurrenceType->isIntegerTy()) { 274 if (!isIntegerRecurrenceKind(Kind)) 275 return false; 276 if (!isMinMaxRecurrenceKind(Kind)) 277 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 278 } else { 279 // Pointer min/max may exist, but it is not supported as a reduction op. 280 return false; 281 } 282 283 Worklist.push_back(Start); 284 VisitedInsts.insert(Start); 285 286 // Start with all flags set because we will intersect this with the reduction 287 // flags from all the reduction operations. 288 FastMathFlags FMF = FastMathFlags::getFast(); 289 290 // The first instruction in the use-def chain of the Phi node that requires 291 // exact floating point operations. 292 Instruction *ExactFPMathInst = nullptr; 293 294 // A value in the reduction can be used: 295 // - By the reduction: 296 // - Reduction operation: 297 // - One use of reduction value (safe). 298 // - Multiple use of reduction value (not safe). 299 // - PHI: 300 // - All uses of the PHI must be the reduction (safe). 301 // - Otherwise, not safe. 302 // - By instructions outside of the loop (safe). 303 // * One value may have several outside users, but all outside 304 // uses must be of the same value. 305 // - By store instructions with a loop invariant address (safe with 306 // the following restrictions): 307 // * If there are several stores, all must have the same address. 308 // * Final value should be stored in that loop invariant address. 309 // - By an instruction that is not part of the reduction (not safe). 310 // This is either: 311 // * An instruction type other than PHI or the reduction operation. 312 // * A PHI in the header other than the initial PHI. 313 while (!Worklist.empty()) { 314 Instruction *Cur = Worklist.pop_back_val(); 315 316 // Store instructions are allowed iff it is the store of the reduction 317 // value to the same loop invariant memory location. 318 if (auto *SI = dyn_cast<StoreInst>(Cur)) { 319 if (!SE) { 320 LLVM_DEBUG(dbgs() << "Store instructions are not processed without " 321 << "Scalar Evolution Analysis\n"); 322 return false; 323 } 324 325 const SCEV *PtrScev = SE->getSCEV(SI->getPointerOperand()); 326 // Check it is the same address as previous stores 327 if (IntermediateStore) { 328 const SCEV *OtherScev = 329 SE->getSCEV(IntermediateStore->getPointerOperand()); 330 331 if (OtherScev != PtrScev) { 332 LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses " 333 << "inside the loop: " << *SI->getPointerOperand() 334 << " and " 335 << *IntermediateStore->getPointerOperand() << '\n'); 336 return false; 337 } 338 } 339 340 // Check the pointer is loop invariant 341 if (!SE->isLoopInvariant(PtrScev, TheLoop)) { 342 LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address " 343 << "inside the loop: " << *SI->getPointerOperand() 344 << '\n'); 345 return false; 346 } 347 348 // IntermediateStore is always the last store in the loop. 349 IntermediateStore = SI; 350 continue; 351 } 352 353 // No Users. 354 // If the instruction has no users then this is a broken chain and can't be 355 // a reduction variable. 356 if (Cur->use_empty()) 357 return false; 358 359 bool IsAPhi = isa<PHINode>(Cur); 360 361 // A header PHI use other than the original PHI. 362 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 363 return false; 364 365 // Reductions of instructions such as Div, and Sub is only possible if the 366 // LHS is the reduction variable. 367 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 368 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 369 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 370 return false; 371 372 // Any reduction instruction must be of one of the allowed kinds. We ignore 373 // the starting value (the Phi or an AND instruction if the Phi has been 374 // type-promoted). 375 if (Cur != Start) { 376 ReduxDesc = 377 isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF, SE); 378 ExactFPMathInst = ExactFPMathInst == nullptr 379 ? ReduxDesc.getExactFPMathInst() 380 : ExactFPMathInst; 381 if (!ReduxDesc.isRecurrence()) 382 return false; 383 // FIXME: FMF is allowed on phi, but propagation is not handled correctly. 384 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) { 385 FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags(); 386 if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) { 387 // Accept FMF on either fcmp or select of a min/max idiom. 388 // TODO: This is a hack to work-around the fact that FMF may not be 389 // assigned/propagated correctly. If that problem is fixed or we 390 // standardize on fmin/fmax via intrinsics, this can be removed. 391 if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition())) 392 CurFMF |= FCmp->getFastMathFlags(); 393 } 394 FMF &= CurFMF; 395 } 396 // Update this reduction kind if we matched a new instruction. 397 // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind' 398 // state accurate while processing the worklist? 399 if (ReduxDesc.getRecKind() != RecurKind::None) 400 Kind = ReduxDesc.getRecKind(); 401 } 402 403 bool IsASelect = isa<SelectInst>(Cur); 404 405 // A conditional reduction operation must only have 2 or less uses in 406 // VisitedInsts. 407 if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) && 408 hasMultipleUsesOf(Cur, VisitedInsts, 2)) 409 return false; 410 411 // A reduction operation must only have one use of the reduction value. 412 if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) && 413 !isAnyOfRecurrenceKind(Kind) && hasMultipleUsesOf(Cur, VisitedInsts, 1)) 414 return false; 415 416 // All inputs to a PHI node must be a reduction value. 417 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 418 return false; 419 420 if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::IAnyOf) && 421 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 422 ++NumCmpSelectPatternInst; 423 if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::FAnyOf) && 424 (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 425 ++NumCmpSelectPatternInst; 426 427 // Check whether we found a reduction operator. 