xref: /llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp (revision 8ad4f1a9c110632e419cc64931d432e91559407a)
1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/PostDominators.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PassManager.h"
34 #include "llvm/IR/ProfDataUtils.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/BranchProbability.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <map>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "branch-prob"
52 
53 static cl::opt<bool> PrintBranchProb(
54     "print-bpi", cl::init(false), cl::Hidden,
55     cl::desc("Print the branch probability info."));
56 
57 cl::opt<std::string> PrintBranchProbFuncName(
58     "print-bpi-func-name", cl::Hidden,
59     cl::desc("The option to specify the name of the function "
60              "whose branch probability info is printed."));
61 
62 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
63                       "Branch Probability Analysis", false, true)
64 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
66 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
67 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
68 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
69                     "Branch Probability Analysis", false, true)
70 
71 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
72     : FunctionPass(ID) {
73   initializeBranchProbabilityInfoWrapperPassPass(
74       *PassRegistry::getPassRegistry());
75 }
76 
77 char BranchProbabilityInfoWrapperPass::ID = 0;
78 
79 // Weights are for internal use only. They are used by heuristics to help to
80 // estimate edges' probability. Example:
81 //
82 // Using "Loop Branch Heuristics" we predict weights of edges for the
83 // block BB2.
84 //         ...
85 //          |
86 //          V
87 //         BB1<-+
88 //          |   |
89 //          |   | (Weight = 124)
90 //          V   |
91 //         BB2--+
92 //          |
93 //          | (Weight = 4)
94 //          V
95 //         BB3
96 //
97 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
98 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
99 static const uint32_t LBH_TAKEN_WEIGHT = 124;
100 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
101 
102 /// Unreachable-terminating branch taken probability.
103 ///
104 /// This is the probability for a branch being taken to a block that terminates
105 /// (eventually) in unreachable. These are predicted as unlikely as possible.
106 /// All reachable probability will proportionally share the remaining part.
107 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
108 
109 /// Heuristics and lookup tables for non-loop branches:
110 /// Pointer Heuristics (PH)
111 static const uint32_t PH_TAKEN_WEIGHT = 20;
112 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
113 static const BranchProbability
114     PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
115 static const BranchProbability
116     PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
117 
118 using ProbabilityList = SmallVector<BranchProbability>;
119 using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>;
120 
121 /// Pointer comparisons:
122 static const ProbabilityTable PointerTable{
123     {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely
124     {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely
125 };
126 
127 /// Zero Heuristics (ZH)
128 static const uint32_t ZH_TAKEN_WEIGHT = 20;
129 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
130 static const BranchProbability
131     ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
132 static const BranchProbability
133     ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
134 
135 /// Integer compares with 0:
136 static const ProbabilityTable ICmpWithZeroTable{
137     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == 0 -> Unlikely
138     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != 0 -> Likely
139     {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0  -> Unlikely
140     {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0  -> Likely
141 };
142 
143 /// Integer compares with -1:
144 static const ProbabilityTable ICmpWithMinusOneTable{
145     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == -1 -> Unlikely
146     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != -1 -> Likely
147     // InstCombine canonicalizes X >= 0 into X > -1
148     {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0  -> Likely
149 };
150 
151 /// Integer compares with 1:
152 static const ProbabilityTable ICmpWithOneTable{
153     // InstCombine canonicalizes X <= 0 into X < 1
154     {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely
155 };
156 
157 /// strcmp and similar functions return zero, negative, or positive, if the
158 /// first string is equal, less, or greater than the second. We consider it
159 /// likely that the strings are not equal, so a comparison with zero is
160 /// probably false, but also a comparison with any other number is also
161 /// probably false given that what exactly is returned for nonzero values is
162 /// not specified. Any kind of comparison other than equality we know
163 /// nothing about.
164 static const ProbabilityTable ICmpWithLibCallTable{
165     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},
166     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},
167 };
168 
169 // Floating-Point Heuristics (FPH)
170 static const uint32_t FPH_TAKEN_WEIGHT = 20;
171 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
172 
173 /// This is the probability for an ordered floating point comparison.
174 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
175 /// This is the probability for an unordered floating point comparison, it means
176 /// one or two of the operands are NaN. Usually it is used to test for an
177 /// exceptional case, so the result is unlikely.
178 static const uint32_t FPH_UNO_WEIGHT = 1;
179 
180 static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT,
181                                               FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
182 static const BranchProbability
183     FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
184 static const BranchProbability
185     FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
186 static const BranchProbability
187     FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
188 
189 /// Floating-Point compares:
190 static const ProbabilityTable FCmpTable{
191     {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely
192     {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely
193 };
194 
195 /// Set of dedicated "absolute" execution weights for a block. These weights are
196 /// meaningful relative to each other and their derivatives only.
197 enum class BlockExecWeight : std::uint32_t {
198   /// Special weight used for cases with exact zero probability.
199   ZERO = 0x0,
200   /// Minimal possible non zero weight.
201   LOWEST_NON_ZERO = 0x1,
202   /// Weight to an 'unreachable' block.
203   UNREACHABLE = ZERO,
204   /// Weight to a block containing non returning call.
205   NORETURN = LOWEST_NON_ZERO,
206   /// Weight to 'unwind' block of an invoke instruction.
207   UNWIND = LOWEST_NON_ZERO,
208   /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
209   /// with attribute 'cold'.
210   COLD = 0xffff,
211   /// Default weight is used in cases when there is no dedicated execution
212   /// weight set. It is not propagated through the domination line either.
213   DEFAULT = 0xfffff
214 };
215 
216 BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
217   // Record SCC numbers of blocks in the CFG to identify irreducible loops.
