1 //===-- NativeRegisterContextLinux_arm.cpp --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 10 11 #include "NativeRegisterContextLinux_arm.h" 12 13 #include "Plugins/Process/Linux/NativeProcessLinux.h" 14 #include "Plugins/Process/Linux/Procfs.h" 15 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 16 #include "Plugins/Process/Utility/RegisterInfoPOSIX_arm.h" 17 #include "lldb/Host/HostInfo.h" 18 #include "lldb/Utility/DataBufferHeap.h" 19 #include "lldb/Utility/Log.h" 20 #include "lldb/Utility/RegisterValue.h" 21 #include "lldb/Utility/Status.h" 22 23 #include <elf.h> 24 #include <sys/uio.h> 25 26 #define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(m_fpr)) 27 28 #ifndef PTRACE_GETVFPREGS 29 #define PTRACE_GETVFPREGS 27 30 #define PTRACE_SETVFPREGS 28 31 #endif 32 #ifndef PTRACE_GETHBPREGS 33 #define PTRACE_GETHBPREGS 29 34 #define PTRACE_SETHBPREGS 30 35 #endif 36 #if !defined(PTRACE_TYPE_ARG3) 37 #define PTRACE_TYPE_ARG3 void * 38 #endif 39 #if !defined(PTRACE_TYPE_ARG4) 40 #define PTRACE_TYPE_ARG4 void * 41 #endif 42 43 using namespace lldb; 44 using namespace lldb_private; 45 using namespace lldb_private::process_linux; 46 47 #if defined(__arm__) 48 49 std::unique_ptr<NativeRegisterContextLinux> 50 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( 51 const ArchSpec &target_arch, NativeThreadLinux &native_thread) { 52 return std::make_unique<NativeRegisterContextLinux_arm>(target_arch, 53 native_thread); 54 } 55 56 llvm::Expected<ArchSpec> 57 NativeRegisterContextLinux::DetermineArchitecture(lldb::tid_t tid) { 58 return HostInfo::GetArchitecture(); 59 } 60 61 #endif // defined(__arm__) 62 63 NativeRegisterContextLinux_arm::NativeRegisterContextLinux_arm( 64 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) 65 : NativeRegisterContextRegisterInfo(native_thread, 66 new RegisterInfoPOSIX_arm(target_arch)), 67 NativeRegisterContextLinux(native_thread) { 68 assert(target_arch.GetMachine() == llvm::Triple::arm); 69 70 ::memset(&m_fpr, 0, sizeof(m_fpr)); 71 ::memset(&m_gpr_arm, 0, sizeof(m_gpr_arm)); 72 ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs)); 73 ::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs)); 74 75 // 16 is just a maximum value, query hardware for actual watchpoint count 76 m_max_hwp_supported = 16; 77 m_max_hbp_supported = 16; 78 m_refresh_hwdebug_info = true; 79 } 80 81 RegisterInfoPOSIX_arm &NativeRegisterContextLinux_arm::GetRegisterInfo() const { 82 return static_cast<RegisterInfoPOSIX_arm &>(*m_register_info_interface_up); 83 } 84 85 uint32_t NativeRegisterContextLinux_arm::GetRegisterSetCount() const { 86 return GetRegisterInfo().GetRegisterSetCount(); 87 } 88 89 uint32_t NativeRegisterContextLinux_arm::GetUserRegisterCount() const { 90 uint32_t count = 0; 91 for (uint32_t set_index = 0; set_index < GetRegisterSetCount(); ++set_index) 92 count += GetRegisterSet(set_index)->num_registers; 93 return count; 94 } 95 96 const RegisterSet * 97 NativeRegisterContextLinux_arm::GetRegisterSet(uint32_t set_index) const { 98 return GetRegisterInfo().GetRegisterSet(set_index); 99 } 100 101 Status 102 NativeRegisterContextLinux_arm::ReadRegister(const RegisterInfo *reg_info, 103 RegisterValue ®_value) { 104 Status error; 105 106 if (!reg_info) { 107 error = Status::FromErrorString("reg_info NULL"); 108 return error; 109 } 110 111 const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; 112 113 if (IsFPR(reg)) { 114 error = ReadFPR(); 115 if (error.Fail()) 116 return error; 117 } else { 118 uint32_t full_reg = reg; 119 bool is_subreg = reg_info->invalidate_regs && 120 (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM); 121 122 if (is_subreg) { 123 // Read the full aligned 64-bit register. 