xref: /llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp (revision a30e50fcb3119cc1f84f0398d229a929f296188d)
1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Argument.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalAlias.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/KnownBits.h"
57 #include "llvm/Support/SaveAndRestore.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <optional>
62 #include <utility>
63 
64 #define DEBUG_TYPE "basicaa"
65 
66 using namespace llvm;
67 
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
70                                           cl::init(true));
71 
72 static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage",
73                                                    cl::Hidden, cl::init(true));
74 
75 /// SearchLimitReached / SearchTimes shows how often the limit of
76 /// to decompose GEPs is reached. It will affect the precision
77 /// of basic alias analysis.
78 STATISTIC(SearchLimitReached, "Number of times the limit to "
79                               "decompose GEPs is reached");
80 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
81 
82 // The max limit of the search depth in DecomposeGEPExpression() and
83 // getUnderlyingObject().
84 static const unsigned MaxLookupSearchDepth = 6;
85 
86 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
87                                FunctionAnalysisManager::Invalidator &Inv) {
88   // We don't care if this analysis itself is preserved, it has no state. But
89   // we need to check that the analyses it depends on have been. Note that we
90   // may be created without handles to some analyses and in that case don't
91   // depend on them.
92   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
93       (DT_ && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)))
94     return true;
95 
96   // Otherwise this analysis result remains valid.
97   return false;
98 }
99 
100 //===----------------------------------------------------------------------===//
101 // Useful predicates
102 //===----------------------------------------------------------------------===//
103 
104 /// Returns the size of the object specified by V or UnknownSize if unknown.
105 static std::optional<TypeSize> getObjectSize(const Value *V,
106                                              const DataLayout &DL,
107                                              const TargetLibraryInfo &TLI,
108                                              bool NullIsValidLoc,
109                                              bool RoundToAlign = false) {
110   uint64_t Size;
111   ObjectSizeOpts Opts;
112   Opts.RoundToAlign = RoundToAlign;
113   Opts.NullIsUnknownSize = NullIsValidLoc;
114   if (getObjectSize(V, Size, DL, &TLI, Opts))
115     return TypeSize::getFixed(Size);
116   return std::nullopt;
117 }
118 
119 /// Returns true if we can prove that the object specified by V is smaller than
120 /// Size. Bails out early unless the root object is passed as the first
121 /// parameter.
122 static bool isObjectSmallerThan(const Value *V, TypeSize Size,
123                                 const DataLayout &DL,
124                                 const TargetLibraryInfo &TLI,
125                                 bool NullIsValidLoc) {
126   // Note that the meanings of the "object" are slightly different in the
127   // following contexts:
128   //    c1: llvm::getObjectSize()
129   //    c2: llvm.objectsize() intrinsic
130   //    c3: isObjectSmallerThan()
131   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
132   // refers to the "entire object".
133   //
134   //  Consider this example:
135   //     char *p = (char*)malloc(100)
136   //     char *q = p+80;
137   //
138   // In the context of c1 and c2, the "object" pointed by q refers to the
139   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
140   //
141   // In the context of c3, the "object" refers to the chunk of memory being
142   // allocated. So, the "object" has 100 bytes, and q points to the middle the
143   // "object". However, unless p, the root object, is passed as the first
144   // parameter, the call to isIdentifiedObject() makes isObjectSmallerThan()
145   // bail out early.
146   if (!isIdentifiedObject(V))
147     return false;
148 
149   // This function needs to use the aligned object size because we allow
150   // reads a bit past the end given sufficient alignment.
151   std::optional<TypeSize> ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
152                                                      /*RoundToAlign*/ true);
153 
154   return ObjectSize && TypeSize::isKnownLT(*ObjectSize, Size);
155 }
156 
157 /// Return the minimal extent from \p V to the end of the underlying object,
158 /// assuming the result is used in an aliasing query. E.g., we do use the query
159 /// location size and the fact that null pointers cannot alias here.
160 static TypeSize getMinimalExtentFrom(const Value &V,
161                                      const LocationSize &LocSize,
162                                      const DataLayout &DL,
163                                      bool NullIsValidLoc) {
164   // If we have dereferenceability information we know a lower bound for the
165   // extent as accesses for a lower offset would be valid. We need to exclude
166   // the "or null" part if null is a valid pointer. We can ignore frees, as an
167   // access after free would be undefined behavior.
168   bool CanBeNull, CanBeFreed;
169   uint64_t DerefBytes =
170     V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
171   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
172   // If queried with a precise location size, we assume that location size to be
173   // accessed, thus valid.
174   if (LocSize.isPrecise())
175     DerefBytes = std::max(DerefBytes, LocSize.getValue().getKnownMinValue());
176   return TypeSize::getFixed(DerefBytes);
177 }
178 
179 /// Returns true if we can prove that the object specified by V has size Size.
180 static bool isObjectSize(const Value *V, TypeSize Size, const DataLayout &DL,
181                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
182   std::optional<TypeSize> ObjectSize =
183       getObjectSize(V, DL, TLI, NullIsValidLoc);
184   return ObjectSize && *ObjectSize == Size;
185 }
186 
187 /// Return true if both V1 and V2 are VScale
188 static bool areBothVScale(const Value *V1, const Value *V2) {
189   return PatternMatch::match(V1, PatternMatch::m_VScale()) &&
190          PatternMatch::match(V2, PatternMatch::m_VScale());
191 }
192 
193 //===----------------------------------------------------------------------===//
194 // CaptureAnalysis implementations
195 //===----------------------------------------------------------------------===//
196 
197 CaptureAnalysis::~CaptureAnalysis() = default;
198 
199 bool SimpleCaptureAnalysis::isNotCapturedBefore(const Value *Object,
200                                                 const Instruction *I,
201                                                 bool OrAt) {
202   return isNonEscapingLocalObject(Object, &IsCapturedCache);
203 }
204 
205 static bool isNotInCycle(const Instruction *I, const DominatorTree *DT,
206                          const LoopInfo *LI) {
207   BasicBlock *BB = const_cast<BasicBlock *>(I->getParent());
208   SmallVector<BasicBlock *> Succs(successors(BB));
209   return Succs.empty() ||
210          !isPotentiallyReachableFromMany(Succs, BB, nullptr, DT, LI);
211 }
212 
213 bool EarliestEscapeAnalysis::isNotCapturedBefore(const Value *Object,
214                                                  const Instruction *I,
215                                                  bool OrAt) {
216   if (!isIdentifiedFunctionLocal(Object))
217     return false;
218 
219   auto Iter = EarliestEscapes.insert({Object, nullptr});
220   if (Iter.second) {
221     Instruction *EarliestCapture = FindEarliestCapture(
222         Object, *const_cast<Function *>(DT.getRoot()->getParent()),
223         /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT);
224     if (EarliestCapture)
225       Inst2Obj[EarliestCapture].push_back(Object);
226     Iter.first->second = EarliestCapture;
227   }
228 
229   // No capturing instruction.
230   if (!Iter.first->second)
231     return true;
232 
233   // No context instruction means any use is capturing.
234   if (!I)
235     return false;
236 
237   if (I == Iter.first->second) {
238     if (OrAt)
239       return false;
240     return isNotInCycle(I, &DT, LI);
241   }
242 
243   return !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, LI);
244 }
245 
246 void EarliestEscapeAnalysis::removeInstruction(Instruction *I) {
247   auto Iter = Inst2Obj.find(I);
248   if (Iter != Inst2Obj.end()) {
249     for (const Value *Obj : Iter->second)
250       EarliestEscapes.erase(Obj);
251     Inst2Obj.erase(I);
252   }
253 }
254 
255 //===----------------------------------------------------------------------===//
256 // GetElementPtr Instruction Decomposition and Analysis
257 //===----------------------------------------------------------------------===//
258 
259 namespace {
260 /// Represents zext(sext(trunc(V))).
261 struct CastedValue {
262   const Value *V;
263   unsigned ZExtBits = 0;
264   unsigned SExtBits = 0;
265   unsigned TruncBits = 0;
266   /// Whether trunc(V) is non-negative.
267   bool IsNonNegative = false;
268 
269   explicit CastedValue(const Value *V) : V(V) {}
270   explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits,
271                        unsigned TruncBits, bool IsNonNegative)
272       : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits),
273         IsNonNegative(IsNonNegative) {}
274 
275   unsigned getBitWidth() const {
276     return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits +
277            SExtBits;
278   }
279 
280   CastedValue withValue(const Value *NewV, bool PreserveNonNeg) const {
281     return CastedValue(NewV, ZExtBits, SExtBits, TruncBits,
282                        IsNonNegative && PreserveNonNeg);
283   }
284 
285   /// Replace V with zext(NewV)
286   CastedValue withZExtOfValue(const Value *NewV, bool ZExtNonNegative) const {
287     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
288                         NewV->getType()->getPrimitiveSizeInBits();
289     if (ExtendBy <= TruncBits)
290       // zext<nneg>(trunc(zext(NewV))) == zext<nneg>(trunc(NewV))
291       // The nneg can be preserved on the outer zext here.
