1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalAlias.h" 40 #include "llvm/IR/GlobalVariable.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/PatternMatch.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/KnownBits.h" 57 #include "llvm/Support/SaveAndRestore.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <optional> 62 #include <utility> 63 64 #define DEBUG_TYPE "basicaa" 65 66 using namespace llvm; 67 68 /// Enable analysis of recursive PHI nodes. 69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 70 cl::init(true)); 71 72 static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage", 73 cl::Hidden, cl::init(true)); 74 75 /// SearchLimitReached / SearchTimes shows how often the limit of 76 /// to decompose GEPs is reached. It will affect the precision 77 /// of basic alias analysis. 78 STATISTIC(SearchLimitReached, "Number of times the limit to " 79 "decompose GEPs is reached"); 80 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 81 82 // The max limit of the search depth in DecomposeGEPExpression() and 83 // getUnderlyingObject(). 84 static const unsigned MaxLookupSearchDepth = 6; 85 86 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 87 FunctionAnalysisManager::Invalidator &Inv) { 88 // We don't care if this analysis itself is preserved, it has no state. But 89 // we need to check that the analyses it depends on have been. Note that we 90 // may be created without handles to some analyses and in that case don't 91 // depend on them. 92 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 93 (DT_ && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA))) 94 return true; 95 96 // Otherwise this analysis result remains valid. 97 return false; 98 } 99 100 //===----------------------------------------------------------------------===// 101 // Useful predicates 102 //===----------------------------------------------------------------------===// 103 104 /// Returns the size of the object specified by V or UnknownSize if unknown. 105 static std::optional<TypeSize> getObjectSize(const Value *V, 106 const DataLayout &DL, 107 const TargetLibraryInfo &TLI, 108 bool NullIsValidLoc, 109 bool RoundToAlign = false) { 110 uint64_t Size; 111 ObjectSizeOpts Opts; 112 Opts.RoundToAlign = RoundToAlign; 113 Opts.NullIsUnknownSize = NullIsValidLoc; 114 if (getObjectSize(V, Size, DL, &TLI, Opts)) 115 return TypeSize::getFixed(Size); 116 return std::nullopt; 117 } 118 119 /// Returns true if we can prove that the object specified by V is smaller than 120 /// Size. 121 static bool isObjectSmallerThan(const Value *V, TypeSize Size, 122 const DataLayout &DL, 123 const TargetLibraryInfo &TLI, 124 bool NullIsValidLoc) { 125 // Note that the meanings of the "object" are slightly different in the 126 // following contexts: 127 // c1: llvm::getObjectSize() 128 // c2: llvm.objectsize() intrinsic 129 // c3: isObjectSmallerThan() 130 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 131 // refers to the "entire object". 132 // 133 // Consider this example: 134 // char *p = (char*)malloc(100) 135 // char *q = p+80; 136 // 137 // In the context of c1 and c2, the "object" pointed by q refers to the 138 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 139 // 140 // However, in the context of c3, the "object" refers to the chunk of memory 141 // being allocated. So, the "object" has 100 bytes, and q points to the middle 142 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 143 // parameter, before the llvm::getObjectSize() is called to get the size of 144 // entire object, we should: 145 // - either rewind the pointer q to the base-address of the object in 146 // question (in this case rewind to p), or 147 // - just give up. It is up to caller to make sure the pointer is pointing 148 // to the base address the object. 149 // 150 // We go for 2nd option for simplicity. 151 if (!isIdentifiedObject(V)) 152 return false; 153 154 // This function needs to use the aligned object size because we allow 155 // reads a bit past the end given sufficient alignment. 156 std::optional<TypeSize> ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 157 /*RoundToAlign*/ true); 158 159 return ObjectSize && TypeSize::isKnownLT(*ObjectSize, Size); 160 } 161 162 /// Return the minimal extent from \p V to the end of the underlying object, 163 /// assuming the result is used in an aliasing query. E.g., we do use the query 164 /// location size and the fact that null pointers cannot alias here. 165 static TypeSize getMinimalExtentFrom(const Value &V, 166 const LocationSize &LocSize, 167 const DataLayout &DL, 168 bool NullIsValidLoc) { 169 // If we have dereferenceability information we know a lower bound for the 170 // extent as accesses for a lower offset would be valid. We need to exclude 171 // the "or null" part if null is a valid pointer. We can ignore frees, as an 172 // access after free would be undefined behavior. 173 bool CanBeNull, CanBeFreed; 174 uint64_t DerefBytes = 175 V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 176 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 177 // If queried with a precise location size, we assume that location size to be 178 // accessed, thus valid. 179 if (LocSize.isPrecise()) 180 DerefBytes = std::max(DerefBytes, LocSize.getValue().getKnownMinValue()); 181 return TypeSize::getFixed(DerefBytes); 182 } 183 184 /// Returns true if we can prove that the object specified by V has size Size. 185 static bool isObjectSize(const Value *V, TypeSize Size, const DataLayout &DL, 186 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 187 std::optional<TypeSize> ObjectSize = 188 getObjectSize(V, DL, TLI, NullIsValidLoc); 189 return ObjectSize && *ObjectSize == Size; 190 } 191 192 /// Return true if both V1 and V2 are VScale 193 static bool areBothVScale(const Value *V1, const Value *V2) { 194 return PatternMatch::match(V1, PatternMatch::m_VScale()) && 195 PatternMatch::match(V2, PatternMatch::m_VScale()); 196 } 197 198 //===----------------------------------------------------------------------===// 199 // CaptureInfo implementations 200 //===----------------------------------------------------------------------===// 201 202 CaptureInfo::~CaptureInfo() = default; 203 204 bool SimpleCaptureInfo::isNotCapturedBefore(const Value *Object, 205 const Instruction *I, bool OrAt) { 206 return isNonEscapingLocalObject(Object, &IsCapturedCache); 207 } 208 209 static bool isNotInCycle(const Instruction *I, const DominatorTree *DT, 210 const LoopInfo *LI) { 211 BasicBlock *BB = const_cast<BasicBlock *>(I->getParent()); 212 SmallVector<BasicBlock *> Succs(successors(BB)); 213 return Succs.empty() || 214 !isPotentiallyReachableFromMany(Succs, BB, nullptr, DT, LI); 215 } 216 217 bool EarliestEscapeInfo::isNotCapturedBefore(const Value *Object, 218 const Instruction *I, bool OrAt) { 219 if (!isIdentifiedFunctionLocal(Object)) 220 return false; 221 222 auto Iter = EarliestEscapes.insert({Object, nullptr}); 223 if (Iter.second) { 224 Instruction *EarliestCapture = FindEarliestCapture( 225 Object, *const_cast<Function *>(DT.getRoot()->getParent()), 226 /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT); 227 if (EarliestCapture) { 228 auto Ins = Inst2Obj.insert({EarliestCapture, {}}); 229 Ins.first->second.push_back(Object); 230 } 231 Iter.first->second = EarliestCapture; 232 } 233 234 // No capturing instruction. 235 if (!Iter.first->second) 236 return true; 237 238 // No context instruction means any use is capturing. 239 if (!I) 240 return false; 241 242 if (I == Iter.first->second) { 243 if (OrAt) 244 return false; 245 return isNotInCycle(I, &DT, LI); 246 } 247 248 return !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, LI); 249 } 250 251 void EarliestEscapeInfo::removeInstruction(Instruction *I) { 252 auto Iter = Inst2Obj.find(I); 253 if (Iter != Inst2Obj.end()) { 254 for (const Value *Obj : Iter->second) 255 EarliestEscapes.erase(Obj); 256 Inst2Obj.erase(I); 257 } 258 } 259 260 //===----------------------------------------------------------------------===// 261 // GetElementPtr Instruction Decomposition and Analysis 262 //===----------------------------------------------------------------------===// 263 264 namespace { 265 /// Represents zext(sext(trunc(V))). 