428 FoundReduxOp |= !IsAPhi && Cur != Start; 429 430 // Process users of current instruction. Push non-PHI nodes after PHI nodes 431 // onto the stack. This way we are going to have seen all inputs to PHI 432 // nodes once we get to them. 433 SmallVector<Instruction *, 8> NonPHIs; 434 SmallVector<Instruction *, 8> PHIs; 435 for (User *U : Cur->users()) { 436 Instruction *UI = cast<Instruction>(U); 437 438 // If the user is a call to llvm.fmuladd then the instruction can only be 439 // the final operand. 440 if (isFMulAddIntrinsic(UI)) 441 if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1)) 442 return false; 443 444 // Check if we found the exit user. 445 BasicBlock *Parent = UI->getParent(); 446 if (!TheLoop->contains(Parent)) { 447 // If we already know this instruction is used externally, move on to 448 // the next user. 449 if (ExitInstruction == Cur) 450 continue; 451 452 // Exit if you find multiple values used outside or if the header phi 453 // node is being used. In this case the user uses the value of the 454 // previous iteration, in which case we would loose "VF-1" iterations of 455 // the reduction operation if we vectorize. 456 if (ExitInstruction != nullptr || Cur == Phi) 457 return false; 458 459 // The instruction used by an outside user must be the last instruction 460 // before we feed back to the reduction phi. Otherwise, we loose VF-1 461 // operations on the value. 462 if (!is_contained(Phi->operands(), Cur)) 463 return false; 464 465 ExitInstruction = Cur; 466 continue; 467 } 468 469 // Process instructions only once (termination). Each reduction cycle 470 // value must only be used once, except by phi nodes and min/max 471 // reductions which are represented as a cmp followed by a select. 472 InstDesc IgnoredVal(false, nullptr); 473 if (VisitedInsts.insert(UI).second) { 474 if (isa<PHINode>(UI)) { 475 PHIs.push_back(UI); 476 } else { 477 StoreInst *SI = dyn_cast<StoreInst>(UI); 478 if (SI && SI->getPointerOperand() == Cur) { 479 // Reduction variable chain can only be stored somewhere but it 480 // can't be used as an address. 481 return false; 482 } 483 NonPHIs.push_back(UI); 484 } 485 } else if (!isa<PHINode>(UI) && 486 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 487 !isa<SelectInst>(UI)) || 488 (!isConditionalRdxPattern(Kind, UI).isRecurrence() && 489 !isAnyOfPattern(TheLoop, Phi, UI, IgnoredVal) 490 .isRecurrence() && 491 !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence()))) 492 return false; 493 494 // Remember that we completed the cycle. 495 if (UI == Phi) 496 FoundStartPHI = true; 497 } 498 Worklist.append(PHIs.begin(), PHIs.end()); 499 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 500 } 501 502 // This means we have seen one but not the other instruction of the 503 // pattern or more than just a select and cmp. Zero implies that we saw a 504 // llvm.min/max intrinsic, which is always OK. 505 if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 && 506 NumCmpSelectPatternInst != 0) 507 return false; 508 509 if (isAnyOfRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1) 510 return false; 511 512 if (IntermediateStore) { 513 // Check that stored value goes to the phi node again. This way we make sure 514 // that the value stored in IntermediateStore is indeed the final reduction 515 // value. 516 if (!is_contained(Phi->operands(), IntermediateStore->getValueOperand())) { 517 LLVM_DEBUG(dbgs() << "Not a final reduction value stored: " 518 << *IntermediateStore << '\n'); 519 return false; 520 } 521 522 // If there is an exit instruction it's value should be stored in 523 // IntermediateStore 524 if (ExitInstruction && 525 IntermediateStore->getValueOperand() != ExitInstruction) { 526 LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not " 527 "store last calculated value of the reduction: " 528 << *IntermediateStore << '\n'); 529 return false; 530 } 531 532 // If all uses are inside the loop (intermediate stores), then the 533 // reduction value after the loop will be the one used in the last store. 534 if (!ExitInstruction) 535 ExitInstruction = cast<Instruction>(IntermediateStore->getValueOperand()); 536 } 537 538 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 539 return false; 540 541 const bool IsOrdered = 542 checkOrderedReduction(Kind, ExactFPMathInst, ExitInstruction, Phi); 543 544 if (Start != Phi) { 545 // If the starting value is not the same as the phi node, we speculatively 546 // looked through an 'and' instruction when evaluating a potential 547 // arithmetic reduction to determine if it may have been type-promoted. 548 // 549 // We now compute the minimal bit width that is required to represent the 550 // reduction. If this is the same width that was indicated by the 'and', we 551 // can represent the reduction in the smaller type. The 'and' instruction 552 // will be eliminated since it will essentially be a cast instruction that 553 // can be ignore in the cost model. If we compute a different type than we 554 // did when evaluating the 'and', the 'and' will not be eliminated, and we 555 // will end up with different kinds of operations in the recurrence 556 // expression (e.g., IntegerAND, IntegerADD). We give up if this is 557 // the case. 558 // 559 // The vectorizer relies on InstCombine to perform the actual 560 // type-shrinking. It does this by inserting instructions to truncate the 561 // exit value of the reduction to the width indicated by RecurrenceType and 562 // then extend this value back to the original width. If IsSigned is false, 563 // a 'zext' instruction will be generated; otherwise, a 'sext' will be 564 // used. 565 // 566 // TODO: We should not rely on InstCombine to rewrite the reduction in the 567 // smaller type. We should just generate a correctly typed expression 568 // to begin with. 569 Type *ComputedType; 570 std::tie(ComputedType, IsSigned) = 571 computeRecurrenceType(ExitInstruction, DB, AC, DT); 572 if (ComputedType != RecurrenceType) 573 return false; 574 } 575 576 // Collect cast instructions and the minimum width used by the recurrence. 577 // If the starting value is not the same as the phi node and the computed 578 // recurrence type is equal to the recurrence type, the recurrence expression 579 // will be represented in a narrower or wider type. If there are any cast 580 // instructions that will be unnecessary, collect them in CastsFromRecurTy. 