1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalAlias.h" 40 #include "llvm/IR/GlobalVariable.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/PatternMatch.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/KnownBits.h" 57 #include "llvm/Support/SaveAndRestore.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <optional> 62 #include <utility> 63 64 #define DEBUG_TYPE "basicaa" 65 66 using namespace llvm; 67 68 /// Enable analysis of recursive PHI nodes. 69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 70 cl::init(true)); 71 72 static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage", 73 cl::Hidden, cl::init(true)); 74 75 /// SearchLimitReached / SearchTimes shows how often the limit of 76 /// to decompose GEPs is reached. It will affect the precision 77 /// of basic alias analysis. 78 STATISTIC(SearchLimitReached, "Number of times the limit to " 79 "decompose GEPs is reached"); 80 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 81 82 // The max limit of the search depth in DecomposeGEPExpression() and 83 // getUnderlyingObject(). 84 static const unsigned MaxLookupSearchDepth = 6; 85 86 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 87 FunctionAnalysisManager::Invalidator &Inv) { 88 // We don't care if this analysis itself is preserved, it has no state. But 89 // we need to check that the analyses it depends on have been. Note that we 90 // may be created without handles to some analyses and in that case don't 91 // depend on them. 92 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 93 (DT_ && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA))) 94 return true; 95 96 // Otherwise this analysis result remains valid. 97 return false; 98 } 99 100 //===----------------------------------------------------------------------===// 101 // Useful predicates 102 //===----------------------------------------------------------------------===// 103 104 /// Returns the size of the object specified by V or UnknownSize if unknown. 105 static std::optional<TypeSize> getObjectSize(const Value *V, 106 const DataLayout &DL, 107 const TargetLibraryInfo &TLI, 108 bool NullIsValidLoc, 109 bool RoundToAlign = false) { 110 uint64_t Size; 111 ObjectSizeOpts Opts; 112 Opts.RoundToAlign = RoundToAlign; 113 Opts.NullIsUnknownSize = NullIsValidLoc; 114 if (getObjectSize(V, Size, DL, &TLI, Opts)) 115 return TypeSize::getFixed(Size); 116 return std::nullopt; 117 } 118 119 /// Returns true if we can prove that the object specified by V is smaller than 120 /// Size. Bails out early unless the root object is passed as the first 121 /// parameter. 122 static bool isObjectSmallerThan(const Value *V, TypeSize Size, 123 const DataLayout &DL, 124 const TargetLibraryInfo &TLI, 125 bool NullIsValidLoc) { 126 // Note that the meanings of the "object" are slightly different in the 127 // following contexts: 128 // c1: llvm::getObjectSize() 129 // c2: llvm.objectsize() intrinsic 130 // c3: isObjectSmallerThan() 131 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 132 // refers to the "entire object". 133 // 134 // Consider this example: 135 // char *p = (char*)malloc(100) 136 // char *q = p+80; 137 // 138 // In the context of c1 and c2, the "object" pointed by q refers to the 139 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 140 // 141 // In the context of c3, the "object" refers to the chunk of memory being 142 // allocated. So, the "object" has 100 bytes, and q points to the middle the 143 // "object". However, unless p, the root object, is passed as the first 144 // parameter, the call to isIdentifiedObject() makes isObjectSmallerThan() 145 // bail out early. 146 if (!isIdentifiedObject(V)) 147 return false; 148 149 // This function needs to use the aligned object size because we allow 150 // reads a bit past the end given sufficient alignment. 151 std::optional<TypeSize> ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 152 /*RoundToAlign*/ true); 153 154 return ObjectSize && TypeSize::isKnownLT(*ObjectSize, Size); 155 } 156 157 /// Return the minimal extent from \p V to the end of the underlying object, 158 /// assuming the result is used in an aliasing query. E.g., we do use the query 159 /// location size and the fact that null pointers cannot alias here. 160 static TypeSize getMinimalExtentFrom(const Value &V, 161 const LocationSize &LocSize, 162 const DataLayout &DL, 163 bool NullIsValidLoc) { 164 // If we have dereferenceability information we know a lower bound for the 165 // extent as accesses for a lower offset would be valid. We need to exclude 166 // the "or null" part if null is a valid pointer. We can ignore frees, as an 167 // access after free would be undefined behavior. 168 bool CanBeNull, CanBeFreed; 169 uint64_t DerefBytes = 170 V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 171 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 172 // If queried with a precise location size, we assume that location size to be 173 // accessed, thus valid. 174 if (LocSize.isPrecise()) 175 DerefBytes = std::max(DerefBytes, LocSize.getValue().getKnownMinValue()); 176 return TypeSize::getFixed(DerefBytes); 177 } 178 179 /// Returns true if we can prove that the object specified by V has size Size. 180 static bool isObjectSize(const Value *V, TypeSize Size, const DataLayout &DL, 181 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 182 std::optional<TypeSize> ObjectSize = 183 getObjectSize(V, DL, TLI, NullIsValidLoc); 184 return ObjectSize && *ObjectSize == Size; 185 } 186 187 /// Return true if both V1 and V2 are VScale 188 static bool areBothVScale(const Value *V1, const Value *V2) { 189 return PatternMatch::match(V1, PatternMatch::m_VScale()) && 190 PatternMatch::match(V2, PatternMatch::m_VScale()); 191 } 192 193 //===----------------------------------------------------------------------===// 194 // CaptureAnalysis implementations 195 //===----------------------------------------------------------------------===// 196 197 CaptureAnalysis::~CaptureAnalysis() = default; 198 199 bool SimpleCaptureAnalysis::isNotCapturedBefore(const Value *Object, 200 const Instruction *I, 201 bool OrAt) { 202 return isNonEscapingLocalObject(Object, &IsCapturedCache); 203 } 204 205 static bool isNotInCycle(const Instruction *I, const DominatorTree *DT, 206 const LoopInfo *LI) { 207 BasicBlock *BB = const_cast<BasicBlock *>(I->getParent()); 208 SmallVector<BasicBlock *> Succs(successors(BB)); 209 return Succs.empty() || 210 !isPotentiallyReachableFromMany(Succs, BB, nullptr, DT, LI); 211 } 212 213 bool EarliestEscapeAnalysis::isNotCapturedBefore(const Value *Object, 214 const Instruction *I, 215 bool OrAt) { 216 if (!isIdentifiedFunctionLocal(Object)) 217 return false; 218 219 auto Iter = EarliestEscapes.insert({Object, nullptr}); 220 if (Iter.second) { 221 Instruction *EarliestCapture = FindEarliestCapture( 222 Object, *const_cast<Function *>(DT.getRoot()->getParent()), 223 /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT); 224 if (EarliestCapture) 225 Inst2Obj[EarliestCapture].push_back(Object); 226 Iter.first->second = EarliestCapture; 227 } 228 229 // No capturing instruction. 230 if (!Iter.first->second) 231 return true; 232 233 // No context instruction means any use is capturing. 234 if (!I) 235 return false; 236 237 if (I == Iter.first->second) { 238 if (OrAt) 239 return false; 240 return isNotInCycle(I, &DT, LI); 241 } 242 243 return !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, LI); 244 } 245 246 void EarliestEscapeAnalysis::removeInstruction(Instruction *I) { 247 auto Iter = Inst2Obj.find(I); 248 if (Iter != Inst2Obj.end()) { 249 for (const Value *Obj : Iter->second) 250 EarliestEscapes.erase(Obj); 251 Inst2Obj.erase(I); 252 } 253 } 254 255 //===----------------------------------------------------------------------===// 256 // GetElementPtr Instruction Decomposition and Analysis 257 //===----------------------------------------------------------------------===// 258 259 namespace { 260 /// Represents zext(sext(trunc(V))). 261 struct CastedValue { 262 const Value *V; 263 unsigned ZExtBits = 0; 264 unsigned SExtBits = 0; 265 unsigned TruncBits = 0; 266 /// Whether trunc(V) is non-negative. 267 bool IsNonNegative = false; 268 269 explicit CastedValue(const Value *V) : V(V) {} 270 explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits, 271 unsigned TruncBits, bool IsNonNegative) 272 : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits), 273 IsNonNegative(IsNonNegative) {} 274 275 unsigned getBitWidth() const { 276 return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits + 277 SExtBits; 278 } 279 280 CastedValue withValue(const Value *NewV, bool PreserveNonNeg) const { 281 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits, 282 IsNonNegative && PreserveNonNeg); 283 } 284 285 /// Replace V with zext(NewV) 286 CastedValue withZExtOfValue(const Value *NewV, bool ZExtNonNegative) const { 287 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 288 NewV->getType()->getPrimitiveSizeInBits(); 289 if (ExtendBy <= TruncBits) 290 // zext<nneg>(trunc(zext(NewV))) == zext<nneg>(trunc(NewV)) 291 // The nneg can be preserved on the outer zext here. 292 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy, 293 IsNonNegative); 294 295 // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) 296 ExtendBy -= TruncBits; 297 // zext<nneg>(zext(NewV)) == zext(NewV) 298 // zext(zext<nneg>(NewV)) == zext<nneg>(NewV) 299 // The nneg can be preserved from the inner zext here but must be dropped 300 // from the outer. 