218   // FIXME: We could only calculate this if the CFG is known to be irreducible
219   // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
220   int SccNum = 0;
221   for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
222        ++It, ++SccNum) {
223     // Ignore single-block SCCs since they either aren't loops or LoopInfo will
224     // catch them.
225     const std::vector<const BasicBlock *> &Scc = *It;
226     if (Scc.size() == 1)
227       continue;
228 
229     LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
230     for (const auto *BB : Scc) {
231       LLVM_DEBUG(dbgs() << " " << BB->getName());
232       SccNums[BB] = SccNum;
233       calculateSccBlockType(BB, SccNum);
234     }
235     LLVM_DEBUG(dbgs() << "\n");
236   }
237 }
238 
239 int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
240   auto SccIt = SccNums.find(BB);
241   if (SccIt == SccNums.end())
242     return -1;
243   return SccIt->second;
244 }
245 
246 void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
247     int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
248 
249   for (auto MapIt : SccBlocks[SccNum]) {
250     const auto *BB = MapIt.first;
251     if (isSCCHeader(BB, SccNum))
252       for (const auto *Pred : predecessors(BB))
253         if (getSCCNum(Pred) != SccNum)
254           Enters.push_back(const_cast<BasicBlock *>(BB));
255   }
256 }
257 
258 void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
259     int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
260   for (auto MapIt : SccBlocks[SccNum]) {
261     const auto *BB = MapIt.first;
262     if (isSCCExitingBlock(BB, SccNum))
263       for (const auto *Succ : successors(BB))
264         if (getSCCNum(Succ) != SccNum)
265           Exits.push_back(const_cast<BasicBlock *>(Succ));
266   }
267 }
268 
269 uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
270                                                          int SccNum) const {
271   assert(getSCCNum(BB) == SccNum);
272 
273   assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
274   const auto &SccBlockTypes = SccBlocks[SccNum];
275 
276   auto It = SccBlockTypes.find(BB);
277   if (It != SccBlockTypes.end()) {
278     return It->second;
279   }
280   return Inner;
281 }
282 
283 void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
284                                                            int SccNum) {
285   assert(getSCCNum(BB) == SccNum);
286   uint32_t BlockType = Inner;
287 
288   if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
289         // Consider any block that is an entry point to the SCC as
290         // a header.
291         return getSCCNum(Pred) != SccNum;
292       }))
293     BlockType |= Header;
294 
295   if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
296         return getSCCNum(Succ) != SccNum;
297       }))
298     BlockType |= Exiting;
299 
300   // Lazily compute the set of headers for a given SCC and cache the results
301   // in the SccHeaderMap.
302   if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
303     SccBlocks.resize(SccNum + 1);
304   auto &SccBlockTypes = SccBlocks[SccNum];
305 
306   if (BlockType != Inner) {
307     bool IsInserted;
308     std::tie(std::ignore, IsInserted) =
309         SccBlockTypes.insert(std::make_pair(BB, BlockType));
310     assert(IsInserted && "Duplicated block in SCC");
311   }
312 }
313 
314 BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
315                                             const LoopInfo &LI,
316                                             const SccInfo &SccI)
317     : BB(BB) {
318   LD.first = LI.getLoopFor(BB);
319   if (!LD.first) {
320     LD.second = SccI.getSCCNum(BB);
321   }
322 }
323 
324 bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
325   const auto &SrcBlock = Edge.first;
326   const auto &DstBlock = Edge.second;
327   return (DstBlock.getLoop() &&
328           !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
329          // Assume that SCCs can't be nested.
330          (DstBlock.getSccNum() != -1 &&
331           SrcBlock.getSccNum() != DstBlock.getSccNum());
332 }
333 
334 bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
335   return isLoopEnteringEdge({Edge.second, Edge.first});
336 }
337 
338 bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
339     const LoopEdge &Edge) const {
340   return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
341 }
342 
343 bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
344   const auto &SrcBlock = Edge.first;
345   const auto &DstBlock = Edge.second;
346   return SrcBlock.belongsToSameLoop(DstBlock) &&
347          ((DstBlock.getLoop() &&
348            DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
349           (DstBlock.getSccNum() != -1 &&
350            SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
351 }
352 
353 void BranchProbabilityInfo::getLoopEnterBlocks(
354     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
355   if (LB.getLoop()) {
356     auto *Header = LB.getLoop()->getHeader();
357     Enters.append(pred_begin(Header), pred_end(Header));
358   } else {
359     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
360     SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
361   }
362 }
363 
364 void BranchProbabilityInfo::getLoopExitBlocks(
365     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
366   if (LB.getLoop()) {
367     LB.getLoop()->getExitBlocks(Exits);
368   } else {
369     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
370     SccI->getSccExitBlocks(LB.getSccNum(), Exits);
371   }
372 }
373 
374 // Propagate existing explicit probabilities from either profile data or
375 // 'expect' intrinsic processing. Examine metadata against unreachable
376 // heuristic. The probability of the edge coming to unreachable block is
377 // set to min of metadata and unreachable heuristic.
378 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
379   const Instruction *TI = BB->getTerminator();
380   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
381   if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
382         isa<InvokeInst>(TI) || isa<CallBrInst>(TI)))
383     return false;
384 
385   MDNode *WeightsNode = getValidBranchWeightMDNode(*TI);
386   if (!WeightsNode)
387     return false;
388 
389   // Check that the number of successors is manageable.
390   assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
391 
392   // Build up the final weights that will be used in a temporary buffer.
393   // Compute the sum of all weights to later decide whether they need to
394   // be scaled to fit in 32 bits.