266 struct CastedValue { 267 const Value *V; 268 unsigned ZExtBits = 0; 269 unsigned SExtBits = 0; 270 unsigned TruncBits = 0; 271 272 explicit CastedValue(const Value *V) : V(V) {} 273 explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits, 274 unsigned TruncBits) 275 : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits) {} 276 277 unsigned getBitWidth() const { 278 return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits + 279 SExtBits; 280 } 281 282 CastedValue withValue(const Value *NewV) const { 283 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits); 284 } 285 286 /// Replace V with zext(NewV) 287 CastedValue withZExtOfValue(const Value *NewV) const { 288 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 289 NewV->getType()->getPrimitiveSizeInBits(); 290 if (ExtendBy <= TruncBits) 291 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy); 292 293 // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) 294 ExtendBy -= TruncBits; 295 return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0); 296 } 297 298 /// Replace V with sext(NewV) 299 CastedValue withSExtOfValue(const Value *NewV) const { 300 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 301 NewV->getType()->getPrimitiveSizeInBits(); 302 if (ExtendBy <= TruncBits) 303 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy); 304 305 // zext(sext(sext(NewV))) 306 ExtendBy -= TruncBits; 307 return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0); 308 } 309 310 APInt evaluateWith(APInt N) const { 311 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 312 "Incompatible bit width"); 313 if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits); 314 if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); 315 if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); 316 return N; 317 } 318 319 ConstantRange evaluateWith(ConstantRange N) const { 320 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 321 "Incompatible bit width"); 322 if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits); 323 if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits); 324 if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits); 325 return N; 326 } 327 328 bool canDistributeOver(bool NUW, bool NSW) const { 329 // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) 330 // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) 331 // trunc(x op y) == trunc(x) op trunc(y) 332 return (!ZExtBits || NUW) && (!SExtBits || NSW); 333 } 334 335 bool hasSameCastsAs(const CastedValue &Other) const { 336 return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits && 337 TruncBits == Other.TruncBits; 338 } 339 }; 340 341 /// Represents zext(sext(trunc(V))) * Scale + Offset. 342 struct LinearExpression { 343 CastedValue Val; 344 APInt Scale; 345 APInt Offset; 346 347 /// True if all operations in this expression are NSW. 348 bool IsNSW; 349 350 LinearExpression(const CastedValue &Val, const APInt &Scale, 351 const APInt &Offset, bool IsNSW) 352 : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {} 353 354 LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) { 355 unsigned BitWidth = Val.getBitWidth(); 356 Scale = APInt(BitWidth, 1); 357 Offset = APInt(BitWidth, 0); 358 } 359 360 LinearExpression mul(const APInt &Other, bool MulIsNSW) const { 361 // The check for zero offset is necessary, because generally 362 // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z). 363 bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero())); 364 return LinearExpression(Val, Scale * Other, Offset * Other, NSW); 365 } 366 }; 367 } 368 369 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 370 /// B are constant integers. 371 static LinearExpression GetLinearExpression( 372 const CastedValue &Val, const DataLayout &DL, unsigned Depth, 373 AssumptionCache *AC, DominatorTree *DT) { 374 // Limit our recursion depth. 375 if (Depth == 6) 376 return Val; 377 378 if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V)) 379 return LinearExpression(Val, APInt(Val.getBitWidth(), 0), 380 Val.evaluateWith(Const->getValue()), true); 381 382 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) { 383 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 384 APInt RHS = Val.evaluateWith(RHSC->getValue()); 385 // The only non-OBO case we deal with is or, and only limited to the 386 // case where it is both nuw and nsw. 387 bool NUW = true, NSW = true; 388 if (isa<OverflowingBinaryOperator>(BOp)) { 389 NUW &= BOp->hasNoUnsignedWrap(); 390 NSW &= BOp->hasNoSignedWrap(); 391 } 392 if (!Val.canDistributeOver(NUW, NSW)) 393 return Val; 394 395 // While we can distribute over trunc, we cannot preserve nowrap flags 396 // in that case. 397 if (Val.TruncBits) 398 NUW = NSW = false; 399 400 LinearExpression E(Val); 401 switch (BOp->getOpcode()) { 402 default: 403 // We don't understand this instruction, so we can't decompose it any 404 // further. 405 return Val; 406 case Instruction::Or: 407 // X|C == X+C if it is disjoint. Otherwise we can't analyze it. 408 if (!cast<PossiblyDisjointInst>(BOp)->isDisjoint()) 409 return Val; 410 411 [[fallthrough]]; 412 case Instruction::Add: { 413 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 414 Depth + 1, AC, DT); 415 E.Offset += RHS; 416 E.IsNSW &= NSW; 417 break; 418 } 419 case Instruction::Sub: { 420 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 421 Depth + 1, AC, DT); 422 E.Offset -= RHS; 423 E.IsNSW &= NSW; 424 break; 425 } 426 case Instruction::Mul: 427 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 428 Depth + 1, AC, DT) 429 .mul(RHS, NSW); 430 break; 431 case Instruction::Shl: 432 // We're trying to linearize an expression of the kind: 433 // shl i8 -128, 36 434 // where the shift count exceeds the bitwidth of the type. 435 // We can't decompose this further (the expression would return 436 // a poison value). 437 if (RHS.getLimitedValue() > Val.getBitWidth()) 438 return Val; 439 440 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 441 Depth + 1, AC, DT); 442 E.Offset <<= RHS.getLimitedValue(); 443 E.Scale <<= RHS.getLimitedValue(); 444 E.IsNSW &= NSW; 445 break; 446 } 447 return E; 448 } 449 } 450 451 if (isa<ZExtInst>(Val.V)) 452 return GetLinearExpression( 453 Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 454 DL, Depth + 1, AC, DT); 455 456 if (isa<SExtInst>(Val.V)) 457 return GetLinearExpression( 458 Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 459 DL, Depth + 1, AC, DT); 460 461 return Val; 462 } 463 464 /// To ensure a pointer offset fits in an integer of size IndexSize 465 /// (in bits) when that size is smaller than the maximum index size. This is 466 /// an issue, for example, in particular for 32b pointers with negative indices 467 /// that rely on two's complement wrap-arounds for precise alias information 468 /// where the maximum index size is 64b. 469 static void adjustToIndexSize(APInt &Offset, unsigned IndexSize) { 470 assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!"); 471 unsigned ShiftBits = Offset.getBitWidth() - IndexSize; 472 if (ShiftBits != 0) { 473 Offset <<= ShiftBits; 474 Offset.ashrInPlace(ShiftBits); 475 } 476 } 477 478 namespace { 479 // A linear transformation of a Value; this class represents 480 // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale. 481 struct VariableGEPIndex { 482 CastedValue Val; 483 APInt Scale; 484 485 // Context instruction to use when querying information about this index. 486 const Instruction *CxtI; 487 488 /// True if all operations in this expression are NSW. 489 bool IsNSW; 490 491 /// True if the index should be subtracted rather than added. We don't simply 492 /// negate the Scale, to avoid losing the NSW flag: X - INT_MIN*1 may be 493 /// non-wrapping, while X + INT_MIN*(-1) wraps. 494 bool IsNegated; 495 496 bool hasNegatedScaleOf(const VariableGEPIndex &Other) const { 497 if (IsNegated == Other.IsNegated) 498 return Scale == -Other.Scale; 499 return Scale == Other.Scale; 500 } 501 502 void dump() const { 503 print(dbgs()); 504 dbgs() << "\n"; 505 } 506 void print(raw_ostream &OS) const { 507 OS << "(V=" << Val.V->getName() 508 << ", zextbits=" << Val.ZExtBits 509 << ", sextbits=" << Val.SExtBits 510 << ", truncbits=" << Val.TruncBits 511 << ", scale=" << Scale 512 << ", nsw=" << IsNSW 513 << ", negated=" << IsNegated << ")"; 514 } 515 }; 516 } 517 518 // Represents the internal structure of a GEP, decomposed into a base pointer, 519 // constant offsets, and variable scaled indices. 520 struct BasicAAResult::DecomposedGEP { 521 // Base pointer of the GEP 522 const Value *Base; 523 // Total constant offset from base. 524 APInt Offset; 525 // Scaled variable (non-constant) indices. 526 SmallVector<VariableGEPIndex, 4> VarIndices; 527 // Are all operations inbounds GEPs or non-indexing operations? 528 // (std::nullopt iff expression doesn't involve any geps) 529 std::optional<bool> InBounds; 530 531 void dump() const { 532 print(dbgs()); 533 dbgs() << "\n"; 534 } 535 void print(raw_ostream &OS) const { 536 OS << "(DecomposedGEP Base=" << Base->getName() 537 << ", Offset=" << Offset 538 << ", VarIndices=["; 539 for (size_t i = 0; i < VarIndices.size(); i++) { 540 if (i != 0) 541 OS << ", "; 542 VarIndices[i].print(OS); 543 } 544 OS << "])"; 545 } 546 }; 547 548 549 /// If V is a symbolic pointer expression, decompose it into a base pointer 550 /// with a constant offset and a number of scaled symbolic offsets. 551 /// 552 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 553 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 554 /// specified amount, but which may have other unrepresented high bits. As 555 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 556 BasicAAResult::DecomposedGEP 557 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 558 AssumptionCache *AC, DominatorTree *DT) { 559 // Limit recursion depth to limit compile time in crazy cases. 