xref: /llvm-project/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp (revision b804516dc5cf2bb99ff02aa49f9d4da76d721ea9)
1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ScopeExit.h"
10 #include "llvm/ADT/StringRef.h"
11 
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
15 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
16 #include "lldb/Core/Debugger.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Progress.h"
21 #include "lldb/Core/Section.h"
22 #include "lldb/Host/Host.h"
23 #include "lldb/Symbol/DWARFCallFrameInfo.h"
24 #include "lldb/Symbol/ObjectFile.h"
25 #include "lldb/Target/DynamicLoader.h"
26 #include "lldb/Target/MemoryRegionInfo.h"
27 #include "lldb/Target/Platform.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/SectionLoadList.h"
30 #include "lldb/Target/Target.h"
31 #include "lldb/Target/Thread.h"
32 #include "lldb/Target/ThreadList.h"
33 #include "lldb/Utility/ArchSpec.h"
34 #include "lldb/Utility/DataBuffer.h"
35 #include "lldb/Utility/FileSpec.h"
36 #include "lldb/Utility/FileSpecList.h"
37 #include "lldb/Utility/LLDBLog.h"
38 #include "lldb/Utility/Log.h"
39 #include "lldb/Utility/RangeMap.h"
40 #include "lldb/Utility/RegisterValue.h"
41 #include "lldb/Utility/Status.h"
42 #include "lldb/Utility/StreamString.h"
43 #include "lldb/Utility/Timer.h"
44 #include "lldb/Utility/UUID.h"
45 
46 #include "lldb/Host/SafeMachO.h"
47 
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/Support/FormatVariadic.h"
50 #include "llvm/Support/MemoryBuffer.h"
51 
52 #include "ObjectFileMachO.h"
53 
54 #if defined(__APPLE__)
55 #include <TargetConditionals.h>
56 // GetLLDBSharedCacheUUID() needs to call dlsym()
57 #include <dlfcn.h>
58 #include <mach/mach_init.h>
59 #include <mach/vm_map.h>
60 #include <lldb/Host/SafeMachO.h>
61 #endif
62 
63 #ifndef __APPLE__
64 #include "lldb/Utility/AppleUuidCompatibility.h"
65 #else
66 #include <uuid/uuid.h>
67 #endif
68 
69 #include <bitset>
70 #include <memory>
71 #include <optional>
72 
73 // Unfortunately the signpost header pulls in the system MachO header, too.
74 #ifdef CPU_TYPE_ARM
75 #undef CPU_TYPE_ARM
76 #endif
77 #ifdef CPU_TYPE_ARM64
78 #undef CPU_TYPE_ARM64
79 #endif
80 #ifdef CPU_TYPE_ARM64_32
81 #undef CPU_TYPE_ARM64_32
82 #endif
83 #ifdef CPU_TYPE_I386
84 #undef CPU_TYPE_I386
85 #endif
86 #ifdef CPU_TYPE_X86_64
87 #undef CPU_TYPE_X86_64
88 #endif
89 #ifdef MH_DYLINKER
90 #undef MH_DYLINKER
91 #endif
92 #ifdef MH_OBJECT
93 #undef MH_OBJECT
94 #endif
95 #ifdef LC_VERSION_MIN_MACOSX
96 #undef LC_VERSION_MIN_MACOSX
97 #endif
98 #ifdef LC_VERSION_MIN_IPHONEOS
99 #undef LC_VERSION_MIN_IPHONEOS
100 #endif
101 #ifdef LC_VERSION_MIN_TVOS
102 #undef LC_VERSION_MIN_TVOS
103 #endif
104 #ifdef LC_VERSION_MIN_WATCHOS
105 #undef LC_VERSION_MIN_WATCHOS
106 #endif
107 #ifdef LC_BUILD_VERSION
108 #undef LC_BUILD_VERSION
109 #endif
110 #ifdef PLATFORM_MACOS
111 #undef PLATFORM_MACOS
112 #endif
113 #ifdef PLATFORM_MACCATALYST
114 #undef PLATFORM_MACCATALYST
115 #endif
116 #ifdef PLATFORM_IOS
117 #undef PLATFORM_IOS
118 #endif
119 #ifdef PLATFORM_IOSSIMULATOR
120 #undef PLATFORM_IOSSIMULATOR
121 #endif
122 #ifdef PLATFORM_TVOS
123 #undef PLATFORM_TVOS
124 #endif
125 #ifdef PLATFORM_TVOSSIMULATOR
126 #undef PLATFORM_TVOSSIMULATOR
127 #endif
128 #ifdef PLATFORM_WATCHOS
129 #undef PLATFORM_WATCHOS
130 #endif
131 #ifdef PLATFORM_WATCHOSSIMULATOR
132 #undef PLATFORM_WATCHOSSIMULATOR
133 #endif
134 
135 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
136 using namespace lldb;
137 using namespace lldb_private;
138 using namespace llvm::MachO;
139 
140 static constexpr llvm::StringLiteral g_loader_path = "@loader_path";
141 static constexpr llvm::StringLiteral g_executable_path = "@executable_path";
142 
143 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
144 
145 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
146                                const char *alt_name, size_t reg_byte_size,
147                                Stream &data) {
148   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
149   if (reg_info == nullptr)
150     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
151   if (reg_info) {
152     lldb_private::RegisterValue reg_value;
153     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
154       if (reg_info->byte_size >= reg_byte_size)
155         data.Write(reg_value.GetBytes(), reg_byte_size);
156       else {
157         data.Write(reg_value.GetBytes(), reg_info->byte_size);
158         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
159           data.PutChar(0);
160       }
161       return;
162     }
163   }
164   // Just write zeros if all else fails
165   for (size_t i = 0; i < reg_byte_size; ++i)
166     data.PutChar(0);
167 }
168 
169 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
170 public:
171   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
172                                     const DataExtractor &data)
173       : RegisterContextDarwin_x86_64(thread, 0) {
174     SetRegisterDataFrom_LC_THREAD(data);
175   }
176 
177   void InvalidateAllRegisters() override {
178     // Do nothing... registers are always valid...
179   }
180 
181   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
182     lldb::offset_t offset = 0;
183     SetError(GPRRegSet, Read, -1);
184     SetError(FPURegSet, Read, -1);
185     SetError(EXCRegSet, Read, -1);
186     bool done = false;
187 
188     while (!done) {
189       int flavor = data.GetU32(&offset);
190       if (flavor == 0)
191         done = true;
192       else {
193         uint32_t i;
194         uint32_t count = data.GetU32(&offset);
195         switch (flavor) {
196         case GPRRegSet:
197           for (i = 0; i < count; ++i)
198             (&gpr.rax)[i] = data.GetU64(&offset);
199           SetError(GPRRegSet, Read, 0);
200           done = true;
201 
202           break;
203         case FPURegSet:
204           // TODO: fill in FPU regs....
205           // SetError (FPURegSet, Read, -1);
206           done = true;
207 
208           break;
209         case EXCRegSet:
210           exc.trapno = data.GetU32(&offset);
211           exc.err = data.GetU32(&offset);
212           exc.faultvaddr = data.GetU64(&offset);
213           SetError(EXCRegSet, Read, 0);
214           done = true;
215           break;
216         case 7:
217         case 8:
218         case 9:
219           // fancy flavors that encapsulate of the above flavors...
220           break;
221 
222         default:
223           done = true;
224           break;
225         }
226       }
227     }
228   }
229 
230   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
231     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
232     if (reg_ctx_sp) {
233       RegisterContext *reg_ctx = reg_ctx_sp.get();
234 
235       data.PutHex32(GPRRegSet); // Flavor
236       data.PutHex32(GPRWordCount);
237       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
238       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
239       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
240       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
241       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
242       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
243       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
244       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
245       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
246       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
247       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
248       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
249       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
250       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
251       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
252       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
253       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
254       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
255       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
256       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
257       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
258 
259       //            // Write out the FPU registers
260       //            const size_t fpu_byte_size = sizeof(FPU);
261       //            size_t bytes_written = 0;
262       //            data.PutHex32 (FPURegSet);
263       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
264       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
265       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
266       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
267       //            data);   // uint16_t    fcw;    // "fctrl"
268       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
269       //            data);  // uint16_t    fsw;    // "fstat"
270       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
271       //            data);   // uint8_t     ftw;    // "ftag"
272       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
273       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
274       //            data);     // uint16_t    fop;    // "fop"
275       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
276       //            data);    // uint32_t    ip;     // "fioff"
277       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
278       //            data);    // uint16_t    cs;     // "fiseg"
279       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
280       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
281       //            data);   // uint32_t    dp;     // "fooff"
282       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
283       //            data);    // uint16_t    ds;     // "foseg"
284       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
285       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
286       //            data);    // uint32_t    mxcsr;
287       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
288       //            4, data);// uint32_t    mxcsrmask;
289       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
290       //            sizeof(MMSReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
292       //            sizeof(MMSReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
294       //            sizeof(MMSReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
296       //            sizeof(MMSReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
298       //            sizeof(MMSReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
300       //            sizeof(MMSReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
302       //            sizeof(MMSReg), data);
303       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
304       //            sizeof(MMSReg), data);
305       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
306       //            sizeof(XMMReg), data);
307       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
308       //            sizeof(XMMReg), data);
309       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
310       //            sizeof(XMMReg), data);
311       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
312       //            sizeof(XMMReg), data);
313       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
314       //            sizeof(XMMReg), data);
315       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
316       //            sizeof(XMMReg), data);
317       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
318       //            sizeof(XMMReg), data);
319       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
320       //            sizeof(XMMReg), data);
321       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
322       //            sizeof(XMMReg), data);
323       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
324       //            sizeof(XMMReg), data);
325       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
326       //            sizeof(XMMReg), data);
327       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
328       //            sizeof(XMMReg), data);
329       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
330       //            sizeof(XMMReg), data);
331       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
332       //            sizeof(XMMReg), data);
333       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
334       //            sizeof(XMMReg), data);
335       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
336       //            sizeof(XMMReg), data);
337       //
338       //            // Fill rest with zeros
339       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
340       //            i)
341       //                data.PutChar(0);
342 
343       // Write out the EXC registers
344       data.PutHex32(EXCRegSet);
345       data.PutHex32(EXCWordCount);
346       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
347       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
348       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
349       return true;
350     }
351     return false;
352   }
353 
354 protected:
355   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
356 
357   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
358 
359   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
360 
361   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
362     return 0;
363   }
364 
365   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
366     return 0;
367   }
368 
369   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
370     return 0;
371   }
372 };
373 
374 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
375 public:
376   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
377                                   const DataExtractor &data)
378       : RegisterContextDarwin_i386(thread, 0) {
379     SetRegisterDataFrom_LC_THREAD(data);
380   }
381 
382   void InvalidateAllRegisters() override {
383     // Do nothing... registers are always valid...
384   }
385 
386   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
387     lldb::offset_t offset = 0;
388     SetError(GPRRegSet, Read, -1);
389     SetError(FPURegSet, Read, -1);
390     SetError(EXCRegSet, Read, -1);
391     bool done = false;
392 
393     while (!done) {
394       int flavor = data.GetU32(&offset);
395       if (flavor == 0)
396         done = true;
397       else {
398         uint32_t i;
399         uint32_t count = data.GetU32(&offset);
400         switch (flavor) {
401         case GPRRegSet:
402           for (i = 0; i < count; ++i)
403             (&gpr.eax)[i] = data.GetU32(&offset);
404           SetError(GPRRegSet, Read, 0);
405           done = true;
406 
407           break;
408         case FPURegSet:
409           // TODO: fill in FPU regs....
410           // SetError (FPURegSet, Read, -1);
411           done = true;
412 
413           break;
414         case EXCRegSet:
415           exc.trapno = data.GetU32(&offset);
416           exc.err = data.GetU32(&offset);
417           exc.faultvaddr = data.GetU32(&offset);
418           SetError(EXCRegSet, Read, 0);
419           done = true;
420           break;
421         case 7:
422         case 8:
423         case 9:
424           // fancy flavors that encapsulate of the above flavors...
425           break;
426 
427         default:
428           done = true;
429           break;
430         }
431       }
432     }
433   }
434 
435   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
436     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
437     if (reg_ctx_sp) {
438       RegisterContext *reg_ctx = reg_ctx_sp.get();
439 
440       data.PutHex32(GPRRegSet); // Flavor
441       data.PutHex32(GPRWordCount);
442       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
443       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
444       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
445       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
446       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
447       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
448       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
449       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
450       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
451       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
452       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
453       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
454       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
455       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
456       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
457       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
458 
459       // Write out the EXC registers
460       data.PutHex32(EXCRegSet);
461       data.PutHex32(EXCWordCount);
462       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
463       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
464       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
465       return true;
466     }
467     return false;
468   }
469 
470 protected:
471   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
472 
473   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
474 
475   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
476 
477   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
478     return 0;
479   }
480 
481   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
482     return 0;
483   }
484 
485   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
486     return 0;
487   }
488 };
489 
490 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
491 public:
492   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
493                                  const DataExtractor &data)
494       : RegisterContextDarwin_arm(thread, 0) {
495     SetRegisterDataFrom_LC_THREAD(data);
496   }
497 
498   void InvalidateAllRegisters() override {
499     // Do nothing... registers are always valid...
500   }
501 
502   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
503     lldb::offset_t offset = 0;
504     SetError(GPRRegSet, Read, -1);
505     SetError(FPURegSet, Read, -1);
506     SetError(EXCRegSet, Read, -1);
507     bool done = false;
508 
509     while (!done) {
510       int flavor = data.GetU32(&offset);
511       uint32_t count = data.GetU32(&offset);
512       lldb::offset_t next_thread_state = offset + (count * 4);
513       switch (flavor) {
514       case GPRAltRegSet:
515       case GPRRegSet: {
516         // r0-r15, plus CPSR
517         uint32_t gpr_buf_count = (sizeof(gpr.r) / sizeof(gpr.r[0])) + 1;
518         if (count == gpr_buf_count) {
519           for (uint32_t i = 0; i < (count - 1); ++i) {
520             gpr.r[i] = data.GetU32(&offset);
521           }
522           gpr.cpsr = data.GetU32(&offset);
523 
524           SetError(GPRRegSet, Read, 0);
525         }
526       }
527         offset = next_thread_state;
528         break;
529 
530       case FPURegSet: {
531         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats;
532         const int fpu_reg_buf_size = sizeof(fpu.floats);
533         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
534                               fpu_reg_buf) == fpu_reg_buf_size) {
535           offset += fpu_reg_buf_size;
536           fpu.fpscr = data.GetU32(&offset);
537           SetError(FPURegSet, Read, 0);
538         } else {
539           done = true;
540         }
541       }
542         offset = next_thread_state;
543         break;
544 
545       case EXCRegSet:
546         if (count == 3) {
547           exc.exception = data.GetU32(&offset);
548           exc.fsr = data.GetU32(&offset);
549           exc.far = data.GetU32(&offset);
550           SetError(EXCRegSet, Read, 0);
551         }
552         done = true;
553         offset = next_thread_state;
554         break;
555 
556       // Unknown register set flavor, stop trying to parse.
557       default:
558         done = true;
559       }
560     }
561   }
562 
563   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
564     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
565     if (reg_ctx_sp) {
566       RegisterContext *reg_ctx = reg_ctx_sp.get();
567 
568       data.PutHex32(GPRRegSet); // Flavor
569       data.PutHex32(GPRWordCount);
570       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
571       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
572       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
573       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
574       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
575       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
576       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
577       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
578       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
579       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
580       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
581       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
582       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
583       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
584       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
585       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
586       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
587 
588       // Write out the EXC registers
589       //            data.PutHex32 (EXCRegSet);
590       //            data.PutHex32 (EXCWordCount);
591       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
592       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
593       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
594       return true;
595     }
596     return false;
597   }
598 
599 protected:
600   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
601 
602   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
603 
604   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
605 
606   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
607 
608   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
609     return 0;
610   }
611 
612   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
613     return 0;
614   }
615 
616   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
617     return 0;
618   }
619 
620   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
621     return -1;
622   }
623 };
624 
625 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
626 public:
627   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
628                                    const DataExtractor &data)
629       : RegisterContextDarwin_arm64(thread, 0) {
630     SetRegisterDataFrom_LC_THREAD(data);
631   }
632 
633   void InvalidateAllRegisters() override {
634     // Do nothing... registers are always valid...
635   }
636 
637   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
638     lldb::offset_t offset = 0;
639     SetError(GPRRegSet, Read, -1);
640     SetError(FPURegSet, Read, -1);
641     SetError(EXCRegSet, Read, -1);
642     bool done = false;
643     while (!done) {
644       int flavor = data.GetU32(&offset);
645       uint32_t count = data.GetU32(&offset);
646       lldb::offset_t next_thread_state = offset + (count * 4);
647       switch (flavor) {
648       case GPRRegSet:
649         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
650         // 32-bit register)
651         if (count >= (33 * 2) + 1) {
652           for (uint32_t i = 0; i < 29; ++i)
653             gpr.x[i] = data.GetU64(&offset);
654           gpr.fp = data.GetU64(&offset);
655           gpr.lr = data.GetU64(&offset);
656           gpr.sp = data.GetU64(&offset);
657           gpr.pc = data.GetU64(&offset);
658           gpr.cpsr = data.GetU32(&offset);
659           SetError(GPRRegSet, Read, 0);
660         }
661         offset = next_thread_state;
662         break;
663       case FPURegSet: {
664         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
665         const int fpu_reg_buf_size = sizeof(fpu);
666         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
667             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
668                               fpu_reg_buf) == fpu_reg_buf_size) {
669           SetError(FPURegSet, Read, 0);
670         } else {
671           done = true;
672         }
673       }
674         offset = next_thread_state;
675         break;
676       case EXCRegSet:
677         if (count == 4) {
678           exc.far = data.GetU64(&offset);
679           exc.esr = data.GetU32(&offset);
680           exc.exception = data.GetU32(&offset);
681           SetError(EXCRegSet, Read, 0);
682         }
683         offset = next_thread_state;
684         break;
685       default:
686         done = true;
687         break;
688       }
689     }
690   }
691 
692   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
693     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
694     if (reg_ctx_sp) {
695       RegisterContext *reg_ctx = reg_ctx_sp.get();
696 
697       data.PutHex32(GPRRegSet); // Flavor
698       data.PutHex32(GPRWordCount);
699       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
700       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
701       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
702       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
703       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
704       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
705       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
706       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
707       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
708       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
709       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
710       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
711       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
712       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
713       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
714       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
715       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
716       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
717       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
718       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
719       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
720       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
721       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
722       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
723       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
724       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
725       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
726       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
727       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
728       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
729       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
730       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
731       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
732       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
733       data.PutHex32(0); // uint32_t pad at the end
734 
735       // Write out the EXC registers
736       data.PutHex32(EXCRegSet);
737       data.PutHex32(EXCWordCount);
738       PrintRegisterValue(reg_ctx, "far", nullptr, 8, data);
739       PrintRegisterValue(reg_ctx, "esr", nullptr, 4, data);
740       PrintRegisterValue(reg_ctx, "exception", nullptr, 4, data);
741       return true;
742     }
743     return false;
744   }
745 
746 protected:
747   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
748 
749   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
750 
751   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
752 
753   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
754 
755   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
756     return 0;
757   }
758 
759   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
760     return 0;
761   }
762 
763   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
764     return 0;
765   }
766 
767   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
768     return -1;
769   }
770 };
771 
772 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
773   switch (magic) {
774   case MH_MAGIC:
775   case MH_CIGAM:
776     return sizeof(struct llvm::MachO::mach_header);
777 
778   case MH_MAGIC_64:
779   case MH_CIGAM_64:
780     return sizeof(struct llvm::MachO::mach_header_64);
781     break;
782 
783   default:
784     break;
785   }
786   return 0;
787 }
788 
789 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
790 
791 char ObjectFileMachO::ID;
792 
793 void ObjectFileMachO::Initialize() {
794   PluginManager::RegisterPlugin(
795       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
796       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
797 }
798 
799 void ObjectFileMachO::Terminate() {
800   PluginManager::UnregisterPlugin(CreateInstance);
801 }
802 
803 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
804                                             DataBufferSP data_sp,
805                                             lldb::offset_t data_offset,
806                                             const FileSpec *file,
807                                             lldb::offset_t file_offset,
808                                             lldb::offset_t length) {
809   if (!data_sp) {
810     data_sp = MapFileData(*file, length, file_offset);
811     if (!data_sp)
812       return nullptr;
813     data_offset = 0;
814   }
815 
816   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
817     return nullptr;
818 
819   // Update the data to contain the entire file if it doesn't already
820   if (data_sp->GetByteSize() < length) {
821     data_sp = MapFileData(*file, length, file_offset);
822     if (!data_sp)
823       return nullptr;
824     data_offset = 0;
825   }
826   auto objfile_up = std::make_unique<ObjectFileMachO>(
827       module_sp, data_sp, data_offset, file, file_offset, length);
828   if (!objfile_up || !objfile_up->ParseHeader())
829     return nullptr;
830 
831   return objfile_up.release();
832 }
833 
834 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
835     const lldb::ModuleSP &module_sp, WritableDataBufferSP data_sp,
836     const ProcessSP &process_sp, lldb::addr_t header_addr) {
837   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
838     std::unique_ptr<ObjectFile> objfile_up(
839         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
840     if (objfile_up.get() && objfile_up->ParseHeader())
841       return objfile_up.release();
842   }
843   return nullptr;
844 }
845 
846 size_t ObjectFileMachO::GetModuleSpecifications(
847     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
848     lldb::offset_t data_offset, lldb::offset_t file_offset,
849     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
850   const size_t initial_count = specs.GetSize();
851 
852   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
853     DataExtractor data;
854     data.SetData(data_sp);
855     llvm::MachO::mach_header header;
856     if (ParseHeader(data, &data_offset, header)) {
857       size_t header_and_load_cmds =
858           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
859       if (header_and_load_cmds >= data_sp->GetByteSize()) {
860         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
861         data.SetData(data_sp);
862         data_offset = MachHeaderSizeFromMagic(header.magic);
863       }
864       if (data_sp) {
865         ModuleSpec base_spec;
866         base_spec.GetFileSpec() = file;
867         base_spec.SetObjectOffset(file_offset);
868         base_spec.SetObjectSize(length);
869         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
870       }
871     }
872   }
873   return specs.GetSize() - initial_count;
874 }
875 
876 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
877   static ConstString g_segment_name_TEXT("__TEXT");
878   return g_segment_name_TEXT;
879 }
880 
881 ConstString ObjectFileMachO::GetSegmentNameDATA() {
882   static ConstString g_segment_name_DATA("__DATA");
883   return g_segment_name_DATA;
884 }
885 
886 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
887   static ConstString g_segment_name("__DATA_DIRTY");
888   return g_segment_name;
889 }
890 
891 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
892   static ConstString g_segment_name("__DATA_CONST");
893   return g_segment_name;
894 }
895 
896 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
897   static ConstString g_segment_name_OBJC("__OBJC");
898   return g_segment_name_OBJC;
899 }
900 
901 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
902   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
903   return g_section_name_LINKEDIT;
904 }
905 
906 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
907   static ConstString g_section_name("__DWARF");
908   return g_section_name;
909 }
910 
911 ConstString ObjectFileMachO::GetSegmentNameLLVM_COV() {
912   static ConstString g_section_name("__LLVM_COV");
913   return g_section_name;
914 }
915 
916 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
917   static ConstString g_section_name_eh_frame("__eh_frame");
918   return g_section_name_eh_frame;
919 }
920 
921 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP data_sp,
922                                       lldb::addr_t data_offset,
923                                       lldb::addr_t data_length) {
924   DataExtractor data;
925   data.SetData(data_sp, data_offset, data_length);
926   lldb::offset_t offset = 0;
927   uint32_t magic = data.GetU32(&offset);
928 
929   offset += 4; // cputype
930   offset += 4; // cpusubtype
931   uint32_t filetype = data.GetU32(&offset);
932 
933   // A fileset has a Mach-O header but is not an
934   // individual file and must be handled via an
935   // ObjectContainer plugin.
936   if (filetype == llvm::MachO::MH_FILESET)
937     return false;
938 
939   return MachHeaderSizeFromMagic(magic) != 0;
940 }
941 
942 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
943                                  DataBufferSP data_sp,
944                                  lldb::offset_t data_offset,
945                                  const FileSpec *file,
946                                  lldb::offset_t file_offset,
947                                  lldb::offset_t length)
948     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
949       m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(),
950       m_thread_context_offsets_valid(false), m_reexported_dylibs(),
951       m_allow_assembly_emulation_unwind_plans(true) {
952   ::memset(&m_header, 0, sizeof(m_header));
953   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
954 }
955 
956 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
957                                  lldb::WritableDataBufferSP header_data_sp,
958                                  const lldb::ProcessSP &process_sp,
959                                  lldb::addr_t header_addr)
960     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
961       m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(),
962       m_thread_context_offsets_valid(false), m_reexported_dylibs(),
963       m_allow_assembly_emulation_unwind_plans(true) {
964   ::memset(&m_header, 0, sizeof(m_header));
965   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
966 }
967 
968 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
969                                   lldb::offset_t *data_offset_ptr,
970                                   llvm::MachO::mach_header &header) {
971   data.SetByteOrder(endian::InlHostByteOrder());
972   // Leave magic in the original byte order
973   header.magic = data.GetU32(data_offset_ptr);
974   bool can_parse = false;
975   bool is_64_bit = false;
976   switch (header.magic) {
977   case MH_MAGIC:
978     data.SetByteOrder(endian::InlHostByteOrder());
979     data.SetAddressByteSize(4);
980     can_parse = true;
981     break;
982 
983   case MH_MAGIC_64:
984     data.SetByteOrder(endian::InlHostByteOrder());
985     data.SetAddressByteSize(8);
986     can_parse = true;
987     is_64_bit = true;
988     break;
989 
990   case MH_CIGAM:
991     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
992                           ? eByteOrderLittle
993                           : eByteOrderBig);
994     data.SetAddressByteSize(4);
995     can_parse = true;
996     break;
997 
998   case MH_CIGAM_64:
999     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1000                           ? eByteOrderLittle
1001                           : eByteOrderBig);
1002     data.SetAddressByteSize(8);
1003     is_64_bit = true;
1004     can_parse = true;
1005     break;
1006 
1007   default:
1008     break;
1009   }
1010 
1011   if (can_parse) {
1012     data.GetU32(data_offset_ptr, &header.cputype, 6);
1013     if (is_64_bit)
1014       *data_offset_ptr += 4;
1015     return true;
1016   } else {
1017     memset(&header, 0, sizeof(header));
1018   }
1019   return false;
1020 }
1021 
1022 bool ObjectFileMachO::ParseHeader() {
1023   ModuleSP module_sp(GetModule());
1024   if (!module_sp)
1025     return false;
1026 
1027   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1028   bool can_parse = false;
1029   lldb::offset_t offset = 0;
1030   m_data.SetByteOrder(endian::InlHostByteOrder());
1031   // Leave magic in the original byte order
1032   m_header.magic = m_data.GetU32(&offset);
1033   switch (m_header.magic) {
1034   case MH_MAGIC:
1035     m_data.SetByteOrder(endian::InlHostByteOrder());
1036     m_data.SetAddressByteSize(4);
1037     can_parse = true;
1038     break;
1039 
1040   case MH_MAGIC_64:
1041     m_data.SetByteOrder(endian::InlHostByteOrder());
1042     m_data.SetAddressByteSize(8);
1043     can_parse = true;
1044     break;
1045 
1046   case MH_CIGAM:
1047     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1048                             ? eByteOrderLittle
1049                             : eByteOrderBig);
1050     m_data.SetAddressByteSize(4);
1051     can_parse = true;
1052     break;
1053 
1054   case MH_CIGAM_64:
1055     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1056                             ? eByteOrderLittle
1057                             : eByteOrderBig);
1058     m_data.SetAddressByteSize(8);
1059     can_parse = true;
1060     break;
1061 
1062   default:
1063     break;
1064   }
1065 
1066   if (can_parse) {
1067     m_data.GetU32(&offset, &m_header.cputype, 6);
1068 
1069     ModuleSpecList all_specs;
1070     ModuleSpec base_spec;
1071     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1072                     base_spec, all_specs);
1073 
1074     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1075       ArchSpec mach_arch =
1076           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1077 
1078       // Check if the module has a required architecture
1079       const ArchSpec &module_arch = module_sp->GetArchitecture();
1080       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1081         continue;
1082 
1083       if (SetModulesArchitecture(mach_arch)) {
1084         const size_t header_and_lc_size =
1085             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1086         if (m_data.GetByteSize() < header_and_lc_size) {
1087           DataBufferSP data_sp;
1088           ProcessSP process_sp(m_process_wp.lock());
1089           if (process_sp) {
1090             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1091           } else {
1092             // Read in all only the load command data from the file on disk
1093             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1094             if (data_sp->GetByteSize() != header_and_lc_size)
1095               continue;
1096           }
1097           if (data_sp)
1098             m_data.SetData(data_sp);
1099         }
1100       }
1101       return true;
1102     }
1103     // None found.