124 full_reg = reg_info->invalidate_regs[0]; 125 } 126 127 error = ReadRegisterRaw(full_reg, reg_value); 128 129 if (error.Success()) { 130 // If our read was not aligned (for ah,bh,ch,dh), shift our returned 131 // value one byte to the right. 132 if (is_subreg && (reg_info->byte_offset & 0x1)) 133 reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8); 134 135 // If our return byte size was greater than the return value reg size, 136 // then use the type specified by reg_info rather than the uint64_t 137 // default 138 if (reg_value.GetByteSize() > reg_info->byte_size) 139 reg_value.SetType(*reg_info); 140 } 141 return error; 142 } 143 144 // Get pointer to m_fpr variable and set the data from it. 145 uint32_t fpr_offset = CalculateFprOffset(reg_info); 146 assert(fpr_offset < sizeof m_fpr); 147 uint8_t *src = (uint8_t *)&m_fpr + fpr_offset; 148 switch (reg_info->byte_size) { 149 case 2: 150 reg_value.SetUInt16(*(uint16_t *)src); 151 break; 152 case 4: 153 reg_value.SetUInt32(*(uint32_t *)src); 154 break; 155 case 8: 156 reg_value.SetUInt64(*(uint64_t *)src); 157 break; 158 case 16: 159 reg_value.SetBytes(src, 16, GetByteOrder()); 160 break; 161 default: 162 assert(false && "Unhandled data size."); 163 error = Status::FromErrorStringWithFormat("unhandled byte size: %" PRIu32, 164 reg_info->byte_size); 165 break; 166 } 167 168 return error; 169 } 170 171 Status 172 NativeRegisterContextLinux_arm::WriteRegister(const RegisterInfo *reg_info, 173 const RegisterValue ®_value) { 174 if (!reg_info) 175 return Status::FromErrorString("reg_info NULL"); 176 177 const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB]; 178 if (reg_index == LLDB_INVALID_REGNUM) 179 return Status::FromErrorStringWithFormat( 180 "no lldb regnum for %s", 181 reg_info && reg_info->name ? reg_info->name : "<unknown register>"); 182 183 if (IsGPR(reg_index)) 184 return WriteRegisterRaw(reg_index, reg_value); 185 186 if (IsFPR(reg_index)) { 187 // Get pointer to m_fpr variable and set the data to it. 188 uint32_t fpr_offset = CalculateFprOffset(reg_info); 189 assert(fpr_offset < sizeof m_fpr); 190 uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset; 191 ::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size); 192 193 return WriteFPR(); 194 } 195 196 return Status::FromErrorString( 197 "failed - register wasn't recognized to be a GPR or an FPR, " 198 "write strategy unknown"); 199 } 200 201 Status NativeRegisterContextLinux_arm::ReadAllRegisterValues( 202 lldb::WritableDataBufferSP &data_sp) { 203 Status error; 204 205 data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); 206 error = ReadGPR(); 207 if (error.Fail()) 208 return error; 209 210 error = ReadFPR(); 211 if (error.Fail()) 212 return error; 213 214 uint8_t *dst = data_sp->GetBytes(); 215 ::memcpy(dst, &m_gpr_arm, GetGPRSize()); 216 dst += GetGPRSize(); 217 ::memcpy(dst, &m_fpr, sizeof(m_fpr)); 218 219 return error; 220 } 221 222 Status NativeRegisterContextLinux_arm::WriteAllRegisterValues( 