1 //===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/ConstraintSystem.h" 10 #include "llvm/ADT/SmallVector.h" 11 #include "llvm/Support/MathExtras.h" 12 #include "llvm/ADT/StringExtras.h" 13 #include "llvm/IR/Value.h" 14 #include "llvm/Support/Debug.h" 15 16 #include <string> 17 18 using namespace llvm; 19 20 #define DEBUG_TYPE "constraint-system" 21 22 bool ConstraintSystem::eliminateUsingFM() { 23 // Implementation of Fourier–Motzkin elimination, with some tricks from the 24 // paper Pugh, William. "The Omega test: a fast and practical integer 25 // programming algorithm for dependence 26 // analysis." 27 // Supercomputing'91: Proceedings of the 1991 ACM/ 28 // IEEE conference on Supercomputing. IEEE, 1991. 29 assert(!Constraints.empty() && 30 "should only be called for non-empty constraint systems"); 31 32 unsigned LastIdx = NumVariables - 1; 33 34 // First, either remove the variable in place if it is 0 or add the row to 35 // RemainingRows and remove it from the system. 36 SmallVector<SmallVector<Entry, 8>, 4> RemainingRows; 37 for (unsigned R1 = 0; R1 < Constraints.size();) { 38 SmallVector<Entry, 8> &Row1 = Constraints[R1]; 39 if (getLastCoefficient(Row1, LastIdx) == 0) { 40 if (Row1.size() > 0 && Row1.back().Id == LastIdx) 41 Row1.pop_back(); 42 R1++; 43 } else { 44 std::swap(Constraints[R1], Constraints.back()); 45 RemainingRows.push_back(std::move(Constraints.back())); 46 Constraints.pop_back(); 47 } 48 } 49 50 // Process rows where the variable is != 0. 51 unsigned NumRemainingConstraints = RemainingRows.size(); 52 for (unsigned R1 = 0; R1 < NumRemainingConstraints; R1++) { 53 // FIXME do not use copy 54 for (unsigned R2 = R1 + 1; R2 < NumRemainingConstraints; R2++) { 55 int64_t UpperLast = getLastCoefficient(RemainingRows[R2], LastIdx); 56 int64_t LowerLast = getLastCoefficient(RemainingRows[R1], LastIdx); 57 assert( 58 UpperLast != 0 && LowerLast != 0 && 59 "RemainingRows should only contain rows where the variable is != 0"); 60 61 if ((LowerLast < 0 && UpperLast < 0) || (LowerLast > 0 && UpperLast > 0)) 62 continue; 63 64 unsigned LowerR = R1; 65 unsigned UpperR = R2; 66 if (UpperLast < 0) { 67 std::swap(LowerR, UpperR); 68 std::swap(LowerLast, UpperLast); 69 } 70 71 SmallVector<Entry, 8> NR; 72 unsigned IdxUpper = 0; 73 unsigned IdxLower = 0; 74 auto &LowerRow = RemainingRows[LowerR]; 75 auto &UpperRow = RemainingRows[UpperR]; 76 while (true) { 77 if (IdxUpper >= UpperRow.size() || IdxLower >= LowerRow.size()) 78 break; 79 int64_t M1, M2, N; 80 int64_t UpperV = 0; 81 int64_t LowerV = 0; 82 uint16_t CurrentId = std::numeric_limits<uint16_t>::max(); 83 if (IdxUpper < UpperRow.size()) { 84 CurrentId = std::min(UpperRow[IdxUpper].Id, CurrentId); 85 } 86 if (IdxLower < LowerRow.size()) { 87 CurrentId = std::min(LowerRow[IdxLower].Id, CurrentId); 88 } 89 90 if (IdxUpper < UpperRow.size() && UpperRow[IdxUpper].Id == CurrentId) { 91 UpperV = UpperRow[IdxUpper].Coefficient; 92 IdxUpper++; 93 } 94 95 if (MulOverflow(UpperV, -1 * LowerLast, M1)) 96 return false; 97 if (IdxLower < LowerRow.size() && LowerRow[IdxLower].Id == CurrentId) { 98 LowerV = LowerRow[IdxLower].Coefficient; 99 IdxLower++; 100 } 101 102 if (MulOverflow(LowerV, UpperLast, M2)) 103 return false; 104 if (AddOverflow(M1, M2, N)) 105 return false; 106 if (N == 0) 107 continue; 108 NR.emplace_back(N, CurrentId); 109 } 110 if (NR.empty()) 111 continue; 112 Constraints.push_back(std::move(NR)); 113 // Give up if the new system gets too big. 114 if (Constraints.size() > 500) 115 return false; 116 } 117 } 118 NumVariables -= 1; 119 120 return true; 121 } 122 123 bool ConstraintSystem::mayHaveSolutionImpl() { 124 while (!Constraints.empty() && NumVariables > 1) { 125 if (!eliminateUsingFM()) 126 return true; 127 } 128 129 if (Constraints.empty() || NumVariables > 1) 130 return true; 131 132 return all_of(Constraints, [](auto &R) { 133 if (R.empty()) 134 return true; 135 if (R[0].Id == 0) 136 return R[0].Coefficient >= 0; 137 return true; 138 }); 139 } 140 141 SmallVector<std::string> ConstraintSystem::getVarNamesList() const { 142 SmallVector<std::string> Names(Value2Index.size(), ""); 143 #ifndef NDEBUG 144 for (auto &[V, Index] : Value2Index) { 145 std::string OperandName; 146 if (V->getName().empty()) 147 OperandName = V->getNameOrAsOperand(); 148 else 149 OperandName = std::string("%") + V->getName().str(); 150 Names[Index - 1] = OperandName; 151 } 152 #endif 153 return Names; 154 } 155 156 void ConstraintSystem::dump() const { 157 #ifndef NDEBUG 158 if (Constraints.empty()) 159 return; 160 SmallVector<std::string> Names = getVarNamesList(); 161 for (const auto &Row : Constraints) { 162 SmallVector<std::string, 16> Parts; 163 for (const Entry &E : Row) { 164 if (E.Id >= NumVariables) 165 break; 166 if (E.Id == 0) 167 continue; 168 std::string Coefficient; 169 if (E.Coefficient != 1) 170 Coefficient = std::to_string(E.Coefficient) + " * "; 171 Parts.push_back(Coefficient + Names[E.Id - 1]); 172 } 173 // assert(!Parts.empty() && "need to have at least some parts"); 174 int64_t ConstPart = 0; 175 if (Row[0].Id == 0) 176 ConstPart = Row[0].Coefficient; 177 LLVM_DEBUG(dbgs() << join(Parts, std::string(" + ")) 178 << " <= " << std::to_string(ConstPart) << "\n"); 179 } 180 #endif 181 } 182 183 bool ConstraintSystem::mayHaveSolution() { 184 LLVM_DEBUG(dbgs() << "---\n"); 185 LLVM_DEBUG(dump()); 186 bool HasSolution = mayHaveSolutionImpl(); 187 LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat") << "\n"); 188 return HasSolution; 189 } 190 191 bool ConstraintSystem::isConditionImplied(SmallVector<int64_t, 8> R) const { 192 // If all variable coefficients are 0, we have 'C >= 0'. If the constant is >= 193 // 0, R is always true, regardless of the system. 194 if (all_of(ArrayRef(R).drop_front(1), [](int64_t C) { return C == 0; })) 195 return R[0] >= 0; 196 197 // If there is no solution with the negation of R added to the system, the 198 // condition must hold based on the existing constraints. 199 R = ConstraintSystem::negate(R); 200 if (R.empty()) 201 return false; 202 203 auto NewSystem = *this; 204 NewSystem.addVariableRow(R); 205 return !NewSystem.mayHaveSolution(); 206 } 207