1104     return false;
1105   } else {
1106     memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1107   }
1108   return false;
1109 }
1110 
1111 ByteOrder ObjectFileMachO::GetByteOrder() const {
1112   return m_data.GetByteOrder();
1113 }
1114 
1115 bool ObjectFileMachO::IsExecutable() const {
1116   return m_header.filetype == MH_EXECUTE;
1117 }
1118 
1119 bool ObjectFileMachO::IsDynamicLoader() const {
1120   return m_header.filetype == MH_DYLINKER;
1121 }
1122 
1123 bool ObjectFileMachO::IsSharedCacheBinary() const {
1124   return m_header.flags & MH_DYLIB_IN_CACHE;
1125 }
1126 
1127 bool ObjectFileMachO::IsKext() const {
1128   return m_header.filetype == MH_KEXT_BUNDLE;
1129 }
1130 
1131 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1132   return m_data.GetAddressByteSize();
1133 }
1134 
1135 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1136   Symtab *symtab = GetSymtab();
1137   if (!symtab)
1138     return AddressClass::eUnknown;
1139 
1140   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1141   if (symbol) {
1142     if (symbol->ValueIsAddress()) {
1143       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1144       if (section_sp) {
1145         const lldb::SectionType section_type = section_sp->GetType();
1146         switch (section_type) {
1147         case eSectionTypeInvalid:
1148           return AddressClass::eUnknown;
1149 
1150         case eSectionTypeCode:
1151           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1152             // For ARM we have a bit in the n_desc field of the symbol that
1153             // tells us ARM/Thumb which is bit 0x0008.
1154             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1155               return AddressClass::eCodeAlternateISA;
1156           }
1157           return AddressClass::eCode;
1158 
1159         case eSectionTypeContainer:
1160           return AddressClass::eUnknown;
1161 
1162         case eSectionTypeData:
1163         case eSectionTypeDataCString:
1164         case eSectionTypeDataCStringPointers:
1165         case eSectionTypeDataSymbolAddress:
1166         case eSectionTypeData4:
1167         case eSectionTypeData8:
1168         case eSectionTypeData16:
1169         case eSectionTypeDataPointers:
1170         case eSectionTypeZeroFill:
1171         case eSectionTypeDataObjCMessageRefs:
1172         case eSectionTypeDataObjCCFStrings:
1173         case eSectionTypeGoSymtab:
1174           return AddressClass::eData;
1175 
1176         case eSectionTypeDebug:
1177         case eSectionTypeDWARFDebugAbbrev:
1178         case eSectionTypeDWARFDebugAbbrevDwo:
1179         case eSectionTypeDWARFDebugAddr:
1180         case eSectionTypeDWARFDebugAranges:
1181         case eSectionTypeDWARFDebugCuIndex:
1182         case eSectionTypeDWARFDebugFrame:
1183         case eSectionTypeDWARFDebugInfo:
1184         case eSectionTypeDWARFDebugInfoDwo:
1185         case eSectionTypeDWARFDebugLine:
1186         case eSectionTypeDWARFDebugLineStr:
1187         case eSectionTypeDWARFDebugLoc:
1188         case eSectionTypeDWARFDebugLocDwo:
1189         case eSectionTypeDWARFDebugLocLists:
1190         case eSectionTypeDWARFDebugLocListsDwo:
1191         case eSectionTypeDWARFDebugMacInfo:
1192         case eSectionTypeDWARFDebugMacro:
1193         case eSectionTypeDWARFDebugNames:
1194         case eSectionTypeDWARFDebugPubNames:
1195         case eSectionTypeDWARFDebugPubTypes:
1196         case eSectionTypeDWARFDebugRanges:
1197         case eSectionTypeDWARFDebugRngLists:
1198         case eSectionTypeDWARFDebugRngListsDwo:
1199         case eSectionTypeDWARFDebugStr:
1200         case eSectionTypeDWARFDebugStrDwo:
1201         case eSectionTypeDWARFDebugStrOffsets:
1202         case eSectionTypeDWARFDebugStrOffsetsDwo:
1203         case eSectionTypeDWARFDebugTuIndex:
1204         case eSectionTypeDWARFDebugTypes:
1205         case eSectionTypeDWARFDebugTypesDwo:
1206         case eSectionTypeDWARFAppleNames:
1207         case eSectionTypeDWARFAppleTypes:
1208         case eSectionTypeDWARFAppleNamespaces:
1209         case eSectionTypeDWARFAppleObjC:
1210         case eSectionTypeDWARFGNUDebugAltLink:
1211         case eSectionTypeCTF:
1212         case eSectionTypeSwiftModules:
1213           return AddressClass::eDebug;
1214 
1215         case eSectionTypeEHFrame:
1216         case eSectionTypeARMexidx:
1217         case eSectionTypeARMextab:
1218         case eSectionTypeCompactUnwind:
1219           return AddressClass::eRuntime;
1220 
1221         case eSectionTypeAbsoluteAddress:
1222         case eSectionTypeELFSymbolTable:
1223         case eSectionTypeELFDynamicSymbols:
1224         case eSectionTypeELFRelocationEntries:
1225         case eSectionTypeELFDynamicLinkInfo:
1226         case eSectionTypeOther:
1227           return AddressClass::eUnknown;
1228         }
1229       }
1230     }
1231 
1232     const SymbolType symbol_type = symbol->GetType();
1233     switch (symbol_type) {
1234     case eSymbolTypeAny:
1235       return AddressClass::eUnknown;
1236     case eSymbolTypeAbsolute:
1237       return AddressClass::eUnknown;
1238 
1239     case eSymbolTypeCode:
1240     case eSymbolTypeTrampoline:
1241     case eSymbolTypeResolver:
1242       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1243         // For ARM we have a bit in the n_desc field of the symbol that tells
1244         // us ARM/Thumb which is bit 0x0008.
1245         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1246           return AddressClass::eCodeAlternateISA;
1247       }
1248       return AddressClass::eCode;
1249 
1250     case eSymbolTypeData:
1251       return AddressClass::eData;
1252     case eSymbolTypeRuntime:
1253       return AddressClass::eRuntime;
1254     case eSymbolTypeException:
1255       return AddressClass::eRuntime;
1256     case eSymbolTypeSourceFile:
1257       return AddressClass::eDebug;
1258     case eSymbolTypeHeaderFile:
1259       return AddressClass::eDebug;
1260     case eSymbolTypeObjectFile:
1261       return AddressClass::eDebug;
1262     case eSymbolTypeCommonBlock:
1263       return AddressClass::eDebug;
1264     case eSymbolTypeBlock:
1265       return AddressClass::eDebug;
1266     case eSymbolTypeLocal:
1267       return AddressClass::eData;
1268     case eSymbolTypeParam:
1269       return AddressClass::eData;
1270     case eSymbolTypeVariable:
1271       return AddressClass::eData;
1272     case eSymbolTypeVariableType:
1273       return AddressClass::eDebug;
1274     case eSymbolTypeLineEntry:
1275       return AddressClass::eDebug;
1276     case eSymbolTypeLineHeader:
1277       return AddressClass::eDebug;
1278     case eSymbolTypeScopeBegin:
1279       return AddressClass::eDebug;
1280     case eSymbolTypeScopeEnd:
1281       return AddressClass::eDebug;
1282     case eSymbolTypeAdditional:
1283       return AddressClass::eUnknown;
1284     case eSymbolTypeCompiler:
1285       return AddressClass::eDebug;
1286     case eSymbolTypeInstrumentation:
1287       return AddressClass::eDebug;
1288     case eSymbolTypeUndefined:
1289       return AddressClass::eUnknown;
1290     case eSymbolTypeObjCClass:
1291       return AddressClass::eRuntime;
1292     case eSymbolTypeObjCMetaClass:
1293       return AddressClass::eRuntime;
1294     case eSymbolTypeObjCIVar:
1295       return AddressClass::eRuntime;
1296     case eSymbolTypeReExported:
1297       return AddressClass::eRuntime;
1298     }
1299   }
1300   return AddressClass::eUnknown;
1301 }
1302 
1303 bool ObjectFileMachO::IsStripped() {
1304   if (m_dysymtab.cmd == 0) {
1305     ModuleSP module_sp(GetModule());
1306     if (module_sp) {
1307       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1308       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1309         const lldb::offset_t load_cmd_offset = offset;
1310 
1311         llvm::MachO::load_command lc = {};
1312         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1313           break;
1314         if (lc.cmd == LC_DYSYMTAB) {
1315           m_dysymtab.cmd = lc.cmd;
1316           m_dysymtab.cmdsize = lc.cmdsize;
1317           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1318                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1319               nullptr) {
1320             // Clear m_dysymtab if we were unable to read all items from the
1321             // load command
1322             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1323           }
1324         }
1325         offset = load_cmd_offset + lc.cmdsize;
1326       }
1327     }
1328   }
1329   if (m_dysymtab.cmd)
1330     return m_dysymtab.nlocalsym <= 1;
1331   return false;
1332 }
1333 
1334 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1335   EncryptedFileRanges result;
1336   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1337 
1338   llvm::MachO::encryption_info_command encryption_cmd;
1339   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1340     const lldb::offset_t load_cmd_offset = offset;
1341     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1342       break;
1343 
1344     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1345     // 3 fields we care about, so treat them the same.
1346     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1347         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1348       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1349         if (encryption_cmd.cryptid != 0) {
1350           EncryptedFileRanges::Entry entry;
1351           entry.SetRangeBase(encryption_cmd.cryptoff);
1352           entry.SetByteSize(encryption_cmd.cryptsize);
1353           result.Append(entry);
1354         }
1355       }
1356     }
1357     offset = load_cmd_offset + encryption_cmd.cmdsize;
1358   }
1359 
1360   return result;
1361 }
1362 
1363 void ObjectFileMachO::SanitizeSegmentCommand(
1364     llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1365   if (m_length == 0 || seg_cmd.filesize == 0)
1366     return;
1367 
1368   if (IsSharedCacheBinary() && !IsInMemory()) {
1369     // In shared cache images, the load commands are relative to the
1370     // shared cache file, and not the specific image we are
1371     // examining. Let's fix this up so that it looks like a normal
1372     // image.
1373     if (strncmp(seg_cmd.segname, GetSegmentNameTEXT().GetCString(),
1374                 sizeof(seg_cmd.segname)) == 0)
1375       m_text_address = seg_cmd.vmaddr;
1376     if (strncmp(seg_cmd.segname, GetSegmentNameLINKEDIT().GetCString(),
1377                 sizeof(seg_cmd.segname)) == 0)
1378       m_linkedit_original_offset = seg_cmd.fileoff;
1379 
1380     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1381   }
1382 
1383   if (seg_cmd.fileoff > m_length) {
1384     // We have a load command that says it extends past the end of the file.
1385     // This is likely a corrupt file.  We don't have any way to return an error
1386     // condition here (this method was likely invoked from something like
1387     // ObjectFile::GetSectionList()), so we just null out the section contents,
1388     // and dump a message to stdout.  The most common case here is core file
1389     // debugging with a truncated file.
1390     const char *lc_segment_name =
1391         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1392     GetModule()->ReportWarning(
1393         "load command {0} {1} has a fileoff ({2:x16}) that extends beyond "
1394         "the end of the file ({3:x16}), ignoring this section",
1395         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1396 
1397     seg_cmd.fileoff = 0;
1398     seg_cmd.filesize = 0;
1399   }
1400 
1401   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1402     // We have a load command that says it extends past the end of the file.
1403     // This is likely a corrupt file.  We don't have any way to return an error
1404     // condition here (this method was likely invoked from something like
1405     // ObjectFile::GetSectionList()), so we just null out the section contents,
1406     // and dump a message to stdout.  The most common case here is core file
1407     // debugging with a truncated file.
1408     const char *lc_segment_name =
1409         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1410     GetModule()->ReportWarning(
1411         "load command {0} {1} has a fileoff + filesize ({2:x16}) that "
1412         "extends beyond the end of the file ({4:x16}), the segment will be "
1413         "truncated to match",
1414         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1415 
1416     // Truncate the length
1417     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1418   }
1419 }
1420 
1421 static uint32_t
1422 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1423   uint32_t result = 0;
1424   if (seg_cmd.initprot & VM_PROT_READ)
1425     result |= ePermissionsReadable;
1426   if (seg_cmd.initprot & VM_PROT_WRITE)
1427     result |= ePermissionsWritable;
1428   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1429     result |= ePermissionsExecutable;
1430   return result;
1431 }
1432 
1433 static lldb::SectionType GetSectionType(uint32_t flags,
1434                                         ConstString section_name) {
1435 
1436   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1437     return eSectionTypeCode;
1438 
1439   uint32_t mach_sect_type = flags & SECTION_TYPE;
1440   static ConstString g_sect_name_objc_data("__objc_data");
1441   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1442   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1443   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1444   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1445   static ConstString g_sect_name_objc_const("__objc_const");
1446   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1447   static ConstString g_sect_name_cfstring("__cfstring");
1448 
1449   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1450   static ConstString g_sect_name_dwarf_debug_abbrev_dwo("__debug_abbrev.dwo");
1451   static ConstString g_sect_name_dwarf_debug_addr("__debug_addr");
1452   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1453   static ConstString g_sect_name_dwarf_debug_cu_index("__debug_cu_index");
1454   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1455   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1456   static ConstString g_sect_name_dwarf_debug_info_dwo("__debug_info.dwo");
1457   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1458   static ConstString g_sect_name_dwarf_debug_line_dwo("__debug_line.dwo");
1459   static ConstString g_sect_name_dwarf_debug_line_str("__debug_line_str");
1460   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1461   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1462   static ConstString g_sect_name_dwarf_debug_loclists_dwo("__debug_loclists.dwo");
1463   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1464   static ConstString g_sect_name_dwarf_debug_macro("__debug_macro");
1465   static ConstString g_sect_name_dwarf_debug_macro_dwo("__debug_macro.dwo");
1466   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1467   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1468   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1469   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1470   static ConstString g_sect_name_dwarf_debug_rnglists("__debug_rnglists");
1471   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1472   static ConstString g_sect_name_dwarf_debug_str_dwo("__debug_str.dwo");
1473   static ConstString g_sect_name_dwarf_debug_str_offs("__debug_str_offs");
1474   static ConstString g_sect_name_dwarf_debug_str_offs_dwo("__debug_str_offs.dwo");
1475   static ConstString g_sect_name_dwarf_debug_tu_index("__debug_tu_index");
1476   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1477   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1478   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1479   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1480   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1481   static ConstString g_sect_name_eh_frame("__eh_frame");
1482   static ConstString g_sect_name_compact_unwind("__unwind_info");
1483   static ConstString g_sect_name_text("__text");
1484   static ConstString g_sect_name_data("__data");
1485   static ConstString g_sect_name_go_symtab("__gosymtab");
1486   static ConstString g_sect_name_ctf("__ctf");
1487   static ConstString g_sect_name_swift_ast("__swift_ast");
1488 
1489   if (section_name == g_sect_name_dwarf_debug_abbrev)
1490     return eSectionTypeDWARFDebugAbbrev;
1491   if (section_name == g_sect_name_dwarf_debug_abbrev_dwo)
1492     return eSectionTypeDWARFDebugAbbrevDwo;
1493   if (section_name == g_sect_name_dwarf_debug_addr)
1494     return eSectionTypeDWARFDebugAddr;
1495   if (section_name == g_sect_name_dwarf_debug_aranges)
1496     return eSectionTypeDWARFDebugAranges;
1497   if (section_name == g_sect_name_dwarf_debug_cu_index)
1498     return eSectionTypeDWARFDebugCuIndex;
1499   if (section_name == g_sect_name_dwarf_debug_frame)
1500     return eSectionTypeDWARFDebugFrame;
1501   if (section_name == g_sect_name_dwarf_debug_info)
1502     return eSectionTypeDWARFDebugInfo;
1503   if (section_name == g_sect_name_dwarf_debug_info_dwo)
1504     return eSectionTypeDWARFDebugInfoDwo;
1505   if (section_name == g_sect_name_dwarf_debug_line)
1506     return eSectionTypeDWARFDebugLine;
1507   if (section_name == g_sect_name_dwarf_debug_line_dwo)
1508     return eSectionTypeDWARFDebugLine; // Same as debug_line.
1509   if (section_name == g_sect_name_dwarf_debug_line_str)
1510     return eSectionTypeDWARFDebugLineStr;
1511   if (section_name == g_sect_name_dwarf_debug_loc)
1512     return eSectionTypeDWARFDebugLoc;
1513   if (section_name == g_sect_name_dwarf_debug_loclists)
1514     return eSectionTypeDWARFDebugLocLists;
1515   if (section_name == g_sect_name_dwarf_debug_loclists_dwo)
1516     return eSectionTypeDWARFDebugLocListsDwo;
1517   if (section_name == g_sect_name_dwarf_debug_macinfo)
1518     return eSectionTypeDWARFDebugMacInfo;
1519   if (section_name == g_sect_name_dwarf_debug_macro)
1520     return eSectionTypeDWARFDebugMacro;
1521   if (section_name == g_sect_name_dwarf_debug_macro_dwo)
1522     return eSectionTypeDWARFDebugMacInfo; // Same as debug_macro.
1523   if (section_name == g_sect_name_dwarf_debug_names)
1524     return eSectionTypeDWARFDebugNames;
1525   if (section_name == g_sect_name_dwarf_debug_pubnames)
1526     return eSectionTypeDWARFDebugPubNames;
1527   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1528     return eSectionTypeDWARFDebugPubTypes;
1529   if (section_name == g_sect_name_dwarf_debug_ranges)
1530     return eSectionTypeDWARFDebugRanges;
1531   if (section_name == g_sect_name_dwarf_debug_rnglists)
1532     return eSectionTypeDWARFDebugRngLists;
1533   if (section_name == g_sect_name_dwarf_debug_str)
1534     return eSectionTypeDWARFDebugStr;
1535   if (section_name == g_sect_name_dwarf_debug_str_dwo)
1536     return eSectionTypeDWARFDebugStrDwo;
1537   if (section_name == g_sect_name_dwarf_debug_str_offs)
1538     return eSectionTypeDWARFDebugStrOffsets;
1539   if (section_name == g_sect_name_dwarf_debug_str_offs_dwo)
1540     return eSectionTypeDWARFDebugStrOffsetsDwo;
1541   if (section_name == g_sect_name_dwarf_debug_tu_index)
1542     return eSectionTypeDWARFDebugTuIndex;
1543   if (section_name == g_sect_name_dwarf_debug_types)
1544     return eSectionTypeDWARFDebugTypes;
1545   if (section_name == g_sect_name_dwarf_apple_names)
1546     return eSectionTypeDWARFAppleNames;
1547   if (section_name == g_sect_name_dwarf_apple_types)
1548     return eSectionTypeDWARFAppleTypes;
1549   if (section_name == g_sect_name_dwarf_apple_namespaces)
1550     return eSectionTypeDWARFAppleNamespaces;
1551   if (section_name == g_sect_name_dwarf_apple_objc)
1552     return eSectionTypeDWARFAppleObjC;
1553   if (section_name == g_sect_name_objc_selrefs)
1554     return eSectionTypeDataCStringPointers;
1555   if (section_name == g_sect_name_objc_msgrefs)
1556     return eSectionTypeDataObjCMessageRefs;
1557   if (section_name == g_sect_name_eh_frame)
1558     return eSectionTypeEHFrame;
1559   if (section_name == g_sect_name_compact_unwind)
1560     return eSectionTypeCompactUnwind;
1561   if (section_name == g_sect_name_cfstring)
1562     return eSectionTypeDataObjCCFStrings;
1563   if (section_name == g_sect_name_go_symtab)
1564     return eSectionTypeGoSymtab;
1565   if (section_name == g_sect_name_ctf)
1566     return eSectionTypeCTF;
1567   if (section_name == g_sect_name_swift_ast)
1568     return eSectionTypeSwiftModules;
1569   if (section_name == g_sect_name_objc_data ||
1570       section_name == g_sect_name_objc_classrefs ||
1571       section_name == g_sect_name_objc_superrefs ||
1572       section_name == g_sect_name_objc_const ||
1573       section_name == g_sect_name_objc_classlist) {
1574     return eSectionTypeDataPointers;
1575   }
1576 
1577   switch (mach_sect_type) {
1578   // TODO: categorize sections by other flags for regular sections
1579   case S_REGULAR:
1580     if (section_name == g_sect_name_text)
1581       return eSectionTypeCode;
1582     if (section_name == g_sect_name_data)
1583       return eSectionTypeData;
1584     return eSectionTypeOther;
1585   case S_ZEROFILL:
1586     return eSectionTypeZeroFill;
1587   case S_CSTRING_LITERALS: // section with only literal C strings
1588     return eSectionTypeDataCString;
1589   case S_4BYTE_LITERALS: // section with only 4 byte literals
1590     return eSectionTypeData4;
1591   case S_8BYTE_LITERALS: // section with only 8 byte literals
1592     return eSectionTypeData8;
1593   case S_LITERAL_POINTERS: // section with only pointers to literals
1594     return eSectionTypeDataPointers;
1595   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1596     return eSectionTypeDataPointers;
1597   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1598     return eSectionTypeDataPointers;
1599   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1600                        // the reserved2 field
1601     return eSectionTypeCode;
1602   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1603                                  // initialization
1604     return eSectionTypeDataPointers;
1605   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1606                                  // termination
1607     return eSectionTypeDataPointers;
1608   case S_COALESCED:
1609     return eSectionTypeOther;
1610   case S_GB_ZEROFILL:
1611     return eSectionTypeZeroFill;
1612   case S_INTERPOSING: // section with only pairs of function pointers for
1613                       // interposing
1614     return eSectionTypeCode;
1615   case S_16BYTE_LITERALS: // section with only 16 byte literals
1616     return eSectionTypeData16;
1617   case S_DTRACE_DOF:
1618     return eSectionTypeDebug;
1619   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1620     return eSectionTypeDataPointers;
1621   default:
1622     return eSectionTypeOther;
1623   }
1624 }
1625 
1626 struct ObjectFileMachO::SegmentParsingContext {
1627   const EncryptedFileRanges EncryptedRanges;
1628   lldb_private::SectionList &UnifiedList;
1629   uint32_t NextSegmentIdx = 0;
1630   uint32_t NextSectionIdx = 0;
1631   bool FileAddressesChanged = false;
1632 
1633   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1634                         lldb_private::SectionList &UnifiedList)
1635       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1636 };
1637 
1638 void ObjectFileMachO::ProcessSegmentCommand(
1639     const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1640     uint32_t cmd_idx, SegmentParsingContext &context) {
1641   llvm::MachO::segment_command_64 load_cmd;
1642   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1643 
1644   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1645     return;
1646 
1647   ModuleSP module_sp = GetModule();
1648   const bool is_core = GetType() == eTypeCoreFile;
1649   const bool is_dsym = (m_header.filetype == MH_DSYM);
1650   bool add_section = true;
1651   bool add_to_unified = true;
1652   ConstString const_segname(
1653       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1654 
1655   SectionSP unified_section_sp(
1656       context.UnifiedList.FindSectionByName(const_segname));
1657   if (is_dsym && unified_section_sp) {
1658     if (const_segname == GetSegmentNameLINKEDIT()) {
1659       // We need to keep the __LINKEDIT segment private to this object file
1660       // only
1661       add_to_unified = false;
1662     } else {
1663       // This is the dSYM file and this section has already been created by the
1664       // object file, no need to create it.
1665       add_section = false;
1666     }
1667   }
1668   load_cmd.vmaddr = m_data.GetAddress(&offset);
1669   load_cmd.vmsize = m_data.GetAddress(&offset);
1670   load_cmd.fileoff = m_data.GetAddress(&offset);
1671   load_cmd.filesize = m_data.GetAddress(&offset);
1672   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1673     return;
1674 
1675   SanitizeSegmentCommand(load_cmd, cmd_idx);
1676 
1677   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1678   const bool segment_is_encrypted =
1679       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1680 
1681   // Use a segment ID of the segment index shifted left by 8 so they never
1682   // conflict with any of the sections.
1683   SectionSP segment_sp;
1684   if (add_section && (const_segname || is_core)) {
1685     segment_sp = std::make_shared<Section>(
1686         module_sp, // Module to which this section belongs
1687         this,      // Object file to which this sections belongs
1688         ++context.NextSegmentIdx
1689             << 8, // Section ID is the 1 based segment index
1690         // shifted right by 8 bits as not to collide with any of the 256
1691         // section IDs that are possible
1692         const_segname,         // Name of this section
1693         eSectionTypeContainer, // This section is a container of other
1694         // sections.
1695         load_cmd.vmaddr, // File VM address == addresses as they are
1696         // found in the object file
1697         load_cmd.vmsize,  // VM size in bytes of this section
1698         load_cmd.fileoff, // Offset to the data for this section in
1699         // the file
1700         load_cmd.filesize, // Size in bytes of this section as found
1701         // in the file
1702         0,               // Segments have no alignment information
1703         load_cmd.flags); // Flags for this section
1704 
1705     segment_sp->SetIsEncrypted(segment_is_encrypted);
1706     m_sections_up->AddSection(segment_sp);
1707     segment_sp->SetPermissions(segment_permissions);
1708     if (add_to_unified)
1709       context.UnifiedList.AddSection(segment_sp);
1710   } else if (unified_section_sp) {
1711     // If this is a dSYM and the file addresses in the dSYM differ from the
1712     // file addresses in the ObjectFile, we must use the file base address for
1713     // the Section from the dSYM for the DWARF to resolve correctly.
1714     // This only happens with binaries in the shared cache in practice;
1715     // normally a mismatch like this would give a binary & dSYM that do not
1716     // match UUIDs. When a binary is included in the shared cache, its
1717     // segments are rearranged to optimize the shared cache, so its file
1718     // addresses will differ from what the ObjectFile had originally,
1719     // and what the dSYM has.
1720     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1721       Log *log = GetLog(LLDBLog::Symbols);
1722       if (log) {
1723         log->Printf(
1724             "Installing dSYM's %s segment file address over ObjectFile's "
1725             "so symbol table/debug info resolves correctly for %s",
1726             const_segname.AsCString(),
1727             module_sp->GetFileSpec().GetFilename().AsCString());
1728       }
1729 
1730       // Make sure we've parsed the symbol table from the ObjectFile before
1731       // we go around changing its Sections.
1732       module_sp->GetObjectFile()->GetSymtab();
1733       // eh_frame would present the same problems but we parse that on a per-
1734       // function basis as-needed so it's more difficult to remove its use of
1735       // the Sections.  Realistically, the environments where this code path
1736       // will be taken will not have eh_frame sections.
1737 
1738       unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1739 
1740       // Notify the module that the section addresses have been changed once
1741       // we're done so any file-address caches can be updated.
1742       context.FileAddressesChanged = true;
1743     }
1744     m_sections_up->AddSection(unified_section_sp);
1745   }
1746 
1747   llvm::MachO::section_64 sect64;
1748   ::memset(&sect64, 0, sizeof(sect64));
1749   // Push a section into our mach sections for the section at index zero
1750   // (NO_SECT) if we don't have any mach sections yet...