581 // Note that the 'and' instruction was already included in this list. 582 // 583 // TODO: A better way to represent this may be to tag in some way all the 584 // instructions that are a part of the reduction. The vectorizer cost 585 // model could then apply the recurrence type to these instructions, 586 // without needing a white list of instructions to ignore. 587 // This may also be useful for the inloop reductions, if it can be 588 // kept simple enough. 589 collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts, 590 MinWidthCastToRecurrenceType); 591 592 // We found a reduction var if we have reached the original phi node and we 593 // only have a single instruction with out-of-loop users. 594 595 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 596 // is saved as part of the RecurrenceDescriptor. 597 598 // Save the description of this reduction variable. 599 RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind, 600 FMF, ExactFPMathInst, RecurrenceType, IsSigned, 601 IsOrdered, CastInsts, MinWidthCastToRecurrenceType); 602 RedDes = RD; 603 604 return true; 605 } 606 607 // We are looking for loops that do something like this: 608 // int r = 0; 609 // for (int i = 0; i < n; i++) { 610 // if (src[i] > 3) 611 // r = 3; 612 // } 613 // where the reduction value (r) only has two states, in this example 0 or 3. 614 // The generated LLVM IR for this type of loop will be like this: 615 // for.body: 616 // %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ] 617 // ... 618 // %cmp = icmp sgt i32 %5, 3 619 // %spec.select = select i1 %cmp, i32 3, i32 %r 620 // ... 621 // In general we can support vectorization of loops where 'r' flips between 622 // any two non-constants, provided they are loop invariant. The only thing 623 // we actually care about at the end of the loop is whether or not any lane 624 // in the selected vector is different from the start value. The final 625 // across-vector reduction after the loop simply involves choosing the start 626 // value if nothing changed (0 in the example above) or the other selected 627 // value (3 in the example above). 628 RecurrenceDescriptor::InstDesc 629 RecurrenceDescriptor::isAnyOfPattern(Loop *Loop, PHINode *OrigPhi, 630 Instruction *I, InstDesc &Prev) { 631 // We must handle the select(cmp(),x,y) as a single instruction. Advance to 632 // the select. 633 CmpPredicate Pred; 634 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) { 635 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin())) 636 return InstDesc(Select, Prev.getRecKind()); 637 } 638 639 if (!match(I, 640 m_Select(m_Cmp(Pred, m_Value(), m_Value()), m_Value(), m_Value()))) 641 return InstDesc(false, I); 642 643 SelectInst *SI = cast<SelectInst>(I); 644 Value *NonPhi = nullptr; 645 646 if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue())) 647 NonPhi = SI->getFalseValue(); 648 else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue())) 649 NonPhi = SI->getTrueValue(); 650 else 651 return InstDesc(false, I); 652 653 // We are looking for selects of the form: 654 // select(cmp(), phi, loop_invariant) or 655 // select(cmp(), loop_invariant, phi) 656 if (!Loop->isLoopInvariant(NonPhi)) 657 return InstDesc(false, I); 658 659 return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::IAnyOf 660 : RecurKind::FAnyOf); 661 } 662 663 // We are looking for loops that do something like this: 664 // int r = 0; 665 // for (int i = 0; i < n; i++) { 666 // if (src[i] > 3) 667 // r = i; 668 // } 669 // The reduction value (r) is derived from either the values of an increasing 670 // induction variable (i) sequence, or from the start value (0). 671 // The LLVM IR generated for such loops would be as follows: 672 // for.body: 673 // %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ] 674 // %i = phi i32 [ %inc, %for.body ], [ 0, %entry ] 675 // ... 676 // %cmp = icmp sgt i32 %5, 3 677 // %spec.select = select i1 %cmp, i32 %i, i32 %r 678 // %inc = add nsw i32 %i, 1 679 // ... 680 // Since 'i' is an increasing induction variable, the reduction value after the 681 // loop will be the maximum value of 'i' that the condition (src[i] > 3) is 682 // satisfied, or the start value (0 in the example above). When the start value 683 // of the increasing induction variable 'i' is greater than the minimum value of 684 // the data type, we can use the minimum value of the data type as a sentinel 685 // value to replace the start value. This allows us to perform a single 686 // reduction max operation to obtain the final reduction result. 687 // TODO: It is possible to solve the case where the start value is the minimum 688 // value of the data type or a non-constant value by using mask and multiple 689 // reduction operations. 690 RecurrenceDescriptor::InstDesc 691 RecurrenceDescriptor::isFindLastIVPattern(Loop *TheLoop, PHINode *OrigPhi, 692 Instruction *I, ScalarEvolution &SE) { 693 // TODO: Support the vectorization of FindLastIV when the reduction phi is 694 // used by more than one select instruction. This vectorization is only 695 // performed when the SCEV of each increasing induction variable used by the 696 // select instructions is identical. 697 if (!OrigPhi->hasOneUse()) 698 return InstDesc(false, I); 699 700 // TODO: Match selects with multi-use cmp conditions. 701 Value *NonRdxPhi = nullptr; 702 if (!match(I, m_CombineOr(m_Select(m_OneUse(m_Cmp()), m_Value(NonRdxPhi), 703 m_Specific(OrigPhi)), 704 m_Select(m_OneUse(m_Cmp()), m_Specific(OrigPhi), 705 m_Value(NonRdxPhi))))) 706 return InstDesc(false, I); 707 708 auto IsIncreasingLoopInduction = [&](Value *V) { 709 Type *Ty = V->getType(); 710 if (!SE.isSCEVable(Ty)) 711 return false; 712 713 auto *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(V)); 714 if (!AR || AR->getLoop() != TheLoop) 715 return false; 716 717 const SCEV *Step = AR->getStepRecurrence(SE); 718 if (!SE.isKnownPositive(Step)) 719 return false; 720 721 const ConstantRange IVRange = SE.getSignedRange(AR); 722 unsigned NumBits = Ty->getIntegerBitWidth(); 723 // Keep the minimum value of the recurrence type as the sentinel value. 724 // The maximum acceptable range for the increasing induction variable, 725 // called the valid range, will be defined as 726 // [<sentinel value> + 1, <sentinel value>) 727 // where <sentinel value> is SignedMin(<recurrence type>) 728 // TODO: This range restriction can be lifted by adding an additional 729 // virtual OR reduction. 