1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loops should be simplified before this analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/BranchProbabilityInfo.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/SCCIterator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/PostDominators.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/PassManager.h" 34 #include "llvm/IR/ProfDataUtils.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/BranchProbability.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <map> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "branch-prob" 52 53 static cl::opt<bool> PrintBranchProb( 54 "print-bpi", cl::init(false), cl::Hidden, 55 cl::desc("Print the branch probability info.")); 56 57 cl::opt<std::string> PrintBranchProbFuncName( 58 "print-bpi-func-name", cl::Hidden, 59 cl::desc("The option to specify the name of the function " 60 "whose branch probability info is printed.")); 61 62 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob", 63 "Branch Probability Analysis", false, true) 64 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 65 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 66 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 67 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 68 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob", 69 "Branch Probability Analysis", false, true) 70 71 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass() 72 : FunctionPass(ID) { 73 initializeBranchProbabilityInfoWrapperPassPass( 74 *PassRegistry::getPassRegistry()); 75 } 76 77 char BranchProbabilityInfoWrapperPass::ID = 0; 78 79 // Weights are for internal use only. They are used by heuristics to help to 80 // estimate edges' probability. Example: 81 // 82 // Using "Loop Branch Heuristics" we predict weights of edges for the 83 // block BB2. 84 // ... 85 // | 86 // V 87 // BB1<-+ 88 // | | 89 // | | (Weight = 124) 90 // V | 91 // BB2--+ 92 // | 93 // | (Weight = 4) 94 // V 95 // BB3 96 // 97 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875 98 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125 99 static const uint32_t LBH_TAKEN_WEIGHT = 124; 100 static const uint32_t LBH_NONTAKEN_WEIGHT = 4; 101 102 /// Unreachable-terminating branch taken probability. 103 /// 104 /// This is the probability for a branch being taken to a block that terminates 105 /// (eventually) in unreachable. These are predicted as unlikely as possible. 106 /// All reachable probability will proportionally share the remaining part. 107 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1); 108 109 /// Heuristics and lookup tables for non-loop branches: 110 /// Pointer Heuristics (PH) 111 static const uint32_t PH_TAKEN_WEIGHT = 20; 112 static const uint32_t PH_NONTAKEN_WEIGHT = 12; 113 static const BranchProbability 114 PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); 115 static const BranchProbability 116 PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); 117 118 using ProbabilityList = SmallVector<BranchProbability>; 119 using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>; 120 121 /// Pointer comparisons: 122 static const ProbabilityTable PointerTable{ 123 {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely 124 {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely 125 }; 126 127 /// Zero Heuristics (ZH) 128 static const uint32_t ZH_TAKEN_WEIGHT = 20; 129 static const uint32_t ZH_NONTAKEN_WEIGHT = 12; 130 static const BranchProbability 131 ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); 132 static const BranchProbability 133 ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); 134 135 /// Integer compares with 0: 136 static const ProbabilityTable ICmpWithZeroTable{ 137 {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == 0 -> Unlikely 138 {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != 0 -> Likely 139 {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0 -> Unlikely 140 {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0 -> Likely 141 }; 142 143 /// Integer compares with -1: 144 static const ProbabilityTable ICmpWithMinusOneTable{ 145 {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == -1 -> Unlikely 146 {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != -1 -> Likely 147 // InstCombine canonicalizes X >= 0 into X > -1 148 {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0 -> Likely 149 }; 150 151 /// Integer compares with 1: 152 static const ProbabilityTable ICmpWithOneTable{ 153 // InstCombine canonicalizes X <= 0 into X < 1 154 {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely 155 }; 156 157 /// strcmp and similar functions return zero, negative, or positive, if the 158 /// first string is equal, less, or greater than the second. We consider it 159 /// likely that the strings are not equal, so a comparison with zero is 160 /// probably false, but also a comparison with any other number is also 161 /// probably false given that what exactly is returned for nonzero values is 162 /// not specified. Any kind of comparison other than equality we know 163 /// nothing about. 164 static const ProbabilityTable ICmpWithLibCallTable{ 165 {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, 166 {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, 167 }; 168 169 // Floating-Point Heuristics (FPH) 170 static const uint32_t FPH_TAKEN_WEIGHT = 20; 171 static const uint32_t FPH_NONTAKEN_WEIGHT = 12; 172 173 /// This is the probability for an ordered floating point comparison. 174 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1; 175 /// This is the probability for an unordered floating point comparison, it means 176 /// one or two of the operands are NaN. Usually it is used to test for an 177 /// exceptional case, so the result is unlikely. 178 static const uint32_t FPH_UNO_WEIGHT = 1; 179 180 static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT, 181 FPH_ORD_WEIGHT + FPH_UNO_WEIGHT); 182 static const BranchProbability 183 FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT); 184 static const BranchProbability 185 FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT); 186 static const BranchProbability 187 FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT); 188 189 /// Floating-Point compares: 190 static const ProbabilityTable FCmpTable{ 191 {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely 192 {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely 193 }; 194 195 /// Set of dedicated "absolute" execution weights for a block. These weights are 196 /// meaningful relative to each other and their derivatives only. 197 enum class BlockExecWeight : std::uint32_t { 198 /// Special weight used for cases with exact zero probability. 