xref: /llvm-project/llvm/docs/BitCodeFormat.rst (revision 5f777347197da26f9f9b5c561b5ba83f307519bb)
1.. role:: raw-html(raw)
2   :format: html
3
4========================
5LLVM Bitcode File Format
6========================
7
8.. contents::
9   :local:
10
11Abstract
12========
13
14This document describes the LLVM bitstream file format and the encoding of the
15LLVM IR into it.
16
17Overview
18========
19
20What is commonly known as the LLVM bitcode file format (also, sometimes
21anachronistically known as bytecode) is actually two things: a `bitstream
22container format`_ and an `encoding of LLVM IR`_ into the container format.
23
24The bitstream format is an abstract encoding of structured data, very similar to
25XML in some ways.  Like XML, bitstream files contain tags, and nested
26structures, and you can parse the file without having to understand the tags.
27Unlike XML, the bitstream format is a binary encoding, and unlike XML it
28provides a mechanism for the file to self-describe "abbreviations", which are
29effectively size optimizations for the content.
30
31LLVM IR files may be optionally embedded into a `wrapper`_ structure, or in a
32`native object file`_. Both of these mechanisms make it easy to embed extra
33data along with LLVM IR files.
34
35This document first describes the LLVM bitstream format, describes the wrapper
36format, then describes the record structure used by LLVM IR files.
37
38.. _bitstream container format:
39
40Bitstream Format
41================
42
43The bitstream format is literally a stream of bits, with a very simple
44structure.  This structure consists of the following concepts:
45
46* A "`magic number`_" that identifies the contents of the stream.
47
48* Encoding `primitives`_ like variable bit-rate integers.
49
50* `Blocks`_, which define nested content.
51
52* `Data Records`_, which describe entities within the file.
53
54* Abbreviations, which specify compression optimizations for the file.
55
56Note that the :doc:`llvm-bcanalyzer <CommandGuide/llvm-bcanalyzer>` tool can be
57used to dump and inspect arbitrary bitstreams, which is very useful for
58understanding the encoding.
59
60.. _magic number:
61
62Magic Numbers
63-------------
64
65The first four bytes of a bitstream are used as an application-specific magic
66number.  Generic bitcode tools may look at the first four bytes to determine
67whether the stream is a known stream type.  However, these tools should *not*
68determine whether a bitstream is valid based on its magic number alone.  New
69application-specific bitstream formats are being developed all the time; tools
70should not reject them just because they have a hitherto unseen magic number.
71
72.. _primitives:
73
74Primitives
75----------
76
77A bitstream literally consists of a stream of bits, which are read in order
78starting with the least significant bit of each byte.  The stream is made up of
79a number of primitive values that encode a stream of unsigned integer values.
80These integers are encoded in two ways: either as `Fixed Width Integers`_ or as
81`Variable Width Integers`_.
82
83.. _Fixed Width Integers:
84.. _fixed-width value:
85
86Fixed Width Integers
87^^^^^^^^^^^^^^^^^^^^
88
89Fixed-width integer values have their low bits emitted directly to the file.
90For example, a 3-bit integer value encodes 1 as 001.  Fixed width integers are
91used when there are a well-known number of options for a field.  For example,
92boolean values are usually encoded with a 1-bit wide integer.
93
94.. _Variable Width Integers:
95.. _Variable Width Integer:
96.. _variable-width value:
97
98Variable Width Integers
99^^^^^^^^^^^^^^^^^^^^^^^
100
101Variable-width integer (VBR) values encode values of arbitrary size, optimizing
102for the case where the values are small.  Given a 4-bit VBR field, any 3-bit
103value (0 through 7) is encoded directly, with the high bit set to zero.  Values
104larger than N-1 bits emit their bits in a series of N-1 bit chunks, where all
105but the last set the high bit.
106
107For example, the value 30 (0x1E) is encoded as 62 (0b0011'1110) when emitted as
108a vbr4 value.  The first set of four bits starting from the least significant
109indicates the value 6 (110) with a continuation piece (indicated by a high bit
110of 1).  The next set of four bits indicates a value of 24 (011 << 3) with no
111continuation.  The sum (6+24) yields the value 30.
112
113.. _char6-encoded value:
114
1156-bit characters
116^^^^^^^^^^^^^^^^
117
1186-bit characters encode common characters into a fixed 6-bit field.  They
119represent the following characters with the following 6-bit values:
120
121::
122
123  'a' .. 'z' ---  0 .. 25
124  'A' .. 'Z' --- 26 .. 51
125  '0' .. '9' --- 52 .. 61
126         '.' --- 62
127         '_' --- 63
128
129This encoding is only suitable for encoding characters and strings that consist
130only of the above characters.  It is completely incapable of encoding characters
131not in the set.
132
133Word Alignment
134^^^^^^^^^^^^^^
135
136Occasionally, it is useful to emit zero bits until the bitstream is a multiple
137of 32 bits.  This ensures that the bit position in the stream can be represented
138as a multiple of 32-bit words.
139
140Abbreviation IDs
141----------------
142
143A bitstream is a sequential series of `Blocks`_ and `Data Records`_.  Both of
144these start with an abbreviation ID encoded as a fixed-bitwidth field.  The
145width is specified by the current block, as described below.  The value of the
146abbreviation ID specifies either a builtin ID (which have special meanings,
147defined below) or one of the abbreviation IDs defined for the current block by
148the stream itself.
149
150The set of builtin abbrev IDs is:
151
152* 0 - `END_BLOCK`_ --- This abbrev ID marks the end of the current block.
153
154* 1 - `ENTER_SUBBLOCK`_ --- This abbrev ID marks the beginning of a new
155  block.
156
157* 2 - `DEFINE_ABBREV`_ --- This defines a new abbreviation.
158
159* 3 - `UNABBREV_RECORD`_ --- This ID specifies the definition of an
160  unabbreviated record.
161
162Abbreviation IDs 4 and above are defined by the stream itself, and specify an
163`abbreviated record encoding`_.
164
165.. _Blocks:
166
167Blocks
168------
169
170Blocks in a bitstream denote nested regions of the stream, and are identified by
171a content-specific id number (for example, LLVM IR uses an ID of 12 to represent
172function bodies).  Block IDs 0-7 are reserved for `standard blocks`_ whose
173meaning is defined by Bitcode; block IDs 8 and greater are application
174specific. Nested blocks capture the hierarchical structure of the data encoded
175in it, and various properties are associated with blocks as the file is parsed.
176Block definitions allow the reader to efficiently skip blocks in constant time
177if the reader wants a summary of blocks, or if it wants to efficiently skip data
178it does not understand.  The LLVM IR reader uses this mechanism to skip function
179bodies, lazily reading them on demand.
