1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic AliasAnalysis interface which is used as the 10 // common interface used by all clients and implementations of alias analysis. 11 // 12 // This file also implements the default version of the AliasAnalysis interface 13 // that is to be used when no other implementation is specified. This does some 14 // simple tests that detect obvious cases: two different global pointers cannot 15 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 16 // etc. 17 // 18 // This alias analysis implementation really isn't very good for anything, but 19 // it is very fast, and makes a nice clean default implementation. Because it 20 // handles lots of little corner cases, other, more complex, alias analysis 21 // implementations may choose to rely on this pass to resolve these simple and 22 // easy cases. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/CaptureTracking.h" 30 #include "llvm/Analysis/GlobalsModRef.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 33 #include "llvm/Analysis/ScopedNoAliasAA.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/Argument.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/AtomicOrdering.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include <cassert> 50 #include <functional> 51 #include <iterator> 52 53 #define DEBUG_TYPE "aa" 54 55 using namespace llvm; 56 57 STATISTIC(NumNoAlias, "Number of NoAlias results"); 58 STATISTIC(NumMayAlias, "Number of MayAlias results"); 59 STATISTIC(NumMustAlias, "Number of MustAlias results"); 60 61 namespace llvm { 62 /// Allow disabling BasicAA from the AA results. This is particularly useful 63 /// when testing to isolate a single AA implementation. 64 cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false)); 65 } // namespace llvm 66 67 #ifndef NDEBUG 68 /// Print a trace of alias analysis queries and their results. 69 static cl::opt<bool> EnableAATrace("aa-trace", cl::Hidden, cl::init(false)); 70 #else 71 static const bool EnableAATrace = false; 72 #endif 73 74 AAResults::AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {} 75 76 AAResults::AAResults(AAResults &&Arg) 77 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {} 78 79 AAResults::~AAResults() {} 80 81 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, 82 FunctionAnalysisManager::Invalidator &Inv) { 83 // AAResults preserves the AAManager by default, due to the stateless nature 84 // of AliasAnalysis. There is no need to check whether it has been preserved 85 // explicitly. Check if any module dependency was invalidated and caused the 86 // AAManager to be invalidated. Invalidate ourselves in that case. 87 auto PAC = PA.getChecker<AAManager>(); 88 if (!PAC.preservedWhenStateless()) 89 return true; 90 91 // Check if any of the function dependencies were invalidated, and invalidate 92 // ourselves in that case. 93 for (AnalysisKey *ID : AADeps) 94 if (Inv.invalidate(ID, F, PA)) 95 return true; 96 97 // Everything we depend on is still fine, so are we. Nothing to invalidate. 98 return false; 99 } 100 101 //===----------------------------------------------------------------------===// 102 // Default chaining methods 103 //===----------------------------------------------------------------------===// 104 105 AliasResult AAResults::alias(const MemoryLocation &LocA, 106 const MemoryLocation &LocB) { 107 SimpleAAQueryInfo AAQIP(*this); 108 return alias(LocA, LocB, AAQIP, nullptr); 109 } 110 111 AliasResult AAResults::alias(const MemoryLocation &LocA, 112 const MemoryLocation &LocB, AAQueryInfo &AAQI, 113 const Instruction *CtxI) { 114 AliasResult Result = AliasResult::MayAlias; 115 116 if (EnableAATrace) { 117 for (unsigned I = 0; I < AAQI.Depth; ++I) 118 dbgs() << " "; 119 dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", " 120 << *LocB.Ptr << " @ " << LocB.Size << "\n"; 121 } 122 123 AAQI.Depth++; 124 for (const auto &AA : AAs) { 125 Result = AA->alias(LocA, LocB, AAQI, CtxI); 126 if (Result != AliasResult::MayAlias) 