xref: /llvm-project/llvm/lib/Analysis/AliasAnalysis.cpp (revision 76bc1eddb2cf8b6cc073649ade21b59bbed438a2)
1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
11 //
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified.  This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
16 // etc.
17 //
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation.  Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
22 // easy cases.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/Analysis/GlobalsModRef.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScopedNoAliasAA.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/Argument.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/AtomicOrdering.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <functional>
53 #include <iterator>
54 
55 #define DEBUG_TYPE "aa"
56 
57 using namespace llvm;
58 
59 STATISTIC(NumNoAlias,   "Number of NoAlias results");
60 STATISTIC(NumMayAlias,  "Number of MayAlias results");
61 STATISTIC(NumMustAlias, "Number of MustAlias results");
62 
63 namespace llvm {
64 /// Allow disabling BasicAA from the AA results. This is particularly useful
65 /// when testing to isolate a single AA implementation.
66 cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false));
67 } // namespace llvm
68 
69 #ifndef NDEBUG
70 /// Print a trace of alias analysis queries and their results.
71 static cl::opt<bool> EnableAATrace("aa-trace", cl::Hidden, cl::init(false));
72 #else
73 static const bool EnableAATrace = false;
74 #endif
75 
76 AAResults::AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
77 
78 AAResults::AAResults(AAResults &&Arg)
79     : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {}
80 
81 AAResults::~AAResults() {}
82 
83 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
84                            FunctionAnalysisManager::Invalidator &Inv) {
85   // AAResults preserves the AAManager by default, due to the stateless nature
86   // of AliasAnalysis. There is no need to check whether it has been preserved
87   // explicitly. Check if any module dependency was invalidated and caused the
88   // AAManager to be invalidated. Invalidate ourselves in that case.
89   auto PAC = PA.getChecker<AAManager>();
90   if (!PAC.preservedWhenStateless())
91     return true;
92 
93   // Check if any of the function dependencies were invalidated, and invalidate
94   // ourselves in that case.
95   for (AnalysisKey *ID : AADeps)
96     if (Inv.invalidate(ID, F, PA))
97       return true;
98 
99   // Everything we depend on is still fine, so are we. Nothing to invalidate.
100   return false;
101 }
102 
103 //===----------------------------------------------------------------------===//
104 // Default chaining methods
105 //===----------------------------------------------------------------------===//
106 
107 AliasResult AAResults::alias(const MemoryLocation &LocA,
108                              const MemoryLocation &LocB) {
109   SimpleAAQueryInfo AAQIP(*this);
110   return alias(LocA, LocB, AAQIP, nullptr);
111 }
112 
113 AliasResult AAResults::alias(const MemoryLocation &LocA,
114                              const MemoryLocation &LocB, AAQueryInfo &AAQI,
115                              const Instruction *CtxI) {
116   AliasResult Result = AliasResult::MayAlias;
117 
118   if (EnableAATrace) {
119     for (unsigned I = 0; I < AAQI.Depth; ++I)
120       dbgs() << "  ";
121     dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", "
122            << *LocB.Ptr << " @ " << LocB.Size << "\n";
123   }
124 
125   AAQI.Depth++;
126   for (const auto &AA : AAs) {
127     Result = AA->alias(LocA, LocB, AAQI, CtxI);
128     if (Result != AliasResult::MayAlias)
129       break;
130   }
131   AAQI.Depth--;
132 
133   if (EnableAATrace) {
134     for (unsigned I = 0; I < AAQI.Depth; ++I)
135       dbgs() << "  ";
136     dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", "
137            << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n";
138   }
139 
140   if (AAQI.Depth == 0) {
141     if (Result == AliasResult::NoAlias)
142       ++NumNoAlias;
143     else if (Result == AliasResult::MustAlias)
144       ++NumMustAlias;
145     else
146       ++NumMayAlias;
147   }
148   return Result;
149 }
150 
151 ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc,
152                                         bool IgnoreLocals) {
153   SimpleAAQueryInfo AAQIP(*this);
154   return getModRefInfoMask(Loc, AAQIP, IgnoreLocals);
155 }
156 
157 ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc,
158                                         AAQueryInfo &AAQI, bool IgnoreLocals) {
159   ModRefInfo Result = ModRefInfo::ModRef;
160 
161   for (const auto &AA : AAs) {
162     Result &= AA->getModRefInfoMask(Loc, AAQI, IgnoreLocals);
163 
164     // Early-exit the moment we reach the bottom of the lattice.
