xref: /llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp (revision d434e40f398e3144c69d57d2a142d35e2f760a8e)
1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/PostDominators.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PassManager.h"
34 #include "llvm/IR/ProfDataUtils.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/BranchProbability.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <map>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "branch-prob"
53 
54 static cl::opt<bool> PrintBranchProb(
55     "print-bpi", cl::init(false), cl::Hidden,
56     cl::desc("Print the branch probability info."));
57 
58 cl::opt<std::string> PrintBranchProbFuncName(
59     "print-bpi-func-name", cl::Hidden,
60     cl::desc("The option to specify the name of the function "
61              "whose branch probability info is printed."));
62 
63 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
64                       "Branch Probability Analysis", false, true)
65 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
66 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
67 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
68 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
69 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
70                     "Branch Probability Analysis", false, true)
71 
72 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
73     : FunctionPass(ID) {
74   initializeBranchProbabilityInfoWrapperPassPass(
75       *PassRegistry::getPassRegistry());
76 }
77 
78 char BranchProbabilityInfoWrapperPass::ID = 0;
79 
80 // Weights are for internal use only. They are used by heuristics to help to
81 // estimate edges' probability. Example:
82 //
83 // Using "Loop Branch Heuristics" we predict weights of edges for the
84 // block BB2.
85 //         ...
86 //          |
87 //          V
88 //         BB1<-+
89 //          |   |
90 //          |   | (Weight = 124)
91 //          V   |
92 //         BB2--+
93 //          |
94 //          | (Weight = 4)
95 //          V
96 //         BB3
97 //
98 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
99 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
100 static const uint32_t LBH_TAKEN_WEIGHT = 124;
101 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
102 
103 /// Unreachable-terminating branch taken probability.
104 ///
105 /// This is the probability for a branch being taken to a block that terminates
106 /// (eventually) in unreachable. These are predicted as unlikely as possible.
107 /// All reachable probability will proportionally share the remaining part.
108 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
109 
110 /// Heuristics and lookup tables for non-loop branches:
111 /// Pointer Heuristics (PH)
112 static const uint32_t PH_TAKEN_WEIGHT = 20;
113 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
114 static const BranchProbability
115     PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
116 static const BranchProbability
117     PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
118 
119 using ProbabilityList = SmallVector<BranchProbability>;
120 using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>;
121 
122 /// Pointer comparisons:
123 static const ProbabilityTable PointerTable{
124     {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely
125     {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely
126 };
127 
128 /// Zero Heuristics (ZH)
129 static const uint32_t ZH_TAKEN_WEIGHT = 20;
130 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
131 static const BranchProbability
132     ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
133 static const BranchProbability
134     ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
135 
136 /// Integer compares with 0:
137 static const ProbabilityTable ICmpWithZeroTable{
138     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == 0 -> Unlikely
139     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != 0 -> Likely
140     {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0  -> Unlikely
141     {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0  -> Likely
142 };
143 
144 /// Integer compares with -1:
145 static const ProbabilityTable ICmpWithMinusOneTable{
146     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == -1 -> Unlikely
147     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != -1 -> Likely
148     // InstCombine canonicalizes X >= 0 into X > -1
149     {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0  -> Likely
150 };
151 
152 /// Integer compares with 1:
153 static const ProbabilityTable ICmpWithOneTable{
154     // InstCombine canonicalizes X <= 0 into X < 1
155     {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely
156 };
157 
158 /// strcmp and similar functions return zero, negative, or positive, if the
159 /// first string is equal, less, or greater than the second. We consider it
160 /// likely that the strings are not equal, so a comparison with zero is
161 /// probably false, but also a comparison with any other number is also
162 /// probably false given that what exactly is returned for nonzero values is
163 /// not specified. Any kind of comparison other than equality we know
164 /// nothing about.
165 static const ProbabilityTable ICmpWithLibCallTable{
166     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},
167     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},
168 };
169 
170 // Floating-Point Heuristics (FPH)
171 static const uint32_t FPH_TAKEN_WEIGHT = 20;
172 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
173 
174 /// This is the probability for an ordered floating point comparison.
175 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
176 /// This is the probability for an unordered floating point comparison, it means
177 /// one or two of the operands are NaN. Usually it is used to test for an
178 /// exceptional case, so the result is unlikely.
179 static const uint32_t FPH_UNO_WEIGHT = 1;
180 
181 static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT,
182                                               FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
183 static const BranchProbability
184     FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
185 static const BranchProbability
186     FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
187 static const BranchProbability
188     FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
189 
190 /// Floating-Point compares:
191 static const ProbabilityTable FCmpTable{
192     {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely
193     {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely
194 };
195 
196 /// Set of dedicated "absolute" execution weights for a block. These weights are
197 /// meaningful relative to each other and their derivatives only.
198 enum class BlockExecWeight : std::uint32_t {
199   /// Special weight used for cases with exact zero probability.
200   ZERO = 0x0,
201   /// Minimal possible non zero weight.
202   LOWEST_NON_ZERO = 0x1,
203   /// Weight to an 'unreachable' block.
204   UNREACHABLE = ZERO,
205   /// Weight to a block containing non returning call.
206   NORETURN = LOWEST_NON_ZERO,
207   /// Weight to 'unwind' block of an invoke instruction.
208   UNWIND = LOWEST_NON_ZERO,
209   /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
210   /// with attribute 'cold'.
211   COLD = 0xffff,
212   /// Default weight is used in cases when there is no dedicated execution
213   /// weight set. It is not propagated through the domination line either.