127 break; 128 } 129 AAQI.Depth--; 130 131 if (EnableAATrace) { 132 for (unsigned I = 0; I < AAQI.Depth; ++I) 133 dbgs() << " "; 134 dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", " 135 << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n"; 136 } 137 138 if (AAQI.Depth == 0) { 139 if (Result == AliasResult::NoAlias) 140 ++NumNoAlias; 141 else if (Result == AliasResult::MustAlias) 142 ++NumMustAlias; 143 else 144 ++NumMayAlias; 145 } 146 return Result; 147 } 148 149 ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc, 150 bool IgnoreLocals) { 151 SimpleAAQueryInfo AAQIP(*this); 152 return getModRefInfoMask(Loc, AAQIP, IgnoreLocals); 153 } 154 155 ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc, 156 AAQueryInfo &AAQI, bool IgnoreLocals) { 157 ModRefInfo Result = ModRefInfo::ModRef; 158 159 for (const auto &AA : AAs) { 160 Result &= AA->getModRefInfoMask(Loc, AAQI, IgnoreLocals); 161 162 // Early-exit the moment we reach the bottom of the lattice. 163 if (isNoModRef(Result)) 164 return ModRefInfo::NoModRef; 165 } 166 167 return Result; 168 } 169 170 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { 171 ModRefInfo Result = ModRefInfo::ModRef; 172 173 for (const auto &AA : AAs) { 174 Result &= AA->getArgModRefInfo(Call, ArgIdx); 175 176 // Early-exit the moment we reach the bottom of the lattice. 177 if (isNoModRef(Result)) 178 return ModRefInfo::NoModRef; 179 } 180 181 return Result; 182 } 183 184 ModRefInfo AAResults::getModRefInfo(const Instruction *I, 185 const CallBase *Call2) { 186 SimpleAAQueryInfo AAQIP(*this); 187 return getModRefInfo(I, Call2, AAQIP); 188 } 189 190 ModRefInfo AAResults::getModRefInfo(const Instruction *I, const CallBase *Call2, 191 AAQueryInfo &AAQI) { 192 // We may have two calls. 193 if (const auto *Call1 = dyn_cast<CallBase>(I)) { 194 // Check if the two calls modify the same memory. 195 return getModRefInfo(Call1, Call2, AAQI); 196 } 197 // If this is a fence, just return ModRef. 198 if (I->isFenceLike()) 199 return ModRefInfo::ModRef; 200 // Otherwise, check if the call modifies or references the 201 // location this memory access defines. The best we can say 202 // is that if the call references what this instruction 203 // defines, it must be clobbered by this location. 204 const MemoryLocation DefLoc = MemoryLocation::get(I); 205 ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI); 206 if (isModOrRefSet(MR)) 207 return ModRefInfo::ModRef; 208 return ModRefInfo::NoModRef; 209 } 210 211 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 212 const MemoryLocation &Loc, 213 AAQueryInfo &AAQI) { 214 ModRefInfo Result = ModRefInfo::ModRef; 215 216 for (const auto &AA : AAs) { 217 Result &= AA->getModRefInfo(Call, Loc, AAQI); 218 219 // Early-exit the moment we reach the bottom of the lattice. 220 if (isNoModRef(Result)) 221 return ModRefInfo::NoModRef; 222 } 223 224 // Try to refine the mod-ref info further using other API entry points to the 225 // aggregate set of AA results. 226 227 // We can completely ignore inaccessible memory here, because MemoryLocations 228 // can only reference accessible memory. 229 auto ME = getMemoryEffects(Call, AAQI) 230 .getWithoutLoc(IRMemLocation::InaccessibleMem); 231 if (ME.doesNotAccessMemory()) 232 return ModRefInfo::NoModRef; 233 234 ModRefInfo ArgMR = ME.getModRef(IRMemLocation::ArgMem); 235 ModRefInfo OtherMR = ME.getWithoutLoc(IRMemLocation::ArgMem).getModRef(); 236 if ((ArgMR | OtherMR) != OtherMR) { 237 // Refine the modref info for argument memory. We only bother to do this 238 // if ArgMR is not a subset of OtherMR, otherwise this won't have an impact 239 // on the final result. 