223 const lldb::DataBufferSP &data_sp) { 224 Status error; 225 226 if (!data_sp) { 227 error = Status::FromErrorStringWithFormat( 228 "NativeRegisterContextLinux_arm::%s invalid data_sp provided", 229 __FUNCTION__); 230 return error; 231 } 232 233 if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { 234 error = Status::FromErrorStringWithFormat( 235 "NativeRegisterContextLinux_arm::%s data_sp contained mismatched " 236 "data size, expected %" PRIu64 ", actual %" PRIu64, 237 __FUNCTION__, (uint64_t)REG_CONTEXT_SIZE, data_sp->GetByteSize()); 238 return error; 239 } 240 241 const uint8_t *src = data_sp->GetBytes(); 242 if (src == nullptr) { 243 error = Status::FromErrorStringWithFormat( 244 "NativeRegisterContextLinux_arm::%s " 245 "DataBuffer::GetBytes() returned a null " 246 "pointer", 247 __FUNCTION__); 248 return error; 249 } 250 ::memcpy(&m_gpr_arm, src, GetRegisterInfoInterface().GetGPRSize()); 251 252 error = WriteGPR(); 253 if (error.Fail()) 254 return error; 255 256 src += GetRegisterInfoInterface().GetGPRSize(); 257 ::memcpy(&m_fpr, src, sizeof(m_fpr)); 258 259 error = WriteFPR(); 260 if (error.Fail()) 261 return error; 262 263 return error; 264 } 265 266 bool NativeRegisterContextLinux_arm::IsGPR(unsigned reg) const { 267 if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) == 268 RegisterInfoPOSIX_arm::GPRegSet) 269 return true; 270 return false; 271 } 272 273 bool NativeRegisterContextLinux_arm::IsFPR(unsigned reg) const { 274 if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) == 275 RegisterInfoPOSIX_arm::FPRegSet) 276 return true; 277 return false; 278 } 279 280 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareBreakpoints() { 281 Log *log = GetLog(POSIXLog::Breakpoints); 282 283 LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 284 285 Status error; 286 287 // Read hardware breakpoint and watchpoint information. 288 error = ReadHardwareDebugInfo(); 289 290 if (error.Fail()) 291 return 0; 292 293 LLDB_LOG(log, "{0}", m_max_hbp_supported); 294 return m_max_hbp_supported; 295 } 296 297 uint32_t 298 NativeRegisterContextLinux_arm::SetHardwareBreakpoint(lldb::addr_t addr, 299 size_t size) { 300 Log *log = GetLog(POSIXLog::Breakpoints); 301 LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size); 302 303 // Read hardware breakpoint and watchpoint information. 304 Status error = ReadHardwareDebugInfo(); 305 306 if (error.Fail()) 307 return LLDB_INVALID_INDEX32; 308 309 uint32_t control_value = 0, bp_index = 0; 310 311 // Setup address and control values. 312 // Use size to get a hint of arm vs thumb modes. 313 switch (size) { 314 case 2: 315 control_value = (0x3 << 5) | 7; 316 addr &= ~1; 317 break; 318 case 4: 319 control_value = (0xfu << 5) | 7; 320 addr &= ~3; 321 break; 322 default: 323 return LLDB_INVALID_INDEX32; 324 } 325 326 // Iterate over stored breakpoints and find a free bp_index 327 bp_index = LLDB_INVALID_INDEX32; 328 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 329 if ((m_hbr_regs[i].control & 1) == 0) { 330 bp_index = i; // Mark last free slot 331 } else if (m_hbr_regs[i].address == addr) { 332 return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints. 333 } 334 } 335 336 if (bp_index == LLDB_INVALID_INDEX32) 337 return LLDB_INVALID_INDEX32; 338 339 // Update breakpoint in local cache 340 m_hbr_regs[bp_index].real_addr = addr; 341 m_hbr_regs[bp_index].address = addr; 342 m_hbr_regs[bp_index].control = control_value; 343 344 // PTRACE call to set corresponding hardware breakpoint register. 