560 unsigned MaxLookup = MaxLookupSearchDepth; 561 SearchTimes++; 562 const Instruction *CxtI = dyn_cast<Instruction>(V); 563 564 unsigned MaxIndexSize = DL.getMaxIndexSizeInBits(); 565 DecomposedGEP Decomposed; 566 Decomposed.Offset = APInt(MaxIndexSize, 0); 567 do { 568 // See if this is a bitcast or GEP. 569 const Operator *Op = dyn_cast<Operator>(V); 570 if (!Op) { 571 // The only non-operator case we can handle are GlobalAliases. 572 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 573 if (!GA->isInterposable()) { 574 V = GA->getAliasee(); 575 continue; 576 } 577 } 578 Decomposed.Base = V; 579 return Decomposed; 580 } 581 582 if (Op->getOpcode() == Instruction::BitCast || 583 Op->getOpcode() == Instruction::AddrSpaceCast) { 584 V = Op->getOperand(0); 585 continue; 586 } 587 588 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 589 if (!GEPOp) { 590 if (const auto *PHI = dyn_cast<PHINode>(V)) { 591 // Look through single-arg phi nodes created by LCSSA. 592 if (PHI->getNumIncomingValues() == 1) { 593 V = PHI->getIncomingValue(0); 594 continue; 595 } 596 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 597 // CaptureTracking can know about special capturing properties of some 598 // intrinsics like launder.invariant.group, that can't be expressed with 599 // the attributes, but have properties like returning aliasing pointer. 600 // Because some analysis may assume that nocaptured pointer is not 601 // returned from some special intrinsic (because function would have to 602 // be marked with returns attribute), it is crucial to use this function 603 // because it should be in sync with CaptureTracking. Not using it may 604 // cause weird miscompilations where 2 aliasing pointers are assumed to 605 // noalias. 606 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 607 V = RP; 608 continue; 609 } 610 } 611 612 Decomposed.Base = V; 613 return Decomposed; 614 } 615 616 // Track whether we've seen at least one in bounds gep, and if so, whether 617 // all geps parsed were in bounds. 618 if (Decomposed.InBounds == std::nullopt) 619 Decomposed.InBounds = GEPOp->isInBounds(); 620 else if (!GEPOp->isInBounds()) 621 Decomposed.InBounds = false; 622 623 assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized"); 624 625 unsigned AS = GEPOp->getPointerAddressSpace(); 626 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 627 gep_type_iterator GTI = gep_type_begin(GEPOp); 628 unsigned IndexSize = DL.getIndexSizeInBits(AS); 629 // Assume all GEP operands are constants until proven otherwise. 630 bool GepHasConstantOffset = true; 631 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 632 I != E; ++I, ++GTI) { 633 const Value *Index = *I; 634 // Compute the (potentially symbolic) offset in bytes for this index. 635 if (StructType *STy = GTI.getStructTypeOrNull()) { 636 // For a struct, add the member offset. 637 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 638 if (FieldNo == 0) 639 continue; 640 641 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 642 continue; 643 } 644 645 // For an array/pointer, add the element offset, explicitly scaled. 646 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 647 if (CIdx->isZero()) 648 continue; 649 650 // Don't attempt to analyze GEPs if the scalable index is not zero. 651 TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL); 652 if (AllocTypeSize.isScalable()) { 653 Decomposed.Base = V; 654 return Decomposed; 655 } 656 657 Decomposed.Offset += AllocTypeSize.getFixedValue() * 658 CIdx->getValue().sextOrTrunc(MaxIndexSize); 659 continue; 660 } 661 662 TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL); 663 if (AllocTypeSize.isScalable()) { 664 Decomposed.Base = V; 665 return Decomposed; 666 } 667 668 GepHasConstantOffset = false; 669 670 // If the integer type is smaller than the index size, it is implicitly 671 // sign extended or truncated to index size. 672 unsigned Width = Index->getType()->getIntegerBitWidth(); 673 unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0; 674 unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0; 675 LinearExpression LE = GetLinearExpression( 676 CastedValue(Index, 0, SExtBits, TruncBits), DL, 0, AC, DT); 677 678 // Scale by the type size. 679 unsigned TypeSize = AllocTypeSize.getFixedValue(); 680 LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds()); 681 Decomposed.Offset += LE.Offset.sext(MaxIndexSize); 682 APInt Scale = LE.Scale.sext(MaxIndexSize); 683 684 // If we already had an occurrence of this index variable, merge this 685 // scale into it. For example, we want to handle: 686 // A[x][x] -> x*16 + x*4 -> x*20 687 // This also ensures that 'x' only appears in the index list once. 688 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 689 if ((Decomposed.VarIndices[i].Val.V == LE.Val.V || 690 areBothVScale(Decomposed.VarIndices[i].Val.V, LE.Val.V)) && 691 Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) { 692 Scale += Decomposed.VarIndices[i].Scale; 693 LE.IsNSW = false; // We cannot guarantee nsw for the merge. 694 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 695 break; 696 } 697 } 698 699 // Make sure that we have a scale that makes sense for this target's 700 // index size. 701 adjustToIndexSize(Scale, IndexSize); 702 703 if (!!Scale) { 704 VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW, 705 /* IsNegated */ false}; 706 Decomposed.VarIndices.push_back(Entry); 707 } 708 } 709 710 // Take care of wrap-arounds 711 if (GepHasConstantOffset) 712 adjustToIndexSize(Decomposed.Offset, IndexSize); 713 714 // Analyze the base pointer next. 715 V = GEPOp->getOperand(0); 716 } while (--MaxLookup); 717 718 // If the chain of expressions is too deep, just return early. 719 Decomposed.Base = V; 720 SearchLimitReached++; 721 return Decomposed; 722 } 723 724 ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc, 725 AAQueryInfo &AAQI, 726 bool IgnoreLocals) { 727 assert(Visited.empty() && "Visited must be cleared after use!"); 728 auto _ = make_scope_exit([&] { Visited.clear(); }); 729 730 unsigned MaxLookup = 8; 731 SmallVector<const Value *, 16> Worklist; 732 Worklist.push_back(Loc.Ptr); 733 ModRefInfo Result = ModRefInfo::NoModRef; 734 735 do { 736 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 737 if (!Visited.insert(V).second) 738 continue; 739 740 // Ignore allocas if we were instructed to do so. 741 if (IgnoreLocals && isa<AllocaInst>(V)) 742 continue; 743 744 // If the location points to memory that is known to be invariant for 745 // the life of the underlying SSA value, then we can exclude Mod from 746 // the set of valid memory effects. 747 // 748 // An argument that is marked readonly and noalias is known to be 749 // invariant while that function is executing. 750 if (const Argument *Arg = dyn_cast<Argument>(V)) { 751 if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) { 752 Result |= ModRefInfo::Ref; 753 continue; 754 } 755 } 756 757 // A global constant can't be mutated. 758 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 759 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 760 // global to be marked constant in some modules and non-constant in 761 // others. GV may even be a declaration, not a definition. 762 if (!GV->isConstant()) 763 return ModRefInfo::ModRef; 764 continue; 765 } 766 767 // If both select values point to local memory, then so does the select. 768 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 769 Worklist.push_back(SI->getTrueValue()); 770 Worklist.push_back(SI->getFalseValue()); 771 continue; 772 } 773 774 // If all values incoming to a phi node point to local memory, then so does 775 // the phi. 776 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 777 // Don't bother inspecting phi nodes with many operands. 778 if (PN->getNumIncomingValues() > MaxLookup) 779 return ModRefInfo::ModRef; 780 append_range(Worklist, PN->incoming_values()); 781 continue; 782 } 783 784 // Otherwise be conservative. 785 return ModRefInfo::ModRef; 786 } while (!Worklist.empty() && --MaxLookup); 787 788 // If we hit the maximum number of instructions to examine, be conservative. 789 if (!Worklist.empty()) 790 return ModRefInfo::ModRef; 791 792 return Result; 793 } 794 795 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 796 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 797 return II && II->getIntrinsicID() == IID; 798 } 799 800 /// Returns the behavior when calling the given call site. 801 MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call, 802 AAQueryInfo &AAQI) { 803 MemoryEffects Min = Call->getAttributes().getMemoryEffects(); 804 805 if (const Function *F = dyn_cast<Function>(Call->getCalledOperand())) { 806 MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F); 807 // Operand bundles on the call may also read or write memory, in addition 808 // to the behavior of the called function. 