292       return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy,
293                          IsNonNegative);
294 
295     // zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
296     ExtendBy -= TruncBits;
297     // zext<nneg>(zext(NewV)) == zext(NewV)
298     // zext(zext<nneg>(NewV)) == zext<nneg>(NewV)
299     // The nneg can be preserved from the inner zext here but must be dropped
300     // from the outer.
301     return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0,
302                        ZExtNonNegative);
303   }
304 
305   /// Replace V with sext(NewV)
306   CastedValue withSExtOfValue(const Value *NewV) const {
307     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
308                         NewV->getType()->getPrimitiveSizeInBits();
309     if (ExtendBy <= TruncBits)
310       // zext<nneg>(trunc(sext(NewV))) == zext<nneg>(trunc(NewV))
311       // The nneg can be preserved on the outer zext here
312       return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy,
313                          IsNonNegative);
314 
315     // zext(sext(sext(NewV)))
316     ExtendBy -= TruncBits;
317     // zext<nneg>(sext(sext(NewV))) = zext<nneg>(sext(NewV))
318     // The nneg can be preserved on the outer zext here
319     return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0, IsNonNegative);
320   }
321 
322   APInt evaluateWith(APInt N) const {
323     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
324            "Incompatible bit width");
325     if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits);
326     if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
327     if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
328     return N;
329   }
330 
331   ConstantRange evaluateWith(ConstantRange N) const {
332     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
333            "Incompatible bit width");
334     if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits);
335     if (IsNonNegative && !N.isAllNonNegative())
336       N = N.intersectWith(
337           ConstantRange(APInt::getZero(N.getBitWidth()),
338                         APInt::getSignedMinValue(N.getBitWidth())));
339     if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits);
340     if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits);
341     return N;
342   }
343 
344   bool canDistributeOver(bool NUW, bool NSW) const {
345     // zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
346     // sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
347     // trunc(x op y) == trunc(x) op trunc(y)
348     return (!ZExtBits || NUW) && (!SExtBits || NSW);
349   }
350 
351   bool hasSameCastsAs(const CastedValue &Other) const {
352     if (V->getType() != Other.V->getType())
353       return false;
354 
355     if (ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits &&
356         TruncBits == Other.TruncBits)
357       return true;
358     // If either CastedValue has a nneg zext then the sext/zext bits are
359     // interchangable for that value.
360     if (IsNonNegative || Other.IsNonNegative)
361       return (ZExtBits + SExtBits == Other.ZExtBits + Other.SExtBits &&
362               TruncBits == Other.TruncBits);
363     return false;
364   }
365 };
366 
367 /// Represents zext(sext(trunc(V))) * Scale + Offset.
368 struct LinearExpression {
369   CastedValue Val;
370   APInt Scale;
371   APInt Offset;
372 
373   /// True if all operations in this expression are NUW.
374   bool IsNUW;
375   /// True if all operations in this expression are NSW.
376   bool IsNSW;
377 
378   LinearExpression(const CastedValue &Val, const APInt &Scale,
379                    const APInt &Offset, bool IsNUW, bool IsNSW)
380       : Val(Val), Scale(Scale), Offset(Offset), IsNUW(IsNUW), IsNSW(IsNSW) {}
381 
382   LinearExpression(const CastedValue &Val)
383       : Val(Val), IsNUW(true), IsNSW(true) {
384     unsigned BitWidth = Val.getBitWidth();
385     Scale = APInt(BitWidth, 1);
386     Offset = APInt(BitWidth, 0);
387   }
388 
389   LinearExpression mul(const APInt &Other, bool MulIsNUW, bool MulIsNSW) const {
390     // The check for zero offset is necessary, because generally
391     // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z).
392     bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero()));
393     bool NUW = IsNUW && (Other.isOne() || MulIsNUW);
394     return LinearExpression(Val, Scale * Other, Offset * Other, NUW, NSW);
395   }
396 };
397 }
398 
399 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
400 /// B are constant integers.
401 static LinearExpression GetLinearExpression(
402     const CastedValue &Val,  const DataLayout &DL, unsigned Depth,
403     AssumptionCache *AC, DominatorTree *DT) {
404   // Limit our recursion depth.
405   if (Depth == 6)
406     return Val;
407 
408   if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
409     return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
410                             Val.evaluateWith(Const->getValue()), true, true);
411 
412   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
413     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
414       APInt RHS = Val.evaluateWith(RHSC->getValue());
415       // The only non-OBO case we deal with is or, and only limited to the
416       // case where it is both nuw and nsw.
417       bool NUW = true, NSW = true;
418       if (isa<OverflowingBinaryOperator>(BOp)) {
419         NUW &= BOp->hasNoUnsignedWrap();
420         NSW &= BOp->hasNoSignedWrap();
421       }
422       if (!Val.canDistributeOver(NUW, NSW))
423         return Val;
424 
425       // While we can distribute over trunc, we cannot preserve nowrap flags
426       // in that case.
427       if (Val.TruncBits)
428         NUW = NSW = false;
429 
430       LinearExpression E(Val);
431       switch (BOp->getOpcode()) {
432       default:
433         // We don't understand this instruction, so we can't decompose it any
434         // further.
435         return Val;
436       case Instruction::Or:
437         // X|C == X+C if it is disjoint.  Otherwise we can't analyze it.
438         if (!cast<PossiblyDisjointInst>(BOp)->isDisjoint())
439           return Val;
440 
441         [[fallthrough]];
442       case Instruction::Add: {
443         E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL,
444                                 Depth + 1, AC, DT);
445         E.Offset += RHS;
446         E.IsNUW &= NUW;
447         E.IsNSW &= NSW;
448         break;
449       }
450       case Instruction::Sub: {
451         E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL,
452                                 Depth + 1, AC, DT);
453         E.Offset -= RHS;
454         E.IsNUW = false; // sub nuw x, y is not add nuw x, -y.
455         E.IsNSW &= NSW;
456         break;
457       }
458       case Instruction::Mul:
459         E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL,
460                                 Depth + 1, AC, DT)
461                 .mul(RHS, NUW, NSW);
462         break;
463       case Instruction::Shl:
464         // We're trying to linearize an expression of the kind:
465         //   shl i8 -128, 36
466         // where the shift count exceeds the bitwidth of the type.
467         // We can't decompose this further (the expression would return
468         // a poison value).
469         if (RHS.getLimitedValue() > Val.getBitWidth())
470           return Val;
471 
472         E = GetLinearExpression(Val.withValue(BOp->getOperand(0), NSW), DL,
473                                 Depth + 1, AC, DT);
474         E.Offset <<= RHS.getLimitedValue();
475         E.Scale <<= RHS.getLimitedValue();
476         E.IsNUW &= NUW;
477         E.IsNSW &= NSW;
478         break;
479       }
480       return E;
481     }
482   }
483 
484   if (const auto *ZExt = dyn_cast<ZExtInst>(Val.V))
485     return GetLinearExpression(
486         Val.withZExtOfValue(ZExt->getOperand(0), ZExt->hasNonNeg()), DL,
487         Depth + 1, AC, DT);
488 
489   if (isa<SExtInst>(Val.V))
490     return GetLinearExpression(
491         Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
492         DL, Depth + 1, AC, DT);
493 
494   return Val;
495 }
496 
497 namespace {
498 // A linear transformation of a Value; this class represents
499 // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale.
500 struct VariableGEPIndex {
501   CastedValue Val;
502   APInt Scale;
503 
504   // Context instruction to use when querying information about this index.
505   const Instruction *CxtI;
506 
507   /// True if all operations in this expression are NSW.
508   bool IsNSW;
509 
510   /// True if the index should be subtracted rather than added. We don't simply
511   /// negate the Scale, to avoid losing the NSW flag: X - INT_MIN*1 may be
512   /// non-wrapping, while X + INT_MIN*(-1) wraps.
513   bool IsNegated;
514 
515   bool hasNegatedScaleOf(const VariableGEPIndex &Other) const {
516     if (IsNegated == Other.IsNegated)
517       return Scale == -Other.Scale;
518     return Scale == Other.Scale;
519   }
520 
521   void dump() const {
522     print(dbgs());
523     dbgs() << "\n";
524   }
525   void print(raw_ostream &OS) const {
526     OS << "(V=" << Val.V->getName()
527        << ", zextbits=" << Val.ZExtBits
528        << ", sextbits=" << Val.SExtBits
529        << ", truncbits=" << Val.TruncBits
530        << ", scale=" << Scale
531        << ", nsw=" << IsNSW
532        << ", negated=" << IsNegated << ")";
533   }
534 };
535 }
536 
537 // Represents the internal structure of a GEP, decomposed into a base pointer,
538 // constant offsets, and variable scaled indices.
539 struct BasicAAResult::DecomposedGEP {
540   // Base pointer of the GEP
541   const Value *Base;
542   // Total constant offset from base.
543   APInt Offset;
544   // Scaled variable (non-constant) indices.
545   SmallVector<VariableGEPIndex, 4> VarIndices;
546   // Nowrap flags common to all GEP operations involved in expression.
