xref: /llvm-project/llvm/docs/YamlIO.rst (revision 65a3712af66fb0abfdce96a1f86ae5bad9a48b1c)
1=====================
2YAML I/O
3=====================
4
5.. contents::
6   :local:
7
8Introduction to YAML
9====================
10
11YAML is a human readable data serialization language.  The full YAML language
12spec can be read at `yaml.org
13<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_.  The simplest form of
14yaml is just "scalars", "mappings", and "sequences".  A scalar is any number
15or string.  The pound/hash symbol (#) begins a comment line.   A mapping is
16a set of key-value pairs where the key ends with a colon.  For example:
17
18.. code-block:: yaml
19
20     # a mapping
21     name:      Tom
22     hat-size:  7
23
24A sequence is a list of items where each item starts with a leading dash ('-').
25For example:
26
27.. code-block:: yaml
28
29     # a sequence
30     - x86
31     - x86_64
32     - PowerPC
33
34You can combine mappings and sequences by indenting.  For example a sequence
35of mappings in which one of the mapping values is itself a sequence:
36
37.. code-block:: yaml
38
39     # a sequence of mappings with one key's value being a sequence
40     - name:      Tom
41       cpus:
42        - x86
43        - x86_64
44     - name:      Bob
45       cpus:
46        - x86
47     - name:      Dan
48       cpus:
49        - PowerPC
50        - x86
51
52Sometime sequences are known to be short and the one entry per line is too
53verbose, so YAML offers an alternate syntax for sequences called a "Flow
54Sequence" in which you put comma separated sequence elements into square
55brackets.  The above example could then be simplified to :
56
57
58.. code-block:: yaml
59
60     # a sequence of mappings with one key's value being a flow sequence
61     - name:      Tom
62       cpus:      [ x86, x86_64 ]
63     - name:      Bob
64       cpus:      [ x86 ]
65     - name:      Dan
66       cpus:      [ PowerPC, x86 ]
67
68
69Introduction to YAML I/O
70========================
71
72The use of indenting makes the YAML easy for a human to read and understand,
73but having a program read and write YAML involves a lot of tedious details.
74The YAML I/O library structures and simplifies reading and writing YAML
75documents.
76
77YAML I/O assumes you have some "native" data structures which you want to be
78able to dump as YAML and recreate from YAML.  The first step is to try
79writing example YAML for your data structures. You may find after looking at
80possible YAML representations that a direct mapping of your data structures
81to YAML is not very readable.  Often the fields are not in the order that
82a human would find readable.  Or the same information is replicated in multiple
83locations, making it hard for a human to write such YAML correctly.
84
85In relational database theory there is a design step called normalization in
86which you reorganize fields and tables.  The same considerations need to
87go into the design of your YAML encoding.  But, you may not want to change
88your existing native data structures.  Therefore, when writing out YAML
89there may be a normalization step, and when reading YAML there would be a
90corresponding denormalization step.
91
92YAML I/O uses a non-invasive, traits based design.  YAML I/O defines some
93abstract base templates.  You specialize those templates on your data types.
94For instance, if you have an enumerated type FooBar you could specialize
95ScalarEnumerationTraits on that type and define the enumeration() method:
96
97.. code-block:: c++
98
99    using llvm::yaml::ScalarEnumerationTraits;
100    using llvm::yaml::IO;
101
102    template <>
103    struct ScalarEnumerationTraits<FooBar> {
104      static void enumeration(IO &io, FooBar &value) {
105      ...
106      }
107    };
108
109
110As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for
111both reading and writing YAML. That is, the mapping between in-memory enum
112values and the YAML string representation is only in one place.
113This assures that the code for writing and parsing of YAML stays in sync.
114
115To specify a YAML mappings, you define a specialization on
116llvm::yaml::MappingTraits.
117If your native data structure happens to be a struct that is already normalized,
118then the specialization is simple.  For example:
119
120.. code-block:: c++
121
122    using llvm::yaml::MappingTraits;
123    using llvm::yaml::IO;
124
125    template <>
126    struct MappingTraits<Person> {
127      static void mapping(IO &io, Person &info) {
128        io.mapRequired("name",         info.name);
129        io.mapOptional("hat-size",     info.hatSize);
130      }
131    };
132
133
134A YAML sequence is automatically inferred if you data type has begin()/end()
135iterators and a push_back() method.  Therefore any of the STL containers
136(such as std::vector<>) will automatically translate to YAML sequences.