345 error = WriteHardwareDebugRegs(eDREGTypeBREAK, bp_index); 346 347 if (error.Fail()) { 348 m_hbr_regs[bp_index].address = 0; 349 m_hbr_regs[bp_index].control &= ~1; 350 351 return LLDB_INVALID_INDEX32; 352 } 353 354 return bp_index; 355 } 356 357 bool NativeRegisterContextLinux_arm::ClearHardwareBreakpoint(uint32_t hw_idx) { 358 Log *log = GetLog(POSIXLog::Breakpoints); 359 LLDB_LOG(log, "hw_idx: {0}", hw_idx); 360 361 // Read hardware breakpoint and watchpoint information. 362 Status error = ReadHardwareDebugInfo(); 363 364 if (error.Fail()) 365 return false; 366 367 if (hw_idx >= m_max_hbp_supported) 368 return false; 369 370 // Create a backup we can revert to in case of failure. 371 lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address; 372 uint32_t tempControl = m_hbr_regs[hw_idx].control; 373 374 m_hbr_regs[hw_idx].control &= ~1; 375 m_hbr_regs[hw_idx].address = 0; 376 377 // PTRACE call to clear corresponding hardware breakpoint register. 378 error = WriteHardwareDebugRegs(eDREGTypeBREAK, hw_idx); 379 380 if (error.Fail()) { 381 m_hbr_regs[hw_idx].control = tempControl; 382 m_hbr_regs[hw_idx].address = tempAddr; 383 384 return false; 385 } 386 387 return true; 388 } 389 390 Status NativeRegisterContextLinux_arm::GetHardwareBreakHitIndex( 391 uint32_t &bp_index, lldb::addr_t trap_addr) { 392 Log *log = GetLog(POSIXLog::Breakpoints); 393 394 LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 395 396 lldb::addr_t break_addr; 397 398 for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) { 399 break_addr = m_hbr_regs[bp_index].address; 400 401 if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) { 402 m_hbr_regs[bp_index].hit_addr = trap_addr; 403 return Status(); 404 } 405 } 406 407 bp_index = LLDB_INVALID_INDEX32; 408 return Status(); 409 } 410 411 Status NativeRegisterContextLinux_arm::ClearAllHardwareBreakpoints() { 412 Log *log = GetLog(POSIXLog::Breakpoints); 413 414 LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 415 416 Status error; 417 418 // Read hardware breakpoint and watchpoint information. 419 error = ReadHardwareDebugInfo(); 420 421 if (error.Fail()) 422 return error; 423 424 lldb::addr_t tempAddr = 0; 425 uint32_t tempControl = 0; 426 427 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 428 if (m_hbr_regs[i].control & 0x01) { 429 // Create a backup we can revert to in case of failure. 430 tempAddr = m_hbr_regs[i].address; 431 tempControl = m_hbr_regs[i].control; 432 433 // Clear breakpoints in local cache 434 m_hbr_regs[i].control &= ~1; 435 m_hbr_regs[i].address = 0; 436 437 // Ptrace call to update hardware debug registers 438 error = WriteHardwareDebugRegs(eDREGTypeBREAK, i); 439 440 if (error.Fail()) { 441 m_hbr_regs[i].control = tempControl; 442 m_hbr_regs[i].address = tempAddr; 443 444 return error; 445 } 446 } 447 } 448 449 return Status(); 450 } 451 452 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareWatchpoints() { 453 Log *log = GetLog(POSIXLog::Watchpoints); 454 455 // Read hardware breakpoint and watchpoint information. 