1751   if (m_mach_sections.empty())
1752     m_mach_sections.push_back(sect64);
1753   uint32_t segment_sect_idx;
1754   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1755 
1756   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1757   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1758        ++segment_sect_idx) {
1759     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1760                      sizeof(sect64.sectname)) == nullptr)
1761       break;
1762     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1763                      sizeof(sect64.segname)) == nullptr)
1764       break;
1765     sect64.addr = m_data.GetAddress(&offset);
1766     sect64.size = m_data.GetAddress(&offset);
1767 
1768     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1769       break;
1770 
1771     if (IsSharedCacheBinary() && !IsInMemory()) {
1772       sect64.offset = sect64.addr - m_text_address;
1773     }
1774 
1775     // Keep a list of mach sections around in case we need to get at data that
1776     // isn't stored in the abstracted Sections.
1777     m_mach_sections.push_back(sect64);
1778 
1779     if (add_section) {
1780       ConstString section_name(
1781           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1782       if (!const_segname) {
1783         // We have a segment with no name so we need to conjure up segments
1784         // that correspond to the section's segname if there isn't already such
1785         // a section. If there is such a section, we resize the section so that
1786         // it spans all sections.  We also mark these sections as fake so
1787         // address matches don't hit if they land in the gaps between the child
1788         // sections.
1789         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1790                                                   sizeof(sect64.segname));
1791         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1792         if (segment_sp.get()) {
1793           Section *segment = segment_sp.get();
1794           // Grow the section size as needed.
1795           const lldb::addr_t sect64_min_addr = sect64.addr;
1796           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1797           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1798           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1799           const lldb::addr_t curr_seg_max_addr =
1800               curr_seg_min_addr + curr_seg_byte_size;
1801           if (sect64_min_addr >= curr_seg_min_addr) {
1802             const lldb::addr_t new_seg_byte_size =
1803                 sect64_max_addr - curr_seg_min_addr;
1804             // Only grow the section size if needed
1805             if (new_seg_byte_size > curr_seg_byte_size)
1806               segment->SetByteSize(new_seg_byte_size);
1807           } else {
1808             // We need to change the base address of the segment and adjust the
1809             // child section offsets for all existing children.
1810             const lldb::addr_t slide_amount =
1811                 sect64_min_addr - curr_seg_min_addr;
1812             segment->Slide(slide_amount, false);
1813             segment->GetChildren().Slide(-slide_amount, false);
1814             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1815           }
1816 
1817           // Grow the section size as needed.
1818           if (sect64.offset) {
1819             const lldb::addr_t segment_min_file_offset =
1820                 segment->GetFileOffset();
1821             const lldb::addr_t segment_max_file_offset =
1822                 segment_min_file_offset + segment->GetFileSize();
1823 
1824             const lldb::addr_t section_min_file_offset = sect64.offset;
1825             const lldb::addr_t section_max_file_offset =
1826                 section_min_file_offset + sect64.size;
1827             const lldb::addr_t new_file_offset =
1828                 std::min(section_min_file_offset, segment_min_file_offset);
1829             const lldb::addr_t new_file_size =
1830                 std::max(section_max_file_offset, segment_max_file_offset) -
1831                 new_file_offset;
1832             segment->SetFileOffset(new_file_offset);
1833             segment->SetFileSize(new_file_size);
1834           }
1835         } else {
1836           // Create a fake section for the section's named segment
1837           segment_sp = std::make_shared<Section>(
1838               segment_sp, // Parent section
1839               module_sp,  // Module to which this section belongs
1840               this,       // Object file to which this section belongs
1841               ++context.NextSegmentIdx
1842                   << 8, // Section ID is the 1 based segment index
1843               // shifted right by 8 bits as not to
1844               // collide with any of the 256 section IDs
1845               // that are possible
1846               const_segname,         // Name of this section
1847               eSectionTypeContainer, // This section is a container of
1848               // other sections.
1849               sect64.addr, // File VM address == addresses as they are
1850               // found in the object file
1851               sect64.size,   // VM size in bytes of this section
1852               sect64.offset, // Offset to the data for this section in
1853               // the file
1854               sect64.offset ? sect64.size : 0, // Size in bytes of
1855               // this section as
1856               // found in the file
1857               sect64.align,
1858               load_cmd.flags); // Flags for this section
1859           segment_sp->SetIsFake(true);
1860           segment_sp->SetPermissions(segment_permissions);
1861           m_sections_up->AddSection(segment_sp);
1862           if (add_to_unified)
1863             context.UnifiedList.AddSection(segment_sp);
1864           segment_sp->SetIsEncrypted(segment_is_encrypted);
1865         }
1866       }
1867       assert(segment_sp.get());
1868 
1869       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1870 
1871       SectionSP section_sp(new Section(
1872           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1873           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1874           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1875           sect64.flags));
1876       // Set the section to be encrypted to match the segment
1877 
1878       bool section_is_encrypted = false;
1879       if (!segment_is_encrypted && load_cmd.filesize != 0)
1880         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1881                                    sect64.offset) != nullptr;
1882 
1883       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1884       section_sp->SetPermissions(segment_permissions);
1885       segment_sp->GetChildren().AddSection(section_sp);
1886 
1887       if (segment_sp->IsFake()) {
1888         segment_sp.reset();
1889         const_segname.Clear();
1890       }
1891     }
1892   }
1893   if (segment_sp && is_dsym) {
1894     if (first_segment_sectID <= context.NextSectionIdx) {
1895       lldb::user_id_t sect_uid;
1896       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1897            ++sect_uid) {
1898         SectionSP curr_section_sp(
1899             segment_sp->GetChildren().FindSectionByID(sect_uid));
1900         SectionSP next_section_sp;
1901         if (sect_uid + 1 <= context.NextSectionIdx)
1902           next_section_sp =
1903               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1904 
1905         if (curr_section_sp.get()) {
1906           if (curr_section_sp->GetByteSize() == 0) {
1907             if (next_section_sp.get() != nullptr)
1908               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1909                                            curr_section_sp->GetFileAddress());
1910             else
1911               curr_section_sp->SetByteSize(load_cmd.vmsize);
1912           }
1913         }
1914       }
1915     }
1916   }
1917 }
1918 
1919 void ObjectFileMachO::ProcessDysymtabCommand(
1920     const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1921   m_dysymtab.cmd = load_cmd.cmd;
1922   m_dysymtab.cmdsize = load_cmd.cmdsize;
1923   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1924                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1925 }
1926 
1927 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1928   if (m_sections_up)
1929     return;
1930 
1931   m_sections_up = std::make_unique<SectionList>();
1932 
1933   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1934   // bool dump_sections = false;
1935   ModuleSP module_sp(GetModule());
1936 
1937   offset = MachHeaderSizeFromMagic(m_header.magic);
1938 
1939   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1940   llvm::MachO::load_command load_cmd;
1941   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1942     const lldb::offset_t load_cmd_offset = offset;
1943     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1944       break;
1945 
1946     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1947       ProcessSegmentCommand(load_cmd, offset, i, context);
1948     else if (load_cmd.cmd == LC_DYSYMTAB)
1949       ProcessDysymtabCommand(load_cmd, offset);
1950 
1951     offset = load_cmd_offset + load_cmd.cmdsize;
1952   }
1953 
1954   if (context.FileAddressesChanged && module_sp)
1955     module_sp->SectionFileAddressesChanged();
1956 }
1957 
1958 class MachSymtabSectionInfo {
1959 public:
1960   MachSymtabSectionInfo(SectionList *section_list)
1961       : m_section_list(section_list), m_section_infos() {
1962     // Get the number of sections down to a depth of 1 to include all segments
1963     // and their sections, but no other sections that may be added for debug
1964     // map or
1965     m_section_infos.resize(section_list->GetNumSections(1));
1966   }
1967 
1968   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1969     if (n_sect == 0)
1970       return SectionSP();
1971     if (n_sect < m_section_infos.size()) {
1972       if (!m_section_infos[n_sect].section_sp) {
1973         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1974         m_section_infos[n_sect].section_sp = section_sp;
1975         if (section_sp) {
1976           m_section_infos[n_sect].vm_range.SetBaseAddress(
1977               section_sp->GetFileAddress());
1978           m_section_infos[n_sect].vm_range.SetByteSize(
1979               section_sp->GetByteSize());
1980         } else {
1981           std::string filename = "<unknown>";
1982           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1983           if (first_section_sp)
1984             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1985 
1986           Debugger::ReportError(
1987               llvm::formatv("unable to find section {0} for a symbol in "
1988                             "{1}, corrupt file?",
1989                             n_sect, filename));
1990         }
1991       }
1992       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1993         // Symbol is in section.
1994         return m_section_infos[n_sect].section_sp;
1995       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1996                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1997                      file_addr) {
1998         // Symbol is in section with zero size, but has the same start address
1999         // as the section. This can happen with linker symbols (symbols that
2000         // start with the letter 'l' or 'L'.
2001         return m_section_infos[n_sect].section_sp;
2002       }
2003     }
2004     return m_section_list->FindSectionContainingFileAddress(file_addr);
2005   }
2006 
2007 protected:
2008   struct SectionInfo {
2009     SectionInfo() : vm_range(), section_sp() {}
2010 
2011     VMRange vm_range;
2012     SectionSP section_sp;
2013   };
2014   SectionList *m_section_list;
2015   std::vector<SectionInfo> m_section_infos;
2016 };
2017 
2018 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
2019 struct TrieEntry {
2020   void Dump() const {
2021     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
2022            static_cast<unsigned long long>(address),
2023            static_cast<unsigned long long>(flags),
2024            static_cast<unsigned long long>(other), name.GetCString());
2025     if (import_name)
2026       printf(" -> \"%s\"\n", import_name.GetCString());
2027     else
2028       printf("\n");
2029   }
2030   ConstString name;
2031   uint64_t address = LLDB_INVALID_ADDRESS;
2032   uint64_t flags =
2033       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
2034          // TRIE_SYMBOL_IS_THUMB
2035   uint64_t other = 0;
2036   ConstString import_name;
2037 };
2038 
2039 struct TrieEntryWithOffset {
2040   lldb::offset_t nodeOffset;
2041   TrieEntry entry;
2042 
2043   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
2044 
2045   void Dump(uint32_t idx) const {
2046     printf("[%3u] 0x%16.16llx: ", idx,
2047            static_cast<unsigned long long>(nodeOffset));
2048     entry.Dump();
2049   }
2050 
2051   bool operator<(const TrieEntryWithOffset &other) const {
2052     return (nodeOffset < other.nodeOffset);
2053   }
2054 };
2055 
2056 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2057                              const bool is_arm, addr_t text_seg_base_addr,
2058                              std::vector<llvm::StringRef> &nameSlices,
2059                              std::set<lldb::addr_t> &resolver_addresses,
2060                              std::vector<TrieEntryWithOffset> &reexports,
2061                              std::vector<TrieEntryWithOffset> &ext_symbols) {
2062   if (!data.ValidOffset(offset))
2063     return true;
2064 
2065   // Terminal node -- end of a branch, possibly add this to
2066   // the symbol table or resolver table.
2067   const uint64_t terminalSize = data.GetULEB128(&offset);
2068   lldb::offset_t children_offset = offset + terminalSize;
2069   if (terminalSize != 0) {
2070     TrieEntryWithOffset e(offset);
2071     e.entry.flags = data.GetULEB128(&offset);
2072     const char *import_name = nullptr;
2073     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2074       e.entry.address = 0;
2075       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2076       import_name = data.GetCStr(&offset);
2077     } else {
2078       e.entry.address = data.GetULEB128(&offset);
2079       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2080         e.entry.address += text_seg_base_addr;
2081       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2082         e.entry.other = data.GetULEB128(&offset);
2083         uint64_t resolver_addr = e.entry.other;
2084         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2085           resolver_addr += text_seg_base_addr;
2086         if (is_arm)
2087           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2088         resolver_addresses.insert(resolver_addr);
2089       } else
2090         e.entry.other = 0;
2091     }
2092     bool add_this_entry = false;
2093     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2094         import_name && import_name[0]) {
2095       // add symbols that are reexport symbols with a valid import name.
2096       add_this_entry = true;
2097     } else if (e.entry.flags == 0 &&
2098                (import_name == nullptr || import_name[0] == '\0')) {
2099       // add externally visible symbols, in case the nlist record has
2100       // been stripped/omitted.
2101       add_this_entry = true;
2102     }
2103     if (add_this_entry) {
2104       std::string name;
2105       if (!nameSlices.empty()) {
2106         for (auto name_slice : nameSlices)
2107           name.append(name_slice.data(), name_slice.size());
2108       }
2109       if (name.size() > 1) {
2110         // Skip the leading '_'
2111         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2112       }
2113       if (import_name) {
2114         // Skip the leading '_'
2115         e.entry.import_name.SetCString(import_name + 1);
2116       }
2117       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2118         reexports.push_back(e);
2119       } else {
2120         if (is_arm && (e.entry.address & 1)) {
2121           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2122           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2123         }
2124         ext_symbols.push_back(e);
2125       }
2126     }
2127   }
2128 
2129   const uint8_t childrenCount = data.GetU8(&children_offset);
2130   for (uint8_t i = 0; i < childrenCount; ++i) {
2131     const char *cstr = data.GetCStr(&children_offset);
2132     if (cstr)
2133       nameSlices.push_back(llvm::StringRef(cstr));
2134     else
2135       return false; // Corrupt data
2136     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2137     if (childNodeOffset) {
2138       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2139                             nameSlices, resolver_addresses, reexports,
2140                             ext_symbols)) {
2141         return false;
2142       }
2143     }
2144     nameSlices.pop_back();
2145   }
2146   return true;
2147 }
2148 
2149 static SymbolType GetSymbolType(const char *&symbol_name,
2150                                 bool &demangled_is_synthesized,
2151                                 const SectionSP &text_section_sp,
2152                                 const SectionSP &data_section_sp,
2153                                 const SectionSP &data_dirty_section_sp,
2154                                 const SectionSP &data_const_section_sp,
2155                                 const SectionSP &symbol_section) {
2156   SymbolType type = eSymbolTypeInvalid;
2157 
2158   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2159   if (symbol_section->IsDescendant(text_section_sp.get())) {
2160     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2161                                 S_ATTR_SELF_MODIFYING_CODE |
2162                                 S_ATTR_SOME_INSTRUCTIONS))
2163       type = eSymbolTypeData;
2164     else
2165       type = eSymbolTypeCode;
2166   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2167              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2168              symbol_section->IsDescendant(data_const_section_sp.get())) {
2169     if (symbol_sect_name &&
2170         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2171       type = eSymbolTypeRuntime;
2172 
2173       if (symbol_name) {
2174         llvm::StringRef symbol_name_ref(symbol_name);
2175         if (symbol_name_ref.starts_with("OBJC_")) {
2176           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2177           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2178               "OBJC_METACLASS_$_");
2179           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2180           if (symbol_name_ref.starts_with(g_objc_v2_prefix_class)) {
2181             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2182             type = eSymbolTypeObjCClass;
2183             demangled_is_synthesized = true;
2184           } else if (symbol_name_ref.starts_with(g_objc_v2_prefix_metaclass)) {
2185             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2186             type = eSymbolTypeObjCMetaClass;
2187             demangled_is_synthesized = true;
2188           } else if (symbol_name_ref.starts_with(g_objc_v2_prefix_ivar)) {
2189             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2190             type = eSymbolTypeObjCIVar;
2191             demangled_is_synthesized = true;
2192           }
2193         }
2194       }
2195     } else if (symbol_sect_name &&
2196                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2197                    symbol_sect_name) {
2198       type = eSymbolTypeException;
2199     } else {
2200       type = eSymbolTypeData;
2201     }
2202   } else if (symbol_sect_name &&
2203              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2204     type = eSymbolTypeTrampoline;
2205   }
2206   return type;
2207 }
2208 
2209 static std::optional<struct nlist_64>
2210 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2211            size_t nlist_byte_size) {
2212   struct nlist_64 nlist;
2213   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2214     return {};
2215   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2216   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2217   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2218   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2219   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2220   return nlist;
2221 }
2222 
2223 enum { DebugSymbols = true, NonDebugSymbols = false };
2224 
2225 void ObjectFileMachO::ParseSymtab(Symtab &symtab) {
2226   ModuleSP module_sp(GetModule());
2227   if (!module_sp)
2228     return;
2229 
2230   Log *log = GetLog(LLDBLog::Symbols);
2231 
2232   const FileSpec &file = m_file ? m_file : module_sp->GetFileSpec();
2233   const char *file_name = file.GetFilename().AsCString("<Unknown>");
2234   LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s", file_name);
2235   LLDB_LOG(log, "Parsing symbol table for {0}", file_name);
2236   Progress progress("Parsing symbol table", file_name);
2237 
2238   llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2239   llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2240   llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2241   llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2242   llvm::MachO::dysymtab_command dysymtab = m_dysymtab;
2243   // The data element of type bool indicates that this entry is thumb
2244   // code.
2245   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2246 
2247   // Record the address of every function/data that we add to the symtab.
2248   // We add symbols to the table in the order of most information (nlist
2249   // records) to least (function starts), and avoid duplicating symbols
2250   // via this set.
2251   llvm::DenseSet<addr_t> symbols_added;
2252 
2253   // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2254   // do not add the tombstone or empty keys to the set.
2255   auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2256     // Don't add the tombstone or empty keys.
2257     if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2258       return;
2259     symbols_added.insert(file_addr);
2260   };
2261   FunctionStarts function_starts;
2262   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2263   uint32_t i;
2264   FileSpecList dylib_files;
2265   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2266   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2267   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2268   UUID image_uuid;
2269 
2270   for (i = 0; i < m_header.ncmds; ++i) {
2271     const lldb::offset_t cmd_offset = offset;
2272     // Read in the load command and load command size
2273     llvm::MachO::load_command lc;
2274     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2275       break;
2276     // Watch for the symbol table load command
2277     switch (lc.cmd) {
2278     case LC_SYMTAB:
2279       symtab_load_command.cmd = lc.cmd;
2280       symtab_load_command.cmdsize = lc.cmdsize;
2281       // Read in the rest of the symtab load command
2282       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2283           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2284         return;
2285       break;
2286 
2287     case LC_DYLD_INFO:
2288     case LC_DYLD_INFO_ONLY:
2289       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2290         dyld_info.cmd = lc.cmd;
2291         dyld_info.cmdsize = lc.cmdsize;
2292       } else {
2293         memset(&dyld_info, 0, sizeof(dyld_info));
2294       }
2295       break;
2296 
2297     case LC_LOAD_DYLIB:
2298     case LC_LOAD_WEAK_DYLIB:
2299     case LC_REEXPORT_DYLIB:
2300     case LC_LOADFVMLIB:
2301     case LC_LOAD_UPWARD_DYLIB: {
2302       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2303       const char *path = m_data.PeekCStr(name_offset);
2304       if (path) {
2305         FileSpec file_spec(path);
2306         // Strip the path if there is @rpath, @executable, etc so we just use
2307         // the basename
2308         if (path[0] == '@')
2309           file_spec.ClearDirectory();
2310 
2311         if (lc.cmd == LC_REEXPORT_DYLIB) {
2312           m_reexported_dylibs.AppendIfUnique(file_spec);
2313         }
2314 
2315         dylib_files.Append(file_spec);
2316       }
2317     } break;
2318 
2319     case LC_DYLD_EXPORTS_TRIE:
2320       exports_trie_load_command.cmd = lc.cmd;
2321       exports_trie_load_command.cmdsize = lc.cmdsize;
2322       if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2323           nullptr) // fill in offset and size fields
2324         memset(&exports_trie_load_command, 0,
2325                sizeof(exports_trie_load_command));
2326       break;
2327     case LC_FUNCTION_STARTS:
2328       function_starts_load_command.cmd = lc.cmd;
2329       function_starts_load_command.cmdsize = lc.cmdsize;
2330       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2331           nullptr) // fill in data offset and size fields
2332         memset(&function_starts_load_command, 0,
2333                sizeof(function_starts_load_command));
2334       break;
2335 
2336     case LC_UUID: {
2337       const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
2338 
2339       if (uuid_bytes)
2340         image_uuid = UUID(uuid_bytes, 16);
2341       break;
2342     }
2343 
2344     default:
2345       break;
2346     }
2347     offset = cmd_offset + lc.cmdsize;
2348   }
2349 
2350   if (!symtab_load_command.cmd)
2351     return;
2352 
2353   SectionList *section_list = GetSectionList();
2354   if (section_list == nullptr)
2355     return;
2356 
2357   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2358   const ByteOrder byte_order = m_data.GetByteOrder();
2359   bool bit_width_32 = addr_byte_size == 4;
2360   const size_t nlist_byte_size =
2361       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2362 
2363   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2364   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2365   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2366   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2367                                            addr_byte_size);
2368   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2369 
2370   const addr_t nlist_data_byte_size =
2371       symtab_load_command.nsyms * nlist_byte_size;
2372   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2373   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2374 
2375   ProcessSP process_sp(m_process_wp.lock());
2376   Process *process = process_sp.get();
2377 
2378   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2379   bool is_shared_cache_image = IsSharedCacheBinary();
2380   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2381   SectionSP linkedit_section_sp(
2382       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2383 
2384   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2385       !is_local_shared_cache_image) {
2386     Target &target = process->GetTarget();
2387 
2388     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2389 
2390     // Reading mach file from memory in a process or core file...
2391 
2392     if (linkedit_section_sp) {
2393       addr_t linkedit_load_addr =
2394           linkedit_section_sp->GetLoadBaseAddress(&target);
2395       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2396         // We might be trying to access the symbol table before the
2397         // __LINKEDIT's load address has been set in the target. We can't
2398         // fail to read the symbol table, so calculate the right address
2399         // manually
2400         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2401             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2402       }
2403 
2404       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2405       const addr_t symoff_addr = linkedit_load_addr +
2406                                  symtab_load_command.symoff -
2407                                  linkedit_file_offset;
2408       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2409                     linkedit_file_offset;
2410 
2411         // Always load dyld - the dynamic linker - from memory if we didn't
2412         // find a binary anywhere else. lldb will not register
2413         // dylib/framework/bundle loads/unloads if we don't have the dyld
2414         // symbols, we force dyld to load from memory despite the user's
2415         // target.memory-module-load-level setting.
2416         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2417             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2418           DataBufferSP nlist_data_sp(
2419               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2420           if (nlist_data_sp)
2421             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2422           if (dysymtab.nindirectsyms != 0) {
2423             const addr_t indirect_syms_addr = linkedit_load_addr +
2424                                               dysymtab.indirectsymoff -
2425                                               linkedit_file_offset;
2426             DataBufferSP indirect_syms_data_sp(ReadMemory(
2427                 process_sp, indirect_syms_addr, dysymtab.nindirectsyms * 4));
2428             if (indirect_syms_data_sp)
2429               indirect_symbol_index_data.SetData(
2430                   indirect_syms_data_sp, 0,
2431                   indirect_syms_data_sp->GetByteSize());
2432             // If this binary is outside the shared cache,
2433             // cache the string table.
2434             // Binaries in the shared cache all share a giant string table,
2435             // and we can't share the string tables across multiple
2436             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2437             // for every binary in the shared cache - it would be a big perf
2438             // problem. For binaries outside the shared cache, it's faster to
2439             // read the entire strtab at once instead of piece-by-piece as we
2440             // process the nlist records.
2441             if (!is_shared_cache_image) {
2442               DataBufferSP strtab_data_sp(
2443                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2444               if (strtab_data_sp) {
2445                 strtab_data.SetData(strtab_data_sp, 0,
2446                                     strtab_data_sp->GetByteSize());
2447               }
2448             }
2449           }
2450         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2451           if (function_starts_load_command.cmd) {
2452             const addr_t func_start_addr =
2453                 linkedit_load_addr + function_starts_load_command.dataoff -
2454                 linkedit_file_offset;
2455             DataBufferSP func_start_data_sp(
2456                 ReadMemory(process_sp, func_start_addr,
2457                            function_starts_load_command.datasize));
2458             if (func_start_data_sp)
2459               function_starts_data.SetData(func_start_data_sp, 0,
2460                                            func_start_data_sp->GetByteSize());
2461           }
2462         }
2463       }
2464     }
2465   } else {
2466     if (is_local_shared_cache_image) {
2467       // The load commands in shared cache images are relative to the
2468       // beginning of the shared cache, not the library image. The
2469       // data we get handed when creating the ObjectFileMachO starts
2470       // at the beginning of a specific library and spans to the end
2471       // of the cache to be able to reach the shared LINKEDIT
2472       // segments. We need to convert the load command offsets to be
2473       // relative to the beginning of our specific image.
2474       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2475       lldb::offset_t linkedit_slide =
2476           linkedit_offset - m_linkedit_original_offset;
2477       symtab_load_command.symoff += linkedit_slide;
2478       symtab_load_command.stroff += linkedit_slide;
2479       dyld_info.export_off += linkedit_slide;
2480       dysymtab.indirectsymoff += linkedit_slide;
2481       function_starts_load_command.dataoff += linkedit_slide;
2482       exports_trie_load_command.dataoff += linkedit_slide;
2483     }
2484 
2485     nlist_data.SetData(m_data, symtab_load_command.symoff,
2486                        nlist_data_byte_size);
2487     strtab_data.SetData(m_data, symtab_load_command.stroff,
2488                         strtab_data_byte_size);
2489 
2490     // We shouldn't have exports data from both the LC_DYLD_INFO command
2491     // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2492     lldbassert(!((dyld_info.export_size > 0)
2493                  && (exports_trie_load_command.datasize > 0)));
2494     if (dyld_info.export_size > 0) {
2495       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2496                              dyld_info.export_size);
2497     } else if (exports_trie_load_command.datasize > 0) {
2498       dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2499                              exports_trie_load_command.datasize);
2500     }
2501 
2502     if (dysymtab.nindirectsyms != 0) {
2503       indirect_symbol_index_data.SetData(m_data, dysymtab.indirectsymoff,
2504                                          dysymtab.nindirectsyms * 4);
2505     }
2506     if (function_starts_load_command.cmd) {
2507       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2508                                    function_starts_load_command.datasize);
2509     }
2510   }
2511 
2512   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2513 
2514   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2515   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2516   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2517   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2518   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2519   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2520   SectionSP text_section_sp(
2521       section_list->FindSectionByName(g_segment_name_TEXT));
2522   SectionSP data_section_sp(
2523       section_list->FindSectionByName(g_segment_name_DATA));
2524   SectionSP data_dirty_section_sp(
2525       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2526   SectionSP data_const_section_sp(
2527       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2528   SectionSP objc_section_sp(
2529       section_list->FindSectionByName(g_segment_name_OBJC));
2530   SectionSP eh_frame_section_sp;
2531   if (text_section_sp.get())
2532     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2533         g_section_name_eh_frame);
2534   else
2535     eh_frame_section_sp =
2536         section_list->FindSectionByName(g_section_name_eh_frame);
2537 
2538   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2539   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2540 
2541   // lldb works best if it knows the start address of all functions in a
2542   // module. Linker symbols or debug info are normally the best source of
2543   // information for start addr / size but they may be stripped in a released
2544   // binary. Two additional sources of information exist in Mach-O binaries:
2545   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2546   //    function's start address in the
2547   //                         binary, relative to the text section.
2548   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2549   //    each function
2550   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2551   //  all modern binaries.
2552   //  Binaries built to run on older releases may need to use eh_frame
2553   //  information.
2554 
2555   if (text_section_sp && function_starts_data.GetByteSize()) {
2556     FunctionStarts::Entry function_start_entry;
2557     function_start_entry.data = false;
2558     lldb::offset_t function_start_offset = 0;
2559     function_start_entry.addr = text_section_sp->GetFileAddress();
2560     uint64_t delta;
2561     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2562            0) {
2563       // Now append the current entry
2564       function_start_entry.addr += delta;
2565       if (is_arm) {
2566         if (function_start_entry.addr & 1) {
2567           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2568           function_start_entry.data = true;
2569         } else if (always_thumb) {
2570           function_start_entry.data = true;
2571         }
2572       }
2573       function_starts.Append(function_start_entry);
2574     }
2575   } else {
2576     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2577     // load command claiming an eh_frame but it doesn't actually have the
2578     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2579     // this fill-in-the-missing-symbols works anyway - the debug info should
2580     // give us all the functions in the module.