199 ZERO = 0x0, 200 /// Minimal possible non zero weight. 201 LOWEST_NON_ZERO = 0x1, 202 /// Weight to an 'unreachable' block. 203 UNREACHABLE = ZERO, 204 /// Weight to a block containing non returning call. 205 NORETURN = LOWEST_NON_ZERO, 206 /// Weight to 'unwind' block of an invoke instruction. 207 UNWIND = LOWEST_NON_ZERO, 208 /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked 209 /// with attribute 'cold'. 210 COLD = 0xffff, 211 /// Default weight is used in cases when there is no dedicated execution 212 /// weight set. It is not propagated through the domination line either. 213 DEFAULT = 0xfffff 214 }; 215 216 BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) { 217 // Record SCC numbers of blocks in the CFG to identify irreducible loops. 218 // FIXME: We could only calculate this if the CFG is known to be irreducible 219 // (perhaps cache this info in LoopInfo if we can easily calculate it there?). 220 int SccNum = 0; 221 for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd(); 222 ++It, ++SccNum) { 223 // Ignore single-block SCCs since they either aren't loops or LoopInfo will 224 // catch them. 225 const std::vector<const BasicBlock *> &Scc = *It; 226 if (Scc.size() == 1) 227 continue; 228 229 LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":"); 230 for (const auto *BB : Scc) { 231 LLVM_DEBUG(dbgs() << " " << BB->getName()); 232 SccNums[BB] = SccNum; 233 calculateSccBlockType(BB, SccNum); 234 } 235 LLVM_DEBUG(dbgs() << "\n"); 236 } 237 } 238 239 int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const { 240 auto SccIt = SccNums.find(BB); 241 if (SccIt == SccNums.end()) 242 return -1; 243 return SccIt->second; 244 } 245 246 void BranchProbabilityInfo::SccInfo::getSccEnterBlocks( 247 int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const { 248 249 for (auto MapIt : SccBlocks[SccNum]) { 250 const auto *BB = MapIt.first; 251 if (isSCCHeader(BB, SccNum)) 252 for (const auto *Pred : predecessors(BB)) 253 if (getSCCNum(Pred) != SccNum) 254 Enters.push_back(const_cast<BasicBlock *>(BB)); 255 } 256 } 257 258 void BranchProbabilityInfo::SccInfo::getSccExitBlocks( 259 int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const { 260 for (auto MapIt : SccBlocks[SccNum]) { 261 const auto *BB = MapIt.first; 262 if (isSCCExitingBlock(BB, SccNum)) 263 for (const auto *Succ : successors(BB)) 264 if (getSCCNum(Succ) != SccNum) 265 Exits.push_back(const_cast<BasicBlock *>(Succ)); 266 } 267 } 268 269 uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB, 270 int SccNum) const { 271 assert(getSCCNum(BB) == SccNum); 272 273 assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC"); 274 const auto &SccBlockTypes = SccBlocks[SccNum]; 275 276 auto It = SccBlockTypes.find(BB); 277 if (It != SccBlockTypes.end()) { 278 return It->second; 279 } 280 return Inner; 281 } 282 283 void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB, 284 int SccNum) { 285 assert(getSCCNum(BB) == SccNum); 286 uint32_t BlockType = Inner; 287 288 if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) { 289 // Consider any block that is an entry point to the SCC as 290 // a header. 291 return getSCCNum(Pred) != SccNum; 292 })) 293 BlockType |= Header; 294 295 if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) { 296 return getSCCNum(Succ) != SccNum; 297 })) 298 BlockType |= Exiting; 299 300 // Lazily compute the set of headers for a given SCC and cache the results 301 // in the SccHeaderMap. 302 if (SccBlocks.size() <= static_cast<unsigned>(SccNum)) 303 SccBlocks.resize(SccNum + 1); 304 auto &SccBlockTypes = SccBlocks[SccNum]; 305 306 if (BlockType != Inner) { 307 bool IsInserted; 308 std::tie(std::ignore, IsInserted) = 309 SccBlockTypes.insert(std::make_pair(BB, BlockType)); 310 assert(IsInserted && "Duplicated block in SCC"); 311 } 312 } 313 314 BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB, 315 const LoopInfo &LI, 316 const SccInfo &SccI) 317 : BB(BB) { 318 LD.first = LI.getLoopFor(BB); 319 if (!LD.first) { 320 LD.second = SccI.getSCCNum(BB); 321 } 322 } 323 324 bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const { 325 const auto &SrcBlock = Edge.first; 326 const auto &DstBlock = Edge.second; 327 return (DstBlock.getLoop() && 328 !DstBlock.getLoop()->contains(SrcBlock.getLoop())) || 329 // Assume that SCCs can't be nested. 330 (DstBlock.getSccNum() != -1 && 331 SrcBlock.getSccNum() != DstBlock.getSccNum()); 332 } 333 334 bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const { 335 return isLoopEnteringEdge({Edge.second, Edge.first}); 336 } 337 338 bool BranchProbabilityInfo::isLoopEnteringExitingEdge( 339 const LoopEdge &Edge) const { 340 return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge); 341 } 342 343 bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const { 344 const auto &SrcBlock = Edge.first; 345 const auto &DstBlock = Edge.second; 346 return SrcBlock.belongsToSameLoop(DstBlock) && 347 ((DstBlock.getLoop() && 348 DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) || 349 (DstBlock.getSccNum() != -1 && 350 SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum()))); 351 } 352 353 void BranchProbabilityInfo::getLoopEnterBlocks( 354 const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const { 355 if (LB.getLoop()) { 356 auto *Header = LB.getLoop()->getHeader(); 357 Enters.append(pred_begin(Header), pred_end(Header)); 358 } else { 359 assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?"); 360 SccI->getSccEnterBlocks(LB.getSccNum(), Enters); 361 } 362 } 363 364 void BranchProbabilityInfo::getLoopExitBlocks( 365 const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const { 366 if (LB.getLoop()) { 367 LB.getLoop()->getExitBlocks(Exits); 368 } else { 369 assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?"); 370 SccI->getSccExitBlocks(LB.getSccNum(), Exits); 371 } 372 } 373 374 // Propagate existing explicit probabilities from either profile data or 375 // 'expect' intrinsic processing. Examine metadata against unreachable 376 // heuristic. The probability of the edge coming to unreachable block is 377 // set to min of metadata and unreachable heuristic. 