301 return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0, 302 ZExtNonNegative); 303 } 304 305 /// Replace V with sext(NewV) 306 CastedValue withSExtOfValue(const Value *NewV) const { 307 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 308 NewV->getType()->getPrimitiveSizeInBits(); 309 if (ExtendBy <= TruncBits) 310 // zext<nneg>(trunc(sext(NewV))) == zext<nneg>(trunc(NewV)) 311 // The nneg can be preserved on the outer zext here 312 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy, 313 IsNonNegative); 314 315 // zext(sext(sext(NewV))) 316 ExtendBy -= TruncBits; 317 // zext<nneg>(sext(sext(NewV))) = zext<nneg>(sext(NewV)) 318 // The nneg can be preserved on the outer zext here 319 return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0, IsNonNegative); 320 } 321 322 APInt evaluateWith(APInt N) const { 323 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 324 "Incompatible bit width"); 325 if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits); 326 if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); 327 if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); 328 return N; 329 } 330 331 ConstantRange evaluateWith(ConstantRange N) const { 332 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 333 "Incompatible bit width"); 334 if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits); 335 if (IsNonNegative && !N.isAllNonNegative()) 336 N = N.intersectWith( 337 ConstantRange(APInt::getZero(N.getBitWidth()), 338 APInt::getSignedMinValue(N.getBitWidth()))); 339 if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits); 340 if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits); 341 return N; 342 } 343 344 bool canDistributeOver(bool NUW, bool NSW) const { 345 // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) 346 // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) 347 // trunc(x op y) == trunc(x) op trunc(y) 348 return (!ZExtBits || NUW) && (!SExtBits || NSW); 349 } 350 351 bool hasSameCastsAs(const CastedValue &Other) const { 352 if (V->getType() != Other.V->getType()) 353 return false; 354 355 if (ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits && 356 TruncBits == Other.TruncBits) 357 return true; 358 // If either CastedValue has a nneg zext then the sext/zext bits are 359 // interchangable for that value. 360 if (IsNonNegative || Other.IsNonNegative) 361 return (ZExtBits + SExtBits == Other.ZExtBits + Other.SExtBits && 362 TruncBits == Other.TruncBits); 363 return false; 364 } 365 }; 366 367 /// Represents zext(sext(trunc(V))) * Scale + Offset. 368 struct LinearExpression { 369 CastedValue Val; 370 APInt Scale; 371 APInt Offset; 372 373 /// True if all operations in this expression are NUW. 374 bool IsNUW; 375 /// True if all operations in this expression are NSW. 376 bool IsNSW; 377 378 LinearExpression(const CastedValue &Val, const APInt &Scale, 379 const APInt &Offset, bool IsNUW, bool IsNSW) 380 : Val(Val), Scale(Scale), Offset(Offset), IsNUW(IsNUW), IsNSW(IsNSW) {} 381 382 LinearExpression(const CastedValue &Val) 383 : Val(Val), IsNUW(true), IsNSW(true) { 384 unsigned BitWidth = Val.getBitWidth(); 385 Scale = APInt(BitWidth, 1); 386 Offset = APInt(BitWidth, 0); 387 } 388 389 LinearExpression mul(const APInt &Other, bool MulIsNUW, bool MulIsNSW) const { 390 // The check for zero offset is necessary, because generally 391 // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z). 392 bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero())); 393 bool NUW = IsNUW && (Other.isOne() || MulIsNUW); 394 return LinearExpression(Val, Scale * Other, Offset * Other, NUW, NSW); 395 } 396 }; 397 } 398 399 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 400 /// B are constant integers. 401 static LinearExpression GetLinearExpression( 402 const CastedValue &Val, const DataLayout &DL, unsigned Depth, 403 AssumptionCache *AC, DominatorTree *DT) { 404 // Limit our recursion depth. 405 if (Depth == 6) 406 return Val; 407 408 if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V)) 409 return LinearExpression(Val, APInt(Val.getBitWidth(), 0), 410 Val.evaluateWith(Const->getValue()), true, true); 411 412 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) { 413 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 414 APInt RHS = Val.evaluateWith(RHSC->getValue()); 415 // The only non-OBO case we deal with is or, and only limited to the 416 // case where it is both nuw and nsw. 417 bool NUW = true, NSW = true; 418 if (isa<OverflowingBinaryOperator>(BOp)) { 419 NUW &= BOp->hasNoUnsignedWrap(); 420 NSW &= BOp->hasNoSignedWrap(); 421 } 422 if (!Val.canDistributeOver(NUW, NSW)) 423 return Val; 424 425 // While we can distribute over trunc, we cannot preserve nowrap flags 426 // in that case. 427 if (Val.TruncBits) 428 NUW = NSW = false; 429 430 LinearExpression E(Val); 431 switch (BOp->getOpcode()) { 432 default: 433 // We don't understand this instruction, so we can't decompose it any 434 // further. 435 return Val; 436 case Instruction::Or: 437 // X|C == X+C if it is disjoint. Otherwise we can't analyze it. 438 if (!cast<PossiblyDisjointInst>(BOp)->isDisjoint()) 439 return Val; 440 441 [[fallthrough]]; 442 case Instruction::Add: { 443 E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL, 444 Depth + 1, AC, DT); 445 E.Offset += RHS; 446 E.IsNUW &= NUW; 447 E.IsNSW &= NSW; 448 break; 449 } 450 case Instruction::Sub: { 451 E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL, 452 Depth + 1, AC, DT); 453 E.Offset -= RHS; 454 E.IsNUW = false; // sub nuw x, y is not add nuw x, -y. 455 E.IsNSW &= NSW; 456 break; 457 } 458 case Instruction::Mul: 459 E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL, 460 Depth + 1, AC, DT) 461 .mul(RHS, NUW, NSW); 462 break; 463 case Instruction::Shl: 464 // We're trying to linearize an expression of the kind: 465 // shl i8 -128, 36 466 // where the shift count exceeds the bitwidth of the type. 467 // We can't decompose this further (the expression would return 468 // a poison value). 469 if (RHS.getLimitedValue() > Val.getBitWidth()) 470 return Val; 471 472 E = GetLinearExpression(Val.withValue(BOp->getOperand(0), NSW), DL, 473 Depth + 1, AC, DT); 474 E.Offset <<= RHS.getLimitedValue(); 475 E.Scale <<= RHS.getLimitedValue(); 476 E.IsNUW &= NUW; 477 E.IsNSW &= NSW; 478 break; 479 } 480 return E; 481 } 482 } 483 484 if (const auto *ZExt = dyn_cast<ZExtInst>(Val.V)) 485 return GetLinearExpression( 486 Val.withZExtOfValue(ZExt->getOperand(0), ZExt->hasNonNeg()), DL, 487 Depth + 1, AC, DT); 488 489 if (isa<SExtInst>(Val.V)) 490 return GetLinearExpression( 491 Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 492 DL, Depth + 1, AC, DT); 493 494 return Val; 495 } 496 497 namespace { 498 // A linear transformation of a Value; this class represents 499 // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale. 500 struct VariableGEPIndex { 501 CastedValue Val; 502 APInt Scale; 503 504 // Context instruction to use when querying information about this index. 505 const Instruction *CxtI; 506 507 /// True if all operations in this expression are NSW. 508 bool IsNSW; 509 510 /// True if the index should be subtracted rather than added. We don't simply 511 /// negate the Scale, to avoid losing the NSW flag: X - INT_MIN*1 may be 512 /// non-wrapping, while X + INT_MIN*(-1) wraps. 513 bool IsNegated; 514 515 bool hasNegatedScaleOf(const VariableGEPIndex &Other) const { 516 if (IsNegated == Other.IsNegated) 517 return Scale == -Other.Scale; 518 return Scale == Other.Scale; 519 } 520 521 void dump() const { 522 print(dbgs()); 523 dbgs() << "\n"; 524 } 525 void print(raw_ostream &OS) const { 526 OS << "(V=" << Val.V->getName() 527 << ", zextbits=" << Val.ZExtBits 528 << ", sextbits=" << Val.SExtBits 529 << ", truncbits=" << Val.TruncBits 530 << ", scale=" << Scale 531 << ", nsw=" << IsNSW 532 << ", negated=" << IsNegated << ")"; 533 } 534 }; 535 } 536 537 // Represents the internal structure of a GEP, decomposed into a base pointer, 538 // constant offsets, and variable scaled indices. 539 struct BasicAAResult::DecomposedGEP { 540 // Base pointer of the GEP 541 const Value *Base; 542 // Total constant offset from base. 543 APInt Offset; 544 // Scaled variable (non-constant) indices. 545 SmallVector<VariableGEPIndex, 4> VarIndices; 546 // Nowrap flags common to all GEP operations involved in expression. 547 GEPNoWrapFlags NWFlags = GEPNoWrapFlags::all(); 548 549 void dump() const { 550 print(dbgs()); 551 dbgs() << "\n"; 552 } 553 void print(raw_ostream &OS) const { 554 OS << ", inbounds=" << (NWFlags.isInBounds() ? "1" : "0") 555 << ", nuw=" << (NWFlags.hasNoUnsignedWrap() ? "1" : "0") 556 << "(DecomposedGEP Base=" << Base->getName() << ", Offset=" << Offset 557 << ", VarIndices=["; 558 for (size_t i = 0; i < VarIndices.size(); i++) { 559 if (i != 0) 560 OS << ", "; 561 VarIndices[i].print(OS); 562 } 563 OS << "])"; 564 } 565 }; 566 567 568 /// If V is a symbolic pointer expression, decompose it into a base pointer 569 /// with a constant offset and a number of scaled symbolic offsets. 