456 Status error = ReadHardwareDebugInfo(); 457 458 if (error.Fail()) 459 return 0; 460 461 LLDB_LOG(log, "{0}", m_max_hwp_supported); 462 return m_max_hwp_supported; 463 } 464 465 uint32_t NativeRegisterContextLinux_arm::SetHardwareWatchpoint( 466 lldb::addr_t addr, size_t size, uint32_t watch_flags) { 467 Log *log = GetLog(POSIXLog::Watchpoints); 468 LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size, 469 watch_flags); 470 471 // Read hardware breakpoint and watchpoint information. 472 Status error = ReadHardwareDebugInfo(); 473 474 if (error.Fail()) 475 return LLDB_INVALID_INDEX32; 476 477 uint32_t control_value = 0, wp_index = 0, addr_word_offset = 0, byte_mask = 0; 478 lldb::addr_t real_addr = addr; 479 480 // Check if we are setting watchpoint other than read/write/access Also 481 // update watchpoint flag to match Arm write-read bit configuration. 482 switch (watch_flags) { 483 case 1: 484 watch_flags = 2; 485 break; 486 case 2: 487 watch_flags = 1; 488 break; 489 case 3: 490 break; 491 default: 492 return LLDB_INVALID_INDEX32; 493 } 494 495 // Can't watch zero bytes 496 // Can't watch more than 4 bytes per WVR/WCR pair 497 498 if (size == 0 || size > 4) 499 return LLDB_INVALID_INDEX32; 500 501 // Check 4-byte alignment for hardware watchpoint target address. Below is a 502 // hack to recalculate address and size in order to make sure we can watch 503 // non 4-byte aligned addresses as well. 504 if (addr & 0x03) { 505 uint8_t watch_mask = (addr & 0x03) + size; 506 507 if (watch_mask > 0x04) 508 return LLDB_INVALID_INDEX32; 509 else if (watch_mask <= 0x02) 510 size = 2; 511 else 512 size = 4; 513 514 addr = addr & (~0x03); 515 } 516 517 // We can only watch up to four bytes that follow a 4 byte aligned address 518 // per watchpoint register pair, so make sure we can properly encode this. 519 addr_word_offset = addr % 4; 520 byte_mask = ((1u << size) - 1u) << addr_word_offset; 521 522 // Check if we need multiple watchpoint register 523 if (byte_mask > 0xfu) 524 return LLDB_INVALID_INDEX32; 525 526 // Setup control value 527 // Make the byte_mask into a valid Byte Address Select mask 528 control_value = byte_mask << 5; 529 530 // Turn on appropriate watchpoint flags read or write 531 control_value |= (watch_flags << 3); 532 533 // Enable this watchpoint and make it stop in privileged or user mode; 534 control_value |= 7; 535 536 // Make sure bits 1:0 are clear in our address 537 addr &= ~((lldb::addr_t)3); 538 539 // Iterate over stored watchpoints and find a free wp_index 540 wp_index = LLDB_INVALID_INDEX32; 541 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 542 if ((m_hwp_regs[i].control & 1) == 0) { 543 wp_index = i; // Mark last free slot 544 } else if (m_hwp_regs[i].address == addr) { 545 return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints. 546 } 547 } 548 549 if (wp_index == LLDB_INVALID_INDEX32) 550 return LLDB_INVALID_INDEX32; 551 552 // Update watchpoint in local cache 553 m_hwp_regs[wp_index].real_addr = real_addr; 554 m_hwp_regs[wp_index].address = addr; 555 m_hwp_regs[wp_index].control = control_value; 556 557 // PTRACE call to set corresponding watchpoint register. 558 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 559 560 if (error.Fail()) { 561 m_hwp_regs[wp_index].address = 0; 562 m_hwp_regs[wp_index].control &= ~1; 563 564 return LLDB_INVALID_INDEX32; 565 } 566 567 return wp_index; 568 } 569 570 bool NativeRegisterContextLinux_arm::ClearHardwareWatchpoint( 571 uint32_t wp_index) { 572 Log *log = GetLog(POSIXLog::Watchpoints); 573 LLDB_LOG(log, "wp_index: {0}", wp_index); 574 575 // Read hardware breakpoint and watchpoint information. 