180
181When reading and encoding the stream, several properties are maintained for the
182block.  In particular, each block maintains:
183
184#. A current abbrev id width.  This value starts at 2 at the beginning of the
185   stream, and is set every time a block record is entered.  The block entry
186   specifies the abbrev id width for the body of the block.
187
188#. A set of abbreviations.  Abbreviations may be defined within a block, in
189   which case they are only defined in that block (neither subblocks nor
190   enclosing blocks see the abbreviation).  Abbreviations can also be defined
191   inside a `BLOCKINFO`_ block, in which case they are defined in all blocks
192   that match the ID that the ``BLOCKINFO`` block is describing.
193
194As sub blocks are entered, these properties are saved and the new sub-block has
195its own set of abbreviations, and its own abbrev id width.  When a sub-block is
196popped, the saved values are restored.
197
198.. _ENTER_SUBBLOCK:
199
200ENTER_SUBBLOCK Encoding
201^^^^^^^^^^^^^^^^^^^^^^^
202
203:raw-html:`<tt>`
204[ENTER_SUBBLOCK, blockid\ :sub:`vbr8`, newabbrevlen\ :sub:`vbr4`, <align32bits>, blocklen_32]
205:raw-html:`</tt>`
206
207The ``ENTER_SUBBLOCK`` abbreviation ID specifies the start of a new block
208record.  The ``blockid`` value is encoded as an 8-bit VBR identifier, and
209indicates the type of block being entered, which can be a `standard block`_ or
210an application-specific block.  The ``newabbrevlen`` value is a 4-bit VBR, which
211specifies the abbrev id width for the sub-block.  The ``blocklen`` value is a
21232-bit aligned value that specifies the size of the subblock in 32-bit
213words. This value allows the reader to skip over the entire block in one jump.
214
215.. _END_BLOCK:
216
217END_BLOCK Encoding
218^^^^^^^^^^^^^^^^^^
219
220``[END_BLOCK, <align32bits>]``
221
222The ``END_BLOCK`` abbreviation ID specifies the end of the current block record.
223Its end is aligned to 32-bits to ensure that the size of the block is an even
224multiple of 32-bits.
225
226.. _Data Records:
227
228Data Records
229------------
230
231Data records consist of a record code and a number of (up to) 64-bit integer
232values.  The interpretation of the code and values is application specific and
233may vary between different block types.  Records can be encoded either using an
234unabbrev record, or with an abbreviation.  In the LLVM IR format, for example,
235there is a record which encodes the target triple of a module.  The code is
236``MODULE_CODE_TRIPLE``, and the values of the record are the ASCII codes for the
237characters in the string.
238
239.. _UNABBREV_RECORD:
240
241UNABBREV_RECORD Encoding
242^^^^^^^^^^^^^^^^^^^^^^^^
243
244:raw-html:`<tt>`
245[UNABBREV_RECORD, code\ :sub:`vbr6`, numops\ :sub:`vbr6`, op0\ :sub:`vbr6`, op1\ :sub:`vbr6`, ...]
246:raw-html:`</tt>`
247
248An ``UNABBREV_RECORD`` provides a default fallback encoding, which is both
249completely general and extremely inefficient.  It can describe an arbitrary
250record by emitting the code and operands as VBRs.
251
252For example, emitting an LLVM IR target triple as an unabbreviated record
253requires emitting the ``UNABBREV_RECORD`` abbrevid, a vbr6 for the
254``MODULE_CODE_TRIPLE`` code, a vbr6 for the length of the string, which is equal
255to the number of operands, and a vbr6 for each character.  Because there are no
256letters with values less than 32, each letter would need to be emitted as at
257least a two-part VBR, which means that each letter would require at least 12
258bits.  This is not an efficient encoding, but it is fully general.
259
260.. _abbreviated record encoding:
261
262Abbreviated Record Encoding
263^^^^^^^^^^^^^^^^^^^^^^^^^^^
264
265``[<abbrevid>, fields...]``
266
267An abbreviated record is an abbreviation id followed by a set of fields that are
268encoded according to the `abbreviation definition`_.  This allows records to be
269encoded significantly more densely than records encoded with the
270`UNABBREV_RECORD`_ type, and allows the abbreviation types to be specified in
271the stream itself, which allows the files to be completely self describing.  The
272actual encoding of abbreviations is defined below.
273
274The record code, which is the first field of an abbreviated record, may be
275encoded in the abbreviation definition (as a literal operand) or supplied in the
276abbreviated record (as a Fixed or VBR operand value).
277
278.. _abbreviation definition:
279
280Abbreviations
281-------------
282
283Abbreviations are an important form of compression for bitstreams.  The idea is
284to specify a dense encoding for a class of records once, then use that encoding
285to emit many records.  It takes space to emit the encoding into the file, but
286the space is recouped (hopefully plus some) when the records that use it are
287emitted.
288
289Abbreviations can be determined dynamically per client, per file. Because the
290abbreviations are stored in the bitstream itself, different streams of the same
291format can contain different sets of abbreviations according to the needs of the
292specific stream.  As a concrete example, LLVM IR files usually emit an
293abbreviation for binary operators.  If a specific LLVM module contained no or
294few binary operators, the abbreviation does not need to be emitted.
295
296.. _DEFINE_ABBREV:
297
298DEFINE_ABBREV Encoding
299^^^^^^^^^^^^^^^^^^^^^^
300
301:raw-html:`<tt>`
302[DEFINE_ABBREV, numabbrevops\ :sub:`vbr5`, abbrevop0, abbrevop1, ...]
303:raw-html:`</tt>`
304
305A ``DEFINE_ABBREV`` record adds an abbreviation to the list of currently defined
306abbreviations in the scope of this block.  This definition only exists inside
307this immediate block --- it is not visible in subblocks or enclosing blocks.
308Abbreviations are implicitly assigned IDs sequentially starting from 4 (the
309first application-defined abbreviation ID).  Any abbreviations defined in a
310``BLOCKINFO`` record for the particular block type receive IDs first, in order,
311followed by any abbreviations defined within the block itself.  Abbreviated data
312records reference this ID to indicate what abbreviation they are invoking.
313
314An abbreviation definition consists of the ``DEFINE_ABBREV`` abbrevid followed
315by a VBR that specifies the number of abbrev operands, then the abbrev operands
316themselves.  Abbreviation operands come in three forms.  They all start with a
317single bit that indicates whether the abbrev operand is a literal operand (when
318the bit is 1) or an encoding operand (when the bit is 0).
319
320#. Literal operands --- :raw-html:`<tt>` [1\ :sub:`1`, litvalue\
321   :sub:`vbr8`] :raw-html:`</tt>` --- Literal operands specify that the value in
322   the result is always a single specific value.  This specific value is emitted
323   as a vbr8 after the bit indicating that it is a literal operand.