547   GEPNoWrapFlags NWFlags = GEPNoWrapFlags::all();
548 
549   void dump() const {
550     print(dbgs());
551     dbgs() << "\n";
552   }
553   void print(raw_ostream &OS) const {
554     OS << ", inbounds=" << (NWFlags.isInBounds() ? "1" : "0")
555        << ", nuw=" << (NWFlags.hasNoUnsignedWrap() ? "1" : "0")
556        << "(DecomposedGEP Base=" << Base->getName() << ", Offset=" << Offset
557        << ", VarIndices=[";
558     for (size_t i = 0; i < VarIndices.size(); i++) {
559       if (i != 0)
560         OS << ", ";
561       VarIndices[i].print(OS);
562     }
563     OS << "])";
564   }
565 };
566 
567 
568 /// If V is a symbolic pointer expression, decompose it into a base pointer
569 /// with a constant offset and a number of scaled symbolic offsets.
570 ///
571 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
572 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
573 /// specified amount, but which may have other unrepresented high bits. As
574 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
575 BasicAAResult::DecomposedGEP
576 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
577                                       AssumptionCache *AC, DominatorTree *DT) {
578   // Limit recursion depth to limit compile time in crazy cases.
579   unsigned MaxLookup = MaxLookupSearchDepth;
580   SearchTimes++;
581   const Instruction *CxtI = dyn_cast<Instruction>(V);
582 
583   unsigned IndexSize = DL.getIndexTypeSizeInBits(V->getType());
584   DecomposedGEP Decomposed;
585   Decomposed.Offset = APInt(IndexSize, 0);
586   do {
587     // See if this is a bitcast or GEP.
588     const Operator *Op = dyn_cast<Operator>(V);
589     if (!Op) {
590       // The only non-operator case we can handle are GlobalAliases.
591       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
592         if (!GA->isInterposable()) {
593           V = GA->getAliasee();
594           continue;
595         }
596       }
597       Decomposed.Base = V;
598       return Decomposed;
599     }
600 
601     if (Op->getOpcode() == Instruction::BitCast ||
602         Op->getOpcode() == Instruction::AddrSpaceCast) {
603       Value *NewV = Op->getOperand(0);
604       // Don't look through casts between address spaces with differing index
605       // widths.
606       if (DL.getIndexTypeSizeInBits(NewV->getType()) != IndexSize) {
607         Decomposed.Base = V;
608         return Decomposed;
609       }
610       V = NewV;
611       continue;
612     }
613 
614     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
615     if (!GEPOp) {
616       if (const auto *PHI = dyn_cast<PHINode>(V)) {
617         // Look through single-arg phi nodes created by LCSSA.
618         if (PHI->getNumIncomingValues() == 1) {
619           V = PHI->getIncomingValue(0);
620           continue;
621         }
622       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
623         // CaptureTracking can know about special capturing properties of some
624         // intrinsics like launder.invariant.group, that can't be expressed with
625         // the attributes, but have properties like returning aliasing pointer.
626         // Because some analysis may assume that nocaptured pointer is not
627         // returned from some special intrinsic (because function would have to
628         // be marked with returns attribute), it is crucial to use this function
629         // because it should be in sync with CaptureTracking. Not using it may
630         // cause weird miscompilations where 2 aliasing pointers are assumed to
631         // noalias.
632         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
633           V = RP;
634           continue;
635         }
636       }
637 
638       Decomposed.Base = V;
639       return Decomposed;
640     }
641 
642     // Track the common nowrap flags for all GEPs we see.
643     Decomposed.NWFlags &= GEPOp->getNoWrapFlags();
644 
645     assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");
646 
647     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
648     gep_type_iterator GTI = gep_type_begin(GEPOp);
649     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
650          I != E; ++I, ++GTI) {
651       const Value *Index = *I;
652       // Compute the (potentially symbolic) offset in bytes for this index.
653       if (StructType *STy = GTI.getStructTypeOrNull()) {
654         // For a struct, add the member offset.
655         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
656         if (FieldNo == 0)
657           continue;
658 
659         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
660         continue;
661       }
662 
663       // For an array/pointer, add the element offset, explicitly scaled.
664       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
665         if (CIdx->isZero())
666           continue;
667 
668         // Don't attempt to analyze GEPs if the scalable index is not zero.
669         TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL);
670         if (AllocTypeSize.isScalable()) {
671           Decomposed.Base = V;
672           return Decomposed;
673         }
674 
675         Decomposed.Offset += AllocTypeSize.getFixedValue() *
676                              CIdx->getValue().sextOrTrunc(IndexSize);
677         continue;
678       }
679 
680       TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL);
681       if (AllocTypeSize.isScalable()) {
682         Decomposed.Base = V;
683         return Decomposed;
684       }
685 
686       // If the integer type is smaller than the index size, it is implicitly
687       // sign extended or truncated to index size.
688       bool NUSW = GEPOp->hasNoUnsignedSignedWrap();
689       bool NUW = GEPOp->hasNoUnsignedWrap();
690       bool NonNeg = NUSW && NUW;
691       unsigned Width = Index->getType()->getIntegerBitWidth();
692       unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0;
693       unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0;
694       LinearExpression LE = GetLinearExpression(
695           CastedValue(Index, 0, SExtBits, TruncBits, NonNeg), DL, 0, AC, DT);
696 
697       // Scale by the type size.
698       unsigned TypeSize = AllocTypeSize.getFixedValue();
699       LE = LE.mul(APInt(IndexSize, TypeSize), NUW, NUSW);
700       Decomposed.Offset += LE.Offset;
701       APInt Scale = LE.Scale;
702       if (!LE.IsNUW)
703         Decomposed.NWFlags = Decomposed.NWFlags.withoutNoUnsignedWrap();
704 
705       // If we already had an occurrence of this index variable, merge this
706       // scale into it.  For example, we want to handle:
707       //   A[x][x] -> x*16 + x*4 -> x*20
708       // This also ensures that 'x' only appears in the index list once.
709       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
710         if ((Decomposed.VarIndices[i].Val.V == LE.Val.V ||
711              areBothVScale(Decomposed.VarIndices[i].Val.V, LE.Val.V)) &&
712             Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) {
713           Scale += Decomposed.VarIndices[i].Scale;
714           // We cannot guarantee no-wrap for the merge.
715           LE.IsNSW = LE.IsNUW = false;
716           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
717           break;
718         }
719       }
720 
721       if (!!Scale) {
722         VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW,
723                                   /* IsNegated */ false};
724         Decomposed.VarIndices.push_back(Entry);
725       }
726     }
727 
728     // Analyze the base pointer next.
729     V = GEPOp->getOperand(0);
730   } while (--MaxLookup);
731 
732   // If the chain of expressions is too deep, just return early.
733   Decomposed.Base = V;
734   SearchLimitReached++;
735   return Decomposed;
736 }
737 
738 ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc,
739                                             AAQueryInfo &AAQI,
740                                             bool IgnoreLocals) {
741   assert(Visited.empty() && "Visited must be cleared after use!");
742   auto _ = make_scope_exit([&] { Visited.clear(); });
743 
744   unsigned MaxLookup = 8;
745   SmallVector<const Value *, 16> Worklist;
746   Worklist.push_back(Loc.Ptr);
747   ModRefInfo Result = ModRefInfo::NoModRef;
748 
749   do {
750     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
751     if (!Visited.insert(V).second)
752       continue;
753 
754     // Ignore allocas if we were instructed to do so.
755     if (IgnoreLocals && isa<AllocaInst>(V))
756       continue;
757 
758     // If the location points to memory that is known to be invariant for
759     // the life of the underlying SSA value, then we can exclude Mod from
760     // the set of valid memory effects.
761     //
762     // An argument that is marked readonly and noalias is known to be
763     // invariant while that function is executing.
764     if (const Argument *Arg = dyn_cast<Argument>(V)) {
765       if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) {
766         Result |= ModRefInfo::Ref;
767         continue;
768       }
769     }
770 
771     // A global constant can't be mutated.
772     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
773       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
774       // global to be marked constant in some modules and non-constant in
775       // others.  GV may even be a declaration, not a definition.
776       if (!GV->isConstant())
777         return ModRefInfo::ModRef;
778       continue;
779     }
780 
781     // If both select values point to local memory, then so does the select.
782     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
783       Worklist.push_back(SI->getTrueValue());
784       Worklist.push_back(SI->getFalseValue());
785       continue;
786     }
787 
788     // If all values incoming to a phi node point to local memory, then so does
789     // the phi.
790     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
791       // Don't bother inspecting phi nodes with many operands.
792       if (PN->getNumIncomingValues() > MaxLookup)
793         return ModRefInfo::ModRef;
794       append_range(Worklist, PN->incoming_values());
795       continue;
796     }
797 
798     // Otherwise be conservative.
799     return ModRefInfo::ModRef;
800   } while (!Worklist.empty() && --MaxLookup);
801 
802   // If we hit the maximum number of instructions to examine, be conservative.
803   if (!Worklist.empty())
804     return ModRefInfo::ModRef;
805 
806   return Result;
807 }
808 
809 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
810   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
811   return II && II->getIntrinsicID() == IID;
812 }
813 
814 /// Returns the behavior when calling the given call site.