378 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) { 379 const Instruction *TI = BB->getTerminator(); 380 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); 381 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) || 382 isa<InvokeInst>(TI) || isa<CallBrInst>(TI))) 383 return false; 384 385 MDNode *WeightsNode = getValidBranchWeightMDNode(*TI); 386 if (!WeightsNode) 387 return false; 388 389 // Check that the number of successors is manageable. 390 assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors"); 391 392 // Build up the final weights that will be used in a temporary buffer. 393 // Compute the sum of all weights to later decide whether they need to 394 // be scaled to fit in 32 bits. 395 uint64_t WeightSum = 0; 396 SmallVector<uint32_t, 2> Weights; 397 SmallVector<unsigned, 2> UnreachableIdxs; 398 SmallVector<unsigned, 2> ReachableIdxs; 399 400 extractBranchWeights(WeightsNode, Weights); 401 for (unsigned I = 0, E = Weights.size(); I != E; ++I) { 402 WeightSum += Weights[I]; 403 const LoopBlock SrcLoopBB = getLoopBlock(BB); 404 const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I)); 405 auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB}); 406 if (EstimatedWeight && 407 *EstimatedWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE)) 408 UnreachableIdxs.push_back(I); 409 else 410 ReachableIdxs.push_back(I); 411 } 412 assert(Weights.size() == TI->getNumSuccessors() && "Checked above"); 413 414 // If the sum of weights does not fit in 32 bits, scale every weight down 415 // accordingly. 416 uint64_t ScalingFactor = 417 (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1; 418 419 if (ScalingFactor > 1) { 420 WeightSum = 0; 421 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { 422 Weights[I] /= ScalingFactor; 423 WeightSum += Weights[I]; 424 } 425 } 426 assert(WeightSum <= UINT32_MAX && 427 "Expected weights to scale down to 32 bits"); 428 429 if (WeightSum == 0 || ReachableIdxs.size() == 0) { 430 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) 431 Weights[I] = 1; 432 WeightSum = TI->getNumSuccessors(); 433 } 434 435 // Set the probability. 436 SmallVector<BranchProbability, 2> BP; 437 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) 438 BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) }); 439 440 // Examine the metadata against unreachable heuristic. 441 // If the unreachable heuristic is more strong then we use it for this edge. 442 if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) { 443 setEdgeProbability(BB, BP); 444 return true; 445 } 446 447 auto UnreachableProb = UR_TAKEN_PROB; 448 for (auto I : UnreachableIdxs) 449 if (UnreachableProb < BP[I]) { 450 BP[I] = UnreachableProb; 451 } 452 453 // Sum of all edge probabilities must be 1.0. If we modified the probability 454 // of some edges then we must distribute the introduced difference over the 455 // reachable blocks. 456 // 457 // Proportional distribution: the relation between probabilities of the 458 // reachable edges is kept unchanged. That is for any reachable edges i and j: 459 // newBP[i] / newBP[j] == oldBP[i] / oldBP[j] => 460 // newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K 461 // Where K is independent of i,j. 462 // newBP[i] == oldBP[i] * K 463 // We need to find K. 464 // Make sum of all reachables of the left and right parts: 465 // sum_of_reachable(newBP) == K * sum_of_reachable(oldBP) 466 // Sum of newBP must be equal to 1.0: 467 // sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 => 468 // sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP) 469 // Where sum_of_unreachable(newBP) is what has been just changed. 470 // Finally: 471 // K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) => 472 // K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP) 473 BranchProbability NewUnreachableSum = BranchProbability::getZero(); 474 for (auto I : UnreachableIdxs) 475 NewUnreachableSum += BP[I]; 476 477 BranchProbability NewReachableSum = 478 BranchProbability::getOne() - NewUnreachableSum; 479 480 BranchProbability OldReachableSum = BranchProbability::getZero(); 481 for (auto I : ReachableIdxs) 482 OldReachableSum += BP[I]; 483 484 if (OldReachableSum != NewReachableSum) { // Anything to dsitribute? 485 if (OldReachableSum.isZero()) { 486 // If all oldBP[i] are zeroes then the proportional distribution results 487 // in all zero probabilities and the error stays big. In this case we 488 // evenly spread NewReachableSum over the reachable edges. 489 BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size(); 490 for (auto I : ReachableIdxs) 491 BP[I] = PerEdge; 492 } else { 493 for (auto I : ReachableIdxs) { 494 // We use uint64_t to avoid double rounding error of the following 495 // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum 496 // The formula is taken from the private constructor 497 // BranchProbability(uint32_t Numerator, uint32_t Denominator) 498 uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) * 499 BP[I].getNumerator(); 500 uint32_t Div = static_cast<uint32_t>( 501 divideNearest(Mul, OldReachableSum.getNumerator())); 502 BP[I] = BranchProbability::getRaw(Div); 503 } 504 } 505 } 506 507 setEdgeProbability(BB, BP); 508 509 return true; 510 } 511 512 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison 513 // between two pointer or pointer and NULL will fail. 514 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) { 515 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 516 if (!BI || !BI->isConditional()) 517 return false; 518 519 Value *Cond = BI->getCondition(); 520 ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 521 if (!CI || !CI->isEquality()) 522 return false; 523 524 Value *LHS = CI->getOperand(0); 525 526 if (!LHS->getType()->isPointerTy()) 527 return false; 528 529 assert(CI->getOperand(1)->getType()->isPointerTy()); 530 531 auto Search = PointerTable.find(CI->getPredicate()); 532 if (Search == PointerTable.end()) 533 return false; 534 setEdgeProbability(BB, Search->second); 535 return true; 536 } 537 538 // Compute the unlikely successors to the block BB in the loop L, specifically 539 // those that are unlikely because this is a loop, and add them to the 540 // UnlikelyBlocks set. 541 static void 542 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L, 543 SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) { 544 // Sometimes in a loop we have a branch whose condition is made false by 545 // taking it. This is typically something like 546 // int n = 0; 547 // while (...) { 548 // if (++n >= MAX) { 549 // n = 0; 550 // } 551 // } 552 // In this sort of situation taking the branch means that at the very least it 553 // won't be taken again in the next iteration of the loop, so we should 554 // consider it less likely than a typical branch. 