324
325#. Encoding info without data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\
326   :sub:`3`] :raw-html:`</tt>` --- Operand encodings that do not have extra data
327   are just emitted as their code.
328
329#. Encoding info with data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\
330   :sub:`3`, value\ :sub:`vbr5`] :raw-html:`</tt>` --- Operand encodings that do
331   have extra data are emitted as their code, followed by the extra data.
332
333The possible operand encodings are:
334
335* Fixed (code 1): The field should be emitted as a `fixed-width value`_, whose
336  width is specified by the operand's extra data.
337
338* VBR (code 2): The field should be emitted as a `variable-width value`_, whose
339  width is specified by the operand's extra data.
340
341* Array (code 3): This field is an array of values.  The array operand has no
342  extra data, but expects another operand to follow it, indicating the element
343  type of the array.  When reading an array in an abbreviated record, the first
344  integer is a vbr6 that indicates the array length, followed by the encoded
345  elements of the array.  An array may only occur as the last operand of an
346  abbreviation (except for the one final operand that gives the array's
347  type).
348
349* Char6 (code 4): This field should be emitted as a `char6-encoded value`_.
350  This operand type takes no extra data. Char6 encoding is normally used as an
351  array element type.
352
353* Blob (code 5): This field is emitted as a vbr6, followed by padding to a
354  32-bit boundary (for alignment) and an array of 8-bit objects.  The array of
355  bytes is further followed by tail padding to ensure that its total length is a
356  multiple of 4 bytes.  This makes it very efficient for the reader to decode
357  the data without having to make a copy of it: it can use a pointer to the data
358  in the mapped in file and poke directly at it.  A blob may only occur as the
359  last operand of an abbreviation.
360
361For example, target triples in LLVM modules are encoded as a record of the form
362``[TRIPLE, 'a', 'b', 'c', 'd']``.  Consider if the bitstream emitted the
363following abbrev entry:
364
365::
366
367  [0, Fixed, 4]
368  [0, Array]
369  [0, Char6]
370
371When emitting a record with this abbreviation, the above entry would be emitted
372as:
373
374:raw-html:`<tt><blockquote>`
375[4\ :sub:`abbrevwidth`, 2\ :sub:`4`, 4\ :sub:`vbr6`, 0\ :sub:`6`, 1\ :sub:`6`, 2\ :sub:`6`, 3\ :sub:`6`]
376:raw-html:`</blockquote></tt>`
377
378These values are:
379
380#. The first value, 4, is the abbreviation ID for this abbreviation.
381
382#. The second value, 2, is the record code for ``TRIPLE`` records within LLVM IR
383   file ``MODULE_BLOCK`` blocks.
384
385#. The third value, 4, is the length of the array.
386
387#. The rest of the values are the char6 encoded values for ``"abcd"``.
388
389With this abbreviation, the triple is emitted with only 37 bits (assuming a
390abbrev id width of 3).  Without the abbreviation, significantly more space would
391be required to emit the target triple.  Also, because the ``TRIPLE`` value is
392not emitted as a literal in the abbreviation, the abbreviation can also be used
393for any other string value.
394
395.. _standard blocks:
396.. _standard block:
397
398Standard Blocks
399---------------
400
401In addition to the basic block structure and record encodings, the bitstream
402also defines specific built-in block types.  These block types specify how the
403stream is to be decoded or other metadata.  In the future, new standard blocks
404may be added.  Block IDs 0-7 are reserved for standard blocks.
405
406.. _BLOCKINFO:
407
408#0 - BLOCKINFO Block
409^^^^^^^^^^^^^^^^^^^^
410
411The ``BLOCKINFO`` block allows the description of metadata for other blocks.
412The currently specified records are:
413
414::
415
416  [SETBID (#1), blockid]
417  [DEFINE_ABBREV, ...]
418  [BLOCKNAME, ...name...]
419  [SETRECORDNAME, RecordID, ...name...]
420
421The ``SETBID`` record (code 1) indicates which block ID is being described.
422``SETBID`` records can occur multiple times throughout the block to change which
423block ID is being described.  There must be a ``SETBID`` record prior to any
424other records.
425
426Standard ``DEFINE_ABBREV`` records can occur inside ``BLOCKINFO`` blocks, but
427unlike their occurrence in normal blocks, the abbreviation is defined for blocks
428matching the block ID we are describing, *not* the ``BLOCKINFO`` block
429itself.  The abbreviations defined in ``BLOCKINFO`` blocks receive abbreviation
430IDs as described in `DEFINE_ABBREV`_.
431
432The ``BLOCKNAME`` record (code 2) can optionally occur in this block.  The
433elements of the record are the bytes of the string name of the block.
434llvm-bcanalyzer can use this to dump out bitcode files symbolically.
435
436The ``SETRECORDNAME`` record (code 3) can also optionally occur in this block.
437The first operand value is a record ID number, and the rest of the elements of
438the record are the bytes for the string name of the record.  llvm-bcanalyzer can
439use this to dump out bitcode files symbolically.
440
441Note that although the data in ``BLOCKINFO`` blocks is described as "metadata,"
442the abbreviations they contain are essential for parsing records from the
443corresponding blocks.  It is not safe to skip them.
444
445.. _wrapper:
446
447Bitcode Wrapper Format
448======================
449
450Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper
451structure.  This structure contains a simple header that indicates the offset
452and size of the embedded BC file.  This allows additional information to be
453stored alongside the BC file.  The structure of this file header is:
454
455:raw-html:`<tt><blockquote>`
456[Magic\ :sub:`32`, Version\ :sub:`32`, Offset\ :sub:`32`, Size\ :sub:`32`, CPUType\ :sub:`32`]
457:raw-html:`</blockquote></tt>`
458
459Each of the fields are 32-bit fields stored in little endian form (as with the
460rest of the bitcode file fields).  The Magic number is always ``0x0B17C0DE`` and
461the version is currently always ``0``.  The Offset field is the offset in bytes
462to the start of the bitcode stream in the file, and the Size field is the size
463in bytes of the stream. CPUType is a target-specific value that can be used to
464encode the CPU of the target.
465
466.. _native object file:
467
468Native Object File Wrapper Format
469=================================
470
471Bitcode files for LLVM IR may also be wrapped in a native object file
472(i.e. ELF, COFF, Mach-O).  The bitcode must be stored in a section of the object
473file named ``__LLVM,__bitcode`` for MachO or ``.llvmbc`` for the other object
474formats. ELF objects additionally support a ``.llvm.lto`` section for
475:doc:`FatLTO`, which contains bitcode suitable for LTO compilation (i.e. bitcode
476that has gone through a pre-link LTO pipeline).  The ``.llvmbc`` section
477predates FatLTO support in LLVM, and may not always contain bitcode that is
478suitable for LTO (i.e. from ``-fembed-bitcode``).  The wrapper format is useful
479for accommodating LTO in compilation pipelines where intermediate objects must
480be native object files which contain metadata in other sections.