815 MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call,
816                                               AAQueryInfo &AAQI) {
817   MemoryEffects Min = Call->getAttributes().getMemoryEffects();
818 
819   if (const Function *F = dyn_cast<Function>(Call->getCalledOperand())) {
820     MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F);
821     // Operand bundles on the call may also read or write memory, in addition
822     // to the behavior of the called function.
823     if (Call->hasReadingOperandBundles())
824       FuncME |= MemoryEffects::readOnly();
825     if (Call->hasClobberingOperandBundles())
826       FuncME |= MemoryEffects::writeOnly();
827     Min &= FuncME;
828   }
829 
830   return Min;
831 }
832 
833 /// Returns the behavior when calling the given function. For use when the call
834 /// site is not known.
835 MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) {
836   switch (F->getIntrinsicID()) {
837   case Intrinsic::experimental_guard:
838   case Intrinsic::experimental_deoptimize:
839     // These intrinsics can read arbitrary memory, and additionally modref
840     // inaccessible memory to model control dependence.
841     return MemoryEffects::readOnly() |
842            MemoryEffects::inaccessibleMemOnly(ModRefInfo::ModRef);
843   }
844 
845   return F->getMemoryEffects();
846 }
847 
848 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
849                                            unsigned ArgIdx) {
850   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
851     return ModRefInfo::Mod;
852 
853   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
854     return ModRefInfo::Ref;
855 
856   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
857     return ModRefInfo::NoModRef;
858 
859   return ModRefInfo::ModRef;
860 }
861 
862 #ifndef NDEBUG
863 static const Function *getParent(const Value *V) {
864   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
865     if (!inst->getParent())
866       return nullptr;
867     return inst->getParent()->getParent();
868   }
869 
870   if (const Argument *arg = dyn_cast<Argument>(V))
871     return arg->getParent();
872 
873   return nullptr;
874 }
875 
876 static bool notDifferentParent(const Value *O1, const Value *O2) {
877 
878   const Function *F1 = getParent(O1);
879   const Function *F2 = getParent(O2);
880 
881   return !F1 || !F2 || F1 == F2;
882 }
883 #endif
884 
885 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
886                                  const MemoryLocation &LocB, AAQueryInfo &AAQI,
887                                  const Instruction *CtxI) {
888   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
889          "BasicAliasAnalysis doesn't support interprocedural queries.");
890   return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI, CtxI);
891 }
892 
893 /// Checks to see if the specified callsite can clobber the specified memory
894 /// object.
895 ///
896 /// Since we only look at local properties of this function, we really can't
897 /// say much about this query.  We do, however, use simple "address taken"
898 /// analysis on local objects.
899 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
900                                         const MemoryLocation &Loc,
901                                         AAQueryInfo &AAQI) {
902   assert(notDifferentParent(Call, Loc.Ptr) &&
903          "AliasAnalysis query involving multiple functions!");
904 
905   const Value *Object = getUnderlyingObject(Loc.Ptr);
906 
907   // Calls marked 'tail' cannot read or write allocas from the current frame
908   // because the current frame might be destroyed by the time they run. However,
909   // a tail call may use an alloca with byval. Calling with byval copies the
910   // contents of the alloca into argument registers or stack slots, so there is
911   // no lifetime issue.
912   if (isa<AllocaInst>(Object))
913     if (const CallInst *CI = dyn_cast<CallInst>(Call))
914       if (CI->isTailCall() &&
915           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
916         return ModRefInfo::NoModRef;
917 
918   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
919   // modify them even though the alloca is not escaped.
920   if (auto *AI = dyn_cast<AllocaInst>(Object))
921     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
922       return ModRefInfo::Mod;
923 
924   // A call can access a locally allocated object either because it is passed as
925   // an argument to the call, or because it has escaped prior to the call.
926   //
927   // Make sure the object has not escaped here, and then check that none of the
928   // call arguments alias the object below.
929   //
930   // We model calls that can return twice (setjmp) as clobbering non-escaping
931   // objects, to model any accesses that may occur prior to the second return.
932   // As an exception, ignore allocas, as setjmp is not required to preserve
933   // non-volatile stores for them.
934   if (!isa<Constant>(Object) && Call != Object &&
935       AAQI.CA->isNotCapturedBefore(Object, Call, /*OrAt*/ false) &&
936       (isa<AllocaInst>(Object) || !Call->hasFnAttr(Attribute::ReturnsTwice))) {
937 
938     // Optimistically assume that call doesn't touch Object and check this
939     // assumption in the following loop.
940     ModRefInfo Result = ModRefInfo::NoModRef;
941 
942     unsigned OperandNo = 0;
943     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
944          CI != CE; ++CI, ++OperandNo) {
945       if (!(*CI)->getType()->isPointerTy())
946         continue;
947 
948       // Call doesn't access memory through this operand, so we don't care
949       // if it aliases with Object.
950       if (Call->doesNotAccessMemory(OperandNo))
951         continue;
952 
953       // If this is a no-capture pointer argument, see if we can tell that it
954       // is impossible to alias the pointer we're checking.
955       AliasResult AR =
956           AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(*CI),
957                          MemoryLocation::getBeforeOrAfter(Object), AAQI);
958       // Operand doesn't alias 'Object', continue looking for other aliases
959       if (AR == AliasResult::NoAlias)
960         continue;
961       // Operand aliases 'Object', but call doesn't modify it. Strengthen
962       // initial assumption and keep looking in case if there are more aliases.
963       if (Call->onlyReadsMemory(OperandNo)) {
964         Result |= ModRefInfo::Ref;
965         continue;
966       }
967       // Operand aliases 'Object' but call only writes into it.
968       if (Call->onlyWritesMemory(OperandNo)) {
969         Result |= ModRefInfo::Mod;
970         continue;
971       }
972       // This operand aliases 'Object' and call reads and writes into it.
973       // Setting ModRef will not yield an early return below, MustAlias is not
974       // used further.
975       Result = ModRefInfo::ModRef;
976       break;
977     }
978 
979     // Early return if we improved mod ref information
980     if (!isModAndRefSet(Result))
981       return Result;
982   }
983 
984   // If the call is malloc/calloc like, we can assume that it doesn't
985   // modify any IR visible value.  This is only valid because we assume these
986   // routines do not read values visible in the IR.  TODO: Consider special
987   // casing realloc and strdup routines which access only their arguments as
988   // well.  Or alternatively, replace all of this with inaccessiblememonly once
989   // that's implemented fully.
990   if (isMallocOrCallocLikeFn(Call, &TLI)) {
991     // Be conservative if the accessed pointer may alias the allocation -
992     // fallback to the generic handling below.
993     if (AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(Call), Loc, AAQI) ==
994         AliasResult::NoAlias)
995       return ModRefInfo::NoModRef;
996   }
997 
998   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
999   // writing so that proper control dependencies are maintained but they never
1000   // mod any particular memory location visible to the IR.
1001   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1002   // intrinsic is now modeled as reading memory. This prevents hoisting the
1003   // invariant.start intrinsic over stores. Consider:
1004   // *ptr = 40;
1005   // *ptr = 50;
1006   // invariant_start(ptr)
1007   // int val = *ptr;
1008   // print(val);
1009   //
1010   // This cannot be transformed to:
1011   //
1012   // *ptr = 40;
1013   // invariant_start(ptr)
1014   // *ptr = 50;
1015   // int val = *ptr;
1016   // print(val);
1017   //
1018   // The transformation will cause the second store to be ignored (based on
1019   // rules of invariant.start)  and print 40, while the first program always
1020   // prints 50.
1021   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1022     return ModRefInfo::Ref;
1023 
1024   // Be conservative.
1025   return ModRefInfo::ModRef;
1026 }
1027 
1028 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1029                                         const CallBase *Call2,
1030                                         AAQueryInfo &AAQI) {
1031   // Guard intrinsics are marked as arbitrarily writing so that proper control
1032   // dependencies are maintained but they never mods any particular memory
1033   // location.
1034   //
1035   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1036   // heap state at the point the guard is issued needs to be consistent in case
1037   // the guard invokes the "deopt" continuation.
1038 
1039   // NB! This function is *not* commutative, so we special case two
1040   // possibilities for guard intrinsics.
1041 
1042   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1043     return isModSet(getMemoryEffects(Call2, AAQI).getModRef())
1044                ? ModRefInfo::Ref
1045                : ModRefInfo::NoModRef;
1046 
1047   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1048     return isModSet(getMemoryEffects(Call1, AAQI).getModRef())
1049                ? ModRefInfo::Mod
1050                : ModRefInfo::NoModRef;
1051 
1052   // Be conservative.
1053   return ModRefInfo::ModRef;
1054 }
1055 
1056 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1057 /// another pointer.
1058 ///
1059 /// We know that V1 is a GEP, but we don't know anything about V2.
1060 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1061 /// V2.
1062 AliasResult BasicAAResult::aliasGEP(
1063     const GEPOperator *GEP1, LocationSize V1Size,
1064     const Value *V2, LocationSize V2Size,
1065     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1066   auto BaseObjectsAlias = [&]() {
1067     AliasResult BaseAlias =
1068         AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1069                        MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1070     return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
1071                                              : AliasResult::MayAlias;
1072   };
1073 
1074   if (!V1Size.hasValue() && !V2Size.hasValue()) {
1075     // TODO: This limitation exists for compile-time reasons. Relax it if we
1076     // can avoid exponential pathological cases.