555 // 556 // We detect this by looking back through the graph of PHI nodes that sets the 557 // value that the condition depends on, and seeing if we can reach a successor 558 // block which can be determined to make the condition false. 559 // 560 // FIXME: We currently consider unlikely blocks to be half as likely as other 561 // blocks, but if we consider the example above the likelyhood is actually 562 // 1/MAX. We could therefore be more precise in how unlikely we consider 563 // blocks to be, but it would require more careful examination of the form 564 // of the comparison expression. 565 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 566 if (!BI || !BI->isConditional()) 567 return; 568 569 // Check if the branch is based on an instruction compared with a constant 570 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 571 if (!CI || !isa<Instruction>(CI->getOperand(0)) || 572 !isa<Constant>(CI->getOperand(1))) 573 return; 574 575 // Either the instruction must be a PHI, or a chain of operations involving 576 // constants that ends in a PHI which we can then collapse into a single value 577 // if the PHI value is known. 578 Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0)); 579 PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS); 580 Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1)); 581 // Collect the instructions until we hit a PHI 582 SmallVector<BinaryOperator *, 1> InstChain; 583 while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) && 584 isa<Constant>(CmpLHS->getOperand(1))) { 585 // Stop if the chain extends outside of the loop 586 if (!L->contains(CmpLHS)) 587 return; 588 InstChain.push_back(cast<BinaryOperator>(CmpLHS)); 589 CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0)); 590 if (CmpLHS) 591 CmpPHI = dyn_cast<PHINode>(CmpLHS); 592 } 593 if (!CmpPHI || !L->contains(CmpPHI)) 594 return; 595 596 // Trace the phi node to find all values that come from successors of BB 597 SmallPtrSet<PHINode*, 8> VisitedInsts; 598 SmallVector<PHINode*, 8> WorkList; 599 WorkList.push_back(CmpPHI); 600 VisitedInsts.insert(CmpPHI); 601 while (!WorkList.empty()) { 602 PHINode *P = WorkList.pop_back_val(); 603 for (BasicBlock *B : P->blocks()) { 604 // Skip blocks that aren't part of the loop 605 if (!L->contains(B)) 606 continue; 607 Value *V = P->getIncomingValueForBlock(B); 608 // If the source is a PHI add it to the work list if we haven't 609 // already visited it. 610 if (PHINode *PN = dyn_cast<PHINode>(V)) { 611 if (VisitedInsts.insert(PN).second) 612 WorkList.push_back(PN); 613 continue; 614 } 615 // If this incoming value is a constant and B is a successor of BB, then 616 // we can constant-evaluate the compare to see if it makes the branch be 617 // taken or not. 618 Constant *CmpLHSConst = dyn_cast<Constant>(V); 619 if (!CmpLHSConst || !llvm::is_contained(successors(BB), B)) 620 continue; 621 // First collapse InstChain 622 const DataLayout &DL = BB->getDataLayout(); 623 for (Instruction *I : llvm::reverse(InstChain)) { 624 CmpLHSConst = ConstantFoldBinaryOpOperands( 625 I->getOpcode(), CmpLHSConst, cast<Constant>(I->getOperand(1)), DL); 626 if (!CmpLHSConst) 627 break; 628 } 629 if (!CmpLHSConst) 630 continue; 631 // Now constant-evaluate the compare 632 Constant *Result = ConstantFoldCompareInstOperands( 633 CI->getPredicate(), CmpLHSConst, CmpConst, DL); 634 // If the result means we don't branch to the block then that block is 635 // unlikely. 636 if (Result && 637 ((Result->isZeroValue() && B == BI->getSuccessor(0)) || 638 (Result->isOneValue() && B == BI->getSuccessor(1)))) 639 UnlikelyBlocks.insert(B); 640 } 641 } 642 } 643 644 std::optional<uint32_t> 645 BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const { 646 auto WeightIt = EstimatedBlockWeight.find(BB); 647 if (WeightIt == EstimatedBlockWeight.end()) 648 return std::nullopt; 649 return WeightIt->second; 650 } 651 652 std::optional<uint32_t> 653 BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const { 654 auto WeightIt = EstimatedLoopWeight.find(L); 655 if (WeightIt == EstimatedLoopWeight.end()) 656 return std::nullopt; 657 return WeightIt->second; 658 } 659 660 std::optional<uint32_t> 661 BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const { 662 // For edges entering a loop take weight of a loop rather than an individual 663 // block in the loop. 664 return isLoopEnteringEdge(Edge) 665 ? getEstimatedLoopWeight(Edge.second.getLoopData()) 666 : getEstimatedBlockWeight(Edge.second.getBlock()); 667 } 668 669 template <class IterT> 670 std::optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight( 671 const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const { 672 SmallVector<uint32_t, 4> Weights; 673 std::optional<uint32_t> MaxWeight; 674 for (const BasicBlock *DstBB : Successors) { 675 const LoopBlock DstLoopBB = getLoopBlock(DstBB); 676 auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB}); 677 678 if (!Weight) 679 return std::nullopt; 680 681 if (!MaxWeight || *MaxWeight < *Weight) 682 MaxWeight = Weight; 683 } 684 685 return MaxWeight; 686 } 687 688 // Updates \p LoopBB's weight and returns true. If \p LoopBB has already 689 // an associated weight it is unchanged and false is returned. 690 // 691 // Please note by the algorithm the weight is not expected to change once set 692 // thus 'false' status is used to track visited blocks. 