1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalAlias.h" 40 #include "llvm/IR/GlobalVariable.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/KnownBits.h" 56 #include "llvm/Support/SaveAndRestore.h" 57 #include <cassert> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <optional> 61 #include <utility> 62 63 #define DEBUG_TYPE "basicaa" 64 65 using namespace llvm; 66 67 /// Enable analysis of recursive PHI nodes. 68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 69 cl::init(true)); 70 71 static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage", 72 cl::Hidden, cl::init(true)); 73 74 /// SearchLimitReached / SearchTimes shows how often the limit of 75 /// to decompose GEPs is reached. It will affect the precision 76 /// of basic alias analysis. 77 STATISTIC(SearchLimitReached, "Number of times the limit to " 78 "decompose GEPs is reached"); 79 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 80 81 // The max limit of the search depth in DecomposeGEPExpression() and 82 // getUnderlyingObject(). 83 static const unsigned MaxLookupSearchDepth = 6; 84 85 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 86 FunctionAnalysisManager::Invalidator &Inv) { 87 // We don't care if this analysis itself is preserved, it has no state. But 88 // we need to check that the analyses it depends on have been. Note that we 89 // may be created without handles to some analyses and in that case don't 90 // depend on them. 91 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 92 (DT_ && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA))) 93 return true; 94 95 // Otherwise this analysis result remains valid. 96 return false; 97 } 98 99 //===----------------------------------------------------------------------===// 100 // Useful predicates 101 //===----------------------------------------------------------------------===// 102 103 /// Returns the size of the object specified by V or UnknownSize if unknown. 104 static std::optional<TypeSize> getObjectSize(const Value *V, 105 const DataLayout &DL, 106 const TargetLibraryInfo &TLI, 107 bool NullIsValidLoc, 108 bool RoundToAlign = false) { 109 uint64_t Size; 110 ObjectSizeOpts Opts; 111 Opts.RoundToAlign = RoundToAlign; 112 Opts.NullIsUnknownSize = NullIsValidLoc; 113 if (getObjectSize(V, Size, DL, &TLI, Opts)) 114 return TypeSize::getFixed(Size); 115 return std::nullopt; 116 } 117 118 /// Returns true if we can prove that the object specified by V is smaller than 119 /// Size. 120 static bool isObjectSmallerThan(const Value *V, TypeSize Size, 121 const DataLayout &DL, 122 const TargetLibraryInfo &TLI, 123 bool NullIsValidLoc) { 124 // Note that the meanings of the "object" are slightly different in the 125 // following contexts: 126 // c1: llvm::getObjectSize() 127 // c2: llvm.objectsize() intrinsic 128 // c3: isObjectSmallerThan() 129 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 130 // refers to the "entire object". 131 // 132 // Consider this example: 133 // char *p = (char*)malloc(100) 134 // char *q = p+80; 135 // 136 // In the context of c1 and c2, the "object" pointed by q refers to the 137 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 138 // 139 // However, in the context of c3, the "object" refers to the chunk of memory 140 // being allocated. So, the "object" has 100 bytes, and q points to the middle 141 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 142 // parameter, before the llvm::getObjectSize() is called to get the size of 143 // entire object, we should: 144 // - either rewind the pointer q to the base-address of the object in 145 // question (in this case rewind to p), or 146 // - just give up. It is up to caller to make sure the pointer is pointing 147 // to the base address the object. 148 // 149 // We go for 2nd option for simplicity. 150 if (!isIdentifiedObject(V)) 151 return false; 152 153 // This function needs to use the aligned object size because we allow 154 // reads a bit past the end given sufficient alignment. 155 std::optional<TypeSize> ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 156 /*RoundToAlign*/ true); 157 158 return ObjectSize && TypeSize::isKnownLT(*ObjectSize, Size); 159 } 160 161 /// Return the minimal extent from \p V to the end of the underlying object, 162 /// assuming the result is used in an aliasing query. E.g., we do use the query 163 /// location size and the fact that null pointers cannot alias here. 164 static TypeSize getMinimalExtentFrom(const Value &V, 165 const LocationSize &LocSize, 166 const DataLayout &DL, 167 bool NullIsValidLoc) { 168 // If we have dereferenceability information we know a lower bound for the 169 // extent as accesses for a lower offset would be valid. We need to exclude 170 // the "or null" part if null is a valid pointer. We can ignore frees, as an 171 // access after free would be undefined behavior. 172 bool CanBeNull, CanBeFreed; 173 uint64_t DerefBytes = 174 V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 175 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 176 // If queried with a precise location size, we assume that location size to be 177 // accessed, thus valid. 178 if (LocSize.isPrecise()) 179 DerefBytes = std::max(DerefBytes, LocSize.getValue().getKnownMinValue()); 180 return TypeSize::getFixed(DerefBytes); 181 } 182 183 /// Returns true if we can prove that the object specified by V has size Size. 184 static bool isObjectSize(const Value *V, TypeSize Size, const DataLayout &DL, 185 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 186 std::optional<TypeSize> ObjectSize = 187 getObjectSize(V, DL, TLI, NullIsValidLoc); 188 return ObjectSize && *ObjectSize == Size; 189 } 190 191 /// Return true if both V1 and V2 are VScale 192 static bool areBothVScale(const Value *V1, const Value *V2) { 193 return PatternMatch::match(V1, PatternMatch::m_VScale()) && 194 PatternMatch::match(V2, PatternMatch::m_VScale()); 195 } 196 197 //===----------------------------------------------------------------------===// 198 // CaptureInfo implementations 199 //===----------------------------------------------------------------------===// 200 201 CaptureInfo::~CaptureInfo() = default; 202 203 bool SimpleCaptureInfo::isNotCapturedBefore(const Value *Object, 204 const Instruction *I, bool OrAt) { 205 return isNonEscapingLocalObject(Object, &IsCapturedCache); 206 } 207 208 static bool isNotInCycle(const Instruction *I, const DominatorTree *DT, 209 const LoopInfo *LI) { 210 BasicBlock *BB = const_cast<BasicBlock *>(I->getParent()); 211 SmallVector<BasicBlock *> Succs(successors(BB)); 212 return Succs.empty() || 213 !isPotentiallyReachableFromMany(Succs, BB, nullptr, DT, LI); 214 } 215 216 bool EarliestEscapeInfo::isNotCapturedBefore(const Value *Object, 217 const Instruction *I, bool OrAt) { 218 if (!isIdentifiedFunctionLocal(Object)) 219 return false; 220 221 auto Iter = EarliestEscapes.insert({Object, nullptr}); 222 if (Iter.second) { 223 Instruction *EarliestCapture = FindEarliestCapture( 224 Object, *const_cast<Function *>(DT.getRoot()->getParent()), 225 /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT); 226 if (EarliestCapture) { 227 auto Ins = Inst2Obj.insert({EarliestCapture, {}}); 228 Ins.first->second.push_back(Object); 229 } 230 Iter.first->second = EarliestCapture; 231 } 232 233 // No capturing instruction. 234 if (!Iter.first->second) 235 return true; 236 237 // No context instruction means any use is capturing. 238 if (!I) 239 return false; 240 241 if (I == Iter.first->second) { 242 if (OrAt) 243 return false; 244 return isNotInCycle(I, &DT, LI); 245 } 246 247 return !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, LI); 248 } 249 250 void EarliestEscapeInfo::removeInstruction(Instruction *I) { 251 auto Iter = Inst2Obj.find(I); 252 if (Iter != Inst2Obj.end()) { 253 for (const Value *Obj : Iter->second) 254 EarliestEscapes.erase(Obj); 255 Inst2Obj.erase(I); 256 } 257 } 258 259 //===----------------------------------------------------------------------===// 260 // GetElementPtr Instruction Decomposition and Analysis 261 //===----------------------------------------------------------------------===// 262 263 namespace { 264 /// Represents zext(sext(trunc(V))). 