240 ModRefInfo AllArgsMask = ModRefInfo::NoModRef; 241 for (const auto &I : llvm::enumerate(Call->args())) { 242 const Value *Arg = I.value(); 243 if (!Arg->getType()->isPointerTy()) 244 continue; 245 unsigned ArgIdx = I.index(); 246 MemoryLocation ArgLoc = MemoryLocation::getForArgument(Call, ArgIdx, TLI); 247 AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI, Call); 248 if (ArgAlias != AliasResult::NoAlias) 249 AllArgsMask |= getArgModRefInfo(Call, ArgIdx); 250 } 251 ArgMR &= AllArgsMask; 252 } 253 254 Result &= ArgMR | OtherMR; 255 256 // Apply the ModRef mask. This ensures that if Loc is a constant memory 257 // location, we take into account the fact that the call definitely could not 258 // modify the memory location. 259 if (!isNoModRef(Result)) 260 Result &= getModRefInfoMask(Loc); 261 262 return Result; 263 } 264 265 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 266 const CallBase *Call2, AAQueryInfo &AAQI) { 267 ModRefInfo Result = ModRefInfo::ModRef; 268 269 for (const auto &AA : AAs) { 270 Result &= AA->getModRefInfo(Call1, Call2, AAQI); 271 272 // Early-exit the moment we reach the bottom of the lattice. 273 if (isNoModRef(Result)) 274 return ModRefInfo::NoModRef; 275 } 276 277 // Try to refine the mod-ref info further using other API entry points to the 278 // aggregate set of AA results. 279 280 // If Call1 or Call2 are readnone, they don't interact. 281 auto Call1B = getMemoryEffects(Call1, AAQI); 282 if (Call1B.doesNotAccessMemory()) 283 return ModRefInfo::NoModRef; 284 285 auto Call2B = getMemoryEffects(Call2, AAQI); 286 if (Call2B.doesNotAccessMemory()) 287 return ModRefInfo::NoModRef; 288 289 // If they both only read from memory, there is no dependence. 290 if (Call1B.onlyReadsMemory() && Call2B.onlyReadsMemory()) 291 return ModRefInfo::NoModRef; 292 293 // If Call1 only reads memory, the only dependence on Call2 can be 294 // from Call1 reading memory written by Call2. 295 if (Call1B.onlyReadsMemory()) 296 Result &= ModRefInfo::Ref; 297 else if (Call1B.onlyWritesMemory()) 298 Result &= ModRefInfo::Mod; 299 300 // If Call2 only access memory through arguments, accumulate the mod/ref 301 // information from Call1's references to the memory referenced by 302 // Call2's arguments. 303 if (Call2B.onlyAccessesArgPointees()) { 304 if (!Call2B.doesAccessArgPointees()) 305 return ModRefInfo::NoModRef; 306 ModRefInfo R = ModRefInfo::NoModRef; 307 for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) { 308 const Value *Arg = *I; 309 if (!Arg->getType()->isPointerTy()) 310 continue; 311 unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I); 312 auto Call2ArgLoc = 313 MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI); 314 315 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the 316 // dependence of Call1 on that location is the inverse: 317 // - If Call2 modifies location, dependence exists if Call1 reads or 318 // writes. 319 // - If Call2 only reads location, dependence exists if Call1 writes. 320 ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx); 321 ModRefInfo ArgMask = ModRefInfo::NoModRef; 322 if (isModSet(ArgModRefC2)) 323 ArgMask = ModRefInfo::ModRef; 324 else if (isRefSet(ArgModRefC2)) 325 ArgMask = ModRefInfo::Mod; 326 327 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use 328 // above ArgMask to update dependence info. 329 ArgMask &= getModRefInfo(Call1, Call2ArgLoc, AAQI); 330 331 R = (R | ArgMask) & Result; 332 if (R == Result) 333 break; 334 } 335 336 return R; 337 } 338 339 // If Call1 only accesses memory through arguments, check if Call2 references 340 // any of the memory referenced by Call1's arguments. If not, return NoModRef. 341 if (Call1B.onlyAccessesArgPointees()) { 342 if (!Call1B.doesAccessArgPointees()) 343 return ModRefInfo::NoModRef; 344 ModRefInfo R = ModRefInfo::NoModRef; 345 for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) { 346 const Value *Arg = *I; 347 if (!Arg->getType()->isPointerTy()) 348 continue; 349 unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I); 350 auto Call1ArgLoc = 351 MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI); 352 353 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1 354 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by 355 // Call2. If Call1 might Ref, then we care only about a Mod by Call2. 