693 bool BranchProbabilityInfo::updateEstimatedBlockWeight( 694 LoopBlock &LoopBB, uint32_t BBWeight, 695 SmallVectorImpl<BasicBlock *> &BlockWorkList, 696 SmallVectorImpl<LoopBlock> &LoopWorkList) { 697 BasicBlock *BB = LoopBB.getBlock(); 698 699 // In general, weight is assigned to a block when it has final value and 700 // can't/shouldn't be changed. However, there are cases when a block 701 // inherently has several (possibly "contradicting") weights. For example, 702 // "unwind" block may also contain "cold" call. In that case the first 703 // set weight is favored and all consequent weights are ignored. 704 if (!EstimatedBlockWeight.insert({BB, BBWeight}).second) 705 return false; 706 707 for (BasicBlock *PredBlock : predecessors(BB)) { 708 LoopBlock PredLoop = getLoopBlock(PredBlock); 709 // Add affected block/loop to a working list. 710 if (isLoopExitingEdge({PredLoop, LoopBB})) { 711 if (!EstimatedLoopWeight.count(PredLoop.getLoopData())) 712 LoopWorkList.push_back(PredLoop); 713 } else if (!EstimatedBlockWeight.count(PredBlock)) 714 BlockWorkList.push_back(PredBlock); 715 } 716 return true; 717 } 718 719 // Starting from \p BB traverse through dominator blocks and assign \p BBWeight 720 // to all such blocks that are post dominated by \BB. In other words to all 721 // blocks that the one is executed if and only if another one is executed. 722 // Importantly, we skip loops here for two reasons. First weights of blocks in 723 // a loop should be scaled by trip count (yet possibly unknown). Second there is 724 // no any value in doing that because that doesn't give any additional 725 // information regarding distribution of probabilities inside the loop. 726 // Exception is loop 'enter' and 'exit' edges that are handled in a special way 727 // at calcEstimatedHeuristics. 728 // 729 // In addition, \p WorkList is populated with basic blocks if at leas one 730 // successor has updated estimated weight. 731 void BranchProbabilityInfo::propagateEstimatedBlockWeight( 732 const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT, 733 uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList, 734 SmallVectorImpl<LoopBlock> &LoopWorkList) { 735 const BasicBlock *BB = LoopBB.getBlock(); 736 const auto *DTStartNode = DT->getNode(BB); 737 const auto *PDTStartNode = PDT->getNode(BB); 738 739 // TODO: Consider propagating weight down the domination line as well. 740 for (const auto *DTNode = DTStartNode; DTNode != nullptr; 741 DTNode = DTNode->getIDom()) { 742 auto *DomBB = DTNode->getBlock(); 743 // Consider blocks which lie on one 'line'. 744 if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB))) 745 // If BB doesn't post dominate DomBB it will not post dominate dominators 746 // of DomBB as well. 747 break; 748 749 LoopBlock DomLoopBB = getLoopBlock(DomBB); 750 const LoopEdge Edge{DomLoopBB, LoopBB}; 751 // Don't propagate weight to blocks belonging to different loops. 752 if (!isLoopEnteringExitingEdge(Edge)) { 753 if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList, 754 LoopWorkList)) 755 // If DomBB has weight set then all it's predecessors are already 756 // processed (since we propagate weight up to the top of IR each time). 757 break; 758 } else if (isLoopExitingEdge(Edge)) { 759 LoopWorkList.push_back(DomLoopBB); 760 } 761 } 762 } 763 764 std::optional<uint32_t> 765 BranchProbabilityInfo::getInitialEstimatedBlockWeight(const BasicBlock *BB) { 766 // Returns true if \p BB has call marked with "NoReturn" attribute. 767 auto hasNoReturn = [&](const BasicBlock *BB) { 768 for (const auto &I : reverse(*BB)) 769 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 770 if (CI->hasFnAttr(Attribute::NoReturn)) 771 return true; 772 773 return false; 774 }; 775 776 // Important note regarding the order of checks. They are ordered by weight 777 // from lowest to highest. Doing that allows to avoid "unstable" results 778 // when several conditions heuristics can be applied simultaneously. 779 if (isa<UnreachableInst>(BB->getTerminator()) || 780 // If this block is terminated by a call to 781 // @llvm.experimental.deoptimize then treat it like an unreachable 782 // since it is expected to practically never execute. 783 // TODO: Should we actually treat as never returning call? 784 BB->getTerminatingDeoptimizeCall()) 785 return hasNoReturn(BB) 786 ? static_cast<uint32_t>(BlockExecWeight::NORETURN) 787 : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE); 788 789 // Check if the block is an exception handling block. 790 if (BB->isEHPad()) 791 return static_cast<uint32_t>(BlockExecWeight::UNWIND); 792 793 // Check if the block contains 'cold' call. 794 for (const auto &I : *BB) 795 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 796 if (CI->hasFnAttr(Attribute::Cold)) 797 return static_cast<uint32_t>(BlockExecWeight::COLD); 798 799 return std::nullopt; 800 } 801 802 // Does RPO traversal over all blocks in \p F and assigns weights to 803 // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its 804 // best to propagate the weight to up/down the IR. 805 void BranchProbabilityInfo::computeEestimateBlockWeight( 806 const Function &F, DominatorTree *DT, PostDominatorTree *PDT) { 807 SmallVector<BasicBlock *, 8> BlockWorkList; 808 SmallVector<LoopBlock, 8> LoopWorkList; 809 SmallDenseMap<LoopData, SmallVector<BasicBlock *, 4>> LoopExitBlocks; 810 811 // By doing RPO we make sure that all predecessors already have weights 812 // calculated before visiting theirs successors. 813 ReversePostOrderTraversal<const Function *> RPOT(&F); 814 for (const auto *BB : RPOT) 815 if (auto BBWeight = getInitialEstimatedBlockWeight(BB)) 816 // If we were able to find estimated weight for the block set it to this 817 // block and propagate up the IR. 818 propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT, *BBWeight, 819 BlockWorkList, LoopWorkList); 820 821 // BlockWorklist/LoopWorkList contains blocks/loops with at least one 822 // successor/exit having estimated weight. Try to propagate weight to such 823 // blocks/loops from successors/exits. 824 // Process loops and blocks. Order is not important. 