265 struct CastedValue { 266 const Value *V; 267 unsigned ZExtBits = 0; 268 unsigned SExtBits = 0; 269 unsigned TruncBits = 0; 270 271 explicit CastedValue(const Value *V) : V(V) {} 272 explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits, 273 unsigned TruncBits) 274 : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits) {} 275 276 unsigned getBitWidth() const { 277 return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits + 278 SExtBits; 279 } 280 281 CastedValue withValue(const Value *NewV) const { 282 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits); 283 } 284 285 /// Replace V with zext(NewV) 286 CastedValue withZExtOfValue(const Value *NewV) const { 287 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 288 NewV->getType()->getPrimitiveSizeInBits(); 289 if (ExtendBy <= TruncBits) 290 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy); 291 292 // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) 293 ExtendBy -= TruncBits; 294 return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0); 295 } 296 297 /// Replace V with sext(NewV) 298 CastedValue withSExtOfValue(const Value *NewV) const { 299 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 300 NewV->getType()->getPrimitiveSizeInBits(); 301 if (ExtendBy <= TruncBits) 302 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy); 303 304 // zext(sext(sext(NewV))) 305 ExtendBy -= TruncBits; 306 return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0); 307 } 308 309 APInt evaluateWith(APInt N) const { 310 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 311 "Incompatible bit width"); 312 if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits); 313 if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); 314 if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); 315 return N; 316 } 317 318 ConstantRange evaluateWith(ConstantRange N) const { 319 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 320 "Incompatible bit width"); 321 if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits); 322 if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits); 323 if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits); 324 return N; 325 } 326 327 bool canDistributeOver(bool NUW, bool NSW) const { 328 // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) 329 // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) 330 // trunc(x op y) == trunc(x) op trunc(y) 331 return (!ZExtBits || NUW) && (!SExtBits || NSW); 332 } 333 334 bool hasSameCastsAs(const CastedValue &Other) const { 335 return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits && 336 TruncBits == Other.TruncBits; 337 } 338 }; 339 340 /// Represents zext(sext(trunc(V))) * Scale + Offset. 341 struct LinearExpression { 342 CastedValue Val; 343 APInt Scale; 344 APInt Offset; 345 346 /// True if all operations in this expression are NSW. 347 bool IsNSW; 348 349 LinearExpression(const CastedValue &Val, const APInt &Scale, 350 const APInt &Offset, bool IsNSW) 351 : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {} 352 353 LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) { 354 unsigned BitWidth = Val.getBitWidth(); 355 Scale = APInt(BitWidth, 1); 356 Offset = APInt(BitWidth, 0); 357 } 358 359 LinearExpression mul(const APInt &Other, bool MulIsNSW) const { 360 // The check for zero offset is necessary, because generally 361 // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z). 362 bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero())); 363 return LinearExpression(Val, Scale * Other, Offset * Other, NSW); 364 } 365 }; 366 } 367 368 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 369 /// B are constant integers. 370 static LinearExpression GetLinearExpression( 371 const CastedValue &Val, const DataLayout &DL, unsigned Depth, 372 AssumptionCache *AC, DominatorTree *DT) { 373 // Limit our recursion depth. 374 if (Depth == 6) 375 return Val; 376 377 if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V)) 378 return LinearExpression(Val, APInt(Val.getBitWidth(), 0), 379 Val.evaluateWith(Const->getValue()), true); 380 381 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) { 382 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 383 APInt RHS = Val.evaluateWith(RHSC->getValue()); 384 // The only non-OBO case we deal with is or, and only limited to the 385 // case where it is both nuw and nsw. 386 bool NUW = true, NSW = true; 387 if (isa<OverflowingBinaryOperator>(BOp)) { 388 NUW &= BOp->hasNoUnsignedWrap(); 389 NSW &= BOp->hasNoSignedWrap(); 390 } 391 if (!Val.canDistributeOver(NUW, NSW)) 392 return Val; 393 394 // While we can distribute over trunc, we cannot preserve nowrap flags 395 // in that case. 396 if (Val.TruncBits) 397 NUW = NSW = false; 398 399 LinearExpression E(Val); 400 switch (BOp->getOpcode()) { 401 default: 402 // We don't understand this instruction, so we can't decompose it any 403 // further. 404 return Val; 405 case Instruction::Or: 406 // X|C == X+C if it is disjoint. Otherwise we can't analyze it. 407 if (!cast<PossiblyDisjointInst>(BOp)->isDisjoint()) 408 return Val; 409 410 [[fallthrough]]; 411 case Instruction::Add: { 412 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 413 Depth + 1, AC, DT); 414 E.Offset += RHS; 415 E.IsNSW &= NSW; 416 break; 417 } 418 case Instruction::Sub: { 419 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 420 Depth + 1, AC, DT); 421 E.Offset -= RHS; 422 E.IsNSW &= NSW; 423 break; 424 } 425 case Instruction::Mul: 426 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 427 Depth + 1, AC, DT) 428 .mul(RHS, NSW); 429 break; 430 case Instruction::Shl: 431 // We're trying to linearize an expression of the kind: 432 // shl i8 -128, 36 433 // where the shift count exceeds the bitwidth of the type. 434 // We can't decompose this further (the expression would return 435 // a poison value). 436 if (RHS.getLimitedValue() > Val.getBitWidth()) 437 return Val; 438 439 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 440 Depth + 1, AC, DT); 441 E.Offset <<= RHS.getLimitedValue(); 442 E.Scale <<= RHS.getLimitedValue(); 443 E.IsNSW &= NSW; 444 break; 445 } 446 return E; 447 } 448 } 449 450 if (isa<ZExtInst>(Val.V)) 451 return GetLinearExpression( 452 Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 453 DL, Depth + 1, AC, DT); 454 455 if (isa<SExtInst>(Val.V)) 456 return GetLinearExpression( 457 Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 458 DL, Depth + 1, AC, DT); 459 460 return Val; 461 } 462 463 /// To ensure a pointer offset fits in an integer of size IndexSize 464 /// (in bits) when that size is smaller than the maximum index size. This is 465 /// an issue, for example, in particular for 32b pointers with negative indices 466 /// that rely on two's complement wrap-arounds for precise alias information 467 /// where the maximum index size is 64b. 468 static void adjustToIndexSize(APInt &Offset, unsigned IndexSize) { 469 assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!"); 470 unsigned ShiftBits = Offset.getBitWidth() - IndexSize; 471 if (ShiftBits != 0) { 472 Offset <<= ShiftBits; 473 Offset.ashrInPlace(ShiftBits); 474 } 475 } 476 477 namespace { 478 // A linear transformation of a Value; this class represents 479 // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale. 480 struct VariableGEPIndex { 481 CastedValue Val; 482 APInt Scale; 483 484 // Context instruction to use when querying information about this index. 485 const Instruction *CxtI; 486 487 /// True if all operations in this expression are NSW. 488 bool IsNSW; 489 490 /// True if the index should be subtracted rather than added. We don't simply 491 /// negate the Scale, to avoid losing the NSW flag: X - INT_MIN*1 may be 492 /// non-wrapping, while X + INT_MIN*(-1) wraps. 493 bool IsNegated; 494 495 bool hasNegatedScaleOf(const VariableGEPIndex &Other) const { 496 if (IsNegated == Other.IsNegated) 497 return Scale == -Other.Scale; 498 return Scale == Other.Scale; 499 } 500 501 void dump() const { 502 print(dbgs()); 503 dbgs() << "\n"; 504 } 505 void print(raw_ostream &OS) const { 506 OS << "(V=" << Val.V->getName() 507 << ", zextbits=" << Val.ZExtBits 508 << ", sextbits=" << Val.SExtBits 509 << ", truncbits=" << Val.TruncBits 510 << ", scale=" << Scale 511 << ", nsw=" << IsNSW 512 << ", negated=" << IsNegated << ")"; 513 } 514 }; 515 } 516 517 // Represents the internal structure of a GEP, decomposed into a base pointer, 518 // constant offsets, and variable scaled indices. 519 struct BasicAAResult::DecomposedGEP { 520 // Base pointer of the GEP 521 const Value *Base; 522 // Total constant offset from base. 523 APInt Offset; 524 // Scaled variable (non-constant) indices. 525 SmallVector<VariableGEPIndex, 4> VarIndices; 526 // Are all operations inbounds GEPs or non-indexing operations? 527 // (std::nullopt iff expression doesn't involve any geps) 528 std::optional<bool> InBounds; 529 530 void dump() const { 531 print(dbgs()); 532 dbgs() << "\n"; 533 } 534 void print(raw_ostream &OS) const { 535 OS << "(DecomposedGEP Base=" << Base->getName() 536 << ", Offset=" << Offset 537 << ", VarIndices=["; 538 for (size_t i = 0; i < VarIndices.size(); i++) { 539 if (i != 0) 540 OS << ", "; 541 VarIndices[i].print(OS); 542 } 543 OS << "])"; 544 } 545 }; 546 547 548 /// If V is a symbolic pointer expression, decompose it into a base pointer 549 /// with a constant offset and a number of scaled symbolic offsets. 550 /// 551 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 552 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 553 /// specified amount, but which may have other unrepresented high bits. As 554 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 555 BasicAAResult::DecomposedGEP 556 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 557 AssumptionCache *AC, DominatorTree *DT) { 558 // Limit recursion depth to limit compile time in crazy cases. 