809 if (Call->hasReadingOperandBundles()) 810 FuncME |= MemoryEffects::readOnly(); 811 if (Call->hasClobberingOperandBundles()) 812 FuncME |= MemoryEffects::writeOnly(); 813 Min &= FuncME; 814 } 815 816 return Min; 817 } 818 819 /// Returns the behavior when calling the given function. For use when the call 820 /// site is not known. 821 MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) { 822 switch (F->getIntrinsicID()) { 823 case Intrinsic::experimental_guard: 824 case Intrinsic::experimental_deoptimize: 825 // These intrinsics can read arbitrary memory, and additionally modref 826 // inaccessible memory to model control dependence. 827 return MemoryEffects::readOnly() | 828 MemoryEffects::inaccessibleMemOnly(ModRefInfo::ModRef); 829 } 830 831 return F->getMemoryEffects(); 832 } 833 834 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 835 unsigned ArgIdx) { 836 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 837 return ModRefInfo::Mod; 838 839 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 840 return ModRefInfo::Ref; 841 842 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 843 return ModRefInfo::NoModRef; 844 845 return ModRefInfo::ModRef; 846 } 847 848 #ifndef NDEBUG 849 static const Function *getParent(const Value *V) { 850 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 851 if (!inst->getParent()) 852 return nullptr; 853 return inst->getParent()->getParent(); 854 } 855 856 if (const Argument *arg = dyn_cast<Argument>(V)) 857 return arg->getParent(); 858 859 return nullptr; 860 } 861 862 static bool notDifferentParent(const Value *O1, const Value *O2) { 863 864 const Function *F1 = getParent(O1); 865 const Function *F2 = getParent(O2); 866 867 return !F1 || !F2 || F1 == F2; 868 } 869 #endif 870 871 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 872 const MemoryLocation &LocB, AAQueryInfo &AAQI, 873 const Instruction *CtxI) { 874 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 875 "BasicAliasAnalysis doesn't support interprocedural queries."); 876 return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI, CtxI); 877 } 878 879 /// Checks to see if the specified callsite can clobber the specified memory 880 /// object. 881 /// 882 /// Since we only look at local properties of this function, we really can't 883 /// say much about this query. We do, however, use simple "address taken" 884 /// analysis on local objects. 885 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 886 const MemoryLocation &Loc, 887 AAQueryInfo &AAQI) { 888 assert(notDifferentParent(Call, Loc.Ptr) && 889 "AliasAnalysis query involving multiple functions!"); 890 891 const Value *Object = getUnderlyingObject(Loc.Ptr); 892 893 // Calls marked 'tail' cannot read or write allocas from the current frame 894 // because the current frame might be destroyed by the time they run. However, 895 // a tail call may use an alloca with byval. Calling with byval copies the 896 // contents of the alloca into argument registers or stack slots, so there is 897 // no lifetime issue. 898 if (isa<AllocaInst>(Object)) 899 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 900 if (CI->isTailCall() && 901 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 902 return ModRefInfo::NoModRef; 903 904 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 905 // modify them even though the alloca is not escaped. 906 if (auto *AI = dyn_cast<AllocaInst>(Object)) 907 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 908 return ModRefInfo::Mod; 909 910 // A call can access a locally allocated object either because it is passed as 911 // an argument to the call, or because it has escaped prior to the call. 912 // 913 // Make sure the object has not escaped here, and then check that none of the 914 // call arguments alias the object below. 915 if (!isa<Constant>(Object) && Call != Object && 916 AAQI.CI->isNotCapturedBefore(Object, Call, /*OrAt*/ false)) { 917 918 // Optimistically assume that call doesn't touch Object and check this 919 // assumption in the following loop. 920 ModRefInfo Result = ModRefInfo::NoModRef; 921 922 unsigned OperandNo = 0; 923 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 924 CI != CE; ++CI, ++OperandNo) { 925 if (!(*CI)->getType()->isPointerTy()) 926 continue; 927 928 // Call doesn't access memory through this operand, so we don't care 929 // if it aliases with Object. 930 if (Call->doesNotAccessMemory(OperandNo)) 931 continue; 932 933 // If this is a no-capture pointer argument, see if we can tell that it 934 // is impossible to alias the pointer we're checking. 935 AliasResult AR = 936 AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(*CI), 937 MemoryLocation::getBeforeOrAfter(Object), AAQI); 938 // Operand doesn't alias 'Object', continue looking for other aliases 939 if (AR == AliasResult::NoAlias) 940 continue; 941 // Operand aliases 'Object', but call doesn't modify it. Strengthen 942 // initial assumption and keep looking in case if there are more aliases. 943 if (Call->onlyReadsMemory(OperandNo)) { 944 Result |= ModRefInfo::Ref; 945 continue; 946 } 947 // Operand aliases 'Object' but call only writes into it. 948 if (Call->onlyWritesMemory(OperandNo)) { 949 Result |= ModRefInfo::Mod; 950 continue; 951 } 952 // This operand aliases 'Object' and call reads and writes into it. 953 // Setting ModRef will not yield an early return below, MustAlias is not 954 // used further. 955 Result = ModRefInfo::ModRef; 956 break; 957 } 958 959 // Early return if we improved mod ref information 960 if (!isModAndRefSet(Result)) 961 return Result; 962 } 963 964 // If the call is malloc/calloc like, we can assume that it doesn't 965 // modify any IR visible value. This is only valid because we assume these 966 // routines do not read values visible in the IR. TODO: Consider special 967 // casing realloc and strdup routines which access only their arguments as 968 // well. Or alternatively, replace all of this with inaccessiblememonly once 969 // that's implemented fully. 970 if (isMallocOrCallocLikeFn(Call, &TLI)) { 971 // Be conservative if the accessed pointer may alias the allocation - 972 // fallback to the generic handling below. 973 if (AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(Call), Loc, AAQI) == 974 AliasResult::NoAlias) 975 return ModRefInfo::NoModRef; 976 } 977 978 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 979 // writing so that proper control dependencies are maintained but they never 980 // mod any particular memory location visible to the IR. 981 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 982 // intrinsic is now modeled as reading memory. This prevents hoisting the 983 // invariant.start intrinsic over stores. Consider: 984 // *ptr = 40; 985 // *ptr = 50; 986 // invariant_start(ptr) 987 // int val = *ptr; 988 // print(val); 989 // 990 // This cannot be transformed to: 991 // 992 // *ptr = 40; 993 // invariant_start(ptr) 994 // *ptr = 50; 995 // int val = *ptr; 996 // print(val); 997 // 998 // The transformation will cause the second store to be ignored (based on 999 // rules of invariant.start) and print 40, while the first program always 1000 // prints 50. 1001 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 1002 return ModRefInfo::Ref; 1003 1004 // Be conservative. 1005 return ModRefInfo::ModRef; 1006 } 1007 1008 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1009 const CallBase *Call2, 1010 AAQueryInfo &AAQI) { 1011 // Guard intrinsics are marked as arbitrarily writing so that proper control 1012 // dependencies are maintained but they never mods any particular memory 1013 // location. 1014 // 1015 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1016 // heap state at the point the guard is issued needs to be consistent in case 1017 // the guard invokes the "deopt" continuation. 1018 1019 // NB! This function is *not* commutative, so we special case two 1020 // possibilities for guard intrinsics. 1021 1022 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1023 return isModSet(getMemoryEffects(Call2, AAQI).getModRef()) 1024 ? ModRefInfo::Ref 1025 : ModRefInfo::NoModRef; 1026 1027 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1028 return isModSet(getMemoryEffects(Call1, AAQI).getModRef()) 1029 ? ModRefInfo::Mod 1030 : ModRefInfo::NoModRef; 1031 1032 // Be conservative. 1033 return ModRefInfo::ModRef; 1034 } 1035 1036 /// Return true if we know V to the base address of the corresponding memory 1037 /// object. This implies that any address less than V must be out of bounds 1038 /// for the underlying object. Note that just being isIdentifiedObject() is 1039 /// not enough - For example, a negative offset from a noalias argument or call 1040 /// can be inbounds w.r.t the actual underlying object. 1041 static bool isBaseOfObject(const Value *V) { 1042 // TODO: We can handle other cases here 1043 // 1) For GC languages, arguments to functions are often required to be 1044 // base pointers. 