395   uint64_t WeightSum = 0;
396   SmallVector<uint32_t, 2> Weights;
397   SmallVector<unsigned, 2> UnreachableIdxs;
398   SmallVector<unsigned, 2> ReachableIdxs;
399 
400   extractBranchWeights(WeightsNode, Weights);
401   for (unsigned I = 0, E = Weights.size(); I != E; ++I) {
402     WeightSum += Weights[I];
403     const LoopBlock SrcLoopBB = getLoopBlock(BB);
404     const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I));
405     auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
406     if (EstimatedWeight &&
407         *EstimatedWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
408       UnreachableIdxs.push_back(I);
409     else
410       ReachableIdxs.push_back(I);
411   }
412   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
413 
414   // If the sum of weights does not fit in 32 bits, scale every weight down
415   // accordingly.
416   uint64_t ScalingFactor =
417       (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
418 
419   if (ScalingFactor > 1) {
420     WeightSum = 0;
421     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
422       Weights[I] /= ScalingFactor;
423       WeightSum += Weights[I];
424     }
425   }
426   assert(WeightSum <= UINT32_MAX &&
427          "Expected weights to scale down to 32 bits");
428 
429   if (WeightSum == 0 || ReachableIdxs.size() == 0) {
430     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
431       Weights[I] = 1;
432     WeightSum = TI->getNumSuccessors();
433   }
434 
435   // Set the probability.
436   SmallVector<BranchProbability, 2> BP;
437   for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
438     BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
439 
440   // Examine the metadata against unreachable heuristic.
441   // If the unreachable heuristic is more strong then we use it for this edge.
442   if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
443     setEdgeProbability(BB, BP);
444     return true;
445   }
446 
447   auto UnreachableProb = UR_TAKEN_PROB;
448   for (auto I : UnreachableIdxs)
449     if (UnreachableProb < BP[I]) {
450       BP[I] = UnreachableProb;
451     }
452 
453   // Sum of all edge probabilities must be 1.0. If we modified the probability
454   // of some edges then we must distribute the introduced difference over the
455   // reachable blocks.
456   //
457   // Proportional distribution: the relation between probabilities of the
458   // reachable edges is kept unchanged. That is for any reachable edges i and j:
459   //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
460   //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
461   // Where K is independent of i,j.
462   //   newBP[i] == oldBP[i] * K
463   // We need to find K.
464   // Make sum of all reachables of the left and right parts:
465   //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
466   // Sum of newBP must be equal to 1.0:
467   //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
468   //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
469   // Where sum_of_unreachable(newBP) is what has been just changed.
470   // Finally:
471   //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
472   //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
473   BranchProbability NewUnreachableSum = BranchProbability::getZero();
474   for (auto I : UnreachableIdxs)
475     NewUnreachableSum += BP[I];
476 
477   BranchProbability NewReachableSum =
478       BranchProbability::getOne() - NewUnreachableSum;
479 
480   BranchProbability OldReachableSum = BranchProbability::getZero();
481   for (auto I : ReachableIdxs)
482     OldReachableSum += BP[I];
483 
484   if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
485     if (OldReachableSum.isZero()) {
486       // If all oldBP[i] are zeroes then the proportional distribution results
487       // in all zero probabilities and the error stays big. In this case we
488       // evenly spread NewReachableSum over the reachable edges.
489       BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
490       for (auto I : ReachableIdxs)
491         BP[I] = PerEdge;
492     } else {
493       for (auto I : ReachableIdxs) {
494         // We use uint64_t to avoid double rounding error of the following
495         // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
496         // The formula is taken from the private constructor
497         // BranchProbability(uint32_t Numerator, uint32_t Denominator)
498         uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
499                        BP[I].getNumerator();
500         uint32_t Div = static_cast<uint32_t>(
501             divideNearest(Mul, OldReachableSum.getNumerator()));
502         BP[I] = BranchProbability::getRaw(Div);
503       }
504     }
505   }
506 
507   setEdgeProbability(BB, BP);
508 
509   return true;
510 }
511 
512 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
513 // between two pointer or pointer and NULL will fail.
514 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
515   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
516   if (!BI || !BI->isConditional())
517     return false;
518 
519   Value *Cond = BI->getCondition();
520   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
521   if (!CI || !CI->isEquality())
522     return false;
523 
524   Value *LHS = CI->getOperand(0);
525 
526   if (!LHS->getType()->isPointerTy())
527     return false;
528 
529   assert(CI->getOperand(1)->getType()->isPointerTy());
530 
531   auto Search = PointerTable.find(CI->getPredicate());
532   if (Search == PointerTable.end())
533     return false;
534   setEdgeProbability(BB, Search->second);
535   return true;
536 }
537 
538 // Compute the unlikely successors to the block BB in the loop L, specifically
539 // those that are unlikely because this is a loop, and add them to the
540 // UnlikelyBlocks set.
541 static void
542 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
543                           SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
544   // Sometimes in a loop we have a branch whose condition is made false by
545   // taking it. This is typically something like
546   //  int n = 0;
547   //  while (...) {
548   //    if (++n >= MAX) {
549   //      n = 0;
550   //    }
551   //  }
552   // In this sort of situation taking the branch means that at the very least it
553   // won't be taken again in the next iteration of the loop, so we should
554   // consider it less likely than a typical branch.
555   //
556   // We detect this by looking back through the graph of PHI nodes that sets the
557   // value that the condition depends on, and seeing if we can reach a successor
558   // block which can be determined to make the condition false.
559   //
560   // FIXME: We currently consider unlikely blocks to be half as likely as other
561   // blocks, but if we consider the example above the likelyhood is actually
562   // 1/MAX. We could therefore be more precise in how unlikely we consider
563   // blocks to be, but it would require more careful examination of the form
564   // of the comparison expression.