559 unsigned MaxLookup = MaxLookupSearchDepth; 560 SearchTimes++; 561 const Instruction *CxtI = dyn_cast<Instruction>(V); 562 563 unsigned MaxIndexSize = DL.getMaxIndexSizeInBits(); 564 DecomposedGEP Decomposed; 565 Decomposed.Offset = APInt(MaxIndexSize, 0); 566 do { 567 // See if this is a bitcast or GEP. 568 const Operator *Op = dyn_cast<Operator>(V); 569 if (!Op) { 570 // The only non-operator case we can handle are GlobalAliases. 571 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 572 if (!GA->isInterposable()) { 573 V = GA->getAliasee(); 574 continue; 575 } 576 } 577 Decomposed.Base = V; 578 return Decomposed; 579 } 580 581 if (Op->getOpcode() == Instruction::BitCast || 582 Op->getOpcode() == Instruction::AddrSpaceCast) { 583 V = Op->getOperand(0); 584 continue; 585 } 586 587 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 588 if (!GEPOp) { 589 if (const auto *PHI = dyn_cast<PHINode>(V)) { 590 // Look through single-arg phi nodes created by LCSSA. 591 if (PHI->getNumIncomingValues() == 1) { 592 V = PHI->getIncomingValue(0); 593 continue; 594 } 595 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 596 // CaptureTracking can know about special capturing properties of some 597 // intrinsics like launder.invariant.group, that can't be expressed with 598 // the attributes, but have properties like returning aliasing pointer. 599 // Because some analysis may assume that nocaptured pointer is not 600 // returned from some special intrinsic (because function would have to 601 // be marked with returns attribute), it is crucial to use this function 602 // because it should be in sync with CaptureTracking. Not using it may 603 // cause weird miscompilations where 2 aliasing pointers are assumed to 604 // noalias. 605 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 606 V = RP; 607 continue; 608 } 609 } 610 611 Decomposed.Base = V; 612 return Decomposed; 613 } 614 615 // Track whether we've seen at least one in bounds gep, and if so, whether 616 // all geps parsed were in bounds. 617 if (Decomposed.InBounds == std::nullopt) 618 Decomposed.InBounds = GEPOp->isInBounds(); 619 else if (!GEPOp->isInBounds()) 620 Decomposed.InBounds = false; 621 622 assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized"); 623 624 unsigned AS = GEPOp->getPointerAddressSpace(); 625 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 626 gep_type_iterator GTI = gep_type_begin(GEPOp); 627 unsigned IndexSize = DL.getIndexSizeInBits(AS); 628 // Assume all GEP operands are constants until proven otherwise. 629 bool GepHasConstantOffset = true; 630 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 631 I != E; ++I, ++GTI) { 632 const Value *Index = *I; 633 // Compute the (potentially symbolic) offset in bytes for this index. 634 if (StructType *STy = GTI.getStructTypeOrNull()) { 635 // For a struct, add the member offset. 636 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 637 if (FieldNo == 0) 638 continue; 639 640 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 641 continue; 642 } 643 644 // For an array/pointer, add the element offset, explicitly scaled. 645 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 646 if (CIdx->isZero()) 647 continue; 648 649 // Don't attempt to analyze GEPs if the scalable index is not zero. 650 TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL); 651 if (AllocTypeSize.isScalable()) { 652 Decomposed.Base = V; 653 return Decomposed; 654 } 655 656 Decomposed.Offset += AllocTypeSize.getFixedValue() * 657 CIdx->getValue().sextOrTrunc(MaxIndexSize); 658 continue; 659 } 660 661 TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL); 662 if (AllocTypeSize.isScalable()) { 663 Decomposed.Base = V; 664 return Decomposed; 665 } 666 667 GepHasConstantOffset = false; 668 669 // If the integer type is smaller than the index size, it is implicitly 670 // sign extended or truncated to index size. 671 unsigned Width = Index->getType()->getIntegerBitWidth(); 672 unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0; 673 unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0; 674 LinearExpression LE = GetLinearExpression( 675 CastedValue(Index, 0, SExtBits, TruncBits), DL, 0, AC, DT); 676 677 // Scale by the type size. 678 unsigned TypeSize = AllocTypeSize.getFixedValue(); 679 LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds()); 680 Decomposed.Offset += LE.Offset.sext(MaxIndexSize); 681 APInt Scale = LE.Scale.sext(MaxIndexSize); 682 683 // If we already had an occurrence of this index variable, merge this 684 // scale into it. For example, we want to handle: 685 // A[x][x] -> x*16 + x*4 -> x*20 686 // This also ensures that 'x' only appears in the index list once. 687 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 688 if ((Decomposed.VarIndices[i].Val.V == LE.Val.V || 689 areBothVScale(Decomposed.VarIndices[i].Val.V, LE.Val.V)) && 690 Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) { 691 Scale += Decomposed.VarIndices[i].Scale; 692 LE.IsNSW = false; // We cannot guarantee nsw for the merge. 693 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 694 break; 695 } 696 } 697 698 // Make sure that we have a scale that makes sense for this target's 699 // index size. 700 adjustToIndexSize(Scale, IndexSize); 701 702 if (!!Scale) { 703 VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW, 704 /* IsNegated */ false}; 705 Decomposed.VarIndices.push_back(Entry); 706 } 707 } 708 709 // Take care of wrap-arounds 710 if (GepHasConstantOffset) 711 adjustToIndexSize(Decomposed.Offset, IndexSize); 712 713 // Analyze the base pointer next. 714 V = GEPOp->getOperand(0); 715 } while (--MaxLookup); 716 717 // If the chain of expressions is too deep, just return early. 718 Decomposed.Base = V; 719 SearchLimitReached++; 720 return Decomposed; 721 } 722 723 ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc, 724 AAQueryInfo &AAQI, 725 bool IgnoreLocals) { 726 assert(Visited.empty() && "Visited must be cleared after use!"); 727 auto _ = make_scope_exit([&] { Visited.clear(); }); 728 729 unsigned MaxLookup = 8; 730 SmallVector<const Value *, 16> Worklist; 731 Worklist.push_back(Loc.Ptr); 732 ModRefInfo Result = ModRefInfo::NoModRef; 733 734 do { 735 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 736 if (!Visited.insert(V).second) 737 continue; 738 739 // Ignore allocas if we were instructed to do so. 740 if (IgnoreLocals && isa<AllocaInst>(V)) 741 continue; 742 743 // If the location points to memory that is known to be invariant for 744 // the life of the underlying SSA value, then we can exclude Mod from 745 // the set of valid memory effects. 746 // 747 // An argument that is marked readonly and noalias is known to be 748 // invariant while that function is executing. 749 if (const Argument *Arg = dyn_cast<Argument>(V)) { 750 if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) { 751 Result |= ModRefInfo::Ref; 752 continue; 753 } 754 } 755 756 // A global constant can't be mutated. 757 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 758 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 759 // global to be marked constant in some modules and non-constant in 760 // others. GV may even be a declaration, not a definition. 761 if (!GV->isConstant()) 762 return ModRefInfo::ModRef; 763 continue; 764 } 765 766 // If both select values point to local memory, then so does the select. 767 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 768 Worklist.push_back(SI->getTrueValue()); 769 Worklist.push_back(SI->getFalseValue()); 770 continue; 771 } 772 773 // If all values incoming to a phi node point to local memory, then so does 774 // the phi. 775 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 776 // Don't bother inspecting phi nodes with many operands. 777 if (PN->getNumIncomingValues() > MaxLookup) 778 return ModRefInfo::ModRef; 779 append_range(Worklist, PN->incoming_values()); 780 continue; 781 } 782 783 // Otherwise be conservative. 784 return ModRefInfo::ModRef; 785 } while (!Worklist.empty() && --MaxLookup); 786 787 // If we hit the maximum number of instructions to examine, be conservative. 788 if (!Worklist.empty()) 789 return ModRefInfo::ModRef; 790 791 return Result; 792 } 793 794 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 795 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 796 return II && II->getIntrinsicID() == IID; 797 } 798 799 /// Returns the behavior when calling the given call site. 800 MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call, 801 AAQueryInfo &AAQI) { 802 MemoryEffects Min = Call->getAttributes().getMemoryEffects(); 803 804 if (const Function *F = dyn_cast<Function>(Call->getCalledOperand())) { 805 MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F); 806 // Operand bundles on the call may also read or write memory, in addition 807 // to the behavior of the called function. 