356 ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx); 357 ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI); 358 if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) || 359 (isRefSet(ArgModRefC1) && isModSet(ModRefC2))) 360 R = (R | ArgModRefC1) & Result; 361 362 if (R == Result) 363 break; 364 } 365 366 return R; 367 } 368 369 return Result; 370 } 371 372 MemoryEffects AAResults::getMemoryEffects(const CallBase *Call, 373 AAQueryInfo &AAQI) { 374 MemoryEffects Result = MemoryEffects::unknown(); 375 376 for (const auto &AA : AAs) { 377 Result &= AA->getMemoryEffects(Call, AAQI); 378 379 // Early-exit the moment we reach the bottom of the lattice. 380 if (Result.doesNotAccessMemory()) 381 return Result; 382 } 383 384 return Result; 385 } 386 387 MemoryEffects AAResults::getMemoryEffects(const CallBase *Call) { 388 SimpleAAQueryInfo AAQI(*this); 389 return getMemoryEffects(Call, AAQI); 390 } 391 392 MemoryEffects AAResults::getMemoryEffects(const Function *F) { 393 MemoryEffects Result = MemoryEffects::unknown(); 394 395 for (const auto &AA : AAs) { 396 Result &= AA->getMemoryEffects(F); 397 398 // Early-exit the moment we reach the bottom of the lattice. 399 if (Result.doesNotAccessMemory()) 400 return Result; 401 } 402 403 return Result; 404 } 405 406 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { 407 switch (AR) { 408 case AliasResult::NoAlias: 409 OS << "NoAlias"; 410 break; 411 case AliasResult::MustAlias: 412 OS << "MustAlias"; 413 break; 414 case AliasResult::MayAlias: 415 OS << "MayAlias"; 416 break; 417 case AliasResult::PartialAlias: 418 OS << "PartialAlias"; 419 if (AR.hasOffset()) 420 OS << " (off " << AR.getOffset() << ")"; 421 break; 422 } 423 return OS; 424 } 425 426 //===----------------------------------------------------------------------===// 427 // Helper method implementation 428 //===----------------------------------------------------------------------===// 429 430 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 431 const MemoryLocation &Loc, 432 AAQueryInfo &AAQI) { 433 // Be conservative in the face of atomic. 434 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) 435 return ModRefInfo::ModRef; 436 437 // If the load address doesn't alias the given address, it doesn't read 438 // or write the specified memory. 439 if (Loc.Ptr) { 440 AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI, L); 441 if (AR == AliasResult::NoAlias) 442 return ModRefInfo::NoModRef; 443 } 444 // Otherwise, a load just reads. 445 return ModRefInfo::Ref; 446 } 447 448 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 449 const MemoryLocation &Loc, 450 AAQueryInfo &AAQI) { 451 // Be conservative in the face of atomic. 452 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) 453 return ModRefInfo::ModRef; 454 455 if (Loc.Ptr) { 456 AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI, S); 457 // If the store address cannot alias the pointer in question, then the 458 // specified memory cannot be modified by the store. 459 if (AR == AliasResult::NoAlias) 460 return ModRefInfo::NoModRef; 461 462 // Examine the ModRef mask. If Mod isn't present, then return NoModRef. 463 // This ensures that if Loc is a constant memory location, we take into 464 // account the fact that the store definitely could not modify the memory 465 // location. 466 if (!isModSet(getModRefInfoMask(Loc))) 467 return ModRefInfo::NoModRef; 468 } 469 470 // Otherwise, a store just writes. 471 return ModRefInfo::Mod; 472 } 473 474 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, 475 const MemoryLocation &Loc, 476 AAQueryInfo &AAQI) { 477 // All we know about a fence instruction is what we get from the ModRef 478 // mask: if Loc is a constant memory location, the fence definitely could 479 // not modify it. 480 if (Loc.Ptr) 481 return getModRefInfoMask(Loc); 482 return ModRefInfo::ModRef; 483 } 484 485 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 486 const MemoryLocation &Loc, 487 AAQueryInfo &AAQI) { 488 if (Loc.Ptr) { 489 AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI, V); 490 // If the va_arg address cannot alias the pointer in question, then the 491 // specified memory cannot be accessed by the va_arg. 492 if (AR == AliasResult::NoAlias) 493 return ModRefInfo::NoModRef; 494 495 // If the pointer is a pointer to invariant memory, then it could not have 496 // been modified by this va_arg. 497 return getModRefInfoMask(Loc, AAQI); 498 } 499 500 // Otherwise, a va_arg reads and writes. 