481
482Not all tools support this format.  For example, lld and the gold plugin will
483ignore the ``.llvmbc`` section when linking object files, but can use
484``.llvm.lto`` sections when passed the correct command line options.
485
486.. _encoding of LLVM IR:
487
488LLVM IR Encoding
489================
490
491LLVM IR is encoded into a bitstream by defining blocks and records.  It uses
492blocks for things like constant pools, functions, symbol tables, etc.  It uses
493records for things like instructions, global variable descriptors, type
494descriptions, etc.  This document does not describe the set of abbreviations
495that the writer uses, as these are fully self-described in the file, and the
496reader is not allowed to build in any knowledge of this.
497
498Basics
499------
500
501LLVM IR Magic Number
502^^^^^^^^^^^^^^^^^^^^
503
504The magic number for LLVM IR files is:
505
506:raw-html:`<tt><blockquote>`
507['B'\ :sub:`8`, 'C'\ :sub:`8`, 0x0\ :sub:`4`, 0xC\ :sub:`4`, 0xE\ :sub:`4`, 0xD\ :sub:`4`]
508:raw-html:`</blockquote></tt>`
509
510.. _Signed VBRs:
511
512Signed VBRs
513^^^^^^^^^^^
514
515`Variable Width Integer`_ encoding is an efficient way to encode arbitrary sized
516unsigned values, but is an extremely inefficient for encoding signed values, as
517signed values are otherwise treated as maximally large unsigned values.
518
519As such, signed VBR values of a specific width are emitted as follows:
520
521* Positive values are emitted as VBRs of the specified width, but with their
522  value shifted left by one.
523
524* Negative values are emitted as VBRs of the specified width, but the negated
525  value is shifted left by one, and the low bit is set.
526
527With this encoding, small positive and small negative values can both be emitted
528efficiently. Signed VBR encoding is used in ``CST_CODE_INTEGER`` and
529``CST_CODE_WIDE_INTEGER`` records within ``CONSTANTS_BLOCK`` blocks.
530It is also used for phi instruction operands in `MODULE_CODE_VERSION`_ 1.
531
532LLVM IR Blocks
533^^^^^^^^^^^^^^
534
535LLVM IR is defined with the following blocks:
536
537* 8 --- `MODULE_BLOCK`_ --- This is the top-level block that contains the entire
538  module, and describes a variety of per-module information.
539
540* 9 --- `PARAMATTR_BLOCK`_ --- This enumerates the parameter attributes.
541
542* 10 --- `PARAMATTR_GROUP_BLOCK`_ --- This describes the attribute group table.
543
544* 11 --- `CONSTANTS_BLOCK`_ --- This describes constants for a module or
545  function.
546
547* 12 --- `FUNCTION_BLOCK`_ --- This describes a function body.
548
549* 14 --- `VALUE_SYMTAB_BLOCK`_ --- This describes a value symbol table.
550
551* 15 --- `METADATA_BLOCK`_ --- This describes metadata items.
552
553* 16 --- `METADATA_ATTACHMENT`_ --- This contains records associating metadata
554  with function instruction values.
555
556* 17 --- `TYPE_BLOCK`_ --- This describes all of the types in the module.
557
558* 23 --- `STRTAB_BLOCK`_ --- The bitcode file's string table.
559
560.. _MODULE_BLOCK:
561
562MODULE_BLOCK Contents
563---------------------
564
565The ``MODULE_BLOCK`` block (id 8) is the top-level block for LLVM bitcode files,
566and each module in a bitcode file must contain exactly one. A bitcode file with
567multi-module bitcode is valid. In addition to records (described below)
568containing information about the module, a ``MODULE_BLOCK`` block may contain
569the following sub-blocks:
570
571* `BLOCKINFO`_
572* `PARAMATTR_BLOCK`_
573* `PARAMATTR_GROUP_BLOCK`_
574* `TYPE_BLOCK`_
575* `VALUE_SYMTAB_BLOCK`_
576* `CONSTANTS_BLOCK`_
577* `FUNCTION_BLOCK`_
578* `METADATA_BLOCK`_
579
580.. _MODULE_CODE_VERSION:
581
582MODULE_CODE_VERSION Record
583^^^^^^^^^^^^^^^^^^^^^^^^^^
584
585``[VERSION, version#]``
586
587The ``VERSION`` record (code 1) contains a single value indicating the format
588version. Versions 0, 1 and 2 are supported at this time. The difference between
589version 0 and 1 is in the encoding of instruction operands in
590each `FUNCTION_BLOCK`_.
591
592In version 0, each value defined by an instruction is assigned an ID
593unique to the function. Function-level value IDs are assigned starting from
594``NumModuleValues`` since they share the same namespace as module-level
595values. The value enumerator resets after each function. When a value is
596an operand of an instruction, the value ID is used to represent the operand.
597For large functions or large modules, these operand values can be large.
598
599The encoding in version 1 attempts to avoid large operand values
600in common cases. Instead of using the value ID directly, operands are
601encoded as relative to the current instruction. Thus, if an operand
602is the value defined by the previous instruction, the operand
603will be encoded as 1.
604
605For example, instead of
606
607.. code-block:: none
608
609  #n = load #n-1
610  #n+1 = icmp eq #n, #const0
611  br #n+1, label #(bb1), label #(bb2)
612
613version 1 will encode the instructions as
614
615.. code-block:: none
616
617  #n = load #1
618  #n+1 = icmp eq #1, (#n+1)-#const0
619  br #1, label #(bb1), label #(bb2)
620
621Note in the example that operands which are constants also use
622the relative encoding, while operands like basic block labels
623do not use the relative encoding.
624
625Forward references will result in a negative value.
626This can be inefficient, as operands are normally encoded
627as unsigned VBRs. However, forward references are rare, except in the
628case of phi instructions. For phi instructions, operands are encoded as
629`Signed VBRs`_ to deal with forward references.
630
631In version 2, the meaning of module records ``FUNCTION``, ``GLOBALVAR``,
632``ALIAS``, ``IFUNC`` and ``COMDAT`` change such that the first two operands
633specify an offset and size of a string in a string table (see `STRTAB_BLOCK
634Contents`_), the function name is removed from the ``FNENTRY`` record in the
635value symbol table, and the top-level ``VALUE_SYMTAB_BLOCK`` may only contain
636``FNENTRY`` records.
637
638MODULE_CODE_TRIPLE Record
639^^^^^^^^^^^^^^^^^^^^^^^^^
640
641``[TRIPLE, ...string...]``
642
643The ``TRIPLE`` record (code 2) contains a variable number of values representing
644the bytes of the ``target triple`` specification string.
