1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic AliasAnalysis interface which is used as the 10 // common interface used by all clients and implementations of alias analysis. 11 // 12 // This file also implements the default version of the AliasAnalysis interface 13 // that is to be used when no other implementation is specified. This does some 14 // simple tests that detect obvious cases: two different global pointers cannot 15 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 16 // etc. 17 // 18 // This alias analysis implementation really isn't very good for anything, but 19 // it is very fast, and makes a nice clean default implementation. Because it 20 // handles lots of little corner cases, other, more complex, alias analysis 21 // implementations may choose to rely on this pass to resolve these simple and 22 // easy cases. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/CaptureTracking.h" 30 #include "llvm/Analysis/GlobalsModRef.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/ObjCARCAliasAnalysis.h" 33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 34 #include "llvm/Analysis/ScopedNoAliasAA.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/IR/Argument.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/AtomicOrdering.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <functional> 53 #include <iterator> 54 55 #define DEBUG_TYPE "aa" 56 57 using namespace llvm; 58 59 STATISTIC(NumNoAlias, "Number of NoAlias results"); 60 STATISTIC(NumMayAlias, "Number of MayAlias results"); 61 STATISTIC(NumMustAlias, "Number of MustAlias results"); 62 63 namespace llvm { 64 /// Allow disabling BasicAA from the AA results. This is particularly useful 65 /// when testing to isolate a single AA implementation. 66 cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false)); 67 } // namespace llvm 68 69 #ifndef NDEBUG 70 /// Print a trace of alias analysis queries and their results. 71 static cl::opt<bool> EnableAATrace("aa-trace", cl::Hidden, cl::init(false)); 72 #else 73 static const bool EnableAATrace = false; 74 #endif 75 76 AAResults::AAResults(AAResults &&Arg) 77 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {} 78 79 AAResults::~AAResults() {} 80 81 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, 82 FunctionAnalysisManager::Invalidator &Inv) { 83 // AAResults preserves the AAManager by default, due to the stateless nature 84 // of AliasAnalysis. There is no need to check whether it has been preserved 85 // explicitly. Check if any module dependency was invalidated and caused the 86 // AAManager to be invalidated. Invalidate ourselves in that case. 87 auto PAC = PA.getChecker<AAManager>(); 88 if (!PAC.preservedWhenStateless()) 89 return true; 90 91 // Check if any of the function dependencies were invalidated, and invalidate 92 // ourselves in that case. 93 for (AnalysisKey *ID : AADeps) 94 if (Inv.invalidate(ID, F, PA)) 95 return true; 96 97 // Everything we depend on is still fine, so are we. Nothing to invalidate. 98 return false; 99 } 100 101 //===----------------------------------------------------------------------===// 102 // Default chaining methods 103 //===----------------------------------------------------------------------===// 104 105 AliasResult AAResults::alias(const MemoryLocation &LocA, 106 const MemoryLocation &LocB) { 107 SimpleAAQueryInfo AAQIP(*this); 108 return alias(LocA, LocB, AAQIP); 109 } 110 111 AliasResult AAResults::alias(const MemoryLocation &LocA, 112 const MemoryLocation &LocB, AAQueryInfo &AAQI) { 113 AliasResult Result = AliasResult::MayAlias; 114 115 if (EnableAATrace) { 116 for (unsigned I = 0; I < AAQI.Depth; ++I) 117 dbgs() << " "; 118 dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", " 119 << *LocB.Ptr << " @ " << LocB.Size << "\n"; 120 } 121 122 AAQI.Depth++; 123 for (const auto &AA : AAs) { 124 Result = AA->alias(LocA, LocB, AAQI); 125 if (Result != AliasResult::MayAlias) 126 break; 127 } 128 AAQI.Depth--; 129 130 if (EnableAATrace) { 131 for (unsigned I = 0; I < AAQI.Depth; ++I) 132 dbgs() << " "; 133 dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", " 134 << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n"; 135 } 136 137 if (AAQI.Depth == 0) { 138 if (Result == AliasResult::NoAlias) 139 ++NumNoAlias; 140 else if (Result == AliasResult::MustAlias) 141 ++NumMustAlias; 142 else 143 ++NumMayAlias; 144 } 145 return Result; 146 } 147 148 ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc, 149 bool IgnoreLocals) { 150 SimpleAAQueryInfo AAQIP(*this); 151 return getModRefInfoMask(Loc, AAQIP, IgnoreLocals); 152 } 153 154 ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc, 155 AAQueryInfo &AAQI, bool IgnoreLocals) { 156 ModRefInfo Result = ModRefInfo::ModRef; 157 158 for (const auto &AA : AAs) { 159 Result &= AA->getModRefInfoMask(Loc, AAQI, IgnoreLocals); 160 161 // Early-exit the moment we reach the bottom of the lattice. 162 if (isNoModRef(Result)) 163 return ModRefInfo::NoModRef; 164 } 165 166 return Result; 167 } 168 169 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { 170 ModRefInfo Result = ModRefInfo::ModRef; 171 172 for (const auto &AA : AAs) { 173 Result &= AA->getArgModRefInfo(Call, ArgIdx); 174 175 // Early-exit the moment we reach the bottom of the lattice. 176 if (isNoModRef(Result)) 177 return ModRefInfo::NoModRef; 178 } 179 180 return Result; 181 } 182 183 ModRefInfo AAResults::getModRefInfo(const Instruction *I, 184 const CallBase *Call2) { 185 SimpleAAQueryInfo AAQIP(*this); 186 return getModRefInfo(I, Call2, AAQIP); 187 } 188 189 ModRefInfo AAResults::getModRefInfo(const Instruction *I, const CallBase *Call2, 190 AAQueryInfo &AAQI) { 191 // We may have two calls. 192 if (const auto *Call1 = dyn_cast<CallBase>(I)) { 193 // Check if the two calls modify the same memory. 194 return getModRefInfo(Call1, Call2, AAQI); 195 } 196 // If this is a fence, just return ModRef. 197 if (I->isFenceLike()) 198 return ModRefInfo::ModRef; 199 // Otherwise, check if the call modifies or references the 200 // location this memory access defines. The best we can say 201 // is that if the call references what this instruction 202 // defines, it must be clobbered by this location. 203 const MemoryLocation DefLoc = MemoryLocation::get(I); 204 ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI); 205 if (isModOrRefSet(MR)) 206 return ModRefInfo::ModRef; 207 return ModRefInfo::NoModRef; 208 } 209 210 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 211 const MemoryLocation &Loc, 212 AAQueryInfo &AAQI) { 213 ModRefInfo Result = ModRefInfo::ModRef; 214 215 for (const auto &AA : AAs) { 216 Result &= AA->getModRefInfo(Call, Loc, AAQI); 217 218 // Early-exit the moment we reach the bottom of the lattice. 219 if (isNoModRef(Result)) 220 return ModRefInfo::NoModRef; 221 } 222 223 // Try to refine the mod-ref info further using other API entry points to the 224 // aggregate set of AA results. 225 226 // We can completely ignore inaccessible memory here, because MemoryLocations 227 // can only reference accessible memory. 228 auto ME = getMemoryEffects(Call, AAQI) 229 .getWithoutLoc(MemoryEffects::InaccessibleMem); 230 if (ME.doesNotAccessMemory()) 231 return ModRefInfo::NoModRef; 232 233 ModRefInfo ArgMR = ME.getModRef(MemoryEffects::ArgMem); 234 ModRefInfo OtherMR = ME.getWithoutLoc(MemoryEffects::ArgMem).getModRef(); 235 if ((ArgMR | OtherMR) != OtherMR) { 236 // Refine the modref info for argument memory. We only bother to do this 237 // if ArgMR is not a subset of OtherMR, otherwise this won't have an impact 238 // on the final result. 239 ModRefInfo AllArgsMask = ModRefInfo::NoModRef; 240 for (const auto &I : llvm::enumerate(Call->args())) { 241 const Value *Arg = I.value(); 242 if (!Arg->getType()->isPointerTy()) 243 continue; 244 unsigned ArgIdx = I.index(); 245 MemoryLocation ArgLoc = MemoryLocation::getForArgument(Call, ArgIdx, TLI); 246 AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI); 247 if (ArgAlias != AliasResult::NoAlias) 248 AllArgsMask |= getArgModRefInfo(Call, ArgIdx); 249 } 250 ArgMR &= AllArgsMask; 251 } 252 253 Result &= ArgMR | OtherMR; 254 255 // Apply the ModRef mask. This ensures that if Loc is a constant memory 256 // location, we take into account the fact that the call definitely could not 257 // modify the memory location. 