165     if (isNoModRef(Result))
166       return ModRefInfo::NoModRef;
167   }
168 
169   return Result;
170 }
171 
172 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
173   ModRefInfo Result = ModRefInfo::ModRef;
174 
175   for (const auto &AA : AAs) {
176     Result &= AA->getArgModRefInfo(Call, ArgIdx);
177 
178     // Early-exit the moment we reach the bottom of the lattice.
179     if (isNoModRef(Result))
180       return ModRefInfo::NoModRef;
181   }
182 
183   return Result;
184 }
185 
186 ModRefInfo AAResults::getModRefInfo(const Instruction *I,
187                                     const CallBase *Call2) {
188   SimpleAAQueryInfo AAQIP(*this);
189   return getModRefInfo(I, Call2, AAQIP);
190 }
191 
192 ModRefInfo AAResults::getModRefInfo(const Instruction *I, const CallBase *Call2,
193                                     AAQueryInfo &AAQI) {
194   // We may have two calls.
195   if (const auto *Call1 = dyn_cast<CallBase>(I)) {
196     // Check if the two calls modify the same memory.
197     return getModRefInfo(Call1, Call2, AAQI);
198   }
199   // If this is a fence, just return ModRef.
200   if (I->isFenceLike())
201     return ModRefInfo::ModRef;
202   // Otherwise, check if the call modifies or references the
203   // location this memory access defines.  The best we can say
204   // is that if the call references what this instruction
205   // defines, it must be clobbered by this location.
206   const MemoryLocation DefLoc = MemoryLocation::get(I);
207   ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
208   if (isModOrRefSet(MR))
209     return ModRefInfo::ModRef;
210   return ModRefInfo::NoModRef;
211 }
212 
213 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
214                                     const MemoryLocation &Loc,
215                                     AAQueryInfo &AAQI) {
216   ModRefInfo Result = ModRefInfo::ModRef;
217 
218   for (const auto &AA : AAs) {
219     Result &= AA->getModRefInfo(Call, Loc, AAQI);
220 
221     // Early-exit the moment we reach the bottom of the lattice.
222     if (isNoModRef(Result))
223       return ModRefInfo::NoModRef;
224   }
225 
226   // Try to refine the mod-ref info further using other API entry points to the
227   // aggregate set of AA results.
228 
229   // We can completely ignore inaccessible memory here, because MemoryLocations
230   // can only reference accessible memory.
231   auto ME = getMemoryEffects(Call, AAQI)
232                 .getWithoutLoc(IRMemLocation::InaccessibleMem);
233   if (ME.doesNotAccessMemory())
234     return ModRefInfo::NoModRef;
235 
236   ModRefInfo ArgMR = ME.getModRef(IRMemLocation::ArgMem);
237   ModRefInfo OtherMR = ME.getWithoutLoc(IRMemLocation::ArgMem).getModRef();
238   if ((ArgMR | OtherMR) != OtherMR) {
239     // Refine the modref info for argument memory. We only bother to do this
240     // if ArgMR is not a subset of OtherMR, otherwise this won't have an impact
241     // on the final result.
242     ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
243     for (const auto &I : llvm::enumerate(Call->args())) {
244       const Value *Arg = I.value();
245       if (!Arg->getType()->isPointerTy())
246         continue;
247       unsigned ArgIdx = I.index();
248       MemoryLocation ArgLoc = MemoryLocation::getForArgument(Call, ArgIdx, TLI);
249       AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI, Call);
250       if (ArgAlias != AliasResult::NoAlias)
251         AllArgsMask |= getArgModRefInfo(Call, ArgIdx);
252     }
253     ArgMR &= AllArgsMask;
254   }
255 
256   Result &= ArgMR | OtherMR;
257 
258   // Apply the ModRef mask. This ensures that if Loc is a constant memory
259   // location, we take into account the fact that the call definitely could not
260   // modify the memory location.
261   if (!isNoModRef(Result))
262     Result &= getModRefInfoMask(Loc);
263 
264   return Result;
265 }
266 
267 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
268                                     const CallBase *Call2, AAQueryInfo &AAQI) {
269   ModRefInfo Result = ModRefInfo::ModRef;
270 
271   for (const auto &AA : AAs) {
272     Result &= AA->getModRefInfo(Call1, Call2, AAQI);
273 
274     // Early-exit the moment we reach the bottom of the lattice.