565   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
566   if (!BI || !BI->isConditional())
567     return;
568 
569   // Check if the branch is based on an instruction compared with a constant
570   CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
571   if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
572       !isa<Constant>(CI->getOperand(1)))
573     return;
574 
575   // Either the instruction must be a PHI, or a chain of operations involving
576   // constants that ends in a PHI which we can then collapse into a single value
577   // if the PHI value is known.
578   Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
579   PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
580   Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
581   // Collect the instructions until we hit a PHI
582   SmallVector<BinaryOperator *, 1> InstChain;
583   while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
584          isa<Constant>(CmpLHS->getOperand(1))) {
585     // Stop if the chain extends outside of the loop
586     if (!L->contains(CmpLHS))
587       return;
588     InstChain.push_back(cast<BinaryOperator>(CmpLHS));
589     CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
590     if (CmpLHS)
591       CmpPHI = dyn_cast<PHINode>(CmpLHS);
592   }
593   if (!CmpPHI || !L->contains(CmpPHI))
594     return;
595 
596   // Trace the phi node to find all values that come from successors of BB
597   SmallPtrSet<PHINode*, 8> VisitedInsts;
598   SmallVector<PHINode*, 8> WorkList;
599   WorkList.push_back(CmpPHI);
600   VisitedInsts.insert(CmpPHI);
601   while (!WorkList.empty()) {
602     PHINode *P = WorkList.pop_back_val();
603     for (BasicBlock *B : P->blocks()) {
604       // Skip blocks that aren't part of the loop
605       if (!L->contains(B))
606         continue;
607       Value *V = P->getIncomingValueForBlock(B);
608       // If the source is a PHI add it to the work list if we haven't
609       // already visited it.
610       if (PHINode *PN = dyn_cast<PHINode>(V)) {
611         if (VisitedInsts.insert(PN).second)
612           WorkList.push_back(PN);
613         continue;
614       }
615       // If this incoming value is a constant and B is a successor of BB, then
616       // we can constant-evaluate the compare to see if it makes the branch be
617       // taken or not.
618       Constant *CmpLHSConst = dyn_cast<Constant>(V);
619       if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
620         continue;
621       // First collapse InstChain
622       const DataLayout &DL = BB->getDataLayout();
623       for (Instruction *I : llvm::reverse(InstChain)) {
624         CmpLHSConst = ConstantFoldBinaryOpOperands(
625             I->getOpcode(), CmpLHSConst, cast<Constant>(I->getOperand(1)), DL);
626         if (!CmpLHSConst)
627           break;
628       }
629       if (!CmpLHSConst)
630         continue;
631       // Now constant-evaluate the compare
632       Constant *Result = ConstantFoldCompareInstOperands(
633           CI->getPredicate(), CmpLHSConst, CmpConst, DL);
634       // If the result means we don't branch to the block then that block is
635       // unlikely.
636       if (Result &&
637           ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
638            (Result->isOneValue() && B == BI->getSuccessor(1))))
639         UnlikelyBlocks.insert(B);
640     }
641   }
642 }
643 
644 std::optional<uint32_t>
645 BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
646   auto WeightIt = EstimatedBlockWeight.find(BB);
647   if (WeightIt == EstimatedBlockWeight.end())
648     return std::nullopt;
649   return WeightIt->second;
650 }
651 
652 std::optional<uint32_t>
653 BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
654   auto WeightIt = EstimatedLoopWeight.find(L);
655   if (WeightIt == EstimatedLoopWeight.end())
656     return std::nullopt;
657   return WeightIt->second;
658 }
659 
660 std::optional<uint32_t>
661 BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
662   // For edges entering a loop take weight of a loop rather than an individual
663   // block in the loop.
664   return isLoopEnteringEdge(Edge)
665              ? getEstimatedLoopWeight(Edge.second.getLoopData())
666              : getEstimatedBlockWeight(Edge.second.getBlock());
667 }
668 
669 template <class IterT>
670 std::optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
671     const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
672   SmallVector<uint32_t, 4> Weights;
673   std::optional<uint32_t> MaxWeight;
674   for (const BasicBlock *DstBB : Successors) {
675     const LoopBlock DstLoopBB = getLoopBlock(DstBB);
676     auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
677 
678     if (!Weight)
679       return std::nullopt;
680 
681     if (!MaxWeight || *MaxWeight < *Weight)
682       MaxWeight = Weight;
683   }
684 
685   return MaxWeight;
686 }
687 
688 // Updates \p LoopBB's weight and returns true. If \p LoopBB has already
689 // an associated weight it is unchanged and false is returned.
690 //
691 // Please note by the algorithm the weight is not expected to change once set
692 // thus 'false' status is used to track visited blocks.
693 bool BranchProbabilityInfo::updateEstimatedBlockWeight(
694     LoopBlock &LoopBB, uint32_t BBWeight,
695     SmallVectorImpl<BasicBlock *> &BlockWorkList,
696     SmallVectorImpl<LoopBlock> &LoopWorkList) {
697   BasicBlock *BB = LoopBB.getBlock();
698 
699   // In general, weight is assigned to a block when it has final value and
700   // can't/shouldn't be changed.  However, there are cases when a block
701   // inherently has several (possibly "contradicting") weights. For example,
702   // "unwind" block may also contain "cold" call. In that case the first
703   // set weight is favored and all consequent weights are ignored.
704   if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
705     return false;
706 
707   for (BasicBlock *PredBlock : predecessors(BB)) {
708     LoopBlock PredLoop = getLoopBlock(PredBlock);
709     // Add affected block/loop to a working list.