570 /// 571 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 572 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 573 /// specified amount, but which may have other unrepresented high bits. As 574 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 575 BasicAAResult::DecomposedGEP 576 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 577 AssumptionCache *AC, DominatorTree *DT) { 578 // Limit recursion depth to limit compile time in crazy cases. 579 unsigned MaxLookup = MaxLookupSearchDepth; 580 SearchTimes++; 581 const Instruction *CxtI = dyn_cast<Instruction>(V); 582 583 unsigned IndexSize = DL.getIndexTypeSizeInBits(V->getType()); 584 DecomposedGEP Decomposed; 585 Decomposed.Offset = APInt(IndexSize, 0); 586 do { 587 // See if this is a bitcast or GEP. 588 const Operator *Op = dyn_cast<Operator>(V); 589 if (!Op) { 590 // The only non-operator case we can handle are GlobalAliases. 591 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 592 if (!GA->isInterposable()) { 593 V = GA->getAliasee(); 594 continue; 595 } 596 } 597 Decomposed.Base = V; 598 return Decomposed; 599 } 600 601 if (Op->getOpcode() == Instruction::BitCast || 602 Op->getOpcode() == Instruction::AddrSpaceCast) { 603 Value *NewV = Op->getOperand(0); 604 // Don't look through casts between address spaces with differing index 605 // widths. 606 if (DL.getIndexTypeSizeInBits(NewV->getType()) != IndexSize) { 607 Decomposed.Base = V; 608 return Decomposed; 609 } 610 V = NewV; 611 continue; 612 } 613 614 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 615 if (!GEPOp) { 616 if (const auto *PHI = dyn_cast<PHINode>(V)) { 617 // Look through single-arg phi nodes created by LCSSA. 618 if (PHI->getNumIncomingValues() == 1) { 619 V = PHI->getIncomingValue(0); 620 continue; 621 } 622 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 623 // CaptureTracking can know about special capturing properties of some 624 // intrinsics like launder.invariant.group, that can't be expressed with 625 // the attributes, but have properties like returning aliasing pointer. 626 // Because some analysis may assume that nocaptured pointer is not 627 // returned from some special intrinsic (because function would have to 628 // be marked with returns attribute), it is crucial to use this function 629 // because it should be in sync with CaptureTracking. Not using it may 630 // cause weird miscompilations where 2 aliasing pointers are assumed to 631 // noalias. 632 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 633 V = RP; 634 continue; 635 } 636 } 637 638 Decomposed.Base = V; 639 return Decomposed; 640 } 641 642 // Track the common nowrap flags for all GEPs we see. 643 Decomposed.NWFlags &= GEPOp->getNoWrapFlags(); 644 645 assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized"); 646 647 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 648 gep_type_iterator GTI = gep_type_begin(GEPOp); 649 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 650 I != E; ++I, ++GTI) { 651 const Value *Index = *I; 652 // Compute the (potentially symbolic) offset in bytes for this index. 653 if (StructType *STy = GTI.getStructTypeOrNull()) { 654 // For a struct, add the member offset. 655 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 656 if (FieldNo == 0) 657 continue; 658 659 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 660 continue; 661 } 662 663 // For an array/pointer, add the element offset, explicitly scaled. 664 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 665 if (CIdx->isZero()) 666 continue; 667 668 // Don't attempt to analyze GEPs if the scalable index is not zero. 669 TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL); 670 if (AllocTypeSize.isScalable()) { 671 Decomposed.Base = V; 672 return Decomposed; 673 } 674 675 Decomposed.Offset += AllocTypeSize.getFixedValue() * 676 CIdx->getValue().sextOrTrunc(IndexSize); 677 continue; 678 } 679 680 TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL); 681 if (AllocTypeSize.isScalable()) { 682 Decomposed.Base = V; 683 return Decomposed; 684 } 685 686 // If the integer type is smaller than the index size, it is implicitly 687 // sign extended or truncated to index size. 688 bool NUSW = GEPOp->hasNoUnsignedSignedWrap(); 689 bool NUW = GEPOp->hasNoUnsignedWrap(); 690 bool NonNeg = NUSW && NUW; 691 unsigned Width = Index->getType()->getIntegerBitWidth(); 692 unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0; 693 unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0; 694 LinearExpression LE = GetLinearExpression( 695 CastedValue(Index, 0, SExtBits, TruncBits, NonNeg), DL, 0, AC, DT); 696 697 // Scale by the type size. 698 unsigned TypeSize = AllocTypeSize.getFixedValue(); 699 LE = LE.mul(APInt(IndexSize, TypeSize), NUW, NUSW); 700 Decomposed.Offset += LE.Offset; 701 APInt Scale = LE.Scale; 702 if (!LE.IsNUW) 703 Decomposed.NWFlags = Decomposed.NWFlags.withoutNoUnsignedWrap(); 704 705 // If we already had an occurrence of this index variable, merge this 706 // scale into it. For example, we want to handle: 707 // A[x][x] -> x*16 + x*4 -> x*20 708 // This also ensures that 'x' only appears in the index list once. 709 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 710 if ((Decomposed.VarIndices[i].Val.V == LE.Val.V || 711 areBothVScale(Decomposed.VarIndices[i].Val.V, LE.Val.V)) && 712 Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) { 713 Scale += Decomposed.VarIndices[i].Scale; 714 // We cannot guarantee no-wrap for the merge. 715 LE.IsNSW = LE.IsNUW = false; 716 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 717 break; 718 } 719 } 720 721 if (!!Scale) { 722 VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW, 723 /* IsNegated */ false}; 724 Decomposed.VarIndices.push_back(Entry); 725 } 726 } 727 728 // Analyze the base pointer next. 729 V = GEPOp->getOperand(0); 730 } while (--MaxLookup); 731 732 // If the chain of expressions is too deep, just return early. 733 Decomposed.Base = V; 734 SearchLimitReached++; 735 return Decomposed; 736 } 737 738 ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc, 739 AAQueryInfo &AAQI, 740 bool IgnoreLocals) { 741 assert(Visited.empty() && "Visited must be cleared after use!"); 742 auto _ = make_scope_exit([&] { Visited.clear(); }); 743 744 unsigned MaxLookup = 8; 745 SmallVector<const Value *, 16> Worklist; 746 Worklist.push_back(Loc.Ptr); 747 ModRefInfo Result = ModRefInfo::NoModRef; 748 749 do { 750 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 751 if (!Visited.insert(V).second) 752 continue; 753 754 // Ignore allocas if we were instructed to do so. 755 if (IgnoreLocals && isa<AllocaInst>(V)) 756 continue; 757 758 // If the location points to memory that is known to be invariant for 759 // the life of the underlying SSA value, then we can exclude Mod from 760 // the set of valid memory effects. 761 // 762 // An argument that is marked readonly and noalias is known to be 763 // invariant while that function is executing. 764 if (const Argument *Arg = dyn_cast<Argument>(V)) { 765 if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) { 766 Result |= ModRefInfo::Ref; 767 continue; 768 } 769 } 770 771 // A global constant can't be mutated. 772 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 773 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 774 // global to be marked constant in some modules and non-constant in 775 // others. GV may even be a declaration, not a definition. 776 if (!GV->isConstant()) 777 return ModRefInfo::ModRef; 778 continue; 779 } 780 781 // If both select values point to local memory, then so does the select. 782 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 783 Worklist.push_back(SI->getTrueValue()); 784 Worklist.push_back(SI->getFalseValue()); 785 continue; 786 } 787 788 // If all values incoming to a phi node point to local memory, then so does 789 // the phi. 790 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 791 // Don't bother inspecting phi nodes with many operands. 792 if (PN->getNumIncomingValues() > MaxLookup) 793 return ModRefInfo::ModRef; 794 append_range(Worklist, PN->incoming_values()); 795 continue; 796 } 797 798 // Otherwise be conservative. 799 return ModRefInfo::ModRef; 800 } while (!Worklist.empty() && --MaxLookup); 801 802 // If we hit the maximum number of instructions to examine, be conservative. 803 if (!Worklist.empty()) 804 return ModRefInfo::ModRef; 805 806 return Result; 807 } 808 809 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 810 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 811 return II && II->getIntrinsicID() == IID; 812 } 813 814 /// Returns the behavior when calling the given call site. 815 MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call, 816 AAQueryInfo &AAQI) { 817 MemoryEffects Min = Call->getAttributes().getMemoryEffects(); 818 819 if (const Function *F = dyn_cast<Function>(Call->getCalledOperand())) { 820 MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F); 821 // Operand bundles on the call may also read or write memory, in addition 822 // to the behavior of the called function. 823 if (Call->hasReadingOperandBundles()) 824 FuncME |= MemoryEffects::readOnly(); 825 if (Call->hasClobberingOperandBundles()) 826 FuncME |= MemoryEffects::writeOnly(); 827 Min &= FuncME; 828 } 829 830 return Min; 831 } 832 833 /// Returns the behavior when calling the given function. For use when the call 834 /// site is not known. 