1045 // 2) Result of allocation routines are often base pointers. Leverage TLI. 1046 return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); 1047 } 1048 1049 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1050 /// another pointer. 1051 /// 1052 /// We know that V1 is a GEP, but we don't know anything about V2. 1053 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1054 /// V2. 1055 AliasResult BasicAAResult::aliasGEP( 1056 const GEPOperator *GEP1, LocationSize V1Size, 1057 const Value *V2, LocationSize V2Size, 1058 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1059 if (!V1Size.hasValue() && !V2Size.hasValue()) { 1060 // TODO: This limitation exists for compile-time reasons. Relax it if we 1061 // can avoid exponential pathological cases. 1062 if (!isa<GEPOperator>(V2)) 1063 return AliasResult::MayAlias; 1064 1065 // If both accesses have unknown size, we can only check whether the base 1066 // objects don't alias. 1067 AliasResult BaseAlias = 1068 AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1069 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1070 return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias 1071 : AliasResult::MayAlias; 1072 } 1073 1074 DominatorTree *DT = getDT(AAQI); 1075 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1076 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1077 1078 // Bail if we were not able to decompose anything. 1079 if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2) 1080 return AliasResult::MayAlias; 1081 1082 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1083 // symbolic difference. 1084 subtractDecomposedGEPs(DecompGEP1, DecompGEP2, AAQI); 1085 1086 // If an inbounds GEP would have to start from an out of bounds address 1087 // for the two to alias, then we can assume noalias. 1088 // TODO: Remove !isScalable() once BasicAA fully support scalable location 1089 // size 1090 if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && 1091 V2Size.hasValue() && !V2Size.isScalable() && 1092 DecompGEP1.Offset.sge(V2Size.getValue()) && 1093 isBaseOfObject(DecompGEP2.Base)) 1094 return AliasResult::NoAlias; 1095 1096 if (isa<GEPOperator>(V2)) { 1097 // Symmetric case to above. 1098 if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && 1099 V1Size.hasValue() && !V1Size.isScalable() && 1100 DecompGEP1.Offset.sle(-V1Size.getValue()) && 1101 isBaseOfObject(DecompGEP1.Base)) 1102 return AliasResult::NoAlias; 1103 } 1104 1105 // For GEPs with identical offsets, we can preserve the size and AAInfo 1106 // when performing the alias check on the underlying objects. 1107 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1108 return AAQI.AAR.alias(MemoryLocation(DecompGEP1.Base, V1Size), 1109 MemoryLocation(DecompGEP2.Base, V2Size), AAQI); 1110 1111 // Do the base pointers alias? 1112 AliasResult BaseAlias = 1113 AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(DecompGEP1.Base), 1114 MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI); 1115 1116 // If we get a No or May, then return it immediately, no amount of analysis 1117 // will improve this situation. 1118 if (BaseAlias != AliasResult::MustAlias) { 1119 assert(BaseAlias == AliasResult::NoAlias || 1120 BaseAlias == AliasResult::MayAlias); 1121 return BaseAlias; 1122 } 1123 1124 // If there is a constant difference between the pointers, but the difference 1125 // is less than the size of the associated memory object, then we know 1126 // that the objects are partially overlapping. If the difference is 1127 // greater, we know they do not overlap. 1128 if (DecompGEP1.VarIndices.empty()) { 1129 APInt &Off = DecompGEP1.Offset; 1130 1131 // Initialize for Off >= 0 (V2 <= GEP1) case. 1132 const Value *LeftPtr = V2; 1133 const Value *RightPtr = GEP1; 1134 LocationSize VLeftSize = V2Size; 1135 LocationSize VRightSize = V1Size; 1136 const bool Swapped = Off.isNegative(); 1137 1138 if (Swapped) { 1139 // Swap if we have the situation where: 1140 // + + 1141 // | BaseOffset | 1142 // ---------------->| 1143 // |-->V1Size |-------> V2Size 1144 // GEP1 V2 1145 std::swap(LeftPtr, RightPtr); 1146 std::swap(VLeftSize, VRightSize); 1147 Off = -Off; 1148 } 1149 1150 if (!VLeftSize.hasValue()) 1151 return AliasResult::MayAlias; 1152 1153 const TypeSize LSize = VLeftSize.getValue(); 1154 if (!LSize.isScalable()) { 1155 if (Off.ult(LSize)) { 1156 // Conservatively drop processing if a phi was visited and/or offset is 1157 // too big. 1158 AliasResult AR = AliasResult::PartialAlias; 1159 if (VRightSize.hasValue() && !VRightSize.isScalable() && 1160 Off.ule(INT32_MAX) && (Off + VRightSize.getValue()).ule(LSize)) { 1161 // Memory referenced by right pointer is nested. Save the offset in 1162 // cache. Note that originally offset estimated as GEP1-V2, but 1163 // AliasResult contains the shift that represents GEP1+Offset=V2. 1164 AR.setOffset(-Off.getSExtValue()); 1165 AR.swap(Swapped); 1166 } 1167 return AR; 1168 } 1169 return AliasResult::NoAlias; 1170 } else { 1171 // We can use the getVScaleRange to prove that Off >= (CR.upper * LSize). 1172 ConstantRange CR = getVScaleRange(&F, Off.getBitWidth()); 1173 bool Overflow; 1174 APInt UpperRange = CR.getUnsignedMax().umul_ov( 1175 APInt(Off.getBitWidth(), LSize.getKnownMinValue()), Overflow); 1176 if (!Overflow && Off.uge(UpperRange)) 1177 return AliasResult::NoAlias; 1178 } 1179 } 1180 1181 // VScale Alias Analysis - Given one scalable offset between accesses and a 1182 // scalable typesize, we can divide each side by vscale, treating both values 1183 // as a constant. We prove that Offset/vscale >= TypeSize/vscale. 1184 if (DecompGEP1.VarIndices.size() == 1 && 1185 DecompGEP1.VarIndices[0].Val.TruncBits == 0 && 1186 DecompGEP1.Offset.isZero() && 1187 PatternMatch::match(DecompGEP1.VarIndices[0].Val.V, 1188 PatternMatch::m_VScale())) { 1189 const VariableGEPIndex &ScalableVar = DecompGEP1.VarIndices[0]; 1190 APInt Scale = 1191 ScalableVar.IsNegated ? -ScalableVar.Scale : ScalableVar.Scale; 1192 LocationSize VLeftSize = Scale.isNegative() ? V1Size : V2Size; 1193 1194 // Check if the offset is known to not overflow, if it does then attempt to 1195 // prove it with the known values of vscale_range. 1196 bool Overflows = !DecompGEP1.VarIndices[0].IsNSW; 1197 if (Overflows) { 1198 ConstantRange CR = getVScaleRange(&F, Scale.getBitWidth()); 1199 (void)CR.getSignedMax().smul_ov(Scale, Overflows); 1200 } 1201 1202 if (!Overflows) { 1203 // Note that we do not check that the typesize is scalable, as vscale >= 1 1204 // so noalias still holds so long as the dependency distance is at least 1205 // as big as the typesize. 1206 if (VLeftSize.hasValue() && 1207 Scale.abs().uge(VLeftSize.getValue().getKnownMinValue())) 1208 return AliasResult::NoAlias; 1209 } 1210 } 1211 1212 // Bail on analysing scalable LocationSize 1213 if (V1Size.isScalable() || V2Size.isScalable()) 1214 return AliasResult::MayAlias; 1215 1216 // We need to know both acess sizes for all the following heuristics. 1217 if (!V1Size.hasValue() || !V2Size.hasValue()) 1218 return AliasResult::MayAlias; 1219 1220 APInt GCD; 1221 ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset); 1222 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1223 const VariableGEPIndex &Index = DecompGEP1.VarIndices[i]; 1224 const APInt &Scale = Index.Scale; 1225 APInt ScaleForGCD = Scale; 1226 if (!Index.IsNSW) 1227 ScaleForGCD = 1228 APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero()); 1229 1230 if (i == 0) 1231 GCD = ScaleForGCD.abs(); 1232 else 1233 GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs()); 1234 1235 ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false, 1236 true, &AC, Index.CxtI); 1237 KnownBits Known = 1238 computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT); 1239 CR = CR.intersectWith( 1240 ConstantRange::fromKnownBits(Known, /* Signed */ true), 1241 ConstantRange::Signed); 1242 CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth()); 1243 1244 assert(OffsetRange.getBitWidth() == Scale.getBitWidth() && 1245 "Bit widths are normalized to MaxIndexSize"); 1246 if (Index.IsNSW) 1247 CR = CR.smul_sat(ConstantRange(Scale)); 1248 else 1249 CR = CR.smul_fast(ConstantRange(Scale)); 1250 1251 if (Index.IsNegated) 1252 OffsetRange = OffsetRange.sub(CR); 1253 else 1254 OffsetRange = OffsetRange.add(CR); 1255 } 1256 1257 // We now have accesses at two offsets from the same base: 1258 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1259 // 2. 0 with size V2Size 1260 // Using arithmetic modulo GCD, the accesses are at 1261 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1262 // into the range [V2Size..GCD), then we know they cannot overlap. 1263 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1264 if (ModOffset.isNegative()) 1265 ModOffset += GCD; // We want mod, not rem. 1266 if (ModOffset.uge(V2Size.getValue()) && 1267 (GCD - ModOffset).uge(V1Size.getValue())) 1268 return AliasResult::NoAlias; 1269 1270 // Compute ranges of potentially accessed bytes for both accesses. If the 1271 // interseciton is empty, there can be no overlap. 