730 const APInt Sentinel = APInt::getSignedMinValue(NumBits); 731 const ConstantRange ValidRange = 732 ConstantRange::getNonEmpty(Sentinel + 1, Sentinel); 733 LLVM_DEBUG(dbgs() << "LV: FindLastIV valid range is " << ValidRange 734 << ", and the signed range of " << *AR << " is " 735 << IVRange << "\n"); 736 // Ensure the induction variable does not wrap around by verifying that its 737 // range is fully contained within the valid range. 738 return ValidRange.contains(IVRange); 739 }; 740 741 // We are looking for selects of the form: 742 // select(cmp(), phi, increasing_loop_induction) or 743 // select(cmp(), increasing_loop_induction, phi) 744 // TODO: Support for monotonically decreasing induction variable 745 if (!IsIncreasingLoopInduction(NonRdxPhi)) 746 return InstDesc(false, I); 747 748 return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::IFindLastIV 749 : RecurKind::FFindLastIV); 750 } 751 752 RecurrenceDescriptor::InstDesc 753 RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind, 754 const InstDesc &Prev) { 755 assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) && 756 "Expected a cmp or select or call instruction"); 757 if (!isMinMaxRecurrenceKind(Kind)) 758 return InstDesc(false, I); 759 760 // We must handle the select(cmp()) as a single instruction. Advance to the 761 // select. 762 CmpPredicate Pred; 763 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) { 764 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin())) 765 return InstDesc(Select, Prev.getRecKind()); 766 } 767 768 // Only match select with single use cmp condition, or a min/max intrinsic. 769 if (!isa<IntrinsicInst>(I) && 770 !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(), 771 m_Value()))) 772 return InstDesc(false, I); 773 774 // Look for a min/max pattern. 775 if (match(I, m_UMin(m_Value(), m_Value()))) 776 return InstDesc(Kind == RecurKind::UMin, I); 777 if (match(I, m_UMax(m_Value(), m_Value()))) 778 return InstDesc(Kind == RecurKind::UMax, I); 779 if (match(I, m_SMax(m_Value(), m_Value()))) 780 return InstDesc(Kind == RecurKind::SMax, I); 781 if (match(I, m_SMin(m_Value(), m_Value()))) 782 return InstDesc(Kind == RecurKind::SMin, I); 783 if (match(I, m_OrdOrUnordFMin(m_Value(), m_Value()))) 784 return InstDesc(Kind == RecurKind::FMin, I); 785 if (match(I, m_OrdOrUnordFMax(m_Value(), m_Value()))) 786 return InstDesc(Kind == RecurKind::FMax, I); 787 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 788 return InstDesc(Kind == RecurKind::FMin, I); 789 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 790 return InstDesc(Kind == RecurKind::FMax, I); 791 if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value()))) 792 return InstDesc(Kind == RecurKind::FMinimum, I); 793 if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value()))) 794 return InstDesc(Kind == RecurKind::FMaximum, I); 795 796 return InstDesc(false, I); 797 } 798 799 /// Returns true if the select instruction has users in the compare-and-add 800 /// reduction pattern below. The select instruction argument is the last one 801 /// in the sequence. 802 /// 803 /// %sum.1 = phi ... 804 /// ... 805 /// %cmp = fcmp pred %0, %CFP 806 /// %add = fadd %0, %sum.1 807 /// %sum.2 = select %cmp, %add, %sum.1 808 RecurrenceDescriptor::InstDesc 809 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) { 810 SelectInst *SI = dyn_cast<SelectInst>(I); 811 if (!SI) 812 return InstDesc(false, I); 813 814 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition()); 815 // Only handle single use cases for now. 816 if (!CI || !CI->hasOneUse()) 817 return InstDesc(false, I); 818 819 Value *TrueVal = SI->getTrueValue(); 820 Value *FalseVal = SI->getFalseValue(); 821 // Handle only when either of operands of select instruction is a PHI 822 // node for now. 823 if ((isa<PHINode>(TrueVal) && isa<PHINode>(FalseVal)) || 824 (!isa<PHINode>(TrueVal) && !isa<PHINode>(FalseVal))) 825 return InstDesc(false, I); 826 827 Instruction *I1 = isa<PHINode>(TrueVal) ? dyn_cast<Instruction>(FalseVal) 828 : dyn_cast<Instruction>(TrueVal); 829 if (!I1 || !I1->isBinaryOp()) 830 return InstDesc(false, I); 831 832 Value *Op1, *Op2; 833 if (!(((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || 834 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && 835 I1->isFast()) || 836 (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) || 837 ((m_Add(m_Value(Op1), m_Value(Op2)).match(I1) || 838 m_Sub(m_Value(Op1), m_Value(Op2)).match(I1))) || 839 (m_Mul(m_Value(Op1), m_Value(Op2)).match(I1)))) 840 return InstDesc(false, I); 841 842 Instruction *IPhi = isa<PHINode>(Op1) ? dyn_cast<Instruction>(Op1) 843 : dyn_cast<Instruction>(Op2); 844 if (!IPhi || IPhi != FalseVal) 845 return InstDesc(false, I); 846 847 return InstDesc(true, SI); 848 } 849 850 RecurrenceDescriptor::InstDesc RecurrenceDescriptor::isRecurrenceInstr( 851 Loop *L, PHINode *OrigPhi, Instruction *I, RecurKind Kind, InstDesc &Prev, 852 FastMathFlags FuncFMF, ScalarEvolution *SE) { 853 assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind); 854 switch (I->getOpcode()) { 855 default: 856 return InstDesc(false, I); 857 case Instruction::PHI: 858 return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst()); 859 case Instruction::Sub: 860 case Instruction::Add: 861 return InstDesc(Kind == RecurKind::Add, I); 862 case Instruction::Mul: 863 return InstDesc(Kind == RecurKind::Mul, I); 864 case Instruction::And: 865 return InstDesc(Kind == RecurKind::And, I); 866 case Instruction::Or: 867 return InstDesc(Kind == RecurKind::Or, I); 868 case Instruction::Xor: 869 return InstDesc(Kind == RecurKind::Xor, I); 870 case Instruction::FDiv: 871 case Instruction::FMul: 872 return InstDesc(Kind == RecurKind::FMul, I, 873 I->hasAllowReassoc() ? nullptr : I); 874 case Instruction::FSub: 875 case Instruction::FAdd: 876 return InstDesc(Kind == RecurKind::FAdd, I, 877 I->hasAllowReassoc() ? nullptr : I); 878 case Instruction::Select: 879 if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul || 880 Kind == RecurKind::Add || Kind == RecurKind::Mul) 881 return isConditionalRdxPattern(Kind, I); 882 if (isFindLastIVRecurrenceKind(Kind) && SE) 883 return isFindLastIVPattern(L, OrigPhi, I, *SE); 884 [[fallthrough]]; 885 case Instruction::FCmp: 886 case Instruction::ICmp: 887 case Instruction::Call: 888 if (isAnyOfRecurrenceKind(Kind)) 889 return isAnyOfPattern(L, OrigPhi, I, Prev); 890 auto HasRequiredFMF = [&]() { 891 if (FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) 892 return true; 893 if (isa<FPMathOperator>(I) && I->hasNoNaNs() && I->hasNoSignedZeros()) 894 return true; 895 // minimum and maximum intrinsics do not require nsz and nnan flags since 896 // NaN and signed zeroes are propagated in the intrinsic implementation. 