1077     if (!isa<GEPOperator>(V2))
1078       return AliasResult::MayAlias;
1079 
1080     // If both accesses have unknown size, we can only check whether the base
1081     // objects don't alias.
1082     return BaseObjectsAlias();
1083   }
1084 
1085   DominatorTree *DT = getDT(AAQI);
1086   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1087   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1088 
1089   // Bail if we were not able to decompose anything.
1090   if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2)
1091     return AliasResult::MayAlias;
1092 
1093   // Fall back to base objects if pointers have different index widths.
1094   if (DecompGEP1.Offset.getBitWidth() != DecompGEP2.Offset.getBitWidth())
1095     return BaseObjectsAlias();
1096 
1097   // Swap GEP1 and GEP2 if GEP2 has more variable indices.
1098   if (DecompGEP1.VarIndices.size() < DecompGEP2.VarIndices.size()) {
1099     std::swap(DecompGEP1, DecompGEP2);
1100     std::swap(V1Size, V2Size);
1101     std::swap(UnderlyingV1, UnderlyingV2);
1102   }
1103 
1104   // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1105   // symbolic difference.
1106   subtractDecomposedGEPs(DecompGEP1, DecompGEP2, AAQI);
1107 
1108   // If an inbounds GEP would have to start from an out of bounds address
1109   // for the two to alias, then we can assume noalias.
1110   // TODO: Remove !isScalable() once BasicAA fully support scalable location
1111   // size
1112 
1113   if (DecompGEP1.NWFlags.isInBounds() && DecompGEP1.VarIndices.empty() &&
1114       V2Size.hasValue() && !V2Size.isScalable() &&
1115       DecompGEP1.Offset.sge(V2Size.getValue()) &&
1116       isBaseOfObject(DecompGEP2.Base))
1117     return AliasResult::NoAlias;
1118 
1119   // Symmetric case to above.
1120   if (DecompGEP2.NWFlags.isInBounds() && DecompGEP1.VarIndices.empty() &&
1121       V1Size.hasValue() && !V1Size.isScalable() &&
1122       DecompGEP1.Offset.sle(-V1Size.getValue()) &&
1123       isBaseOfObject(DecompGEP1.Base))
1124     return AliasResult::NoAlias;
1125 
1126   // For GEPs with identical offsets, we can preserve the size and AAInfo
1127   // when performing the alias check on the underlying objects.
1128   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1129     return AAQI.AAR.alias(MemoryLocation(DecompGEP1.Base, V1Size),
1130                           MemoryLocation(DecompGEP2.Base, V2Size), AAQI);
1131 
1132   // Do the base pointers alias?
1133   AliasResult BaseAlias =
1134       AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(DecompGEP1.Base),
1135                      MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI);
1136 
1137   // If we get a No or May, then return it immediately, no amount of analysis
1138   // will improve this situation.
1139   if (BaseAlias != AliasResult::MustAlias) {
1140     assert(BaseAlias == AliasResult::NoAlias ||
1141            BaseAlias == AliasResult::MayAlias);
1142     return BaseAlias;
1143   }
1144 
1145   // If there is a constant difference between the pointers, but the difference
1146   // is less than the size of the associated memory object, then we know
1147   // that the objects are partially overlapping.  If the difference is
1148   // greater, we know they do not overlap.
1149   if (DecompGEP1.VarIndices.empty()) {
1150     APInt &Off = DecompGEP1.Offset;
1151 
1152     // Initialize for Off >= 0 (V2 <= GEP1) case.
1153     LocationSize VLeftSize = V2Size;
1154     LocationSize VRightSize = V1Size;
1155     const bool Swapped = Off.isNegative();
1156 
1157     if (Swapped) {
1158       // Swap if we have the situation where:
1159       // +                +
1160       // | BaseOffset     |
1161       // ---------------->|
1162       // |-->V1Size       |-------> V2Size
1163       // GEP1             V2
1164       std::swap(VLeftSize, VRightSize);
1165       Off = -Off;
1166     }
1167 
1168     if (!VLeftSize.hasValue())
1169       return AliasResult::MayAlias;
1170 
1171     const TypeSize LSize = VLeftSize.getValue();
1172     if (!LSize.isScalable()) {
1173       if (Off.ult(LSize)) {
1174         // Conservatively drop processing if a phi was visited and/or offset is
1175         // too big.
1176         AliasResult AR = AliasResult::PartialAlias;
1177         if (VRightSize.hasValue() && !VRightSize.isScalable() &&
1178             Off.ule(INT32_MAX) && (Off + VRightSize.getValue()).ule(LSize)) {
1179           // Memory referenced by right pointer is nested. Save the offset in
1180           // cache. Note that originally offset estimated as GEP1-V2, but
1181           // AliasResult contains the shift that represents GEP1+Offset=V2.
1182           AR.setOffset(-Off.getSExtValue());
1183           AR.swap(Swapped);
1184         }
1185         return AR;
1186       }
1187       return AliasResult::NoAlias;
1188     } else {
1189       // We can use the getVScaleRange to prove that Off >= (CR.upper * LSize).
1190       ConstantRange CR = getVScaleRange(&F, Off.getBitWidth());
1191       bool Overflow;
1192       APInt UpperRange = CR.getUnsignedMax().umul_ov(
1193           APInt(Off.getBitWidth(), LSize.getKnownMinValue()), Overflow);
1194       if (!Overflow && Off.uge(UpperRange))
1195         return AliasResult::NoAlias;
1196     }
1197   }
1198 
1199   // VScale Alias Analysis - Given one scalable offset between accesses and a
1200   // scalable typesize, we can divide each side by vscale, treating both values
1201   // as a constant. We prove that Offset/vscale >= TypeSize/vscale.
1202   if (DecompGEP1.VarIndices.size() == 1 &&
1203       DecompGEP1.VarIndices[0].Val.TruncBits == 0 &&
1204       DecompGEP1.Offset.isZero() &&
1205       PatternMatch::match(DecompGEP1.VarIndices[0].Val.V,
1206                           PatternMatch::m_VScale())) {
1207     const VariableGEPIndex &ScalableVar = DecompGEP1.VarIndices[0];
1208     APInt Scale =
1209         ScalableVar.IsNegated ? -ScalableVar.Scale : ScalableVar.Scale;
1210     LocationSize VLeftSize = Scale.isNegative() ? V1Size : V2Size;
1211 
1212     // Check if the offset is known to not overflow, if it does then attempt to
1213     // prove it with the known values of vscale_range.
1214     bool Overflows = !DecompGEP1.VarIndices[0].IsNSW;
1215     if (Overflows) {
1216       ConstantRange CR = getVScaleRange(&F, Scale.getBitWidth());
1217       (void)CR.getSignedMax().smul_ov(Scale, Overflows);
1218     }
1219 
1220     if (!Overflows) {
1221       // Note that we do not check that the typesize is scalable, as vscale >= 1
1222       // so noalias still holds so long as the dependency distance is at least
1223       // as big as the typesize.
1224       if (VLeftSize.hasValue() &&
1225           Scale.abs().uge(VLeftSize.getValue().getKnownMinValue()))
1226         return AliasResult::NoAlias;
1227     }
1228   }
1229 
1230   // If the difference between pointers is Offset +<nuw> Indices then we know
1231   // that the addition does not wrap the pointer index type (add nuw) and the
1232   // constant Offset is a lower bound on the distance between the pointers. We
1233   // can then prove NoAlias via Offset u>= VLeftSize.
1234   //    +                +                     +
1235   //    | BaseOffset     |   +<nuw> Indices    |
1236   //    ---------------->|-------------------->|
1237   //    |-->V2Size       |                     |-------> V1Size
1238   //   LHS                                    RHS
1239   if (!DecompGEP1.VarIndices.empty() &&
1240       DecompGEP1.NWFlags.hasNoUnsignedWrap() && V2Size.hasValue() &&
1241       !V2Size.isScalable() && DecompGEP1.Offset.uge(V2Size.getValue()))
1242     return AliasResult::NoAlias;
1243 
1244   // Bail on analysing scalable LocationSize
1245   if (V1Size.isScalable() || V2Size.isScalable())
1246     return AliasResult::MayAlias;
1247 
1248   // We need to know both acess sizes for all the following heuristics.