808 if (Call->hasReadingOperandBundles()) 809 FuncME |= MemoryEffects::readOnly(); 810 if (Call->hasClobberingOperandBundles()) 811 FuncME |= MemoryEffects::writeOnly(); 812 Min &= FuncME; 813 } 814 815 return Min; 816 } 817 818 /// Returns the behavior when calling the given function. For use when the call 819 /// site is not known. 820 MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) { 821 switch (F->getIntrinsicID()) { 822 case Intrinsic::experimental_guard: 823 case Intrinsic::experimental_deoptimize: 824 // These intrinsics can read arbitrary memory, and additionally modref 825 // inaccessible memory to model control dependence. 826 return MemoryEffects::readOnly() | 827 MemoryEffects::inaccessibleMemOnly(ModRefInfo::ModRef); 828 } 829 830 return F->getMemoryEffects(); 831 } 832 833 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 834 unsigned ArgIdx) { 835 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 836 return ModRefInfo::Mod; 837 838 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 839 return ModRefInfo::Ref; 840 841 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 842 return ModRefInfo::NoModRef; 843 844 return ModRefInfo::ModRef; 845 } 846 847 #ifndef NDEBUG 848 static const Function *getParent(const Value *V) { 849 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 850 if (!inst->getParent()) 851 return nullptr; 852 return inst->getParent()->getParent(); 853 } 854 855 if (const Argument *arg = dyn_cast<Argument>(V)) 856 return arg->getParent(); 857 858 return nullptr; 859 } 860 861 static bool notDifferentParent(const Value *O1, const Value *O2) { 862 863 const Function *F1 = getParent(O1); 864 const Function *F2 = getParent(O2); 865 866 return !F1 || !F2 || F1 == F2; 867 } 868 #endif 869 870 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 871 const MemoryLocation &LocB, AAQueryInfo &AAQI, 872 const Instruction *CtxI) { 873 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 874 "BasicAliasAnalysis doesn't support interprocedural queries."); 875 return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI, CtxI); 876 } 877 878 /// Checks to see if the specified callsite can clobber the specified memory 879 /// object. 880 /// 881 /// Since we only look at local properties of this function, we really can't 882 /// say much about this query. We do, however, use simple "address taken" 883 /// analysis on local objects. 884 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 885 const MemoryLocation &Loc, 886 AAQueryInfo &AAQI) { 887 assert(notDifferentParent(Call, Loc.Ptr) && 888 "AliasAnalysis query involving multiple functions!"); 889 890 const Value *Object = getUnderlyingObject(Loc.Ptr); 891 892 // Calls marked 'tail' cannot read or write allocas from the current frame 893 // because the current frame might be destroyed by the time they run. However, 894 // a tail call may use an alloca with byval. Calling with byval copies the 895 // contents of the alloca into argument registers or stack slots, so there is 896 // no lifetime issue. 897 if (isa<AllocaInst>(Object)) 898 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 899 if (CI->isTailCall() && 900 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 901 return ModRefInfo::NoModRef; 902 903 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 904 // modify them even though the alloca is not escaped. 905 if (auto *AI = dyn_cast<AllocaInst>(Object)) 906 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 907 return ModRefInfo::Mod; 908 909 // A call can access a locally allocated object either because it is passed as 910 // an argument to the call, or because it has escaped prior to the call. 911 // 912 // Make sure the object has not escaped here, and then check that none of the 913 // call arguments alias the object below. 914 if (!isa<Constant>(Object) && Call != Object && 915 AAQI.CI->isNotCapturedBefore(Object, Call, /*OrAt*/ false)) { 916 917 // Optimistically assume that call doesn't touch Object and check this 918 // assumption in the following loop. 919 ModRefInfo Result = ModRefInfo::NoModRef; 920 921 unsigned OperandNo = 0; 922 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 923 CI != CE; ++CI, ++OperandNo) { 924 if (!(*CI)->getType()->isPointerTy()) 925 continue; 926 927 // Call doesn't access memory through this operand, so we don't care 928 // if it aliases with Object. 929 if (Call->doesNotAccessMemory(OperandNo)) 930 continue; 931 932 // If this is a no-capture pointer argument, see if we can tell that it 933 // is impossible to alias the pointer we're checking. 934 AliasResult AR = 935 AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(*CI), 936 MemoryLocation::getBeforeOrAfter(Object), AAQI); 937 // Operand doesn't alias 'Object', continue looking for other aliases 938 if (AR == AliasResult::NoAlias) 939 continue; 940 // Operand aliases 'Object', but call doesn't modify it. Strengthen 941 // initial assumption and keep looking in case if there are more aliases. 942 if (Call->onlyReadsMemory(OperandNo)) { 943 Result |= ModRefInfo::Ref; 944 continue; 945 } 946 // Operand aliases 'Object' but call only writes into it. 947 if (Call->onlyWritesMemory(OperandNo)) { 948 Result |= ModRefInfo::Mod; 949 continue; 950 } 951 // This operand aliases 'Object' and call reads and writes into it. 952 // Setting ModRef will not yield an early return below, MustAlias is not 953 // used further. 954 Result = ModRefInfo::ModRef; 955 break; 956 } 957 958 // Early return if we improved mod ref information 959 if (!isModAndRefSet(Result)) 960 return Result; 961 } 962 963 // If the call is malloc/calloc like, we can assume that it doesn't 964 // modify any IR visible value. This is only valid because we assume these 965 // routines do not read values visible in the IR. TODO: Consider special 966 // casing realloc and strdup routines which access only their arguments as 967 // well. Or alternatively, replace all of this with inaccessiblememonly once 968 // that's implemented fully. 969 if (isMallocOrCallocLikeFn(Call, &TLI)) { 970 // Be conservative if the accessed pointer may alias the allocation - 971 // fallback to the generic handling below. 972 if (AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(Call), Loc, AAQI) == 973 AliasResult::NoAlias) 974 return ModRefInfo::NoModRef; 975 } 976 977 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 978 // writing so that proper control dependencies are maintained but they never 979 // mod any particular memory location visible to the IR. 980 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 981 // intrinsic is now modeled as reading memory. This prevents hoisting the 982 // invariant.start intrinsic over stores. Consider: 983 // *ptr = 40; 984 // *ptr = 50; 985 // invariant_start(ptr) 986 // int val = *ptr; 987 // print(val); 988 // 989 // This cannot be transformed to: 990 // 991 // *ptr = 40; 992 // invariant_start(ptr) 993 // *ptr = 50; 994 // int val = *ptr; 995 // print(val); 996 // 997 // The transformation will cause the second store to be ignored (based on 998 // rules of invariant.start) and print 40, while the first program always 999 // prints 50. 1000 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 1001 return ModRefInfo::Ref; 1002 1003 // Be conservative. 1004 return ModRefInfo::ModRef; 1005 } 1006 1007 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1008 const CallBase *Call2, 1009 AAQueryInfo &AAQI) { 1010 // Guard intrinsics are marked as arbitrarily writing so that proper control 1011 // dependencies are maintained but they never mods any particular memory 1012 // location. 1013 // 1014 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1015 // heap state at the point the guard is issued needs to be consistent in case 1016 // the guard invokes the "deopt" continuation. 1017 1018 // NB! This function is *not* commutative, so we special case two 1019 // possibilities for guard intrinsics. 1020 1021 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1022 return isModSet(getMemoryEffects(Call2, AAQI).getModRef()) 1023 ? ModRefInfo::Ref 1024 : ModRefInfo::NoModRef; 1025 1026 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1027 return isModSet(getMemoryEffects(Call1, AAQI).getModRef()) 1028 ? ModRefInfo::Mod 1029 : ModRefInfo::NoModRef; 1030 1031 // Be conservative. 1032 return ModRefInfo::ModRef; 1033 } 1034 1035 /// Return true if we know V to the base address of the corresponding memory 1036 /// object. This implies that any address less than V must be out of bounds 1037 /// for the underlying object. Note that just being isIdentifiedObject() is 1038 /// not enough - For example, a negative offset from a noalias argument or call 1039 /// can be inbounds w.r.t the actual underlying object. 1040 static bool isBaseOfObject(const Value *V) { 1041 // TODO: We can handle other cases here 1042 // 1) For GC languages, arguments to functions are often required to be 1043 // base pointers. 1044 // 2) Result of allocation routines are often base pointers. Leverage TLI. 1045 return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); 1046 } 1047 1048 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1049 /// another pointer. 