214   DEFAULT = 0xfffff
215 };
216 
217 BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
218   // Record SCC numbers of blocks in the CFG to identify irreducible loops.
219   // FIXME: We could only calculate this if the CFG is known to be irreducible
220   // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
221   int SccNum = 0;
222   for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
223        ++It, ++SccNum) {
224     // Ignore single-block SCCs since they either aren't loops or LoopInfo will
225     // catch them.
226     const std::vector<const BasicBlock *> &Scc = *It;
227     if (Scc.size() == 1)
228       continue;
229 
230     LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
231     for (const auto *BB : Scc) {
232       LLVM_DEBUG(dbgs() << " " << BB->getName());
233       SccNums[BB] = SccNum;
234       calculateSccBlockType(BB, SccNum);
235     }
236     LLVM_DEBUG(dbgs() << "\n");
237   }
238 }
239 
240 int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
241   auto SccIt = SccNums.find(BB);
242   if (SccIt == SccNums.end())
243     return -1;
244   return SccIt->second;
245 }
246 
247 void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
248     int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
249 
250   for (auto MapIt : SccBlocks[SccNum]) {
251     const auto *BB = MapIt.first;
252     if (isSCCHeader(BB, SccNum))
253       for (const auto *Pred : predecessors(BB))
254         if (getSCCNum(Pred) != SccNum)
255           Enters.push_back(const_cast<BasicBlock *>(BB));
256   }
257 }
258 
259 void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
260     int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
261   for (auto MapIt : SccBlocks[SccNum]) {
262     const auto *BB = MapIt.first;
263     if (isSCCExitingBlock(BB, SccNum))
264       for (const auto *Succ : successors(BB))
265         if (getSCCNum(Succ) != SccNum)
266           Exits.push_back(const_cast<BasicBlock *>(Succ));
267   }
268 }
269 
270 uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
271                                                          int SccNum) const {
272   assert(getSCCNum(BB) == SccNum);
273 
274   assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
275   const auto &SccBlockTypes = SccBlocks[SccNum];
276 
277   auto It = SccBlockTypes.find(BB);
278   if (It != SccBlockTypes.end()) {
279     return It->second;
280   }
281   return Inner;
282 }
283 
284 void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
285                                                            int SccNum) {
286   assert(getSCCNum(BB) == SccNum);
287   uint32_t BlockType = Inner;
288 
289   if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
290         // Consider any block that is an entry point to the SCC as
291         // a header.
292         return getSCCNum(Pred) != SccNum;
293       }))
294     BlockType |= Header;
295 
296   if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
297         return getSCCNum(Succ) != SccNum;
298       }))
299     BlockType |= Exiting;
300 
301   // Lazily compute the set of headers for a given SCC and cache the results
302   // in the SccHeaderMap.
303   if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
304     SccBlocks.resize(SccNum + 1);
305   auto &SccBlockTypes = SccBlocks[SccNum];
306 
307   if (BlockType != Inner) {
308     bool IsInserted;
309     std::tie(std::ignore, IsInserted) =
310         SccBlockTypes.insert(std::make_pair(BB, BlockType));
311     assert(IsInserted && "Duplicated block in SCC");
312   }
313 }
314 
315 BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
316                                             const LoopInfo &LI,
317                                             const SccInfo &SccI)
318     : BB(BB) {
319   LD.first = LI.getLoopFor(BB);
320   if (!LD.first) {
321     LD.second = SccI.getSCCNum(BB);
322   }
323 }
324 
325 bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
326   const auto &SrcBlock = Edge.first;
327   const auto &DstBlock = Edge.second;
328   return (DstBlock.getLoop() &&
329           !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
330          // Assume that SCCs can't be nested.
331          (DstBlock.getSccNum() != -1 &&
332           SrcBlock.getSccNum() != DstBlock.getSccNum());
333 }
334 
335 bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
336   return isLoopEnteringEdge({Edge.second, Edge.first});
337 }
338 
339 bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
340     const LoopEdge &Edge) const {
341   return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
342 }
343 
344 bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
345   const auto &SrcBlock = Edge.first;
346   const auto &DstBlock = Edge.second;
347   return SrcBlock.belongsToSameLoop(DstBlock) &&
348          ((DstBlock.getLoop() &&
349            DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
350           (DstBlock.getSccNum() != -1 &&
351            SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
352 }
353 
354 void BranchProbabilityInfo::getLoopEnterBlocks(
355     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
356   if (LB.getLoop()) {
357     auto *Header = LB.getLoop()->getHeader();
358     Enters.append(pred_begin(Header), pred_end(Header));
359   } else {
360     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
361     SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
362   }
363 }
364 
365 void BranchProbabilityInfo::getLoopExitBlocks(
366     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
367   if (LB.getLoop()) {
368     LB.getLoop()->getExitBlocks(Exits);
369   } else {
370     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
371     SccI->getSccExitBlocks(LB.getSccNum(), Exits);
372   }
373 }
374 
375 // Propagate existing explicit probabilities from either profile data or
376 // 'expect' intrinsic processing. Examine metadata against unreachable
377 // heuristic. The probability of the edge coming to unreachable block is
378 // set to min of metadata and unreachable heuristic.
379 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
380   const Instruction *TI = BB->getTerminator();
381   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
382   if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
383         isa<InvokeInst>(TI)))
384     return false;
385 
386   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
387   if (!WeightsNode)
388     return false;
389 
390   // Check that the number of successors is manageable.
391   assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
392 
393   // Ensure there are weights for all of the successors. Note that the first
394   // operand to the metadata node is a name, not a weight.