137
138Once you have defined specializations for your data types, you can
139programmatically use YAML I/O to write a YAML document:
140
141.. code-block:: c++
142
143    using llvm::yaml::Output;
144
145    Person tom;
146    tom.name = "Tom";
147    tom.hatSize = 8;
148    Person dan;
149    dan.name = "Dan";
150    dan.hatSize = 7;
151    std::vector<Person> persons;
152    persons.push_back(tom);
153    persons.push_back(dan);
154
155    Output yout(llvm::outs());
156    yout << persons;
157
158This would write the following:
159
160.. code-block:: yaml
161
162     - name:      Tom
163       hat-size:  8
164     - name:      Dan
165       hat-size:  7
166
167And you can also read such YAML documents with the following code:
168
169.. code-block:: c++
170
171    using llvm::yaml::Input;
172
173    typedef std::vector<Person> PersonList;
174    std::vector<PersonList> docs;
175
176    Input yin(document.getBuffer());
177    yin >> docs;
178
179    if ( yin.error() )
180      return;
181
182    // Process read document
183    for ( PersonList &pl : docs ) {
184      for ( Person &person : pl ) {
185        cout << "name=" << person.name;
186      }
187    }
188
189One other feature of YAML is the ability to define multiple documents in a
190single file.  That is why reading YAML produces a vector of your document type.
191
192
193
194Error Handling
195==============
196
197When parsing a YAML document, if the input does not match your schema (as
198expressed in your XxxTraits<> specializations).  YAML I/O
199will print out an error message and your Input object's error() method will
200return true. For instance the following document:
201
202.. code-block:: yaml
203
204     - name:      Tom
205       shoe-size: 12
206     - name:      Dan
207       hat-size:  7
208
209Has a key (shoe-size) that is not defined in the schema.  YAML I/O will
210automatically generate this error:
211
212.. code-block:: yaml
213
214    YAML:2:2: error: unknown key 'shoe-size'
215      shoe-size:       12
216      ^~~~~~~~~
217
218Similar errors are produced for other input not conforming to the schema.
219
220
221Scalars
222=======
223
224YAML scalars are just strings (i.e. not a sequence or mapping).  The YAML I/O
225library provides support for translating between YAML scalars and specific
226C++ types.
227
228
229Built-in types
230--------------
231The following types have built-in support in YAML I/O:
232
233* bool
234* float
235* double
236* StringRef
237* std::string
238* int64_t
239* int32_t
240* int16_t
241* int8_t
242* uint64_t
243* uint32_t
244* uint16_t
245* uint8_t
246
247That is, you can use those types in fields of MappingTraits or as element type
248in sequence.  When reading, YAML I/O will validate that the string found
249is convertible to that type and error out if not.
250
251
252Unique types
253------------
254Given that YAML I/O is trait based, the selection of how to convert your data
255to YAML is based on the type of your data.  But in C++ type matching, typedefs
256do not generate unique type names.  That means if you have two typedefs of
257unsigned int, to YAML I/O both types look exactly like unsigned int.  To
258facilitate make unique type names, YAML I/O provides a macro which is used
259like a typedef on built-in types, but expands to create a class with conversion
260operators to and from the base type.  For example:
261
262.. code-block:: c++
263
264    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
265    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)
266
267This generates two classes MyFooFlags and MyBarFlags which you can use in your
268native data structures instead of uint32_t. They are implicitly
269converted to and from uint32_t.  The point of creating these unique types
270is that you can now specify traits on them to get different YAML conversions.
271
272Hex types
273---------
274An example use of a unique type is that YAML I/O provides fixed sized unsigned
275integers that are written with YAML I/O as hexadecimal instead of the decimal
276format used by the built-in integer types:
277
278* Hex64
279* Hex32
280* Hex16
281* Hex8
282
283You can use llvm::yaml::Hex32 instead of uint32_t and the only different will
284be that when YAML I/O writes out that type it will be formatted in hexadecimal.