1050 /// 1051 /// We know that V1 is a GEP, but we don't know anything about V2. 1052 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1053 /// V2. 1054 AliasResult BasicAAResult::aliasGEP( 1055 const GEPOperator *GEP1, LocationSize V1Size, 1056 const Value *V2, LocationSize V2Size, 1057 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1058 if (!V1Size.hasValue() && !V2Size.hasValue()) { 1059 // TODO: This limitation exists for compile-time reasons. Relax it if we 1060 // can avoid exponential pathological cases. 1061 if (!isa<GEPOperator>(V2)) 1062 return AliasResult::MayAlias; 1063 1064 // If both accesses have unknown size, we can only check whether the base 1065 // objects don't alias. 1066 AliasResult BaseAlias = 1067 AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1068 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1069 return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias 1070 : AliasResult::MayAlias; 1071 } 1072 1073 DominatorTree *DT = getDT(AAQI); 1074 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1075 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1076 1077 // Bail if we were not able to decompose anything. 1078 if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2) 1079 return AliasResult::MayAlias; 1080 1081 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1082 // symbolic difference. 1083 subtractDecomposedGEPs(DecompGEP1, DecompGEP2, AAQI); 1084 1085 // If an inbounds GEP would have to start from an out of bounds address 1086 // for the two to alias, then we can assume noalias. 1087 // TODO: Remove !isScalable() once BasicAA fully support scalable location 1088 // size 1089 if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && 1090 V2Size.hasValue() && !V2Size.isScalable() && 1091 DecompGEP1.Offset.sge(V2Size.getValue()) && 1092 isBaseOfObject(DecompGEP2.Base)) 1093 return AliasResult::NoAlias; 1094 1095 if (isa<GEPOperator>(V2)) { 1096 // Symmetric case to above. 1097 if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && 1098 V1Size.hasValue() && !V1Size.isScalable() && 1099 DecompGEP1.Offset.sle(-V1Size.getValue()) && 1100 isBaseOfObject(DecompGEP1.Base)) 1101 return AliasResult::NoAlias; 1102 } 1103 1104 // For GEPs with identical offsets, we can preserve the size and AAInfo 1105 // when performing the alias check on the underlying objects. 1106 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1107 return AAQI.AAR.alias(MemoryLocation(DecompGEP1.Base, V1Size), 1108 MemoryLocation(DecompGEP2.Base, V2Size), AAQI); 1109 1110 // Do the base pointers alias? 1111 AliasResult BaseAlias = 1112 AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(DecompGEP1.Base), 1113 MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI); 1114 1115 // If we get a No or May, then return it immediately, no amount of analysis 1116 // will improve this situation. 1117 if (BaseAlias != AliasResult::MustAlias) { 1118 assert(BaseAlias == AliasResult::NoAlias || 1119 BaseAlias == AliasResult::MayAlias); 1120 return BaseAlias; 1121 } 1122 1123 // If there is a constant difference between the pointers, but the difference 1124 // is less than the size of the associated memory object, then we know 1125 // that the objects are partially overlapping. If the difference is 1126 // greater, we know they do not overlap. 1127 if (DecompGEP1.VarIndices.empty()) { 1128 APInt &Off = DecompGEP1.Offset; 1129 1130 // Initialize for Off >= 0 (V2 <= GEP1) case. 1131 const Value *LeftPtr = V2; 1132 const Value *RightPtr = GEP1; 1133 LocationSize VLeftSize = V2Size; 1134 LocationSize VRightSize = V1Size; 1135 const bool Swapped = Off.isNegative(); 1136 1137 if (Swapped) { 1138 // Swap if we have the situation where: 1139 // + + 1140 // | BaseOffset | 1141 // ---------------->| 1142 // |-->V1Size |-------> V2Size 1143 // GEP1 V2 1144 std::swap(LeftPtr, RightPtr); 1145 std::swap(VLeftSize, VRightSize); 1146 Off = -Off; 1147 } 1148 1149 if (!VLeftSize.hasValue()) 1150 return AliasResult::MayAlias; 1151 1152 const TypeSize LSize = VLeftSize.getValue(); 1153 if (!LSize.isScalable()) { 1154 if (Off.ult(LSize)) { 1155 // Conservatively drop processing if a phi was visited and/or offset is 1156 // too big. 1157 AliasResult AR = AliasResult::PartialAlias; 1158 if (VRightSize.hasValue() && !VRightSize.isScalable() && 1159 Off.ule(INT32_MAX) && (Off + VRightSize.getValue()).ule(LSize)) { 1160 // Memory referenced by right pointer is nested. Save the offset in 1161 // cache. Note that originally offset estimated as GEP1-V2, but 1162 // AliasResult contains the shift that represents GEP1+Offset=V2. 1163 AR.setOffset(-Off.getSExtValue()); 1164 AR.swap(Swapped); 1165 } 1166 return AR; 1167 } 1168 return AliasResult::NoAlias; 1169 } else { 1170 // We can use the getVScaleRange to prove that Off >= (CR.upper * LSize). 1171 ConstantRange CR = getVScaleRange(&F, Off.getBitWidth()); 1172 bool Overflow; 1173 APInt UpperRange = CR.getUnsignedMax().umul_ov( 1174 APInt(Off.getBitWidth(), LSize.getKnownMinValue()), Overflow); 1175 if (!Overflow && Off.uge(UpperRange)) 1176 return AliasResult::NoAlias; 1177 } 1178 } 1179 1180 // VScale Alias Analysis - Given one scalable offset between accesses and a 1181 // scalable typesize, we can divide each side by vscale, treating both values 1182 // as a constant. We prove that Offset/vscale >= TypeSize/vscale. 1183 if (DecompGEP1.VarIndices.size() == 1 && 1184 DecompGEP1.VarIndices[0].Val.TruncBits == 0 && 1185 DecompGEP1.Offset.isZero() && 1186 PatternMatch::match(DecompGEP1.VarIndices[0].Val.V, 1187 PatternMatch::m_VScale())) { 1188 const VariableGEPIndex &ScalableVar = DecompGEP1.VarIndices[0]; 1189 APInt Scale = 1190 ScalableVar.IsNegated ? -ScalableVar.Scale : ScalableVar.Scale; 1191 LocationSize VLeftSize = Scale.isNegative() ? V1Size : V2Size; 1192 1193 // Check if the offset is known to not overflow, if it does then attempt to 1194 // prove it with the known values of vscale_range. 1195 bool Overflows = !DecompGEP1.VarIndices[0].IsNSW; 1196 if (Overflows) { 1197 ConstantRange CR = getVScaleRange(&F, Scale.getBitWidth()); 1198 (void)CR.getSignedMax().smul_ov(Scale, Overflows); 1199 } 1200 1201 if (!Overflows) { 1202 // Note that we do not check that the typesize is scalable, as vscale >= 1 1203 // so noalias still holds so long as the dependency distance is at least 1204 // as big as the typesize. 1205 if (VLeftSize.hasValue() && 1206 Scale.abs().uge(VLeftSize.getValue().getKnownMinValue())) 1207 return AliasResult::NoAlias; 1208 } 1209 } 1210 1211 // Bail on analysing scalable LocationSize 1212 if (V1Size.isScalable() || V2Size.isScalable()) 1213 return AliasResult::MayAlias; 1214 1215 // We need to know both acess sizes for all the following heuristics. 1216 if (!V1Size.hasValue() || !V2Size.hasValue()) 1217 return AliasResult::MayAlias; 1218 1219 APInt GCD; 1220 ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset); 1221 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1222 const VariableGEPIndex &Index = DecompGEP1.VarIndices[i]; 1223 const APInt &Scale = Index.Scale; 1224 APInt ScaleForGCD = Scale; 1225 if (!Index.IsNSW) 1226 ScaleForGCD = 1227 APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero()); 1228 1229 if (i == 0) 1230 GCD = ScaleForGCD.abs(); 1231 else 1232 GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs()); 1233 1234 ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false, 1235 true, &AC, Index.CxtI); 1236 KnownBits Known = 1237 computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT); 1238 CR = CR.intersectWith( 1239 ConstantRange::fromKnownBits(Known, /* Signed */ true), 1240 ConstantRange::Signed); 1241 CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth()); 1242 1243 assert(OffsetRange.getBitWidth() == Scale.getBitWidth() && 1244 "Bit widths are normalized to MaxIndexSize"); 1245 if (Index.IsNSW) 1246 CR = CR.smul_sat(ConstantRange(Scale)); 1247 else 1248 CR = CR.smul_fast(ConstantRange(Scale)); 1249 1250 if (Index.IsNegated) 1251 OffsetRange = OffsetRange.sub(CR); 1252 else 1253 OffsetRange = OffsetRange.add(CR); 1254 } 1255 1256 // We now have accesses at two offsets from the same base: 1257 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1258 // 2. 0 with size V2Size 1259 // Using arithmetic modulo GCD, the accesses are at 1260 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1261 // into the range [V2Size..GCD), then we know they cannot overlap. 1262 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1263 if (ModOffset.isNegative()) 1264 ModOffset += GCD; // We want mod, not rem. 1265 if (ModOffset.uge(V2Size.getValue()) && 1266 (GCD - ModOffset).uge(V1Size.getValue())) 1267 return AliasResult::NoAlias; 1268 1269 // Compute ranges of potentially accessed bytes for both accesses. If the 1270 // interseciton is empty, there can be no overlap. 