1272 unsigned BW = OffsetRange.getBitWidth(); 1273 ConstantRange Range1 = OffsetRange.add( 1274 ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue()))); 1275 ConstantRange Range2 = 1276 ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue())); 1277 if (Range1.intersectWith(Range2).isEmptySet()) 1278 return AliasResult::NoAlias; 1279 1280 // Try to determine the range of values for VarIndex such that 1281 // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex. 1282 std::optional<APInt> MinAbsVarIndex; 1283 if (DecompGEP1.VarIndices.size() == 1) { 1284 // VarIndex = Scale*V. 1285 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; 1286 if (Var.Val.TruncBits == 0 && 1287 isKnownNonZero(Var.Val.V, SimplifyQuery(DL, DT, &AC, Var.CxtI))) { 1288 // Check if abs(V*Scale) >= abs(Scale) holds in the presence of 1289 // potentially wrapping math. 1290 auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) { 1291 if (Var.IsNSW) 1292 return true; 1293 1294 int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits(); 1295 // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds. 1296 // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a 1297 // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap. 1298 int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW; 1299 if (MaxScaleValueBW <= 0) 1300 return false; 1301 return Var.Scale.ule( 1302 APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth())); 1303 }; 1304 // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the 1305 // presence of potentially wrapping math. 1306 if (MultiplyByScaleNoWrap(Var)) { 1307 // If V != 0 then abs(VarIndex) >= abs(Scale). 1308 MinAbsVarIndex = Var.Scale.abs(); 1309 } 1310 } 1311 } else if (DecompGEP1.VarIndices.size() == 2) { 1312 // VarIndex = Scale*V0 + (-Scale)*V1. 1313 // If V0 != V1 then abs(VarIndex) >= abs(Scale). 1314 // Check that MayBeCrossIteration is false, to avoid reasoning about 1315 // inequality of values across loop iterations. 1316 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1317 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1318 if (Var0.hasNegatedScaleOf(Var1) && Var0.Val.TruncBits == 0 && 1319 Var0.Val.hasSameCastsAs(Var1.Val) && !AAQI.MayBeCrossIteration && 1320 isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr, 1321 DT)) 1322 MinAbsVarIndex = Var0.Scale.abs(); 1323 } 1324 1325 if (MinAbsVarIndex) { 1326 // The constant offset will have added at least +/-MinAbsVarIndex to it. 1327 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; 1328 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; 1329 // We know that Offset <= OffsetLo || Offset >= OffsetHi 1330 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1331 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1332 return AliasResult::NoAlias; 1333 } 1334 1335 if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT, AAQI)) 1336 return AliasResult::NoAlias; 1337 1338 // Statically, we can see that the base objects are the same, but the 1339 // pointers have dynamic offsets which we can't resolve. And none of our 1340 // little tricks above worked. 1341 return AliasResult::MayAlias; 1342 } 1343 1344 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1345 // If the results agree, take it. 1346 if (A == B) 1347 return A; 1348 // A mix of PartialAlias and MustAlias is PartialAlias. 1349 if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || 1350 (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) 1351 return AliasResult::PartialAlias; 1352 // Otherwise, we don't know anything. 1353 return AliasResult::MayAlias; 1354 } 1355 1356 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1357 /// against another. 1358 AliasResult 1359 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1360 const Value *V2, LocationSize V2Size, 1361 AAQueryInfo &AAQI) { 1362 // If the values are Selects with the same condition, we can do a more precise 1363 // check: just check for aliases between the values on corresponding arms. 1364 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1365 if (isValueEqualInPotentialCycles(SI->getCondition(), SI2->getCondition(), 1366 AAQI)) { 1367 AliasResult Alias = 1368 AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize), 1369 MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); 1370 if (Alias == AliasResult::MayAlias) 1371 return AliasResult::MayAlias; 1372 AliasResult ThisAlias = 1373 AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize), 1374 MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); 1375 return MergeAliasResults(ThisAlias, Alias); 1376 } 1377 1378 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1379 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1380 AliasResult Alias = AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize), 1381 MemoryLocation(V2, V2Size), AAQI); 1382 if (Alias == AliasResult::MayAlias) 1383 return AliasResult::MayAlias; 1384 1385 AliasResult ThisAlias = 1386 AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize), 1387 MemoryLocation(V2, V2Size), AAQI); 1388 return MergeAliasResults(ThisAlias, Alias); 1389 } 1390 1391 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1392 /// another. 1393 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1394 const Value *V2, LocationSize V2Size, 1395 AAQueryInfo &AAQI) { 1396 if (!PN->getNumIncomingValues()) 1397 return AliasResult::NoAlias; 1398 // If the values are PHIs in the same block, we can do a more precise 1399 // as well as efficient check: just check for aliases between the values 1400 // on corresponding edges. 1401 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1402 if (PN2->getParent() == PN->getParent()) { 1403 std::optional<AliasResult> Alias; 1404 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1405 AliasResult ThisAlias = AAQI.AAR.alias( 1406 MemoryLocation(PN->getIncomingValue(i), PNSize), 1407 MemoryLocation( 1408 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), 1409 AAQI); 1410 if (Alias) 1411 *Alias = MergeAliasResults(*Alias, ThisAlias); 1412 else 1413 Alias = ThisAlias; 1414 if (*Alias == AliasResult::MayAlias) 1415 break; 1416 } 1417 return *Alias; 1418 } 1419 1420 SmallVector<Value *, 4> V1Srcs; 1421 // If a phi operand recurses back to the phi, we can still determine NoAlias 1422 // if we don't alias the underlying objects of the other phi operands, as we 1423 // know that the recursive phi needs to be based on them in some way. 1424 bool isRecursive = false; 1425 auto CheckForRecPhi = [&](Value *PV) { 1426 if (!EnableRecPhiAnalysis) 1427 return false; 1428 if (getUnderlyingObject(PV) == PN) { 1429 isRecursive = true; 1430 return true; 1431 } 1432 return false; 1433 }; 1434 1435 SmallPtrSet<Value *, 4> UniqueSrc; 1436 Value *OnePhi = nullptr; 1437 for (Value *PV1 : PN->incoming_values()) { 1438 // Skip the phi itself being the incoming value. 1439 if (PV1 == PN) 1440 continue; 1441 1442 if (isa<PHINode>(PV1)) { 1443 if (OnePhi && OnePhi != PV1) { 1444 // To control potential compile time explosion, we choose to be 1445 // conserviate when we have more than one Phi input. It is important 1446 // that we handle the single phi case as that lets us handle LCSSA 1447 // phi nodes and (combined with the recursive phi handling) simple 1448 // pointer induction variable patterns. 1449 return AliasResult::MayAlias; 1450 } 1451 OnePhi = PV1; 1452 } 1453 1454 if (CheckForRecPhi(PV1)) 1455 continue; 1456 1457 if (UniqueSrc.insert(PV1).second) 1458 V1Srcs.push_back(PV1); 1459 } 1460 1461 if (OnePhi && UniqueSrc.size() > 1) 1462 // Out of an abundance of caution, allow only the trivial lcssa and 1463 // recursive phi cases. 1464 return AliasResult::MayAlias; 1465 1466 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1467 // value. This should only be possible in blocks unreachable from the entry 1468 // block, but return MayAlias just in case. 1469 if (V1Srcs.empty()) 1470 return AliasResult::MayAlias; 1471 1472 // If this PHI node is recursive, indicate that the pointer may be moved 1473 // across iterations. We can only prove NoAlias if different underlying 1474 // objects are involved. 1475 if (isRecursive) 1476 PNSize = LocationSize::beforeOrAfterPointer(); 1477 1478 // In the recursive alias queries below, we may compare values from two 1479 // different loop iterations. 1480 SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true); 1481 1482 AliasResult Alias = AAQI.AAR.alias(MemoryLocation(V1Srcs[0], PNSize), 1483 MemoryLocation(V2, V2Size), AAQI); 1484 1485 // Early exit if the check of the first PHI source against V2 is MayAlias. 1486 // Other results are not possible. 1487 if (Alias == AliasResult::MayAlias) 1488 return AliasResult::MayAlias; 1489 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1490 // remain valid to all elements and needs to conservatively return MayAlias. 