1249   if (!V1Size.hasValue() || !V2Size.hasValue())
1250     return AliasResult::MayAlias;
1251 
1252   APInt GCD;
1253   ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset);
1254   for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1255     const VariableGEPIndex &Index = DecompGEP1.VarIndices[i];
1256     const APInt &Scale = Index.Scale;
1257     APInt ScaleForGCD = Scale;
1258     if (!Index.IsNSW)
1259       ScaleForGCD =
1260           APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero());
1261 
1262     if (i == 0)
1263       GCD = ScaleForGCD.abs();
1264     else
1265       GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
1266 
1267     ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false,
1268                                             true, &AC, Index.CxtI);
1269     KnownBits Known =
1270         computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT);
1271     CR = CR.intersectWith(
1272         ConstantRange::fromKnownBits(Known, /* Signed */ true),
1273         ConstantRange::Signed);
1274     CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth());
1275 
1276     assert(OffsetRange.getBitWidth() == Scale.getBitWidth() &&
1277            "Bit widths are normalized to MaxIndexSize");
1278     if (Index.IsNSW)
1279       CR = CR.smul_sat(ConstantRange(Scale));
1280     else
1281       CR = CR.smul_fast(ConstantRange(Scale));
1282 
1283     if (Index.IsNegated)
1284       OffsetRange = OffsetRange.sub(CR);
1285     else
1286       OffsetRange = OffsetRange.add(CR);
1287   }
1288 
1289   // We now have accesses at two offsets from the same base:
1290   //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1291   //  2. 0 with size V2Size
1292   // Using arithmetic modulo GCD, the accesses are at
1293   // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1294   // into the range [V2Size..GCD), then we know they cannot overlap.
1295   APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1296   if (ModOffset.isNegative())
1297     ModOffset += GCD; // We want mod, not rem.
1298   if (ModOffset.uge(V2Size.getValue()) &&
1299       (GCD - ModOffset).uge(V1Size.getValue()))
1300     return AliasResult::NoAlias;
1301 
1302   // Compute ranges of potentially accessed bytes for both accesses. If the
1303   // interseciton is empty, there can be no overlap.
1304   unsigned BW = OffsetRange.getBitWidth();
1305   ConstantRange Range1 = OffsetRange.add(
1306       ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue())));
1307   ConstantRange Range2 =
1308       ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue()));
1309   if (Range1.intersectWith(Range2).isEmptySet())
1310     return AliasResult::NoAlias;
1311 
1312   // Try to determine the range of values for VarIndex such that
1313   // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex.
1314   std::optional<APInt> MinAbsVarIndex;
1315   if (DecompGEP1.VarIndices.size() == 1) {
1316     // VarIndex = Scale*V.
1317     const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1318     if (Var.Val.TruncBits == 0 &&
1319         isKnownNonZero(Var.Val.V, SimplifyQuery(DL, DT, &AC, Var.CxtI))) {
1320       // Check if abs(V*Scale) >= abs(Scale) holds in the presence of
1321       // potentially wrapping math.
1322       auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) {
1323         if (Var.IsNSW)
1324           return true;
1325 
1326         int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits();
1327         // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds.
1328         // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a
1329         // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap.
1330         int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW;
1331         if (MaxScaleValueBW <= 0)
1332           return false;
1333         return Var.Scale.ule(
1334             APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth()));
1335       };
1336       // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the
1337       // presence of potentially wrapping math.
1338       if (MultiplyByScaleNoWrap(Var)) {
1339         // If V != 0 then abs(VarIndex) >= abs(Scale).
1340         MinAbsVarIndex = Var.Scale.abs();
1341       }
1342     }
1343   } else if (DecompGEP1.VarIndices.size() == 2) {
1344     // VarIndex = Scale*V0 + (-Scale)*V1.
1345     // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1346     // Check that MayBeCrossIteration is false, to avoid reasoning about
1347     // inequality of values across loop iterations.
1348     const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1349     const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1350     if (Var0.hasNegatedScaleOf(Var1) && Var0.Val.TruncBits == 0 &&
1351         Var0.Val.hasSameCastsAs(Var1.Val) && !AAQI.MayBeCrossIteration &&
1352         isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr,
1353                         DT))
1354       MinAbsVarIndex = Var0.Scale.abs();
1355   }
1356 
1357   if (MinAbsVarIndex) {
1358     // The constant offset will have added at least +/-MinAbsVarIndex to it.
1359     APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1360     APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1361     // We know that Offset <= OffsetLo || Offset >= OffsetHi
1362     if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1363         OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1364       return AliasResult::NoAlias;
1365   }
1366 
1367   if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT, AAQI))
1368     return AliasResult::NoAlias;
1369 
1370   // Statically, we can see that the base objects are the same, but the
1371   // pointers have dynamic offsets which we can't resolve. And none of our
1372   // little tricks above worked.
1373   return AliasResult::MayAlias;
1374 }
1375 
1376 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1377   // If the results agree, take it.
1378   if (A == B)
1379     return A;
1380   // A mix of PartialAlias and MustAlias is PartialAlias.
1381   if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
1382       (B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
1383     return AliasResult::PartialAlias;
1384   // Otherwise, we don't know anything.
1385   return AliasResult::MayAlias;
1386 }
1387 
1388 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1389 /// against another.
1390 AliasResult
1391 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1392                            const Value *V2, LocationSize V2Size,
1393                            AAQueryInfo &AAQI) {
1394   // If the values are Selects with the same condition, we can do a more precise
1395   // check: just check for aliases between the values on corresponding arms.
1396   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1397     if (isValueEqualInPotentialCycles(SI->getCondition(), SI2->getCondition(),
1398                                       AAQI)) {
1399       AliasResult Alias =
1400           AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize),
1401                          MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
1402       if (Alias == AliasResult::MayAlias)
1403         return AliasResult::MayAlias;
1404       AliasResult ThisAlias =
1405           AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize),
1406                          MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
1407       return MergeAliasResults(ThisAlias, Alias);
1408     }
1409 
1410   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1411   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1412   AliasResult Alias = AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize),
1413                                      MemoryLocation(V2, V2Size), AAQI);
1414   if (Alias == AliasResult::MayAlias)
1415     return AliasResult::MayAlias;
1416 
1417   AliasResult ThisAlias =
1418       AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize),
1419                      MemoryLocation(V2, V2Size), AAQI);
1420   return MergeAliasResults(ThisAlias, Alias);
1421 }
1422 
1423 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1424 /// another.
1425 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1426                                     const Value *V2, LocationSize V2Size,
1427                                     AAQueryInfo &AAQI) {
1428   if (!PN->getNumIncomingValues())
1429     return AliasResult::NoAlias;
1430   // If the values are PHIs in the same block, we can do a more precise
1431   // as well as efficient check: just check for aliases between the values
1432   // on corresponding edges. Don't do this if we are analyzing across
1433   // iterations, as we may pick a different phi entry in different iterations.
1434   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1435     if (PN2->getParent() == PN->getParent() && !AAQI.MayBeCrossIteration) {
1436       std::optional<AliasResult> Alias;
1437       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1438         AliasResult ThisAlias = AAQI.AAR.alias(
1439             MemoryLocation(PN->getIncomingValue(i), PNSize),
1440             MemoryLocation(
1441                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
1442             AAQI);
1443         if (Alias)
1444           *Alias = MergeAliasResults(*Alias, ThisAlias);
1445         else
1446           Alias = ThisAlias;
1447         if (*Alias == AliasResult::MayAlias)
1448           break;
1449       }
1450       return *Alias;
1451     }
1452 
1453   SmallVector<Value *, 4> V1Srcs;
1454   // If a phi operand recurses back to the phi, we can still determine NoAlias
1455   // if we don't alias the underlying objects of the other phi operands, as we
1456   // know that the recursive phi needs to be based on them in some way.
1457   bool isRecursive = false;
1458   auto CheckForRecPhi = [&](Value *PV) {
1459     if (!EnableRecPhiAnalysis)
1460       return false;
1461     if (getUnderlyingObject(PV) == PN) {
1462       isRecursive = true;
1463       return true;
1464     }
1465     return false;
1466   };
1467 
1468   SmallPtrSet<Value *, 4> UniqueSrc;
1469   Value *OnePhi = nullptr;
1470   for (Value *PV1 : PN->incoming_values()) {
1471     // Skip the phi itself being the incoming value.
1472     if (PV1 == PN)
1473       continue;
1474 
1475     if (isa<PHINode>(PV1)) {
1476       if (OnePhi && OnePhi != PV1) {
1477         // To control potential compile time explosion, we choose to be
1478         // conserviate when we have more than one Phi input.  It is important
1479         // that we handle the single phi case as that lets us handle LCSSA
1480         // phi nodes and (combined with the recursive phi handling) simple
1481         // pointer induction variable patterns.
1482         return AliasResult::MayAlias;
1483       }
1484       OnePhi = PV1;
1485     }
1486 
1487     if (CheckForRecPhi(PV1))
1488       continue;
1489 
1490     if (UniqueSrc.insert(PV1).second)
1491       V1Srcs.push_back(PV1);
1492   }
1493 
1494   if (OnePhi && UniqueSrc.size() > 1)
1495     // Out of an abundance of caution, allow only the trivial lcssa and
1496     // recursive phi cases.
1497     return AliasResult::MayAlias;
1498 
1499   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1500   // value. This should only be possible in blocks unreachable from the entry
1501   // block, but return MayAlias just in case.
1502   if (V1Srcs.empty())
1503     return AliasResult::MayAlias;
1504 
1505   // If this PHI node is recursive, indicate that the pointer may be moved
1506   // across iterations. We can only prove NoAlias if different underlying
1507   // objects are involved.