258 if (!isNoModRef(Result)) 259 Result &= getModRefInfoMask(Loc); 260 261 return Result; 262 } 263 264 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 265 const CallBase *Call2, AAQueryInfo &AAQI) { 266 ModRefInfo Result = ModRefInfo::ModRef; 267 268 for (const auto &AA : AAs) { 269 Result &= AA->getModRefInfo(Call1, Call2, AAQI); 270 271 // Early-exit the moment we reach the bottom of the lattice. 272 if (isNoModRef(Result)) 273 return ModRefInfo::NoModRef; 274 } 275 276 // Try to refine the mod-ref info further using other API entry points to the 277 // aggregate set of AA results. 278 279 // If Call1 or Call2 are readnone, they don't interact. 280 auto Call1B = getMemoryEffects(Call1, AAQI); 281 if (Call1B.doesNotAccessMemory()) 282 return ModRefInfo::NoModRef; 283 284 auto Call2B = getMemoryEffects(Call2, AAQI); 285 if (Call2B.doesNotAccessMemory()) 286 return ModRefInfo::NoModRef; 287 288 // If they both only read from memory, there is no dependence. 289 if (Call1B.onlyReadsMemory() && Call2B.onlyReadsMemory()) 290 return ModRefInfo::NoModRef; 291 292 // If Call1 only reads memory, the only dependence on Call2 can be 293 // from Call1 reading memory written by Call2. 294 if (Call1B.onlyReadsMemory()) 295 Result &= ModRefInfo::Ref; 296 else if (Call1B.onlyWritesMemory()) 297 Result &= ModRefInfo::Mod; 298 299 // If Call2 only access memory through arguments, accumulate the mod/ref 300 // information from Call1's references to the memory referenced by 301 // Call2's arguments. 302 if (Call2B.onlyAccessesArgPointees()) { 303 if (!Call2B.doesAccessArgPointees()) 304 return ModRefInfo::NoModRef; 305 ModRefInfo R = ModRefInfo::NoModRef; 306 for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) { 307 const Value *Arg = *I; 308 if (!Arg->getType()->isPointerTy()) 309 continue; 310 unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I); 311 auto Call2ArgLoc = 312 MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI); 313 314 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the 315 // dependence of Call1 on that location is the inverse: 316 // - If Call2 modifies location, dependence exists if Call1 reads or 317 // writes. 318 // - If Call2 only reads location, dependence exists if Call1 writes. 319 ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx); 320 ModRefInfo ArgMask = ModRefInfo::NoModRef; 321 if (isModSet(ArgModRefC2)) 322 ArgMask = ModRefInfo::ModRef; 323 else if (isRefSet(ArgModRefC2)) 324 ArgMask = ModRefInfo::Mod; 325 326 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use 327 // above ArgMask to update dependence info. 328 ArgMask &= getModRefInfo(Call1, Call2ArgLoc, AAQI); 329 330 R = (R | ArgMask) & Result; 331 if (R == Result) 332 break; 333 } 334 335 return R; 336 } 337 338 // If Call1 only accesses memory through arguments, check if Call2 references 339 // any of the memory referenced by Call1's arguments. If not, return NoModRef. 340 if (Call1B.onlyAccessesArgPointees()) { 341 if (!Call1B.doesAccessArgPointees()) 342 return ModRefInfo::NoModRef; 343 ModRefInfo R = ModRefInfo::NoModRef; 344 for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) { 345 const Value *Arg = *I; 346 if (!Arg->getType()->isPointerTy()) 347 continue; 348 unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I); 349 auto Call1ArgLoc = 350 MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI); 351 352 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1 353 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by 354 // Call2. If Call1 might Ref, then we care only about a Mod by Call2. 