825 do { 826 while (!LoopWorkList.empty()) { 827 const LoopBlock LoopBB = LoopWorkList.pop_back_val(); 828 const LoopData LD = LoopBB.getLoopData(); 829 if (EstimatedLoopWeight.count(LD)) 830 continue; 831 832 auto Res = LoopExitBlocks.try_emplace(LD); 833 SmallVectorImpl<BasicBlock *> &Exits = Res.first->second; 834 if (Res.second) 835 getLoopExitBlocks(LoopBB, Exits); 836 auto LoopWeight = getMaxEstimatedEdgeWeight( 837 LoopBB, make_range(Exits.begin(), Exits.end())); 838 839 if (LoopWeight) { 840 // If we never exit the loop then we can enter it once at maximum. 841 if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE)) 842 LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO); 843 844 EstimatedLoopWeight.insert({LD, *LoopWeight}); 845 // Add all blocks entering the loop into working list. 846 getLoopEnterBlocks(LoopBB, BlockWorkList); 847 } 848 } 849 850 while (!BlockWorkList.empty()) { 851 // We can reach here only if BlockWorkList is not empty. 852 const BasicBlock *BB = BlockWorkList.pop_back_val(); 853 if (EstimatedBlockWeight.count(BB)) 854 continue; 855 856 // We take maximum over all weights of successors. In other words we take 857 // weight of "hot" path. In theory we can probably find a better function 858 // which gives higher accuracy results (comparing to "maximum") but I 859 // can't 860 // think of any right now. And I doubt it will make any difference in 861 // practice. 862 const LoopBlock LoopBB = getLoopBlock(BB); 863 auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB)); 864 865 if (MaxWeight) 866 propagateEstimatedBlockWeight(LoopBB, DT, PDT, *MaxWeight, 867 BlockWorkList, LoopWorkList); 868 } 869 } while (!BlockWorkList.empty() || !LoopWorkList.empty()); 870 } 871 872 // Calculate edge probabilities based on block's estimated weight. 873 // Note that gathered weights were not scaled for loops. Thus edges entering 874 // and exiting loops requires special processing. 875 bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) { 876 assert(BB->getTerminator()->getNumSuccessors() > 1 && 877 "expected more than one successor!"); 878 879 const LoopBlock LoopBB = getLoopBlock(BB); 880 881 SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks; 882 uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT; 883 if (LoopBB.getLoop()) 884 computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks); 885 886 // Changed to 'true' if at least one successor has estimated weight. 887 bool FoundEstimatedWeight = false; 888 SmallVector<uint32_t, 4> SuccWeights; 889 uint64_t TotalWeight = 0; 890 // Go over all successors of BB and put their weights into SuccWeights. 891 for (const BasicBlock *SuccBB : successors(BB)) { 892 std::optional<uint32_t> Weight; 893 const LoopBlock SuccLoopBB = getLoopBlock(SuccBB); 894 const LoopEdge Edge{LoopBB, SuccLoopBB}; 895 896 Weight = getEstimatedEdgeWeight(Edge); 897 898 if (isLoopExitingEdge(Edge) && 899 // Avoid adjustment of ZERO weight since it should remain unchanged. 900 Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) { 901 // Scale down loop exiting weight by trip count. 902 Weight = std::max( 903 static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO), 904 Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 905 TC); 906 } 907 bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB); 908 if (IsUnlikelyEdge && 909 // Avoid adjustment of ZERO weight since it should remain unchanged. 910 Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) { 911 // 'Unlikely' blocks have twice lower weight. 912 Weight = std::max( 913 static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO), 914 Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 2); 915 } 916 917 if (Weight) 918 FoundEstimatedWeight = true; 919 920 auto WeightVal = 921 Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)); 922 TotalWeight += WeightVal; 923 SuccWeights.push_back(WeightVal); 924 } 925 926 // If non of blocks have estimated weight bail out. 927 // If TotalWeight is 0 that means weight of each successor is 0 as well and 928 // equally likely. Bail out early to not deal with devision by zero. 929 if (!FoundEstimatedWeight || TotalWeight == 0) 930 return false; 931 932 assert(SuccWeights.size() == succ_size(BB) && "Missed successor?"); 933 const unsigned SuccCount = SuccWeights.size(); 934 935 // If the sum of weights does not fit in 32 bits, scale every weight down 936 // accordingly. 937 if (TotalWeight > UINT32_MAX) { 938 uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1; 939 TotalWeight = 0; 940 for (unsigned Idx = 0; Idx < SuccCount; ++Idx) { 941 SuccWeights[Idx] /= ScalingFactor; 942 if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO)) 943 SuccWeights[Idx] = 944 static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO); 945 TotalWeight += SuccWeights[Idx]; 946 } 947 assert(TotalWeight <= UINT32_MAX && "Total weight overflows"); 948 } 949 950 // Finally set probabilities to edges according to estimated block weights. 951 SmallVector<BranchProbability, 4> EdgeProbabilities( 952 SuccCount, BranchProbability::getUnknown()); 953 954 for (unsigned Idx = 0; Idx < SuccCount; ++Idx) { 955 EdgeProbabilities[Idx] = 956 BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight); 957 } 958 setEdgeProbability(BB, EdgeProbabilities); 959 return true; 960 } 961 962 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB, 963 const TargetLibraryInfo *TLI) { 964 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 965 if (!BI || !BI->isConditional()) 966 return false; 967 968 Value *Cond = BI->getCondition(); 969 ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 970 if (!CI) 971 return false; 972 973 auto GetConstantInt = [](Value *V) { 974 if (auto *I = dyn_cast<BitCastInst>(V)) 975 return dyn_cast<ConstantInt>(I->getOperand(0)); 976 return dyn_cast<ConstantInt>(V); 977 }; 978 979 Value *RHS = CI->getOperand(1); 980 ConstantInt *CV = GetConstantInt(RHS); 981 if (!CV) 982 return false; 983 984 // If the LHS is the result of AND'ing a value with a single bit bitmask, 985 // we don't have information about probabilities. 