897 return match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())) || 898 match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value())); 899 }; 900 if (isIntMinMaxRecurrenceKind(Kind) || 901 (HasRequiredFMF() && isFPMinMaxRecurrenceKind(Kind))) 902 return isMinMaxPattern(I, Kind, Prev); 903 else if (isFMulAddIntrinsic(I)) 904 return InstDesc(Kind == RecurKind::FMulAdd, I, 905 I->hasAllowReassoc() ? nullptr : I); 906 return InstDesc(false, I); 907 } 908 } 909 910 bool RecurrenceDescriptor::hasMultipleUsesOf( 911 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, 912 unsigned MaxNumUses) { 913 unsigned NumUses = 0; 914 for (const Use &U : I->operands()) { 915 if (Insts.count(dyn_cast<Instruction>(U))) 916 ++NumUses; 917 if (NumUses > MaxNumUses) 918 return true; 919 } 920 921 return false; 922 } 923 924 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 925 RecurrenceDescriptor &RedDes, 926 DemandedBits *DB, AssumptionCache *AC, 927 DominatorTree *DT, 928 ScalarEvolution *SE) { 929 BasicBlock *Header = TheLoop->getHeader(); 930 Function &F = *Header->getParent(); 931 FastMathFlags FMF; 932 FMF.setNoNaNs( 933 F.getFnAttribute("no-nans-fp-math").getValueAsBool()); 934 FMF.setNoSignedZeros( 935 F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool()); 936 937 if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT, 938 SE)) { 939 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 940 return true; 941 } 942 if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT, 943 SE)) { 944 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 945 return true; 946 } 947 if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT, 948 SE)) { 949 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 950 return true; 951 } 952 if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT, 953 SE)) { 954 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 955 return true; 956 } 957 if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT, 958 SE)) { 959 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 960 return true; 961 } 962 if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT, 963 SE)) { 964 LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n"); 965 return true; 966 } 967 if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT, 968 SE)) { 969 LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n"); 970 return true; 971 } 972 if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT, 973 SE)) { 974 LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n"); 975 return true; 976 } 977 if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT, 978 SE)) { 979 LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n"); 980 return true; 981 } 982 if (AddReductionVar(Phi, RecurKind::IAnyOf, TheLoop, FMF, RedDes, DB, AC, DT, 983 SE)) { 984 LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI." 985 << *Phi << "\n"); 986 return true; 987 } 988 if (AddReductionVar(Phi, RecurKind::IFindLastIV, TheLoop, FMF, RedDes, DB, AC, 989 DT, SE)) { 990 LLVM_DEBUG(dbgs() << "Found a " 991 << (RedDes.getRecurrenceKind() == RecurKind::FFindLastIV 992 ? "F" 993 : "I") 994 << "FindLastIV reduction PHI." << *Phi << "\n"); 995 return true; 996 } 997 if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT, 998 SE)) { 999 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 1000 return true; 1001 } 1002 if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT, 1003 SE)) { 1004 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 1005 return true; 1006 } 1007 if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT, 1008 SE)) { 1009 LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n"); 1010 return true; 1011 } 1012 if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT, 1013 SE)) { 1014 LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n"); 1015 return true; 1016 } 1017 if (AddReductionVar(Phi, RecurKind::FAnyOf, TheLoop, FMF, RedDes, DB, AC, DT, 1018 SE)) { 1019 LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI." 1020 << " PHI." << *Phi << "\n"); 1021 return true; 1022 } 1023 if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC, DT, 1024 SE)) { 1025 LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n"); 1026 return true; 1027 } 1028 if (AddReductionVar(Phi, RecurKind::FMaximum, TheLoop, FMF, RedDes, DB, AC, DT, 1029 SE)) { 1030 LLVM_DEBUG(dbgs() << "Found a float MAXIMUM reduction PHI." << *Phi << "\n"); 1031 return true; 1032 } 1033 if (AddReductionVar(Phi, RecurKind::FMinimum, TheLoop, FMF, RedDes, DB, AC, DT, 1034 SE)) { 1035 LLVM_DEBUG(dbgs() << "Found a float MINIMUM reduction PHI." << *Phi << "\n"); 1036 return true; 1037 } 1038 // Not a reduction of known type. 1039 return false; 1040 } 1041 1042 bool RecurrenceDescriptor::isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop, 1043 DominatorTree *DT) { 1044 1045 // Ensure the phi node is in the loop header and has two incoming values. 1046 if (Phi->getParent() != TheLoop->getHeader() || 1047 Phi->getNumIncomingValues() != 2) 1048 return false; 1049 1050 // Ensure the loop has a preheader and a single latch block. The loop 1051 // vectorizer will need the latch to set up the next iteration of the loop. 1052 auto *Preheader = TheLoop->getLoopPreheader(); 1053 auto *Latch = TheLoop->getLoopLatch(); 1054 if (!Preheader || !Latch) 1055 return false; 1056 1057 // Ensure the phi node's incoming blocks are the loop preheader and latch. 