835 MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) { 836 switch (F->getIntrinsicID()) { 837 case Intrinsic::experimental_guard: 838 case Intrinsic::experimental_deoptimize: 839 // These intrinsics can read arbitrary memory, and additionally modref 840 // inaccessible memory to model control dependence. 841 return MemoryEffects::readOnly() | 842 MemoryEffects::inaccessibleMemOnly(ModRefInfo::ModRef); 843 } 844 845 return F->getMemoryEffects(); 846 } 847 848 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 849 unsigned ArgIdx) { 850 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 851 return ModRefInfo::Mod; 852 853 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 854 return ModRefInfo::Ref; 855 856 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 857 return ModRefInfo::NoModRef; 858 859 return ModRefInfo::ModRef; 860 } 861 862 #ifndef NDEBUG 863 static const Function *getParent(const Value *V) { 864 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 865 if (!inst->getParent()) 866 return nullptr; 867 return inst->getParent()->getParent(); 868 } 869 870 if (const Argument *arg = dyn_cast<Argument>(V)) 871 return arg->getParent(); 872 873 return nullptr; 874 } 875 876 static bool notDifferentParent(const Value *O1, const Value *O2) { 877 878 const Function *F1 = getParent(O1); 879 const Function *F2 = getParent(O2); 880 881 return !F1 || !F2 || F1 == F2; 882 } 883 #endif 884 885 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 886 const MemoryLocation &LocB, AAQueryInfo &AAQI, 887 const Instruction *CtxI) { 888 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 889 "BasicAliasAnalysis doesn't support interprocedural queries."); 890 return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI, CtxI); 891 } 892 893 /// Checks to see if the specified callsite can clobber the specified memory 894 /// object. 895 /// 896 /// Since we only look at local properties of this function, we really can't 897 /// say much about this query. We do, however, use simple "address taken" 898 /// analysis on local objects. 899 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 900 const MemoryLocation &Loc, 901 AAQueryInfo &AAQI) { 902 assert(notDifferentParent(Call, Loc.Ptr) && 903 "AliasAnalysis query involving multiple functions!"); 904 905 const Value *Object = getUnderlyingObject(Loc.Ptr); 906 907 // Calls marked 'tail' cannot read or write allocas from the current frame 908 // because the current frame might be destroyed by the time they run. However, 909 // a tail call may use an alloca with byval. Calling with byval copies the 910 // contents of the alloca into argument registers or stack slots, so there is 911 // no lifetime issue. 912 if (isa<AllocaInst>(Object)) 913 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 914 if (CI->isTailCall() && 915 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 916 return ModRefInfo::NoModRef; 917 918 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 919 // modify them even though the alloca is not escaped. 920 if (auto *AI = dyn_cast<AllocaInst>(Object)) 921 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 922 return ModRefInfo::Mod; 923 924 // A call can access a locally allocated object either because it is passed as 925 // an argument to the call, or because it has escaped prior to the call. 926 // 927 // Make sure the object has not escaped here, and then check that none of the 928 // call arguments alias the object below. 929 // 930 // We model calls that can return twice (setjmp) as clobbering non-escaping 931 // objects, to model any accesses that may occur prior to the second return. 932 // As an exception, ignore allocas, as setjmp is not required to preserve 933 // non-volatile stores for them. 934 if (!isa<Constant>(Object) && Call != Object && 935 AAQI.CA->isNotCapturedBefore(Object, Call, /*OrAt*/ false) && 936 (isa<AllocaInst>(Object) || !Call->hasFnAttr(Attribute::ReturnsTwice))) { 937 938 // Optimistically assume that call doesn't touch Object and check this 939 // assumption in the following loop. 940 ModRefInfo Result = ModRefInfo::NoModRef; 941 942 unsigned OperandNo = 0; 943 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 944 CI != CE; ++CI, ++OperandNo) { 945 if (!(*CI)->getType()->isPointerTy()) 946 continue; 947 948 // Call doesn't access memory through this operand, so we don't care 949 // if it aliases with Object. 950 if (Call->doesNotAccessMemory(OperandNo)) 951 continue; 952 953 // If this is a no-capture pointer argument, see if we can tell that it 954 // is impossible to alias the pointer we're checking. 955 AliasResult AR = 956 AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(*CI), 957 MemoryLocation::getBeforeOrAfter(Object), AAQI); 958 // Operand doesn't alias 'Object', continue looking for other aliases 959 if (AR == AliasResult::NoAlias) 960 continue; 961 // Operand aliases 'Object', but call doesn't modify it. Strengthen 962 // initial assumption and keep looking in case if there are more aliases. 963 if (Call->onlyReadsMemory(OperandNo)) { 964 Result |= ModRefInfo::Ref; 965 continue; 966 } 967 // Operand aliases 'Object' but call only writes into it. 968 if (Call->onlyWritesMemory(OperandNo)) { 969 Result |= ModRefInfo::Mod; 970 continue; 971 } 972 // This operand aliases 'Object' and call reads and writes into it. 973 // Setting ModRef will not yield an early return below, MustAlias is not 974 // used further. 975 Result = ModRefInfo::ModRef; 976 break; 977 } 978 979 // Early return if we improved mod ref information 980 if (!isModAndRefSet(Result)) 981 return Result; 982 } 983 984 // If the call is malloc/calloc like, we can assume that it doesn't 985 // modify any IR visible value. This is only valid because we assume these 986 // routines do not read values visible in the IR. TODO: Consider special 987 // casing realloc and strdup routines which access only their arguments as 988 // well. Or alternatively, replace all of this with inaccessiblememonly once 989 // that's implemented fully. 990 if (isMallocOrCallocLikeFn(Call, &TLI)) { 991 // Be conservative if the accessed pointer may alias the allocation - 992 // fallback to the generic handling below. 993 if (AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(Call), Loc, AAQI) == 994 AliasResult::NoAlias) 995 return ModRefInfo::NoModRef; 996 } 997 998 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 999 // writing so that proper control dependencies are maintained but they never 1000 // mod any particular memory location visible to the IR. 1001 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 1002 // intrinsic is now modeled as reading memory. This prevents hoisting the 1003 // invariant.start intrinsic over stores. Consider: 1004 // *ptr = 40; 1005 // *ptr = 50; 1006 // invariant_start(ptr) 1007 // int val = *ptr; 1008 // print(val); 1009 // 1010 // This cannot be transformed to: 1011 // 1012 // *ptr = 40; 1013 // invariant_start(ptr) 1014 // *ptr = 50; 1015 // int val = *ptr; 1016 // print(val); 1017 // 1018 // The transformation will cause the second store to be ignored (based on 1019 // rules of invariant.start) and print 40, while the first program always 1020 // prints 50. 1021 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 1022 return ModRefInfo::Ref; 1023 1024 // Be conservative. 1025 return ModRefInfo::ModRef; 1026 } 1027 1028 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1029 const CallBase *Call2, 1030 AAQueryInfo &AAQI) { 1031 // Guard intrinsics are marked as arbitrarily writing so that proper control 1032 // dependencies are maintained but they never mods any particular memory 1033 // location. 1034 // 1035 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1036 // heap state at the point the guard is issued needs to be consistent in case 1037 // the guard invokes the "deopt" continuation. 1038 1039 // NB! This function is *not* commutative, so we special case two 1040 // possibilities for guard intrinsics. 1041 1042 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1043 return isModSet(getMemoryEffects(Call2, AAQI).getModRef()) 1044 ? ModRefInfo::Ref 1045 : ModRefInfo::NoModRef; 1046 1047 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1048 return isModSet(getMemoryEffects(Call1, AAQI).getModRef()) 1049 ? ModRefInfo::Mod 1050 : ModRefInfo::NoModRef; 1051 1052 // Be conservative. 1053 return ModRefInfo::ModRef; 1054 } 1055 1056 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1057 /// another pointer. 1058 /// 1059 /// We know that V1 is a GEP, but we don't know anything about V2. 1060 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1061 /// V2. 1062 AliasResult BasicAAResult::aliasGEP( 1063 const GEPOperator *GEP1, LocationSize V1Size, 1064 const Value *V2, LocationSize V2Size, 1065 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1066 auto BaseObjectsAlias = [&]() { 1067 AliasResult BaseAlias = 1068 AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1069 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1070 return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias 1071 : AliasResult::MayAlias; 1072 }; 1073 1074 if (!V1Size.hasValue() && !V2Size.hasValue()) { 1075 // TODO: This limitation exists for compile-time reasons. Relax it if we 1076 // can avoid exponential pathological cases. 1077 if (!isa<GEPOperator>(V2)) 1078 return AliasResult::MayAlias; 1079 1080 // If both accesses have unknown size, we can only check whether the base 1081 // objects don't alias. 