395   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
396     return false;
397 
398   // Build up the final weights that will be used in a temporary buffer.
399   // Compute the sum of all weights to later decide whether they need to
400   // be scaled to fit in 32 bits.
401   uint64_t WeightSum = 0;
402   SmallVector<uint32_t, 2> Weights;
403   SmallVector<unsigned, 2> UnreachableIdxs;
404   SmallVector<unsigned, 2> ReachableIdxs;
405 
406   extractBranchWeights(*TI, Weights);
407   for (unsigned I = 0, E = Weights.size(); I != E; ++I) {
408     WeightSum += Weights[I];
409     const LoopBlock SrcLoopBB = getLoopBlock(BB);
410     const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I));
411     auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
412     if (EstimatedWeight &&
413         *EstimatedWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
414       UnreachableIdxs.push_back(I);
415     else
416       ReachableIdxs.push_back(I);
417   }
418   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
419 
420   // If the sum of weights does not fit in 32 bits, scale every weight down
421   // accordingly.
422   uint64_t ScalingFactor =
423       (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
424 
425   if (ScalingFactor > 1) {
426     WeightSum = 0;
427     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
428       Weights[I] /= ScalingFactor;
429       WeightSum += Weights[I];
430     }
431   }
432   assert(WeightSum <= UINT32_MAX &&
433          "Expected weights to scale down to 32 bits");
434 
435   if (WeightSum == 0 || ReachableIdxs.size() == 0) {
436     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
437       Weights[I] = 1;
438     WeightSum = TI->getNumSuccessors();
439   }
440 
441   // Set the probability.
442   SmallVector<BranchProbability, 2> BP;
443   for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
444     BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
445 
446   // Examine the metadata against unreachable heuristic.
447   // If the unreachable heuristic is more strong then we use it for this edge.
448   if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
449     setEdgeProbability(BB, BP);
450     return true;
451   }
452 
453   auto UnreachableProb = UR_TAKEN_PROB;
454   for (auto I : UnreachableIdxs)
455     if (UnreachableProb < BP[I]) {
456       BP[I] = UnreachableProb;
457     }
458 
459   // Sum of all edge probabilities must be 1.0. If we modified the probability
460   // of some edges then we must distribute the introduced difference over the
461   // reachable blocks.
462   //
463   // Proportional distribution: the relation between probabilities of the
464   // reachable edges is kept unchanged. That is for any reachable edges i and j:
465   //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
466   //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
467   // Where K is independent of i,j.
468   //   newBP[i] == oldBP[i] * K
469   // We need to find K.
470   // Make sum of all reachables of the left and right parts:
471   //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
472   // Sum of newBP must be equal to 1.0:
473   //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
474   //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
475   // Where sum_of_unreachable(newBP) is what has been just changed.
476   // Finally:
477   //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
478   //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
479   BranchProbability NewUnreachableSum = BranchProbability::getZero();
480   for (auto I : UnreachableIdxs)
481     NewUnreachableSum += BP[I];
482 
483   BranchProbability NewReachableSum =
484       BranchProbability::getOne() - NewUnreachableSum;
485 
486   BranchProbability OldReachableSum = BranchProbability::getZero();
487   for (auto I : ReachableIdxs)
488     OldReachableSum += BP[I];
489 
490   if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
491     if (OldReachableSum.isZero()) {
492       // If all oldBP[i] are zeroes then the proportional distribution results
493       // in all zero probabilities and the error stays big. In this case we
494       // evenly spread NewReachableSum over the reachable edges.
495       BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
496       for (auto I : ReachableIdxs)
497         BP[I] = PerEdge;
498     } else {
499       for (auto I : ReachableIdxs) {
500         // We use uint64_t to avoid double rounding error of the following
501         // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
502         // The formula is taken from the private constructor
503         // BranchProbability(uint32_t Numerator, uint32_t Denominator)
504         uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
505                        BP[I].getNumerator();
506         uint32_t Div = static_cast<uint32_t>(
507             divideNearest(Mul, OldReachableSum.getNumerator()));
508         BP[I] = BranchProbability::getRaw(Div);
509       }
510     }
511   }
512 
513   setEdgeProbability(BB, BP);
514 
515   return true;
516 }
517 
518 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
519 // between two pointer or pointer and NULL will fail.
520 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
521   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
522   if (!BI || !BI->isConditional())
523     return false;
524 
525   Value *Cond = BI->getCondition();
526   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
527   if (!CI || !CI->isEquality())
528     return false;
529 
530   Value *LHS = CI->getOperand(0);
531 
532   if (!LHS->getType()->isPointerTy())
533     return false;
534 
535   assert(CI->getOperand(1)->getType()->isPointerTy());
536 
537   auto Search = PointerTable.find(CI->getPredicate());
538   if (Search == PointerTable.end())
539     return false;
540   setEdgeProbability(BB, Search->second);
541   return true;
542 }
543 
544 // Compute the unlikely successors to the block BB in the loop L, specifically
545 // those that are unlikely because this is a loop, and add them to the
546 // UnlikelyBlocks set.
547 static void
548 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
549                           SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
550   // Sometimes in a loop we have a branch whose condition is made false by
551   // taking it. This is typically something like
552   //  int n = 0;
553   //  while (...) {
554   //    if (++n >= MAX) {
555   //      n = 0;
556   //    }
557   //  }
558   // In this sort of situation taking the branch means that at the very least it
559   // won't be taken again in the next iteration of the loop, so we should
560   // consider it less likely than a typical branch.
561   //
562   // We detect this by looking back through the graph of PHI nodes that sets the
563   // value that the condition depends on, and seeing if we can reach a successor
564   // block which can be determined to make the condition false.