501 return ModRefInfo::ModRef; 502 } 503 504 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 505 const MemoryLocation &Loc, 506 AAQueryInfo &AAQI) { 507 if (Loc.Ptr) { 508 // If the pointer is a pointer to invariant memory, 509 // then it could not have been modified by this catchpad. 510 return getModRefInfoMask(Loc, AAQI); 511 } 512 513 // Otherwise, a catchpad reads and writes. 514 return ModRefInfo::ModRef; 515 } 516 517 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 518 const MemoryLocation &Loc, 519 AAQueryInfo &AAQI) { 520 if (Loc.Ptr) { 521 // If the pointer is a pointer to invariant memory, 522 // then it could not have been modified by this catchpad. 523 return getModRefInfoMask(Loc, AAQI); 524 } 525 526 // Otherwise, a catchret reads and writes. 527 return ModRefInfo::ModRef; 528 } 529 530 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 531 const MemoryLocation &Loc, 532 AAQueryInfo &AAQI) { 533 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 534 if (isStrongerThanMonotonic(CX->getSuccessOrdering())) 535 return ModRefInfo::ModRef; 536 537 if (Loc.Ptr) { 538 AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI, CX); 539 // If the cmpxchg address does not alias the location, it does not access 540 // it. 541 if (AR == AliasResult::NoAlias) 542 return ModRefInfo::NoModRef; 543 } 544 545 return ModRefInfo::ModRef; 546 } 547 548 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 549 const MemoryLocation &Loc, 550 AAQueryInfo &AAQI) { 551 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 552 if (isStrongerThanMonotonic(RMW->getOrdering())) 553 return ModRefInfo::ModRef; 554 555 if (Loc.Ptr) { 556 AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI, RMW); 557 // If the atomicrmw address does not alias the location, it does not access 558 // it. 559 if (AR == AliasResult::NoAlias) 560 return ModRefInfo::NoModRef; 561 } 562 563 return ModRefInfo::ModRef; 564 } 565 566 ModRefInfo AAResults::getModRefInfo(const Instruction *I, 567 const std::optional<MemoryLocation> &OptLoc, 568 AAQueryInfo &AAQIP) { 569 if (OptLoc == std::nullopt) { 570 if (const auto *Call = dyn_cast<CallBase>(I)) 571 return getMemoryEffects(Call, AAQIP).getModRef(); 572 } 573 574 const MemoryLocation &Loc = OptLoc.value_or(MemoryLocation()); 575 576 switch (I->getOpcode()) { 577 case Instruction::VAArg: 578 return getModRefInfo((const VAArgInst *)I, Loc, AAQIP); 579 case Instruction::Load: 580 return getModRefInfo((const LoadInst *)I, Loc, AAQIP); 581 case Instruction::Store: 582 return getModRefInfo((const StoreInst *)I, Loc, AAQIP); 583 case Instruction::Fence: 584 return getModRefInfo((const FenceInst *)I, Loc, AAQIP); 585 case Instruction::AtomicCmpXchg: 586 return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP); 587 case Instruction::AtomicRMW: 588 return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP); 589 case Instruction::Call: 590 case Instruction::CallBr: 591 case Instruction::Invoke: 592 return getModRefInfo((const CallBase *)I, Loc, AAQIP); 593 case Instruction::CatchPad: 594 return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP); 595 case Instruction::CatchRet: 596 return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP); 597 default: 598 assert(!I->mayReadOrWriteMemory() && 599 "Unhandled memory access instruction!"); 600 return ModRefInfo::NoModRef; 601 } 602 } 603 604 /// Return information about whether a particular call site modifies 605 /// or reads the specified memory location \p MemLoc before instruction \p I 606 /// in a BasicBlock. 