355 ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx); 356 ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI); 357 if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) || 358 (isRefSet(ArgModRefC1) && isModSet(ModRefC2))) 359 R = (R | ArgModRefC1) & Result; 360 361 if (R == Result) 362 break; 363 } 364 365 return R; 366 } 367 368 return Result; 369 } 370 371 MemoryEffects AAResults::getMemoryEffects(const CallBase *Call, 372 AAQueryInfo &AAQI) { 373 MemoryEffects Result = MemoryEffects::unknown(); 374 375 for (const auto &AA : AAs) { 376 Result &= AA->getMemoryEffects(Call, AAQI); 377 378 // Early-exit the moment we reach the bottom of the lattice. 379 if (Result.doesNotAccessMemory()) 380 return Result; 381 } 382 383 return Result; 384 } 385 386 MemoryEffects AAResults::getMemoryEffects(const CallBase *Call) { 387 SimpleAAQueryInfo AAQI(*this); 388 return getMemoryEffects(Call, AAQI); 389 } 390 391 MemoryEffects AAResults::getMemoryEffects(const Function *F) { 392 MemoryEffects Result = MemoryEffects::unknown(); 393 394 for (const auto &AA : AAs) { 395 Result &= AA->getMemoryEffects(F); 396 397 // Early-exit the moment we reach the bottom of the lattice. 398 if (Result.doesNotAccessMemory()) 399 return Result; 400 } 401 402 return Result; 403 } 404 405 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { 406 switch (AR) { 407 case AliasResult::NoAlias: 408 OS << "NoAlias"; 409 break; 410 case AliasResult::MustAlias: 411 OS << "MustAlias"; 412 break; 413 case AliasResult::MayAlias: 414 OS << "MayAlias"; 415 break; 416 case AliasResult::PartialAlias: 417 OS << "PartialAlias"; 418 if (AR.hasOffset()) 419 OS << " (off " << AR.getOffset() << ")"; 420 break; 421 } 422 return OS; 423 } 424 425 raw_ostream &llvm::operator<<(raw_ostream &OS, ModRefInfo MR) { 426 switch (MR) { 427 case ModRefInfo::NoModRef: 428 OS << "NoModRef"; 429 break; 430 case ModRefInfo::Ref: 431 OS << "Ref"; 432 break; 433 case ModRefInfo::Mod: 434 OS << "Mod"; 435 break; 436 case ModRefInfo::ModRef: 437 OS << "ModRef"; 438 break; 439 } 440 return OS; 441 } 442 443 raw_ostream &llvm::operator<<(raw_ostream &OS, MemoryEffects ME) { 444 for (MemoryEffects::Location Loc : MemoryEffects::locations()) { 445 switch (Loc) { 446 case MemoryEffects::ArgMem: 447 OS << "ArgMem: "; 448 break; 449 case MemoryEffects::InaccessibleMem: 450 OS << "InaccessibleMem: "; 451 break; 452 case MemoryEffects::Other: 453 OS << "Other: "; 454 break; 455 } 456 OS << ME.getModRef(Loc) << ", "; 457 } 458 return OS; 459 } 460 461 //===----------------------------------------------------------------------===// 462 // Helper method implementation 463 //===----------------------------------------------------------------------===// 464 465 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 466 const MemoryLocation &Loc, 467 AAQueryInfo &AAQI) { 468 // Be conservative in the face of atomic. 469 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) 470 return ModRefInfo::ModRef; 471 472 // If the load address doesn't alias the given address, it doesn't read 473 // or write the specified memory. 474 if (Loc.Ptr) { 475 AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI); 476 if (AR == AliasResult::NoAlias) 477 return ModRefInfo::NoModRef; 478 } 479 // Otherwise, a load just reads. 480 return ModRefInfo::Ref; 481 } 482 483 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 484 const MemoryLocation &Loc, 485 AAQueryInfo &AAQI) { 486 // Be conservative in the face of atomic. 487 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) 488 return ModRefInfo::ModRef; 489 490 if (Loc.Ptr) { 491 AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI); 492 // If the store address cannot alias the pointer in question, then the 493 // specified memory cannot be modified by the store. 494 if (AR == AliasResult::NoAlias) 495 return ModRefInfo::NoModRef; 496 497 // Examine the ModRef mask. If Mod isn't present, then return NoModRef. 498 // This ensures that if Loc is a constant memory location, we take into 499 // account the fact that the store definitely could not modify the memory 500 // location. 501 if (!isModSet(getModRefInfoMask(Loc))) 502 return ModRefInfo::NoModRef; 503 } 504 505 // Otherwise, a store just writes. 