275     if (isNoModRef(Result))
276       return ModRefInfo::NoModRef;
277   }
278 
279   // Try to refine the mod-ref info further using other API entry points to the
280   // aggregate set of AA results.
281 
282   // If Call1 or Call2 are readnone, they don't interact.
283   auto Call1B = getMemoryEffects(Call1, AAQI);
284   if (Call1B.doesNotAccessMemory())
285     return ModRefInfo::NoModRef;
286 
287   auto Call2B = getMemoryEffects(Call2, AAQI);
288   if (Call2B.doesNotAccessMemory())
289     return ModRefInfo::NoModRef;
290 
291   // If they both only read from memory, there is no dependence.
292   if (Call1B.onlyReadsMemory() && Call2B.onlyReadsMemory())
293     return ModRefInfo::NoModRef;
294 
295   // If Call1 only reads memory, the only dependence on Call2 can be
296   // from Call1 reading memory written by Call2.
297   if (Call1B.onlyReadsMemory())
298     Result &= ModRefInfo::Ref;
299   else if (Call1B.onlyWritesMemory())
300     Result &= ModRefInfo::Mod;
301 
302   // If Call2 only access memory through arguments, accumulate the mod/ref
303   // information from Call1's references to the memory referenced by
304   // Call2's arguments.
305   if (Call2B.onlyAccessesArgPointees()) {
306     if (!Call2B.doesAccessArgPointees())
307       return ModRefInfo::NoModRef;
308     ModRefInfo R = ModRefInfo::NoModRef;
309     for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
310       const Value *Arg = *I;
311       if (!Arg->getType()->isPointerTy())
312         continue;
313       unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
314       auto Call2ArgLoc =
315           MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
316 
317       // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
318       // dependence of Call1 on that location is the inverse:
319       // - If Call2 modifies location, dependence exists if Call1 reads or
320       //   writes.
321       // - If Call2 only reads location, dependence exists if Call1 writes.
322       ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
323       ModRefInfo ArgMask = ModRefInfo::NoModRef;
324       if (isModSet(ArgModRefC2))
325         ArgMask = ModRefInfo::ModRef;
326       else if (isRefSet(ArgModRefC2))
327         ArgMask = ModRefInfo::Mod;
328 
329       // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
330       // above ArgMask to update dependence info.
331       ArgMask &= getModRefInfo(Call1, Call2ArgLoc, AAQI);
332 
333       R = (R | ArgMask) & Result;
334       if (R == Result)
335         break;
336     }
337 
338     return R;
339   }
340 
341   // If Call1 only accesses memory through arguments, check if Call2 references
342   // any of the memory referenced by Call1's arguments. If not, return NoModRef.
343   if (Call1B.onlyAccessesArgPointees()) {
344     if (!Call1B.doesAccessArgPointees())
345       return ModRefInfo::NoModRef;
346     ModRefInfo R = ModRefInfo::NoModRef;
347     for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
348       const Value *Arg = *I;
349       if (!Arg->getType()->isPointerTy())
350         continue;
351       unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
352       auto Call1ArgLoc =
353           MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
354 
355       // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
356       // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
357       // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
358       ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
359       ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI);
360       if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
361           (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
362         R = (R | ArgModRefC1) & Result;
363 
364       if (R == Result)
365         break;
366     }
367 
368     return R;
369   }
370 
371   return Result;
372 }
373 
374 MemoryEffects AAResults::getMemoryEffects(const CallBase *Call,
375                                           AAQueryInfo &AAQI) {
376   MemoryEffects Result = MemoryEffects::unknown();
377 
378   for (const auto &AA : AAs) {
379     Result &= AA->getMemoryEffects(Call, AAQI);
380 
381     // Early-exit the moment we reach the bottom of the lattice.
382     if (Result.doesNotAccessMemory())
383       return Result;
384   }
385 
386   return Result;
387 }
388 
389 MemoryEffects AAResults::getMemoryEffects(const CallBase *Call) {
390   SimpleAAQueryInfo AAQI(*this);
391   return getMemoryEffects(Call, AAQI);
392 }
393 
394 MemoryEffects AAResults::getMemoryEffects(const Function *F) {
395   MemoryEffects Result = MemoryEffects::unknown();
396 
397   for (const auto &AA : AAs) {
398     Result &= AA->getMemoryEffects(F);
399 
400     // Early-exit the moment we reach the bottom of the lattice.