1058 if (Phi->getBasicBlockIndex(Preheader) < 0 || 1059 Phi->getBasicBlockIndex(Latch) < 0) 1060 return false; 1061 1062 // Get the previous value. The previous value comes from the latch edge while 1063 // the initial value comes from the preheader edge. 1064 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 1065 1066 // If Previous is a phi in the header, go through incoming values from the 1067 // latch until we find a non-phi value. Use this as the new Previous, all uses 1068 // in the header will be dominated by the original phi, but need to be moved 1069 // after the non-phi previous value. 1070 SmallPtrSet<PHINode *, 4> SeenPhis; 1071 while (auto *PrevPhi = dyn_cast_or_null<PHINode>(Previous)) { 1072 if (PrevPhi->getParent() != Phi->getParent()) 1073 return false; 1074 if (!SeenPhis.insert(PrevPhi).second) 1075 return false; 1076 Previous = dyn_cast<Instruction>(PrevPhi->getIncomingValueForBlock(Latch)); 1077 } 1078 1079 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous)) 1080 return false; 1081 1082 // Ensure every user of the phi node (recursively) is dominated by the 1083 // previous value. The dominance requirement ensures the loop vectorizer will 1084 // not need to vectorize the initial value prior to the first iteration of the 1085 // loop. 1086 // TODO: Consider extending this sinking to handle memory instructions. 1087 1088 SmallPtrSet<Value *, 8> Seen; 1089 BasicBlock *PhiBB = Phi->getParent(); 1090 SmallVector<Instruction *, 8> WorkList; 1091 auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) { 1092 // Cyclic dependence. 1093 if (Previous == SinkCandidate) 1094 return false; 1095 1096 if (!Seen.insert(SinkCandidate).second) 1097 return true; 1098 if (DT->dominates(Previous, 1099 SinkCandidate)) // We already are good w/o sinking. 1100 return true; 1101 1102 if (SinkCandidate->getParent() != PhiBB || 1103 SinkCandidate->mayHaveSideEffects() || 1104 SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator()) 1105 return false; 1106 1107 // If we reach a PHI node that is not dominated by Previous, we reached a 1108 // header PHI. No need for sinking. 1109 if (isa<PHINode>(SinkCandidate)) 1110 return true; 1111 1112 // Sink User tentatively and check its users 1113 WorkList.push_back(SinkCandidate); 1114 return true; 1115 }; 1116 1117 WorkList.push_back(Phi); 1118 // Try to recursively sink instructions and their users after Previous. 1119 while (!WorkList.empty()) { 1120 Instruction *Current = WorkList.pop_back_val(); 1121 for (User *User : Current->users()) { 1122 if (!TryToPushSinkCandidate(cast<Instruction>(User))) 1123 return false; 1124 } 1125 } 1126 1127 return true; 1128 } 1129 1130 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) { 1131 switch (Kind) { 1132 case RecurKind::Add: 1133 return Instruction::Add; 1134 case RecurKind::Mul: 1135 return Instruction::Mul; 1136 case RecurKind::Or: 1137 return Instruction::Or; 1138 case RecurKind::And: 1139 return Instruction::And; 1140 case RecurKind::Xor: 1141 return Instruction::Xor; 1142 case RecurKind::FMul: 1143 return Instruction::FMul; 1144 case RecurKind::FMulAdd: 1145 case RecurKind::FAdd: 1146 return Instruction::FAdd; 1147 case RecurKind::SMax: 1148 case RecurKind::SMin: 1149 case RecurKind::UMax: 1150 case RecurKind::UMin: 1151 case RecurKind::IAnyOf: 1152 case RecurKind::IFindLastIV: 1153 return Instruction::ICmp; 1154 case RecurKind::FMax: 1155 case RecurKind::FMin: 1156 case RecurKind::FMaximum: 1157 case RecurKind::FMinimum: 1158 case RecurKind::FAnyOf: 1159 case RecurKind::FFindLastIV: 1160 return Instruction::FCmp; 1161 default: 1162 llvm_unreachable("Unknown recurrence operation"); 1163 } 1164 } 1165 1166 SmallVector<Instruction *, 4> 1167 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { 1168 SmallVector<Instruction *, 4> ReductionOperations; 1169 unsigned RedOp = getOpcode(); 1170 1171 // Search down from the Phi to the LoopExitInstr, looking for instructions 1172 // with a single user of the correct type for the reduction. 1173 1174 // Note that we check that the type of the operand is correct for each item in 1175 // the chain, including the last (the loop exit value). This can come up from 1176 // sub, which would otherwise be treated as an add reduction. MinMax also need 1177 // to check for a pair of icmp/select, for which we use getNextInstruction and 1178 // isCorrectOpcode functions to step the right number of instruction, and 1179 // check the icmp/select pair. 1180 // FIXME: We also do not attempt to look through Select's yet, which might 1181 // be part of the reduction chain, or attempt to looks through And's to find a 1182 // smaller bitwidth. Subs are also currently not allowed (which are usually 1183 // treated as part of a add reduction) as they are expected to generally be 1184 // more expensive than out-of-loop reductions, and need to be costed more 1185 // carefully. 1186 unsigned ExpectedUses = 1; 1187 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) 1188 ExpectedUses = 2; 1189 1190 auto getNextInstruction = [&](Instruction *Cur) -> Instruction * { 1191 for (auto *User : Cur->users()) { 1192 Instruction *UI = cast<Instruction>(User); 1193 if (isa<PHINode>(UI)) 1194 continue; 1195 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 1196 // We are expecting a icmp/select pair, which we go to the next select 1197 // instruction if we can. We already know that Cur has 2 uses. 1198 if (isa<SelectInst>(UI)) 1199 return UI; 1200 continue; 1201 } 1202 return UI; 1203 } 1204 return nullptr; 1205 }; 1206 auto isCorrectOpcode = [&](Instruction *Cur) { 1207 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 1208 Value *LHS, *RHS; 1209 return SelectPatternResult::isMinOrMax( 1210 matchSelectPattern(Cur, LHS, RHS).Flavor); 1211 } 1212 // Recognize a call to the llvm.fmuladd intrinsic. 1213 if (isFMulAddIntrinsic(Cur)) 1214 return true; 1215 1216 return Cur->getOpcode() == RedOp; 1217 }; 1218 1219 // Attempt to look through Phis which are part of the reduction chain 1220 unsigned ExtraPhiUses = 0; 1221 Instruction *RdxInstr = LoopExitInstr; 1222 if (auto ExitPhi = dyn_cast<PHINode>(LoopExitInstr)) { 1223 if (ExitPhi->getNumIncomingValues() != 2) 1224 return {}; 1225 1226 Instruction *Inc0 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(0)); 1227 Instruction *Inc1 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(1)); 1228 1229 Instruction *Chain = nullptr; 1230 if (Inc0 == Phi) 1231 Chain = Inc1; 1232 else if (Inc1 == Phi) 1233 Chain = Inc0; 1234 else 1235 return {}; 1236 1237 RdxInstr = Chain; 1238 ExtraPhiUses = 1; 1239 } 1240 1241 // The loop exit instruction we check first (as a quick test) but add last. We 1242 // check the opcode is correct (and dont allow them to be Subs) and that they 1243 // have expected to have the expected number of uses. They will have one use 1244 // from the phi and one from a LCSSA value, no matter the type. 1245 if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(2)) 1246 return {}; 1247 1248 // Check that the Phi has one (or two for min/max) uses, plus an extra use 1249 // for conditional reductions. 