2581     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2582         m_type != eTypeDebugInfo) {
2583       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2584                                   DWARFCallFrameInfo::EH);
2585       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2586       eh_frame.GetFunctionAddressAndSizeVector(functions);
2587       addr_t text_base_addr = text_section_sp->GetFileAddress();
2588       size_t count = functions.GetSize();
2589       for (size_t i = 0; i < count; ++i) {
2590         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2591             functions.GetEntryAtIndex(i);
2592         if (func) {
2593           FunctionStarts::Entry function_start_entry;
2594           function_start_entry.addr = func->base - text_base_addr;
2595           if (is_arm) {
2596             if (function_start_entry.addr & 1) {
2597               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2598               function_start_entry.data = true;
2599             } else if (always_thumb) {
2600               function_start_entry.data = true;
2601             }
2602           }
2603           function_starts.Append(function_start_entry);
2604         }
2605       }
2606     }
2607   }
2608 
2609   const size_t function_starts_count = function_starts.GetSize();
2610 
2611   // For user process binaries (executables, dylibs, frameworks, bundles), if
2612   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2613   // going to assume the binary has been stripped.  Don't allow assembly
2614   // language instruction emulation because we don't know proper function
2615   // start boundaries.
2616   //
2617   // For all other types of binaries (kernels, stand-alone bare board
2618   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2619   // sections - we should not make any assumptions about them based on that.
2620   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2621     m_allow_assembly_emulation_unwind_plans = false;
2622     Log *unwind_or_symbol_log(GetLog(LLDBLog::Symbols | LLDBLog::Unwind));
2623 
2624     if (unwind_or_symbol_log)
2625       module_sp->LogMessage(
2626           unwind_or_symbol_log,
2627           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2628   }
2629 
2630   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2631                                              ? eh_frame_section_sp->GetID()
2632                                              : static_cast<user_id_t>(NO_SECT);
2633 
2634   uint32_t N_SO_index = UINT32_MAX;
2635 
2636   MachSymtabSectionInfo section_info(section_list);
2637   std::vector<uint32_t> N_FUN_indexes;
2638   std::vector<uint32_t> N_NSYM_indexes;
2639   std::vector<uint32_t> N_INCL_indexes;
2640   std::vector<uint32_t> N_BRAC_indexes;
2641   std::vector<uint32_t> N_COMM_indexes;
2642   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2643   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2644   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2645   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2646   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2647   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2648   // Any symbols that get merged into another will get an entry in this map
2649   // so we know
2650   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2651   uint32_t nlist_idx = 0;
2652   Symbol *symbol_ptr = nullptr;
2653 
2654   uint32_t sym_idx = 0;
2655   Symbol *sym = nullptr;
2656   size_t num_syms = 0;
2657   std::string memory_symbol_name;
2658   uint32_t unmapped_local_symbols_found = 0;
2659 
2660   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2661   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2662   std::set<lldb::addr_t> resolver_addresses;
2663 
2664   const size_t dyld_trie_data_size = dyld_trie_data.GetByteSize();
2665   if (dyld_trie_data_size > 0) {
2666     LLDB_LOG(log, "Parsing {0} bytes of dyld trie data", dyld_trie_data_size);
2667     SectionSP text_segment_sp =
2668         GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
2669     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2670     if (text_segment_sp)
2671       text_segment_file_addr = text_segment_sp->GetFileAddress();
2672     std::vector<llvm::StringRef> nameSlices;
2673     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2674                      nameSlices, resolver_addresses, reexport_trie_entries,
2675                      external_sym_trie_entries);
2676   }
2677 
2678   typedef std::set<ConstString> IndirectSymbols;
2679   IndirectSymbols indirect_symbol_names;
2680 
2681 #if TARGET_OS_IPHONE
2682 
2683   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2684   // optimized by moving LOCAL symbols out of the memory mapped portion of
2685   // the DSC. The symbol information has all been retained, but it isn't
2686   // available in the normal nlist data. However, there *are* duplicate
2687   // entries of *some*
2688   // LOCAL symbols in the normal nlist data. To handle this situation
2689   // correctly, we must first attempt
2690   // to parse any DSC unmapped symbol information. If we find any, we set a
2691   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2692 
2693   if (IsSharedCacheBinary()) {
2694     // Before we can start mapping the DSC, we need to make certain the
2695     // target process is actually using the cache we can find.
2696 
2697     // Next we need to determine the correct path for the dyld shared cache.
2698 
2699     ArchSpec header_arch = GetArchitecture();
2700 
2701     UUID dsc_uuid;
2702     UUID process_shared_cache_uuid;
2703     addr_t process_shared_cache_base_addr;
2704 
2705     if (process) {
2706       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2707                                 process_shared_cache_uuid);
2708     }
2709 
2710     __block bool found_image = false;
2711     __block void *nlist_buffer = nullptr;
2712     __block unsigned nlist_count = 0;
2713     __block char *string_table = nullptr;
2714     __block vm_offset_t vm_nlist_memory = 0;
2715     __block mach_msg_type_number_t vm_nlist_bytes_read = 0;
2716     __block vm_offset_t vm_string_memory = 0;
2717     __block mach_msg_type_number_t vm_string_bytes_read = 0;
2718 
2719     auto _ = llvm::make_scope_exit(^{
2720       if (vm_nlist_memory)
2721         vm_deallocate(mach_task_self(), vm_nlist_memory, vm_nlist_bytes_read);
2722       if (vm_string_memory)
2723         vm_deallocate(mach_task_self(), vm_string_memory, vm_string_bytes_read);
2724     });
2725 
2726     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2727     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2728     UndefinedNameToDescMap undefined_name_to_desc;
2729     SymbolIndexToName reexport_shlib_needs_fixup;
2730 
2731     dyld_for_each_installed_shared_cache(^(dyld_shared_cache_t shared_cache) {
2732       uuid_t cache_uuid;
2733       dyld_shared_cache_copy_uuid(shared_cache, &cache_uuid);
2734       if (found_image)
2735         return;
2736 
2737         if (process_shared_cache_uuid.IsValid() &&
2738           process_shared_cache_uuid != UUID::fromData(&cache_uuid, 16))
2739         return;
2740 
2741       dyld_shared_cache_for_each_image(shared_cache, ^(dyld_image_t image) {
2742         uuid_t dsc_image_uuid;
2743         if (found_image)
2744           return;
2745 
2746         dyld_image_copy_uuid(image, &dsc_image_uuid);
2747         if (image_uuid != UUID::fromData(dsc_image_uuid, 16))
2748           return;
2749 
2750         found_image = true;
2751 
2752         // Compute the size of the string table. We need to ask dyld for a
2753         // new SPI to avoid this step.
2754         dyld_image_local_nlist_content_4Symbolication(
2755             image, ^(const void *nlistStart, uint64_t nlistCount,
2756                      const char *stringTable) {
2757               if (!nlistStart || !nlistCount)
2758                 return;
2759 
2760               // The buffers passed here are valid only inside the block.
2761               // Use vm_read to make a cheap copy of them available for our
2762               // processing later.
2763               kern_return_t ret =
2764                   vm_read(mach_task_self(), (vm_address_t)nlistStart,
2765                           nlist_byte_size * nlistCount, &vm_nlist_memory,
2766                           &vm_nlist_bytes_read);
2767               if (ret != KERN_SUCCESS)
2768                 return;
2769               assert(vm_nlist_bytes_read == nlist_byte_size * nlistCount);
2770 
2771               // We don't know the size of the string table. It's cheaper
2772               // to map the whole VM region than to determine the size by
2773               // parsing all the nlist entries.
2774               vm_address_t string_address = (vm_address_t)stringTable;
2775               vm_size_t region_size;
2776               mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
2777               vm_region_basic_info_data_t info;
2778               memory_object_name_t object;
2779               ret = vm_region_64(mach_task_self(), &string_address,
2780                                  &region_size, VM_REGION_BASIC_INFO_64,
2781                                  (vm_region_info_t)&info, &info_count, &object);
2782               if (ret != KERN_SUCCESS)
2783                 return;
2784 
2785               ret = vm_read(mach_task_self(), (vm_address_t)stringTable,
2786                             region_size -
2787                                 ((vm_address_t)stringTable - string_address),
2788                             &vm_string_memory, &vm_string_bytes_read);
2789               if (ret != KERN_SUCCESS)
2790                 return;
2791 
2792               nlist_buffer = (void *)vm_nlist_memory;
2793               string_table = (char *)vm_string_memory;
2794               nlist_count = nlistCount;
2795             });
2796       });
2797     });
2798     if (nlist_buffer) {
2799       DataExtractor dsc_local_symbols_data(nlist_buffer,
2800                                            nlist_count * nlist_byte_size,
2801                                            byte_order, addr_byte_size);
2802       unmapped_local_symbols_found = nlist_count;
2803 
2804                 // The normal nlist code cannot correctly size the Symbols
2805                 // array, we need to allocate it here.
2806                 sym = symtab.Resize(
2807                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2808                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2809                 num_syms = symtab.GetNumSymbols();
2810 
2811       lldb::offset_t nlist_data_offset = 0;
2812 
2813                 for (uint32_t nlist_index = 0;
2814                      nlist_index < nlist_count;
2815                      nlist_index++) {
2816                   /////////////////////////////
2817                   {
2818                     std::optional<struct nlist_64> nlist_maybe =
2819                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2820                                    nlist_byte_size);
2821                     if (!nlist_maybe)
2822                       break;
2823                     struct nlist_64 nlist = *nlist_maybe;
2824 
2825                     SymbolType type = eSymbolTypeInvalid;
2826           const char *symbol_name = string_table + nlist.n_strx;
2827 
2828                     if (symbol_name == NULL) {
2829                       // No symbol should be NULL, even the symbols with no
2830                       // string values should have an offset zero which
2831                       // points to an empty C-string
2832                       Debugger::ReportError(llvm::formatv(
2833                           "DSC unmapped local symbol[{0}] has invalid "
2834                           "string table offset {1:x} in {2}, ignoring symbol",
2835                           nlist_index, nlist.n_strx,
2836                           module_sp->GetFileSpec().GetPath());
2837                       continue;
2838                     }
2839                     if (symbol_name[0] == '\0')
2840                       symbol_name = NULL;
2841 
2842                     const char *symbol_name_non_abi_mangled = NULL;
2843 
2844                     SectionSP symbol_section;
2845                     uint32_t symbol_byte_size = 0;
2846                     bool add_nlist = true;
2847                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2848                     bool demangled_is_synthesized = false;
2849                     bool is_gsym = false;
2850                     bool set_value = true;
2851 
2852                     assert(sym_idx < num_syms);
2853 
2854                     sym[sym_idx].SetDebug(is_debug);
2855 
2856                     if (is_debug) {
2857                       switch (nlist.n_type) {
2858                       case N_GSYM:
2859                         // global symbol: name,,NO_SECT,type,0
2860                         // Sometimes the N_GSYM value contains the address.
2861 
2862                         // FIXME: In the .o files, we have a GSYM and a debug
2863                         // symbol for all the ObjC data.  They
2864                         // have the same address, but we want to ensure that
2865                         // we always find only the real symbol, 'cause we
2866                         // don't currently correctly attribute the
2867                         // GSYM one to the ObjCClass/Ivar/MetaClass
2868                         // symbol type.  This is a temporary hack to make
2869                         // sure the ObjectiveC symbols get treated correctly.
2870                         // To do this right, we should coalesce all the GSYM
2871                         // & global symbols that have the same address.
2872 
2873                         is_gsym = true;
2874                         sym[sym_idx].SetExternal(true);
2875 
2876                         if (symbol_name && symbol_name[0] == '_' &&
2877                             symbol_name[1] == 'O') {
2878                           llvm::StringRef symbol_name_ref(symbol_name);
2879                           if (symbol_name_ref.starts_with(
2880                                   g_objc_v2_prefix_class)) {
2881                             symbol_name_non_abi_mangled = symbol_name + 1;
2882                             symbol_name =
2883                                 symbol_name + g_objc_v2_prefix_class.size();
2884                             type = eSymbolTypeObjCClass;
2885                             demangled_is_synthesized = true;
2886 
2887                           } else if (symbol_name_ref.starts_with(
2888                                          g_objc_v2_prefix_metaclass)) {
2889                             symbol_name_non_abi_mangled = symbol_name + 1;
2890                             symbol_name =
2891                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2892                             type = eSymbolTypeObjCMetaClass;
2893                             demangled_is_synthesized = true;
2894                           } else if (symbol_name_ref.starts_with(
2895                                          g_objc_v2_prefix_ivar)) {
2896                             symbol_name_non_abi_mangled = symbol_name + 1;
2897                             symbol_name =
2898                                 symbol_name + g_objc_v2_prefix_ivar.size();
2899                             type = eSymbolTypeObjCIVar;
2900                             demangled_is_synthesized = true;
2901                           }
2902                         } else {
2903                           if (nlist.n_value != 0)
2904                             symbol_section = section_info.GetSection(
2905                                 nlist.n_sect, nlist.n_value);
2906                           type = eSymbolTypeData;
2907                         }
2908                         break;
2909 
2910                       case N_FNAME:
2911                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2912                         type = eSymbolTypeCompiler;
2913                         break;
2914 
2915                       case N_FUN:
2916                         // procedure: name,,n_sect,linenumber,address
2917                         if (symbol_name) {
2918                           type = eSymbolTypeCode;
2919                           symbol_section = section_info.GetSection(
2920                               nlist.n_sect, nlist.n_value);
2921 
2922                           N_FUN_addr_to_sym_idx.insert(
2923                               std::make_pair(nlist.n_value, sym_idx));
2924                           // We use the current number of symbols in the
2925                           // symbol table in lieu of using nlist_idx in case
2926                           // we ever start trimming entries out
2927                           N_FUN_indexes.push_back(sym_idx);
2928                         } else {
2929                           type = eSymbolTypeCompiler;
2930 
2931                           if (!N_FUN_indexes.empty()) {
2932                             // Copy the size of the function into the
2933                             // original
2934                             // STAB entry so we don't have
2935                             // to hunt for it later
2936                             symtab.SymbolAtIndex(N_FUN_indexes.back())
2937                                 ->SetByteSize(nlist.n_value);
2938                             N_FUN_indexes.pop_back();
2939                             // We don't really need the end function STAB as
2940                             // it contains the size which we already placed
2941                             // with the original symbol, so don't add it if
2942                             // we want a minimal symbol table
2943                             add_nlist = false;
2944                           }
2945                         }
2946                         break;
2947 
2948                       case N_STSYM:
2949                         // static symbol: name,,n_sect,type,address
2950                         N_STSYM_addr_to_sym_idx.insert(
2951                             std::make_pair(nlist.n_value, sym_idx));
2952                         symbol_section = section_info.GetSection(nlist.n_sect,
2953                                                                  nlist.n_value);
2954                         if (symbol_name && symbol_name[0]) {
2955                           type = ObjectFile::GetSymbolTypeFromName(
2956                               symbol_name + 1, eSymbolTypeData);
2957                         }
2958                         break;
2959 
2960                       case N_LCSYM:
2961                         // .lcomm symbol: name,,n_sect,type,address
2962                         symbol_section = section_info.GetSection(nlist.n_sect,
2963                                                                  nlist.n_value);
2964                         type = eSymbolTypeCommonBlock;
2965                         break;
2966 
2967                       case N_BNSYM:
2968                         // We use the current number of symbols in the symbol
2969                         // table in lieu of using nlist_idx in case we ever
2970                         // start trimming entries out Skip these if we want
2971                         // minimal symbol tables
2972                         add_nlist = false;
2973                         break;
2974 
2975                       case N_ENSYM:
2976                         // Set the size of the N_BNSYM to the terminating
2977                         // index of this N_ENSYM so that we can always skip
2978                         // the entire symbol if we need to navigate more
2979                         // quickly at the source level when parsing STABS
2980                         // Skip these if we want minimal symbol tables
2981                         add_nlist = false;
2982                         break;
2983 
2984                       case N_OPT:
2985                         // emitted with gcc2_compiled and in gcc source
2986                         type = eSymbolTypeCompiler;
2987                         break;
2988 
2989                       case N_RSYM:
2990                         // register sym: name,,NO_SECT,type,register
2991                         type = eSymbolTypeVariable;
2992                         break;
2993 
2994                       case N_SLINE:
2995                         // src line: 0,,n_sect,linenumber,address
2996                         symbol_section = section_info.GetSection(nlist.n_sect,
2997                                                                  nlist.n_value);
2998                         type = eSymbolTypeLineEntry;
2999                         break;
3000 
3001                       case N_SSYM:
3002                         // structure elt: name,,NO_SECT,type,struct_offset
3003                         type = eSymbolTypeVariableType;
3004                         break;
3005 
3006                       case N_SO:
3007                         // source file name
3008                         type = eSymbolTypeSourceFile;
3009                         if (symbol_name == NULL) {
3010                           add_nlist = false;
3011                           if (N_SO_index != UINT32_MAX) {
3012                             // Set the size of the N_SO to the terminating
3013                             // index of this N_SO so that we can always skip
3014                             // the entire N_SO if we need to navigate more
3015                             // quickly at the source level when parsing STABS
3016                             symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3017                             symbol_ptr->SetByteSize(sym_idx);
3018                             symbol_ptr->SetSizeIsSibling(true);
3019                           }
3020                           N_NSYM_indexes.clear();
3021                           N_INCL_indexes.clear();
3022                           N_BRAC_indexes.clear();
3023                           N_COMM_indexes.clear();
3024                           N_FUN_indexes.clear();
3025                           N_SO_index = UINT32_MAX;
3026                         } else {
3027                           // We use the current number of symbols in the
3028                           // symbol table in lieu of using nlist_idx in case
3029                           // we ever start trimming entries out
3030                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3031                           if (N_SO_has_full_path) {
3032                             if ((N_SO_index == sym_idx - 1) &&
3033                                 ((sym_idx - 1) < num_syms)) {
3034                               // We have two consecutive N_SO entries where
3035                               // the first contains a directory and the
3036                               // second contains a full path.
3037                               sym[sym_idx - 1].GetMangled().SetValue(
3038                                   ConstString(symbol_name));
3039                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3040                               add_nlist = false;
3041                             } else {
3042                               // This is the first entry in a N_SO that
3043                               // contains a directory or
3044                               // a full path to the source file
3045                               N_SO_index = sym_idx;
3046                             }
3047                           } else if ((N_SO_index == sym_idx - 1) &&
3048                                      ((sym_idx - 1) < num_syms)) {
3049                             // This is usually the second N_SO entry that
3050                             // contains just the filename, so here we combine
3051                             // it with the first one if we are minimizing the
3052                             // symbol table
3053                             const char *so_path = sym[sym_idx - 1]
3054                                                       .GetMangled()
3055                                                       .GetDemangledName()
3056                                                       .AsCString();
3057                             if (so_path && so_path[0]) {
3058                               std::string full_so_path(so_path);
3059                               const size_t double_slash_pos =
3060                                   full_so_path.find("//");
3061                               if (double_slash_pos != std::string::npos) {
3062                                 // The linker has been generating bad N_SO
3063                                 // entries with doubled up paths
3064                                 // in the format "%s%s" where the first
3065                                 // string in the DW_AT_comp_dir, and the
3066                                 // second is the directory for the source
3067                                 // file so you end up with a path that looks
3068                                 // like "/tmp/src//tmp/src/"
3069                                 FileSpec so_dir(so_path);
3070                                 if (!FileSystem::Instance().Exists(so_dir)) {
3071                                   so_dir.SetFile(
3072                                       &full_so_path[double_slash_pos + 1],
3073                                       FileSpec::Style::native);
3074                                   if (FileSystem::Instance().Exists(so_dir)) {
3075                                     // Trim off the incorrect path
3076                                     full_so_path.erase(0, double_slash_pos + 1);
3077                                   }
3078                                 }
3079                               }
3080                               if (*full_so_path.rbegin() != '/')
3081                                 full_so_path += '/';
3082                               full_so_path += symbol_name;
3083                               sym[sym_idx - 1].GetMangled().SetValue(
3084                                   ConstString(full_so_path.c_str()));
3085                               add_nlist = false;
3086                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3087                             }
3088                           } else {
3089                             // This could be a relative path to a N_SO
3090                             N_SO_index = sym_idx;
3091                           }
3092                         }
3093                         break;
3094 
3095                       case N_OSO:
3096                         // object file name: name,,0,0,st_mtime
3097                         type = eSymbolTypeObjectFile;
3098                         break;
3099 
3100                       case N_LSYM:
3101                         // local sym: name,,NO_SECT,type,offset
3102                         type = eSymbolTypeLocal;
3103                         break;
3104 
3105                       // INCL scopes
3106                       case N_BINCL:
3107                         // include file beginning: name,,NO_SECT,0,sum We use
3108                         // the current number of symbols in the symbol table
3109                         // in lieu of using nlist_idx in case we ever start
3110                         // trimming entries out
3111                         N_INCL_indexes.push_back(sym_idx);
3112                         type = eSymbolTypeScopeBegin;
3113                         break;
3114 
3115                       case N_EINCL:
3116                         // include file end: name,,NO_SECT,0,0
3117                         // Set the size of the N_BINCL to the terminating
3118                         // index of this N_EINCL so that we can always skip
3119                         // the entire symbol if we need to navigate more
3120                         // quickly at the source level when parsing STABS
3121                         if (!N_INCL_indexes.empty()) {
3122                           symbol_ptr =
3123                               symtab.SymbolAtIndex(N_INCL_indexes.back());
3124                           symbol_ptr->SetByteSize(sym_idx + 1);
3125                           symbol_ptr->SetSizeIsSibling(true);
3126                           N_INCL_indexes.pop_back();
3127                         }
3128                         type = eSymbolTypeScopeEnd;
3129                         break;
3130 
3131                       case N_SOL:
3132                         // #included file name: name,,n_sect,0,address
3133                         type = eSymbolTypeHeaderFile;
3134 
3135                         // We currently don't use the header files on darwin
3136                         add_nlist = false;
3137                         break;
3138 
3139                       case N_PARAMS:
3140                         // compiler parameters: name,,NO_SECT,0,0
3141                         type = eSymbolTypeCompiler;
3142                         break;
3143 
3144                       case N_VERSION:
3145                         // compiler version: name,,NO_SECT,0,0
3146                         type = eSymbolTypeCompiler;
3147                         break;
3148 
3149                       case N_OLEVEL:
3150                         // compiler -O level: name,,NO_SECT,0,0
3151                         type = eSymbolTypeCompiler;
3152                         break;
3153 
3154                       case N_PSYM:
3155                         // parameter: name,,NO_SECT,type,offset
3156                         type = eSymbolTypeVariable;
3157                         break;
3158 
3159                       case N_ENTRY:
3160                         // alternate entry: name,,n_sect,linenumber,address
3161                         symbol_section = section_info.GetSection(nlist.n_sect,
3162                                                                  nlist.n_value);
3163                         type = eSymbolTypeLineEntry;
3164                         break;
3165 
3166                       // Left and Right Braces
3167                       case N_LBRAC:
3168                         // left bracket: 0,,NO_SECT,nesting level,address We
3169                         // use the current number of symbols in the symbol
3170                         // table in lieu of using nlist_idx in case we ever
3171                         // start trimming entries out
3172                         symbol_section = section_info.GetSection(nlist.n_sect,
3173                                                                  nlist.n_value);
3174                         N_BRAC_indexes.push_back(sym_idx);
3175                         type = eSymbolTypeScopeBegin;
3176                         break;
3177 
3178                       case N_RBRAC:
3179                         // right bracket: 0,,NO_SECT,nesting level,address
3180                         // Set the size of the N_LBRAC to the terminating
3181                         // index of this N_RBRAC so that we can always skip
3182                         // the entire symbol if we need to navigate more
3183                         // quickly at the source level when parsing STABS
3184                         symbol_section = section_info.GetSection(nlist.n_sect,
3185                                                                  nlist.n_value);
3186                         if (!N_BRAC_indexes.empty()) {
3187                           symbol_ptr =
3188                               symtab.SymbolAtIndex(N_BRAC_indexes.back());
3189                           symbol_ptr->SetByteSize(sym_idx + 1);
3190                           symbol_ptr->SetSizeIsSibling(true);
3191                           N_BRAC_indexes.pop_back();
3192                         }
3193                         type = eSymbolTypeScopeEnd;
3194                         break;
3195 
3196                       case N_EXCL:
3197                         // deleted include file: name,,NO_SECT,0,sum
3198                         type = eSymbolTypeHeaderFile;
3199                         break;
3200 
3201                       // COMM scopes
3202                       case N_BCOMM:
3203                         // begin common: name,,NO_SECT,0,0
3204                         // We use the current number of symbols in the symbol
3205                         // table in lieu of using nlist_idx in case we ever
3206                         // start trimming entries out
3207                         type = eSymbolTypeScopeBegin;
3208                         N_COMM_indexes.push_back(sym_idx);
3209                         break;
3210 
3211                       case N_ECOML:
3212                         // end common (local name): 0,,n_sect,0,address
3213                         symbol_section = section_info.GetSection(nlist.n_sect,
3214                                                                  nlist.n_value);
3215                         // Fall through
3216 
3217                       case N_ECOMM:
3218                         // end common: name,,n_sect,0,0
3219                         // Set the size of the N_BCOMM to the terminating
3220                         // index of this N_ECOMM/N_ECOML so that we can
3221                         // always skip the entire symbol if we need to
3222                         // navigate more quickly at the source level when
3223                         // parsing STABS
3224                         if (!N_COMM_indexes.empty()) {
3225                           symbol_ptr =
3226                               symtab.SymbolAtIndex(N_COMM_indexes.back());
3227                           symbol_ptr->SetByteSize(sym_idx + 1);
3228                           symbol_ptr->SetSizeIsSibling(true);
3229                           N_COMM_indexes.pop_back();
3230                         }
3231                         type = eSymbolTypeScopeEnd;
3232                         break;
3233 
3234                       case N_LENG:
3235                         // second stab entry with length information
3236                         type = eSymbolTypeAdditional;
3237                         break;
3238 
3239                       default:
3240                         break;
3241                       }
3242                     } else {
3243                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3244                       uint8_t n_type = N_TYPE & nlist.n_type;
3245                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3246 
3247                       switch (n_type) {
3248                       case N_INDR: {
3249                         const char *reexport_name_cstr =
3250                             strtab_data.PeekCStr(nlist.n_value);
3251                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3252                           type = eSymbolTypeReExported;
3253                           ConstString reexport_name(
3254                               reexport_name_cstr +
3255                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3256                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3257                           set_value = false;
3258                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3259                           indirect_symbol_names.insert(ConstString(
3260                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3261                         } else
3262                           type = eSymbolTypeUndefined;
3263                       } break;
3264 
3265                       case N_UNDF:
3266                         if (symbol_name && symbol_name[0]) {
3267                           ConstString undefined_name(
3268                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3269                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3270                         }
3271                       // Fall through
3272                       case N_PBUD:
3273                         type = eSymbolTypeUndefined;
3274                         break;
3275 
3276                       case N_ABS:
3277                         type = eSymbolTypeAbsolute;
3278                         break;
3279 
3280                       case N_SECT: {
3281                         symbol_section = section_info.GetSection(nlist.n_sect,
3282                                                                  nlist.n_value);
3283 
3284                         if (symbol_section == NULL) {
3285                           // TODO: warn about this?