285
286
287ScalarEnumerationTraits
288-----------------------
289YAML I/O supports translating between in-memory enumerations and a set of string
290values in YAML documents. This is done by specializing ScalarEnumerationTraits<>
291on your enumeration type and define an enumeration() method.
292For instance, suppose you had an enumeration of CPUs and a struct with it as
293a field:
294
295.. code-block:: c++
296
297    enum CPUs {
298      cpu_x86_64  = 5,
299      cpu_x86     = 7,
300      cpu_PowerPC = 8
301    };
302
303    struct Info {
304      CPUs      cpu;
305      uint32_t  flags;
306    };
307
308To support reading and writing of this enumeration, you can define a
309ScalarEnumerationTraits specialization on CPUs, which can then be used
310as a field type:
311
312.. code-block:: c++
313
314    using llvm::yaml::ScalarEnumerationTraits;
315    using llvm::yaml::MappingTraits;
316    using llvm::yaml::IO;
317
318    template <>
319    struct ScalarEnumerationTraits<CPUs> {
320      static void enumeration(IO &io, CPUs &value) {
321        io.enumCase(value, "x86_64",  cpu_x86_64);
322        io.enumCase(value, "x86",     cpu_x86);
323        io.enumCase(value, "PowerPC", cpu_PowerPC);
324      }
325    };
326
327    template <>
328    struct MappingTraits<Info> {
329      static void mapping(IO &io, Info &info) {
330        io.mapRequired("cpu",       info.cpu);
331        io.mapOptional("flags",     info.flags, 0);
332      }
333    };
334
335When reading YAML, if the string found does not match any of the strings
336specified by enumCase() methods, an error is automatically generated.
337When writing YAML, if the value being written does not match any of the values
338specified by the enumCase() methods, a runtime assertion is triggered.
339
340
341BitValue
342--------
343Another common data structure in C++ is a field where each bit has a unique
344meaning.  This is often used in a "flags" field.  YAML I/O has support for
345converting such fields to a flow sequence.   For instance suppose you
346had the following bit flags defined:
347
348.. code-block:: c++
349
350    enum {
351      flagsPointy = 1
352      flagsHollow = 2
353      flagsFlat   = 4
354      flagsRound  = 8
355    };
356
357    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags)
358
359To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<>
360on MyFlags and provide the bit values and their names.
361
362.. code-block:: c++
363
364    using llvm::yaml::ScalarBitSetTraits;
365    using llvm::yaml::MappingTraits;
366    using llvm::yaml::IO;
367
368    template <>
369    struct ScalarBitSetTraits<MyFlags> {
370      static void bitset(IO &io, MyFlags &value) {
371        io.bitSetCase(value, "hollow",  flagHollow);
372        io.bitSetCase(value, "flat",    flagFlat);
373        io.bitSetCase(value, "round",   flagRound);
374        io.bitSetCase(value, "pointy",  flagPointy);
375      }
376    };
377
378    struct Info {
379      StringRef   name;
380      MyFlags     flags;
381    };
382
383    template <>
384    struct MappingTraits<Info> {
385      static void mapping(IO &io, Info& info) {
386        io.mapRequired("name",  info.name);
387        io.mapRequired("flags", info.flags);
388       }
389    };
390
391With the above, YAML I/O (when writing) will test mask each value in the
392bitset trait against the flags field, and each that matches will
393cause the corresponding string to be added to the flow sequence.  The opposite
394is done when reading and any unknown string values will result in an error. With
395the above schema, a same valid YAML document is:
396
397.. code-block:: yaml
398
399    name:    Tom
400    flags:   [ pointy, flat ]
401
402Sometimes a "flags" field might contains an enumeration part
403defined by a bit-mask.
404
405.. code-block:: c++
406
407    enum {
408      flagsFeatureA = 1,
409      flagsFeatureB = 2,
410      flagsFeatureC = 4,
411
412      flagsCPUMask = 24,
413
414      flagsCPU1 = 8,
415      flagsCPU2 = 16
416    };
417
418To support reading and writing such fields, you need to use the maskedBitSet()
419method and provide the bit values, their names and the enumeration mask.