565   //
566   // FIXME: We currently consider unlikely blocks to be half as likely as other
567   // blocks, but if we consider the example above the likelyhood is actually
568   // 1/MAX. We could therefore be more precise in how unlikely we consider
569   // blocks to be, but it would require more careful examination of the form
570   // of the comparison expression.
571   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
572   if (!BI || !BI->isConditional())
573     return;
574 
575   // Check if the branch is based on an instruction compared with a constant
576   CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
577   if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
578       !isa<Constant>(CI->getOperand(1)))
579     return;
580 
581   // Either the instruction must be a PHI, or a chain of operations involving
582   // constants that ends in a PHI which we can then collapse into a single value
583   // if the PHI value is known.
584   Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
585   PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
586   Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
587   // Collect the instructions until we hit a PHI
588   SmallVector<BinaryOperator *, 1> InstChain;
589   while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
590          isa<Constant>(CmpLHS->getOperand(1))) {
591     // Stop if the chain extends outside of the loop
592     if (!L->contains(CmpLHS))
593       return;
594     InstChain.push_back(cast<BinaryOperator>(CmpLHS));
595     CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
596     if (CmpLHS)
597       CmpPHI = dyn_cast<PHINode>(CmpLHS);
598   }
599   if (!CmpPHI || !L->contains(CmpPHI))
600     return;
601 
602   // Trace the phi node to find all values that come from successors of BB
603   SmallPtrSet<PHINode*, 8> VisitedInsts;
604   SmallVector<PHINode*, 8> WorkList;
605   WorkList.push_back(CmpPHI);
606   VisitedInsts.insert(CmpPHI);
607   while (!WorkList.empty()) {
608     PHINode *P = WorkList.pop_back_val();
609     for (BasicBlock *B : P->blocks()) {
610       // Skip blocks that aren't part of the loop
611       if (!L->contains(B))
612         continue;
613       Value *V = P->getIncomingValueForBlock(B);
614       // If the source is a PHI add it to the work list if we haven't
615       // already visited it.
616       if (PHINode *PN = dyn_cast<PHINode>(V)) {
617         if (VisitedInsts.insert(PN).second)
618           WorkList.push_back(PN);
619         continue;
620       }
621       // If this incoming value is a constant and B is a successor of BB, then
622       // we can constant-evaluate the compare to see if it makes the branch be
623       // taken or not.
624       Constant *CmpLHSConst = dyn_cast<Constant>(V);
625       if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
626         continue;
627       // First collapse InstChain
628       const DataLayout &DL = BB->getModule()->getDataLayout();
629       for (Instruction *I : llvm::reverse(InstChain)) {
630         CmpLHSConst = ConstantFoldBinaryOpOperands(
631             I->getOpcode(), CmpLHSConst, cast<Constant>(I->getOperand(1)), DL);
632         if (!CmpLHSConst)
633           break;
634       }
635       if (!CmpLHSConst)
636         continue;
637       // Now constant-evaluate the compare
638       Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
639                                                   CmpLHSConst, CmpConst, true);
640       // If the result means we don't branch to the block then that block is
641       // unlikely.
642       if (Result &&
643           ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
644            (Result->isOneValue() && B == BI->getSuccessor(1))))
645         UnlikelyBlocks.insert(B);
646     }
647   }
648 }
649 
650 Optional<uint32_t>
651 BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
652   auto WeightIt = EstimatedBlockWeight.find(BB);
653   if (WeightIt == EstimatedBlockWeight.end())
654     return None;
655   return WeightIt->second;
656 }
657 
658 Optional<uint32_t>
659 BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
660   auto WeightIt = EstimatedLoopWeight.find(L);
661   if (WeightIt == EstimatedLoopWeight.end())
662     return None;
663   return WeightIt->second;
664 }
665 
666 Optional<uint32_t>
667 BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
668   // For edges entering a loop take weight of a loop rather than an individual
669   // block in the loop.
670   return isLoopEnteringEdge(Edge)
671              ? getEstimatedLoopWeight(Edge.second.getLoopData())
672              : getEstimatedBlockWeight(Edge.second.getBlock());
673 }
674 
675 template <class IterT>
676 Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
677     const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
678   SmallVector<uint32_t, 4> Weights;
679   Optional<uint32_t> MaxWeight;
680   for (const BasicBlock *DstBB : Successors) {
681     const LoopBlock DstLoopBB = getLoopBlock(DstBB);
682     auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
683 
684     if (!Weight)
685       return None;
686 
687     if (!MaxWeight || *MaxWeight < *Weight)
688       MaxWeight = Weight;
689   }
690 
691   return MaxWeight;
692 }
693 
694 // Updates \p LoopBB's weight and returns true. If \p LoopBB has already
695 // an associated weight it is unchanged and false is returned.
696 //
697 // Please note by the algorithm the weight is not expected to change once set
698 // thus 'false' status is used to track visited blocks.
699 bool BranchProbabilityInfo::updateEstimatedBlockWeight(
700     LoopBlock &LoopBB, uint32_t BBWeight,
701     SmallVectorImpl<BasicBlock *> &BlockWorkList,
702     SmallVectorImpl<LoopBlock> &LoopWorkList) {
703   BasicBlock *BB = LoopBB.getBlock();
704 
705   // In general, weight is assigned to a block when it has final value and
706   // can't/shouldn't be changed.  However, there are cases when a block
707   // inherently has several (possibly "contradicting") weights. For example,
708   // "unwind" block may also contain "cold" call. In that case the first
709   // set weight is favored and all consequent weights are ignored.