3286                           add_nlist = false;
3287                           break;
3288                         }
3289 
3290                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3291                           type = eSymbolTypeException;
3292                         } else {
3293                           uint32_t section_type =
3294                               symbol_section->Get() & SECTION_TYPE;
3295 
3296                           switch (section_type) {
3297                           case S_CSTRING_LITERALS:
3298                             type = eSymbolTypeData;
3299                             break; // section with only literal C strings
3300                           case S_4BYTE_LITERALS:
3301                             type = eSymbolTypeData;
3302                             break; // section with only 4 byte literals
3303                           case S_8BYTE_LITERALS:
3304                             type = eSymbolTypeData;
3305                             break; // section with only 8 byte literals
3306                           case S_LITERAL_POINTERS:
3307                             type = eSymbolTypeTrampoline;
3308                             break; // section with only pointers to literals
3309                           case S_NON_LAZY_SYMBOL_POINTERS:
3310                             type = eSymbolTypeTrampoline;
3311                             break; // section with only non-lazy symbol
3312                                    // pointers
3313                           case S_LAZY_SYMBOL_POINTERS:
3314                             type = eSymbolTypeTrampoline;
3315                             break; // section with only lazy symbol pointers
3316                           case S_SYMBOL_STUBS:
3317                             type = eSymbolTypeTrampoline;
3318                             break; // section with only symbol stubs, byte
3319                                    // size of stub in the reserved2 field
3320                           case S_MOD_INIT_FUNC_POINTERS:
3321                             type = eSymbolTypeCode;
3322                             break; // section with only function pointers for
3323                                    // initialization
3324                           case S_MOD_TERM_FUNC_POINTERS:
3325                             type = eSymbolTypeCode;
3326                             break; // section with only function pointers for
3327                                    // termination
3328                           case S_INTERPOSING:
3329                             type = eSymbolTypeTrampoline;
3330                             break; // section with only pairs of function
3331                                    // pointers for interposing
3332                           case S_16BYTE_LITERALS:
3333                             type = eSymbolTypeData;
3334                             break; // section with only 16 byte literals
3335                           case S_DTRACE_DOF:
3336                             type = eSymbolTypeInstrumentation;
3337                             break;
3338                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3339                             type = eSymbolTypeTrampoline;
3340                             break;
3341                           default:
3342                             switch (symbol_section->GetType()) {
3343                             case lldb::eSectionTypeCode:
3344                               type = eSymbolTypeCode;
3345                               break;
3346                             case eSectionTypeData:
3347                             case eSectionTypeDataCString: // Inlined C string
3348                                                           // data
3349                             case eSectionTypeDataCStringPointers: // Pointers
3350                                                                   // to C
3351                                                                   // string
3352                                                                   // data
3353                             case eSectionTypeDataSymbolAddress:   // Address of
3354                                                                   // a symbol in
3355                                                                   // the symbol
3356                                                                   // table
3357                             case eSectionTypeData4:
3358                             case eSectionTypeData8:
3359                             case eSectionTypeData16:
3360                               type = eSymbolTypeData;
3361                               break;
3362                             default:
3363                               break;
3364                             }
3365                             break;
3366                           }
3367 
3368                           if (type == eSymbolTypeInvalid) {
3369                             const char *symbol_sect_name =
3370                                 symbol_section->GetName().AsCString();
3371                             if (symbol_section->IsDescendant(
3372                                     text_section_sp.get())) {
3373                               if (symbol_section->IsClear(
3374                                       S_ATTR_PURE_INSTRUCTIONS |
3375                                       S_ATTR_SELF_MODIFYING_CODE |
3376                                       S_ATTR_SOME_INSTRUCTIONS))
3377                                 type = eSymbolTypeData;
3378                               else
3379                                 type = eSymbolTypeCode;
3380                             } else if (symbol_section->IsDescendant(
3381                                            data_section_sp.get()) ||
3382                                        symbol_section->IsDescendant(
3383                                            data_dirty_section_sp.get()) ||
3384                                        symbol_section->IsDescendant(
3385                                            data_const_section_sp.get())) {
3386                               if (symbol_sect_name &&
3387                                   ::strstr(symbol_sect_name, "__objc") ==
3388                                       symbol_sect_name) {
3389                                 type = eSymbolTypeRuntime;
3390 
3391                                 if (symbol_name) {
3392                                   llvm::StringRef symbol_name_ref(symbol_name);
3393                                   if (symbol_name_ref.starts_with("_OBJC_")) {
3394                                     llvm::StringRef
3395                                         g_objc_v2_prefix_class(
3396                                             "_OBJC_CLASS_$_");
3397                                     llvm::StringRef
3398                                         g_objc_v2_prefix_metaclass(
3399                                             "_OBJC_METACLASS_$_");
3400                                     llvm::StringRef
3401                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3402                                     if (symbol_name_ref.starts_with(
3403                                             g_objc_v2_prefix_class)) {
3404                                       symbol_name_non_abi_mangled =
3405                                           symbol_name + 1;
3406                                       symbol_name =
3407                                           symbol_name +
3408                                           g_objc_v2_prefix_class.size();
3409                                       type = eSymbolTypeObjCClass;
3410                                       demangled_is_synthesized = true;
3411                                     } else if (
3412                                         symbol_name_ref.starts_with(
3413                                             g_objc_v2_prefix_metaclass)) {
3414                                       symbol_name_non_abi_mangled =
3415                                           symbol_name + 1;
3416                                       symbol_name =
3417                                           symbol_name +
3418                                           g_objc_v2_prefix_metaclass.size();
3419                                       type = eSymbolTypeObjCMetaClass;
3420                                       demangled_is_synthesized = true;
3421                                     } else if (symbol_name_ref.starts_with(
3422                                                    g_objc_v2_prefix_ivar)) {
3423                                       symbol_name_non_abi_mangled =
3424                                           symbol_name + 1;
3425                                       symbol_name =
3426                                           symbol_name +
3427                                           g_objc_v2_prefix_ivar.size();
3428                                       type = eSymbolTypeObjCIVar;
3429                                       demangled_is_synthesized = true;
3430                                     }
3431                                   }
3432                                 }
3433                               } else if (symbol_sect_name &&
3434                                          ::strstr(symbol_sect_name,
3435                                                   "__gcc_except_tab") ==
3436                                              symbol_sect_name) {
3437                                 type = eSymbolTypeException;
3438                               } else {
3439                                 type = eSymbolTypeData;
3440                               }
3441                             } else if (symbol_sect_name &&
3442                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3443                                            symbol_sect_name) {
3444                               type = eSymbolTypeTrampoline;
3445                             } else if (symbol_section->IsDescendant(
3446                                            objc_section_sp.get())) {
3447                               type = eSymbolTypeRuntime;
3448                               if (symbol_name && symbol_name[0] == '.') {
3449                                 llvm::StringRef symbol_name_ref(symbol_name);
3450                                 llvm::StringRef
3451                                     g_objc_v1_prefix_class(".objc_class_name_");
3452                                 if (symbol_name_ref.starts_with(
3453                                         g_objc_v1_prefix_class)) {
3454                                   symbol_name_non_abi_mangled = symbol_name;
3455                                   symbol_name = symbol_name +
3456                                                 g_objc_v1_prefix_class.size();
3457                                   type = eSymbolTypeObjCClass;
3458                                   demangled_is_synthesized = true;
3459                                 }
3460                               }
3461                             }
3462                           }
3463                         }
3464                       } break;
3465                       }
3466                     }
3467 
3468                     if (add_nlist) {
3469                       uint64_t symbol_value = nlist.n_value;
3470                       if (symbol_name_non_abi_mangled) {
3471                         sym[sym_idx].GetMangled().SetMangledName(
3472                             ConstString(symbol_name_non_abi_mangled));
3473                         sym[sym_idx].GetMangled().SetDemangledName(
3474                             ConstString(symbol_name));
3475                       } else {
3476                         if (symbol_name && symbol_name[0] == '_') {
3477                           symbol_name++; // Skip the leading underscore
3478                         }
3479 
3480                         if (symbol_name) {
3481                           ConstString const_symbol_name(symbol_name);
3482                           sym[sym_idx].GetMangled().SetValue(const_symbol_name);
3483                           if (is_gsym && is_debug) {
3484                             const char *gsym_name =
3485                                 sym[sym_idx]
3486                                     .GetMangled()
3487                                     .GetName(Mangled::ePreferMangled)
3488                                     .GetCString();
3489                             if (gsym_name)
3490                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3491                           }
3492                         }
3493                       }
3494                       if (symbol_section) {
3495                         const addr_t section_file_addr =
3496                             symbol_section->GetFileAddress();
3497                         if (symbol_byte_size == 0 &&
3498                             function_starts_count > 0) {
3499                           addr_t symbol_lookup_file_addr = nlist.n_value;
3500                           // Do an exact address match for non-ARM addresses,
3501                           // else get the closest since the symbol might be a
3502                           // thumb symbol which has an address with bit zero
3503                           // set
3504                           FunctionStarts::Entry *func_start_entry =
3505                               function_starts.FindEntry(symbol_lookup_file_addr,
3506                                                         !is_arm);
3507                           if (is_arm && func_start_entry) {
3508                             // Verify that the function start address is the
3509                             // symbol address (ARM) or the symbol address + 1
3510                             // (thumb)
3511                             if (func_start_entry->addr !=
3512                                     symbol_lookup_file_addr &&
3513                                 func_start_entry->addr !=
3514                                     (symbol_lookup_file_addr + 1)) {
3515                               // Not the right entry, NULL it out...
3516                               func_start_entry = NULL;
3517                             }
3518                           }
3519                           if (func_start_entry) {
3520                             func_start_entry->data = true;
3521 
3522                             addr_t symbol_file_addr = func_start_entry->addr;
3523                             uint32_t symbol_flags = 0;
3524                             if (is_arm) {
3525                               if (symbol_file_addr & 1)
3526                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3527                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3528                             }
3529 
3530                             const FunctionStarts::Entry *next_func_start_entry =
3531                                 function_starts.FindNextEntry(func_start_entry);
3532                             const addr_t section_end_file_addr =
3533                                 section_file_addr +
3534                                 symbol_section->GetByteSize();
3535                             if (next_func_start_entry) {
3536                               addr_t next_symbol_file_addr =
3537                                   next_func_start_entry->addr;
3538                               // Be sure the clear the Thumb address bit when
3539                               // we calculate the size from the current and
3540                               // next address
3541                               if (is_arm)
3542                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3543                               symbol_byte_size = std::min<lldb::addr_t>(
3544                                   next_symbol_file_addr - symbol_file_addr,
3545                                   section_end_file_addr - symbol_file_addr);
3546                             } else {
3547                               symbol_byte_size =
3548                                   section_end_file_addr - symbol_file_addr;
3549                             }
3550                           }
3551                         }
3552                         symbol_value -= section_file_addr;
3553                       }
3554 
3555                       if (is_debug == false) {
3556                         if (type == eSymbolTypeCode) {
3557                           // See if we can find a N_FUN entry for any code
3558                           // symbols. If we do find a match, and the name
3559                           // matches, then we can merge the two into just the
3560                           // function symbol to avoid duplicate entries in
3561                           // the symbol table
3562                           auto range =
3563                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3564                           if (range.first != range.second) {
3565                             bool found_it = false;
3566                             for (auto pos = range.first; pos != range.second;
3567                                  ++pos) {
3568                               if (sym[sym_idx].GetMangled().GetName(
3569                                       Mangled::ePreferMangled) ==
3570                                   sym[pos->second].GetMangled().GetName(
3571                                       Mangled::ePreferMangled)) {
3572                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3573                                 // We just need the flags from the linker
3574                                 // symbol, so put these flags
3575                                 // into the N_FUN flags to avoid duplicate
3576                                 // symbols in the symbol table
3577                                 sym[pos->second].SetExternal(
3578                                     sym[sym_idx].IsExternal());
3579                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3580                                                           nlist.n_desc);
3581                                 if (resolver_addresses.find(nlist.n_value) !=
3582                                     resolver_addresses.end())
3583                                   sym[pos->second].SetType(eSymbolTypeResolver);
3584                                 sym[sym_idx].Clear();
3585                                 found_it = true;
3586                                 break;
3587                               }
3588                             }
3589                             if (found_it)
3590                               continue;
3591                           } else {
3592                             if (resolver_addresses.find(nlist.n_value) !=
3593                                 resolver_addresses.end())
3594                               type = eSymbolTypeResolver;
3595                           }
3596                         } else if (type == eSymbolTypeData ||
3597                                    type == eSymbolTypeObjCClass ||
3598                                    type == eSymbolTypeObjCMetaClass ||
3599                                    type == eSymbolTypeObjCIVar) {
3600                           // See if we can find a N_STSYM entry for any data
3601                           // symbols. If we do find a match, and the name
3602                           // matches, then we can merge the two into just the
3603                           // Static symbol to avoid duplicate entries in the
3604                           // symbol table
3605                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3606                               nlist.n_value);
3607                           if (range.first != range.second) {
3608                             bool found_it = false;
3609                             for (auto pos = range.first; pos != range.second;
3610                                  ++pos) {
3611                               if (sym[sym_idx].GetMangled().GetName(
3612                                       Mangled::ePreferMangled) ==
3613                                   sym[pos->second].GetMangled().GetName(
3614                                       Mangled::ePreferMangled)) {
3615                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3616                                 // We just need the flags from the linker
3617                                 // symbol, so put these flags
3618                                 // into the N_STSYM flags to avoid duplicate
3619                                 // symbols in the symbol table
3620                                 sym[pos->second].SetExternal(
3621                                     sym[sym_idx].IsExternal());
3622                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3623                                                           nlist.n_desc);
3624                                 sym[sym_idx].Clear();
3625                                 found_it = true;
3626                                 break;
3627                               }
3628                             }
3629                             if (found_it)
3630                               continue;
3631                           } else {
3632                             const char *gsym_name =
3633                                 sym[sym_idx]
3634                                     .GetMangled()
3635                                     .GetName(Mangled::ePreferMangled)
3636                                     .GetCString();
3637                             if (gsym_name) {
3638                               // Combine N_GSYM stab entries with the non
3639                               // stab symbol
3640                               ConstNameToSymbolIndexMap::const_iterator pos =
3641                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3642                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3643                                 const uint32_t GSYM_sym_idx = pos->second;
3644                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3645                                     GSYM_sym_idx;
3646                                 // Copy the address, because often the N_GSYM
3647                                 // address has an invalid address of zero
3648                                 // when the global is a common symbol
3649                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3650                                     symbol_section);
3651                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3652                                     symbol_value);
3653                                 add_symbol_addr(sym[GSYM_sym_idx]
3654                                                     .GetAddress()
3655                                                     .GetFileAddress());
3656                                 // We just need the flags from the linker
3657                                 // symbol, so put these flags
3658                                 // into the N_GSYM flags to avoid duplicate
3659                                 // symbols in the symbol table
3660                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3661                                                            nlist.n_desc);
3662                                 sym[sym_idx].Clear();
3663                                 continue;
3664                               }
3665                             }
3666                           }
3667                         }
3668                       }
3669 
3670                       sym[sym_idx].SetID(nlist_idx);
3671                       sym[sym_idx].SetType(type);
3672                       if (set_value) {
3673                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3674                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3675                         add_symbol_addr(
3676                             sym[sym_idx].GetAddress().GetFileAddress());
3677                       }
3678                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3679 
3680                       if (symbol_byte_size > 0)
3681                         sym[sym_idx].SetByteSize(symbol_byte_size);
3682 
3683                       if (demangled_is_synthesized)
3684                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3685                       ++sym_idx;
3686                     } else {
3687                       sym[sym_idx].Clear();
3688                     }
3689                   }
3690                   /////////////////////////////
3691                 }
3692             }
3693 
3694             for (const auto &pos : reexport_shlib_needs_fixup) {
3695               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3696               if (undef_pos != undefined_name_to_desc.end()) {
3697                 const uint8_t dylib_ordinal =
3698                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3699                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3700                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3701                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3702               }
3703             }
3704           }
3705 
3706 #endif
3707   lldb::offset_t nlist_data_offset = 0;
3708 
3709   if (nlist_data.GetByteSize() > 0) {
3710 
3711     // If the sym array was not created while parsing the DSC unmapped
3712     // symbols, create it now.
3713     if (sym == nullptr) {
3714       sym =
3715           symtab.Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3716       num_syms = symtab.GetNumSymbols();
3717     }
3718 
3719     if (unmapped_local_symbols_found) {
3720       assert(m_dysymtab.ilocalsym == 0);
3721       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3722       nlist_idx = m_dysymtab.nlocalsym;
3723     } else {
3724       nlist_idx = 0;
3725     }
3726 
3727     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3728     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3729     UndefinedNameToDescMap undefined_name_to_desc;
3730     SymbolIndexToName reexport_shlib_needs_fixup;
3731 
3732     // Symtab parsing is a huge mess. Everything is entangled and the code
3733     // requires access to a ridiculous amount of variables. LLDB depends
3734     // heavily on the proper merging of symbols and to get that right we need
3735     // to make sure we have parsed all the debug symbols first. Therefore we
3736     // invoke the lambda twice, once to parse only the debug symbols and then
3737     // once more to parse the remaining symbols.
3738     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3739                                  bool debug_only) {
3740       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3741       if (is_debug != debug_only)
3742         return true;
3743 
3744       const char *symbol_name_non_abi_mangled = nullptr;
3745       const char *symbol_name = nullptr;
3746 
3747       if (have_strtab_data) {
3748         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3749 
3750         if (symbol_name == nullptr) {
3751           // No symbol should be NULL, even the symbols with no string values
3752           // should have an offset zero which points to an empty C-string
3753           Debugger::ReportError(llvm::formatv(
3754               "symbol[{0}] has invalid string table offset {1:x} in {2}, "
3755               "ignoring symbol",
3756               nlist_idx, nlist.n_strx, module_sp->GetFileSpec().GetPath()));
3757           return true;
3758         }
3759         if (symbol_name[0] == '\0')
3760           symbol_name = nullptr;
3761       } else {
3762         const addr_t str_addr = strtab_addr + nlist.n_strx;
3763         Status str_error;
3764         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3765                                            str_error))
3766           symbol_name = memory_symbol_name.c_str();
3767       }
3768 
3769       SymbolType type = eSymbolTypeInvalid;
3770       SectionSP symbol_section;
3771       lldb::addr_t symbol_byte_size = 0;
3772       bool add_nlist = true;
3773       bool is_gsym = false;
3774       bool demangled_is_synthesized = false;
3775       bool set_value = true;
3776 
3777       assert(sym_idx < num_syms);
3778       sym[sym_idx].SetDebug(is_debug);
3779 
3780       if (is_debug) {
3781         switch (nlist.n_type) {
3782         case N_GSYM:
3783           // global symbol: name,,NO_SECT,type,0
3784           // Sometimes the N_GSYM value contains the address.
3785 
3786           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3787           // the ObjC data.  They
3788           // have the same address, but we want to ensure that we always find
3789           // only the real symbol, 'cause we don't currently correctly
3790           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3791           // type.  This is a temporary hack to make sure the ObjectiveC
3792           // symbols get treated correctly.  To do this right, we should
3793           // coalesce all the GSYM & global symbols that have the same
3794           // address.
3795           is_gsym = true;
3796           sym[sym_idx].SetExternal(true);
3797 
3798           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3799             llvm::StringRef symbol_name_ref(symbol_name);
3800             if (symbol_name_ref.starts_with(g_objc_v2_prefix_class)) {
3801               symbol_name_non_abi_mangled = symbol_name + 1;
3802               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3803               type = eSymbolTypeObjCClass;
3804               demangled_is_synthesized = true;
3805 
3806             } else if (symbol_name_ref.starts_with(
3807                            g_objc_v2_prefix_metaclass)) {
3808               symbol_name_non_abi_mangled = symbol_name + 1;
3809               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3810               type = eSymbolTypeObjCMetaClass;
3811               demangled_is_synthesized = true;
3812             } else if (symbol_name_ref.starts_with(g_objc_v2_prefix_ivar)) {
3813               symbol_name_non_abi_mangled = symbol_name + 1;
3814               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3815               type = eSymbolTypeObjCIVar;
3816               demangled_is_synthesized = true;
3817             }
3818           } else {
3819             if (nlist.n_value != 0)
3820               symbol_section =
3821                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3822             type = eSymbolTypeData;
3823           }
3824           break;
3825 
3826         case N_FNAME:
3827           // procedure name (f77 kludge): name,,NO_SECT,0,0
3828           type = eSymbolTypeCompiler;
3829           break;
3830 
3831         case N_FUN:
3832           // procedure: name,,n_sect,linenumber,address
3833           if (symbol_name) {
3834             type = eSymbolTypeCode;
3835             symbol_section =
3836                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3837 
3838             N_FUN_addr_to_sym_idx.insert(
3839                 std::make_pair(nlist.n_value, sym_idx));
3840             // We use the current number of symbols in the symbol table in
3841             // lieu of using nlist_idx in case we ever start trimming entries
3842             // out
3843             N_FUN_indexes.push_back(sym_idx);
3844           } else {
3845             type = eSymbolTypeCompiler;
3846 
3847             if (!N_FUN_indexes.empty()) {
3848               // Copy the size of the function into the original STAB entry
3849               // so we don't have to hunt for it later
3850               symtab.SymbolAtIndex(N_FUN_indexes.back())
3851                   ->SetByteSize(nlist.n_value);
3852               N_FUN_indexes.pop_back();
3853               // We don't really need the end function STAB as it contains
3854               // the size which we already placed with the original symbol,
3855               // so don't add it if we want a minimal symbol table
3856               add_nlist = false;
3857             }
3858           }
3859           break;
3860 
3861         case N_STSYM:
3862           // static symbol: name,,n_sect,type,address
3863           N_STSYM_addr_to_sym_idx.insert(
3864               std::make_pair(nlist.n_value, sym_idx));
3865           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3866           if (symbol_name && symbol_name[0]) {
3867             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3868                                                      eSymbolTypeData);
3869           }
3870           break;
3871 
3872         case N_LCSYM:
3873           // .lcomm symbol: name,,n_sect,type,address
3874           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3875           type = eSymbolTypeCommonBlock;
3876           break;
3877 
3878         case N_BNSYM:
3879           // We use the current number of symbols in the symbol table in lieu
3880           // of using nlist_idx in case we ever start trimming entries out
3881           // Skip these if we want minimal symbol tables
3882           add_nlist = false;
3883           break;
3884 
3885         case N_ENSYM:
3886           // Set the size of the N_BNSYM to the terminating index of this
3887           // N_ENSYM so that we can always skip the entire symbol if we need
3888           // to navigate more quickly at the source level when parsing STABS
3889           // Skip these if we want minimal symbol tables
3890           add_nlist = false;
3891           break;
3892 
3893         case N_OPT:
3894           // emitted with gcc2_compiled and in gcc source
3895           type = eSymbolTypeCompiler;
3896           break;
3897 
3898         case N_RSYM:
3899           // register sym: name,,NO_SECT,type,register
3900           type = eSymbolTypeVariable;
3901           break;
3902 
3903         case N_SLINE:
3904           // src line: 0,,n_sect,linenumber,address
3905           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3906           type = eSymbolTypeLineEntry;
3907           break;
3908 
3909         case N_SSYM:
3910           // structure elt: name,,NO_SECT,type,struct_offset
3911           type = eSymbolTypeVariableType;
3912           break;
3913 
3914         case N_SO:
3915           // source file name
3916           type = eSymbolTypeSourceFile;
3917           if (symbol_name == nullptr) {
3918             add_nlist = false;
3919             if (N_SO_index != UINT32_MAX) {
3920               // Set the size of the N_SO to the terminating index of this
3921               // N_SO so that we can always skip the entire N_SO if we need
3922               // to navigate more quickly at the source level when parsing
3923               // STABS
3924               symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3925               symbol_ptr->SetByteSize(sym_idx);
3926               symbol_ptr->SetSizeIsSibling(true);
3927             }
3928             N_NSYM_indexes.clear();
3929             N_INCL_indexes.clear();
3930             N_BRAC_indexes.clear();
3931             N_COMM_indexes.clear();
3932             N_FUN_indexes.clear();
3933             N_SO_index = UINT32_MAX;
3934           } else {
3935             // We use the current number of symbols in the symbol table in
3936             // lieu of using nlist_idx in case we ever start trimming entries
3937             // out
3938             const bool N_SO_has_full_path = symbol_name[0] == '/';
3939             if (N_SO_has_full_path) {
3940               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3941                 // We have two consecutive N_SO entries where the first
3942                 // contains a directory and the second contains a full path.