1250 if (!Phi->hasNUses(ExpectedUses + ExtraPhiUses)) 1251 return {}; 1252 1253 Instruction *Cur = getNextInstruction(Phi); 1254 1255 // Each other instruction in the chain should have the expected number of uses 1256 // and be the correct opcode. 1257 while (Cur != RdxInstr) { 1258 if (!Cur || !isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses)) 1259 return {}; 1260 1261 ReductionOperations.push_back(Cur); 1262 Cur = getNextInstruction(Cur); 1263 } 1264 1265 ReductionOperations.push_back(Cur); 1266 return ReductionOperations; 1267 } 1268 1269 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 1270 const SCEV *Step, BinaryOperator *BOp, 1271 SmallVectorImpl<Instruction *> *Casts) 1272 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 1273 assert(IK != IK_NoInduction && "Not an induction"); 1274 1275 // Start value type should match the induction kind and the value 1276 // itself should not be null. 1277 assert(StartValue && "StartValue is null"); 1278 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 1279 "StartValue is not a pointer for pointer induction"); 1280 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 1281 "StartValue is not an integer for integer induction"); 1282 1283 // Check the Step Value. It should be non-zero integer value. 1284 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 1285 "Step value is zero"); 1286 1287 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 1288 "StepValue is not an integer"); 1289 1290 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 1291 "StepValue is not FP for FpInduction"); 1292 assert((IK != IK_FpInduction || 1293 (InductionBinOp && 1294 (InductionBinOp->getOpcode() == Instruction::FAdd || 1295 InductionBinOp->getOpcode() == Instruction::FSub))) && 1296 "Binary opcode should be specified for FP induction"); 1297 1298 if (Casts) { 1299 for (auto &Inst : *Casts) { 1300 RedundantCasts.push_back(Inst); 1301 } 1302 } 1303 } 1304 1305 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 1306 if (isa<SCEVConstant>(Step)) 1307 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 1308 return nullptr; 1309 } 1310 1311 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 1312 ScalarEvolution *SE, 1313 InductionDescriptor &D) { 1314 1315 // Here we only handle FP induction variables. 1316 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 1317 1318 if (TheLoop->getHeader() != Phi->getParent()) 1319 return false; 1320 1321 // The loop may have multiple entrances or multiple exits; we can analyze 1322 // this phi if it has a unique entry value and a unique backedge value. 1323 if (Phi->getNumIncomingValues() != 2) 1324 return false; 1325 Value *BEValue = nullptr, *StartValue = nullptr; 1326 if (TheLoop->contains(Phi->getIncomingBlock(0))) { 1327 BEValue = Phi->getIncomingValue(0); 1328 StartValue = Phi->getIncomingValue(1); 1329 } else { 1330 assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 1331 "Unexpected Phi node in the loop"); 1332 BEValue = Phi->getIncomingValue(1); 1333 StartValue = Phi->getIncomingValue(0); 1334 } 1335 1336 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 1337 if (!BOp) 1338 return false; 1339 1340 Value *Addend = nullptr; 1341 if (BOp->getOpcode() == Instruction::FAdd) { 1342 if (BOp->getOperand(0) == Phi) 1343 Addend = BOp->getOperand(1); 1344 else if (BOp->getOperand(1) == Phi) 1345 Addend = BOp->getOperand(0); 1346 } else if (BOp->getOpcode() == Instruction::FSub) 1347 if (BOp->getOperand(0) == Phi) 1348 Addend = BOp->getOperand(1); 1349 1350 if (!Addend) 1351 return false; 1352 1353 // The addend should be loop invariant 1354 if (auto *I = dyn_cast<Instruction>(Addend)) 1355 if (TheLoop->contains(I)) 1356 return false; 1357 1358 // FP Step has unknown SCEV 1359 const SCEV *Step = SE->getUnknown(Addend); 1360 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 1361 return true; 1362 } 1363 1364 /// This function is called when we suspect that the update-chain of a phi node 1365 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 1366 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 1367 /// predicate P under which the SCEV expression for the phi can be the 1368 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 1369 /// cast instructions that are involved in the update-chain of this induction. 1370 /// A caller that adds the required runtime predicate can be free to drop these 1371 /// cast instructions, and compute the phi using \p AR (instead of some scev 1372 /// expression with casts). 1373 /// 1374 /// For example, without a predicate the scev expression can take the following 1375 /// form: 1376 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 1377 /// 1378 /// It corresponds to the following IR sequence: 1379 /// %for.body: 1380 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 1381 /// %casted_phi = "ExtTrunc i64 %x" 1382 /// %add = add i64 %casted_phi, %step 1383 /// 1384 /// where %x is given in \p PN, 1385 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 1386 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 1387 /// several forms, for example, such as: 1388 /// ExtTrunc1: %casted_phi = and %x, 2^n-1 1389 /// or: 1390 /// ExtTrunc2: %t = shl %x, m 1391 /// %casted_phi = ashr %t, m 1392 /// 1393 /// If we are able to find such sequence, we return the instructions 1394 /// we found, namely %casted_phi and the instructions on its use-def chain up 1395 /// to the phi (not including the phi). 