710   if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
711     return false;
712 
713   for (BasicBlock *PredBlock : predecessors(BB)) {
714     LoopBlock PredLoop = getLoopBlock(PredBlock);
715     // Add affected block/loop to a working list.
716     if (isLoopExitingEdge({PredLoop, LoopBB})) {
717       if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
718         LoopWorkList.push_back(PredLoop);
719     } else if (!EstimatedBlockWeight.count(PredBlock))
720       BlockWorkList.push_back(PredBlock);
721   }
722   return true;
723 }
724 
725 // Starting from \p BB traverse through dominator blocks and assign \p BBWeight
726 // to all such blocks that are post dominated by \BB. In other words to all
727 // blocks that the one is executed if and only if another one is executed.
728 // Importantly, we skip loops here for two reasons. First weights of blocks in
729 // a loop should be scaled by trip count (yet possibly unknown). Second there is
730 // no any value in doing that because that doesn't give any additional
731 // information regarding distribution of probabilities inside the loop.
732 // Exception is loop 'enter' and 'exit' edges that are handled in a special way
733 // at calcEstimatedHeuristics.
734 //
735 // In addition, \p WorkList is populated with basic blocks if at leas one
736 // successor has updated estimated weight.
737 void BranchProbabilityInfo::propagateEstimatedBlockWeight(
738     const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
739     uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
740     SmallVectorImpl<LoopBlock> &LoopWorkList) {
741   const BasicBlock *BB = LoopBB.getBlock();
742   const auto *DTStartNode = DT->getNode(BB);
743   const auto *PDTStartNode = PDT->getNode(BB);
744 
745   // TODO: Consider propagating weight down the domination line as well.
746   for (const auto *DTNode = DTStartNode; DTNode != nullptr;
747        DTNode = DTNode->getIDom()) {
748     auto *DomBB = DTNode->getBlock();
749     // Consider blocks which lie on one 'line'.
750     if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
751       // If BB doesn't post dominate DomBB it will not post dominate dominators
752       // of DomBB as well.
753       break;
754 
755     LoopBlock DomLoopBB = getLoopBlock(DomBB);
756     const LoopEdge Edge{DomLoopBB, LoopBB};
757     // Don't propagate weight to blocks belonging to different loops.
758     if (!isLoopEnteringExitingEdge(Edge)) {
759       if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
760                                       LoopWorkList))
761         // If DomBB has weight set then all it's predecessors are already
762         // processed (since we propagate weight up to the top of IR each time).
763         break;
764     } else if (isLoopExitingEdge(Edge)) {
765       LoopWorkList.push_back(DomLoopBB);
766     }
767   }
768 }
769 
770 Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight(
771     const BasicBlock *BB) {
772   // Returns true if \p BB has call marked with "NoReturn" attribute.
773   auto hasNoReturn = [&](const BasicBlock *BB) {
774     for (const auto &I : reverse(*BB))
775       if (const CallInst *CI = dyn_cast<CallInst>(&I))
776         if (CI->hasFnAttr(Attribute::NoReturn))
777           return true;
778 
779     return false;
780   };
781 
782   // Important note regarding the order of checks. They are ordered by weight
783   // from lowest to highest. Doing that allows to avoid "unstable" results
784   // when several conditions heuristics can be applied simultaneously.
785   if (isa<UnreachableInst>(BB->getTerminator()) ||
786       // If this block is terminated by a call to
787       // @llvm.experimental.deoptimize then treat it like an unreachable
788       // since it is expected to practically never execute.
789       // TODO: Should we actually treat as never returning call?
790       BB->getTerminatingDeoptimizeCall())
791     return hasNoReturn(BB)
792                ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
793                : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
794 
795   // Check if the block is 'unwind' handler of  some invoke instruction.
796   for (const auto *Pred : predecessors(BB))
797     if (Pred)
798       if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
799         if (II->getUnwindDest() == BB)
800           return static_cast<uint32_t>(BlockExecWeight::UNWIND);
801 
802   // Check if the block contains 'cold' call.
803   for (const auto &I : *BB)
804     if (const CallInst *CI = dyn_cast<CallInst>(&I))
805       if (CI->hasFnAttr(Attribute::Cold))
806         return static_cast<uint32_t>(BlockExecWeight::COLD);
807 
808   return None;
809 }
810 
811 // Does RPO traversal over all blocks in \p F and assigns weights to
812 // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
813 // best to propagate the weight to up/down the IR.
814 void BranchProbabilityInfo::computeEestimateBlockWeight(
815     const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
816   SmallVector<BasicBlock *, 8> BlockWorkList;
817   SmallVector<LoopBlock, 8> LoopWorkList;
818 
819   // By doing RPO we make sure that all predecessors already have weights
820   // calculated before visiting theirs successors.
821   ReversePostOrderTraversal<const Function *> RPOT(&F);
822   for (const auto *BB : RPOT)
823     if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
824       // If we were able to find estimated weight for the block set it to this
825       // block and propagate up the IR.
826       propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT, BBWeight.value(),
827                                     BlockWorkList, LoopWorkList);
828 
829   // BlockWorklist/LoopWorkList contains blocks/loops with at least one
830   // successor/exit having estimated weight. Try to propagate weight to such
831   // blocks/loops from successors/exits.
832   // Process loops and blocks. Order is not important.