607 /// FIXME: this is really just shoring-up a deficiency in alias analysis. 608 /// BasicAA isn't willing to spend linear time determining whether an alloca 609 /// was captured before or after this particular call, while we are. However, 610 /// with a smarter AA in place, this test is just wasting compile time. 611 ModRefInfo AAResults::callCapturesBefore(const Instruction *I, 612 const MemoryLocation &MemLoc, 613 DominatorTree *DT, 614 AAQueryInfo &AAQI) { 615 if (!DT) 616 return ModRefInfo::ModRef; 617 618 const Value *Object = getUnderlyingObject(MemLoc.Ptr); 619 if (!isIdentifiedFunctionLocal(Object)) 620 return ModRefInfo::ModRef; 621 622 const auto *Call = dyn_cast<CallBase>(I); 623 if (!Call || Call == Object) 624 return ModRefInfo::ModRef; 625 626 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 627 /* StoreCaptures */ true, I, DT, 628 /* include Object */ true)) 629 return ModRefInfo::ModRef; 630 631 unsigned ArgNo = 0; 632 ModRefInfo R = ModRefInfo::NoModRef; 633 // Set flag only if no May found and all operands processed. 634 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 635 CI != CE; ++CI, ++ArgNo) { 636 // Only look at the no-capture or byval pointer arguments. If this 637 // pointer were passed to arguments that were neither of these, then it 638 // couldn't be no-capture. 639 if (!(*CI)->getType()->isPointerTy() || !Call->doesNotCapture(ArgNo)) 640 continue; 641 642 AliasResult AR = 643 alias(MemoryLocation::getBeforeOrAfter(*CI), 644 MemoryLocation::getBeforeOrAfter(Object), AAQI, Call); 645 // If this is a no-capture pointer argument, see if we can tell that it 646 // is impossible to alias the pointer we're checking. If not, we have to 647 // assume that the call could touch the pointer, even though it doesn't 648 // escape. 649 if (AR == AliasResult::NoAlias) 650 continue; 651 if (Call->doesNotAccessMemory(ArgNo)) 652 continue; 653 if (Call->onlyReadsMemory(ArgNo)) { 654 R = ModRefInfo::Ref; 655 continue; 656 } 657 return ModRefInfo::ModRef; 658 } 659 return R; 660 } 661 662 /// canBasicBlockModify - Return true if it is possible for execution of the 663 /// specified basic block to modify the location Loc. 664 /// 665 bool AAResults::canBasicBlockModify(const BasicBlock &BB, 666 const MemoryLocation &Loc) { 667 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); 668 } 669 670 /// canInstructionRangeModRef - Return true if it is possible for the 671 /// execution of the specified instructions to mod\ref (according to the 672 /// mode) the location Loc. The instructions to consider are all 673 /// of the instructions in the range of [I1,I2] INCLUSIVE. 674 /// I1 and I2 must be in the same basic block. 675 bool AAResults::canInstructionRangeModRef(const Instruction &I1, 676 const Instruction &I2, 677 const MemoryLocation &Loc, 678 const ModRefInfo Mode) { 679 assert(I1.getParent() == I2.getParent() && 680 "Instructions not in same basic block!"); 681 BasicBlock::const_iterator I = I1.getIterator(); 682 BasicBlock::const_iterator E = I2.getIterator(); 683 ++E; // Convert from inclusive to exclusive range. 684 685 for (; I != E; ++I) // Check every instruction in range 686 if (isModOrRefSet(getModRefInfo(&*I, Loc) & Mode)) 687 return true; 688 return false; 689 } 690 691 // Provide a definition for the root virtual destructor. 692 AAResults::Concept::~Concept() = default; 693 694 // Provide a definition for the static object used to identify passes. 