986 if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0))) 987 if (LHS->getOpcode() == Instruction::And) 988 if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1))) 989 if (AndRHS->getValue().isPowerOf2()) 990 return false; 991 992 // Check if the LHS is the return value of a library function 993 LibFunc Func = NumLibFuncs; 994 if (TLI) 995 if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0))) 996 if (Function *CalledFn = Call->getCalledFunction()) 997 TLI->getLibFunc(*CalledFn, Func); 998 999 ProbabilityTable::const_iterator Search; 1000 if (Func == LibFunc_strcasecmp || 1001 Func == LibFunc_strcmp || 1002 Func == LibFunc_strncasecmp || 1003 Func == LibFunc_strncmp || 1004 Func == LibFunc_memcmp || 1005 Func == LibFunc_bcmp) { 1006 Search = ICmpWithLibCallTable.find(CI->getPredicate()); 1007 if (Search == ICmpWithLibCallTable.end()) 1008 return false; 1009 } else if (CV->isZero()) { 1010 Search = ICmpWithZeroTable.find(CI->getPredicate()); 1011 if (Search == ICmpWithZeroTable.end()) 1012 return false; 1013 } else if (CV->isOne()) { 1014 Search = ICmpWithOneTable.find(CI->getPredicate()); 1015 if (Search == ICmpWithOneTable.end()) 1016 return false; 1017 } else if (CV->isMinusOne()) { 1018 Search = ICmpWithMinusOneTable.find(CI->getPredicate()); 1019 if (Search == ICmpWithMinusOneTable.end()) 1020 return false; 1021 } else { 1022 return false; 1023 } 1024 1025 setEdgeProbability(BB, Search->second); 1026 return true; 1027 } 1028 1029 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) { 1030 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1031 if (!BI || !BI->isConditional()) 1032 return false; 1033 1034 Value *Cond = BI->getCondition(); 1035 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond); 1036 if (!FCmp) 1037 return false; 1038 1039 ProbabilityList ProbList; 1040 if (FCmp->isEquality()) { 1041 ProbList = !FCmp->isTrueWhenEqual() ? 1042 // f1 == f2 -> Unlikely 1043 ProbabilityList({FPTakenProb, FPUntakenProb}) : 1044 // f1 != f2 -> Likely 1045 ProbabilityList({FPUntakenProb, FPTakenProb}); 1046 } else { 1047 auto Search = FCmpTable.find(FCmp->getPredicate()); 1048 if (Search == FCmpTable.end()) 1049 return false; 1050 ProbList = Search->second; 1051 } 1052 1053 setEdgeProbability(BB, ProbList); 1054 return true; 1055 } 1056 1057 void BranchProbabilityInfo::releaseMemory() { 1058 Probs.clear(); 1059 Handles.clear(); 1060 } 1061 1062 bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA, 1063 FunctionAnalysisManager::Invalidator &) { 1064 // Check whether the analysis, all analyses on functions, or the function's 1065 // CFG have been preserved. 1066 auto PAC = PA.getChecker<BranchProbabilityAnalysis>(); 1067 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 1068 PAC.preservedSet<CFGAnalyses>()); 1069 } 1070 1071 void BranchProbabilityInfo::print(raw_ostream &OS) const { 1072 OS << "---- Branch Probabilities ----\n"; 1073 // We print the probabilities from the last function the analysis ran over, 1074 // or the function it is currently running over. 1075 assert(LastF && "Cannot print prior to running over a function"); 1076 for (const auto &BI : *LastF) { 1077 for (const BasicBlock *Succ : successors(&BI)) 1078 printEdgeProbability(OS << " ", &BI, Succ); 1079 } 1080 } 1081 1082 bool BranchProbabilityInfo:: 1083 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const { 1084 // Hot probability is at least 4/5 = 80% 1085 // FIXME: Compare against a static "hot" BranchProbability. 1086 return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); 1087 } 1088 1089 /// Get the raw edge probability for the edge. If can't find it, return a 1090 /// default probability 1/N where N is the number of successors. Here an edge is 1091 /// specified using PredBlock and an 1092 /// index to the successors. 1093 BranchProbability 1094 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 1095 unsigned IndexInSuccessors) const { 1096 auto I = Probs.find(std::make_pair(Src, IndexInSuccessors)); 1097 assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) == 1098 (Probs.end() == I) && 1099 "Probability for I-th successor must always be defined along with the " 1100 "probability for the first successor"); 1101 1102 if (I != Probs.end()) 1103 return I->second; 1104 1105 return {1, static_cast<uint32_t>(succ_size(Src))}; 1106 } 1107 1108 BranchProbability 1109 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 1110 const_succ_iterator Dst) const { 1111 return getEdgeProbability(Src, Dst.getSuccessorIndex()); 1112 } 1113 1114 /// Get the raw edge probability calculated for the block pair. This returns the 1115 /// sum of all raw edge probabilities from Src to Dst. 1116 BranchProbability 1117 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 1118 const BasicBlock *Dst) const { 1119 if (!Probs.count(std::make_pair(Src, 0))) 1120 return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src)); 1121 1122 auto Prob = BranchProbability::getZero(); 1123 for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I) 1124 if (*I == Dst) 1125 Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second; 1126 1127 return Prob; 1128 } 1129 1130 /// Set the edge probability for all edges at once. 1131 void BranchProbabilityInfo::setEdgeProbability( 1132 const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) { 1133 assert(Src->getTerminator()->getNumSuccessors() == Probs.size()); 1134 eraseBlock(Src); // Erase stale data if any. 1135 if (Probs.size() == 0) 1136 return; // Nothing to set. 1137 1138 Handles.insert(BasicBlockCallbackVH(Src, this)); 1139 uint64_t TotalNumerator = 0; 1140 for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) { 1141 this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx]; 1142 LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx 1143 << " successor probability to " << Probs[SuccIdx] 1144 << "\n"); 1145 TotalNumerator += Probs[SuccIdx].getNumerator(); 1146 } 1147 1148 // Because of rounding errors the total probability cannot be checked to be 1149 // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator. 1150 // Instead, every single probability in Probs must be as accurate as possible. 1151 // This results in error 1/denominator at most, thus the total absolute error 1152 // should be within Probs.size / BranchProbability::getDenominator. 