3943                 sym[sym_idx - 1].GetMangled().SetValue(
3944                     ConstString(symbol_name));
3945                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3946                 add_nlist = false;
3947               } else {
3948                 // This is the first entry in a N_SO that contains a
3949                 // directory or a full path to the source file
3950                 N_SO_index = sym_idx;
3951               }
3952             } else if ((N_SO_index == sym_idx - 1) &&
3953                        ((sym_idx - 1) < num_syms)) {
3954               // This is usually the second N_SO entry that contains just the
3955               // filename, so here we combine it with the first one if we are
3956               // minimizing the symbol table
3957               const char *so_path =
3958                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3959               if (so_path && so_path[0]) {
3960                 std::string full_so_path(so_path);
3961                 const size_t double_slash_pos = full_so_path.find("//");
3962                 if (double_slash_pos != std::string::npos) {
3963                   // The linker has been generating bad N_SO entries with
3964                   // doubled up paths in the format "%s%s" where the first
3965                   // string in the DW_AT_comp_dir, and the second is the
3966                   // directory for the source file so you end up with a path
3967                   // that looks like "/tmp/src//tmp/src/"
3968                   FileSpec so_dir(so_path);
3969                   if (!FileSystem::Instance().Exists(so_dir)) {
3970                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3971                                    FileSpec::Style::native);
3972                     if (FileSystem::Instance().Exists(so_dir)) {
3973                       // Trim off the incorrect path
3974                       full_so_path.erase(0, double_slash_pos + 1);
3975                     }
3976                   }
3977                 }
3978                 if (*full_so_path.rbegin() != '/')
3979                   full_so_path += '/';
3980                 full_so_path += symbol_name;
3981                 sym[sym_idx - 1].GetMangled().SetValue(
3982                     ConstString(full_so_path.c_str()));
3983                 add_nlist = false;
3984                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3985               }
3986             } else {
3987               // This could be a relative path to a N_SO
3988               N_SO_index = sym_idx;
3989             }
3990           }
3991           break;
3992 
3993         case N_OSO:
3994           // object file name: name,,0,0,st_mtime
3995           type = eSymbolTypeObjectFile;
3996           break;
3997 
3998         case N_LSYM:
3999           // local sym: name,,NO_SECT,type,offset
4000           type = eSymbolTypeLocal;
4001           break;
4002 
4003         // INCL scopes
4004         case N_BINCL:
4005           // include file beginning: name,,NO_SECT,0,sum We use the current
4006           // number of symbols in the symbol table in lieu of using nlist_idx
4007           // in case we ever start trimming entries out
4008           N_INCL_indexes.push_back(sym_idx);
4009           type = eSymbolTypeScopeBegin;
4010           break;
4011 
4012         case N_EINCL:
4013           // include file end: name,,NO_SECT,0,0
4014           // Set the size of the N_BINCL to the terminating index of this
4015           // N_EINCL so that we can always skip the entire symbol if we need
4016           // to navigate more quickly at the source level when parsing STABS
4017           if (!N_INCL_indexes.empty()) {
4018             symbol_ptr = symtab.SymbolAtIndex(N_INCL_indexes.back());
4019             symbol_ptr->SetByteSize(sym_idx + 1);
4020             symbol_ptr->SetSizeIsSibling(true);
4021             N_INCL_indexes.pop_back();
4022           }
4023           type = eSymbolTypeScopeEnd;
4024           break;
4025 
4026         case N_SOL:
4027           // #included file name: name,,n_sect,0,address
4028           type = eSymbolTypeHeaderFile;
4029 
4030           // We currently don't use the header files on darwin
4031           add_nlist = false;
4032           break;
4033 
4034         case N_PARAMS:
4035           // compiler parameters: name,,NO_SECT,0,0
4036           type = eSymbolTypeCompiler;
4037           break;
4038 
4039         case N_VERSION:
4040           // compiler version: name,,NO_SECT,0,0
4041           type = eSymbolTypeCompiler;
4042           break;
4043 
4044         case N_OLEVEL:
4045           // compiler -O level: name,,NO_SECT,0,0
4046           type = eSymbolTypeCompiler;
4047           break;
4048 
4049         case N_PSYM:
4050           // parameter: name,,NO_SECT,type,offset
4051           type = eSymbolTypeVariable;
4052           break;
4053 
4054         case N_ENTRY:
4055           // alternate entry: name,,n_sect,linenumber,address
4056           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4057           type = eSymbolTypeLineEntry;
4058           break;
4059 
4060         // Left and Right Braces
4061         case N_LBRAC:
4062           // left bracket: 0,,NO_SECT,nesting level,address We use the
4063           // current number of symbols in the symbol table in lieu of using
4064           // nlist_idx in case we ever start trimming entries out
4065           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4066           N_BRAC_indexes.push_back(sym_idx);
4067           type = eSymbolTypeScopeBegin;
4068           break;
4069 
4070         case N_RBRAC:
4071           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4072           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4073           // can always skip the entire symbol if we need to navigate more
4074           // quickly at the source level when parsing STABS
4075           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4076           if (!N_BRAC_indexes.empty()) {
4077             symbol_ptr = symtab.SymbolAtIndex(N_BRAC_indexes.back());
4078             symbol_ptr->SetByteSize(sym_idx + 1);
4079             symbol_ptr->SetSizeIsSibling(true);
4080             N_BRAC_indexes.pop_back();
4081           }
4082           type = eSymbolTypeScopeEnd;
4083           break;
4084 
4085         case N_EXCL:
4086           // deleted include file: name,,NO_SECT,0,sum
4087           type = eSymbolTypeHeaderFile;
4088           break;
4089 
4090         // COMM scopes
4091         case N_BCOMM:
4092           // begin common: name,,NO_SECT,0,0
4093           // We use the current number of symbols in the symbol table in lieu
4094           // of using nlist_idx in case we ever start trimming entries out
4095           type = eSymbolTypeScopeBegin;
4096           N_COMM_indexes.push_back(sym_idx);
4097           break;
4098 
4099         case N_ECOML:
4100           // end common (local name): 0,,n_sect,0,address
4101           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4102           [[fallthrough]];
4103 
4104         case N_ECOMM:
4105           // end common: name,,n_sect,0,0
4106           // Set the size of the N_BCOMM to the terminating index of this
4107           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4108           // we need to navigate more quickly at the source level when
4109           // parsing STABS
4110           if (!N_COMM_indexes.empty()) {
4111             symbol_ptr = symtab.SymbolAtIndex(N_COMM_indexes.back());
4112             symbol_ptr->SetByteSize(sym_idx + 1);
4113             symbol_ptr->SetSizeIsSibling(true);
4114             N_COMM_indexes.pop_back();
4115           }
4116           type = eSymbolTypeScopeEnd;
4117           break;
4118 
4119         case N_LENG:
4120           // second stab entry with length information
4121           type = eSymbolTypeAdditional;
4122           break;
4123 
4124         default:
4125           break;
4126         }
4127       } else {
4128         uint8_t n_type = N_TYPE & nlist.n_type;
4129         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4130 
4131         switch (n_type) {
4132         case N_INDR: {
4133           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4134           if (reexport_name_cstr && reexport_name_cstr[0] && symbol_name) {
4135             type = eSymbolTypeReExported;
4136             ConstString reexport_name(reexport_name_cstr +
4137                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4138             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4139             set_value = false;
4140             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4141             indirect_symbol_names.insert(
4142                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4143           } else
4144             type = eSymbolTypeUndefined;
4145         } break;
4146 
4147         case N_UNDF:
4148           if (symbol_name && symbol_name[0]) {
4149             ConstString undefined_name(symbol_name +
4150                                        ((symbol_name[0] == '_') ? 1 : 0));
4151             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4152           }
4153           [[fallthrough]];
4154 
4155         case N_PBUD:
4156           type = eSymbolTypeUndefined;
4157           break;
4158 
4159         case N_ABS:
4160           type = eSymbolTypeAbsolute;
4161           break;
4162 
4163         case N_SECT: {
4164           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4165 
4166           if (!symbol_section) {
4167             // TODO: warn about this?
4168             add_nlist = false;
4169             break;
4170           }
4171 
4172           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4173             type = eSymbolTypeException;
4174           } else {
4175             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4176 
4177             switch (section_type) {
4178             case S_CSTRING_LITERALS:
4179               type = eSymbolTypeData;
4180               break; // section with only literal C strings
4181             case S_4BYTE_LITERALS:
4182               type = eSymbolTypeData;
4183               break; // section with only 4 byte literals
4184             case S_8BYTE_LITERALS:
4185               type = eSymbolTypeData;
4186               break; // section with only 8 byte literals
4187             case S_LITERAL_POINTERS:
4188               type = eSymbolTypeTrampoline;
4189               break; // section with only pointers to literals
4190             case S_NON_LAZY_SYMBOL_POINTERS:
4191               type = eSymbolTypeTrampoline;
4192               break; // section with only non-lazy symbol pointers
4193             case S_LAZY_SYMBOL_POINTERS:
4194               type = eSymbolTypeTrampoline;
4195               break; // section with only lazy symbol pointers
4196             case S_SYMBOL_STUBS:
4197               type = eSymbolTypeTrampoline;
4198               break; // section with only symbol stubs, byte size of stub in
4199                      // the reserved2 field
4200             case S_MOD_INIT_FUNC_POINTERS:
4201               type = eSymbolTypeCode;
4202               break; // section with only function pointers for initialization
4203             case S_MOD_TERM_FUNC_POINTERS:
4204               type = eSymbolTypeCode;
4205               break; // section with only function pointers for termination
4206             case S_INTERPOSING:
4207               type = eSymbolTypeTrampoline;
4208               break; // section with only pairs of function pointers for
4209                      // interposing
4210             case S_16BYTE_LITERALS:
4211               type = eSymbolTypeData;
4212               break; // section with only 16 byte literals
4213             case S_DTRACE_DOF:
4214               type = eSymbolTypeInstrumentation;
4215               break;
4216             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4217               type = eSymbolTypeTrampoline;
4218               break;
4219             default:
4220               switch (symbol_section->GetType()) {
4221               case lldb::eSectionTypeCode:
4222                 type = eSymbolTypeCode;
4223                 break;
4224               case eSectionTypeData:
4225               case eSectionTypeDataCString:         // Inlined C string data
4226               case eSectionTypeDataCStringPointers: // Pointers to C string
4227                                                     // data
4228               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4229                                                     // the symbol table
4230               case eSectionTypeData4:
4231               case eSectionTypeData8:
4232               case eSectionTypeData16:
4233                 type = eSymbolTypeData;
4234                 break;
4235               default:
4236                 break;
4237               }
4238               break;
4239             }
4240 
4241             if (type == eSymbolTypeInvalid) {
4242               const char *symbol_sect_name =
4243                   symbol_section->GetName().AsCString();
4244               if (symbol_section->IsDescendant(text_section_sp.get())) {
4245                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4246                                             S_ATTR_SELF_MODIFYING_CODE |
4247                                             S_ATTR_SOME_INSTRUCTIONS))
4248                   type = eSymbolTypeData;
4249                 else
4250                   type = eSymbolTypeCode;
4251               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4252                          symbol_section->IsDescendant(
4253                              data_dirty_section_sp.get()) ||
4254                          symbol_section->IsDescendant(
4255                              data_const_section_sp.get())) {
4256                 if (symbol_sect_name &&
4257                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4258                   type = eSymbolTypeRuntime;
4259 
4260                   if (symbol_name) {
4261                     llvm::StringRef symbol_name_ref(symbol_name);
4262                     if (symbol_name_ref.starts_with("_OBJC_")) {
4263                       llvm::StringRef g_objc_v2_prefix_class(
4264                           "_OBJC_CLASS_$_");
4265                       llvm::StringRef g_objc_v2_prefix_metaclass(
4266                           "_OBJC_METACLASS_$_");
4267                       llvm::StringRef g_objc_v2_prefix_ivar(
4268                           "_OBJC_IVAR_$_");
4269                       if (symbol_name_ref.starts_with(g_objc_v2_prefix_class)) {
4270                         symbol_name_non_abi_mangled = symbol_name + 1;
4271                         symbol_name =
4272                             symbol_name + g_objc_v2_prefix_class.size();
4273                         type = eSymbolTypeObjCClass;
4274                         demangled_is_synthesized = true;
4275                       } else if (symbol_name_ref.starts_with(
4276                                      g_objc_v2_prefix_metaclass)) {
4277                         symbol_name_non_abi_mangled = symbol_name + 1;
4278                         symbol_name =
4279                             symbol_name + g_objc_v2_prefix_metaclass.size();
4280                         type = eSymbolTypeObjCMetaClass;
4281                         demangled_is_synthesized = true;
4282                       } else if (symbol_name_ref.starts_with(
4283                                      g_objc_v2_prefix_ivar)) {
4284                         symbol_name_non_abi_mangled = symbol_name + 1;
4285                         symbol_name =
4286                             symbol_name + g_objc_v2_prefix_ivar.size();
4287                         type = eSymbolTypeObjCIVar;
4288                         demangled_is_synthesized = true;
4289                       }
4290                     }
4291                   }
4292                 } else if (symbol_sect_name &&
4293                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4294                                symbol_sect_name) {
4295                   type = eSymbolTypeException;
4296                 } else {
4297                   type = eSymbolTypeData;
4298                 }
4299               } else if (symbol_sect_name &&
4300                          ::strstr(symbol_sect_name, "__IMPORT") ==
4301                              symbol_sect_name) {
4302                 type = eSymbolTypeTrampoline;
4303               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4304                 type = eSymbolTypeRuntime;
4305                 if (symbol_name && symbol_name[0] == '.') {
4306                   llvm::StringRef symbol_name_ref(symbol_name);
4307                   llvm::StringRef g_objc_v1_prefix_class(
4308                       ".objc_class_name_");
4309                   if (symbol_name_ref.starts_with(g_objc_v1_prefix_class)) {
4310                     symbol_name_non_abi_mangled = symbol_name;
4311                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4312                     type = eSymbolTypeObjCClass;
4313                     demangled_is_synthesized = true;
4314                   }
4315                 }
4316               }
4317             }
4318           }
4319         } break;
4320         }
4321       }
4322 
4323       if (!add_nlist) {
4324         sym[sym_idx].Clear();
4325         return true;
4326       }
4327 
4328       uint64_t symbol_value = nlist.n_value;
4329 
4330       if (symbol_name_non_abi_mangled) {
4331         sym[sym_idx].GetMangled().SetMangledName(
4332             ConstString(symbol_name_non_abi_mangled));
4333         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4334       } else {
4335 
4336         if (symbol_name && symbol_name[0] == '_') {
4337           symbol_name++; // Skip the leading underscore
4338         }
4339 
4340         if (symbol_name) {
4341           ConstString const_symbol_name(symbol_name);
4342           sym[sym_idx].GetMangled().SetValue(const_symbol_name);
4343         }
4344       }
4345 
4346       if (is_gsym) {
4347         const char *gsym_name = sym[sym_idx]
4348                                     .GetMangled()
4349                                     .GetName(Mangled::ePreferMangled)
4350                                     .GetCString();
4351         if (gsym_name)
4352           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4353       }
4354 
4355       if (symbol_section) {
4356         const addr_t section_file_addr = symbol_section->GetFileAddress();
4357         if (symbol_byte_size == 0 && function_starts_count > 0) {
4358           addr_t symbol_lookup_file_addr = nlist.n_value;
4359           // Do an exact address match for non-ARM addresses, else get the
4360           // closest since the symbol might be a thumb symbol which has an
4361           // address with bit zero set.
4362           FunctionStarts::Entry *func_start_entry =
4363               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4364           if (is_arm && func_start_entry) {
4365             // Verify that the function start address is the symbol address
4366             // (ARM) or the symbol address + 1 (thumb).
4367             if (func_start_entry->addr != symbol_lookup_file_addr &&
4368                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4369               // Not the right entry, NULL it out...
4370               func_start_entry = nullptr;
4371             }
4372           }
4373           if (func_start_entry) {
4374             func_start_entry->data = true;
4375 
4376             addr_t symbol_file_addr = func_start_entry->addr;
4377             if (is_arm)
4378               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4379 
4380             const FunctionStarts::Entry *next_func_start_entry =
4381                 function_starts.FindNextEntry(func_start_entry);
4382             const addr_t section_end_file_addr =
4383                 section_file_addr + symbol_section->GetByteSize();
4384             if (next_func_start_entry) {
4385               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4386               // Be sure the clear the Thumb address bit when we calculate the
4387               // size from the current and next address
4388               if (is_arm)
4389                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4390               symbol_byte_size = std::min<lldb::addr_t>(
4391                   next_symbol_file_addr - symbol_file_addr,
4392                   section_end_file_addr - symbol_file_addr);
4393             } else {
4394               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4395             }
4396           }
4397         }
4398         symbol_value -= section_file_addr;
4399       }
4400 
4401       if (!is_debug) {
4402         if (type == eSymbolTypeCode) {
4403           // See if we can find a N_FUN entry for any code symbols. If we do
4404           // find a match, and the name matches, then we can merge the two into
4405           // just the function symbol to avoid duplicate entries in the symbol
4406           // table.
4407           std::pair<ValueToSymbolIndexMap::const_iterator,
4408                     ValueToSymbolIndexMap::const_iterator>
4409               range;
4410           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4411           if (range.first != range.second) {
4412             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4413                  pos != range.second; ++pos) {
4414               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4415                   sym[pos->second].GetMangled().GetName(
4416                       Mangled::ePreferMangled)) {
4417                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4418                 // We just need the flags from the linker symbol, so put these
4419                 // flags into the N_FUN flags to avoid duplicate symbols in the
4420                 // symbol table.
4421                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4422                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4423                 if (resolver_addresses.find(nlist.n_value) !=
4424                     resolver_addresses.end())
4425                   sym[pos->second].SetType(eSymbolTypeResolver);
4426                 sym[sym_idx].Clear();
4427                 return true;
4428               }
4429             }
4430           } else {
4431             if (resolver_addresses.find(nlist.n_value) !=
4432                 resolver_addresses.end())
4433               type = eSymbolTypeResolver;
4434           }
4435         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4436                    type == eSymbolTypeObjCMetaClass ||
4437                    type == eSymbolTypeObjCIVar) {
4438           // See if we can find a N_STSYM entry for any data symbols. If we do
4439           // find a match, and the name matches, then we can merge the two into
4440           // just the Static symbol to avoid duplicate entries in the symbol
4441           // table.
4442           std::pair<ValueToSymbolIndexMap::const_iterator,
4443                     ValueToSymbolIndexMap::const_iterator>
4444               range;
4445           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4446           if (range.first != range.second) {
4447             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4448                  pos != range.second; ++pos) {
4449               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4450                   sym[pos->second].GetMangled().GetName(
4451                       Mangled::ePreferMangled)) {
4452                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4453                 // We just need the flags from the linker symbol, so put these
4454                 // flags into the N_STSYM flags to avoid duplicate symbols in
4455                 // the symbol table.
4456                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4457                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4458                 sym[sym_idx].Clear();
4459                 return true;
4460               }
4461             }
4462           } else {
4463             // Combine N_GSYM stab entries with the non stab symbol.
4464             const char *gsym_name = sym[sym_idx]
4465                                         .GetMangled()
4466                                         .GetName(Mangled::ePreferMangled)
4467                                         .GetCString();
4468             if (gsym_name) {
4469               ConstNameToSymbolIndexMap::const_iterator pos =
4470                   N_GSYM_name_to_sym_idx.find(gsym_name);
4471               if (pos != N_GSYM_name_to_sym_idx.end()) {
4472                 const uint32_t GSYM_sym_idx = pos->second;
4473                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4474                 // Copy the address, because often the N_GSYM address has an
4475                 // invalid address of zero when the global is a common symbol.
4476                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4477                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4478                 add_symbol_addr(
4479                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4480                 // We just need the flags from the linker symbol, so put these
4481                 // flags into the N_GSYM flags to avoid duplicate symbols in
4482                 // the symbol table.
4483                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4484                 sym[sym_idx].Clear();
4485                 return true;
4486               }
4487             }
4488           }
4489         }
4490       }
4491 
4492       sym[sym_idx].SetID(nlist_idx);
4493       sym[sym_idx].SetType(type);
4494       if (set_value) {
4495         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4496         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4497         if (symbol_section)
4498           add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4499       }
4500       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4501       if (nlist.n_desc & N_WEAK_REF)
4502         sym[sym_idx].SetIsWeak(true);
4503 
4504       if (symbol_byte_size > 0)
4505         sym[sym_idx].SetByteSize(symbol_byte_size);
4506 
4507       if (demangled_is_synthesized)
4508         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4509 
4510       ++sym_idx;
4511       return true;
4512     };
4513 
4514     // First parse all the nlists but don't process them yet. See the next
4515     // comment for an explanation why.
4516     std::vector<struct nlist_64> nlists;
4517     nlists.reserve(symtab_load_command.nsyms);
4518     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4519       if (auto nlist =
4520               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4521         nlists.push_back(*nlist);
4522       else
4523         break;
4524     }
4525 
4526     // Now parse all the debug symbols. This is needed to merge non-debug
4527     // symbols in the next step. Non-debug symbols are always coalesced into
4528     // the debug symbol. Doing this in one step would mean that some symbols
4529     // won't be merged.
4530     nlist_idx = 0;
4531     for (auto &nlist : nlists) {
4532       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4533         break;
4534     }
4535 
4536     // Finally parse all the non debug symbols.
4537     nlist_idx = 0;
4538     for (auto &nlist : nlists) {
4539       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4540         break;
4541     }
4542 
4543     for (const auto &pos : reexport_shlib_needs_fixup) {
4544       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4545       if (undef_pos != undefined_name_to_desc.end()) {
4546         const uint8_t dylib_ordinal =
4547             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4548         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4549           sym[pos.first].SetReExportedSymbolSharedLibrary(
4550               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4551       }
4552     }
4553   }
4554 
4555   // Count how many trie symbols we'll add to the symbol table
4556   int trie_symbol_table_augment_count = 0;
4557   for (auto &e : external_sym_trie_entries) {
4558     if (!symbols_added.contains(e.entry.address))
4559       trie_symbol_table_augment_count++;
4560   }
4561 
4562   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4563     num_syms = sym_idx + trie_symbol_table_augment_count;
4564     sym = symtab.Resize(num_syms);
4565   }
4566   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4567 
4568   // Add symbols from the trie to the symbol table.
4569   for (auto &e : external_sym_trie_entries) {
4570     if (symbols_added.contains(e.entry.address))
4571       continue;
4572 
4573     // Find the section that this trie address is in, use that to annotate
4574     // symbol type as we add the trie address and name to the symbol table.
4575     Address symbol_addr;
4576     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4577       SectionSP symbol_section(symbol_addr.GetSection());
4578       const char *symbol_name = e.entry.name.GetCString();
4579       bool demangled_is_synthesized = false;
4580       SymbolType type =
4581           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4582                         data_section_sp, data_dirty_section_sp,
4583                         data_const_section_sp, symbol_section);
4584 
4585       sym[sym_idx].SetType(type);
4586       if (symbol_section) {
4587         sym[sym_idx].SetID(synthetic_sym_id++);
4588         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4589         if (demangled_is_synthesized)
4590           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4591         sym[sym_idx].SetIsSynthetic(true);
4592         sym[sym_idx].SetExternal(true);
4593         sym[sym_idx].GetAddressRef() = symbol_addr;
4594         add_symbol_addr(symbol_addr.GetFileAddress());
4595         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4596           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4597         ++sym_idx;
4598       }
4599     }
4600   }
4601 
4602   if (function_starts_count > 0) {
4603     uint32_t num_synthetic_function_symbols = 0;
4604     for (i = 0; i < function_starts_count; ++i) {
4605       if (!symbols_added.contains(function_starts.GetEntryRef(i).addr))
4606         ++num_synthetic_function_symbols;
4607     }
4608 
4609     if (num_synthetic_function_symbols > 0) {
4610       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4611         num_syms = sym_idx + num_synthetic_function_symbols;
4612         sym = symtab.Resize(num_syms);
4613       }
4614       for (i = 0; i < function_starts_count; ++i) {
4615         const FunctionStarts::Entry *func_start_entry =
4616             function_starts.GetEntryAtIndex(i);
4617         if (!symbols_added.contains(func_start_entry->addr)) {
4618           addr_t symbol_file_addr = func_start_entry->addr;
4619           uint32_t symbol_flags = 0;
4620           if (func_start_entry->data)
4621             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4622           Address symbol_addr;
4623           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4624             SectionSP symbol_section(symbol_addr.GetSection());
4625             uint32_t symbol_byte_size = 0;
4626             if (symbol_section) {
4627               const addr_t section_file_addr = symbol_section->GetFileAddress();
4628               const FunctionStarts::Entry *next_func_start_entry =
4629                   function_starts.FindNextEntry(func_start_entry);
4630               const addr_t section_end_file_addr =
4631                   section_file_addr + symbol_section->GetByteSize();
4632               if (next_func_start_entry) {
4633                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4634                 if (is_arm)
4635                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4636                 symbol_byte_size = std::min<lldb::addr_t>(
4637                     next_symbol_file_addr - symbol_file_addr,
4638                     section_end_file_addr - symbol_file_addr);
4639               } else {
4640                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4641               }
4642               sym[sym_idx].SetID(synthetic_sym_id++);
4643               // Don't set the name for any synthetic symbols, the Symbol
4644               // object will generate one if needed when the name is accessed
4645               // via accessors.
4646               sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4647               sym[sym_idx].SetType(eSymbolTypeCode);
4648               sym[sym_idx].SetIsSynthetic(true);
4649               sym[sym_idx].GetAddressRef() = symbol_addr;
4650               add_symbol_addr(symbol_addr.GetFileAddress());
4651               if (symbol_flags)
4652                 sym[sym_idx].SetFlags(symbol_flags);
4653               if (symbol_byte_size)
4654                 sym[sym_idx].SetByteSize(symbol_byte_size);
4655               ++sym_idx;
4656             }
4657           }
4658         }
4659       }
4660     }
4661   }
4662 
4663   // Trim our symbols down to just what we ended up with after removing any
4664   // symbols.
4665   if (sym_idx < num_syms) {
4666     num_syms = sym_idx;
4667     sym = symtab.Resize(num_syms);
4668   }
4669 
4670   // Now synthesize indirect symbols
4671   if (m_dysymtab.nindirectsyms != 0) {
4672     if (indirect_symbol_index_data.GetByteSize()) {
4673       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4674           m_nlist_idx_to_sym_idx.end();
4675 
4676       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4677            ++sect_idx) {
4678         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4679             S_SYMBOL_STUBS) {
4680           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4681           if (symbol_stub_byte_size == 0)
4682             continue;
4683 
4684           const uint32_t num_symbol_stubs =
4685               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4686 
4687           if (num_symbol_stubs == 0)
4688             continue;
4689 
4690           const uint32_t symbol_stub_index_offset =
4691               m_mach_sections[sect_idx].reserved1;
4692           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4693             const uint32_t symbol_stub_index =
4694                 symbol_stub_index_offset + stub_idx;
4695             const lldb::addr_t symbol_stub_addr =
4696                 m_mach_sections[sect_idx].addr +
4697                 (stub_idx * symbol_stub_byte_size);
4698             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4699             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4700                     symbol_stub_offset, 4)) {
4701               const uint32_t stub_sym_id =
4702                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4703               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4704                 continue;
4705 
4706               NListIndexToSymbolIndexMap::const_iterator index_pos =
4707                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4708               Symbol *stub_symbol = nullptr;
4709               if (index_pos != end_index_pos) {
4710                 // We have a remapping from the original nlist index to a
4711                 // current symbol index, so just look this up by index
4712                 stub_symbol = symtab.SymbolAtIndex(index_pos->second);
4713               } else {
4714                 // We need to lookup a symbol using the original nlist symbol
4715                 // index since this index is coming from the S_SYMBOL_STUBS
4716                 stub_symbol = symtab.FindSymbolByID(stub_sym_id);
4717               }
4718 
4719               if (stub_symbol) {
4720                 Address so_addr(symbol_stub_addr, section_list);
4721 
4722                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4723                   // Change the external symbol into a trampoline that makes
4724                   // sense These symbols were N_UNDF N_EXT, and are useless
4725                   // to us, so we can re-use them so we don't have to make up
4726                   // a synthetic symbol for no good reason.
4727                   if (resolver_addresses.find(symbol_stub_addr) ==
4728                       resolver_addresses.end())
4729                     stub_symbol->SetType(eSymbolTypeTrampoline);
4730                   else
4731                     stub_symbol->SetType(eSymbolTypeResolver);
4732                   stub_symbol->SetExternal(false);
4733                   stub_symbol->GetAddressRef() = so_addr;
4734                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4735                 } else {
4736                   // Make a synthetic symbol to describe the trampoline stub
4737                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4738                   if (sym_idx >= num_syms) {
4739                     sym = symtab.Resize(++num_syms);
4740                     stub_symbol = nullptr; // this pointer no longer valid
4741                   }
4742                   sym[sym_idx].SetID(synthetic_sym_id++);
4743                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4744                   if (resolver_addresses.find(symbol_stub_addr) ==
4745                       resolver_addresses.end())
4746                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4747                   else
4748                     sym[sym_idx].SetType(eSymbolTypeResolver);
4749                   sym[sym_idx].SetIsSynthetic(true);
4750                   sym[sym_idx].GetAddressRef() = so_addr;
4751                   add_symbol_addr(so_addr.GetFileAddress());
4752                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4753                   ++sym_idx;
4754                 }
4755               } else {
4756                 if (log)
4757                   log->Warning("symbol stub referencing symbol table symbol "
4758                                "%u that isn't in our minimal symbol table, "
4759                                "fix this!!!",
4760                                stub_sym_id);
4761               }
4762             }
4763           }
4764         }
4765       }
4766     }
4767   }
4768 
4769   if (!reexport_trie_entries.empty()) {
4770     for (const auto &e : reexport_trie_entries) {
4771       if (e.entry.import_name) {
4772         // Only add indirect symbols from the Trie entries if we didn't have
4773         // a N_INDR nlist entry for this already
4774         if (indirect_symbol_names.find(e.entry.name) ==
4775             indirect_symbol_names.end()) {
4776           // Make a synthetic symbol to describe re-exported symbol.
4777           if (sym_idx >= num_syms)
4778             sym = symtab.Resize(++num_syms);
4779           sym[sym_idx].SetID(synthetic_sym_id++);
4780           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4781           sym[sym_idx].SetType(eSymbolTypeReExported);
4782           sym[sym_idx].SetIsSynthetic(true);
4783           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4784           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4785             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4786                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4787           }
4788           ++sym_idx;
4789         }
4790       }
4791     }
4792   }
4793 }
4794 
4795 void ObjectFileMachO::Dump(Stream *s) {
4796   ModuleSP module_sp(GetModule());
4797   if (module_sp) {
4798     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4799     s->Printf("%p: ", static_cast<void *>(this));
4800     s->Indent();
4801     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4802       s->PutCString("ObjectFileMachO64");
4803     else
4804       s->PutCString("ObjectFileMachO32");
4805 
4806     *s << ", file = '" << m_file;
4807     ModuleSpecList all_specs;
4808     ModuleSpec base_spec;
4809     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4810                     base_spec, all_specs);
4811     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4812       *s << "', triple";
4813       if (e)
4814         s->Printf("[%d]", i);
4815       *s << " = ";
4816       *s << all_specs.GetModuleSpecRefAtIndex(i)
4817                 .GetArchitecture()
4818                 .GetTriple()
4819                 .getTriple();
4820     }
4821     *s << "\n";
4822     SectionList *sections = GetSectionList();
4823     if (sections)
4824       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4825                      UINT32_MAX);
4826 
4827     if (m_symtab_up)
4828       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4829   }
4830 }
4831 
4832 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4833                               const lldb_private::DataExtractor &data,
4834                               lldb::offset_t lc_offset) {
4835   uint32_t i;
4836   llvm::MachO::uuid_command load_cmd;
4837 
4838   lldb::offset_t offset = lc_offset;
4839   for (i = 0; i < header.ncmds; ++i) {
4840     const lldb::offset_t cmd_offset = offset;
4841     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4842       break;
4843 
4844     if (load_cmd.cmd == LC_UUID) {
4845       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4846 
4847       if (uuid_bytes) {
4848         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4849         // We pretend these object files have no UUID to prevent crashing.