420
421.. code-block:: c++
422
423    template <>
424    struct ScalarBitSetTraits<MyFlags> {
425      static void bitset(IO &io, MyFlags &value) {
426        io.bitSetCase(value, "featureA",  flagsFeatureA);
427        io.bitSetCase(value, "featureB",  flagsFeatureB);
428        io.bitSetCase(value, "featureC",  flagsFeatureC);
429        io.maskedBitSetCase(value, "CPU1",  flagsCPU1, flagsCPUMask);
430        io.maskedBitSetCase(value, "CPU2",  flagsCPU2, flagsCPUMask);
431      }
432    };
433
434YAML I/O (when writing) will apply the enumeration mask to the flags field,
435and compare the result and values from the bitset. As in case of a regular
436bitset, each that matches will cause the corresponding string to be added
437to the flow sequence.
438
439Custom Scalar
440-------------
441Sometimes for readability a scalar needs to be formatted in a custom way. For
442instance your internal data structure may use an integer for time (seconds since
443some epoch), but in YAML it would be much nicer to express that integer in
444some time format (e.g. 4-May-2012 10:30pm).  YAML I/O has a way to support
445custom formatting and parsing of scalar types by specializing ScalarTraits<> on
446your data type.  When writing, YAML I/O will provide the native type and
447your specialization must create a temporary llvm::StringRef.  When reading,
448YAML I/O will provide an llvm::StringRef of scalar and your specialization
449must convert that to your native data type.  An outline of a custom scalar type
450looks like:
451
452.. code-block:: c++
453
454    using llvm::yaml::ScalarTraits;
455    using llvm::yaml::IO;
456
457    template <>
458    struct ScalarTraits<MyCustomType> {
459      static void output(const MyCustomType &value, void*,
460                         llvm::raw_ostream &out) {
461        out << value;  // do custom formatting here
462      }
463      static StringRef input(StringRef scalar, void*, MyCustomType &value) {
464        // do custom parsing here.  Return the empty string on success,
465        // or an error message on failure.
466        return StringRef();
467      }
468      // Determine if this scalar needs quotes.
469      static QuotingType mustQuote(StringRef) { return QuotingType::Single; }
470    };
471
472Block Scalars
473-------------
474
475YAML block scalars are string literals that are represented in YAML using the
476literal block notation, just like the example shown below:
477
478.. code-block:: yaml
479
480    text: |
481      First line
482      Second line
483
484The YAML I/O library provides support for translating between YAML block scalars
485and specific C++ types by allowing you to specialize BlockScalarTraits<> on
486your data type. The library doesn't provide any built-in support for block
487scalar I/O for types like std::string and llvm::StringRef as they are already
488supported by YAML I/O and use the ordinary scalar notation by default.
489
490BlockScalarTraits specializations are very similar to the
491ScalarTraits specialization - YAML I/O will provide the native type and your
492specialization must create a temporary llvm::StringRef when writing, and
493it will also provide an llvm::StringRef that has the value of that block scalar
494and your specialization must convert that to your native data type when reading.
495An example of a custom type with an appropriate specialization of
496BlockScalarTraits is shown below:
497
498.. code-block:: c++
499
500    using llvm::yaml::BlockScalarTraits;
501    using llvm::yaml::IO;
502
503    struct MyStringType {
504      std::string Str;
505    };
506
507    template <>
508    struct BlockScalarTraits<MyStringType> {
509      static void output(const MyStringType &Value, void *Ctxt,
510                         llvm::raw_ostream &OS) {
511        OS << Value.Str;
512      }
513
514      static StringRef input(StringRef Scalar, void *Ctxt,
515                             MyStringType &Value) {
516        Value.Str = Scalar.str();
517        return StringRef();
518      }
519    };
520
521
522
523Mappings
524========
525
526To be translated to or from a YAML mapping for your type T you must specialize
527llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)"
528method. If your native data structures use pointers to a class everywhere,
529you can specialize on the class pointer.  Examples:
530
531.. code-block:: c++
532
533    using llvm::yaml::MappingTraits;
534    using llvm::yaml::IO;
535
536    // Example of struct Foo which is used by value
537    template <>
538    struct MappingTraits<Foo> {
539      static void mapping(IO &io, Foo &foo) {
540        io.mapOptional("size",      foo.size);
541      ...