401     if (Result.doesNotAccessMemory())
402       return Result;
403   }
404 
405   return Result;
406 }
407 
408 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
409   switch (AR) {
410   case AliasResult::NoAlias:
411     OS << "NoAlias";
412     break;
413   case AliasResult::MustAlias:
414     OS << "MustAlias";
415     break;
416   case AliasResult::MayAlias:
417     OS << "MayAlias";
418     break;
419   case AliasResult::PartialAlias:
420     OS << "PartialAlias";
421     if (AR.hasOffset())
422       OS << " (off " << AR.getOffset() << ")";
423     break;
424   }
425   return OS;
426 }
427 
428 //===----------------------------------------------------------------------===//
429 // Helper method implementation
430 //===----------------------------------------------------------------------===//
431 
432 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
433                                     const MemoryLocation &Loc,
434                                     AAQueryInfo &AAQI) {
435   // Be conservative in the face of atomic.
436   if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
437     return ModRefInfo::ModRef;
438 
439   // If the load address doesn't alias the given address, it doesn't read
440   // or write the specified memory.
441   if (Loc.Ptr) {
442     AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI, L);
443     if (AR == AliasResult::NoAlias)
444       return ModRefInfo::NoModRef;
445   }
446   // Otherwise, a load just reads.
447   return ModRefInfo::Ref;
448 }
449 
450 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
451                                     const MemoryLocation &Loc,
452                                     AAQueryInfo &AAQI) {
453   // Be conservative in the face of atomic.
454   if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
455     return ModRefInfo::ModRef;
456 
457   if (Loc.Ptr) {
458     AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI, S);
459     // If the store address cannot alias the pointer in question, then the
460     // specified memory cannot be modified by the store.
461     if (AR == AliasResult::NoAlias)
462       return ModRefInfo::NoModRef;
463 
464     // Examine the ModRef mask. If Mod isn't present, then return NoModRef.
465     // This ensures that if Loc is a constant memory location, we take into
466     // account the fact that the store definitely could not modify the memory
467     // location.
468     if (!isModSet(getModRefInfoMask(Loc)))
469       return ModRefInfo::NoModRef;
470   }
471 
472   // Otherwise, a store just writes.
473   return ModRefInfo::Mod;
474 }
475 
476 ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
477                                     const MemoryLocation &Loc,
478                                     AAQueryInfo &AAQI) {
479   // All we know about a fence instruction is what we get from the ModRef
480   // mask: if Loc is a constant memory location, the fence definitely could
481   // not modify it.
482   if (Loc.Ptr)
483     return getModRefInfoMask(Loc);
484   return ModRefInfo::ModRef;
485 }
486 
487 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
488                                     const MemoryLocation &Loc,
489                                     AAQueryInfo &AAQI) {
490   if (Loc.Ptr) {
491     AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI, V);
492     // If the va_arg address cannot alias the pointer in question, then the
493     // specified memory cannot be accessed by the va_arg.
494     if (AR == AliasResult::NoAlias)
495       return ModRefInfo::NoModRef;
496 
497     // If the pointer is a pointer to invariant memory, then it could not have
498     // been modified by this va_arg.
499     return getModRefInfoMask(Loc, AAQI);
500   }
501 
502   // Otherwise, a va_arg reads and writes.
503   return ModRefInfo::ModRef;
504 }
505 
506 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
507                                     const MemoryLocation &Loc,
508                                     AAQueryInfo &AAQI) {
509   if (Loc.Ptr) {
510     // If the pointer is a pointer to invariant memory,
511     // then it could not have been modified by this catchpad.
512     return getModRefInfoMask(Loc, AAQI);
513   }
514 
515   // Otherwise, a catchpad reads and writes.
516   return ModRefInfo::ModRef;
517 }
518 
519 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
520                                     const MemoryLocation &Loc,
521                                     AAQueryInfo &AAQI) {
522   if (Loc.Ptr) {
523     // If the pointer is a pointer to invariant memory,
524     // then it could not have been modified by this catchpad.
525     return getModRefInfoMask(Loc, AAQI);
526   }
527 
528   // Otherwise, a catchret reads and writes.