1396 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 1397 const SCEVUnknown *PhiScev, 1398 const SCEVAddRecExpr *AR, 1399 SmallVectorImpl<Instruction *> &CastInsts) { 1400 1401 assert(CastInsts.empty() && "CastInsts is expected to be empty."); 1402 auto *PN = cast<PHINode>(PhiScev->getValue()); 1403 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 1404 const Loop *L = AR->getLoop(); 1405 1406 // Find any cast instructions that participate in the def-use chain of 1407 // PhiScev in the loop. 1408 // FORNOW/TODO: We currently expect the def-use chain to include only 1409 // two-operand instructions, where one of the operands is an invariant. 1410 // createAddRecFromPHIWithCasts() currently does not support anything more 1411 // involved than that, so we keep the search simple. This can be 1412 // extended/generalized as needed. 1413 1414 auto getDef = [&](const Value *Val) -> Value * { 1415 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 1416 if (!BinOp) 1417 return nullptr; 1418 Value *Op0 = BinOp->getOperand(0); 1419 Value *Op1 = BinOp->getOperand(1); 1420 Value *Def = nullptr; 1421 if (L->isLoopInvariant(Op0)) 1422 Def = Op1; 1423 else if (L->isLoopInvariant(Op1)) 1424 Def = Op0; 1425 return Def; 1426 }; 1427 1428 // Look for the instruction that defines the induction via the 1429 // loop backedge. 1430 BasicBlock *Latch = L->getLoopLatch(); 1431 if (!Latch) 1432 return false; 1433 Value *Val = PN->getIncomingValueForBlock(Latch); 1434 if (!Val) 1435 return false; 1436 1437 // Follow the def-use chain until the induction phi is reached. 1438 // If on the way we encounter a Value that has the same SCEV Expr as the 1439 // phi node, we can consider the instructions we visit from that point 1440 // as part of the cast-sequence that can be ignored. 1441 bool InCastSequence = false; 1442 auto *Inst = dyn_cast<Instruction>(Val); 1443 while (Val != PN) { 1444 // If we encountered a phi node other than PN, or if we left the loop, 1445 // we bail out. 1446 if (!Inst || !L->contains(Inst)) { 1447 return false; 1448 } 1449 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 1450 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 1451 InCastSequence = true; 1452 if (InCastSequence) { 1453 // Only the last instruction in the cast sequence is expected to have 1454 // uses outside the induction def-use chain. 1455 if (!CastInsts.empty()) 1456 if (!Inst->hasOneUse()) 1457 return false; 1458 CastInsts.push_back(Inst); 1459 } 1460 Val = getDef(Val); 1461 if (!Val) 1462 return false; 1463 Inst = dyn_cast<Instruction>(Val); 1464 } 1465 1466 return InCastSequence; 1467 } 1468 1469 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 1470 PredicatedScalarEvolution &PSE, 1471 InductionDescriptor &D, bool Assume) { 1472 Type *PhiTy = Phi->getType(); 1473 1474 // Handle integer and pointer inductions variables. 1475 // Now we handle also FP induction but not trying to make a 1476 // recurrent expression from the PHI node in-place. 1477 1478 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && 1479 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 1480 return false; 1481 1482 if (PhiTy->isFloatingPointTy()) 1483 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 1484 1485 const SCEV *PhiScev = PSE.getSCEV(Phi); 1486 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1487 1488 // We need this expression to be an AddRecExpr. 1489 if (Assume && !AR) 1490 AR = PSE.getAsAddRec(Phi); 1491 1492 if (!AR) { 1493 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1494 return false; 1495 } 1496 1497 // Record any Cast instructions that participate in the induction update 1498 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 1499 // If we started from an UnknownSCEV, and managed to build an addRecurrence 1500 // only after enabling Assume with PSCEV, this means we may have encountered 1501 // cast instructions that required adding a runtime check in order to 1502 // guarantee the correctness of the AddRecurrence respresentation of the 1503 // induction. 1504 if (PhiScev != AR && SymbolicPhi) { 1505 SmallVector<Instruction *, 2> Casts; 1506 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 1507 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 1508 } 1509 1510 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1511 } 1512 1513 bool InductionDescriptor::isInductionPHI( 1514 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 1515 InductionDescriptor &D, const SCEV *Expr, 1516 SmallVectorImpl<Instruction *> *CastsToIgnore) { 1517 Type *PhiTy = Phi->getType(); 1518 // isSCEVable returns true for integer and pointer types. 1519 if (!SE->isSCEVable(PhiTy)) 1520 return false; 1521 1522 // Check that the PHI is consecutive. 1523 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 1524 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1525 1526 if (!AR) { 1527 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1528 return false; 1529 } 1530 1531 if (AR->getLoop() != TheLoop) { 1532 // FIXME: We should treat this as a uniform. Unfortunately, we 1533 // don't currently know how to handled uniform PHIs. 1534 LLVM_DEBUG( 1535 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1536 return false; 1537 } 1538 1539 // This function assumes that InductionPhi is called only on Phi nodes 1540 // present inside loop headers. Check for the same, and throw an assert if 1541 // the current Phi is not present inside the loop header. 1542 assert(Phi->getParent() == AR->getLoop()->getHeader() 1543 && "Invalid Phi node, not present in loop header"); 1544 1545 Value *StartValue = 1546 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 1547 1548 BasicBlock *Latch = AR->getLoop()->getLoopLatch(); 1549 if (!Latch) 1550 return false; 1551 1552 const SCEV *Step = AR->getStepRecurrence(*SE); 1553 // Calculate the pointer stride and check if it is consecutive. 1554 // The stride may be a constant or a loop invariant integer value. 1555 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1556 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 1557 return false; 1558 1559 if (PhiTy->isIntegerTy()) { 1560 BinaryOperator *BOp = 1561 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch)); 1562 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, 1563 CastsToIgnore); 1564 return true; 1565 } 1566 1567 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1568 1569 // This allows induction variables w/non-constant steps. 1570 D = InductionDescriptor(StartValue, IK_PtrInduction, Step); 1571 return true; 1572 } 1573