710     if (isLoopExitingEdge({PredLoop, LoopBB})) {
711       if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
712         LoopWorkList.push_back(PredLoop);
713     } else if (!EstimatedBlockWeight.count(PredBlock))
714       BlockWorkList.push_back(PredBlock);
715   }
716   return true;
717 }
718 
719 // Starting from \p BB traverse through dominator blocks and assign \p BBWeight
720 // to all such blocks that are post dominated by \BB. In other words to all
721 // blocks that the one is executed if and only if another one is executed.
722 // Importantly, we skip loops here for two reasons. First weights of blocks in
723 // a loop should be scaled by trip count (yet possibly unknown). Second there is
724 // no any value in doing that because that doesn't give any additional
725 // information regarding distribution of probabilities inside the loop.
726 // Exception is loop 'enter' and 'exit' edges that are handled in a special way
727 // at calcEstimatedHeuristics.
728 //
729 // In addition, \p WorkList is populated with basic blocks if at leas one
730 // successor has updated estimated weight.
731 void BranchProbabilityInfo::propagateEstimatedBlockWeight(
732     const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
733     uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
734     SmallVectorImpl<LoopBlock> &LoopWorkList) {
735   const BasicBlock *BB = LoopBB.getBlock();
736   const auto *DTStartNode = DT->getNode(BB);
737   const auto *PDTStartNode = PDT->getNode(BB);
738 
739   // TODO: Consider propagating weight down the domination line as well.
740   for (const auto *DTNode = DTStartNode; DTNode != nullptr;
741        DTNode = DTNode->getIDom()) {
742     auto *DomBB = DTNode->getBlock();
743     // Consider blocks which lie on one 'line'.
744     if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
745       // If BB doesn't post dominate DomBB it will not post dominate dominators
746       // of DomBB as well.
747       break;
748 
749     LoopBlock DomLoopBB = getLoopBlock(DomBB);
750     const LoopEdge Edge{DomLoopBB, LoopBB};
751     // Don't propagate weight to blocks belonging to different loops.
752     if (!isLoopEnteringExitingEdge(Edge)) {
753       if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
754                                       LoopWorkList))
755         // If DomBB has weight set then all it's predecessors are already
756         // processed (since we propagate weight up to the top of IR each time).
757         break;
758     } else if (isLoopExitingEdge(Edge)) {
759       LoopWorkList.push_back(DomLoopBB);
760     }
761   }
762 }
763 
764 std::optional<uint32_t>
765 BranchProbabilityInfo::getInitialEstimatedBlockWeight(const BasicBlock *BB) {
766   // Returns true if \p BB has call marked with "NoReturn" attribute.
767   auto hasNoReturn = [&](const BasicBlock *BB) {
768     for (const auto &I : reverse(*BB))
769       if (const CallInst *CI = dyn_cast<CallInst>(&I))
770         if (CI->hasFnAttr(Attribute::NoReturn))
771           return true;
772 
773     return false;
774   };
775 
776   // Important note regarding the order of checks. They are ordered by weight
777   // from lowest to highest. Doing that allows to avoid "unstable" results
778   // when several conditions heuristics can be applied simultaneously.
779   if (isa<UnreachableInst>(BB->getTerminator()) ||
780       // If this block is terminated by a call to
781       // @llvm.experimental.deoptimize then treat it like an unreachable
782       // since it is expected to practically never execute.
783       // TODO: Should we actually treat as never returning call?
784       BB->getTerminatingDeoptimizeCall())
785     return hasNoReturn(BB)
786                ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
787                : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
788 
789   // Check if the block is an exception handling block.
790   if (BB->isEHPad())
791     return static_cast<uint32_t>(BlockExecWeight::UNWIND);
792 
793   // Check if the block contains 'cold' call.
794   for (const auto &I : *BB)
795     if (const CallInst *CI = dyn_cast<CallInst>(&I))
796       if (CI->hasFnAttr(Attribute::Cold))
797         return static_cast<uint32_t>(BlockExecWeight::COLD);
798 
799   return std::nullopt;
800 }
801 
802 // Does RPO traversal over all blocks in \p F and assigns weights to
803 // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
804 // best to propagate the weight to up/down the IR.
805 void BranchProbabilityInfo::computeEestimateBlockWeight(
806     const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
807   SmallVector<BasicBlock *, 8> BlockWorkList;
808   SmallVector<LoopBlock, 8> LoopWorkList;
809   SmallDenseMap<LoopData, SmallVector<BasicBlock *, 4>> LoopExitBlocks;
810 
811   // By doing RPO we make sure that all predecessors already have weights
812   // calculated before visiting theirs successors.
813   ReversePostOrderTraversal<const Function *> RPOT(&F);
814   for (const auto *BB : RPOT)
815     if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
816       // If we were able to find estimated weight for the block set it to this
817       // block and propagate up the IR.
818       propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT, *BBWeight,
819                                     BlockWorkList, LoopWorkList);
820 
821   // BlockWorklist/LoopWorkList contains blocks/loops with at least one
822   // successor/exit having estimated weight. Try to propagate weight to such
823   // blocks/loops from successors/exits.
824   // Process loops and blocks. Order is not important.
825   do {
826     while (!LoopWorkList.empty()) {
827       const LoopBlock LoopBB = LoopWorkList.pop_back_val();
828       const LoopData LD = LoopBB.getLoopData();
829       if (EstimatedLoopWeight.count(LD))
830         continue;
831 
832       auto Res = LoopExitBlocks.try_emplace(LD);
833       SmallVectorImpl<BasicBlock *> &Exits = Res.first->second;
834       if (Res.second)
835         getLoopExitBlocks(LoopBB, Exits);
836       auto LoopWeight = getMaxEstimatedEdgeWeight(
837           LoopBB, make_range(Exits.begin(), Exits.end()));
838 
839       if (LoopWeight) {
840         // If we never exit the loop then we can enter it once at maximum.