833   do {
834     while (!LoopWorkList.empty()) {
835       const LoopBlock LoopBB = LoopWorkList.pop_back_val();
836 
837       if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
838         continue;
839 
840       SmallVector<BasicBlock *, 4> Exits;
841       getLoopExitBlocks(LoopBB, Exits);
842       auto LoopWeight = getMaxEstimatedEdgeWeight(
843           LoopBB, make_range(Exits.begin(), Exits.end()));
844 
845       if (LoopWeight) {
846         // If we never exit the loop then we can enter it once at maximum.
847         if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
848           LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
849 
850         EstimatedLoopWeight.insert({LoopBB.getLoopData(), *LoopWeight});
851         // Add all blocks entering the loop into working list.
852         getLoopEnterBlocks(LoopBB, BlockWorkList);
853       }
854     }
855 
856     while (!BlockWorkList.empty()) {
857       // We can reach here only if BlockWorkList is not empty.
858       const BasicBlock *BB = BlockWorkList.pop_back_val();
859       if (EstimatedBlockWeight.count(BB))
860         continue;
861 
862       // We take maximum over all weights of successors. In other words we take
863       // weight of "hot" path. In theory we can probably find a better function
864       // which gives higher accuracy results (comparing to "maximum") but I
865       // can't
866       // think of any right now. And I doubt it will make any difference in
867       // practice.
868       const LoopBlock LoopBB = getLoopBlock(BB);
869       auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
870 
871       if (MaxWeight)
872         propagateEstimatedBlockWeight(LoopBB, DT, PDT, *MaxWeight,
873                                       BlockWorkList, LoopWorkList);
874     }
875   } while (!BlockWorkList.empty() || !LoopWorkList.empty());
876 }
877 
878 // Calculate edge probabilities based on block's estimated weight.
879 // Note that gathered weights were not scaled for loops. Thus edges entering
880 // and exiting loops requires special processing.
881 bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
882   assert(BB->getTerminator()->getNumSuccessors() > 1 &&
883          "expected more than one successor!");
884 
885   const LoopBlock LoopBB = getLoopBlock(BB);
886 
887   SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
888   uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
889   if (LoopBB.getLoop())
890     computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
891 
892   // Changed to 'true' if at least one successor has estimated weight.
893   bool FoundEstimatedWeight = false;
894   SmallVector<uint32_t, 4> SuccWeights;
895   uint64_t TotalWeight = 0;
896   // Go over all successors of BB and put their weights into SuccWeights.
897   for (const BasicBlock *SuccBB : successors(BB)) {
898     Optional<uint32_t> Weight;
899     const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
900     const LoopEdge Edge{LoopBB, SuccLoopBB};
901 
902     Weight = getEstimatedEdgeWeight(Edge);
903 
904     if (isLoopExitingEdge(Edge) &&
905         // Avoid adjustment of ZERO weight since it should remain unchanged.
906         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
907       // Scale down loop exiting weight by trip count.
908       Weight = std::max(
909           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
910           Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
911               TC);
912     }
913     bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
914     if (IsUnlikelyEdge &&
915         // Avoid adjustment of ZERO weight since it should remain unchanged.
916         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
917       // 'Unlikely' blocks have twice lower weight.
918       Weight = std::max(
919           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
920           Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 2);
921     }
922 
923     if (Weight)
924       FoundEstimatedWeight = true;
925 
926     auto WeightVal =
927         Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
928     TotalWeight += WeightVal;
929     SuccWeights.push_back(WeightVal);
930   }
931 
932   // If non of blocks have estimated weight bail out.
933   // If TotalWeight is 0 that means weight of each successor is 0 as well and
934   // equally likely. Bail out early to not deal with devision by zero.
935   if (!FoundEstimatedWeight || TotalWeight == 0)
936     return false;
937 
938   assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
939   const unsigned SuccCount = SuccWeights.size();
940 
941   // If the sum of weights does not fit in 32 bits, scale every weight down
942   // accordingly.
943   if (TotalWeight > UINT32_MAX) {
944     uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
945     TotalWeight = 0;
946     for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
947       SuccWeights[Idx] /= ScalingFactor;
948       if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
949         SuccWeights[Idx] =
950             static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
951       TotalWeight += SuccWeights[Idx];
952     }
953     assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
954   }
955 
956   // Finally set probabilities to edges according to estimated block weights.
957   SmallVector<BranchProbability, 4> EdgeProbabilities(
958       SuccCount, BranchProbability::getUnknown());
959 
960   for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
961     EdgeProbabilities[Idx] =
962         BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
963   }
964   setEdgeProbability(BB, EdgeProbabilities);
965   return true;
966 }
967 
968 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
969                                                const TargetLibraryInfo *TLI) {
970   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
971   if (!BI || !BI->isConditional())
972     return false;
973 
974   Value *Cond = BI->getCondition();
975   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
976   if (!CI)
977     return false;
978 
979   auto GetConstantInt = [](Value *V) {
980     if (auto *I = dyn_cast<BitCastInst>(V))
981       return dyn_cast<ConstantInt>(I->getOperand(0));
982     return dyn_cast<ConstantInt>(V);
983   };
984 
985   Value *RHS = CI->getOperand(1);
986   ConstantInt *CV = GetConstantInt(RHS);
987   if (!CV)
988     return false;
989 
990   // If the LHS is the result of AND'ing a value with a single bit bitmask,
991   // we don't have information about probabilities.