1508   if (isRecursive)
1509     PNSize = LocationSize::beforeOrAfterPointer();
1510 
1511   // In the recursive alias queries below, we may compare values from two
1512   // different loop iterations.
1513   SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true);
1514 
1515   AliasResult Alias = AAQI.AAR.alias(MemoryLocation(V1Srcs[0], PNSize),
1516                                      MemoryLocation(V2, V2Size), AAQI);
1517 
1518   // Early exit if the check of the first PHI source against V2 is MayAlias.
1519   // Other results are not possible.
1520   if (Alias == AliasResult::MayAlias)
1521     return AliasResult::MayAlias;
1522   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1523   // remain valid to all elements and needs to conservatively return MayAlias.
1524   if (isRecursive && Alias != AliasResult::NoAlias)
1525     return AliasResult::MayAlias;
1526 
1527   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1528   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1529   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1530     Value *V = V1Srcs[i];
1531 
1532     AliasResult ThisAlias = AAQI.AAR.alias(
1533         MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), AAQI);
1534     Alias = MergeAliasResults(ThisAlias, Alias);
1535     if (Alias == AliasResult::MayAlias)
1536       break;
1537   }
1538 
1539   return Alias;
1540 }
1541 
1542 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1543 /// array references.
1544 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1545                                       const Value *V2, LocationSize V2Size,
1546                                       AAQueryInfo &AAQI,
1547                                       const Instruction *CtxI) {
1548   // If either of the memory references is empty, it doesn't matter what the
1549   // pointer values are.
1550   if (V1Size.isZero() || V2Size.isZero())
1551     return AliasResult::NoAlias;
1552 
1553   // Strip off any casts if they exist.
1554   V1 = V1->stripPointerCastsForAliasAnalysis();
1555   V2 = V2->stripPointerCastsForAliasAnalysis();
1556 
1557   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1558   // value for undef that aliases nothing in the program.
1559   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1560     return AliasResult::NoAlias;
1561 
1562   // Are we checking for alias of the same value?
1563   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1564   // different iterations. We must therefore make sure that this is not the
1565   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1566   // happen by looking at the visited phi nodes and making sure they cannot
1567   // reach the value.
1568   if (isValueEqualInPotentialCycles(V1, V2, AAQI))
1569     return AliasResult::MustAlias;
1570 
1571   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1572     return AliasResult::NoAlias; // Scalars cannot alias each other
1573 
1574   // Figure out what objects these things are pointing to if we can.
1575   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1576   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1577 
1578   // Null values in the default address space don't point to any object, so they
1579   // don't alias any other pointer.
1580   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1581     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1582       return AliasResult::NoAlias;
1583   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1584     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1585       return AliasResult::NoAlias;
1586 
1587   if (O1 != O2) {
1588     // If V1/V2 point to two different objects, we know that we have no alias.
1589     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1590       return AliasResult::NoAlias;
1591 
1592     // Function arguments can't alias with things that are known to be
1593     // unambigously identified at the function level.
1594     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1595         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1596       return AliasResult::NoAlias;
1597 
1598     // If one pointer is the result of a call/invoke or load and the other is a
1599     // non-escaping local object within the same function, then we know the
1600     // object couldn't escape to a point where the call could return it.
1601     //
1602     // Note that if the pointers are in different functions, there are a
1603     // variety of complications. A call with a nocapture argument may still
1604     // temporary store the nocapture argument's value in a temporary memory
1605     // location if that memory location doesn't escape. Or it may pass a
1606     // nocapture value to other functions as long as they don't capture it.
1607     if (isEscapeSource(O1) && AAQI.CA->isNotCapturedBefore(
1608                                   O2, dyn_cast<Instruction>(O1), /*OrAt*/ true))
1609       return AliasResult::NoAlias;
1610     if (isEscapeSource(O2) && AAQI.CA->isNotCapturedBefore(
1611                                   O1, dyn_cast<Instruction>(O2), /*OrAt*/ true))
1612       return AliasResult::NoAlias;
1613   }
1614 
1615   // If the size of one access is larger than the entire object on the other
1616   // side, then we know such behavior is undefined and can assume no alias.
1617   bool NullIsValidLocation = NullPointerIsDefined(&F);
1618   if ((isObjectSmallerThan(
1619           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1620           TLI, NullIsValidLocation)) ||
1621       (isObjectSmallerThan(
1622           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1623           TLI, NullIsValidLocation)))
1624     return AliasResult::NoAlias;
1625 
1626   if (EnableSeparateStorageAnalysis) {
1627     for (AssumptionCache::ResultElem &Elem : AC.assumptionsFor(O1)) {
1628       if (!Elem || Elem.Index == AssumptionCache::ExprResultIdx)
1629         continue;
1630 
1631       AssumeInst *Assume = cast<AssumeInst>(Elem);
1632       OperandBundleUse OBU = Assume->getOperandBundleAt(Elem.Index);
1633       if (OBU.getTagName() == "separate_storage") {
1634         assert(OBU.Inputs.size() == 2);
1635         const Value *Hint1 = OBU.Inputs[0].get();
1636         const Value *Hint2 = OBU.Inputs[1].get();
1637         // This is often a no-op; instcombine rewrites this for us. No-op
1638         // getUnderlyingObject calls are fast, though.
1639         const Value *HintO1 = getUnderlyingObject(Hint1);
1640         const Value *HintO2 = getUnderlyingObject(Hint2);
1641 
1642         DominatorTree *DT = getDT(AAQI);
1643         auto ValidAssumeForPtrContext = [&](const Value *Ptr) {
1644           if (const Instruction *PtrI = dyn_cast<Instruction>(Ptr)) {
1645             return isValidAssumeForContext(Assume, PtrI, DT,
1646                                            /* AllowEphemerals */ true);
1647           }
1648           if (const Argument *PtrA = dyn_cast<Argument>(Ptr)) {
1649             const Instruction *FirstI =
1650                 &*PtrA->getParent()->getEntryBlock().begin();
1651             return isValidAssumeForContext(Assume, FirstI, DT,
1652                                            /* AllowEphemerals */ true);
1653           }
1654           return false;
1655         };
1656 
1657         if ((O1 == HintO1 && O2 == HintO2) || (O1 == HintO2 && O2 == HintO1)) {
1658           // Note that we go back to V1 and V2 for the
1659           // ValidAssumeForPtrContext checks; they're dominated by O1 and O2,
1660           // so strictly more assumptions are valid for them.
1661           if ((CtxI && isValidAssumeForContext(Assume, CtxI, DT,
1662                                                /* AllowEphemerals */ true)) ||
1663               ValidAssumeForPtrContext(V1) || ValidAssumeForPtrContext(V2)) {
1664             return AliasResult::NoAlias;
1665           }
1666         }
1667       }
1668     }
1669   }
1670 
1671   // If one the accesses may be before the accessed pointer, canonicalize this
1672   // by using unknown after-pointer sizes for both accesses. This is
1673   // equivalent, because regardless of which pointer is lower, one of them
1674   // will always came after the other, as long as the underlying objects aren't
1675   // disjoint. We do this so that the rest of BasicAA does not have to deal
1676   // with accesses before the base pointer, and to improve cache utilization by
1677   // merging equivalent states.
1678   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1679     V1Size = LocationSize::afterPointer();
1680     V2Size = LocationSize::afterPointer();
1681   }
1682 
1683   // FIXME: If this depth limit is hit, then we may cache sub-optimal results
1684   // for recursive queries. For this reason, this limit is chosen to be large
1685   // enough to be very rarely hit, while still being small enough to avoid
1686   // stack overflows.
1687   if (AAQI.Depth >= 512)
1688     return AliasResult::MayAlias;
1689 
1690   // Check the cache before climbing up use-def chains. This also terminates
1691   // otherwise infinitely recursive queries. Include MayBeCrossIteration in the
1692   // cache key, because some cases where MayBeCrossIteration==false returns
1693   // MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true.
1694   AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration},
1695                             {V2, V2Size, AAQI.MayBeCrossIteration});
1696   const bool Swapped = V1 > V2;
1697   if (Swapped)
1698     std::swap(Locs.first, Locs.second);
1699   const auto &Pair = AAQI.AliasCache.try_emplace(
1700       Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
1701   if (!Pair.second) {
1702     auto &Entry = Pair.first->second;
1703     if (!Entry.isDefinitive()) {
1704       // Remember that we used an assumption. This may either be a direct use
1705       // of an assumption, or a use of an entry that may itself be based on an
1706       // assumption.
1707       ++AAQI.NumAssumptionUses;
1708       if (Entry.isAssumption())
1709         ++Entry.NumAssumptionUses;
1710     }
1711     // Cache contains sorted {V1,V2} pairs but we should return original order.
1712     auto Result = Entry.Result;
1713     Result.swap(Swapped);
1714     return Result;
1715   }
1716 
1717   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1718   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1719   AliasResult Result =
1720       aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
1721 
1722   auto It = AAQI.AliasCache.find(Locs);
1723   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1724   auto &Entry = It->second;
1725 
1726   // Check whether a NoAlias assumption has been used, but disproven.