529   return ModRefInfo::ModRef;
530 }
531 
532 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
533                                     const MemoryLocation &Loc,
534                                     AAQueryInfo &AAQI) {
535   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
536   if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
537     return ModRefInfo::ModRef;
538 
539   if (Loc.Ptr) {
540     AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI, CX);
541     // If the cmpxchg address does not alias the location, it does not access
542     // it.
543     if (AR == AliasResult::NoAlias)
544       return ModRefInfo::NoModRef;
545   }
546 
547   return ModRefInfo::ModRef;
548 }
549 
550 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
551                                     const MemoryLocation &Loc,
552                                     AAQueryInfo &AAQI) {
553   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
554   if (isStrongerThanMonotonic(RMW->getOrdering()))
555     return ModRefInfo::ModRef;
556 
557   if (Loc.Ptr) {
558     AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI, RMW);
559     // If the atomicrmw address does not alias the location, it does not access
560     // it.
561     if (AR == AliasResult::NoAlias)
562       return ModRefInfo::NoModRef;
563   }
564 
565   return ModRefInfo::ModRef;
566 }
567 
568 ModRefInfo AAResults::getModRefInfo(const Instruction *I,
569                                     const std::optional<MemoryLocation> &OptLoc,
570                                     AAQueryInfo &AAQIP) {
571   if (OptLoc == std::nullopt) {
572     if (const auto *Call = dyn_cast<CallBase>(I))
573       return getMemoryEffects(Call, AAQIP).getModRef();
574   }
575 
576   const MemoryLocation &Loc = OptLoc.value_or(MemoryLocation());
577 
578   switch (I->getOpcode()) {
579   case Instruction::VAArg:
580     return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
581   case Instruction::Load:
582     return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
583   case Instruction::Store:
584     return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
585   case Instruction::Fence:
586     return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
587   case Instruction::AtomicCmpXchg:
588     return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
589   case Instruction::AtomicRMW:
590     return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
591   case Instruction::Call:
592   case Instruction::CallBr:
593   case Instruction::Invoke:
594     return getModRefInfo((const CallBase *)I, Loc, AAQIP);
595   case Instruction::CatchPad:
596     return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
597   case Instruction::CatchRet:
598     return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
599   default:
600     assert(!I->mayReadOrWriteMemory() &&
601            "Unhandled memory access instruction!");
602     return ModRefInfo::NoModRef;
603   }
604 }
605 
606 /// Return information about whether a particular call site modifies
607 /// or reads the specified memory location \p MemLoc before instruction \p I
608 /// in a BasicBlock.
609 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
610 /// BasicAA isn't willing to spend linear time determining whether an alloca
611 /// was captured before or after this particular call, while we are. However,
612 /// with a smarter AA in place, this test is just wasting compile time.
613 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
614                                          const MemoryLocation &MemLoc,
615                                          DominatorTree *DT,
616                                          AAQueryInfo &AAQI) {
617   if (!DT)
618     return ModRefInfo::ModRef;
619 
620   const Value *Object = getUnderlyingObject(MemLoc.Ptr);
621   if (!isIdentifiedFunctionLocal(Object))
622     return ModRefInfo::ModRef;
623 
624   const auto *Call = dyn_cast<CallBase>(I);
625   if (!Call || Call == Object)
626     return ModRefInfo::ModRef;
627 
628   if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
629                                  /* StoreCaptures */ true, I, DT,
630                                  /* include Object */ true))
631     return ModRefInfo::ModRef;
632 
633   unsigned ArgNo = 0;
634   ModRefInfo R = ModRefInfo::NoModRef;
635   // Set flag only if no May found and all operands processed.
636   for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
637        CI != CE; ++CI, ++ArgNo) {
638     // Only look at the no-capture or byval pointer arguments.  If this
639     // pointer were passed to arguments that were neither of these, then it
640     // couldn't be no-capture.
641     if (!(*CI)->getType()->isPointerTy() ||
642         (!Call->doesNotCapture(ArgNo) && ArgNo < Call->arg_size() &&
643          !Call->isByValArgument(ArgNo)))
644       continue;
645 
646     AliasResult AR =
647         alias(MemoryLocation::getBeforeOrAfter(*CI),
648               MemoryLocation::getBeforeOrAfter(Object), AAQI, Call);
649     // If this is a no-capture pointer argument, see if we can tell that it
650     // is impossible to alias the pointer we're checking.  If not, we have to
651     // assume that the call could touch the pointer, even though it doesn't
652     // escape.