542      }
543    };
544
545    // Example of struct Bar which is natively always a pointer
546    template <>
547    struct MappingTraits<Bar*> {
548      static void mapping(IO &io, Bar *&bar) {
549        io.mapOptional("size",    bar->size);
550      ...
551      }
552    };
553
554There are circumstances where we want to allow the entire mapping to be
555read as an enumeration.  For example, say some configuration option
556started as an enumeration.  Then it got more complex so it is now a
557mapping.  But it is necessary to support the old configuration files.
558In that case, add a function ``enumInput`` like for
559``ScalarEnumerationTraits::enumeration``.  Examples:
560
561.. code-block:: c++
562
563    struct FooBarEnum {
564      int Foo;
565      int Bar;
566      bool operator==(const FooBarEnum &R) const {
567        return Foo == R.Foo && Bar == R.Bar;
568      }
569    };
570
571    template <> struct MappingTraits<FooBarEnum> {
572      static void enumInput(IO &io, FooBarEnum &Val) {
573        io.enumCase(Val, "OnlyFoo", FooBarEnum({1, 0}));
574        io.enumCase(Val, "OnlyBar", FooBarEnum({0, 1}));
575      }
576      static void mapping(IO &io, FooBarEnum &Val) {
577        io.mapOptional("Foo", Val.Foo);
578        io.mapOptional("Bar", Val.Bar);
579      }
580    };
581
582
583No Normalization
584----------------
585
586The ``mapping()`` method is responsible, if needed, for normalizing and
587denormalizing. In a simple case where the native data structure requires no
588normalization, the mapping method just uses mapOptional() or mapRequired() to
589bind the struct's fields to YAML key names.  For example:
590
591.. code-block:: c++
592
593    using llvm::yaml::MappingTraits;
594    using llvm::yaml::IO;
595
596    template <>
597    struct MappingTraits<Person> {
598      static void mapping(IO &io, Person &info) {
599        io.mapRequired("name",         info.name);
600        io.mapOptional("hat-size",     info.hatSize);
601      }
602    };
603
604
605Normalization
606----------------
607
608When [de]normalization is required, the mapping() method needs a way to access
609normalized values as fields. To help with this, there is
610a template MappingNormalization<> which you can then use to automatically
611do the normalization and denormalization.  The template is used to create
612a local variable in your mapping() method which contains the normalized keys.
613
614Suppose you have native data type
615Polar which specifies a position in polar coordinates (distance, angle):
616
617.. code-block:: c++
618
619    struct Polar {
620      float distance;
621      float angle;
622    };
623
624but you've decided the normalized YAML for should be in x,y coordinates. That
625is, you want the yaml to look like:
626
627.. code-block:: yaml
628
629    x:   10.3
630    y:   -4.7
631
632You can support this by defining a MappingTraits that normalizes the polar
633coordinates to x,y coordinates when writing YAML and denormalizes x,y
634coordinates into polar when reading YAML.
635
636.. code-block:: c++
637
638    using llvm::yaml::MappingTraits;
639    using llvm::yaml::IO;
640
641    template <>
642    struct MappingTraits<Polar> {
643
644      class NormalizedPolar {
645      public:
646        NormalizedPolar(IO &io)
647          : x(0.0), y(0.0) {
648        }
649        NormalizedPolar(IO &, Polar &polar)
650          : x(polar.distance * cos(polar.angle)),
651            y(polar.distance * sin(polar.angle)) {
652        }
653        Polar denormalize(IO &) {
654          return Polar(sqrt(x*x+y*y), arctan(x,y));
655        }
656
657        float        x;
658        float        y;
659      };
660
661      static void mapping(IO &io, Polar &polar) {
662        MappingNormalization<NormalizedPolar, Polar> keys(io, polar);
663
664        io.mapRequired("x",    keys->x);
665        io.mapRequired("y",    keys->y);
666      }
667    };
668
669When writing YAML, the local variable "keys" will be a stack allocated
670instance of NormalizedPolar, constructed from the supplied polar object which
671initializes it x and y fields.  The mapRequired() methods then write out the x
672and y values as key/value pairs.