506 return ModRefInfo::Mod; 507 } 508 509 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, 510 const MemoryLocation &Loc, 511 AAQueryInfo &AAQI) { 512 // All we know about a fence instruction is what we get from the ModRef 513 // mask: if Loc is a constant memory location, the fence definitely could 514 // not modify it. 515 if (Loc.Ptr) 516 return getModRefInfoMask(Loc); 517 return ModRefInfo::ModRef; 518 } 519 520 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 521 const MemoryLocation &Loc, 522 AAQueryInfo &AAQI) { 523 if (Loc.Ptr) { 524 AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI); 525 // If the va_arg address cannot alias the pointer in question, then the 526 // specified memory cannot be accessed by the va_arg. 527 if (AR == AliasResult::NoAlias) 528 return ModRefInfo::NoModRef; 529 530 // If the pointer is a pointer to invariant memory, then it could not have 531 // been modified by this va_arg. 532 return getModRefInfoMask(Loc, AAQI); 533 } 534 535 // Otherwise, a va_arg reads and writes. 536 return ModRefInfo::ModRef; 537 } 538 539 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 540 const MemoryLocation &Loc, 541 AAQueryInfo &AAQI) { 542 if (Loc.Ptr) { 543 // If the pointer is a pointer to invariant memory, 544 // then it could not have been modified by this catchpad. 545 return getModRefInfoMask(Loc, AAQI); 546 } 547 548 // Otherwise, a catchpad reads and writes. 549 return ModRefInfo::ModRef; 550 } 551 552 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 553 const MemoryLocation &Loc, 554 AAQueryInfo &AAQI) { 555 if (Loc.Ptr) { 556 // If the pointer is a pointer to invariant memory, 557 // then it could not have been modified by this catchpad. 558 return getModRefInfoMask(Loc, AAQI); 559 } 560 561 // Otherwise, a catchret reads and writes. 562 return ModRefInfo::ModRef; 563 } 564 565 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 566 const MemoryLocation &Loc, 567 AAQueryInfo &AAQI) { 568 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 569 if (isStrongerThanMonotonic(CX->getSuccessOrdering())) 570 return ModRefInfo::ModRef; 571 572 if (Loc.Ptr) { 573 AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI); 574 // If the cmpxchg address does not alias the location, it does not access 575 // it. 576 if (AR == AliasResult::NoAlias) 577 return ModRefInfo::NoModRef; 578 } 579 580 return ModRefInfo::ModRef; 581 } 582 583 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 584 const MemoryLocation &Loc, 585 AAQueryInfo &AAQI) { 586 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 587 if (isStrongerThanMonotonic(RMW->getOrdering())) 588 return ModRefInfo::ModRef; 589 590 if (Loc.Ptr) { 591 AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI); 592 // If the atomicrmw address does not alias the location, it does not access 593 // it. 594 if (AR == AliasResult::NoAlias) 595 return ModRefInfo::NoModRef; 596 } 597 598 return ModRefInfo::ModRef; 599 } 600 601 ModRefInfo AAResults::getModRefInfo(const Instruction *I, 602 const std::optional<MemoryLocation> &OptLoc, 603 AAQueryInfo &AAQIP) { 604 if (OptLoc == std::nullopt) { 605 if (const auto *Call = dyn_cast<CallBase>(I)) 606 return getMemoryEffects(Call, AAQIP).getModRef(); 607 } 608 609 const MemoryLocation &Loc = OptLoc.value_or(MemoryLocation()); 610 611 switch (I->getOpcode()) { 612 case Instruction::VAArg: 613 return getModRefInfo((const VAArgInst *)I, Loc, AAQIP); 614 case Instruction::Load: 615 return getModRefInfo((const LoadInst *)I, Loc, AAQIP); 616 case Instruction::Store: 617 return getModRefInfo((const StoreInst *)I, Loc, AAQIP); 618 case Instruction::Fence: 619 return getModRefInfo((const FenceInst *)I, Loc, AAQIP); 620 case Instruction::AtomicCmpXchg: 621 return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP); 622 case Instruction::AtomicRMW: 623 return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP); 624 case Instruction::Call: 625 case Instruction::CallBr: 626 case Instruction::Invoke: 627 return getModRefInfo((const CallBase *)I, Loc, AAQIP); 628 case Instruction::CatchPad: 629 return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP); 630 case Instruction::CatchRet: 631 return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP); 632 default: 633 assert(!I->mayReadOrWriteMemory() && 634 "Unhandled memory access instruction!"); 635 return ModRefInfo::NoModRef; 636 } 637 } 638 639 /// Return information about whether a particular call site modifies 640 /// or reads the specified memory location \p MemLoc before instruction \p I 641 /// in a BasicBlock. 