1082 return BaseObjectsAlias(); 1083 } 1084 1085 DominatorTree *DT = getDT(AAQI); 1086 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1087 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1088 1089 // Bail if we were not able to decompose anything. 1090 if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2) 1091 return AliasResult::MayAlias; 1092 1093 // Fall back to base objects if pointers have different index widths. 1094 if (DecompGEP1.Offset.getBitWidth() != DecompGEP2.Offset.getBitWidth()) 1095 return BaseObjectsAlias(); 1096 1097 // Swap GEP1 and GEP2 if GEP2 has more variable indices. 1098 if (DecompGEP1.VarIndices.size() < DecompGEP2.VarIndices.size()) { 1099 std::swap(DecompGEP1, DecompGEP2); 1100 std::swap(V1Size, V2Size); 1101 std::swap(UnderlyingV1, UnderlyingV2); 1102 } 1103 1104 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1105 // symbolic difference. 1106 subtractDecomposedGEPs(DecompGEP1, DecompGEP2, AAQI); 1107 1108 // If an inbounds GEP would have to start from an out of bounds address 1109 // for the two to alias, then we can assume noalias. 1110 // TODO: Remove !isScalable() once BasicAA fully support scalable location 1111 // size 1112 1113 if (DecompGEP1.NWFlags.isInBounds() && DecompGEP1.VarIndices.empty() && 1114 V2Size.hasValue() && !V2Size.isScalable() && 1115 DecompGEP1.Offset.sge(V2Size.getValue()) && 1116 isBaseOfObject(DecompGEP2.Base)) 1117 return AliasResult::NoAlias; 1118 1119 // Symmetric case to above. 1120 if (DecompGEP2.NWFlags.isInBounds() && DecompGEP1.VarIndices.empty() && 1121 V1Size.hasValue() && !V1Size.isScalable() && 1122 DecompGEP1.Offset.sle(-V1Size.getValue()) && 1123 isBaseOfObject(DecompGEP1.Base)) 1124 return AliasResult::NoAlias; 1125 1126 // For GEPs with identical offsets, we can preserve the size and AAInfo 1127 // when performing the alias check on the underlying objects. 1128 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1129 return AAQI.AAR.alias(MemoryLocation(DecompGEP1.Base, V1Size), 1130 MemoryLocation(DecompGEP2.Base, V2Size), AAQI); 1131 1132 // Do the base pointers alias? 1133 AliasResult BaseAlias = 1134 AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(DecompGEP1.Base), 1135 MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI); 1136 1137 // If we get a No or May, then return it immediately, no amount of analysis 1138 // will improve this situation. 1139 if (BaseAlias != AliasResult::MustAlias) { 1140 assert(BaseAlias == AliasResult::NoAlias || 1141 BaseAlias == AliasResult::MayAlias); 1142 return BaseAlias; 1143 } 1144 1145 // If there is a constant difference between the pointers, but the difference 1146 // is less than the size of the associated memory object, then we know 1147 // that the objects are partially overlapping. If the difference is 1148 // greater, we know they do not overlap. 1149 if (DecompGEP1.VarIndices.empty()) { 1150 APInt &Off = DecompGEP1.Offset; 1151 1152 // Initialize for Off >= 0 (V2 <= GEP1) case. 1153 LocationSize VLeftSize = V2Size; 1154 LocationSize VRightSize = V1Size; 1155 const bool Swapped = Off.isNegative(); 1156 1157 if (Swapped) { 1158 // Swap if we have the situation where: 1159 // + + 1160 // | BaseOffset | 1161 // ---------------->| 1162 // |-->V1Size |-------> V2Size 1163 // GEP1 V2 1164 std::swap(VLeftSize, VRightSize); 1165 Off = -Off; 1166 } 1167 1168 if (!VLeftSize.hasValue()) 1169 return AliasResult::MayAlias; 1170 1171 const TypeSize LSize = VLeftSize.getValue(); 1172 if (!LSize.isScalable()) { 1173 if (Off.ult(LSize)) { 1174 // Conservatively drop processing if a phi was visited and/or offset is 1175 // too big. 1176 AliasResult AR = AliasResult::PartialAlias; 1177 if (VRightSize.hasValue() && !VRightSize.isScalable() && 1178 Off.ule(INT32_MAX) && (Off + VRightSize.getValue()).ule(LSize)) { 1179 // Memory referenced by right pointer is nested. Save the offset in 1180 // cache. Note that originally offset estimated as GEP1-V2, but 1181 // AliasResult contains the shift that represents GEP1+Offset=V2. 1182 AR.setOffset(-Off.getSExtValue()); 1183 AR.swap(Swapped); 1184 } 1185 return AR; 1186 } 1187 return AliasResult::NoAlias; 1188 } else { 1189 // We can use the getVScaleRange to prove that Off >= (CR.upper * LSize). 1190 ConstantRange CR = getVScaleRange(&F, Off.getBitWidth()); 1191 bool Overflow; 1192 APInt UpperRange = CR.getUnsignedMax().umul_ov( 1193 APInt(Off.getBitWidth(), LSize.getKnownMinValue()), Overflow); 1194 if (!Overflow && Off.uge(UpperRange)) 1195 return AliasResult::NoAlias; 1196 } 1197 } 1198 1199 // VScale Alias Analysis - Given one scalable offset between accesses and a 1200 // scalable typesize, we can divide each side by vscale, treating both values 1201 // as a constant. We prove that Offset/vscale >= TypeSize/vscale. 1202 if (DecompGEP1.VarIndices.size() == 1 && 1203 DecompGEP1.VarIndices[0].Val.TruncBits == 0 && 1204 DecompGEP1.Offset.isZero() && 1205 PatternMatch::match(DecompGEP1.VarIndices[0].Val.V, 1206 PatternMatch::m_VScale())) { 1207 const VariableGEPIndex &ScalableVar = DecompGEP1.VarIndices[0]; 1208 APInt Scale = 1209 ScalableVar.IsNegated ? -ScalableVar.Scale : ScalableVar.Scale; 1210 LocationSize VLeftSize = Scale.isNegative() ? V1Size : V2Size; 1211 1212 // Check if the offset is known to not overflow, if it does then attempt to 1213 // prove it with the known values of vscale_range. 1214 bool Overflows = !DecompGEP1.VarIndices[0].IsNSW; 1215 if (Overflows) { 1216 ConstantRange CR = getVScaleRange(&F, Scale.getBitWidth()); 1217 (void)CR.getSignedMax().smul_ov(Scale, Overflows); 1218 } 1219 1220 if (!Overflows) { 1221 // Note that we do not check that the typesize is scalable, as vscale >= 1 1222 // so noalias still holds so long as the dependency distance is at least 1223 // as big as the typesize. 1224 if (VLeftSize.hasValue() && 1225 Scale.abs().uge(VLeftSize.getValue().getKnownMinValue())) 1226 return AliasResult::NoAlias; 1227 } 1228 } 1229 1230 // If the difference between pointers is Offset +<nuw> Indices then we know 1231 // that the addition does not wrap the pointer index type (add nuw) and the 1232 // constant Offset is a lower bound on the distance between the pointers. We 1233 // can then prove NoAlias via Offset u>= VLeftSize. 1234 // + + + 1235 // | BaseOffset | +<nuw> Indices | 1236 // ---------------->|-------------------->| 1237 // |-->V2Size | |-------> V1Size 1238 // LHS RHS 1239 if (!DecompGEP1.VarIndices.empty() && 1240 DecompGEP1.NWFlags.hasNoUnsignedWrap() && V2Size.hasValue() && 1241 !V2Size.isScalable() && DecompGEP1.Offset.uge(V2Size.getValue())) 1242 return AliasResult::NoAlias; 1243 1244 // Bail on analysing scalable LocationSize 1245 if (V1Size.isScalable() || V2Size.isScalable()) 1246 return AliasResult::MayAlias; 1247 1248 // We need to know both acess sizes for all the following heuristics. 1249 if (!V1Size.hasValue() || !V2Size.hasValue()) 1250 return AliasResult::MayAlias; 1251 1252 APInt GCD; 1253 ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset); 1254 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1255 const VariableGEPIndex &Index = DecompGEP1.VarIndices[i]; 1256 const APInt &Scale = Index.Scale; 1257 APInt ScaleForGCD = Scale; 1258 if (!Index.IsNSW) 1259 ScaleForGCD = 1260 APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero()); 1261 1262 if (i == 0) 1263 GCD = ScaleForGCD.abs(); 1264 else 1265 GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs()); 1266 1267 ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false, 1268 true, &AC, Index.CxtI); 1269 KnownBits Known = 1270 computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT); 1271 CR = CR.intersectWith( 1272 ConstantRange::fromKnownBits(Known, /* Signed */ true), 1273 ConstantRange::Signed); 1274 CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth()); 1275 1276 assert(OffsetRange.getBitWidth() == Scale.getBitWidth() && 1277 "Bit widths are normalized to MaxIndexSize"); 1278 if (Index.IsNSW) 1279 CR = CR.smul_sat(ConstantRange(Scale)); 1280 else 1281 CR = CR.smul_fast(ConstantRange(Scale)); 1282 1283 if (Index.IsNegated) 1284 OffsetRange = OffsetRange.sub(CR); 1285 else 1286 OffsetRange = OffsetRange.add(CR); 1287 } 1288 1289 // We now have accesses at two offsets from the same base: 1290 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1291 // 2. 0 with size V2Size 1292 // Using arithmetic modulo GCD, the accesses are at 1293 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1294 // into the range [V2Size..GCD), then we know they cannot overlap. 1295 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1296 if (ModOffset.isNegative()) 1297 ModOffset += GCD; // We want mod, not rem. 1298 if (ModOffset.uge(V2Size.getValue()) && 1299 (GCD - ModOffset).uge(V1Size.getValue())) 1300 return AliasResult::NoAlias; 1301 1302 // Compute ranges of potentially accessed bytes for both accesses. If the 1303 // interseciton is empty, there can be no overlap. 