653     if (AR == AliasResult::NoAlias)
654       continue;
655     if (Call->doesNotAccessMemory(ArgNo))
656       continue;
657     if (Call->onlyReadsMemory(ArgNo)) {
658       R = ModRefInfo::Ref;
659       continue;
660     }
661     return ModRefInfo::ModRef;
662   }
663   return R;
664 }
665 
666 /// canBasicBlockModify - Return true if it is possible for execution of the
667 /// specified basic block to modify the location Loc.
668 ///
669 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
670                                     const MemoryLocation &Loc) {
671   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
672 }
673 
674 /// canInstructionRangeModRef - Return true if it is possible for the
675 /// execution of the specified instructions to mod\ref (according to the
676 /// mode) the location Loc. The instructions to consider are all
677 /// of the instructions in the range of [I1,I2] INCLUSIVE.
678 /// I1 and I2 must be in the same basic block.
679 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
680                                           const Instruction &I2,
681                                           const MemoryLocation &Loc,
682                                           const ModRefInfo Mode) {
683   assert(I1.getParent() == I2.getParent() &&
684          "Instructions not in same basic block!");
685   BasicBlock::const_iterator I = I1.getIterator();
686   BasicBlock::const_iterator E = I2.getIterator();
687   ++E;  // Convert from inclusive to exclusive range.
688 
689   for (; I != E; ++I) // Check every instruction in range
690     if (isModOrRefSet(getModRefInfo(&*I, Loc) & Mode))
691       return true;
692   return false;
693 }
694 
695 // Provide a definition for the root virtual destructor.
696 AAResults::Concept::~Concept() = default;
697 
698 // Provide a definition for the static object used to identify passes.
699 AnalysisKey AAManager::Key;
700 
701 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {
702   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
703 }
704 
705 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB)
706     : ImmutablePass(ID), CB(std::move(CB)) {
707   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
708 }
709 
710 char ExternalAAWrapperPass::ID = 0;
711 
712 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
713                 false, true)
714 
715 ImmutablePass *
716 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
717   return new ExternalAAWrapperPass(std::move(Callback));
718 }
719 
720 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
721   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
722 }
723 
724 char AAResultsWrapperPass::ID = 0;
725 
726 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
727                       "Function Alias Analysis Results", false, true)
728 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
729 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
730 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
731 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
732 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
733 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
734 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
735                     "Function Alias Analysis Results", false, true)
736 
737 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
738 ///
739 /// This is the legacy pass manager's interface to the new-style AA results
740 /// aggregation object. Because this is somewhat shoe-horned into the legacy
741 /// pass manager, we hard code all the specific alias analyses available into
742 /// it. While the particular set enabled is configured via commandline flags,
743 /// adding a new alias analysis to LLVM will require adding support for it to
744 /// this list.
745 bool AAResultsWrapperPass::runOnFunction(Function &F) {
746   // NB! This *must* be reset before adding new AA results to the new
747   // AAResults object because in the legacy pass manager, each instance
748   // of these will refer to the *same* immutable analyses, registering and
749   // unregistering themselves with them. We need to carefully tear down the
750   // previous object first, in this case replacing it with an empty one, before
751   // registering new results.
752   AAR.reset(
753       new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));
754 
755   // BasicAA is always available for function analyses. Also, we add it first
756   // so that it can trump TBAA results when it proves MustAlias.
757   // FIXME: TBAA should have an explicit mode to support this and then we
758   // should reconsider the ordering here.
759   if (!DisableBasicAA)
760     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
761 
762   // Populate the results with the currently available AAs.
763   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
764     AAR->addAAResult(WrapperPass->getResult());
765   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
766     AAR->addAAResult(WrapperPass->getResult());
767   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
768     AAR->addAAResult(WrapperPass->getResult());
769   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
770     AAR->addAAResult(WrapperPass->getResult());
771 
772   // If available, run an external AA providing callback over the results as
773   // well.
774   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
775     if (WrapperPass->CB)
776       WrapperPass->CB(*this, F, *AAR);
777 
778   // Analyses don't mutate the IR, so return false.