642 /// FIXME: this is really just shoring-up a deficiency in alias analysis. 643 /// BasicAA isn't willing to spend linear time determining whether an alloca 644 /// was captured before or after this particular call, while we are. However, 645 /// with a smarter AA in place, this test is just wasting compile time. 646 ModRefInfo AAResults::callCapturesBefore(const Instruction *I, 647 const MemoryLocation &MemLoc, 648 DominatorTree *DT, 649 AAQueryInfo &AAQI) { 650 if (!DT) 651 return ModRefInfo::ModRef; 652 653 const Value *Object = getUnderlyingObject(MemLoc.Ptr); 654 if (!isIdentifiedFunctionLocal(Object)) 655 return ModRefInfo::ModRef; 656 657 const auto *Call = dyn_cast<CallBase>(I); 658 if (!Call || Call == Object) 659 return ModRefInfo::ModRef; 660 661 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 662 /* StoreCaptures */ true, I, DT, 663 /* include Object */ true)) 664 return ModRefInfo::ModRef; 665 666 unsigned ArgNo = 0; 667 ModRefInfo R = ModRefInfo::NoModRef; 668 // Set flag only if no May found and all operands processed. 669 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 670 CI != CE; ++CI, ++ArgNo) { 671 // Only look at the no-capture or byval pointer arguments. If this 672 // pointer were passed to arguments that were neither of these, then it 673 // couldn't be no-capture. 674 if (!(*CI)->getType()->isPointerTy() || 675 (!Call->doesNotCapture(ArgNo) && ArgNo < Call->arg_size() && 676 !Call->isByValArgument(ArgNo))) 677 continue; 678 679 AliasResult AR = alias( 680 MemoryLocation::getBeforeOrAfter(*CI), 681 MemoryLocation::getBeforeOrAfter(Object), AAQI); 682 // If this is a no-capture pointer argument, see if we can tell that it 683 // is impossible to alias the pointer we're checking. If not, we have to 684 // assume that the call could touch the pointer, even though it doesn't 685 // escape. 686 if (AR == AliasResult::NoAlias) 687 continue; 688 if (Call->doesNotAccessMemory(ArgNo)) 689 continue; 690 if (Call->onlyReadsMemory(ArgNo)) { 691 R = ModRefInfo::Ref; 692 continue; 693 } 694 return ModRefInfo::ModRef; 695 } 696 return R; 697 } 698 699 /// canBasicBlockModify - Return true if it is possible for execution of the 700 /// specified basic block to modify the location Loc. 701 /// 702 bool AAResults::canBasicBlockModify(const BasicBlock &BB, 703 const MemoryLocation &Loc) { 704 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); 705 } 706 707 /// canInstructionRangeModRef - Return true if it is possible for the 708 /// execution of the specified instructions to mod\ref (according to the 709 /// mode) the location Loc. The instructions to consider are all 710 /// of the instructions in the range of [I1,I2] INCLUSIVE. 711 /// I1 and I2 must be in the same basic block. 712 bool AAResults::canInstructionRangeModRef(const Instruction &I1, 713 const Instruction &I2, 714 const MemoryLocation &Loc, 715 const ModRefInfo Mode) { 716 assert(I1.getParent() == I2.getParent() && 717 "Instructions not in same basic block!"); 718 BasicBlock::const_iterator I = I1.getIterator(); 719 BasicBlock::const_iterator E = I2.getIterator(); 720 ++E; // Convert from inclusive to exclusive range. 721 722 for (; I != E; ++I) // Check every instruction in range 723 if (isModOrRefSet(getModRefInfo(&*I, Loc) & Mode)) 724 return true; 725 return false; 726 } 727 728 // Provide a definition for the root virtual destructor. 729 AAResults::Concept::~Concept() = default; 730 731 // Provide a definition for the static object used to identify passes. 