645
646MODULE_CODE_DATALAYOUT Record
647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
648
649``[DATALAYOUT, ...string...]``
650
651The ``DATALAYOUT`` record (code 3) contains a variable number of values
652representing the bytes of the ``target datalayout`` specification string.
653
654MODULE_CODE_ASM Record
655^^^^^^^^^^^^^^^^^^^^^^
656
657``[ASM, ...string...]``
658
659The ``ASM`` record (code 4) contains a variable number of values representing
660the bytes of ``module asm`` strings, with individual assembly blocks separated
661by newline (ASCII 10) characters.
662
663.. _MODULE_CODE_SECTIONNAME:
664
665MODULE_CODE_SECTIONNAME Record
666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
667
668``[SECTIONNAME, ...string...]``
669
670The ``SECTIONNAME`` record (code 5) contains a variable number of values
671representing the bytes of a single section name string. There should be one
672``SECTIONNAME`` record for each section name referenced (e.g., in global
673variable or function ``section`` attributes) within the module. These records
674can be referenced by the 1-based index in the *section* fields of ``GLOBALVAR``
675or ``FUNCTION`` records.
676
677MODULE_CODE_DEPLIB Record
678^^^^^^^^^^^^^^^^^^^^^^^^^
679
680``[DEPLIB, ...string...]``
681
682The ``DEPLIB`` record (code 6) contains a variable number of values representing
683the bytes of a single dependent library name string, one of the libraries
684mentioned in a ``deplibs`` declaration.  There should be one ``DEPLIB`` record
685for each library name referenced.
686
687MODULE_CODE_GLOBALVAR Record
688^^^^^^^^^^^^^^^^^^^^^^^^^^^^
689
690``[GLOBALVAR, strtab offset, strtab size, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal, unnamed_addr, externally_initialized, dllstorageclass, comdat, attributes, preemptionspecifier]``
691
692The ``GLOBALVAR`` record (code 7) marks the declaration or definition of a
693global variable. The operand fields are:
694
695* *strtab offset*, *strtab size*: Specifies the name of the global variable.
696  See `STRTAB_BLOCK Contents`_.
697
698* *pointer type*: The type index of the pointer type used to point to this
699  global variable
700
701* *isconst*: Non-zero if the variable is treated as constant within the module,
702  or zero if it is not
703
704* *initid*: If non-zero, the value index of the initializer for this variable,
705  plus 1.
706
707.. _linkage type:
708
709* *linkage*: An encoding of the linkage type for this variable:
710
711  * ``external``: code 0
712  * ``weak``: code 1
713  * ``appending``: code 2
714  * ``internal``: code 3
715  * ``linkonce``: code 4
716  * ``dllimport``: code 5
717  * ``dllexport``: code 6
718  * ``extern_weak``: code 7
719  * ``common``: code 8
720  * ``private``: code 9
721  * ``weak_odr``: code 10
722  * ``linkonce_odr``: code 11
723  * ``available_externally``: code 12
724  * deprecated : code 13
725  * deprecated : code 14
726
727* alignment*: The logarithm base 2 of the variable's requested alignment, plus 1
728
729* *section*: If non-zero, the 1-based section index in the table of
730  `MODULE_CODE_SECTIONNAME`_ entries.
731
732.. _visibility:
733
734* *visibility*: If present, an encoding of the visibility of this variable:
735
736  * ``default``: code 0
737  * ``hidden``: code 1
738  * ``protected``: code 2
739
740.. _bcthreadlocal:
741
742* *threadlocal*: If present, an encoding of the thread local storage mode of the
743  variable:
744
745  * ``not thread local``: code 0
746  * ``thread local; default TLS model``: code 1
747  * ``localdynamic``: code 2
748  * ``initialexec``: code 3
749  * ``localexec``: code 4
750
751.. _bcunnamedaddr:
752
753* *unnamed_addr*: If present, an encoding of the ``unnamed_addr`` attribute of this
754  variable:
755
756  * not ``unnamed_addr``: code 0
757  * ``unnamed_addr``: code 1
758  * ``local_unnamed_addr``: code 2
759
760.. _bcdllstorageclass:
761
762* *dllstorageclass*: If present, an encoding of the DLL storage class of this variable:
763
764  * ``default``: code 0
765  * ``dllimport``: code 1
766  * ``dllexport``: code 2
767
768* *comdat*: An encoding of the COMDAT of this function
769
770* *attributes*: If nonzero, the 1-based index into the table of AttributeLists.
771
772.. _bcpreemptionspecifier:
773
774* *preemptionspecifier*: If present, an encoding of the runtime preemption specifier of this variable:
775
776  * ``dso_preemptable``: code 0
777  * ``dso_local``: code 1
778
779.. _FUNCTION:
780
781MODULE_CODE_FUNCTION Record
782^^^^^^^^^^^^^^^^^^^^^^^^^^^
783
784``[FUNCTION, strtab offset, strtab size, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc, prologuedata, dllstorageclass, comdat, prefixdata, personalityfn, preemptionspecifier]``
785
786The ``FUNCTION`` record (code 8) marks the declaration or definition of a
787function. The operand fields are:
788
789* *strtab offset*, *strtab size*: Specifies the name of the function.
790  See `STRTAB_BLOCK Contents`_.
791
792* *type*: The type index of the function type describing this function
793
794* *callingconv*: The calling convention number:
795  * ``ccc``: code 0
796  * ``fastcc``: code 8
797  * ``coldcc``: code 9
798  * ``anyregcc``: code 13
799  * ``preserve_mostcc``: code 14
800  * ``preserve_allcc``: code 15
801  * ``swiftcc`` : code 16
802  * ``cxx_fast_tlscc``: code 17
803  * ``tailcc`` : code 18
804  * ``cfguard_checkcc`` : code 19
805  * ``swifttailcc`` : code 20
806  * ``x86_stdcallcc``: code 64
807  * ``x86_fastcallcc``: code 65
808  * ``arm_apcscc``: code 66
809  * ``arm_aapcscc``: code 67
810  * ``arm_aapcs_vfpcc``: code 68
811
812* isproto*: Non-zero if this entry represents a declaration rather than a
813  definition
814
815* *linkage*: An encoding of the `linkage type`_ for this function
816
817* *paramattr*: If nonzero, the 1-based parameter attribute index into the table
818  of `PARAMATTR_CODE_ENTRY`_ entries.
819
820* *alignment*: The logarithm base 2 of the function's requested alignment, plus
821  1
822
823* *section*: If non-zero, the 1-based section index in the table of
824  `MODULE_CODE_SECTIONNAME`_ entries.
825
826* *visibility*: An encoding of the `visibility`_ of this function
827
828* *gc*: If present and nonzero, the 1-based garbage collector index in the table
829  of `MODULE_CODE_GCNAME`_ entries.