841         if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
842           LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
843 
844         EstimatedLoopWeight.insert({LD, *LoopWeight});
845         // Add all blocks entering the loop into working list.
846         getLoopEnterBlocks(LoopBB, BlockWorkList);
847       }
848     }
849 
850     while (!BlockWorkList.empty()) {
851       // We can reach here only if BlockWorkList is not empty.
852       const BasicBlock *BB = BlockWorkList.pop_back_val();
853       if (EstimatedBlockWeight.count(BB))
854         continue;
855 
856       // We take maximum over all weights of successors. In other words we take
857       // weight of "hot" path. In theory we can probably find a better function
858       // which gives higher accuracy results (comparing to "maximum") but I
859       // can't
860       // think of any right now. And I doubt it will make any difference in
861       // practice.
862       const LoopBlock LoopBB = getLoopBlock(BB);
863       auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
864 
865       if (MaxWeight)
866         propagateEstimatedBlockWeight(LoopBB, DT, PDT, *MaxWeight,
867                                       BlockWorkList, LoopWorkList);
868     }
869   } while (!BlockWorkList.empty() || !LoopWorkList.empty());
870 }
871 
872 // Calculate edge probabilities based on block's estimated weight.
873 // Note that gathered weights were not scaled for loops. Thus edges entering
874 // and exiting loops requires special processing.
875 bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
876   assert(BB->getTerminator()->getNumSuccessors() > 1 &&
877          "expected more than one successor!");
878 
879   const LoopBlock LoopBB = getLoopBlock(BB);
880 
881   SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
882   uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
883   if (LoopBB.getLoop())
884     computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
885 
886   // Changed to 'true' if at least one successor has estimated weight.
887   bool FoundEstimatedWeight = false;
888   SmallVector<uint32_t, 4> SuccWeights;
889   uint64_t TotalWeight = 0;
890   // Go over all successors of BB and put their weights into SuccWeights.
891   for (const BasicBlock *SuccBB : successors(BB)) {
892     std::optional<uint32_t> Weight;
893     const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
894     const LoopEdge Edge{LoopBB, SuccLoopBB};
895 
896     Weight = getEstimatedEdgeWeight(Edge);
897 
898     if (isLoopExitingEdge(Edge) &&
899         // Avoid adjustment of ZERO weight since it should remain unchanged.
900         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
901       // Scale down loop exiting weight by trip count.
902       Weight = std::max(
903           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
904           Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
905               TC);
906     }
907     bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
908     if (IsUnlikelyEdge &&
909         // Avoid adjustment of ZERO weight since it should remain unchanged.
910         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
911       // 'Unlikely' blocks have twice lower weight.
912       Weight = std::max(
913           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
914           Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 2);
915     }
916 
917     if (Weight)
918       FoundEstimatedWeight = true;
919 
920     auto WeightVal =
921         Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
922     TotalWeight += WeightVal;
923     SuccWeights.push_back(WeightVal);
924   }
925 
926   // If non of blocks have estimated weight bail out.
927   // If TotalWeight is 0 that means weight of each successor is 0 as well and
928   // equally likely. Bail out early to not deal with devision by zero.
929   if (!FoundEstimatedWeight || TotalWeight == 0)
930     return false;
931 
932   assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
933   const unsigned SuccCount = SuccWeights.size();
934 
935   // If the sum of weights does not fit in 32 bits, scale every weight down
936   // accordingly.
937   if (TotalWeight > UINT32_MAX) {
938     uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
939     TotalWeight = 0;
940     for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
941       SuccWeights[Idx] /= ScalingFactor;
942       if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
943         SuccWeights[Idx] =
944             static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
945       TotalWeight += SuccWeights[Idx];
946     }
947     assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
948   }
949 
950   // Finally set probabilities to edges according to estimated block weights.
951   SmallVector<BranchProbability, 4> EdgeProbabilities(
952       SuccCount, BranchProbability::getUnknown());
953 
954   for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
955     EdgeProbabilities[Idx] =
956         BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
957   }
958   setEdgeProbability(BB, EdgeProbabilities);
959   return true;
960 }
961 
962 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
963                                                const TargetLibraryInfo *TLI) {
964   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
965   if (!BI || !BI->isConditional())
966     return false;
967 
968   Value *Cond = BI->getCondition();
969   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
970   if (!CI)
971     return false;
972 
973   auto GetConstantInt = [](Value *V) {
974     if (auto *I = dyn_cast<BitCastInst>(V))
975       return dyn_cast<ConstantInt>(I->getOperand(0));
976     return dyn_cast<ConstantInt>(V);
977   };
978 
979   Value *RHS = CI->getOperand(1);
980   ConstantInt *CV = GetConstantInt(RHS);
981   if (!CV)
982     return false;
983 
984   // If the LHS is the result of AND'ing a value with a single bit bitmask,
985   // we don't have information about probabilities.