992   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
993     if (LHS->getOpcode() == Instruction::And)
994       if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
995         if (AndRHS->getValue().isPowerOf2())
996           return false;
997 
998   // Check if the LHS is the return value of a library function
999   LibFunc Func = NumLibFuncs;
1000   if (TLI)
1001     if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
1002       if (Function *CalledFn = Call->getCalledFunction())
1003         TLI->getLibFunc(*CalledFn, Func);
1004 
1005   ProbabilityTable::const_iterator Search;
1006   if (Func == LibFunc_strcasecmp ||
1007       Func == LibFunc_strcmp ||
1008       Func == LibFunc_strncasecmp ||
1009       Func == LibFunc_strncmp ||
1010       Func == LibFunc_memcmp ||
1011       Func == LibFunc_bcmp) {
1012     Search = ICmpWithLibCallTable.find(CI->getPredicate());
1013     if (Search == ICmpWithLibCallTable.end())
1014       return false;
1015   } else if (CV->isZero()) {
1016     Search = ICmpWithZeroTable.find(CI->getPredicate());
1017     if (Search == ICmpWithZeroTable.end())
1018       return false;
1019   } else if (CV->isOne()) {
1020     Search = ICmpWithOneTable.find(CI->getPredicate());
1021     if (Search == ICmpWithOneTable.end())
1022       return false;
1023   } else if (CV->isMinusOne()) {
1024     Search = ICmpWithMinusOneTable.find(CI->getPredicate());
1025     if (Search == ICmpWithMinusOneTable.end())
1026       return false;
1027   } else {
1028     return false;
1029   }
1030 
1031   setEdgeProbability(BB, Search->second);
1032   return true;
1033 }
1034 
1035 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
1036   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
1037   if (!BI || !BI->isConditional())
1038     return false;
1039 
1040   Value *Cond = BI->getCondition();
1041   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
1042   if (!FCmp)
1043     return false;
1044 
1045   ProbabilityList ProbList;
1046   if (FCmp->isEquality()) {
1047     ProbList = !FCmp->isTrueWhenEqual() ?
1048       // f1 == f2 -> Unlikely
1049       ProbabilityList({FPTakenProb, FPUntakenProb}) :
1050       // f1 != f2 -> Likely
1051       ProbabilityList({FPUntakenProb, FPTakenProb});
1052   } else {
1053     auto Search = FCmpTable.find(FCmp->getPredicate());
1054     if (Search == FCmpTable.end())
1055       return false;
1056     ProbList = Search->second;
1057   }
1058 
1059   setEdgeProbability(BB, ProbList);
1060   return true;
1061 }
1062 
1063 void BranchProbabilityInfo::releaseMemory() {
1064   Probs.clear();
1065   Handles.clear();
1066 }
1067 
1068 bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
1069                                        FunctionAnalysisManager::Invalidator &) {
1070   // Check whether the analysis, all analyses on functions, or the function's
1071   // CFG have been preserved.
1072   auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
1073   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
1074            PAC.preservedSet<CFGAnalyses>());
1075 }
1076 
1077 void BranchProbabilityInfo::print(raw_ostream &OS) const {
1078   OS << "---- Branch Probabilities ----\n";
1079   // We print the probabilities from the last function the analysis ran over,
1080   // or the function it is currently running over.
1081   assert(LastF && "Cannot print prior to running over a function");
1082   for (const auto &BI : *LastF) {
1083     for (const BasicBlock *Succ : successors(&BI))
1084       printEdgeProbability(OS << "  ", &BI, Succ);
1085   }
1086 }
1087 
1088 bool BranchProbabilityInfo::
1089 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
1090   // Hot probability is at least 4/5 = 80%
1091   // FIXME: Compare against a static "hot" BranchProbability.
1092   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
1093 }
1094 
1095 /// Get the raw edge probability for the edge. If can't find it, return a
1096 /// default probability 1/N where N is the number of successors. Here an edge is
1097 /// specified using PredBlock and an
1098 /// index to the successors.
1099 BranchProbability
1100 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1101                                           unsigned IndexInSuccessors) const {
1102   auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
1103   assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
1104              (Probs.end() == I) &&
1105          "Probability for I-th successor must always be defined along with the "
1106          "probability for the first successor");
1107 
1108   if (I != Probs.end())
1109     return I->second;
1110 
1111   return {1, static_cast<uint32_t>(succ_size(Src))};
1112 }
1113 
1114 BranchProbability
1115 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1116                                           const_succ_iterator Dst) const {
1117   return getEdgeProbability(Src, Dst.getSuccessorIndex());
1118 }
1119 
1120 /// Get the raw edge probability calculated for the block pair. This returns the
1121 /// sum of all raw edge probabilities from Src to Dst.
1122 BranchProbability
1123 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1124                                           const BasicBlock *Dst) const {
1125   if (!Probs.count(std::make_pair(Src, 0)))
1126     return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
1127 
1128   auto Prob = BranchProbability::getZero();
1129   for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
1130     if (*I == Dst)
1131       Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
1132 
1133   return Prob;
1134 }
1135 
1136 /// Set the edge probability for all edges at once.
1137 void BranchProbabilityInfo::setEdgeProbability(
1138     const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
1139   assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
1140   eraseBlock(Src); // Erase stale data if any.
1141   if (Probs.size() == 0)
1142     return; // Nothing to set.
1143 
1144   Handles.insert(BasicBlockCallbackVH(Src, this));
1145   uint64_t TotalNumerator = 0;
1146   for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
1147     this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
1148     LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
1149                       << " successor probability to " << Probs[SuccIdx]
1150                       << "\n");
1151     TotalNumerator += Probs[SuccIdx].getNumerator();
1152   }
1153 
1154   // Because of rounding errors the total probability cannot be checked to be
1155   // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
1156   // Instead, every single probability in Probs must be as accurate as possible.
1157   // This results in error 1/denominator at most, thus the total absolute error
1158   // should be within Probs.size / BranchProbability::getDenominator.