1727   bool AssumptionDisproven =
1728       Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
1729   if (AssumptionDisproven)
1730     Result = AliasResult::MayAlias;
1731 
1732   // This is a definitive result now, when considered as a root query.
1733   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1734   Entry.Result = Result;
1735   // Cache contains sorted {V1,V2} pairs.
1736   Entry.Result.swap(Swapped);
1737 
1738   // If the assumption has been disproven, remove any results that may have
1739   // been based on this assumption. Do this after the Entry updates above to
1740   // avoid iterator invalidation.
1741   if (AssumptionDisproven)
1742     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1743       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1744 
1745   // The result may still be based on assumptions higher up in the chain.
1746   // Remember it, so it can be purged from the cache later.
1747   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
1748       Result != AliasResult::MayAlias) {
1749     AAQI.AssumptionBasedResults.push_back(Locs);
1750     Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::AssumptionBased;
1751   } else {
1752     Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive;
1753   }
1754 
1755   // Depth is incremented before this function is called, so Depth==1 indicates
1756   // a root query.
1757   if (AAQI.Depth == 1) {
1758     // Any remaining assumption based results must be based on proven
1759     // assumptions, so convert them to definitive results.
1760     for (const auto &Loc : AAQI.AssumptionBasedResults) {
1761       auto It = AAQI.AliasCache.find(Loc);
1762       if (It != AAQI.AliasCache.end())
1763         It->second.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive;
1764     }
1765     AAQI.AssumptionBasedResults.clear();
1766     AAQI.NumAssumptionUses = 0;
1767   }
1768   return Result;
1769 }
1770 
1771 AliasResult BasicAAResult::aliasCheckRecursive(
1772     const Value *V1, LocationSize V1Size,
1773     const Value *V2, LocationSize V2Size,
1774     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1775   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1776     AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
1777     if (Result != AliasResult::MayAlias)
1778       return Result;
1779   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1780     AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
1781     Result.swap();
1782     if (Result != AliasResult::MayAlias)
1783       return Result;
1784   }
1785 
1786   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1787     AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
1788     if (Result != AliasResult::MayAlias)
1789       return Result;
1790   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1791     AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
1792     Result.swap();
1793     if (Result != AliasResult::MayAlias)
1794       return Result;
1795   }
1796 
1797   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1798     AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
1799     if (Result != AliasResult::MayAlias)
1800       return Result;
1801   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1802     AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
1803     Result.swap();
1804     if (Result != AliasResult::MayAlias)
1805       return Result;
1806   }
1807 
1808   // If both pointers are pointing into the same object and one of them
1809   // accesses the entire object, then the accesses must overlap in some way.
1810   if (O1 == O2) {
1811     bool NullIsValidLocation = NullPointerIsDefined(&F);
1812     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1813         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1814          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1815       return AliasResult::PartialAlias;
1816   }
1817 
1818   return AliasResult::MayAlias;
1819 }
1820 
1821 /// Check whether two Values can be considered equivalent.
1822 ///
1823 /// If the values may come from different cycle iterations, this will also
1824 /// check that the values are not part of cycle. We have to do this because we
1825 /// are looking through phi nodes, that is we say
1826 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1827 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1828                                                   const Value *V2,
1829                                                   const AAQueryInfo &AAQI) {
1830   if (V != V2)
1831     return false;
1832 
1833   if (!AAQI.MayBeCrossIteration)
1834     return true;
1835 
1836   // Non-instructions and instructions in the entry block cannot be part of
1837   // a loop.
1838   const Instruction *Inst = dyn_cast<Instruction>(V);
1839   if (!Inst || Inst->getParent()->isEntryBlock())
1840     return true;
1841 
1842   return isNotInCycle(Inst, getDT(AAQI), /*LI*/ nullptr);
1843 }
1844 
1845 /// Computes the symbolic difference between two de-composed GEPs.
1846 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP,
1847                                            const DecomposedGEP &SrcGEP,
1848                                            const AAQueryInfo &AAQI) {
1849   // Drop nuw flag from GEP if subtraction of constant offsets overflows in an
1850   // unsigned sense.
1851   if (DestGEP.Offset.ult(SrcGEP.Offset))
1852     DestGEP.NWFlags = DestGEP.NWFlags.withoutNoUnsignedWrap();
1853 
1854   DestGEP.Offset -= SrcGEP.Offset;
1855   for (const VariableGEPIndex &Src : SrcGEP.VarIndices) {
1856     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1857     // than a few variable indexes.
1858     bool Found = false;
1859     for (auto I : enumerate(DestGEP.VarIndices)) {
1860       VariableGEPIndex &Dest = I.value();
1861       if ((!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V, AAQI) &&
1862            !areBothVScale(Dest.Val.V, Src.Val.V)) ||
1863           !Dest.Val.hasSameCastsAs(Src.Val))
1864         continue;
1865 
1866       // Normalize IsNegated if we're going to lose the NSW flag anyway.
1867       if (Dest.IsNegated) {
1868         Dest.Scale = -Dest.Scale;
1869         Dest.IsNegated = false;
1870         Dest.IsNSW = false;
1871       }
1872 
1873       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1874       // goes to zero, remove the entry.
1875       if (Dest.Scale != Src.Scale) {
1876         // Drop nuw flag from GEP if subtraction of V's Scale overflows in an
1877         // unsigned sense.
1878         if (Dest.Scale.ult(Src.Scale))
1879           DestGEP.NWFlags = DestGEP.NWFlags.withoutNoUnsignedWrap();
1880 
1881         Dest.Scale -= Src.Scale;
1882         Dest.IsNSW = false;
1883       } else {
1884         DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index());
1885       }
1886       Found = true;
1887       break;
1888     }
1889 
1890     // If we didn't consume this entry, add it to the end of the Dest list.
1891     if (!Found) {
1892       VariableGEPIndex Entry = {Src.Val, Src.Scale, Src.CxtI, Src.IsNSW,
1893                                 /* IsNegated */ true};
1894       DestGEP.VarIndices.push_back(Entry);
1895 
1896       // Drop nuw flag when we have unconsumed variable indices from SrcGEP.
1897       DestGEP.NWFlags = DestGEP.NWFlags.withoutNoUnsignedWrap();
1898     }
1899   }
1900 }
1901 
1902 bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP,
1903                                             LocationSize MaybeV1Size,
1904                                             LocationSize MaybeV2Size,
1905                                             AssumptionCache *AC,
1906                                             DominatorTree *DT,
1907                                             const AAQueryInfo &AAQI) {
1908   if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1909       !MaybeV2Size.hasValue())
1910     return false;
1911 
1912   const uint64_t V1Size = MaybeV1Size.getValue();
1913   const uint64_t V2Size = MaybeV2Size.getValue();
1914 
1915   const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1];
1916 
1917   if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) ||
1918       !Var0.hasNegatedScaleOf(Var1) ||
1919       Var0.Val.V->getType() != Var1.Val.V->getType())
1920     return false;
1921 
1922   // We'll strip off the Extensions of Var0 and Var1 and do another round
1923   // of GetLinearExpression decomposition. In the example above, if Var0
1924   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1925 
1926   LinearExpression E0 =
1927       GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT);
1928   LinearExpression E1 =
1929       GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT);
1930   if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) ||
1931       !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V, AAQI))
1932     return false;
1933 
1934   // We have a hit - Var0 and Var1 only differ by a constant offset!
1935 
1936   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1937   // Var1 is possible to calculate, but we're just interested in the absolute
1938   // minimum difference between the two. The minimum distance may occur due to
1939   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1940   // the minimum distance between %i and %i + 5 is 3.
1941   APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
1942   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1943   APInt MinDiffBytes =
1944     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1945 
1946   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1947   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1948   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1949   // V2Size can fit in the MinDiffBytes gap.
1950   return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) &&
1951          MinDiffBytes.uge(V2Size + GEP.Offset.abs());
1952 }
1953 
1954 //===----------------------------------------------------------------------===//
1955 // BasicAliasAnalysis Pass
1956 //===----------------------------------------------------------------------===//
1957 
1958 AnalysisKey BasicAA::Key;
1959 
1960 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1961   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1962   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1963   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1964   return BasicAAResult(F.getDataLayout(), F, TLI, AC, DT);
1965 }
1966 
1967 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1968   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1969 }
1970 
1971 char BasicAAWrapperPass::ID = 0;
1972 
1973 void BasicAAWrapperPass::anchor() {}
1974 
1975 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1976                       "Basic Alias Analysis (stateless AA impl)", true, true)
1977 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1978 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1979 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1980 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1981                     "Basic Alias Analysis (stateless AA impl)", true, true)
1982 
1983 FunctionPass *llvm::createBasicAAWrapperPass() {
1984   return new BasicAAWrapperPass();
1985 }
1986 
1987 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1988   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1989   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1990   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1991 
1992   Result.reset(new BasicAAResult(F.getDataLayout(), F,
1993                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1994                                  &DTWP.getDomTree()));
1995 
1996   return false;
1997 }
1998 
1999 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2000   AU.setPreservesAll();
2001   AU.addRequiredTransitive<AssumptionCacheTracker>();
2002   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2003   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
2004 }
2005