673
674When reading YAML, the local variable "keys" will be a stack allocated instance
675of NormalizedPolar, constructed by the empty constructor.  The mapRequired
676methods will find the matching key in the YAML document and fill in the x and y
677fields of the NormalizedPolar object keys. At the end of the mapping() method
678when the local keys variable goes out of scope, the denormalize() method will
679automatically be called to convert the read values back to polar coordinates,
680and then assigned back to the second parameter to mapping().
681
682In some cases, the normalized class may be a subclass of the native type and
683could be returned by the denormalize() method, except that the temporary
684normalized instance is stack allocated.  In these cases, the utility template
685MappingNormalizationHeap<> can be used instead.  It just like
686MappingNormalization<> except that it heap allocates the normalized object
687when reading YAML.  It never destroys the normalized object.  The denormalize()
688method can this return "this".
689
690
691Default values
692--------------
693Within a mapping() method, calls to io.mapRequired() mean that that key is
694required to exist when parsing YAML documents, otherwise YAML I/O will issue an
695error.
696
697On the other hand, keys registered with io.mapOptional() are allowed to not
698exist in the YAML document being read.  So what value is put in the field
699for those optional keys?
700There are two steps to how those optional fields are filled in. First, the
701second parameter to the mapping() method is a reference to a native class.  That
702native class must have a default constructor.  Whatever value the default
703constructor initially sets for an optional field will be that field's value.
704Second, the mapOptional() method has an optional third parameter.  If provided
705it is the value that mapOptional() should set that field to if the YAML document
706does not have that key.
707
708There is one important difference between those two ways (default constructor
709and third parameter to mapOptional). When YAML I/O generates a YAML document,
710if the mapOptional() third parameter is used, if the actual value being written
711is the same as (using ==) the default value, then that key/value is not written.
712
713
714Order of Keys
715--------------
716
717When writing out a YAML document, the keys are written in the order that the
718calls to mapRequired()/mapOptional() are made in the mapping() method. This
719gives you a chance to write the fields in an order that a human reader of
720the YAML document would find natural.  This may be different that the order
721of the fields in the native class.
722
723When reading in a YAML document, the keys in the document can be in any order,
724but they are processed in the order that the calls to mapRequired()/mapOptional()
725are made in the mapping() method.  That enables some interesting
726functionality.  For instance, if the first field bound is the cpu and the second
727field bound is flags, and the flags are cpu specific, you can programmatically
728switch how the flags are converted to and from YAML based on the cpu.
729This works for both reading and writing. For example:
730
731.. code-block:: c++
732
733    using llvm::yaml::MappingTraits;
734    using llvm::yaml::IO;
735
736    struct Info {
737      CPUs        cpu;
738      uint32_t    flags;
739    };
740
741    template <>
742    struct MappingTraits<Info> {
743      static void mapping(IO &io, Info &info) {
744        io.mapRequired("cpu",       info.cpu);
745        // flags must come after cpu for this to work when reading yaml
746        if ( info.cpu == cpu_x86_64 )
747          io.mapRequired("flags",  *(My86_64Flags*)info.flags);
748        else
749          io.mapRequired("flags",  *(My86Flags*)info.flags);
750     }
751    };
752
753
754Tags
755----
756
757The YAML syntax supports tags as a way to specify the type of a node before
758it is parsed. This allows dynamic types of nodes.  But the YAML I/O model uses
759static typing, so there are limits to how you can use tags with the YAML I/O
760model. Recently, we added support to YAML I/O for checking/setting the optional
761tag on a map. Using this functionality it is even possible to support different
762mappings, as long as they are convertible.
763
764To check a tag, inside your mapping() method you can use io.mapTag() to specify
765what the tag should be.  This will also add that tag when writing yaml.
766
767Validation
768----------
769
770Sometimes in a YAML map, each key/value pair is valid, but the combination is
771not.  This is similar to something having no syntax errors, but still having
772semantic errors.  To support semantic level checking, YAML I/O allows
773an optional ``validate()`` method in a MappingTraits template specialization.
774
775When parsing YAML, the ``validate()`` method is call *after* all key/values in
776the map have been processed. Any error message returned by the ``validate()``
777method during input will be printed just a like a syntax error would be printed.
778When writing YAML, the ``validate()`` method is called *before* the YAML
779key/values  are written.  Any error during output will trigger an ``assert()``
780because it is a programming error to have invalid struct values.