732 AnalysisKey AAManager::Key; 733 734 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) { 735 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 736 } 737 738 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB) 739 : ImmutablePass(ID), CB(std::move(CB)) { 740 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 741 } 742 743 char ExternalAAWrapperPass::ID = 0; 744 745 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", 746 false, true) 747 748 ImmutablePass * 749 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { 750 return new ExternalAAWrapperPass(std::move(Callback)); 751 } 752 753 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { 754 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 755 } 756 757 char AAResultsWrapperPass::ID = 0; 758 759 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", 760 "Function Alias Analysis Results", false, true) 761 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 762 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) 763 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 764 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 765 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) 766 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) 767 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", 768 "Function Alias Analysis Results", false, true) 769 770 FunctionPass *llvm::createAAResultsWrapperPass() { 771 return new AAResultsWrapperPass(); 772 } 773 774 /// Run the wrapper pass to rebuild an aggregation over known AA passes. 775 /// 776 /// This is the legacy pass manager's interface to the new-style AA results 777 /// aggregation object. Because this is somewhat shoe-horned into the legacy 778 /// pass manager, we hard code all the specific alias analyses available into 779 /// it. While the particular set enabled is configured via commandline flags, 780 /// adding a new alias analysis to LLVM will require adding support for it to 781 /// this list. 782 bool AAResultsWrapperPass::runOnFunction(Function &F) { 783 // NB! This *must* be reset before adding new AA results to the new 784 // AAResults object because in the legacy pass manager, each instance 785 // of these will refer to the *same* immutable analyses, registering and 786 // unregistering themselves with them. We need to carefully tear down the 787 // previous object first, in this case replacing it with an empty one, before 788 // registering new results. 789 AAR.reset( 790 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F))); 791 792 // BasicAA is always available for function analyses. Also, we add it first 793 // so that it can trump TBAA results when it proves MustAlias. 794 // FIXME: TBAA should have an explicit mode to support this and then we 795 // should reconsider the ordering here. 796 if (!DisableBasicAA) 797 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); 798 799 // Populate the results with the currently available AAs. 800 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 801 AAR->addAAResult(WrapperPass->getResult()); 802 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 803 AAR->addAAResult(WrapperPass->getResult()); 804 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 805 AAR->addAAResult(WrapperPass->getResult()); 806 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) 807 AAR->addAAResult(WrapperPass->getResult()); 808 809 // If available, run an external AA providing callback over the results as 810 // well. 811 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) 812 if (WrapperPass->CB) 813 WrapperPass->CB(*this, F, *AAR); 814 815 // Analyses don't mutate the IR, so return false. 816 return false; 817 } 818 819 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 820 AU.setPreservesAll(); 821 AU.addRequiredTransitive<BasicAAWrapperPass>(); 822 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 823 824 // We also need to mark all the alias analysis passes we will potentially 825 // probe in runOnFunction as used here to ensure the legacy pass manager 826 // preserves them. This hard coding of lists of alias analyses is specific to 827 // the legacy pass manager. 