779   return false;
780 }
781 
782 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
783   AU.setPreservesAll();
784   AU.addRequiredTransitive<BasicAAWrapperPass>();
785   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
786 
787   // We also need to mark all the alias analysis passes we will potentially
788   // probe in runOnFunction as used here to ensure the legacy pass manager
789   // preserves them. This hard coding of lists of alias analyses is specific to
790   // the legacy pass manager.
791   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
792   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
793   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
794   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
795   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
796 }
797 
798 AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) {
799   Result R(AM.getResult<TargetLibraryAnalysis>(F));
800   for (auto &Getter : ResultGetters)
801     (*Getter)(F, AM, R);
802   return R;
803 }
804 
805 bool llvm::isNoAliasCall(const Value *V) {
806   if (const auto *Call = dyn_cast<CallBase>(V))
807     return Call->hasRetAttr(Attribute::NoAlias);
808   return false;
809 }
810 
811 static bool isNoAliasOrByValArgument(const Value *V) {
812   if (const Argument *A = dyn_cast<Argument>(V))
813     return A->hasNoAliasAttr() || A->hasByValAttr();
814   return false;
815 }
816 
817 bool llvm::isIdentifiedObject(const Value *V) {
818   if (isa<AllocaInst>(V))
819     return true;
820   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
821     return true;
822   if (isNoAliasCall(V))
823     return true;
824   if (isNoAliasOrByValArgument(V))
825     return true;
826   return false;
827 }
828 
829 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
830   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V);
831 }
832 
833 bool llvm::isEscapeSource(const Value *V) {
834   if (auto *CB = dyn_cast<CallBase>(V))
835     return !isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CB,
836                                                                         true);
837 
838   // The load case works because isNonEscapingLocalObject considers all
839   // stores to be escapes (it passes true for the StoreCaptures argument
840   // to PointerMayBeCaptured).
841   if (isa<LoadInst>(V))
842     return true;
843 
844   // The inttoptr case works because isNonEscapingLocalObject considers all
845   // means of converting or equating a pointer to an int (ptrtoint, ptr store
846   // which could be followed by an integer load, ptr<->int compare) as
847   // escaping, and objects located at well-known addresses via platform-specific
848   // means cannot be considered non-escaping local objects.
849   if (isa<IntToPtrInst>(V))
850     return true;
851 
852   // Same for inttoptr constant expressions.
853   if (auto *CE = dyn_cast<ConstantExpr>(V))
854     if (CE->getOpcode() == Instruction::IntToPtr)
855       return true;
856 
857   return false;
858 }
859 
860 bool llvm::isNotVisibleOnUnwind(const Value *Object,
861                                 bool &RequiresNoCaptureBeforeUnwind) {
862   RequiresNoCaptureBeforeUnwind = false;
863 
864   // Alloca goes out of scope on unwind.
865   if (isa<AllocaInst>(Object))
866     return true;
867 
868   // Byval goes out of scope on unwind.
869   if (auto *A = dyn_cast<Argument>(Object))
870     return A->hasByValAttr() || A->hasAttribute(Attribute::DeadOnUnwind);
871 
872   // A noalias return is not accessible from any other code. If the pointer
873   // does not escape prior to the unwind, then the caller cannot access the
874   // memory either.
875   if (isNoAliasCall(Object)) {
876     RequiresNoCaptureBeforeUnwind = true;
877     return true;
878   }
879 
880   return false;
881 }
882 
883 // We don't consider globals as writable: While the physical memory is writable,
884 // we may not have provenance to perform the write.
885 bool llvm::isWritableObject(const Value *Object,
886                             bool &ExplicitlyDereferenceableOnly) {
887   ExplicitlyDereferenceableOnly = false;
888 
889   // TODO: Alloca might not be writable after its lifetime ends.
890   // See https://github.com/llvm/llvm-project/issues/51838.
891   if (isa<AllocaInst>(Object))
892     return true;
893 
894   if (auto *A = dyn_cast<Argument>(Object)) {
895     if (A->hasAttribute(Attribute::Writable)) {
896       ExplicitlyDereferenceableOnly = true;
897       return true;
898     }
899 
900     return A->hasByValAttr();
901   }
902 
903   // TODO: Noalias shouldn't imply writability, this should check for an
904   // allocator function instead.
905   return isNoAliasCall(Object);
906 }
907