781
782
783.. code-block:: c++
784
785    using llvm::yaml::MappingTraits;
786    using llvm::yaml::IO;
787
788    struct Stuff {
789      ...
790    };
791
792    template <>
793    struct MappingTraits<Stuff> {
794      static void mapping(IO &io, Stuff &stuff) {
795      ...
796      }
797      static std::string validate(IO &io, Stuff &stuff) {
798        // Look at all fields in 'stuff' and if there
799        // are any bad values return a string describing
800        // the error.  Otherwise return an empty string.
801        return std::string{};
802      }
803    };
804
805Flow Mapping
806------------
807A YAML "flow mapping" is a mapping that uses the inline notation
808(e.g { x: 1, y: 0 } ) when written to YAML. To specify that a type should be
809written in YAML using flow mapping, your MappingTraits specialization should
810add "static const bool flow = true;". For instance:
811
812.. code-block:: c++
813
814    using llvm::yaml::MappingTraits;
815    using llvm::yaml::IO;
816
817    struct Stuff {
818      ...
819    };
820
821    template <>
822    struct MappingTraits<Stuff> {
823      static void mapping(IO &io, Stuff &stuff) {
824        ...
825      }
826
827      static const bool flow = true;
828    }
829
830Flow mappings are subject to line wrapping according to the Output object
831configuration.
832
833Sequence
834========
835
836To be translated to or from a YAML sequence for your type T you must specialize
837llvm::yaml::SequenceTraits on T and implement two methods:
838``size_t size(IO &io, T&)`` and
839``T::value_type& element(IO &io, T&, size_t indx)``.  For example:
840
841.. code-block:: c++
842
843  template <>
844  struct SequenceTraits<MySeq> {
845    static size_t size(IO &io, MySeq &list) { ... }
846    static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... }
847  };
848
849The size() method returns how many elements are currently in your sequence.
850The element() method returns a reference to the i'th element in the sequence.
851When parsing YAML, the element() method may be called with an index one bigger
852than the current size.  Your element() method should allocate space for one
853more element (using default constructor if element is a C++ object) and returns
854a reference to that new allocated space.
855
856
857Flow Sequence
858-------------
859A YAML "flow sequence" is a sequence that when written to YAML it uses the
860inline notation (e.g [ foo, bar ] ).  To specify that a sequence type should
861be written in YAML as a flow sequence, your SequenceTraits specialization should
862add "static const bool flow = true;".  For instance:
863
864.. code-block:: c++
865
866  template <>
867  struct SequenceTraits<MyList> {
868    static size_t size(IO &io, MyList &list) { ... }
869    static MyListEl &element(IO &io, MyList &list, size_t index) { ... }
870
871    // The existence of this member causes YAML I/O to use a flow sequence
872    static const bool flow = true;
873  };
874
875With the above, if you used MyList as the data type in your native data
876structures, then when converted to YAML, a flow sequence of integers
877will be used (e.g. [ 10, -3, 4 ]).
878
879Flow sequences are subject to line wrapping according to the Output object
880configuration.
881
882Utility Macros
883--------------
884Since a common source of sequences is std::vector<>, YAML I/O provides macros:
885LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
886can be used to easily specify SequenceTraits<> on a std::vector type.  YAML
887I/O does not partial specialize SequenceTraits on std::vector<> because that
888would force all vectors to be sequences.  An example use of the macros:
889
890.. code-block:: c++
891
892  std::vector<MyType1>;
893  std::vector<MyType2>;
894  LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
895  LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)
896
897
898
899Document List
900=============
901
902YAML allows you to define multiple "documents" in a single YAML file.  Each
903new document starts with a left aligned "---" token.  The end of all documents
904is denoted with a left aligned "..." token.  Many users of YAML will never
905have need for multiple documents.  The top level node in their YAML schema
906will be a mapping or sequence. For those cases, the following is not needed.
907But for cases where you do want multiple documents, you can specify a
908trait for you document list type.  The trait has the same methods as
909SequenceTraits but is named DocumentListTraits.  For example:
910
911.. code-block:: c++
912
913  template <>
914  struct DocumentListTraits<MyDocList> {
915    static size_t size(IO &io, MyDocList &list) { ... }
916    static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }
917  };
918
919
920User Context Data
921=================
922When an llvm::yaml::Input or llvm::yaml::Output object is created their
923constructors take an optional "context" parameter.  This is a pointer to
924whatever state information you might need.