1304 unsigned BW = OffsetRange.getBitWidth(); 1305 ConstantRange Range1 = OffsetRange.add( 1306 ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue()))); 1307 ConstantRange Range2 = 1308 ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue())); 1309 if (Range1.intersectWith(Range2).isEmptySet()) 1310 return AliasResult::NoAlias; 1311 1312 // Try to determine the range of values for VarIndex such that 1313 // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex. 1314 std::optional<APInt> MinAbsVarIndex; 1315 if (DecompGEP1.VarIndices.size() == 1) { 1316 // VarIndex = Scale*V. 1317 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; 1318 if (Var.Val.TruncBits == 0 && 1319 isKnownNonZero(Var.Val.V, SimplifyQuery(DL, DT, &AC, Var.CxtI))) { 1320 // Check if abs(V*Scale) >= abs(Scale) holds in the presence of 1321 // potentially wrapping math. 1322 auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) { 1323 if (Var.IsNSW) 1324 return true; 1325 1326 int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits(); 1327 // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds. 1328 // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a 1329 // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap. 1330 int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW; 1331 if (MaxScaleValueBW <= 0) 1332 return false; 1333 return Var.Scale.ule( 1334 APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth())); 1335 }; 1336 // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the 1337 // presence of potentially wrapping math. 1338 if (MultiplyByScaleNoWrap(Var)) { 1339 // If V != 0 then abs(VarIndex) >= abs(Scale). 1340 MinAbsVarIndex = Var.Scale.abs(); 1341 } 1342 } 1343 } else if (DecompGEP1.VarIndices.size() == 2) { 1344 // VarIndex = Scale*V0 + (-Scale)*V1. 1345 // If V0 != V1 then abs(VarIndex) >= abs(Scale). 1346 // Check that MayBeCrossIteration is false, to avoid reasoning about 1347 // inequality of values across loop iterations. 1348 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1349 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1350 if (Var0.hasNegatedScaleOf(Var1) && Var0.Val.TruncBits == 0 && 1351 Var0.Val.hasSameCastsAs(Var1.Val) && !AAQI.MayBeCrossIteration && 1352 isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr, 1353 DT)) 1354 MinAbsVarIndex = Var0.Scale.abs(); 1355 } 1356 1357 if (MinAbsVarIndex) { 1358 // The constant offset will have added at least +/-MinAbsVarIndex to it. 1359 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; 1360 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; 1361 // We know that Offset <= OffsetLo || Offset >= OffsetHi 1362 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1363 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1364 return AliasResult::NoAlias; 1365 } 1366 1367 if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT, AAQI)) 1368 return AliasResult::NoAlias; 1369 1370 // Statically, we can see that the base objects are the same, but the 1371 // pointers have dynamic offsets which we can't resolve. And none of our 1372 // little tricks above worked. 1373 return AliasResult::MayAlias; 1374 } 1375 1376 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1377 // If the results agree, take it. 1378 if (A == B) 1379 return A; 1380 // A mix of PartialAlias and MustAlias is PartialAlias. 1381 if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || 1382 (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) 1383 return AliasResult::PartialAlias; 1384 // Otherwise, we don't know anything. 1385 return AliasResult::MayAlias; 1386 } 1387 1388 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1389 /// against another. 1390 AliasResult 1391 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1392 const Value *V2, LocationSize V2Size, 1393 AAQueryInfo &AAQI) { 1394 // If the values are Selects with the same condition, we can do a more precise 1395 // check: just check for aliases between the values on corresponding arms. 1396 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1397 if (isValueEqualInPotentialCycles(SI->getCondition(), SI2->getCondition(), 1398 AAQI)) { 1399 AliasResult Alias = 1400 AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize), 1401 MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); 1402 if (Alias == AliasResult::MayAlias) 1403 return AliasResult::MayAlias; 1404 AliasResult ThisAlias = 1405 AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize), 1406 MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); 1407 return MergeAliasResults(ThisAlias, Alias); 1408 } 1409 1410 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1411 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1412 AliasResult Alias = AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize), 1413 MemoryLocation(V2, V2Size), AAQI); 1414 if (Alias == AliasResult::MayAlias) 1415 return AliasResult::MayAlias; 1416 1417 AliasResult ThisAlias = 1418 AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize), 1419 MemoryLocation(V2, V2Size), AAQI); 1420 return MergeAliasResults(ThisAlias, Alias); 1421 } 1422 1423 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1424 /// another. 1425 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1426 const Value *V2, LocationSize V2Size, 1427 AAQueryInfo &AAQI) { 1428 if (!PN->getNumIncomingValues()) 1429 return AliasResult::NoAlias; 1430 // If the values are PHIs in the same block, we can do a more precise 1431 // as well as efficient check: just check for aliases between the values 1432 // on corresponding edges. Don't do this if we are analyzing across 1433 // iterations, as we may pick a different phi entry in different iterations. 1434 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1435 if (PN2->getParent() == PN->getParent() && !AAQI.MayBeCrossIteration) { 1436 std::optional<AliasResult> Alias; 1437 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1438 AliasResult ThisAlias = AAQI.AAR.alias( 1439 MemoryLocation(PN->getIncomingValue(i), PNSize), 1440 MemoryLocation( 1441 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), 1442 AAQI); 1443 if (Alias) 1444 *Alias = MergeAliasResults(*Alias, ThisAlias); 1445 else 1446 Alias = ThisAlias; 1447 if (*Alias == AliasResult::MayAlias) 1448 break; 1449 } 1450 return *Alias; 1451 } 1452 1453 SmallVector<Value *, 4> V1Srcs; 1454 // If a phi operand recurses back to the phi, we can still determine NoAlias 1455 // if we don't alias the underlying objects of the other phi operands, as we 1456 // know that the recursive phi needs to be based on them in some way. 1457 bool isRecursive = false; 1458 auto CheckForRecPhi = [&](Value *PV) { 1459 if (!EnableRecPhiAnalysis) 1460 return false; 1461 if (getUnderlyingObject(PV) == PN) { 1462 isRecursive = true; 1463 return true; 1464 } 1465 return false; 1466 }; 1467 1468 SmallPtrSet<Value *, 4> UniqueSrc; 1469 Value *OnePhi = nullptr; 1470 for (Value *PV1 : PN->incoming_values()) { 1471 // Skip the phi itself being the incoming value. 1472 if (PV1 == PN) 1473 continue; 1474 1475 if (isa<PHINode>(PV1)) { 1476 if (OnePhi && OnePhi != PV1) { 1477 // To control potential compile time explosion, we choose to be 1478 // conserviate when we have more than one Phi input. It is important 1479 // that we handle the single phi case as that lets us handle LCSSA 1480 // phi nodes and (combined with the recursive phi handling) simple 1481 // pointer induction variable patterns. 1482 return AliasResult::MayAlias; 1483 } 1484 OnePhi = PV1; 1485 } 1486 1487 if (CheckForRecPhi(PV1)) 1488 continue; 1489 1490 if (UniqueSrc.insert(PV1).second) 1491 V1Srcs.push_back(PV1); 1492 } 1493 1494 if (OnePhi && UniqueSrc.size() > 1) 1495 // Out of an abundance of caution, allow only the trivial lcssa and 1496 // recursive phi cases. 1497 return AliasResult::MayAlias; 1498 1499 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1500 // value. This should only be possible in blocks unreachable from the entry 1501 // block, but return MayAlias just in case. 1502 if (V1Srcs.empty()) 1503 return AliasResult::MayAlias; 1504 1505 // If this PHI node is recursive, indicate that the pointer may be moved 1506 // across iterations. We can only prove NoAlias if different underlying 1507 // objects are involved. 1508 if (isRecursive) 1509 PNSize = LocationSize::beforeOrAfterPointer(); 1510 1511 // In the recursive alias queries below, we may compare values from two 1512 // different loop iterations. 1513 SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true); 1514 1515 AliasResult Alias = AAQI.AAR.alias(MemoryLocation(V1Srcs[0], PNSize), 1516 MemoryLocation(V2, V2Size), AAQI); 1517 1518 // Early exit if the check of the first PHI source against V2 is MayAlias. 1519 // Other results are not possible. 1520 if (Alias == AliasResult::MayAlias) 1521 return AliasResult::MayAlias; 1522 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1523 // remain valid to all elements and needs to conservatively return MayAlias. 1524 if (isRecursive && Alias != AliasResult::NoAlias) 1525 return AliasResult::MayAlias; 1526 1527 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1528 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1529 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1530 Value *V = V1Srcs[i]; 1531 1532 AliasResult ThisAlias = AAQI.AAR.alias( 1533 MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), AAQI); 1534 Alias = MergeAliasResults(ThisAlias, Alias); 1535 if (Alias == AliasResult::MayAlias) 1536 break; 1537 } 1538 1539 return Alias; 1540 } 1541 1542 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1543 /// array references. 1544 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1545 const Value *V2, LocationSize V2Size, 1546 AAQueryInfo &AAQI, 1547 const Instruction *CtxI) { 1548 // If either of the memory references is empty, it doesn't matter what the 1549 // pointer values are. 1550 if (V1Size.isZero() || V2Size.isZero()) 1551 return AliasResult::NoAlias; 1552 1553 // Strip off any casts if they exist. 