576 Status error = ReadHardwareDebugInfo(); 577 578 if (error.Fail()) 579 return false; 580 581 if (wp_index >= m_max_hwp_supported) 582 return false; 583 584 // Create a backup we can revert to in case of failure. 585 lldb::addr_t tempAddr = m_hwp_regs[wp_index].address; 586 uint32_t tempControl = m_hwp_regs[wp_index].control; 587 588 // Update watchpoint in local cache 589 m_hwp_regs[wp_index].control &= ~1; 590 m_hwp_regs[wp_index].address = 0; 591 592 // Ptrace call to update hardware debug registers 593 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 594 595 if (error.Fail()) { 596 m_hwp_regs[wp_index].control = tempControl; 597 m_hwp_regs[wp_index].address = tempAddr; 598 599 return false; 600 } 601 602 return true; 603 } 604 605 Status NativeRegisterContextLinux_arm::ClearAllHardwareWatchpoints() { 606 // Read hardware breakpoint and watchpoint information. 607 Status error = ReadHardwareDebugInfo(); 608 609 if (error.Fail()) 610 return error; 611 612 lldb::addr_t tempAddr = 0; 613 uint32_t tempControl = 0; 614 615 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 616 if (m_hwp_regs[i].control & 0x01) { 617 // Create a backup we can revert to in case of failure. 618 tempAddr = m_hwp_regs[i].address; 619 tempControl = m_hwp_regs[i].control; 620 621 // Clear watchpoints in local cache 622 m_hwp_regs[i].control &= ~1; 623 m_hwp_regs[i].address = 0; 624 625 // Ptrace call to update hardware debug registers 626 error = WriteHardwareDebugRegs(eDREGTypeWATCH, i); 627 628 if (error.Fail()) { 629 m_hwp_regs[i].control = tempControl; 630 m_hwp_regs[i].address = tempAddr; 631 632 return error; 633 } 634 } 635 } 636 637 return Status(); 638 } 639 640 uint32_t NativeRegisterContextLinux_arm::GetWatchpointSize(uint32_t wp_index) { 641 Log *log = GetLog(POSIXLog::Watchpoints); 642 LLDB_LOG(log, "wp_index: {0}", wp_index); 643 644 switch ((m_hwp_regs[wp_index].control >> 5) & 0x0f) { 645 case 0x01: 646 return 1; 647 case 0x03: 648 return 2; 649 case 0x07: 650 return 3; 651 case 0x0f: 652 return 4; 653 default: 654 return 0; 655 } 656 } 657 bool NativeRegisterContextLinux_arm::WatchpointIsEnabled(uint32_t wp_index) { 658 Log *log = GetLog(POSIXLog::Watchpoints); 659 LLDB_LOG(log, "wp_index: {0}", wp_index); 660 661 if ((m_hwp_regs[wp_index].control & 0x1) == 0x1) 662 return true; 663 else 664 return false; 665 } 666 667 Status 668 NativeRegisterContextLinux_arm::GetWatchpointHitIndex(uint32_t &wp_index, 669 lldb::addr_t trap_addr) { 670 Log *log = GetLog(POSIXLog::Watchpoints); 671 LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr); 672 673 uint32_t watch_size; 674 lldb::addr_t watch_addr; 675 676 for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) { 677 watch_size = GetWatchpointSize(wp_index); 678 watch_addr = m_hwp_regs[wp_index].address; 679 680 if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr && 681 trap_addr < watch_addr + watch_size) { 682 m_hwp_regs[wp_index].hit_addr = trap_addr; 683 return Status(); 684 } 685 } 686 687 wp_index = LLDB_INVALID_INDEX32; 688 return Status(); 689 } 690 691 lldb::addr_t 692 NativeRegisterContextLinux_arm::GetWatchpointAddress(uint32_t wp_index) { 693 Log *log = GetLog(POSIXLog::Watchpoints); 