925
926For instance, in a previous example we showed how the conversion type for a
927flags field could be determined at runtime based on the value of another field
928in the mapping. But what if an inner mapping needs to know some field value
929of an outer mapping?  That is where the "context" parameter comes in. You
930can set values in the context in the outer map's mapping() method and
931retrieve those values in the inner map's mapping() method.
932
933The context value is just a void*.  All your traits which use the context
934and operate on your native data types, need to agree what the context value
935actually is.  It could be a pointer to an object or struct which your various
936traits use to shared context sensitive information.
937
938
939Output
940======
941
942The llvm::yaml::Output class is used to generate a YAML document from your
943in-memory data structures, using traits defined on your data types.
944To instantiate an Output object you need an llvm::raw_ostream, an optional
945context pointer and an optional wrapping column:
946
947.. code-block:: c++
948
949      class Output : public IO {
950      public:
951        Output(llvm::raw_ostream &, void *context = NULL, int WrapColumn = 70);
952
953Once you have an Output object, you can use the C++ stream operator on it
954to write your native data as YAML. One thing to recall is that a YAML file
955can contain multiple "documents".  If the top level data structure you are
956streaming as YAML is a mapping, scalar, or sequence, then Output assumes you
957are generating one document and wraps the mapping output
958with  "``---``" and trailing "``...``".
959
960The WrapColumn parameter will cause the flow mappings and sequences to
961line-wrap when they go over the supplied column. Pass 0 to completely
962suppress the wrapping.
963
964.. code-block:: c++
965
966    using llvm::yaml::Output;
967
968    void dumpMyMapDoc(const MyMapType &info) {
969      Output yout(llvm::outs());
970      yout << info;
971    }
972
973The above could produce output like:
974
975.. code-block:: yaml
976
977     ---
978     name:      Tom
979     hat-size:  7
980     ...
981
982On the other hand, if the top level data structure you are streaming as YAML
983has a DocumentListTraits specialization, then Output walks through each element
984of your DocumentList and generates a "---" before the start of each element
985and ends with a "...".
986
987.. code-block:: c++
988
989    using llvm::yaml::Output;
990
991    void dumpMyMapDoc(const MyDocListType &docList) {
992      Output yout(llvm::outs());
993      yout << docList;
994    }
995
996The above could produce output like:
997
998.. code-block:: yaml
999
1000     ---
1001     name:      Tom
1002     hat-size:  7
1003     ---
1004     name:      Tom
1005     shoe-size:  11
1006     ...
1007
1008Input
1009=====
1010
1011The llvm::yaml::Input class is used to parse YAML document(s) into your native
1012data structures. To instantiate an Input
1013object you need a StringRef to the entire YAML file, and optionally a context
1014pointer:
1015
1016.. code-block:: c++
1017
1018      class Input : public IO {
1019      public:
1020        Input(StringRef inputContent, void *context=NULL);
1021
1022Once you have an Input object, you can use the C++ stream operator to read
1023the document(s).  If you expect there might be multiple YAML documents in
1024one file, you'll need to specialize DocumentListTraits on a list of your
1025document type and stream in that document list type.  Otherwise you can
1026just stream in the document type.  Also, you can check if there was
1027any syntax errors in the YAML be calling the error() method on the Input
1028object.  For example:
1029
1030.. code-block:: c++
1031
1032     // Reading a single document
1033     using llvm::yaml::Input;
1034
1035     Input yin(mb.getBuffer());
1036
1037     // Parse the YAML file
1038     MyDocType theDoc;
1039     yin >> theDoc;
1040
1041     // Check for error
1042     if ( yin.error() )
1043       return;
1044
1045
1046.. code-block:: c++
1047
1048     // Reading multiple documents in one file
1049     using llvm::yaml::Input;
1050
1051     LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(MyDocType)
1052
1053     Input yin(mb.getBuffer());
1054
1055     // Parse the YAML file
1056     std::vector<MyDocType> theDocList;
1057     yin >> theDocList;
1058
1059     // Check for error
1060     if ( yin.error() )
1061       return;
1062