1554 V1 = V1->stripPointerCastsForAliasAnalysis(); 1555 V2 = V2->stripPointerCastsForAliasAnalysis(); 1556 1557 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1558 // value for undef that aliases nothing in the program. 1559 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1560 return AliasResult::NoAlias; 1561 1562 // Are we checking for alias of the same value? 1563 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1564 // different iterations. We must therefore make sure that this is not the 1565 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1566 // happen by looking at the visited phi nodes and making sure they cannot 1567 // reach the value. 1568 if (isValueEqualInPotentialCycles(V1, V2, AAQI)) 1569 return AliasResult::MustAlias; 1570 1571 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1572 return AliasResult::NoAlias; // Scalars cannot alias each other 1573 1574 // Figure out what objects these things are pointing to if we can. 1575 const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1576 const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1577 1578 // Null values in the default address space don't point to any object, so they 1579 // don't alias any other pointer. 1580 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1581 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1582 return AliasResult::NoAlias; 1583 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1584 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1585 return AliasResult::NoAlias; 1586 1587 if (O1 != O2) { 1588 // If V1/V2 point to two different objects, we know that we have no alias. 1589 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1590 return AliasResult::NoAlias; 1591 1592 // Function arguments can't alias with things that are known to be 1593 // unambigously identified at the function level. 1594 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1595 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1596 return AliasResult::NoAlias; 1597 1598 // If one pointer is the result of a call/invoke or load and the other is a 1599 // non-escaping local object within the same function, then we know the 1600 // object couldn't escape to a point where the call could return it. 1601 // 1602 // Note that if the pointers are in different functions, there are a 1603 // variety of complications. A call with a nocapture argument may still 1604 // temporary store the nocapture argument's value in a temporary memory 1605 // location if that memory location doesn't escape. Or it may pass a 1606 // nocapture value to other functions as long as they don't capture it. 1607 if (isEscapeSource(O1) && AAQI.CA->isNotCapturedBefore( 1608 O2, dyn_cast<Instruction>(O1), /*OrAt*/ true)) 1609 return AliasResult::NoAlias; 1610 if (isEscapeSource(O2) && AAQI.CA->isNotCapturedBefore( 1611 O1, dyn_cast<Instruction>(O2), /*OrAt*/ true)) 1612 return AliasResult::NoAlias; 1613 } 1614 1615 // If the size of one access is larger than the entire object on the other 1616 // side, then we know such behavior is undefined and can assume no alias. 1617 bool NullIsValidLocation = NullPointerIsDefined(&F); 1618 if ((isObjectSmallerThan( 1619 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1620 TLI, NullIsValidLocation)) || 1621 (isObjectSmallerThan( 1622 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1623 TLI, NullIsValidLocation))) 1624 return AliasResult::NoAlias; 1625 1626 if (EnableSeparateStorageAnalysis) { 1627 for (AssumptionCache::ResultElem &Elem : AC.assumptionsFor(O1)) { 1628 if (!Elem || Elem.Index == AssumptionCache::ExprResultIdx) 1629 continue; 1630 1631 AssumeInst *Assume = cast<AssumeInst>(Elem); 1632 OperandBundleUse OBU = Assume->getOperandBundleAt(Elem.Index); 1633 if (OBU.getTagName() == "separate_storage") { 1634 assert(OBU.Inputs.size() == 2); 1635 const Value *Hint1 = OBU.Inputs[0].get(); 1636 const Value *Hint2 = OBU.Inputs[1].get(); 1637 // This is often a no-op; instcombine rewrites this for us. No-op 1638 // getUnderlyingObject calls are fast, though. 1639 const Value *HintO1 = getUnderlyingObject(Hint1); 1640 const Value *HintO2 = getUnderlyingObject(Hint2); 1641 1642 DominatorTree *DT = getDT(AAQI); 1643 auto ValidAssumeForPtrContext = [&](const Value *Ptr) { 1644 if (const Instruction *PtrI = dyn_cast<Instruction>(Ptr)) { 1645 return isValidAssumeForContext(Assume, PtrI, DT, 1646 /* AllowEphemerals */ true); 1647 } 1648 if (const Argument *PtrA = dyn_cast<Argument>(Ptr)) { 1649 const Instruction *FirstI = 1650 &*PtrA->getParent()->getEntryBlock().begin(); 1651 return isValidAssumeForContext(Assume, FirstI, DT, 1652 /* AllowEphemerals */ true); 1653 } 1654 return false; 1655 }; 1656 1657 if ((O1 == HintO1 && O2 == HintO2) || (O1 == HintO2 && O2 == HintO1)) { 1658 // Note that we go back to V1 and V2 for the 1659 // ValidAssumeForPtrContext checks; they're dominated by O1 and O2, 1660 // so strictly more assumptions are valid for them. 1661 if ((CtxI && isValidAssumeForContext(Assume, CtxI, DT, 1662 /* AllowEphemerals */ true)) || 1663 ValidAssumeForPtrContext(V1) || ValidAssumeForPtrContext(V2)) { 1664 return AliasResult::NoAlias; 1665 } 1666 } 1667 } 1668 } 1669 } 1670 1671 // If one the accesses may be before the accessed pointer, canonicalize this 1672 // by using unknown after-pointer sizes for both accesses. This is 1673 // equivalent, because regardless of which pointer is lower, one of them 1674 // will always came after the other, as long as the underlying objects aren't 1675 // disjoint. We do this so that the rest of BasicAA does not have to deal 1676 // with accesses before the base pointer, and to improve cache utilization by 1677 // merging equivalent states. 1678 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1679 V1Size = LocationSize::afterPointer(); 1680 V2Size = LocationSize::afterPointer(); 1681 } 1682 1683 // FIXME: If this depth limit is hit, then we may cache sub-optimal results 1684 // for recursive queries. For this reason, this limit is chosen to be large 1685 // enough to be very rarely hit, while still being small enough to avoid 1686 // stack overflows. 1687 if (AAQI.Depth >= 512) 1688 return AliasResult::MayAlias; 1689 1690 // Check the cache before climbing up use-def chains. This also terminates 1691 // otherwise infinitely recursive queries. Include MayBeCrossIteration in the 1692 // cache key, because some cases where MayBeCrossIteration==false returns 1693 // MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true. 1694 AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration}, 1695 {V2, V2Size, AAQI.MayBeCrossIteration}); 1696 const bool Swapped = V1 > V2; 1697 if (Swapped) 1698 std::swap(Locs.first, Locs.second); 1699 const auto &Pair = AAQI.AliasCache.try_emplace( 1700 Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); 1701 if (!Pair.second) { 1702 auto &Entry = Pair.first->second; 1703 if (!Entry.isDefinitive()) { 1704 // Remember that we used an assumption. This may either be a direct use 1705 // of an assumption, or a use of an entry that may itself be based on an 1706 // assumption. 1707 ++AAQI.NumAssumptionUses; 1708 if (Entry.isAssumption()) 1709 ++Entry.NumAssumptionUses; 1710 } 1711 // Cache contains sorted {V1,V2} pairs but we should return original order. 1712 auto Result = Entry.Result; 1713 Result.swap(Swapped); 1714 return Result; 1715 } 1716 1717 int OrigNumAssumptionUses = AAQI.NumAssumptionUses; 1718 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); 1719 AliasResult Result = 1720 aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); 1721 1722 auto It = AAQI.AliasCache.find(Locs); 1723 assert(It != AAQI.AliasCache.end() && "Must be in cache"); 1724 auto &Entry = It->second; 1725 1726 // Check whether a NoAlias assumption has been used, but disproven. 1727 bool AssumptionDisproven = 1728 Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; 1729 if (AssumptionDisproven) 1730 Result = AliasResult::MayAlias; 1731 1732 // This is a definitive result now, when considered as a root query. 1733 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; 1734 Entry.Result = Result; 1735 // Cache contains sorted {V1,V2} pairs. 1736 Entry.Result.swap(Swapped); 1737 1738 // If the assumption has been disproven, remove any results that may have 1739 // been based on this assumption. Do this after the Entry updates above to 1740 // avoid iterator invalidation. 1741 if (AssumptionDisproven) 1742 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) 1743 AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); 1744 1745 // The result may still be based on assumptions higher up in the chain. 1746 // Remember it, so it can be purged from the cache later. 1747 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && 1748 Result != AliasResult::MayAlias) { 1749 AAQI.AssumptionBasedResults.push_back(Locs); 1750 Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::AssumptionBased; 1751 } else { 1752 Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive; 1753 } 1754 1755 // Depth is incremented before this function is called, so Depth==1 indicates 1756 // a root query. 1757 if (AAQI.Depth == 1) { 1758 // Any remaining assumption based results must be based on proven 1759 // assumptions, so convert them to definitive results. 