694 LLDB_LOG(log, "wp_index: {0}", wp_index); 695 696 if (wp_index >= m_max_hwp_supported) 697 return LLDB_INVALID_ADDRESS; 698 699 if (WatchpointIsEnabled(wp_index)) 700 return m_hwp_regs[wp_index].real_addr; 701 else 702 return LLDB_INVALID_ADDRESS; 703 } 704 705 lldb::addr_t 706 NativeRegisterContextLinux_arm::GetWatchpointHitAddress(uint32_t wp_index) { 707 Log *log = GetLog(POSIXLog::Watchpoints); 708 LLDB_LOG(log, "wp_index: {0}", wp_index); 709 710 if (wp_index >= m_max_hwp_supported) 711 return LLDB_INVALID_ADDRESS; 712 713 if (WatchpointIsEnabled(wp_index)) 714 return m_hwp_regs[wp_index].hit_addr; 715 else 716 return LLDB_INVALID_ADDRESS; 717 } 718 719 Status NativeRegisterContextLinux_arm::ReadHardwareDebugInfo() { 720 Status error; 721 722 if (!m_refresh_hwdebug_info) { 723 return Status(); 724 } 725 726 unsigned int cap_val; 727 728 error = NativeProcessLinux::PtraceWrapper(PTRACE_GETHBPREGS, m_thread.GetID(), 729 nullptr, &cap_val, 730 sizeof(unsigned int)); 731 732 if (error.Fail()) 733 return error; 734 735 m_max_hwp_supported = (cap_val >> 8) & 0xff; 736 m_max_hbp_supported = cap_val & 0xff; 737 m_refresh_hwdebug_info = false; 738 739 return error; 740 } 741 742 Status NativeRegisterContextLinux_arm::WriteHardwareDebugRegs(int hwbType, 743 int hwb_index) { 744 Status error; 745 746 lldb::addr_t *addr_buf; 747 uint32_t *ctrl_buf; 748 749 if (hwbType == eDREGTypeWATCH) { 750 addr_buf = &m_hwp_regs[hwb_index].address; 751 ctrl_buf = &m_hwp_regs[hwb_index].control; 752 753 error = NativeProcessLinux::PtraceWrapper( 754 PTRACE_SETHBPREGS, m_thread.GetID(), 755 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 1), addr_buf, 756 sizeof(unsigned int)); 757 758 if (error.Fail()) 759 return error; 760 761 error = NativeProcessLinux::PtraceWrapper( 762 PTRACE_SETHBPREGS, m_thread.GetID(), 763 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 2), ctrl_buf, 764 sizeof(unsigned int)); 765 } else { 766 addr_buf = &m_hbr_regs[hwb_index].address; 767 ctrl_buf = &m_hbr_regs[hwb_index].control; 768 769 error = NativeProcessLinux::PtraceWrapper( 770 PTRACE_SETHBPREGS, m_thread.GetID(), 771 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 1), addr_buf, 772 sizeof(unsigned int)); 773 774 if (error.Fail()) 775 return error; 776 777 error = NativeProcessLinux::PtraceWrapper( 778 PTRACE_SETHBPREGS, m_thread.GetID(), 779 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 2), ctrl_buf, 780 sizeof(unsigned int)); 781 } 782 783 return error; 784 } 785 786 uint32_t NativeRegisterContextLinux_arm::CalculateFprOffset( 787 const RegisterInfo *reg_info) const { 788 return reg_info->byte_offset - GetGPRSize(); 789 } 790 791 Status NativeRegisterContextLinux_arm::DoReadRegisterValue( 792 uint32_t offset, const char *reg_name, uint32_t size, 793 RegisterValue &value) { 794 // PTRACE_PEEKUSER don't work in the aarch64 linux kernel used on android 795 // devices (always return "Bad address"). To avoid using PTRACE_PEEKUSER we 796 // read out the full GPR register set instead. This approach is about 4 times 797 // slower but the performance overhead is negligible in comparison to 798 // processing time in lldb-server. 