986   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
987     if (LHS->getOpcode() == Instruction::And)
988       if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
989         if (AndRHS->getValue().isPowerOf2())
990           return false;
991 
992   // Check if the LHS is the return value of a library function
993   LibFunc Func = NumLibFuncs;
994   if (TLI)
995     if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
996       if (Function *CalledFn = Call->getCalledFunction())
997         TLI->getLibFunc(*CalledFn, Func);
998 
999   ProbabilityTable::const_iterator Search;
1000   if (Func == LibFunc_strcasecmp ||
1001       Func == LibFunc_strcmp ||
1002       Func == LibFunc_strncasecmp ||
1003       Func == LibFunc_strncmp ||
1004       Func == LibFunc_memcmp ||
1005       Func == LibFunc_bcmp) {
1006     Search = ICmpWithLibCallTable.find(CI->getPredicate());
1007     if (Search == ICmpWithLibCallTable.end())
1008       return false;
1009   } else if (CV->isZero()) {
1010     Search = ICmpWithZeroTable.find(CI->getPredicate());
1011     if (Search == ICmpWithZeroTable.end())
1012       return false;
1013   } else if (CV->isOne()) {
1014     Search = ICmpWithOneTable.find(CI->getPredicate());
1015     if (Search == ICmpWithOneTable.end())
1016       return false;
1017   } else if (CV->isMinusOne()) {
1018     Search = ICmpWithMinusOneTable.find(CI->getPredicate());
1019     if (Search == ICmpWithMinusOneTable.end())
1020       return false;
1021   } else {
1022     return false;
1023   }
1024 
1025   setEdgeProbability(BB, Search->second);
1026   return true;
1027 }
1028 
1029 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
1030   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
1031   if (!BI || !BI->isConditional())
1032     return false;
1033 
1034   Value *Cond = BI->getCondition();
1035   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
1036   if (!FCmp)
1037     return false;
1038 
1039   ProbabilityList ProbList;
1040   if (FCmp->isEquality()) {
1041     ProbList = !FCmp->isTrueWhenEqual() ?
1042       // f1 == f2 -> Unlikely
1043       ProbabilityList({FPTakenProb, FPUntakenProb}) :
1044       // f1 != f2 -> Likely
1045       ProbabilityList({FPUntakenProb, FPTakenProb});
1046   } else {
1047     auto Search = FCmpTable.find(FCmp->getPredicate());
1048     if (Search == FCmpTable.end())
1049       return false;
1050     ProbList = Search->second;
1051   }
1052 
1053   setEdgeProbability(BB, ProbList);
1054   return true;
1055 }
1056 
1057 void BranchProbabilityInfo::releaseMemory() {
1058   Probs.clear();
1059   Handles.clear();
1060 }
1061 
1062 bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
1063                                        FunctionAnalysisManager::Invalidator &) {
1064   // Check whether the analysis, all analyses on functions, or the function's
1065   // CFG have been preserved.
1066   auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
1067   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
1068            PAC.preservedSet<CFGAnalyses>());
1069 }
1070 
1071 void BranchProbabilityInfo::print(raw_ostream &OS) const {
1072   OS << "---- Branch Probabilities ----\n";
1073   // We print the probabilities from the last function the analysis ran over,
1074   // or the function it is currently running over.
1075   assert(LastF && "Cannot print prior to running over a function");
1076   for (const auto &BI : *LastF) {
1077     for (const BasicBlock *Succ : successors(&BI))
1078       printEdgeProbability(OS << "  ", &BI, Succ);
1079   }
1080 }
1081 
1082 bool BranchProbabilityInfo::
1083 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
1084   // Hot probability is at least 4/5 = 80%
1085   // FIXME: Compare against a static "hot" BranchProbability.
1086   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
1087 }
1088 
1089 /// Get the raw edge probability for the edge. If can't find it, return a
1090 /// default probability 1/N where N is the number of successors. Here an edge is
1091 /// specified using PredBlock and an
1092 /// index to the successors.
1093 BranchProbability
1094 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1095                                           unsigned IndexInSuccessors) const {
1096   auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
1097   assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
1098              (Probs.end() == I) &&
1099          "Probability for I-th successor must always be defined along with the "
1100          "probability for the first successor");
1101 
1102   if (I != Probs.end())
1103     return I->second;
1104 
1105   return {1, static_cast<uint32_t>(succ_size(Src))};
1106 }
1107 
1108 BranchProbability
1109 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1110                                           const_succ_iterator Dst) const {
1111   return getEdgeProbability(Src, Dst.getSuccessorIndex());
1112 }
1113 
1114 /// Get the raw edge probability calculated for the block pair. This returns the
1115 /// sum of all raw edge probabilities from Src to Dst.
1116 BranchProbability
1117 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1118                                           const BasicBlock *Dst) const {
1119   if (!Probs.count(std::make_pair(Src, 0)))
1120     return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
1121 
1122   auto Prob = BranchProbability::getZero();
1123   for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
1124     if (*I == Dst)
1125       Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
1126 
1127   return Prob;
1128 }
1129 
1130 /// Set the edge probability for all edges at once.
1131 void BranchProbabilityInfo::setEdgeProbability(
1132     const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
1133   assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
1134   eraseBlock(Src); // Erase stale data if any.
1135   if (Probs.size() == 0)
1136     return; // Nothing to set.
1137 
1138   Handles.insert(BasicBlockCallbackVH(Src, this));
1139   uint64_t TotalNumerator = 0;
1140   for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
1141     this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
1142     LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
1143                       << " successor probability to " << Probs[SuccIdx]
1144                       << "\n");
1145     TotalNumerator += Probs[SuccIdx].getNumerator();
1146   }
1147 
1148   // Because of rounding errors the total probability cannot be checked to be
1149   // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
1150   // Instead, every single probability in Probs must be as accurate as possible.
1151   // This results in error 1/denominator at most, thus the total absolute error
1152   // should be within Probs.size / BranchProbability::getDenominator.
1153   assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
1154   assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
1155   (void)TotalNumerator;
1156 }
1157 
1158 void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
1159                                                   BasicBlock *Dst) {
1160   eraseBlock(Dst); // Erase stale data if any.
1161   unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
1162   assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
1163   if (NumSuccessors == 0)
1164     return; // Nothing to set.
1165   if (!this->Probs.contains(std::make_pair(Src, 0)))
1166     return; // No probability is set for edges from Src. Keep the same for Dst.