830
831* *unnamed_addr*: If present, an encoding of the
832  :ref:`unnamed_addr<bcunnamedaddr>` attribute of this function
833
834* *prologuedata*: If non-zero, the value index of the prologue data for this function,
835  plus 1.
836
837* *dllstorageclass*: An encoding of the
838  :ref:`dllstorageclass<bcdllstorageclass>` of this function
839
840* *comdat*: An encoding of the COMDAT of this function
841
842* *prefixdata*: If non-zero, the value index of the prefix data for this function,
843  plus 1.
844
845* *personalityfn*: If non-zero, the value index of the personality function for this function,
846  plus 1.
847
848* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>`  of this function.
849
850MODULE_CODE_ALIAS Record
851^^^^^^^^^^^^^^^^^^^^^^^^
852
853``[ALIAS, strtab offset, strtab size, alias type, aliasee val#, linkage, visibility, dllstorageclass, threadlocal, unnamed_addr, preemptionspecifier]``
854
855The ``ALIAS`` record (code 9) marks the definition of an alias. The operand
856fields are
857
858* *strtab offset*, *strtab size*: Specifies the name of the alias.
859  See `STRTAB_BLOCK Contents`_.
860
861* *alias type*: The type index of the alias
862
863* *aliasee val#*: The value index of the aliased value
864
865* *linkage*: An encoding of the `linkage type`_ for this alias
866
867* *visibility*: If present, an encoding of the `visibility`_ of the alias
868
869* *dllstorageclass*: If present, an encoding of the
870  :ref:`dllstorageclass<bcdllstorageclass>` of the alias
871
872* *threadlocal*: If present, an encoding of the
873  :ref:`thread local property<bcthreadlocal>` of the alias
874
875* *unnamed_addr*: If present, an encoding of the
876  :ref:`unnamed_addr<bcunnamedaddr>` attribute of this alias
877
878* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>`  of this alias.
879
880.. _MODULE_CODE_GCNAME:
881
882MODULE_CODE_GCNAME Record
883^^^^^^^^^^^^^^^^^^^^^^^^^
884
885``[GCNAME, ...string...]``
886
887The ``GCNAME`` record (code 11) contains a variable number of values
888representing the bytes of a single garbage collector name string. There should
889be one ``GCNAME`` record for each garbage collector name referenced in function
890``gc`` attributes within the module. These records can be referenced by 1-based
891index in the *gc* fields of ``FUNCTION`` records.
892
893.. _PARAMATTR_BLOCK:
894
895PARAMATTR_BLOCK Contents
896------------------------
897
898The ``PARAMATTR_BLOCK`` block (id 9) contains a table of entries describing the
899attributes of function parameters. These entries are referenced by 1-based index
900in the *paramattr* field of module block `FUNCTION`_ records, or within the
901*attr* field of function block ``INST_INVOKE`` and ``INST_CALL`` records.
902
903Entries within ``PARAMATTR_BLOCK`` are constructed to ensure that each is unique
904(i.e., no two indices represent equivalent attribute lists).
905
906.. _PARAMATTR_CODE_ENTRY:
907
908PARAMATTR_CODE_ENTRY Record
909^^^^^^^^^^^^^^^^^^^^^^^^^^^
910
911``[ENTRY, attrgrp0, attrgrp1, ...]``
912
913The ``ENTRY`` record (code 2) contains a variable number of values describing a
914unique set of function parameter attributes. Each *attrgrp* value is used as a
915key with which to look up an entry in the attribute group table described
916in the ``PARAMATTR_GROUP_BLOCK`` block.
917
918.. _PARAMATTR_CODE_ENTRY_OLD:
919
920PARAMATTR_CODE_ENTRY_OLD Record
921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
922
923.. note::
924  This is a legacy encoding for attributes, produced by LLVM versions 3.2 and
925  earlier. It is guaranteed to be understood by the current LLVM version, as
926  specified in the :ref:`IR backwards compatibility` policy.
927
928``[ENTRY, paramidx0, attr0, paramidx1, attr1...]``
929
930The ``ENTRY`` record (code 1) contains an even number of values describing a
931unique set of function parameter attributes. Each *paramidx* value indicates
932which set of attributes is represented, with 0 representing the return value
933attributes, 0xFFFFFFFF representing function attributes, and other values
934representing 1-based function parameters. Each *attr* value is a bitmap with the
935following interpretation:
936
937* bit 0: ``zeroext``
938* bit 1: ``signext``
939* bit 2: ``noreturn``
940* bit 3: ``inreg``
941* bit 4: ``sret``
942* bit 5: ``nounwind``
943* bit 6: ``noalias``
944* bit 7: ``byval``
945* bit 8: ``nest``
946* bit 9: ``readnone``
947* bit 10: ``readonly``
948* bit 11: ``noinline``
949* bit 12: ``alwaysinline``
950* bit 13: ``optsize``
951* bit 14: ``ssp``
952* bit 15: ``sspreq``
953* bits 16-31: ``align n``
954* bit 32: ``nocapture``
955* bit 33: ``noredzone``
956* bit 34: ``noimplicitfloat``
957* bit 35: ``naked``
958* bit 36: ``inlinehint``
959* bits 37-39: ``alignstack n``, represented as the logarithm
960  base 2 of the requested alignment, plus 1
961
962.. _PARAMATTR_GROUP_BLOCK:
963
964PARAMATTR_GROUP_BLOCK Contents
965------------------------------
966
967The ``PARAMATTR_GROUP_BLOCK`` block (id 10) contains a table of entries
968describing the attribute groups present in the module. These entries can be
969referenced within ``PARAMATTR_CODE_ENTRY`` entries.
970
971.. _PARAMATTR_GRP_CODE_ENTRY:
972
973PARAMATTR_GRP_CODE_ENTRY Record
974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
975
976``[ENTRY, grpid, paramidx, attr0, attr1, ...]``
977
978The ``ENTRY`` record (code 3) contains *grpid* and *paramidx* values, followed
979by a variable number of values describing a unique group of attributes. The
980*grpid* value is a unique key for the attribute group, which can be referenced
981within ``PARAMATTR_CODE_ENTRY`` entries. The *paramidx* value indicates which
982set of attributes is represented, with 0 representing the return value
983attributes, 0xFFFFFFFF representing function attributes, and other values
984representing 1-based function parameters.
985
986Each *attr* is itself represented as a variable number of values:
987
988``kind, key [, ...], [value [, ...]]``
989
990Each attribute is either a well-known LLVM attribute (possibly with an integer
991value associated with it), or an arbitrary string (possibly with an arbitrary
992string value associated with it). The *kind* value is an integer code
993distinguishing between these possibilities:
994
995* code 0: well-known attribute
996* code 1: well-known attribute with an integer value
997* code 3: string attribute
998* code 4: string attribute with a string value
999
1000For well-known attributes (code 0 or 1), the *key* value is an integer code
1001identifying the attribute. For attributes with an integer argument (code 1),
1002the *value* value indicates the argument.