828 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 829 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 830 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 831 AU.addUsedIfAvailable<SCEVAAWrapperPass>(); 832 AU.addUsedIfAvailable<ExternalAAWrapperPass>(); 833 } 834 835 AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) { 836 Result R(AM.getResult<TargetLibraryAnalysis>(F)); 837 for (auto &Getter : ResultGetters) 838 (*Getter)(F, AM, R); 839 return R; 840 } 841 842 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, 843 BasicAAResult &BAR) { 844 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 845 846 // Add in our explicitly constructed BasicAA results. 847 if (!DisableBasicAA) 848 AAR.addAAResult(BAR); 849 850 // Populate the results with the other currently available AAs. 851 if (auto *WrapperPass = 852 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 853 AAR.addAAResult(WrapperPass->getResult()); 854 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 855 AAR.addAAResult(WrapperPass->getResult()); 856 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 857 AAR.addAAResult(WrapperPass->getResult()); 858 if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>()) 859 if (WrapperPass->CB) 860 WrapperPass->CB(P, F, AAR); 861 862 return AAR; 863 } 864 865 bool llvm::isNoAliasCall(const Value *V) { 866 if (const auto *Call = dyn_cast<CallBase>(V)) 867 return Call->hasRetAttr(Attribute::NoAlias); 868 return false; 869 } 870 871 static bool isNoAliasOrByValArgument(const Value *V) { 872 if (const Argument *A = dyn_cast<Argument>(V)) 873 return A->hasNoAliasAttr() || A->hasByValAttr(); 874 return false; 875 } 876 877 bool llvm::isIdentifiedObject(const Value *V) { 878 if (isa<AllocaInst>(V)) 879 return true; 880 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 881 return true; 882 if (isNoAliasCall(V)) 883 return true; 884 if (isNoAliasOrByValArgument(V)) 885 return true; 886 return false; 887 } 888 889 bool llvm::isIdentifiedFunctionLocal(const Value *V) { 890 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V); 891 } 892 893 bool llvm::isEscapeSource(const Value *V) { 894 if (auto *CB = dyn_cast<CallBase>(V)) 895 return !isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CB, 896 true); 897 898 // The load case works because isNonEscapingLocalObject considers all 899 // stores to be escapes (it passes true for the StoreCaptures argument 900 // to PointerMayBeCaptured). 901 if (isa<LoadInst>(V)) 902 return true; 903 904 // The inttoptr case works because isNonEscapingLocalObject considers all 905 // means of converting or equating a pointer to an int (ptrtoint, ptr store 906 // which could be followed by an integer load, ptr<->int compare) as 907 // escaping, and objects located at well-known addresses via platform-specific 908 // means cannot be considered non-escaping local objects. 909 if (isa<IntToPtrInst>(V)) 910 return true; 911 912 return false; 913 } 914 915 bool llvm::isNotVisibleOnUnwind(const Value *Object, 916 bool &RequiresNoCaptureBeforeUnwind) { 917 RequiresNoCaptureBeforeUnwind = false; 918 919 // Alloca goes out of scope on unwind. 920 if (isa<AllocaInst>(Object)) 921 return true; 922 923 // Byval goes out of scope on unwind. 924 if (auto *A = dyn_cast<Argument>(Object)) 925 return A->hasByValAttr(); 926 927 // A noalias return is not accessible from any other code. If the pointer 928 // does not escape prior to the unwind, then the caller cannot access the 929 // memory either. 930 if (isNoAliasCall(Object)) { 931 RequiresNoCaptureBeforeUnwind = true; 932 return true; 933 } 934 935 return false; 936 } 937 938 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) { 939 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if 940 // more alias analyses are added to llvm::createLegacyPMAAResults, they need 941 // to be added here also. 942 AU.addRequired<TargetLibraryInfoWrapperPass>(); 943 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 944 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 945 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 946 AU.addUsedIfAvailable<ExternalAAWrapperPass>(); 947 } 948