1271 unsigned BW = OffsetRange.getBitWidth(); 1272 ConstantRange Range1 = OffsetRange.add( 1273 ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue()))); 1274 ConstantRange Range2 = 1275 ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue())); 1276 if (Range1.intersectWith(Range2).isEmptySet()) 1277 return AliasResult::NoAlias; 1278 1279 // Try to determine the range of values for VarIndex such that 1280 // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex. 1281 std::optional<APInt> MinAbsVarIndex; 1282 if (DecompGEP1.VarIndices.size() == 1) { 1283 // VarIndex = Scale*V. 1284 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; 1285 if (Var.Val.TruncBits == 0 && 1286 isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT)) { 1287 // Check if abs(V*Scale) >= abs(Scale) holds in the presence of 1288 // potentially wrapping math. 1289 auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) { 1290 if (Var.IsNSW) 1291 return true; 1292 1293 int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits(); 1294 // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds. 1295 // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a 1296 // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap. 1297 int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW; 1298 if (MaxScaleValueBW <= 0) 1299 return false; 1300 return Var.Scale.ule( 1301 APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth())); 1302 }; 1303 // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the 1304 // presence of potentially wrapping math. 1305 if (MultiplyByScaleNoWrap(Var)) { 1306 // If V != 0 then abs(VarIndex) >= abs(Scale). 1307 MinAbsVarIndex = Var.Scale.abs(); 1308 } 1309 } 1310 } else if (DecompGEP1.VarIndices.size() == 2) { 1311 // VarIndex = Scale*V0 + (-Scale)*V1. 1312 // If V0 != V1 then abs(VarIndex) >= abs(Scale). 1313 // Check that MayBeCrossIteration is false, to avoid reasoning about 1314 // inequality of values across loop iterations. 1315 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1316 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1317 if (Var0.hasNegatedScaleOf(Var1) && Var0.Val.TruncBits == 0 && 1318 Var0.Val.hasSameCastsAs(Var1.Val) && !AAQI.MayBeCrossIteration && 1319 isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr, 1320 DT)) 1321 MinAbsVarIndex = Var0.Scale.abs(); 1322 } 1323 1324 if (MinAbsVarIndex) { 1325 // The constant offset will have added at least +/-MinAbsVarIndex to it. 1326 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; 1327 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; 1328 // We know that Offset <= OffsetLo || Offset >= OffsetHi 1329 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1330 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1331 return AliasResult::NoAlias; 1332 } 1333 1334 if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT, AAQI)) 1335 return AliasResult::NoAlias; 1336 1337 // Statically, we can see that the base objects are the same, but the 1338 // pointers have dynamic offsets which we can't resolve. And none of our 1339 // little tricks above worked. 1340 return AliasResult::MayAlias; 1341 } 1342 1343 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1344 // If the results agree, take it. 1345 if (A == B) 1346 return A; 1347 // A mix of PartialAlias and MustAlias is PartialAlias. 1348 if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || 1349 (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) 1350 return AliasResult::PartialAlias; 1351 // Otherwise, we don't know anything. 1352 return AliasResult::MayAlias; 1353 } 1354 1355 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1356 /// against another. 1357 AliasResult 1358 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1359 const Value *V2, LocationSize V2Size, 1360 AAQueryInfo &AAQI) { 1361 // If the values are Selects with the same condition, we can do a more precise 1362 // check: just check for aliases between the values on corresponding arms. 1363 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1364 if (isValueEqualInPotentialCycles(SI->getCondition(), SI2->getCondition(), 1365 AAQI)) { 1366 AliasResult Alias = 1367 AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize), 1368 MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); 1369 if (Alias == AliasResult::MayAlias) 1370 return AliasResult::MayAlias; 1371 AliasResult ThisAlias = 1372 AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize), 1373 MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); 1374 return MergeAliasResults(ThisAlias, Alias); 1375 } 1376 1377 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1378 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1379 AliasResult Alias = AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize), 1380 MemoryLocation(V2, V2Size), AAQI); 1381 if (Alias == AliasResult::MayAlias) 1382 return AliasResult::MayAlias; 1383 1384 AliasResult ThisAlias = 1385 AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize), 1386 MemoryLocation(V2, V2Size), AAQI); 1387 return MergeAliasResults(ThisAlias, Alias); 1388 } 1389 1390 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1391 /// another. 1392 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1393 const Value *V2, LocationSize V2Size, 1394 AAQueryInfo &AAQI) { 1395 if (!PN->getNumIncomingValues()) 1396 return AliasResult::NoAlias; 1397 // If the values are PHIs in the same block, we can do a more precise 1398 // as well as efficient check: just check for aliases between the values 1399 // on corresponding edges. 1400 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1401 if (PN2->getParent() == PN->getParent()) { 1402 std::optional<AliasResult> Alias; 1403 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1404 AliasResult ThisAlias = AAQI.AAR.alias( 1405 MemoryLocation(PN->getIncomingValue(i), PNSize), 1406 MemoryLocation( 1407 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), 1408 AAQI); 1409 if (Alias) 1410 *Alias = MergeAliasResults(*Alias, ThisAlias); 1411 else 1412 Alias = ThisAlias; 1413 if (*Alias == AliasResult::MayAlias) 1414 break; 1415 } 1416 return *Alias; 1417 } 1418 1419 SmallVector<Value *, 4> V1Srcs; 1420 // If a phi operand recurses back to the phi, we can still determine NoAlias 1421 // if we don't alias the underlying objects of the other phi operands, as we 1422 // know that the recursive phi needs to be based on them in some way. 1423 bool isRecursive = false; 1424 auto CheckForRecPhi = [&](Value *PV) { 1425 if (!EnableRecPhiAnalysis) 1426 return false; 1427 if (getUnderlyingObject(PV) == PN) { 1428 isRecursive = true; 1429 return true; 1430 } 1431 return false; 1432 }; 1433 1434 SmallPtrSet<Value *, 4> UniqueSrc; 1435 Value *OnePhi = nullptr; 1436 for (Value *PV1 : PN->incoming_values()) { 1437 // Skip the phi itself being the incoming value. 1438 if (PV1 == PN) 1439 continue; 1440 1441 if (isa<PHINode>(PV1)) { 1442 if (OnePhi && OnePhi != PV1) { 1443 // To control potential compile time explosion, we choose to be 1444 // conserviate when we have more than one Phi input. It is important 1445 // that we handle the single phi case as that lets us handle LCSSA 1446 // phi nodes and (combined with the recursive phi handling) simple 1447 // pointer induction variable patterns. 1448 return AliasResult::MayAlias; 1449 } 1450 OnePhi = PV1; 1451 } 1452 1453 if (CheckForRecPhi(PV1)) 1454 continue; 1455 1456 if (UniqueSrc.insert(PV1).second) 1457 V1Srcs.push_back(PV1); 1458 } 1459 1460 if (OnePhi && UniqueSrc.size() > 1) 1461 // Out of an abundance of caution, allow only the trivial lcssa and 1462 // recursive phi cases. 1463 return AliasResult::MayAlias; 1464 1465 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1466 // value. This should only be possible in blocks unreachable from the entry 1467 // block, but return MayAlias just in case. 1468 if (V1Srcs.empty()) 1469 return AliasResult::MayAlias; 1470 1471 // If this PHI node is recursive, indicate that the pointer may be moved 1472 // across iterations. We can only prove NoAlias if different underlying 1473 // objects are involved. 1474 if (isRecursive) 1475 PNSize = LocationSize::beforeOrAfterPointer(); 1476 1477 // In the recursive alias queries below, we may compare values from two 1478 // different loop iterations. 1479 SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true); 1480 1481 AliasResult Alias = AAQI.AAR.alias(MemoryLocation(V1Srcs[0], PNSize), 1482 MemoryLocation(V2, V2Size), AAQI); 1483 1484 // Early exit if the check of the first PHI source against V2 is MayAlias. 1485 // Other results are not possible. 1486 if (Alias == AliasResult::MayAlias) 1487 return AliasResult::MayAlias; 1488 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1489 // remain valid to all elements and needs to conservatively return MayAlias. 