1167 
1168   Handles.insert(BasicBlockCallbackVH(Dst, this));
1169   for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
1170     auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
1171     this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
1172     LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
1173                       << " successor probability to " << Prob << "\n");
1174   }
1175 }
1176 
1177 void BranchProbabilityInfo::swapSuccEdgesProbabilities(const BasicBlock *Src) {
1178   assert(Src->getTerminator()->getNumSuccessors() == 2);
1179   auto It0 = Probs.find(std::make_pair(Src, 0));
1180   if (It0 == Probs.end())
1181     return; // No probability is set for edges from Src
1182   auto It1 = Probs.find(std::make_pair(Src, 1));
1183   assert(It1 != Probs.end());
1184   std::swap(It0->second, It1->second);
1185 }
1186 
1187 raw_ostream &
1188 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
1189                                             const BasicBlock *Src,
1190                                             const BasicBlock *Dst) const {
1191   const BranchProbability Prob = getEdgeProbability(Src, Dst);
1192   OS << "edge ";
1193   Src->printAsOperand(OS, false, Src->getModule());
1194   OS << " -> ";
1195   Dst->printAsOperand(OS, false, Dst->getModule());
1196   OS << " probability is " << Prob
1197      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
1198 
1199   return OS;
1200 }
1201 
1202 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
1203   LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
1204 
1205   // Note that we cannot use successors of BB because the terminator of BB may
1206   // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
1207   // Instead we remove prob data for the block by iterating successors by their
1208   // indices from 0 till the last which exists. There could not be prob data for
1209   // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
1210   // set for all successors from 0 to M at once by the method
1211   // setEdgeProbability().
1212   Handles.erase(BasicBlockCallbackVH(BB, this));
1213   for (unsigned I = 0;; ++I) {
1214     auto MapI = Probs.find(std::make_pair(BB, I));
1215     if (MapI == Probs.end()) {
1216       assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
1217              "Must be no more successors");
1218       return;
1219     }
1220     Probs.erase(MapI);
1221   }
1222 }
1223 
1224 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
1225                                       const TargetLibraryInfo *TLI,
1226                                       DominatorTree *DT,
1227                                       PostDominatorTree *PDT) {
1228   LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
1229                     << " ----\n\n");
1230   LastF = &F; // Store the last function we ran on for printing.
1231   LI = &LoopI;
1232 
1233   SccI = std::make_unique<SccInfo>(F);
1234 
1235   assert(EstimatedBlockWeight.empty());
1236   assert(EstimatedLoopWeight.empty());
1237 
1238   std::unique_ptr<DominatorTree> DTPtr;
1239   std::unique_ptr<PostDominatorTree> PDTPtr;
1240 
1241   if (!DT) {
1242     DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
1243     DT = DTPtr.get();
1244   }
1245 
1246   if (!PDT) {
1247     PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
1248     PDT = PDTPtr.get();
1249   }
1250 
1251   computeEestimateBlockWeight(F, DT, PDT);
1252 
1253   // Walk the basic blocks in post-order so that we can build up state about
1254   // the successors of a block iteratively.
1255   for (const auto *BB : post_order(&F.getEntryBlock())) {
1256     LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
1257                       << "\n");
1258     // If there is no at least two successors, no sense to set probability.
1259     if (BB->getTerminator()->getNumSuccessors() < 2)
1260       continue;
1261     if (calcMetadataWeights(BB))
1262       continue;
1263     if (calcEstimatedHeuristics(BB))
1264       continue;
1265     if (calcPointerHeuristics(BB))
1266       continue;
1267     if (calcZeroHeuristics(BB, TLI))
1268       continue;
1269     if (calcFloatingPointHeuristics(BB))
1270       continue;
1271   }
1272 
1273   EstimatedLoopWeight.clear();
1274   EstimatedBlockWeight.clear();
1275   SccI.reset();
1276 
1277   if (PrintBranchProb && (PrintBranchProbFuncName.empty() ||
1278                           F.getName() == PrintBranchProbFuncName)) {
1279     print(dbgs());
1280   }
1281 }
1282 
1283 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1284     AnalysisUsage &AU) const {
1285   // We require DT so it's available when LI is available. The LI updating code
1286   // asserts that DT is also present so if we don't make sure that we have DT
1287   // here, that assert will trigger.
1288   AU.addRequired<DominatorTreeWrapperPass>();
1289   AU.addRequired<LoopInfoWrapperPass>();
1290   AU.addRequired<TargetLibraryInfoWrapperPass>();
1291   AU.addRequired<DominatorTreeWrapperPass>();
1292   AU.addRequired<PostDominatorTreeWrapperPass>();
1293   AU.setPreservesAll();
1294 }
1295 
1296 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
1297   const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1298   const TargetLibraryInfo &TLI =
1299       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1300   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1301   PostDominatorTree &PDT =
1302       getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1303   BPI.calculate(F, LI, &TLI, &DT, &PDT);
1304   return false;
1305 }
1306 
1307 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
1308 
1309 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
1310                                              const Module *) const {
1311   BPI.print(OS);
1312 }
1313 
1314 AnalysisKey BranchProbabilityAnalysis::Key;
1315 BranchProbabilityInfo
1316 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1317   auto &LI = AM.getResult<LoopAnalysis>(F);
1318   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1319   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1320   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1321   BranchProbabilityInfo BPI;
1322   BPI.calculate(F, LI, &TLI, &DT, &PDT);
1323   return BPI;
1324 }
1325 
1326 PreservedAnalyses
1327 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
1328   OS << "Printing analysis 'Branch Probability Analysis' for function '"
1329      << F.getName() << "':\n";
1330   AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
1331   return PreservedAnalyses::all();
1332 }
1333