4850 
4851         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4852                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4853                                        0xbb, 0x14, 0xf0, 0x0d};
4854 
4855         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4856           return UUID();
4857 
4858         return UUID(uuid_bytes, 16);
4859       }
4860       return UUID();
4861     }
4862     offset = cmd_offset + load_cmd.cmdsize;
4863   }
4864   return UUID();
4865 }
4866 
4867 static llvm::StringRef GetOSName(uint32_t cmd) {
4868   switch (cmd) {
4869   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4870     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4871   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4872     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4873   case llvm::MachO::LC_VERSION_MIN_TVOS:
4874     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4875   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4876     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4877   default:
4878     llvm_unreachable("unexpected LC_VERSION load command");
4879   }
4880 }
4881 
4882 namespace {
4883 struct OSEnv {
4884   llvm::StringRef os_type;
4885   llvm::StringRef environment;
4886   OSEnv(uint32_t cmd) {
4887     switch (cmd) {
4888     case llvm::MachO::PLATFORM_MACOS:
4889       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4890       return;
4891     case llvm::MachO::PLATFORM_IOS:
4892       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4893       return;
4894     case llvm::MachO::PLATFORM_TVOS:
4895       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4896       return;
4897     case llvm::MachO::PLATFORM_WATCHOS:
4898       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4899       return;
4900     case llvm::MachO::PLATFORM_BRIDGEOS:
4901       os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4902       return;
4903     case llvm::MachO::PLATFORM_DRIVERKIT:
4904       os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
4905       return;
4906     case llvm::MachO::PLATFORM_MACCATALYST:
4907       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4908       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4909       return;
4910     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4911       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4912       environment =
4913           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4914       return;
4915     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4916       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4917       environment =
4918           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4919       return;
4920     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4921       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4922       environment =
4923           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4924       return;
4925     case llvm::MachO::PLATFORM_XROS:
4926       os_type = llvm::Triple::getOSTypeName(llvm::Triple::XROS);
4927       return;
4928     case llvm::MachO::PLATFORM_XROS_SIMULATOR:
4929       os_type = llvm::Triple::getOSTypeName(llvm::Triple::XROS);
4930       environment =
4931           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4932       return;
4933     default: {
4934       Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
4935       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4936     }
4937     }
4938   }
4939 };
4940 
4941 struct MinOS {
4942   uint32_t major_version, minor_version, patch_version;
4943   MinOS(uint32_t version)
4944       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4945         patch_version(version & 0xffu) {}
4946 };
4947 } // namespace
4948 
4949 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4950                                       const lldb_private::DataExtractor &data,
4951                                       lldb::offset_t lc_offset,
4952                                       ModuleSpec &base_spec,
4953                                       lldb_private::ModuleSpecList &all_specs) {
4954   auto &base_arch = base_spec.GetArchitecture();
4955   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4956   if (!base_arch.IsValid())
4957     return;
4958 
4959   bool found_any = false;
4960   auto add_triple = [&](const llvm::Triple &triple) {
4961     auto spec = base_spec;
4962     spec.GetArchitecture().GetTriple() = triple;
4963     if (spec.GetArchitecture().IsValid()) {
4964       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4965       all_specs.Append(spec);
4966       found_any = true;
4967     }
4968   };
4969 
4970   // Set OS to an unspecified unknown or a "*" so it can match any OS
4971   llvm::Triple base_triple = base_arch.GetTriple();
4972   base_triple.setOS(llvm::Triple::UnknownOS);
4973   base_triple.setOSName(llvm::StringRef());
4974 
4975   if (header.filetype == MH_PRELOAD) {
4976     if (header.cputype == CPU_TYPE_ARM) {
4977       // If this is a 32-bit arm binary, and it's a standalone binary, force
4978       // the Vendor to Apple so we don't accidentally pick up the generic
4979       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4980       // frame pointer register; most other armv7 ABIs use a combination of
4981       // r7 and r11.
4982       base_triple.setVendor(llvm::Triple::Apple);
4983     } else {
4984       // Set vendor to an unspecified unknown or a "*" so it can match any
4985       // vendor This is required for correct behavior of EFI debugging on
4986       // x86_64
4987       base_triple.setVendor(llvm::Triple::UnknownVendor);
4988       base_triple.setVendorName(llvm::StringRef());
4989     }
4990     return add_triple(base_triple);
4991   }
4992 
4993   llvm::MachO::load_command load_cmd;
4994 
4995   // See if there is an LC_VERSION_MIN_* load command that can give
4996   // us the OS type.
4997   lldb::offset_t offset = lc_offset;
4998   for (uint32_t i = 0; i < header.ncmds; ++i) {
4999     const lldb::offset_t cmd_offset = offset;
5000     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
5001       break;
5002 
5003     llvm::MachO::version_min_command version_min;
5004     switch (load_cmd.cmd) {
5005     case llvm::MachO::LC_VERSION_MIN_MACOSX:
5006     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
5007     case llvm::MachO::LC_VERSION_MIN_TVOS:
5008     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
5009       if (load_cmd.cmdsize != sizeof(version_min))
5010         break;
5011       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
5012                             data.GetByteOrder(), &version_min) == 0)
5013         break;
5014       MinOS min_os(version_min.version);
5015       llvm::SmallString<32> os_name;
5016       llvm::raw_svector_ostream os(os_name);
5017       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
5018          << min_os.minor_version << '.' << min_os.patch_version;
5019 
5020       auto triple = base_triple;
5021       triple.setOSName(os.str());
5022 
5023       // Disambiguate legacy simulator platforms.
5024       if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5025           (base_triple.getArch() == llvm::Triple::x86_64 ||
5026            base_triple.getArch() == llvm::Triple::x86)) {
5027         // The combination of legacy LC_VERSION_MIN load command and
5028         // x86 architecture always indicates a simulator environment.
5029         // The combination of LC_VERSION_MIN and arm architecture only
5030         // appears for native binaries. Back-deploying simulator
5031         // binaries on Apple Silicon Macs use the modern unambigous
5032         // LC_BUILD_VERSION load commands; no special handling required.
5033         triple.setEnvironment(llvm::Triple::Simulator);
5034       }
5035       add_triple(triple);
5036       break;
5037     }
5038     default:
5039       break;
5040     }
5041 
5042     offset = cmd_offset + load_cmd.cmdsize;
5043   }
5044 
5045   // See if there are LC_BUILD_VERSION load commands that can give
5046   // us the OS type.
5047   offset = lc_offset;
5048   for (uint32_t i = 0; i < header.ncmds; ++i) {
5049     const lldb::offset_t cmd_offset = offset;
5050     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
5051       break;
5052 
5053     do {
5054       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5055         llvm::MachO::build_version_command build_version;
5056         if (load_cmd.cmdsize < sizeof(build_version)) {
5057           // Malformed load command.
5058           break;
5059         }
5060         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5061                               data.GetByteOrder(), &build_version) == 0)
5062           break;
5063         MinOS min_os(build_version.minos);
5064         OSEnv os_env(build_version.platform);
5065         llvm::SmallString<16> os_name;
5066         llvm::raw_svector_ostream os(os_name);
5067         os << os_env.os_type << min_os.major_version << '.'
5068            << min_os.minor_version << '.' << min_os.patch_version;
5069         auto triple = base_triple;
5070         triple.setOSName(os.str());
5071         os_name.clear();
5072         if (!os_env.environment.empty())
5073           triple.setEnvironmentName(os_env.environment);
5074         add_triple(triple);
5075       }
5076     } while (false);
5077     offset = cmd_offset + load_cmd.cmdsize;
5078   }
5079 
5080   if (!found_any) {
5081     add_triple(base_triple);
5082   }
5083 }
5084 
5085 ArchSpec ObjectFileMachO::GetArchitecture(
5086     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5087     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5088   ModuleSpecList all_specs;
5089   ModuleSpec base_spec;
5090   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5091                   base_spec, all_specs);
5092 
5093   // If the object file offers multiple alternative load commands,
5094   // pick the one that matches the module.
5095   if (module_sp) {
5096     const ArchSpec &module_arch = module_sp->GetArchitecture();
5097     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5098       ArchSpec mach_arch =
5099           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5100       if (module_arch.IsCompatibleMatch(mach_arch))
5101         return mach_arch;
5102     }
5103   }
5104 
5105   // Return the first arch we found.
5106   if (all_specs.GetSize() == 0)
5107     return {};
5108   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5109 }
5110 
5111 UUID ObjectFileMachO::GetUUID() {
5112   ModuleSP module_sp(GetModule());
5113   if (module_sp) {
5114     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5115     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5116     return GetUUID(m_header, m_data, offset);
5117   }
5118   return UUID();
5119 }
5120 
5121 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5122   ModuleSP module_sp = GetModule();
5123   if (!module_sp)
5124     return 0;
5125 
5126   uint32_t count = 0;
5127   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5128   llvm::MachO::load_command load_cmd;
5129   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5130   std::vector<std::string> rpath_paths;
5131   std::vector<std::string> rpath_relative_paths;
5132   std::vector<std::string> at_exec_relative_paths;
5133   uint32_t i;
5134   for (i = 0; i < m_header.ncmds; ++i) {
5135     const uint32_t cmd_offset = offset;
5136     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5137       break;
5138 
5139     switch (load_cmd.cmd) {
5140     case LC_RPATH:
5141     case LC_LOAD_DYLIB:
5142     case LC_LOAD_WEAK_DYLIB:
5143     case LC_REEXPORT_DYLIB:
5144     case LC_LOAD_DYLINKER:
5145     case LC_LOADFVMLIB:
5146     case LC_LOAD_UPWARD_DYLIB: {
5147       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5148       // For LC_LOAD_DYLIB there is an alternate encoding
5149       // which adds a uint32_t `flags` field for `DYLD_USE_*`
5150       // flags.  This can be detected by a timestamp field with
5151       // the `DYLIB_USE_MARKER` constant value.
5152       bool is_delayed_init = false;
5153       uint32_t use_command_marker = m_data.GetU32(&offset);
5154       if (use_command_marker == 0x1a741800 /* DYLIB_USE_MARKER */) {
5155         offset += 4; /* uint32_t current_version */
5156         offset += 4; /* uint32_t compat_version */
5157         uint32_t flags = m_data.GetU32(&offset);
5158         // If this LC_LOAD_DYLIB is marked delay-init,
5159         // don't report it as a dependent library -- it
5160         // may be loaded in the process at some point,
5161         // but will most likely not be load at launch.
5162         if (flags & 0x08 /* DYLIB_USE_DELAYED_INIT */)
5163           is_delayed_init = true;
5164       }
5165       const char *path = m_data.PeekCStr(name_offset);
5166       if (path && !is_delayed_init) {
5167         if (load_cmd.cmd == LC_RPATH)
5168           rpath_paths.push_back(path);
5169         else {
5170           if (path[0] == '@') {
5171             if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5172               rpath_relative_paths.push_back(path + strlen("@rpath"));
5173             else if (strncmp(path, "@executable_path",
5174                              strlen("@executable_path")) == 0)
5175               at_exec_relative_paths.push_back(path +
5176                                                strlen("@executable_path"));
5177           } else {
5178             FileSpec file_spec(path);
5179             if (files.AppendIfUnique(file_spec))
5180               count++;
5181           }
5182         }
5183       }
5184     } break;
5185 
5186     default:
5187       break;
5188     }
5189     offset = cmd_offset + load_cmd.cmdsize;
5190   }
5191 
5192   FileSpec this_file_spec(m_file);
5193   FileSystem::Instance().Resolve(this_file_spec);
5194 
5195   if (!rpath_paths.empty()) {
5196     // Fixup all LC_RPATH values to be absolute paths.
5197     const std::string this_directory =
5198         this_file_spec.GetDirectory().GetString();
5199     for (auto &rpath : rpath_paths) {
5200       if (llvm::StringRef(rpath).starts_with(g_loader_path))
5201         rpath = this_directory + rpath.substr(g_loader_path.size());
5202       else if (llvm::StringRef(rpath).starts_with(g_executable_path))
5203         rpath = this_directory + rpath.substr(g_executable_path.size());
5204     }
5205 
5206     for (const auto &rpath_relative_path : rpath_relative_paths) {
5207       for (const auto &rpath : rpath_paths) {
5208         std::string path = rpath;
5209         path += rpath_relative_path;
5210         // It is OK to resolve this path because we must find a file on disk
5211         // for us to accept it anyway if it is rpath relative.
5212         FileSpec file_spec(path);
5213         FileSystem::Instance().Resolve(file_spec);
5214         if (FileSystem::Instance().Exists(file_spec) &&
5215             files.AppendIfUnique(file_spec)) {
5216           count++;
5217           break;
5218         }
5219       }
5220     }
5221   }
5222 
5223   // We may have @executable_paths but no RPATHS.  Figure those out here.
5224   // Only do this if this object file is the executable.  We have no way to
5225   // get back to the actual executable otherwise, so we won't get the right
5226   // path.
5227   if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5228     FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5229     for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5230       FileSpec file_spec =
5231           exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5232       if (FileSystem::Instance().Exists(file_spec) &&
5233           files.AppendIfUnique(file_spec))
5234         count++;
5235     }
5236   }
5237   return count;
5238 }
5239 
5240 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5241   // If the object file is not an executable it can't hold the entry point.
5242   // m_entry_point_address is initialized to an invalid address, so we can just
5243   // return that. If m_entry_point_address is valid it means we've found it
5244   // already, so return the cached value.
5245 
5246   if ((!IsExecutable() && !IsDynamicLoader()) ||
5247       m_entry_point_address.IsValid()) {
5248     return m_entry_point_address;
5249   }
5250 
5251   // Otherwise, look for the UnixThread or Thread command.  The data for the
5252   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5253   //
5254   //  uint32_t flavor  - this is the flavor argument you would pass to
5255   //  thread_get_state
5256   //  uint32_t count   - this is the count of longs in the thread state data
5257   //  struct XXX_thread_state state - this is the structure from
5258   //  <machine/thread_status.h> corresponding to the flavor.
5259   //  <repeat this trio>
5260   //
5261   // So we just keep reading the various register flavors till we find the GPR
5262   // one, then read the PC out of there.
5263   // FIXME: We will need to have a "RegisterContext data provider" class at some
5264   // point that can get all the registers
5265   // out of data in this form & attach them to a given thread.  That should
5266   // underlie the MacOS X User process plugin, and we'll also need it for the
5267   // MacOS X Core File process plugin.  When we have that we can also use it
5268   // here.
5269   //
5270   // For now we hard-code the offsets and flavors we need:
5271   //
5272   //
5273 
5274   ModuleSP module_sp(GetModule());
5275   if (module_sp) {
5276     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5277     llvm::MachO::load_command load_cmd;
5278     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5279     uint32_t i;
5280     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5281     bool done = false;
5282 
5283     for (i = 0; i < m_header.ncmds; ++i) {
5284       const lldb::offset_t cmd_offset = offset;
5285       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5286         break;
5287 
5288       switch (load_cmd.cmd) {
5289       case LC_UNIXTHREAD:
5290       case LC_THREAD: {
5291         while (offset < cmd_offset + load_cmd.cmdsize) {
5292           uint32_t flavor = m_data.GetU32(&offset);
5293           uint32_t count = m_data.GetU32(&offset);
5294           if (count == 0) {
5295             // We've gotten off somehow, log and exit;
5296             return m_entry_point_address;
5297           }
5298 
5299           switch (m_header.cputype) {
5300           case llvm::MachO::CPU_TYPE_ARM:
5301             if (flavor == 1 ||
5302                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5303                              // from mach/arm/thread_status.h
5304             {
5305               offset += 60; // This is the offset of pc in the GPR thread state
5306                             // data structure.
5307               start_address = m_data.GetU32(&offset);
5308               done = true;
5309             }
5310             break;
5311           case llvm::MachO::CPU_TYPE_ARM64:
5312           case llvm::MachO::CPU_TYPE_ARM64_32:
5313             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5314             {
5315               offset += 256; // This is the offset of pc in the GPR thread state
5316                              // data structure.
5317               start_address = m_data.GetU64(&offset);
5318               done = true;
5319             }
5320             break;
5321           case llvm::MachO::CPU_TYPE_I386:
5322             if (flavor ==
5323                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5324             {
5325               offset += 40; // This is the offset of eip in the GPR thread state
5326                             // data structure.
5327               start_address = m_data.GetU32(&offset);
5328               done = true;
5329             }
5330             break;
5331           case llvm::MachO::CPU_TYPE_X86_64:
5332             if (flavor ==
5333                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5334             {
5335               offset += 16 * 8; // This is the offset of rip in the GPR thread
5336                                 // state data structure.
5337               start_address = m_data.GetU64(&offset);
5338               done = true;
5339             }
5340             break;
5341           default:
5342             return m_entry_point_address;
5343           }
5344           // Haven't found the GPR flavor yet, skip over the data for this
5345           // flavor:
5346           if (done)
5347             break;
5348           offset += count * 4;
5349         }
5350       } break;
5351       case LC_MAIN: {
5352         uint64_t entryoffset = m_data.GetU64(&offset);
5353         SectionSP text_segment_sp =
5354             GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
5355         if (text_segment_sp) {
5356           done = true;
5357           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5358         }
5359       } break;
5360 
5361       default:
5362         break;
5363       }
5364       if (done)
5365         break;
5366 
5367       // Go to the next load command:
5368       offset = cmd_offset + load_cmd.cmdsize;
5369     }
5370 
5371     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5372       if (GetSymtab()) {
5373         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5374             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5375             Symtab::eDebugAny, Symtab::eVisibilityAny);
5376         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5377           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5378         }
5379       }
5380     }
5381 
5382     if (start_address != LLDB_INVALID_ADDRESS) {
5383       // We got the start address from the load commands, so now resolve that
5384       // address in the sections of this ObjectFile:
5385       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5386               start_address, GetSectionList())) {
5387         m_entry_point_address.Clear();
5388       }
5389     } else {
5390       // We couldn't read the UnixThread load command - maybe it wasn't there.
5391       // As a fallback look for the "start" symbol in the main executable.
5392 
5393       ModuleSP module_sp(GetModule());
5394 
5395       if (module_sp) {
5396         SymbolContextList contexts;
5397         SymbolContext context;
5398         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5399                                               eSymbolTypeCode, contexts);
5400         if (contexts.GetSize()) {
5401           if (contexts.GetContextAtIndex(0, context))
5402             m_entry_point_address = context.symbol->GetAddress();
5403         }
5404       }
5405     }
5406   }
5407 
5408   return m_entry_point_address;
5409 }
5410 
5411 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5412   lldb_private::Address header_addr;
5413   SectionList *section_list = GetSectionList();
5414   if (section_list) {
5415     SectionSP text_segment_sp(
5416         section_list->FindSectionByName(GetSegmentNameTEXT()));
5417     if (text_segment_sp) {
5418       header_addr.SetSection(text_segment_sp);
5419       header_addr.SetOffset(0);
5420     }
5421   }
5422   return header_addr;
5423 }
5424 
5425 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5426   ModuleSP module_sp(GetModule());
5427   if (module_sp) {
5428     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5429     if (!m_thread_context_offsets_valid) {
5430       m_thread_context_offsets_valid = true;
5431       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5432       FileRangeArray::Entry file_range;
5433       llvm::MachO::thread_command thread_cmd;
5434       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5435         const uint32_t cmd_offset = offset;
5436         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5437           break;
5438 
5439         if (thread_cmd.cmd == LC_THREAD) {
5440           file_range.SetRangeBase(offset);
5441           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5442           m_thread_context_offsets.Append(file_range);
5443         }
5444         offset = cmd_offset + thread_cmd.cmdsize;
5445       }
5446     }
5447   }
5448   return m_thread_context_offsets.GetSize();
5449 }
5450 
5451 std::vector<std::tuple<offset_t, offset_t>>
5452 ObjectFileMachO::FindLC_NOTEByName(std::string name) {
5453   std::vector<std::tuple<offset_t, offset_t>> results;
5454   ModuleSP module_sp(GetModule());
5455   if (module_sp) {
5456     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5457 
5458     offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5459     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5460       const uint32_t cmd_offset = offset;
5461       llvm::MachO::load_command lc = {};
5462       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5463         break;
5464       if (lc.cmd == LC_NOTE) {
5465         char data_owner[17];
5466         m_data.CopyData(offset, 16, data_owner);
5467         data_owner[16] = '\0';
5468         offset += 16;
5469 
5470         if (name == data_owner) {
5471           offset_t payload_offset = m_data.GetU64_unchecked(&offset);
5472           offset_t payload_size = m_data.GetU64_unchecked(&offset);
5473           results.push_back({payload_offset, payload_size});
5474         }
5475       }
5476       offset = cmd_offset + lc.cmdsize;
5477     }
5478   }
5479   return results;
5480 }
5481 
5482 std::string ObjectFileMachO::GetIdentifierString() {
5483   Log *log(
5484       GetLog(LLDBLog::Symbols | LLDBLog::Process | LLDBLog::DynamicLoader));
5485   ModuleSP module_sp(GetModule());
5486   if (module_sp) {
5487     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5488 
5489     auto lc_notes = FindLC_NOTEByName("kern ver str");
5490     for (auto lc_note : lc_notes) {
5491       offset_t payload_offset = std::get<0>(lc_note);
5492       offset_t payload_size = std::get<1>(lc_note);
5493       uint32_t version;
5494       if (m_data.GetU32(&payload_offset, &version, 1) != nullptr) {
5495         if (version == 1) {
5496           uint32_t strsize = payload_size - sizeof(uint32_t);
5497           std::string result(strsize, '\0');
5498           m_data.CopyData(payload_offset, strsize, result.data());
5499           LLDB_LOGF(log, "LC_NOTE 'kern ver str' found with text '%s'",
5500                     result.c_str());
5501           return result;
5502         }
5503       }
5504     }
5505 
5506     // Second, make a pass over the load commands looking for an obsolete
5507     // LC_IDENT load command.
5508     offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5509     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5510       const uint32_t cmd_offset = offset;
5511       llvm::MachO::ident_command ident_command;
5512       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5513         break;
5514       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5515         std::string result(ident_command.cmdsize, '\0');
5516         if (m_data.CopyData(offset, ident_command.cmdsize, result.data()) ==
5517             ident_command.cmdsize) {
5518           LLDB_LOGF(log, "LC_IDENT found with text '%s'", result.c_str());
5519           return result;
5520         }
5521       }
5522       offset = cmd_offset + ident_command.cmdsize;
5523     }
5524   }
5525   return {};
5526 }
5527 
5528 AddressableBits ObjectFileMachO::GetAddressableBits() {
5529   AddressableBits addressable_bits;
5530 
5531   Log *log(GetLog(LLDBLog::Process));
5532   ModuleSP module_sp(GetModule());
5533   if (module_sp) {
5534     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5535     auto lc_notes = FindLC_NOTEByName("addrable bits");
5536     for (auto lc_note : lc_notes) {
5537       offset_t payload_offset = std::get<0>(lc_note);
5538       uint32_t version;
5539       if (m_data.GetU32(&payload_offset, &version, 1) != nullptr) {
5540         if (version == 3) {
5541           uint32_t num_addr_bits = m_data.GetU32_unchecked(&payload_offset);
5542           addressable_bits.SetAddressableBits(num_addr_bits);
5543           LLDB_LOGF(log,
5544                     "LC_NOTE 'addrable bits' v3 found, value %d "
5545                     "bits",
5546                     num_addr_bits);
5547         }
5548         if (version == 4) {
5549           uint32_t lo_addr_bits = m_data.GetU32_unchecked(&payload_offset);
5550           uint32_t hi_addr_bits = m_data.GetU32_unchecked(&payload_offset);
5551 
5552           if (lo_addr_bits == hi_addr_bits)
5553             addressable_bits.SetAddressableBits(lo_addr_bits);
5554           else
5555             addressable_bits.SetAddressableBits(lo_addr_bits, hi_addr_bits);
5556           LLDB_LOGF(log, "LC_NOTE 'addrable bits' v4 found, value %d & %d bits",
5557                     lo_addr_bits, hi_addr_bits);
5558         }
5559       }
5560     }
5561   }
5562   return addressable_bits;
5563 }
5564 
5565 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &value,
5566                                                 bool &value_is_offset,
5567                                                 UUID &uuid,
5568                                                 ObjectFile::BinaryType &type) {
5569   Log *log(
5570       GetLog(LLDBLog::Symbols | LLDBLog::Process | LLDBLog::DynamicLoader));
5571   value = LLDB_INVALID_ADDRESS;
5572   value_is_offset = false;
5573   uuid.Clear();
5574   uint32_t log2_pagesize = 0; // not currently passed up to caller
5575   uint32_t platform = 0;      // not currently passed up to caller
5576   ModuleSP module_sp(GetModule());
5577   if (module_sp) {
5578     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5579 
5580     auto lc_notes = FindLC_NOTEByName("main bin spec");
5581     for (auto lc_note : lc_notes) {
5582       offset_t payload_offset = std::get<0>(lc_note);
5583 
5584       // struct main_bin_spec
5585       // {
5586       //     uint32_t version;       // currently 2
5587       //     uint32_t type;          // 0 == unspecified, 1 == kernel,
5588       //                             // 2 == user process,
5589       //                             // 3 == standalone binary
5590       //     uint64_t address;       // UINT64_MAX if address not specified
5591       //     uint64_t slide;         // slide, UINT64_MAX if unspecified
5592       //                             // 0 if no slide needs to be applied to
5593       //                             // file address
5594       //     uuid_t   uuid;          // all zero's if uuid not specified
5595       //     uint32_t log2_pagesize; // process page size in log base 2,
5596       //                             // e.g. 4k pages are 12.
5597       //                             // 0 for unspecified
5598       //     uint32_t platform;      // The Mach-O platform for this corefile.
5599       //                             // 0 for unspecified.
5600       //                             // The values are defined in
5601       //                             // <mach-o/loader.h>, PLATFORM_*.
5602       // } __attribute((packed));
5603 
5604       // "main bin spec" (main binary specification) data payload is
5605       // formatted:
5606       //    uint32_t version       [currently 1]
5607       //    uint32_t type          [0 == unspecified, 1 == kernel,
5608       //                            2 == user process, 3 == firmware ]
5609       //    uint64_t address       [ UINT64_MAX if address not specified ]
5610       //    uuid_t   uuid          [ all zero's if uuid not specified ]
5611       //    uint32_t log2_pagesize [ process page size in log base
5612       //                             2, e.g. 4k pages are 12.