1003
1004For string attributes (code 3 or 4), the *key* value is actually a variable
1005number of values representing the bytes of a null-terminated string. For
1006attributes with a string argument (code 4), the *value* value is similarly a
1007variable number of values representing the bytes of a null-terminated string.
1008
1009The integer codes are mapped to attributes as described in the
1010``AttributeKindCodes`` enumeration in the file `LLVMBitCodes.h
1011<https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/Bitcode/LLVMBitCodes.h>`_.
1012
1013For example:
1014
1015::
1016
1017  enum AttributeKindCodes {
1018    // = 0 is unused
1019    ATTR_KIND_ALIGNMENT = 1,
1020    ATTR_KIND_ALWAYS_INLINE = 2,
1021    ...
1022    }
1023
1024Correspond to:
1025
1026* code 1: ``align(<n>)``
1027* code 2: ``alwaysinline``
1028
1029The mappings between the enumeration and the attribute name string may be found
1030in the file `Attributes.td
1031<https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/IR/Attributes.td>`_.
1032
1033.. note::
1034  The ``allocsize`` attribute has a special encoding for its arguments. Its two
1035  arguments, which are 32-bit integers, are packed into one 64-bit integer value
1036  (i.e. ``(EltSizeParam << 32) | NumEltsParam``), with ``NumEltsParam`` taking on
1037  the sentinel value -1 if it is not specified.
1038
1039.. note::
1040  The ``vscale_range`` attribute has a special encoding for its arguments. Its two
1041  arguments, which are 32-bit integers, are packed into one 64-bit integer value
1042  (i.e. ``(Min << 32) | Max``), with ``Max`` taking on the value of ``Min`` if
1043  it is not specified.
1044
1045.. _TYPE_BLOCK:
1046
1047TYPE_BLOCK Contents
1048-------------------
1049
1050The ``TYPE_BLOCK`` block (id 17) contains records which constitute a table of
1051type operator entries used to represent types referenced within an LLVM
1052module. Each record (with the exception of `NUMENTRY`_) generates a single type
1053table entry, which may be referenced by 0-based index from instructions,
1054constants, metadata, type symbol table entries, or other type operator records.
1055
1056Entries within ``TYPE_BLOCK`` are constructed to ensure that each entry is
1057unique (i.e., no two indices represent structurally equivalent types).
1058
1059.. _TYPE_CODE_NUMENTRY:
1060.. _NUMENTRY:
1061
1062TYPE_CODE_NUMENTRY Record
1063^^^^^^^^^^^^^^^^^^^^^^^^^
1064
1065``[NUMENTRY, numentries]``
1066
1067The ``NUMENTRY`` record (code 1) contains a single value which indicates the
1068total number of type code entries in the type table of the module. If present,
1069``NUMENTRY`` should be the first record in the block.
1070
1071TYPE_CODE_VOID Record
1072^^^^^^^^^^^^^^^^^^^^^
1073
1074``[VOID]``
1075
1076The ``VOID`` record (code 2) adds a ``void`` type to the type table.
1077
1078TYPE_CODE_HALF Record
1079^^^^^^^^^^^^^^^^^^^^^
1080
1081``[HALF]``
1082
1083The ``HALF`` record (code 10) adds a ``half`` (16-bit floating point) type to
1084the type table.
1085
1086TYPE_CODE_BFLOAT Record
1087^^^^^^^^^^^^^^^^^^^^^^^
1088
1089``[BFLOAT]``
1090
1091The ``BFLOAT`` record (code 23) adds a ``bfloat`` (16-bit brain floating point)
1092type to the type table.
1093
1094TYPE_CODE_FLOAT Record
1095^^^^^^^^^^^^^^^^^^^^^^
1096
1097``[FLOAT]``
1098
1099The ``FLOAT`` record (code 3) adds a ``float`` (32-bit floating point) type to
1100the type table.
1101
1102TYPE_CODE_DOUBLE Record
1103^^^^^^^^^^^^^^^^^^^^^^^
1104
1105``[DOUBLE]``
1106
1107The ``DOUBLE`` record (code 4) adds a ``double`` (64-bit floating point) type to
1108the type table.
1109
1110TYPE_CODE_LABEL Record
1111^^^^^^^^^^^^^^^^^^^^^^
1112
1113``[LABEL]``
1114
1115The ``LABEL`` record (code 5) adds a ``label`` type to the type table.
1116
1117TYPE_CODE_OPAQUE Record
1118^^^^^^^^^^^^^^^^^^^^^^^
1119
1120``[OPAQUE]``
1121
1122The ``OPAQUE`` record (code 6) adds an ``opaque`` type to the type table, with
1123a name defined by a previously encountered ``STRUCT_NAME`` record. Note that
1124distinct ``opaque`` types are not unified.
1125
1126TYPE_CODE_INTEGER Record
1127^^^^^^^^^^^^^^^^^^^^^^^^
1128
1129``[INTEGER, width]``
1130
1131The ``INTEGER`` record (code 7) adds an integer type to the type table. The
1132single *width* field indicates the width of the integer type.
1133
1134TYPE_CODE_POINTER Record
1135^^^^^^^^^^^^^^^^^^^^^^^^
1136
1137``[POINTER, pointee type, address space]``
1138
1139The ``POINTER`` record (code 8) adds a pointer type to the type table. The
1140operand fields are
1141
1142* *pointee type*: The type index of the pointed-to type
1143
1144* *address space*: If supplied, the target-specific numbered address space where
1145  the pointed-to object resides. Otherwise, the default address space is zero.
1146
1147TYPE_CODE_FUNCTION_OLD Record
1148^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1149
1150.. note::
1151  This is a legacy encoding for functions, produced by LLVM versions 3.0 and
1152  earlier. It is guaranteed to be understood by the current LLVM version, as
1153  specified in the :ref:`IR backwards compatibility` policy.
1154
1155``[FUNCTION_OLD, vararg, ignored, retty, ...paramty... ]``
1156
1157The ``FUNCTION_OLD`` record (code 9) adds a function type to the type table.