1153 assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size()); 1154 assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size()); 1155 (void)TotalNumerator; 1156 } 1157 1158 void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src, 1159 BasicBlock *Dst) { 1160 eraseBlock(Dst); // Erase stale data if any. 1161 unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors(); 1162 assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors()); 1163 if (NumSuccessors == 0) 1164 return; // Nothing to set. 1165 if (!this->Probs.contains(std::make_pair(Src, 0))) 1166 return; // No probability is set for edges from Src. Keep the same for Dst. 1167 1168 Handles.insert(BasicBlockCallbackVH(Dst, this)); 1169 for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) { 1170 auto Prob = this->Probs[std::make_pair(Src, SuccIdx)]; 1171 this->Probs[std::make_pair(Dst, SuccIdx)] = Prob; 1172 LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx 1173 << " successor probability to " << Prob << "\n"); 1174 } 1175 } 1176 1177 void BranchProbabilityInfo::swapSuccEdgesProbabilities(const BasicBlock *Src) { 1178 assert(Src->getTerminator()->getNumSuccessors() == 2); 1179 auto It0 = Probs.find(std::make_pair(Src, 0)); 1180 if (It0 == Probs.end()) 1181 return; // No probability is set for edges from Src 1182 auto It1 = Probs.find(std::make_pair(Src, 1)); 1183 assert(It1 != Probs.end()); 1184 std::swap(It0->second, It1->second); 1185 } 1186 1187 raw_ostream & 1188 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, 1189 const BasicBlock *Src, 1190 const BasicBlock *Dst) const { 1191 const BranchProbability Prob = getEdgeProbability(Src, Dst); 1192 OS << "edge "; 1193 Src->printAsOperand(OS, false, Src->getModule()); 1194 OS << " -> "; 1195 Dst->printAsOperand(OS, false, Dst->getModule()); 1196 OS << " probability is " << Prob 1197 << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); 1198 1199 return OS; 1200 } 1201 1202 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) { 1203 LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n"); 1204 1205 // Note that we cannot use successors of BB because the terminator of BB may 1206 // have changed when eraseBlock is called as a BasicBlockCallbackVH callback. 1207 // Instead we remove prob data for the block by iterating successors by their 1208 // indices from 0 till the last which exists. There could not be prob data for 1209 // a pair (BB, N) if there is no data for (BB, N-1) because the data is always 1210 // set for all successors from 0 to M at once by the method 1211 // setEdgeProbability(). 1212 Handles.erase(BasicBlockCallbackVH(BB, this)); 1213 for (unsigned I = 0;; ++I) { 1214 auto MapI = Probs.find(std::make_pair(BB, I)); 1215 if (MapI == Probs.end()) { 1216 assert(Probs.count(std::make_pair(BB, I + 1)) == 0 && 1217 "Must be no more successors"); 1218 return; 1219 } 1220 Probs.erase(MapI); 1221 } 1222 } 1223 1224 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI, 1225 const TargetLibraryInfo *TLI, 1226 DominatorTree *DT, 1227 PostDominatorTree *PDT) { 1228 LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName() 1229 << " ----\n\n"); 1230 LastF = &F; // Store the last function we ran on for printing. 1231 LI = &LoopI; 1232 1233 SccI = std::make_unique<SccInfo>(F); 1234 1235 assert(EstimatedBlockWeight.empty()); 1236 assert(EstimatedLoopWeight.empty()); 1237 1238 std::unique_ptr<DominatorTree> DTPtr; 1239 std::unique_ptr<PostDominatorTree> PDTPtr; 1240 1241 if (!DT) { 1242 DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F)); 1243 DT = DTPtr.get(); 1244 } 1245 1246 if (!PDT) { 1247 PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F)); 1248 PDT = PDTPtr.get(); 1249 } 1250 1251 computeEestimateBlockWeight(F, DT, PDT); 1252 1253 // Walk the basic blocks in post-order so that we can build up state about 1254 // the successors of a block iteratively. 1255 for (const auto *BB : post_order(&F.getEntryBlock())) { 1256 LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName() 1257 << "\n"); 1258 // If there is no at least two successors, no sense to set probability. 1259 if (BB->getTerminator()->getNumSuccessors() < 2) 1260 continue; 1261 if (calcMetadataWeights(BB)) 1262 continue; 1263 if (calcEstimatedHeuristics(BB)) 1264 continue; 1265 if (calcPointerHeuristics(BB)) 1266 continue; 1267 if (calcZeroHeuristics(BB, TLI)) 1268 continue; 1269 if (calcFloatingPointHeuristics(BB)) 1270 continue; 1271 } 1272 1273 EstimatedLoopWeight.clear(); 1274 EstimatedBlockWeight.clear(); 1275 SccI.reset(); 1276 1277 if (PrintBranchProb && (PrintBranchProbFuncName.empty() || 1278 F.getName() == PrintBranchProbFuncName)) { 1279 print(dbgs()); 1280 } 1281 } 1282 1283 void BranchProbabilityInfoWrapperPass::getAnalysisUsage( 1284 AnalysisUsage &AU) const { 1285 // We require DT so it's available when LI is available. The LI updating code 1286 // asserts that DT is also present so if we don't make sure that we have DT 1287 // here, that assert will trigger. 1288 AU.addRequired<DominatorTreeWrapperPass>(); 1289 AU.addRequired<LoopInfoWrapperPass>(); 1290 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1291 AU.addRequired<DominatorTreeWrapperPass>(); 1292 AU.addRequired<PostDominatorTreeWrapperPass>(); 1293 AU.setPreservesAll(); 1294 } 1295 1296 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) { 1297 const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1298 const TargetLibraryInfo &TLI = 1299 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1300 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1301 PostDominatorTree &PDT = 1302 getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1303 BPI.calculate(F, LI, &TLI, &DT, &PDT); 1304 return false; 1305 } 1306 1307 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); } 1308 1309 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS, 1310 const Module *) const { 1311 BPI.print(OS); 1312 } 1313 1314 AnalysisKey BranchProbabilityAnalysis::Key; 1315 BranchProbabilityInfo 1316 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1317 auto &LI = AM.getResult<LoopAnalysis>(F); 1318 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1319 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1320 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1321 BranchProbabilityInfo BPI; 1322 BPI.calculate(F, LI, &TLI, &DT, &PDT); 1323 return BPI; 1324 } 1325 1326 PreservedAnalyses 1327 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 1328 OS << "Printing analysis 'Branch Probability Analysis' for function '" 1329 << F.getName() << "':\n"; 1330 AM.getResult<BranchProbabilityAnalysis>(F).print(OS); 1331 return PreservedAnalyses::all(); 1332 } 1333