799 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 800 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 801 return Status::FromErrorString( 802 "Register isn't fit into the size of the GPR area"); 803 804 Status error = ReadGPR(); 805 if (error.Fail()) 806 return error; 807 808 value.SetUInt32(m_gpr_arm[offset / sizeof(uint32_t)]); 809 return Status(); 810 } 811 812 Status NativeRegisterContextLinux_arm::DoWriteRegisterValue( 813 uint32_t offset, const char *reg_name, const RegisterValue &value) { 814 // PTRACE_POKEUSER don't work in the aarch64 linux kernel used on android 815 // devices (always return "Bad address"). To avoid using PTRACE_POKEUSER we 816 // read out the full GPR register set, modify the requested register and 817 // write it back. This approach is about 4 times slower but the performance 818 // overhead is negligible in comparison to processing time in lldb-server. 819 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 820 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 821 return Status::FromErrorString( 822 "Register isn't fit into the size of the GPR area"); 823 824 Status error = ReadGPR(); 825 if (error.Fail()) 826 return error; 827 828 uint32_t reg_value = value.GetAsUInt32(); 829 // As precaution for an undefined behavior encountered while setting PC we 830 // will clear thumb bit of new PC if we are already in thumb mode; that is 831 // CPSR thumb mode bit is set. 832 if (offset / sizeof(uint32_t) == gpr_pc_arm) { 833 // Check if we are already in thumb mode and thumb bit of current PC is 834 // read out to be zero and thumb bit of next PC is read out to be one. 835 if ((m_gpr_arm[gpr_cpsr_arm] & 0x20) && !(m_gpr_arm[gpr_pc_arm] & 0x01) && 836 (value.GetAsUInt32() & 0x01)) { 837 reg_value &= (~1ull); 838 } 839 } 840 841 m_gpr_arm[offset / sizeof(uint32_t)] = reg_value; 842 return WriteGPR(); 843 } 844 845 Status NativeRegisterContextLinux_arm::ReadGPR() { 846 #ifdef __arm__ 847 return NativeRegisterContextLinux::ReadGPR(); 848 #else // __aarch64__ 849 struct iovec ioVec; 850 ioVec.iov_base = GetGPRBuffer(); 851 ioVec.iov_len = GetGPRSize(); 852 853 return ReadRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); 854 #endif // __arm__ 855 } 856 857 Status NativeRegisterContextLinux_arm::WriteGPR() { 858 #ifdef __arm__ 859 return NativeRegisterContextLinux::WriteGPR(); 860 #else // __aarch64__ 861 struct iovec ioVec; 862 ioVec.iov_base = GetGPRBuffer(); 863 ioVec.iov_len = GetGPRSize(); 864 865 return WriteRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); 866 #endif // __arm__ 867 } 868 869 Status NativeRegisterContextLinux_arm::ReadFPR() { 870 #ifdef __arm__ 871 return NativeProcessLinux::PtraceWrapper(PTRACE_GETVFPREGS, m_thread.GetID(), 872 nullptr, GetFPRBuffer(), 873 GetFPRSize()); 874 #else // __aarch64__ 875 struct iovec ioVec; 876 ioVec.iov_base = GetFPRBuffer(); 877 ioVec.iov_len = GetFPRSize(); 878 879 return ReadRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP); 880 #endif // __arm__ 881 } 882 883 Status NativeRegisterContextLinux_arm::WriteFPR() { 884 #ifdef __arm__ 885 return NativeProcessLinux::PtraceWrapper(PTRACE_SETVFPREGS, m_thread.GetID(), 886 nullptr, GetFPRBuffer(), 887 GetFPRSize()); 888 #else // __aarch64__ 889 struct iovec ioVec; 890 ioVec.iov_base = GetFPRBuffer(); 891 ioVec.iov_len = GetFPRSize(); 892 893 return WriteRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP); 894 #endif // __arm__ 895 } 896 897 #endif // defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 898