1760 for (const auto &Loc : AAQI.AssumptionBasedResults) { 1761 auto It = AAQI.AliasCache.find(Loc); 1762 if (It != AAQI.AliasCache.end()) 1763 It->second.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive; 1764 } 1765 AAQI.AssumptionBasedResults.clear(); 1766 AAQI.NumAssumptionUses = 0; 1767 } 1768 return Result; 1769 } 1770 1771 AliasResult BasicAAResult::aliasCheckRecursive( 1772 const Value *V1, LocationSize V1Size, 1773 const Value *V2, LocationSize V2Size, 1774 AAQueryInfo &AAQI, const Value *O1, const Value *O2) { 1775 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1776 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); 1777 if (Result != AliasResult::MayAlias) 1778 return Result; 1779 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1780 AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); 1781 Result.swap(); 1782 if (Result != AliasResult::MayAlias) 1783 return Result; 1784 } 1785 1786 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1787 AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); 1788 if (Result != AliasResult::MayAlias) 1789 return Result; 1790 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1791 AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); 1792 Result.swap(); 1793 if (Result != AliasResult::MayAlias) 1794 return Result; 1795 } 1796 1797 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1798 AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); 1799 if (Result != AliasResult::MayAlias) 1800 return Result; 1801 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1802 AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); 1803 Result.swap(); 1804 if (Result != AliasResult::MayAlias) 1805 return Result; 1806 } 1807 1808 // If both pointers are pointing into the same object and one of them 1809 // accesses the entire object, then the accesses must overlap in some way. 1810 if (O1 == O2) { 1811 bool NullIsValidLocation = NullPointerIsDefined(&F); 1812 if (V1Size.isPrecise() && V2Size.isPrecise() && 1813 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1814 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1815 return AliasResult::PartialAlias; 1816 } 1817 1818 return AliasResult::MayAlias; 1819 } 1820 1821 /// Check whether two Values can be considered equivalent. 1822 /// 1823 /// If the values may come from different cycle iterations, this will also 1824 /// check that the values are not part of cycle. We have to do this because we 1825 /// are looking through phi nodes, that is we say 1826 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1827 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1828 const Value *V2, 1829 const AAQueryInfo &AAQI) { 1830 if (V != V2) 1831 return false; 1832 1833 if (!AAQI.MayBeCrossIteration) 1834 return true; 1835 1836 // Non-instructions and instructions in the entry block cannot be part of 1837 // a loop. 1838 const Instruction *Inst = dyn_cast<Instruction>(V); 1839 if (!Inst || Inst->getParent()->isEntryBlock()) 1840 return true; 1841 1842 return isNotInCycle(Inst, getDT(AAQI), /*LI*/ nullptr); 1843 } 1844 1845 /// Computes the symbolic difference between two de-composed GEPs. 1846 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP, 1847 const DecomposedGEP &SrcGEP, 1848 const AAQueryInfo &AAQI) { 1849 // Drop nuw flag from GEP if subtraction of constant offsets overflows in an 1850 // unsigned sense. 1851 if (DestGEP.Offset.ult(SrcGEP.Offset)) 1852 DestGEP.NWFlags = DestGEP.NWFlags.withoutNoUnsignedWrap(); 1853 1854 DestGEP.Offset -= SrcGEP.Offset; 1855 for (const VariableGEPIndex &Src : SrcGEP.VarIndices) { 1856 // Find V in Dest. This is N^2, but pointer indices almost never have more 1857 // than a few variable indexes. 1858 bool Found = false; 1859 for (auto I : enumerate(DestGEP.VarIndices)) { 1860 VariableGEPIndex &Dest = I.value(); 1861 if ((!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V, AAQI) && 1862 !areBothVScale(Dest.Val.V, Src.Val.V)) || 1863 !Dest.Val.hasSameCastsAs(Src.Val)) 1864 continue; 1865 1866 // Normalize IsNegated if we're going to lose the NSW flag anyway. 1867 if (Dest.IsNegated) { 1868 Dest.Scale = -Dest.Scale; 1869 Dest.IsNegated = false; 1870 Dest.IsNSW = false; 1871 } 1872 1873 // If we found it, subtract off Scale V's from the entry in Dest. If it 1874 // goes to zero, remove the entry. 1875 if (Dest.Scale != Src.Scale) { 1876 // Drop nuw flag from GEP if subtraction of V's Scale overflows in an 1877 // unsigned sense. 1878 if (Dest.Scale.ult(Src.Scale)) 1879 DestGEP.NWFlags = DestGEP.NWFlags.withoutNoUnsignedWrap(); 1880 1881 Dest.Scale -= Src.Scale; 1882 Dest.IsNSW = false; 1883 } else { 1884 DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index()); 1885 } 1886 Found = true; 1887 break; 1888 } 1889 1890 // If we didn't consume this entry, add it to the end of the Dest list. 1891 if (!Found) { 1892 VariableGEPIndex Entry = {Src.Val, Src.Scale, Src.CxtI, Src.IsNSW, 1893 /* IsNegated */ true}; 1894 DestGEP.VarIndices.push_back(Entry); 1895 1896 // Drop nuw flag when we have unconsumed variable indices from SrcGEP. 1897 DestGEP.NWFlags = DestGEP.NWFlags.withoutNoUnsignedWrap(); 1898 } 1899 } 1900 } 1901 1902 bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP, 1903 LocationSize MaybeV1Size, 1904 LocationSize MaybeV2Size, 1905 AssumptionCache *AC, 1906 DominatorTree *DT, 1907 const AAQueryInfo &AAQI) { 1908 if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1909 !MaybeV2Size.hasValue()) 1910 return false; 1911 1912 const uint64_t V1Size = MaybeV1Size.getValue(); 1913 const uint64_t V2Size = MaybeV2Size.getValue(); 1914 1915 const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1]; 1916 1917 if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) || 1918 !Var0.hasNegatedScaleOf(Var1) || 1919 Var0.Val.V->getType() != Var1.Val.V->getType()) 1920 return false; 1921 1922 // We'll strip off the Extensions of Var0 and Var1 and do another round 1923 // of GetLinearExpression decomposition. In the example above, if Var0 1924 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1925 1926 LinearExpression E0 = 1927 GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT); 1928 LinearExpression E1 = 1929 GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT); 1930 if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) || 1931 !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V, AAQI)) 1932 return false; 1933 1934 // We have a hit - Var0 and Var1 only differ by a constant offset! 1935 1936 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1937 // Var1 is possible to calculate, but we're just interested in the absolute 1938 // minimum difference between the two. The minimum distance may occur due to 1939 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1940 // the minimum distance between %i and %i + 5 is 3. 1941 APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; 1942 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1943 APInt MinDiffBytes = 1944 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1945 1946 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1947 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1948 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1949 // V2Size can fit in the MinDiffBytes gap. 1950 return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) && 1951 MinDiffBytes.uge(V2Size + GEP.Offset.abs()); 1952 } 1953 1954 //===----------------------------------------------------------------------===// 1955 // BasicAliasAnalysis Pass 1956 //===----------------------------------------------------------------------===// 1957 1958 AnalysisKey BasicAA::Key; 1959 1960 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1961 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1962 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1963 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1964 return BasicAAResult(F.getDataLayout(), F, TLI, AC, DT); 1965 } 1966 1967 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1968 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1969 } 1970 1971 char BasicAAWrapperPass::ID = 0; 1972 1973 void BasicAAWrapperPass::anchor() {} 1974 1975 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1976 "Basic Alias Analysis (stateless AA impl)", true, true) 1977 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1978 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1979 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1980 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1981 "Basic Alias Analysis (stateless AA impl)", true, true) 1982 1983 FunctionPass *llvm::createBasicAAWrapperPass() { 1984 return new BasicAAWrapperPass(); 1985 } 1986 1987 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1988 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1989 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1990 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1991 1992 Result.reset(new BasicAAResult(F.getDataLayout(), F, 1993 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1994 &DTWP.getDomTree())); 1995 1996 return false; 1997 } 1998 1999 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2000 AU.setPreservesAll(); 2001 AU.addRequiredTransitive<AssumptionCacheTracker>(); 2002 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2003 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 2004 } 2005