1159   assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
1160   assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
1161   (void)TotalNumerator;
1162 }
1163 
1164 void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
1165                                                   BasicBlock *Dst) {
1166   eraseBlock(Dst); // Erase stale data if any.
1167   unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
1168   assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
1169   if (NumSuccessors == 0)
1170     return; // Nothing to set.
1171   if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
1172     return; // No probability is set for edges from Src. Keep the same for Dst.
1173 
1174   Handles.insert(BasicBlockCallbackVH(Dst, this));
1175   for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
1176     auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
1177     this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
1178     LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
1179                       << " successor probability to " << Prob << "\n");
1180   }
1181 }
1182 
1183 raw_ostream &
1184 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
1185                                             const BasicBlock *Src,
1186                                             const BasicBlock *Dst) const {
1187   const BranchProbability Prob = getEdgeProbability(Src, Dst);
1188   OS << "edge " << Src->getName() << " -> " << Dst->getName()
1189      << " probability is " << Prob
1190      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
1191 
1192   return OS;
1193 }
1194 
1195 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
1196   LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
1197 
1198   // Note that we cannot use successors of BB because the terminator of BB may
1199   // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
1200   // Instead we remove prob data for the block by iterating successors by their
1201   // indices from 0 till the last which exists. There could not be prob data for
1202   // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
1203   // set for all successors from 0 to M at once by the method
1204   // setEdgeProbability().
1205   Handles.erase(BasicBlockCallbackVH(BB, this));
1206   for (unsigned I = 0;; ++I) {
1207     auto MapI = Probs.find(std::make_pair(BB, I));
1208     if (MapI == Probs.end()) {
1209       assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
1210              "Must be no more successors");
1211       return;
1212     }
1213     Probs.erase(MapI);
1214   }
1215 }
1216 
1217 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
1218                                       const TargetLibraryInfo *TLI,
1219                                       DominatorTree *DT,
1220                                       PostDominatorTree *PDT) {
1221   LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
1222                     << " ----\n\n");
1223   LastF = &F; // Store the last function we ran on for printing.
1224   LI = &LoopI;
1225 
1226   SccI = std::make_unique<SccInfo>(F);
1227 
1228   assert(EstimatedBlockWeight.empty());
1229   assert(EstimatedLoopWeight.empty());
1230 
1231   std::unique_ptr<DominatorTree> DTPtr;
1232   std::unique_ptr<PostDominatorTree> PDTPtr;
1233 
1234   if (!DT) {
1235     DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
1236     DT = DTPtr.get();
1237   }
1238 
1239   if (!PDT) {
1240     PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
1241     PDT = PDTPtr.get();
1242   }
1243 
1244   computeEestimateBlockWeight(F, DT, PDT);
1245 
1246   // Walk the basic blocks in post-order so that we can build up state about
1247   // the successors of a block iteratively.
1248   for (const auto *BB : post_order(&F.getEntryBlock())) {
1249     LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
1250                       << "\n");
1251     // If there is no at least two successors, no sense to set probability.
1252     if (BB->getTerminator()->getNumSuccessors() < 2)
1253       continue;
1254     if (calcMetadataWeights(BB))
1255       continue;
1256     if (calcEstimatedHeuristics(BB))
1257       continue;
1258     if (calcPointerHeuristics(BB))
1259       continue;
1260     if (calcZeroHeuristics(BB, TLI))
1261       continue;
1262     if (calcFloatingPointHeuristics(BB))
1263       continue;
1264   }
1265 
1266   EstimatedLoopWeight.clear();
1267   EstimatedBlockWeight.clear();
1268   SccI.reset();
1269 
1270   if (PrintBranchProb &&
1271       (PrintBranchProbFuncName.empty() ||
1272        F.getName().equals(PrintBranchProbFuncName))) {
1273     print(dbgs());
1274   }
1275 }
1276 
1277 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1278     AnalysisUsage &AU) const {
1279   // We require DT so it's available when LI is available. The LI updating code
1280   // asserts that DT is also present so if we don't make sure that we have DT
1281   // here, that assert will trigger.
1282   AU.addRequired<DominatorTreeWrapperPass>();
1283   AU.addRequired<LoopInfoWrapperPass>();
1284   AU.addRequired<TargetLibraryInfoWrapperPass>();
1285   AU.addRequired<DominatorTreeWrapperPass>();
1286   AU.addRequired<PostDominatorTreeWrapperPass>();
1287   AU.setPreservesAll();
1288 }
1289 
1290 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
1291   const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1292   const TargetLibraryInfo &TLI =
1293       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1294   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1295   PostDominatorTree &PDT =
1296       getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1297   BPI.calculate(F, LI, &TLI, &DT, &PDT);
1298   return false;
1299 }
1300 
1301 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
1302 
1303 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
1304                                              const Module *) const {
1305   BPI.print(OS);
1306 }
1307 
1308 AnalysisKey BranchProbabilityAnalysis::Key;
1309 BranchProbabilityInfo
1310 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1311   BranchProbabilityInfo BPI;
1312   BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
1313                 &AM.getResult<TargetLibraryAnalysis>(F),
1314                 &AM.getResult<DominatorTreeAnalysis>(F),
1315                 &AM.getResult<PostDominatorTreeAnalysis>(F));
1316   return BPI;
1317 }
1318 
1319 PreservedAnalyses
1320 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
1321   OS << "Printing analysis results of BPI for function "
1322      << "'" << F.getName() << "':"
1323      << "\n";
1324   AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
1325   return PreservedAnalyses::all();
1326 }
1327