1490 if (isRecursive && Alias != AliasResult::NoAlias) 1491 return AliasResult::MayAlias; 1492 1493 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1494 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1495 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1496 Value *V = V1Srcs[i]; 1497 1498 AliasResult ThisAlias = AAQI.AAR.alias( 1499 MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), AAQI); 1500 Alias = MergeAliasResults(ThisAlias, Alias); 1501 if (Alias == AliasResult::MayAlias) 1502 break; 1503 } 1504 1505 return Alias; 1506 } 1507 1508 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1509 /// array references. 1510 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1511 const Value *V2, LocationSize V2Size, 1512 AAQueryInfo &AAQI, 1513 const Instruction *CtxI) { 1514 // If either of the memory references is empty, it doesn't matter what the 1515 // pointer values are. 1516 if (V1Size.isZero() || V2Size.isZero()) 1517 return AliasResult::NoAlias; 1518 1519 // Strip off any casts if they exist. 1520 V1 = V1->stripPointerCastsForAliasAnalysis(); 1521 V2 = V2->stripPointerCastsForAliasAnalysis(); 1522 1523 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1524 // value for undef that aliases nothing in the program. 1525 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1526 return AliasResult::NoAlias; 1527 1528 // Are we checking for alias of the same value? 1529 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1530 // different iterations. We must therefore make sure that this is not the 1531 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1532 // happen by looking at the visited phi nodes and making sure they cannot 1533 // reach the value. 1534 if (isValueEqualInPotentialCycles(V1, V2, AAQI)) 1535 return AliasResult::MustAlias; 1536 1537 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1538 return AliasResult::NoAlias; // Scalars cannot alias each other 1539 1540 // Figure out what objects these things are pointing to if we can. 1541 const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1542 const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1543 1544 // Null values in the default address space don't point to any object, so they 1545 // don't alias any other pointer. 1546 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1547 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1548 return AliasResult::NoAlias; 1549 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1550 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1551 return AliasResult::NoAlias; 1552 1553 if (O1 != O2) { 1554 // If V1/V2 point to two different objects, we know that we have no alias. 1555 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1556 return AliasResult::NoAlias; 1557 1558 // Function arguments can't alias with things that are known to be 1559 // unambigously identified at the function level. 1560 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1561 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1562 return AliasResult::NoAlias; 1563 1564 // If one pointer is the result of a call/invoke or load and the other is a 1565 // non-escaping local object within the same function, then we know the 1566 // object couldn't escape to a point where the call could return it. 1567 // 1568 // Note that if the pointers are in different functions, there are a 1569 // variety of complications. A call with a nocapture argument may still 1570 // temporary store the nocapture argument's value in a temporary memory 1571 // location if that memory location doesn't escape. Or it may pass a 1572 // nocapture value to other functions as long as they don't capture it. 1573 if (isEscapeSource(O1) && AAQI.CI->isNotCapturedBefore( 1574 O2, dyn_cast<Instruction>(O1), /*OrAt*/ true)) 1575 return AliasResult::NoAlias; 1576 if (isEscapeSource(O2) && AAQI.CI->isNotCapturedBefore( 1577 O1, dyn_cast<Instruction>(O2), /*OrAt*/ true)) 1578 return AliasResult::NoAlias; 1579 } 1580 1581 // If the size of one access is larger than the entire object on the other 1582 // side, then we know such behavior is undefined and can assume no alias. 1583 bool NullIsValidLocation = NullPointerIsDefined(&F); 1584 if ((isObjectSmallerThan( 1585 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1586 TLI, NullIsValidLocation)) || 1587 (isObjectSmallerThan( 1588 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1589 TLI, NullIsValidLocation))) 1590 return AliasResult::NoAlias; 1591 1592 if (EnableSeparateStorageAnalysis) { 1593 for (AssumptionCache::ResultElem &Elem : AC.assumptionsFor(O1)) { 1594 if (!Elem || Elem.Index == AssumptionCache::ExprResultIdx) 1595 continue; 1596 1597 AssumeInst *Assume = cast<AssumeInst>(Elem); 1598 OperandBundleUse OBU = Assume->getOperandBundleAt(Elem.Index); 1599 if (OBU.getTagName() == "separate_storage") { 1600 assert(OBU.Inputs.size() == 2); 1601 const Value *Hint1 = OBU.Inputs[0].get(); 1602 const Value *Hint2 = OBU.Inputs[1].get(); 1603 // This is often a no-op; instcombine rewrites this for us. No-op 1604 // getUnderlyingObject calls are fast, though. 1605 const Value *HintO1 = getUnderlyingObject(Hint1); 1606 const Value *HintO2 = getUnderlyingObject(Hint2); 1607 1608 DominatorTree *DT = getDT(AAQI); 1609 auto ValidAssumeForPtrContext = [&](const Value *Ptr) { 1610 if (const Instruction *PtrI = dyn_cast<Instruction>(Ptr)) { 1611 return isValidAssumeForContext(Assume, PtrI, DT, 1612 /* AllowEphemerals */ true); 1613 } 1614 if (const Argument *PtrA = dyn_cast<Argument>(Ptr)) { 1615 const Instruction *FirstI = 1616 &*PtrA->getParent()->getEntryBlock().begin(); 1617 return isValidAssumeForContext(Assume, FirstI, DT, 1618 /* AllowEphemerals */ true); 1619 } 1620 return false; 1621 }; 1622 1623 if ((O1 == HintO1 && O2 == HintO2) || (O1 == HintO2 && O2 == HintO1)) { 1624 // Note that we go back to V1 and V2 for the 1625 // ValidAssumeForPtrContext checks; they're dominated by O1 and O2, 1626 // so strictly more assumptions are valid for them. 1627 if ((CtxI && isValidAssumeForContext(Assume, CtxI, DT, 1628 /* AllowEphemerals */ true)) || 1629 ValidAssumeForPtrContext(V1) || ValidAssumeForPtrContext(V2)) { 1630 return AliasResult::NoAlias; 1631 } 1632 } 1633 } 1634 } 1635 } 1636 1637 // If one the accesses may be before the accessed pointer, canonicalize this 1638 // by using unknown after-pointer sizes for both accesses. This is 1639 // equivalent, because regardless of which pointer is lower, one of them 1640 // will always came after the other, as long as the underlying objects aren't 1641 // disjoint. We do this so that the rest of BasicAA does not have to deal 1642 // with accesses before the base pointer, and to improve cache utilization by 1643 // merging equivalent states. 1644 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1645 V1Size = LocationSize::afterPointer(); 1646 V2Size = LocationSize::afterPointer(); 1647 } 1648 1649 // FIXME: If this depth limit is hit, then we may cache sub-optimal results 1650 // for recursive queries. For this reason, this limit is chosen to be large 1651 // enough to be very rarely hit, while still being small enough to avoid 1652 // stack overflows. 1653 if (AAQI.Depth >= 512) 1654 return AliasResult::MayAlias; 1655 1656 // Check the cache before climbing up use-def chains. This also terminates 1657 // otherwise infinitely recursive queries. Include MayBeCrossIteration in the 1658 // cache key, because some cases where MayBeCrossIteration==false returns 1659 // MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true. 1660 AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration}, 1661 {V2, V2Size, AAQI.MayBeCrossIteration}); 1662 const bool Swapped = V1 > V2; 1663 if (Swapped) 1664 std::swap(Locs.first, Locs.second); 1665 const auto &Pair = AAQI.AliasCache.try_emplace( 1666 Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); 1667 if (!Pair.second) { 1668 auto &Entry = Pair.first->second; 1669 if (!Entry.isDefinitive()) { 1670 // Remember that we used an assumption. 1671 ++Entry.NumAssumptionUses; 1672 ++AAQI.NumAssumptionUses; 1673 } 1674 // Cache contains sorted {V1,V2} pairs but we should return original order. 1675 auto Result = Entry.Result; 1676 Result.swap(Swapped); 1677 return Result; 1678 } 1679 1680 int OrigNumAssumptionUses = AAQI.NumAssumptionUses; 1681 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); 1682 AliasResult Result = 1683 aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); 1684 1685 auto It = AAQI.AliasCache.find(Locs); 1686 assert(It != AAQI.AliasCache.end() && "Must be in cache"); 1687 auto &Entry = It->second; 1688 1689 // Check whether a NoAlias assumption has been used, but disproven. 1690 bool AssumptionDisproven = 1691 Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; 1692 if (AssumptionDisproven) 1693 Result = AliasResult::MayAlias; 1694 1695 // This is a definitive result now, when considered as a root query. 1696 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; 1697 Entry.Result = Result; 1698 // Cache contains sorted {V1,V2} pairs. 1699 Entry.Result.swap(Swapped); 1700 Entry.NumAssumptionUses = -1; 1701 1702 // If the assumption has been disproven, remove any results that may have 1703 // been based on this assumption. Do this after the Entry updates above to 1704 // avoid iterator invalidation. 