695 AnalysisKey AAManager::Key; 696 697 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) { 698 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 699 } 700 701 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB) 702 : ImmutablePass(ID), CB(std::move(CB)) { 703 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 704 } 705 706 char ExternalAAWrapperPass::ID = 0; 707 708 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", 709 false, true) 710 711 ImmutablePass * 712 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { 713 return new ExternalAAWrapperPass(std::move(Callback)); 714 } 715 716 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { 717 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 718 } 719 720 char AAResultsWrapperPass::ID = 0; 721 722 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", 723 "Function Alias Analysis Results", false, true) 724 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 725 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) 726 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 727 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 728 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) 729 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) 730 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", 731 "Function Alias Analysis Results", false, true) 732 733 /// Run the wrapper pass to rebuild an aggregation over known AA passes. 734 /// 735 /// This is the legacy pass manager's interface to the new-style AA results 736 /// aggregation object. Because this is somewhat shoe-horned into the legacy 737 /// pass manager, we hard code all the specific alias analyses available into 738 /// it. While the particular set enabled is configured via commandline flags, 739 /// adding a new alias analysis to LLVM will require adding support for it to 740 /// this list. 741 bool AAResultsWrapperPass::runOnFunction(Function &F) { 742 // NB! This *must* be reset before adding new AA results to the new 743 // AAResults object because in the legacy pass manager, each instance 744 // of these will refer to the *same* immutable analyses, registering and 745 // unregistering themselves with them. We need to carefully tear down the 746 // previous object first, in this case replacing it with an empty one, before 747 // registering new results. 748 AAR.reset( 749 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F))); 750 751 // BasicAA is always available for function analyses. Also, we add it first 752 // so that it can trump TBAA results when it proves MustAlias. 753 // FIXME: TBAA should have an explicit mode to support this and then we 754 // should reconsider the ordering here. 755 if (!DisableBasicAA) 756 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); 757 758 // Populate the results with the currently available AAs. 759 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 760 AAR->addAAResult(WrapperPass->getResult()); 761 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 762 AAR->addAAResult(WrapperPass->getResult()); 763 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 764 AAR->addAAResult(WrapperPass->getResult()); 765 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) 766 AAR->addAAResult(WrapperPass->getResult()); 767 768 // If available, run an external AA providing callback over the results as 769 // well. 770 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) 771 if (WrapperPass->CB) 772 WrapperPass->CB(*this, F, *AAR); 773 774 // Analyses don't mutate the IR, so return false. 775 return false; 776 } 777 778 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 779 AU.setPreservesAll(); 780 AU.addRequiredTransitive<BasicAAWrapperPass>(); 781 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 782 783 // We also need to mark all the alias analysis passes we will potentially 784 // probe in runOnFunction as used here to ensure the legacy pass manager 785 // preserves them. This hard coding of lists of alias analyses is specific to 786 // the legacy pass manager. 