1158The operand fields are
1159
1160* *vararg*: Non-zero if the type represents a varargs function
1161
1162* *ignored*: This value field is present for backward compatibility only, and is
1163  ignored
1164
1165* *retty*: The type index of the function's return type
1166
1167* *paramty*: Zero or more type indices representing the parameter types of the
1168  function
1169
1170TYPE_CODE_ARRAY Record
1171^^^^^^^^^^^^^^^^^^^^^^
1172
1173``[ARRAY, numelts, eltty]``
1174
1175The ``ARRAY`` record (code 11) adds an array type to the type table.  The
1176operand fields are
1177
1178* *numelts*: The number of elements in arrays of this type
1179
1180* *eltty*: The type index of the array element type
1181
1182TYPE_CODE_VECTOR Record
1183^^^^^^^^^^^^^^^^^^^^^^^
1184
1185``[VECTOR, numelts, eltty]``
1186
1187The ``VECTOR`` record (code 12) adds a vector type to the type table.  The
1188operand fields are
1189
1190* *numelts*: The number of elements in vectors of this type
1191
1192* *eltty*: The type index of the vector element type
1193
1194TYPE_CODE_X86_FP80 Record
1195^^^^^^^^^^^^^^^^^^^^^^^^^
1196
1197``[X86_FP80]``
1198
1199The ``X86_FP80`` record (code 13) adds an ``x86_fp80`` (80-bit floating point)
1200type to the type table.
1201
1202TYPE_CODE_FP128 Record
1203^^^^^^^^^^^^^^^^^^^^^^
1204
1205``[FP128]``
1206
1207The ``FP128`` record (code 14) adds an ``fp128`` (128-bit floating point) type
1208to the type table.
1209
1210TYPE_CODE_PPC_FP128 Record
1211^^^^^^^^^^^^^^^^^^^^^^^^^^
1212
1213``[PPC_FP128]``
1214
1215The ``PPC_FP128`` record (code 15) adds a ``ppc_fp128`` (128-bit floating point)
1216type to the type table.
1217
1218TYPE_CODE_METADATA Record
1219^^^^^^^^^^^^^^^^^^^^^^^^^
1220
1221``[METADATA]``
1222
1223The ``METADATA`` record (code 16) adds a ``metadata`` type to the type table.
1224
1225TYPE_CODE_X86_MMX Record
1226^^^^^^^^^^^^^^^^^^^^^^^^
1227
1228``[X86_MMX]``
1229
1230The ``X86_MMX`` record (code 17) is deprecated, and imported as a <1 x i64> vector.
1231
1232TYPE_CODE_STRUCT_ANON Record
1233^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1234
1235``[STRUCT_ANON, ispacked, ...eltty...]``
1236
1237The ``STRUCT_ANON`` record (code 18) adds a literal struct type to the type
1238table. The operand fields are
1239
1240* *ispacked*: Non-zero if the type represents a packed structure
1241
1242* *eltty*: Zero or more type indices representing the element types of the
1243  structure
1244
1245TYPE_CODE_STRUCT_NAME Record
1246^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1247
1248``[STRUCT_NAME, ...string...]``
1249
1250The ``STRUCT_NAME`` record (code 19) contains a variable number of values
1251representing the bytes of a struct name. The next ``OPAQUE`` or
1252``STRUCT_NAMED`` record will use this name.
1253
1254TYPE_CODE_STRUCT_NAMED Record
1255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1256
1257``[STRUCT_NAMED, ispacked, ...eltty...]``
1258
1259The ``STRUCT_NAMED`` record (code 20) adds an identified struct type to the
1260type table, with a name defined by a previously encountered ``STRUCT_NAME``
1261record. The operand fields are
1262
1263* *ispacked*: Non-zero if the type represents a packed structure
1264
1265* *eltty*: Zero or more type indices representing the element types of the
1266  structure
1267
1268TYPE_CODE_FUNCTION Record
1269^^^^^^^^^^^^^^^^^^^^^^^^^
1270
1271``[FUNCTION, vararg, retty, ...paramty... ]``
1272
1273The ``FUNCTION`` record (code 21) adds a function type to the type table. The
1274operand fields are
1275
1276* *vararg*: Non-zero if the type represents a varargs function
1277
1278* *retty*: The type index of the function's return type
1279
1280* *paramty*: Zero or more type indices representing the parameter types of the
1281  function
1282
1283TYPE_CODE_X86_AMX Record
1284^^^^^^^^^^^^^^^^^^^^^^^^
1285
1286``[X86_AMX]``
1287
1288The ``X86_AMX`` record (code 24) adds an ``x86_amx`` type to the type table.
1289
1290TYPE_CODE_TARGET_TYPE Record
1291^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1292
1293``[TARGET_TYPE, num_tys, ...ty_params..., ...int_params... ]``
1294
1295The ``TARGET_TYPE`` record (code 26) adds a target extension type to the type
1296table, with a name defined by a previously encountered ``STRUCT_NAME`` record.
1297The operand fields are
1298
1299* *num_tys*: The number of parameters that are types (as opposed to integers)
1300
1301* *ty_params*: Type indices that represent type parameters
1302
1303* *int_params*: Numbers that correspond to the integer parameters.
1304
1305.. _CONSTANTS_BLOCK:
1306
1307CONSTANTS_BLOCK Contents
1308------------------------
1309
1310The ``CONSTANTS_BLOCK`` block (id 11) ...
1311
1312.. _FUNCTION_BLOCK:
1313
1314FUNCTION_BLOCK Contents
1315-----------------------
1316
1317The ``FUNCTION_BLOCK`` block (id 12) ...
1318
1319In addition to the record types described below, a ``FUNCTION_BLOCK`` block may
1320contain the following sub-blocks:
1321
1322* `CONSTANTS_BLOCK`_
1323* `VALUE_SYMTAB_BLOCK`_
1324* `METADATA_ATTACHMENT`_
1325
1326.. _VALUE_SYMTAB_BLOCK:
1327
1328VALUE_SYMTAB_BLOCK Contents
1329---------------------------
1330
1331The ``VALUE_SYMTAB_BLOCK`` block (id 14) ...
1332
1333.. _METADATA_BLOCK:
1334
1335METADATA_BLOCK Contents
1336-----------------------
1337
1338The ``METADATA_BLOCK`` block (id 15) ...
1339
1340.. _METADATA_ATTACHMENT:
1341
1342METADATA_ATTACHMENT Contents
1343----------------------------
1344
1345The ``METADATA_ATTACHMENT`` block (id 16) ...
1346
1347.. _STRTAB_BLOCK:
1348
1349STRTAB_BLOCK Contents
1350---------------------
1351
1352The ``STRTAB`` block (id 23) contains a single record (``STRTAB_BLOB``, id 1)
1353with a single blob operand containing the bitcode file's string table.
1354
1355Strings in the string table are not null terminated. A record's *strtab
1356offset* and *strtab size* operands specify the byte offset and size of a
1357string within the string table.
1358
1359The string table is used by all preceding blocks in the bitcode file that are
1360not succeeded by another intervening ``STRTAB`` block. Normally a bitcode
1361file will have a single string table, but it may have more than one if it
1362was created by binary concatenation of multiple bitcode files.
1363