1491 if (isRecursive && Alias != AliasResult::NoAlias) 1492 return AliasResult::MayAlias; 1493 1494 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1495 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1496 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1497 Value *V = V1Srcs[i]; 1498 1499 AliasResult ThisAlias = AAQI.AAR.alias( 1500 MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), AAQI); 1501 Alias = MergeAliasResults(ThisAlias, Alias); 1502 if (Alias == AliasResult::MayAlias) 1503 break; 1504 } 1505 1506 return Alias; 1507 } 1508 1509 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1510 /// array references. 1511 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1512 const Value *V2, LocationSize V2Size, 1513 AAQueryInfo &AAQI, 1514 const Instruction *CtxI) { 1515 // If either of the memory references is empty, it doesn't matter what the 1516 // pointer values are. 1517 if (V1Size.isZero() || V2Size.isZero()) 1518 return AliasResult::NoAlias; 1519 1520 // Strip off any casts if they exist. 1521 V1 = V1->stripPointerCastsForAliasAnalysis(); 1522 V2 = V2->stripPointerCastsForAliasAnalysis(); 1523 1524 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1525 // value for undef that aliases nothing in the program. 1526 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1527 return AliasResult::NoAlias; 1528 1529 // Are we checking for alias of the same value? 1530 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1531 // different iterations. We must therefore make sure that this is not the 1532 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1533 // happen by looking at the visited phi nodes and making sure they cannot 1534 // reach the value. 1535 if (isValueEqualInPotentialCycles(V1, V2, AAQI)) 1536 return AliasResult::MustAlias; 1537 1538 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1539 return AliasResult::NoAlias; // Scalars cannot alias each other 1540 1541 // Figure out what objects these things are pointing to if we can. 1542 const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1543 const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1544 1545 // Null values in the default address space don't point to any object, so they 1546 // don't alias any other pointer. 1547 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1548 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1549 return AliasResult::NoAlias; 1550 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1551 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1552 return AliasResult::NoAlias; 1553 1554 if (O1 != O2) { 1555 // If V1/V2 point to two different objects, we know that we have no alias. 1556 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1557 return AliasResult::NoAlias; 1558 1559 // Function arguments can't alias with things that are known to be 1560 // unambigously identified at the function level. 1561 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1562 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1563 return AliasResult::NoAlias; 1564 1565 // If one pointer is the result of a call/invoke or load and the other is a 1566 // non-escaping local object within the same function, then we know the 1567 // object couldn't escape to a point where the call could return it. 1568 // 1569 // Note that if the pointers are in different functions, there are a 1570 // variety of complications. A call with a nocapture argument may still 1571 // temporary store the nocapture argument's value in a temporary memory 1572 // location if that memory location doesn't escape. Or it may pass a 1573 // nocapture value to other functions as long as they don't capture it. 1574 if (isEscapeSource(O1) && AAQI.CI->isNotCapturedBefore( 1575 O2, dyn_cast<Instruction>(O1), /*OrAt*/ true)) 1576 return AliasResult::NoAlias; 1577 if (isEscapeSource(O2) && AAQI.CI->isNotCapturedBefore( 1578 O1, dyn_cast<Instruction>(O2), /*OrAt*/ true)) 1579 return AliasResult::NoAlias; 1580 } 1581 1582 // If the size of one access is larger than the entire object on the other 1583 // side, then we know such behavior is undefined and can assume no alias. 1584 bool NullIsValidLocation = NullPointerIsDefined(&F); 1585 if ((isObjectSmallerThan( 1586 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1587 TLI, NullIsValidLocation)) || 1588 (isObjectSmallerThan( 1589 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1590 TLI, NullIsValidLocation))) 1591 return AliasResult::NoAlias; 1592 1593 if (EnableSeparateStorageAnalysis) { 1594 for (AssumptionCache::ResultElem &Elem : AC.assumptionsFor(O1)) { 1595 if (!Elem || Elem.Index == AssumptionCache::ExprResultIdx) 1596 continue; 1597 1598 AssumeInst *Assume = cast<AssumeInst>(Elem); 1599 OperandBundleUse OBU = Assume->getOperandBundleAt(Elem.Index); 1600 if (OBU.getTagName() == "separate_storage") { 1601 assert(OBU.Inputs.size() == 2); 1602 const Value *Hint1 = OBU.Inputs[0].get(); 1603 const Value *Hint2 = OBU.Inputs[1].get(); 1604 // This is often a no-op; instcombine rewrites this for us. No-op 1605 // getUnderlyingObject calls are fast, though. 1606 const Value *HintO1 = getUnderlyingObject(Hint1); 1607 const Value *HintO2 = getUnderlyingObject(Hint2); 1608 1609 DominatorTree *DT = getDT(AAQI); 1610 auto ValidAssumeForPtrContext = [&](const Value *Ptr) { 1611 if (const Instruction *PtrI = dyn_cast<Instruction>(Ptr)) { 1612 return isValidAssumeForContext(Assume, PtrI, DT, 1613 /* AllowEphemerals */ true); 1614 } 1615 if (const Argument *PtrA = dyn_cast<Argument>(Ptr)) { 1616 const Instruction *FirstI = 1617 &*PtrA->getParent()->getEntryBlock().begin(); 1618 return isValidAssumeForContext(Assume, FirstI, DT, 1619 /* AllowEphemerals */ true); 1620 } 1621 return false; 1622 }; 1623 1624 if ((O1 == HintO1 && O2 == HintO2) || (O1 == HintO2 && O2 == HintO1)) { 1625 // Note that we go back to V1 and V2 for the 1626 // ValidAssumeForPtrContext checks; they're dominated by O1 and O2, 1627 // so strictly more assumptions are valid for them. 1628 if ((CtxI && isValidAssumeForContext(Assume, CtxI, DT, 1629 /* AllowEphemerals */ true)) || 1630 ValidAssumeForPtrContext(V1) || ValidAssumeForPtrContext(V2)) { 1631 return AliasResult::NoAlias; 1632 } 1633 } 1634 } 1635 } 1636 } 1637 1638 // If one the accesses may be before the accessed pointer, canonicalize this 1639 // by using unknown after-pointer sizes for both accesses. This is 1640 // equivalent, because regardless of which pointer is lower, one of them 1641 // will always came after the other, as long as the underlying objects aren't 1642 // disjoint. We do this so that the rest of BasicAA does not have to deal 1643 // with accesses before the base pointer, and to improve cache utilization by 1644 // merging equivalent states. 1645 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1646 V1Size = LocationSize::afterPointer(); 1647 V2Size = LocationSize::afterPointer(); 1648 } 1649 1650 // FIXME: If this depth limit is hit, then we may cache sub-optimal results 1651 // for recursive queries. For this reason, this limit is chosen to be large 1652 // enough to be very rarely hit, while still being small enough to avoid 1653 // stack overflows. 1654 if (AAQI.Depth >= 512) 1655 return AliasResult::MayAlias; 1656 1657 // Check the cache before climbing up use-def chains. This also terminates 1658 // otherwise infinitely recursive queries. Include MayBeCrossIteration in the 1659 // cache key, because some cases where MayBeCrossIteration==false returns 1660 // MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true. 1661 AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration}, 1662 {V2, V2Size, AAQI.MayBeCrossIteration}); 1663 const bool Swapped = V1 > V2; 1664 if (Swapped) 1665 std::swap(Locs.first, Locs.second); 1666 const auto &Pair = AAQI.AliasCache.try_emplace( 1667 Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); 1668 if (!Pair.second) { 1669 auto &Entry = Pair.first->second; 1670 if (!Entry.isDefinitive()) { 1671 // Remember that we used an assumption. 1672 ++Entry.NumAssumptionUses; 1673 ++AAQI.NumAssumptionUses; 1674 } 1675 // Cache contains sorted {V1,V2} pairs but we should return original order. 1676 auto Result = Entry.Result; 1677 Result.swap(Swapped); 1678 return Result; 1679 } 1680 1681 int OrigNumAssumptionUses = AAQI.NumAssumptionUses; 1682 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); 1683 AliasResult Result = 1684 aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); 1685 1686 auto It = AAQI.AliasCache.find(Locs); 1687 assert(It != AAQI.AliasCache.end() && "Must be in cache"); 1688 auto &Entry = It->second; 1689 1690 // Check whether a NoAlias assumption has been used, but disproven. 1691 bool AssumptionDisproven = 1692 Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; 1693 if (AssumptionDisproven) 1694 Result = AliasResult::MayAlias; 1695 1696 // This is a definitive result now, when considered as a root query. 1697 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; 1698 Entry.Result = Result; 1699 // Cache contains sorted {V1,V2} pairs. 1700 Entry.Result.swap(Swapped); 1701 Entry.NumAssumptionUses = -1; 1702 1703 // If the assumption has been disproven, remove any results that may have 1704 // been based on this assumption. Do this after the Entry updates above to 1705 // avoid iterator invalidation. 