787 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 788 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 789 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 790 AU.addUsedIfAvailable<SCEVAAWrapperPass>(); 791 AU.addUsedIfAvailable<ExternalAAWrapperPass>(); 792 } 793 794 AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) { 795 Result R(AM.getResult<TargetLibraryAnalysis>(F)); 796 for (auto &Getter : ResultGetters) 797 (*Getter)(F, AM, R); 798 return R; 799 } 800 801 bool llvm::isNoAliasCall(const Value *V) { 802 if (const auto *Call = dyn_cast<CallBase>(V)) 803 return Call->hasRetAttr(Attribute::NoAlias); 804 return false; 805 } 806 807 static bool isNoAliasOrByValArgument(const Value *V) { 808 if (const Argument *A = dyn_cast<Argument>(V)) 809 return A->hasNoAliasAttr() || A->hasByValAttr(); 810 return false; 811 } 812 813 bool llvm::isIdentifiedObject(const Value *V) { 814 if (isa<AllocaInst>(V)) 815 return true; 816 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 817 return true; 818 if (isNoAliasCall(V)) 819 return true; 820 if (isNoAliasOrByValArgument(V)) 821 return true; 822 return false; 823 } 824 825 bool llvm::isIdentifiedFunctionLocal(const Value *V) { 826 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V); 827 } 828 829 bool llvm::isBaseOfObject(const Value *V) { 830 // TODO: We can handle other cases here 831 // 1) For GC languages, arguments to functions are often required to be 832 // base pointers. 833 // 2) Result of allocation routines are often base pointers. Leverage TLI. 834 return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); 835 } 836 837 bool llvm::isEscapeSource(const Value *V) { 838 if (auto *CB = dyn_cast<CallBase>(V)) 839 return !isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CB, 840 true); 841 842 // The load case works because isNonEscapingLocalObject considers all 843 // stores to be escapes (it passes true for the StoreCaptures argument 844 // to PointerMayBeCaptured). 845 if (isa<LoadInst>(V)) 846 return true; 847 848 // The inttoptr case works because isNonEscapingLocalObject considers all 849 // means of converting or equating a pointer to an int (ptrtoint, ptr store 850 // which could be followed by an integer load, ptr<->int compare) as 851 // escaping, and objects located at well-known addresses via platform-specific 852 // means cannot be considered non-escaping local objects. 853 if (isa<IntToPtrInst>(V)) 854 return true; 855 856 // Same for inttoptr constant expressions. 857 if (auto *CE = dyn_cast<ConstantExpr>(V)) 858 if (CE->getOpcode() == Instruction::IntToPtr) 859 return true; 860 861 return false; 862 } 863 864 bool llvm::isNotVisibleOnUnwind(const Value *Object, 865 bool &RequiresNoCaptureBeforeUnwind) { 866 RequiresNoCaptureBeforeUnwind = false; 867 868 // Alloca goes out of scope on unwind. 869 if (isa<AllocaInst>(Object)) 870 return true; 871 872 // Byval goes out of scope on unwind. 873 if (auto *A = dyn_cast<Argument>(Object)) 874 return A->hasByValAttr() || A->hasAttribute(Attribute::DeadOnUnwind); 875 876 // A noalias return is not accessible from any other code. If the pointer 877 // does not escape prior to the unwind, then the caller cannot access the 878 // memory either. 879 if (isNoAliasCall(Object)) { 880 RequiresNoCaptureBeforeUnwind = true; 881 return true; 882 } 883 884 return false; 885 } 886 887 // We don't consider globals as writable: While the physical memory is writable, 888 // we may not have provenance to perform the write. 889 bool llvm::isWritableObject(const Value *Object, 890 bool &ExplicitlyDereferenceableOnly) { 891 ExplicitlyDereferenceableOnly = false; 892 893 // TODO: Alloca might not be writable after its lifetime ends. 894 // See https://github.com/llvm/llvm-project/issues/51838. 895 if (isa<AllocaInst>(Object)) 896 return true; 897 898 if (auto *A = dyn_cast<Argument>(Object)) { 899 // Also require noalias, otherwise writability at function entry cannot be 900 // generalized to writability at other program points, even if the pointer 901 // does not escape. 902 if (A->hasAttribute(Attribute::Writable) && A->hasNoAliasAttr()) { 903 ExplicitlyDereferenceableOnly = true; 904 return true; 905 } 906 907 return A->hasByValAttr(); 908 } 909 910 // TODO: Noalias shouldn't imply writability, this should check for an 911 // allocator function instead. 912 return isNoAliasCall(Object); 913 } 914