1705 if (AssumptionDisproven) 1706 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) 1707 AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); 1708 1709 // The result may still be based on assumptions higher up in the chain. 1710 // Remember it, so it can be purged from the cache later. 1711 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && 1712 Result != AliasResult::MayAlias) 1713 AAQI.AssumptionBasedResults.push_back(Locs); 1714 return Result; 1715 } 1716 1717 AliasResult BasicAAResult::aliasCheckRecursive( 1718 const Value *V1, LocationSize V1Size, 1719 const Value *V2, LocationSize V2Size, 1720 AAQueryInfo &AAQI, const Value *O1, const Value *O2) { 1721 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1722 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); 1723 if (Result != AliasResult::MayAlias) 1724 return Result; 1725 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1726 AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); 1727 Result.swap(); 1728 if (Result != AliasResult::MayAlias) 1729 return Result; 1730 } 1731 1732 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1733 AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); 1734 if (Result != AliasResult::MayAlias) 1735 return Result; 1736 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1737 AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); 1738 Result.swap(); 1739 if (Result != AliasResult::MayAlias) 1740 return Result; 1741 } 1742 1743 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1744 AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); 1745 if (Result != AliasResult::MayAlias) 1746 return Result; 1747 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1748 AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); 1749 Result.swap(); 1750 if (Result != AliasResult::MayAlias) 1751 return Result; 1752 } 1753 1754 // If both pointers are pointing into the same object and one of them 1755 // accesses the entire object, then the accesses must overlap in some way. 1756 if (O1 == O2) { 1757 bool NullIsValidLocation = NullPointerIsDefined(&F); 1758 if (V1Size.isPrecise() && V2Size.isPrecise() && 1759 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1760 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1761 return AliasResult::PartialAlias; 1762 } 1763 1764 return AliasResult::MayAlias; 1765 } 1766 1767 /// Check whether two Values can be considered equivalent. 1768 /// 1769 /// If the values may come from different cycle iterations, this will also 1770 /// check that the values are not part of cycle. We have to do this because we 1771 /// are looking through phi nodes, that is we say 1772 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1773 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1774 const Value *V2, 1775 const AAQueryInfo &AAQI) { 1776 if (V != V2) 1777 return false; 1778 1779 if (!AAQI.MayBeCrossIteration) 1780 return true; 1781 1782 // Non-instructions and instructions in the entry block cannot be part of 1783 // a loop. 1784 const Instruction *Inst = dyn_cast<Instruction>(V); 1785 if (!Inst || Inst->getParent()->isEntryBlock()) 1786 return true; 1787 1788 return isNotInCycle(Inst, getDT(AAQI), /*LI*/ nullptr); 1789 } 1790 1791 /// Computes the symbolic difference between two de-composed GEPs. 1792 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP, 1793 const DecomposedGEP &SrcGEP, 1794 const AAQueryInfo &AAQI) { 1795 DestGEP.Offset -= SrcGEP.Offset; 1796 for (const VariableGEPIndex &Src : SrcGEP.VarIndices) { 1797 // Find V in Dest. This is N^2, but pointer indices almost never have more 1798 // than a few variable indexes. 1799 bool Found = false; 1800 for (auto I : enumerate(DestGEP.VarIndices)) { 1801 VariableGEPIndex &Dest = I.value(); 1802 if ((!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V, AAQI) && 1803 !areBothVScale(Dest.Val.V, Src.Val.V)) || 1804 !Dest.Val.hasSameCastsAs(Src.Val)) 1805 continue; 1806 1807 // Normalize IsNegated if we're going to lose the NSW flag anyway. 1808 if (Dest.IsNegated) { 1809 Dest.Scale = -Dest.Scale; 1810 Dest.IsNegated = false; 1811 Dest.IsNSW = false; 1812 } 1813 1814 // If we found it, subtract off Scale V's from the entry in Dest. If it 1815 // goes to zero, remove the entry. 1816 if (Dest.Scale != Src.Scale) { 1817 Dest.Scale -= Src.Scale; 1818 Dest.IsNSW = false; 1819 } else { 1820 DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index()); 1821 } 1822 Found = true; 1823 break; 1824 } 1825 1826 // If we didn't consume this entry, add it to the end of the Dest list. 1827 if (!Found) { 1828 VariableGEPIndex Entry = {Src.Val, Src.Scale, Src.CxtI, Src.IsNSW, 1829 /* IsNegated */ true}; 1830 DestGEP.VarIndices.push_back(Entry); 1831 } 1832 } 1833 } 1834 1835 bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP, 1836 LocationSize MaybeV1Size, 1837 LocationSize MaybeV2Size, 1838 AssumptionCache *AC, 1839 DominatorTree *DT, 1840 const AAQueryInfo &AAQI) { 1841 if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1842 !MaybeV2Size.hasValue()) 1843 return false; 1844 1845 const uint64_t V1Size = MaybeV1Size.getValue(); 1846 const uint64_t V2Size = MaybeV2Size.getValue(); 1847 1848 const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1]; 1849 1850 if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) || 1851 !Var0.hasNegatedScaleOf(Var1) || 1852 Var0.Val.V->getType() != Var1.Val.V->getType()) 1853 return false; 1854 1855 // We'll strip off the Extensions of Var0 and Var1 and do another round 1856 // of GetLinearExpression decomposition. In the example above, if Var0 1857 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1858 1859 LinearExpression E0 = 1860 GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT); 1861 LinearExpression E1 = 1862 GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT); 1863 if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) || 1864 !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V, AAQI)) 1865 return false; 1866 1867 // We have a hit - Var0 and Var1 only differ by a constant offset! 1868 1869 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1870 // Var1 is possible to calculate, but we're just interested in the absolute 1871 // minimum difference between the two. The minimum distance may occur due to 1872 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1873 // the minimum distance between %i and %i + 5 is 3. 1874 APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; 1875 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1876 APInt MinDiffBytes = 1877 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1878 1879 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1880 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1881 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1882 // V2Size can fit in the MinDiffBytes gap. 1883 return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) && 1884 MinDiffBytes.uge(V2Size + GEP.Offset.abs()); 1885 } 1886 1887 //===----------------------------------------------------------------------===// 1888 // BasicAliasAnalysis Pass 1889 //===----------------------------------------------------------------------===// 1890 1891 AnalysisKey BasicAA::Key; 1892 1893 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1894 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1895 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1896 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1897 return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT); 1898 } 1899 1900 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1901 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1902 } 1903 1904 char BasicAAWrapperPass::ID = 0; 1905 1906 void BasicAAWrapperPass::anchor() {} 1907 1908 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1909 "Basic Alias Analysis (stateless AA impl)", true, true) 1910 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1911 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1912 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1913 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1914 "Basic Alias Analysis (stateless AA impl)", true, true) 1915 1916 FunctionPass *llvm::createBasicAAWrapperPass() { 1917 return new BasicAAWrapperPass(); 1918 } 1919 1920 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1921 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1922 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1923 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1924 1925 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 1926 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1927 &DTWP.getDomTree())); 1928 1929 return false; 1930 } 1931 1932 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1933 AU.setPreservesAll(); 1934 AU.addRequiredTransitive<AssumptionCacheTracker>(); 1935 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1936 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1937 } 1938