1706 if (AssumptionDisproven) 1707 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) 1708 AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); 1709 1710 // The result may still be based on assumptions higher up in the chain. 1711 // Remember it, so it can be purged from the cache later. 1712 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && 1713 Result != AliasResult::MayAlias) 1714 AAQI.AssumptionBasedResults.push_back(Locs); 1715 return Result; 1716 } 1717 1718 AliasResult BasicAAResult::aliasCheckRecursive( 1719 const Value *V1, LocationSize V1Size, 1720 const Value *V2, LocationSize V2Size, 1721 AAQueryInfo &AAQI, const Value *O1, const Value *O2) { 1722 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1723 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); 1724 if (Result != AliasResult::MayAlias) 1725 return Result; 1726 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1727 AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); 1728 Result.swap(); 1729 if (Result != AliasResult::MayAlias) 1730 return Result; 1731 } 1732 1733 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1734 AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); 1735 if (Result != AliasResult::MayAlias) 1736 return Result; 1737 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1738 AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); 1739 Result.swap(); 1740 if (Result != AliasResult::MayAlias) 1741 return Result; 1742 } 1743 1744 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1745 AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); 1746 if (Result != AliasResult::MayAlias) 1747 return Result; 1748 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1749 AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); 1750 Result.swap(); 1751 if (Result != AliasResult::MayAlias) 1752 return Result; 1753 } 1754 1755 // If both pointers are pointing into the same object and one of them 1756 // accesses the entire object, then the accesses must overlap in some way. 1757 if (O1 == O2) { 1758 bool NullIsValidLocation = NullPointerIsDefined(&F); 1759 if (V1Size.isPrecise() && V2Size.isPrecise() && 1760 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1761 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1762 return AliasResult::PartialAlias; 1763 } 1764 1765 return AliasResult::MayAlias; 1766 } 1767 1768 /// Check whether two Values can be considered equivalent. 1769 /// 1770 /// If the values may come from different cycle iterations, this will also 1771 /// check that the values are not part of cycle. We have to do this because we 1772 /// are looking through phi nodes, that is we say 1773 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1774 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1775 const Value *V2, 1776 const AAQueryInfo &AAQI) { 1777 if (V != V2) 1778 return false; 1779 1780 if (!AAQI.MayBeCrossIteration) 1781 return true; 1782 1783 // Non-instructions and instructions in the entry block cannot be part of 1784 // a loop. 1785 const Instruction *Inst = dyn_cast<Instruction>(V); 1786 if (!Inst || Inst->getParent()->isEntryBlock()) 1787 return true; 1788 1789 return isNotInCycle(Inst, getDT(AAQI), /*LI*/ nullptr); 1790 } 1791 1792 /// Computes the symbolic difference between two de-composed GEPs. 1793 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP, 1794 const DecomposedGEP &SrcGEP, 1795 const AAQueryInfo &AAQI) { 1796 DestGEP.Offset -= SrcGEP.Offset; 1797 for (const VariableGEPIndex &Src : SrcGEP.VarIndices) { 1798 // Find V in Dest. This is N^2, but pointer indices almost never have more 1799 // than a few variable indexes. 1800 bool Found = false; 1801 for (auto I : enumerate(DestGEP.VarIndices)) { 1802 VariableGEPIndex &Dest = I.value(); 1803 if ((!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V, AAQI) && 1804 !areBothVScale(Dest.Val.V, Src.Val.V)) || 1805 !Dest.Val.hasSameCastsAs(Src.Val)) 1806 continue; 1807 1808 // Normalize IsNegated if we're going to lose the NSW flag anyway. 1809 if (Dest.IsNegated) { 1810 Dest.Scale = -Dest.Scale; 1811 Dest.IsNegated = false; 1812 Dest.IsNSW = false; 1813 } 1814 1815 // If we found it, subtract off Scale V's from the entry in Dest. If it 1816 // goes to zero, remove the entry. 1817 if (Dest.Scale != Src.Scale) { 1818 Dest.Scale -= Src.Scale; 1819 Dest.IsNSW = false; 1820 } else { 1821 DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index()); 1822 } 1823 Found = true; 1824 break; 1825 } 1826 1827 // If we didn't consume this entry, add it to the end of the Dest list. 1828 if (!Found) { 1829 VariableGEPIndex Entry = {Src.Val, Src.Scale, Src.CxtI, Src.IsNSW, 1830 /* IsNegated */ true}; 1831 DestGEP.VarIndices.push_back(Entry); 1832 } 1833 } 1834 } 1835 1836 bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP, 1837 LocationSize MaybeV1Size, 1838 LocationSize MaybeV2Size, 1839 AssumptionCache *AC, 1840 DominatorTree *DT, 1841 const AAQueryInfo &AAQI) { 1842 if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1843 !MaybeV2Size.hasValue()) 1844 return false; 1845 1846 const uint64_t V1Size = MaybeV1Size.getValue(); 1847 const uint64_t V2Size = MaybeV2Size.getValue(); 1848 1849 const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1]; 1850 1851 if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) || 1852 !Var0.hasNegatedScaleOf(Var1) || 1853 Var0.Val.V->getType() != Var1.Val.V->getType()) 1854 return false; 1855 1856 // We'll strip off the Extensions of Var0 and Var1 and do another round 1857 // of GetLinearExpression decomposition. In the example above, if Var0 1858 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1859 1860 LinearExpression E0 = 1861 GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT); 1862 LinearExpression E1 = 1863 GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT); 1864 if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) || 1865 !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V, AAQI)) 1866 return false; 1867 1868 // We have a hit - Var0 and Var1 only differ by a constant offset! 1869 1870 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1871 // Var1 is possible to calculate, but we're just interested in the absolute 1872 // minimum difference between the two. The minimum distance may occur due to 1873 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1874 // the minimum distance between %i and %i + 5 is 3. 1875 APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; 1876 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1877 APInt MinDiffBytes = 1878 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1879 1880 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1881 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1882 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1883 // V2Size can fit in the MinDiffBytes gap. 1884 return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) && 1885 MinDiffBytes.uge(V2Size + GEP.Offset.abs()); 1886 } 1887 1888 //===----------------------------------------------------------------------===// 1889 // BasicAliasAnalysis Pass 1890 //===----------------------------------------------------------------------===// 1891 1892 AnalysisKey BasicAA::Key; 1893 1894 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1895 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1896 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1897 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1898 return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT); 1899 } 1900 1901 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1902 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1903 } 1904 1905 char BasicAAWrapperPass::ID = 0; 1906 1907 void BasicAAWrapperPass::anchor() {} 1908 1909 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1910 "Basic Alias Analysis (stateless AA impl)", true, true) 1911 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1912 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1913 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1914 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1915 "Basic Alias Analysis (stateless AA impl)", true, true) 1916 1917 FunctionPass *llvm::createBasicAAWrapperPass() { 1918 return new BasicAAWrapperPass(); 1919 } 1920 1921 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1922 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1923 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1924 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1925 1926 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 1927 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1928 &DTWP.getDomTree())); 1929 1930 return false; 1931 } 1932 1933 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1934 AU.setPreservesAll(); 1935 AU.addRequiredTransitive<AssumptionCacheTracker>(); 1936 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1937 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1938 } 1939