5613       //                             0 for unspecified ]
5614       //    uint32_t unused        [ for alignment ]
5615 
5616       uint32_t version;
5617       if (m_data.GetU32(&payload_offset, &version, 1) != nullptr &&
5618           version <= 2) {
5619         uint32_t binspec_type = 0;
5620         uuid_t raw_uuid;
5621         memset(raw_uuid, 0, sizeof(uuid_t));
5622 
5623         if (!m_data.GetU32(&payload_offset, &binspec_type, 1))
5624           return false;
5625         if (!m_data.GetU64(&payload_offset, &value, 1))
5626           return false;
5627         uint64_t slide = LLDB_INVALID_ADDRESS;
5628         if (version > 1 && !m_data.GetU64(&payload_offset, &slide, 1))
5629           return false;
5630         if (value == LLDB_INVALID_ADDRESS && slide != LLDB_INVALID_ADDRESS) {
5631           value = slide;
5632           value_is_offset = true;
5633         }
5634 
5635         if (m_data.CopyData(payload_offset, sizeof(uuid_t), raw_uuid) != 0) {
5636           uuid = UUID(raw_uuid, sizeof(uuid_t));
5637           // convert the "main bin spec" type into our
5638           // ObjectFile::BinaryType enum
5639           const char *typestr = "unrecognized type";
5640           switch (binspec_type) {
5641           case 0:
5642             type = eBinaryTypeUnknown;
5643             typestr = "uknown";
5644             break;
5645           case 1:
5646             type = eBinaryTypeKernel;
5647             typestr = "xnu kernel";
5648             break;
5649           case 2:
5650             type = eBinaryTypeUser;
5651             typestr = "userland dyld";
5652             break;
5653           case 3:
5654             type = eBinaryTypeStandalone;
5655             typestr = "standalone";
5656             break;
5657           }
5658           LLDB_LOGF(log,
5659                     "LC_NOTE 'main bin spec' found, version %d type %d "
5660                     "(%s), value 0x%" PRIx64 " value-is-slide==%s uuid %s",
5661                     version, type, typestr, value,
5662                     value_is_offset ? "true" : "false",
5663                     uuid.GetAsString().c_str());
5664           if (!m_data.GetU32(&payload_offset, &log2_pagesize, 1))
5665             return false;
5666           if (version > 1 && !m_data.GetU32(&payload_offset, &platform, 1))
5667             return false;
5668           return true;
5669         }
5670       }
5671     }
5672   }
5673   return false;
5674 }
5675 
5676 bool ObjectFileMachO::GetCorefileThreadExtraInfos(
5677     std::vector<lldb::tid_t> &tids) {
5678   tids.clear();
5679   ModuleSP module_sp(GetModule());
5680   if (module_sp) {
5681     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5682 
5683     Log *log(GetLog(LLDBLog::Object | LLDBLog::Process | LLDBLog::Thread));
5684     auto lc_notes = FindLC_NOTEByName("process metadata");
5685     for (auto lc_note : lc_notes) {
5686       offset_t payload_offset = std::get<0>(lc_note);
5687       offset_t strsize = std::get<1>(lc_note);
5688       std::string buf(strsize, '\0');
5689       if (m_data.CopyData(payload_offset, strsize, buf.data()) != strsize) {
5690         LLDB_LOGF(log,
5691                   "Unable to read %" PRIu64
5692                   " bytes of 'process metadata' LC_NOTE JSON contents",
5693                   strsize);
5694         return false;
5695       }
5696       while (buf.back() == '\0')
5697         buf.resize(buf.size() - 1);
5698       StructuredData::ObjectSP object_sp = StructuredData::ParseJSON(buf);
5699       StructuredData::Dictionary *dict = object_sp->GetAsDictionary();
5700       if (!dict) {
5701         LLDB_LOGF(log, "Unable to read 'process metadata' LC_NOTE, did not "
5702                        "get a dictionary.");
5703         return false;
5704       }
5705       StructuredData::Array *threads;
5706       if (!dict->GetValueForKeyAsArray("threads", threads) || !threads) {
5707         LLDB_LOGF(log,
5708                   "'process metadata' LC_NOTE does not have a 'threads' key");
5709         return false;
5710       }
5711       if (threads->GetSize() != GetNumThreadContexts()) {
5712         LLDB_LOGF(log, "Unable to read 'process metadata' LC_NOTE, number of "
5713                        "threads does not match number of LC_THREADS.");
5714         return false;
5715       }
5716       const size_t num_threads = threads->GetSize();
5717       for (size_t i = 0; i < num_threads; i++) {
5718         std::optional<StructuredData::Dictionary *> maybe_thread =
5719             threads->GetItemAtIndexAsDictionary(i);
5720         if (!maybe_thread) {
5721           LLDB_LOGF(log,
5722                     "Unable to read 'process metadata' LC_NOTE, threads "
5723                     "array does not have a dictionary at index %zu.",
5724                     i);
5725           return false;
5726         }
5727         StructuredData::Dictionary *thread = *maybe_thread;
5728         lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
5729         if (thread->GetValueForKeyAsInteger<lldb::tid_t>("thread_id", tid))
5730           if (tid == 0)
5731             tid = LLDB_INVALID_THREAD_ID;
5732         tids.push_back(tid);
5733       }
5734 
5735       if (log) {
5736         StreamString logmsg;
5737         logmsg.Printf("LC_NOTE 'process metadata' found: ");
5738         dict->Dump(logmsg, /* pretty_print */ false);
5739         LLDB_LOGF(log, "%s", logmsg.GetData());
5740       }
5741       return true;
5742     }
5743   }
5744   return false;
5745 }
5746 
5747 lldb::RegisterContextSP
5748 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5749                                          lldb_private::Thread &thread) {
5750   lldb::RegisterContextSP reg_ctx_sp;
5751 
5752   ModuleSP module_sp(GetModule());
5753   if (module_sp) {
5754     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5755     if (!m_thread_context_offsets_valid)
5756       GetNumThreadContexts();
5757 
5758     const FileRangeArray::Entry *thread_context_file_range =
5759         m_thread_context_offsets.GetEntryAtIndex(idx);
5760     if (thread_context_file_range) {
5761 
5762       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5763                          thread_context_file_range->GetByteSize());
5764 
5765       switch (m_header.cputype) {
5766       case llvm::MachO::CPU_TYPE_ARM64:
5767       case llvm::MachO::CPU_TYPE_ARM64_32:
5768         reg_ctx_sp =
5769             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5770         break;
5771 
5772       case llvm::MachO::CPU_TYPE_ARM:
5773         reg_ctx_sp =
5774             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5775         break;
5776 
5777       case llvm::MachO::CPU_TYPE_I386:
5778         reg_ctx_sp =
5779             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5780         break;
5781 
5782       case llvm::MachO::CPU_TYPE_X86_64:
5783         reg_ctx_sp =
5784             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5785         break;
5786       }
5787     }
5788   }
5789   return reg_ctx_sp;
5790 }
5791 
5792 ObjectFile::Type ObjectFileMachO::CalculateType() {
5793   switch (m_header.filetype) {
5794   case MH_OBJECT: // 0x1u
5795     if (GetAddressByteSize() == 4) {
5796       // 32 bit kexts are just object files, but they do have a valid
5797       // UUID load command.
5798       if (GetUUID()) {
5799         // this checking for the UUID load command is not enough we could
5800         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5801         // this is required of kexts
5802         if (m_strata == eStrataInvalid)
5803           m_strata = eStrataKernel;
5804         return eTypeSharedLibrary;
5805       }
5806     }
5807     return eTypeObjectFile;
5808 
5809   case MH_EXECUTE:
5810     return eTypeExecutable; // 0x2u
5811   case MH_FVMLIB:
5812     return eTypeSharedLibrary; // 0x3u
5813   case MH_CORE:
5814     return eTypeCoreFile; // 0x4u
5815   case MH_PRELOAD:
5816     return eTypeSharedLibrary; // 0x5u
5817   case MH_DYLIB:
5818     return eTypeSharedLibrary; // 0x6u
5819   case MH_DYLINKER:
5820     return eTypeDynamicLinker; // 0x7u
5821   case MH_BUNDLE:
5822     return eTypeSharedLibrary; // 0x8u
5823   case MH_DYLIB_STUB:
5824     return eTypeStubLibrary; // 0x9u
5825   case MH_DSYM:
5826     return eTypeDebugInfo; // 0xAu
5827   case MH_KEXT_BUNDLE:
5828     return eTypeSharedLibrary; // 0xBu
5829   default:
5830     break;
5831   }
5832   return eTypeUnknown;
5833 }
5834 
5835 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5836   switch (m_header.filetype) {
5837   case MH_OBJECT: // 0x1u
5838   {
5839     // 32 bit kexts are just object files, but they do have a valid
5840     // UUID load command.
5841     if (GetUUID()) {
5842       // this checking for the UUID load command is not enough we could
5843       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5844       // this is required of kexts
5845       if (m_type == eTypeInvalid)
5846         m_type = eTypeSharedLibrary;
5847 
5848       return eStrataKernel;
5849     }
5850   }
5851     return eStrataUnknown;
5852 
5853   case MH_EXECUTE: // 0x2u
5854     // Check for the MH_DYLDLINK bit in the flags
5855     if (m_header.flags & MH_DYLDLINK) {
5856       return eStrataUser;
5857     } else {
5858       SectionList *section_list = GetSectionList();
5859       if (section_list) {
5860         static ConstString g_kld_section_name("__KLD");
5861         if (section_list->FindSectionByName(g_kld_section_name))
5862           return eStrataKernel;
5863       }
5864     }
5865     return eStrataRawImage;
5866 
5867   case MH_FVMLIB:
5868     return eStrataUser; // 0x3u
5869   case MH_CORE:
5870     return eStrataUnknown; // 0x4u
5871   case MH_PRELOAD:
5872     return eStrataRawImage; // 0x5u
5873   case MH_DYLIB:
5874     return eStrataUser; // 0x6u
5875   case MH_DYLINKER:
5876     return eStrataUser; // 0x7u
5877   case MH_BUNDLE:
5878     return eStrataUser; // 0x8u
5879   case MH_DYLIB_STUB:
5880     return eStrataUser; // 0x9u
5881   case MH_DSYM:
5882     return eStrataUnknown; // 0xAu
5883   case MH_KEXT_BUNDLE:
5884     return eStrataKernel; // 0xBu
5885   default:
5886     break;
5887   }
5888   return eStrataUnknown;
5889 }
5890 
5891 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5892   ModuleSP module_sp(GetModule());
5893   if (module_sp) {
5894     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5895     llvm::MachO::dylib_command load_cmd;
5896     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5897     uint32_t version_cmd = 0;
5898     uint64_t version = 0;
5899     uint32_t i;
5900     for (i = 0; i < m_header.ncmds; ++i) {
5901       const lldb::offset_t cmd_offset = offset;
5902       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5903         break;
5904 
5905       if (load_cmd.cmd == LC_ID_DYLIB) {
5906         if (version_cmd == 0) {
5907           version_cmd = load_cmd.cmd;
5908           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5909             break;
5910           version = load_cmd.dylib.current_version;
5911         }
5912         break; // Break for now unless there is another more complete version
5913                // number load command in the future.
5914       }
5915       offset = cmd_offset + load_cmd.cmdsize;
5916     }
5917 
5918     if (version_cmd == LC_ID_DYLIB) {
5919       unsigned major = (version & 0xFFFF0000ull) >> 16;
5920       unsigned minor = (version & 0x0000FF00ull) >> 8;
5921       unsigned subminor = (version & 0x000000FFull);
5922       return llvm::VersionTuple(major, minor, subminor);
5923     }
5924   }
5925   return llvm::VersionTuple();
5926 }
5927 
5928 ArchSpec ObjectFileMachO::GetArchitecture() {
5929   ModuleSP module_sp(GetModule());
5930   ArchSpec arch;
5931   if (module_sp) {
5932     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5933 
5934     return GetArchitecture(module_sp, m_header, m_data,
5935                            MachHeaderSizeFromMagic(m_header.magic));
5936   }
5937   return arch;
5938 }
5939 
5940 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5941                                                 addr_t &base_addr, UUID &uuid) {
5942   uuid.Clear();
5943   base_addr = LLDB_INVALID_ADDRESS;
5944   if (process && process->GetDynamicLoader()) {
5945     DynamicLoader *dl = process->GetDynamicLoader();
5946     LazyBool using_shared_cache;
5947     LazyBool private_shared_cache;
5948     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5949                                   private_shared_cache);
5950   }
5951   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5952   LLDB_LOGF(
5953       log,
5954       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5955       uuid.GetAsString().c_str(), base_addr);
5956 }
5957 
5958 // From dyld SPI header dyld_process_info.h
5959 typedef void *dyld_process_info;
5960 struct lldb_copy__dyld_process_cache_info {
5961   uuid_t cacheUUID;          // UUID of cache used by process
5962   uint64_t cacheBaseAddress; // load address of dyld shared cache
5963   bool noCache;              // process is running without a dyld cache
5964   bool privateCache; // process is using a private copy of its dyld cache
5965 };
5966 
5967 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5968 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5969 // errors. So we need to use the actual underlying types of task_t and
5970 // kern_return_t below.
5971 extern "C" unsigned int /*task_t*/ mach_task_self();
5972 
5973 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5974   uuid.Clear();
5975   base_addr = LLDB_INVALID_ADDRESS;
5976 
5977 #if defined(__APPLE__)
5978   uint8_t *(*dyld_get_all_image_infos)(void);
5979   dyld_get_all_image_infos =
5980       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5981   if (dyld_get_all_image_infos) {
5982     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5983     if (dyld_all_image_infos_address) {
5984       uint32_t *version = (uint32_t *)
5985           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5986       if (*version >= 13) {
5987         uuid_t *sharedCacheUUID_address = 0;
5988         int wordsize = sizeof(uint8_t *);
5989         if (wordsize == 8) {
5990           sharedCacheUUID_address =
5991               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5992                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5993           if (*version >= 15)
5994             base_addr =
5995                 *(uint64_t
5996                       *)((uint8_t *)dyld_all_image_infos_address +
5997                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5998         } else {
5999           sharedCacheUUID_address =
6000               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
6001                          84); // sharedCacheUUID <mach-o/dyld_images.h>
6002           if (*version >= 15) {
6003             base_addr = 0;
6004             base_addr =
6005                 *(uint32_t
6006                       *)((uint8_t *)dyld_all_image_infos_address +
6007                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
6008           }
6009         }
6010         uuid = UUID(sharedCacheUUID_address, sizeof(uuid_t));
6011       }
6012     }
6013   } else {
6014     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
6015     dyld_process_info (*dyld_process_info_create)(
6016         unsigned int /* task_t */ task, uint64_t timestamp,
6017         unsigned int /*kern_return_t*/ *kernelError);
6018     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
6019     void (*dyld_process_info_release)(dyld_process_info info);
6020 
6021     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
6022                                           unsigned int /*kern_return_t*/ *))
6023         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
6024     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
6025         RTLD_DEFAULT, "_dyld_process_info_get_cache");
6026     dyld_process_info_release =
6027         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
6028 
6029     if (dyld_process_info_create && dyld_process_info_get_cache) {
6030       unsigned int /*kern_return_t */ kern_ret;
6031       dyld_process_info process_info =
6032           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
6033       if (process_info) {
6034         struct lldb_copy__dyld_process_cache_info sc_info;
6035         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
6036         dyld_process_info_get_cache(process_info, &sc_info);
6037         if (sc_info.cacheBaseAddress != 0) {
6038           base_addr = sc_info.cacheBaseAddress;
6039           uuid = UUID(sc_info.cacheUUID, sizeof(uuid_t));
6040         }
6041         dyld_process_info_release(process_info);
6042       }
6043     }
6044   }
6045   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
6046   if (log && uuid.IsValid())
6047     LLDB_LOGF(log,
6048               "lldb's in-memory shared cache has a UUID of %s base address of "
6049               "0x%" PRIx64,
6050               uuid.GetAsString().c_str(), base_addr);
6051 #endif
6052 }
6053 
6054 static llvm::VersionTuple FindMinimumVersionInfo(DataExtractor &data,
6055                                                  lldb::offset_t offset,
6056                                                  size_t ncmds) {
6057   for (size_t i = 0; i < ncmds; i++) {
6058     const lldb::offset_t load_cmd_offset = offset;
6059     llvm::MachO::load_command lc = {};
6060     if (data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6061       break;
6062 
6063     uint32_t version = 0;
6064     if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6065         lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6066         lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6067         lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6068       // struct version_min_command {
6069       //   uint32_t cmd; // LC_VERSION_MIN_*
6070       //   uint32_t cmdsize;
6071       //   uint32_t version; // X.Y.Z encoded in nibbles xxxx.yy.zz
6072       //   uint32_t sdk;
6073       // };
6074       // We want to read version.
6075       version = data.GetU32(&offset);
6076     } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6077       // struct build_version_command {
6078       //   uint32_t cmd; // LC_BUILD_VERSION
6079       //   uint32_t cmdsize;
6080       //   uint32_t platform;
6081       //   uint32_t minos; // X.Y.Z encoded in nibbles xxxx.yy.zz
6082       //   uint32_t sdk;
6083       //   uint32_t ntools;
6084       // };
6085       // We want to read minos.
6086       offset += sizeof(uint32_t);     // Skip over platform
6087       version = data.GetU32(&offset); // Extract minos
6088     }
6089 
6090     if (version) {
6091       const uint32_t xxxx = version >> 16;
6092       const uint32_t yy = (version >> 8) & 0xffu;
6093       const uint32_t zz = version & 0xffu;
6094       if (xxxx)
6095         return llvm::VersionTuple(xxxx, yy, zz);
6096     }
6097     offset = load_cmd_offset + lc.cmdsize;
6098   }
6099   return llvm::VersionTuple();
6100 }
6101 
6102 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
6103   if (!m_min_os_version)
6104     m_min_os_version = FindMinimumVersionInfo(
6105         m_data, MachHeaderSizeFromMagic(m_header.magic), m_header.ncmds);
6106   return *m_min_os_version;
6107 }
6108 
6109 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6110   if (!m_sdk_versions)
6111     m_sdk_versions = FindMinimumVersionInfo(
6112         m_data, MachHeaderSizeFromMagic(m_header.magic), m_header.ncmds);
6113   return *m_sdk_versions;
6114 }
6115 
6116 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6117   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6118 }
6119 
6120 bool ObjectFileMachO::CanTrustAddressRanges() {
6121   // Dsymutil guarantees that the .debug_aranges accelerator is complete and can
6122   // be trusted by LLDB.
6123   return m_header.filetype == llvm::MachO::MH_DSYM;
6124 }
6125 
6126 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6127   return m_allow_assembly_emulation_unwind_plans;
6128 }
6129 
6130 Section *ObjectFileMachO::GetMachHeaderSection() {
6131   // Find the first address of the mach header which is the first non-zero file
6132   // sized section whose file offset is zero. This is the base file address of
6133   // the mach-o file which can be subtracted from the vmaddr of the other
6134   // segments found in memory and added to the load address
6135   ModuleSP module_sp = GetModule();
6136   if (!module_sp)
6137     return nullptr;
6138   SectionList *section_list = GetSectionList();
6139   if (!section_list)
6140     return nullptr;
6141 
6142   // Some binaries can have a TEXT segment with a non-zero file offset.
6143   // Binaries in the shared cache are one example.  Some hand-generated
6144   // binaries may not be laid out in the normal TEXT,DATA,LC_SYMTAB order
6145   // in the file, even though they're laid out correctly in vmaddr terms.
6146   SectionSP text_segment_sp =
6147       section_list->FindSectionByName(GetSegmentNameTEXT());
6148   if (text_segment_sp.get() && SectionIsLoadable(text_segment_sp.get()))
6149     return text_segment_sp.get();
6150 
6151   const size_t num_sections = section_list->GetSize();
6152   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6153     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6154     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6155       return section;
6156   }
6157 
6158   return nullptr;
6159 }
6160 
6161 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6162   if (!section)
6163     return false;
6164   if (section->IsThreadSpecific())
6165     return false;
6166   if (GetModule().get() != section->GetModule().get())
6167     return false;
6168   // firmware style binaries with llvm gcov segment do
6169   // not have that segment mapped into memory.
6170   if (section->GetName() == GetSegmentNameLLVM_COV()) {
6171     const Strata strata = GetStrata();
6172     if (strata == eStrataKernel || strata == eStrataRawImage)
6173       return false;
6174   }
6175   // Be careful with __LINKEDIT and __DWARF segments
6176   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6177       section->GetName() == GetSegmentNameDWARF()) {
6178     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6179     // this isn't a kernel binary like a kext or mach_kernel.
6180     const bool is_memory_image = (bool)m_process_wp.lock();
6181     const Strata strata = GetStrata();
6182     if (is_memory_image == false || strata == eStrataKernel)
6183       return false;
6184   }
6185   return true;
6186 }
6187 
6188 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6189     lldb::addr_t header_load_address, const Section *header_section,
6190     const Section *section) {
6191   ModuleSP module_sp = GetModule();
6192   if (module_sp && header_section && section &&
6193       header_load_address != LLDB_INVALID_ADDRESS) {
6194     lldb::addr_t file_addr = header_section->GetFileAddress();
6195     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6196       return section->GetFileAddress() - file_addr + header_load_address;
6197   }
6198   return LLDB_INVALID_ADDRESS;
6199 }
6200 
6201 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6202                                      bool value_is_offset) {
6203   Log *log(GetLog(LLDBLog::DynamicLoader));
6204   ModuleSP module_sp = GetModule();
6205   if (!module_sp)
6206     return false;
6207 
6208   SectionList *section_list = GetSectionList();
6209   if (!section_list)
6210     return false;
6211 
6212   size_t num_loaded_sections = 0;
6213   const size_t num_sections = section_list->GetSize();
6214 
6215   // Warn if some top-level segments map to the same address. The binary may be
6216   // malformed.
6217   const bool warn_multiple = true;
6218 
6219   if (log) {
6220     StreamString logmsg;
6221     logmsg << "ObjectFileMachO::SetLoadAddress ";
6222     if (GetFileSpec())
6223       logmsg << "path='" << GetFileSpec().GetPath() << "' ";
6224     if (GetUUID()) {
6225       logmsg << "uuid=" << GetUUID().GetAsString();
6226     }
6227     LLDB_LOGF(log, "%s", logmsg.GetData());
6228   }
6229   if (value_is_offset) {
6230     // "value" is an offset to apply to each top level segment
6231     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6232       // Iterate through the object file sections to find all of the
6233       // sections that size on disk (to avoid __PAGEZERO) and load them
6234       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6235       if (SectionIsLoadable(section_sp.get())) {
6236         LLDB_LOGF(log,
6237                   "ObjectFileMachO::SetLoadAddress segment '%s' load addr is "
6238                   "0x%" PRIx64,
6239                   section_sp->GetName().AsCString(),
6240                   section_sp->GetFileAddress() + value);
6241         if (target.GetSectionLoadList().SetSectionLoadAddress(
6242                 section_sp, section_sp->GetFileAddress() + value,
6243                 warn_multiple))
6244           ++num_loaded_sections;
6245       }
6246     }
6247   } else {
6248     // "value" is the new base address of the mach_header, adjust each
6249     // section accordingly
6250 
6251     Section *mach_header_section = GetMachHeaderSection();
6252     if (mach_header_section) {
6253       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6254         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6255 
6256         lldb::addr_t section_load_addr =
6257             CalculateSectionLoadAddressForMemoryImage(
6258                 value, mach_header_section, section_sp.get());
6259         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6260           LLDB_LOGF(log,
6261                     "ObjectFileMachO::SetLoadAddress segment '%s' load addr is "
6262                     "0x%" PRIx64,
6263                     section_sp->GetName().AsCString(), section_load_addr);
6264           if (target.GetSectionLoadList().SetSectionLoadAddress(
6265                   section_sp, section_load_addr, warn_multiple))
6266             ++num_loaded_sections;
6267         }
6268       }
6269     }
6270   }
6271   return num_loaded_sections > 0;
6272 }
6273 
6274 struct all_image_infos_header {
6275   uint32_t version;         // currently 1
6276   uint32_t imgcount;        // number of binary images
6277   uint64_t entries_fileoff; // file offset in the corefile of where the array of
6278                             // struct entry's begin.
6279   uint32_t entries_size;    // size of 'struct entry'.
6280   uint32_t unused;
6281 };
6282 
6283 struct image_entry {
6284   uint64_t filepath_offset;  // offset in corefile to c-string of the file path,
6285                              // UINT64_MAX if unavailable.
6286   uuid_t uuid;               // uint8_t[16].  should be set to all zeroes if
6287                              // uuid is unknown.
6288   uint64_t load_address;     // UINT64_MAX if unknown.
6289   uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6290   uint32_t segment_count;    // The number of segments for this binary.
6291   uint32_t unused;
6292 
6293   image_entry() {
6294     filepath_offset = UINT64_MAX;
6295     memset(&uuid, 0, sizeof(uuid_t));
6296     segment_count = 0;
6297     load_address = UINT64_MAX;
6298     seg_addrs_offset = UINT64_MAX;
6299     unused = 0;
6300   }
6301   image_entry(const image_entry &rhs) {
6302     filepath_offset = rhs.filepath_offset;
6303     memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6304     segment_count = rhs.segment_count;
6305     seg_addrs_offset = rhs.seg_addrs_offset;
6306     load_address = rhs.load_address;
6307     unused = rhs.unused;
6308   }
6309 };
6310 
6311 struct segment_vmaddr {
6312   char segname[16];
6313   uint64_t vmaddr;
6314   uint64_t unused;
6315 
6316   segment_vmaddr() {
6317     memset(&segname, 0, 16);
6318     vmaddr = UINT64_MAX;
6319     unused = 0;
6320   }
6321   segment_vmaddr(const segment_vmaddr &rhs) {
6322     memcpy(&segname, &rhs.segname, 16);
6323     vmaddr = rhs.vmaddr;
6324     unused = rhs.unused;
6325   }
6326 };
6327 
6328 // Write the payload for the "all image infos" LC_NOTE into
6329 // the supplied all_image_infos_payload, assuming that this
6330 // will be written into the corefile starting at
6331 // initial_file_offset.
6332 //
6333 // The placement of this payload is a little tricky.  We're
6334 // laying this out as
6335 //
6336 // 1. header (struct all_image_info_header)
6337 // 2. Array of fixed-size (struct image_entry)'s, one
6338 //    per binary image present in the process.
6339 // 3. Arrays of (struct segment_vmaddr)'s, a varying number
6340 //    for each binary image.
6341 // 4. Variable length c-strings of binary image filepaths,
6342 //    one per binary.
6343 //
6344 // To compute where everything will be laid out in the
6345 // payload, we need to iterate over the images and calculate
6346 // how many segment_vmaddr structures each image will need,
6347 // and how long each image's filepath c-string is. There
6348 // are some multiple passes over the image list while calculating
6349 // everything.
6350 
6351 static offset_t
6352 CreateAllImageInfosPayload(const lldb::ProcessSP &process_sp,
6353                            offset_t initial_file_offset,
6354                            StreamString &all_image_infos_payload,
6355                            lldb_private::SaveCoreOptions &options) {
6356   Target &target = process_sp->GetTarget();
6357   ModuleList modules = target.GetImages();
6358 
6359   // stack-only corefiles have no reason to include binaries that
6360   // are not executing; we're trying to make the smallest corefile
6361   // we can, so leave the rest out.
6362   if (options.GetStyle() == SaveCoreStyle::eSaveCoreStackOnly)
6363     modules.Clear();
6364 
6365   std::set<std::string> executing_uuids;
6366   std::vector<ThreadSP> thread_list =
6367       process_sp->CalculateCoreFileThreadList(options);
6368   for (const ThreadSP &thread_sp : thread_list) {
6369     uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6370     for (uint32_t j = 0; j < stack_frame_count; j++) {
6371       StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6372       Address pc = stack_frame_sp->GetFrameCodeAddress();
6373       ModuleSP module_sp = pc.GetModule();
6374       if (module_sp) {
6375         UUID uuid = module_sp->GetUUID();
6376         if (uuid.IsValid()) {
6377           executing_uuids.insert(uuid.GetAsString());
6378           modules.AppendIfNeeded(module_sp);
6379         }
6380       }
6381     }
6382   }
6383   size_t modules_count = modules.GetSize();
6384 
6385   struct all_image_infos_header infos;
6386   infos.version = 1;
6387   infos.imgcount = modules_count;
6388   infos.entries_size = sizeof(image_entry);
6389   infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6390   infos.unused = 0;
6391 
6392   all_image_infos_payload.PutHex32(infos.version);
6393   all_image_infos_payload.PutHex32(infos.imgcount);
6394   all_image_infos_payload.PutHex64(infos.entries_fileoff);
6395   all_image_infos_payload.PutHex32(infos.entries_size);
6396   all_image_infos_payload.PutHex32(infos.unused);
6397 
6398   // First create the structures for all of the segment name+vmaddr vectors
6399   // for each module, so we will know the size of them as we add the
6400   // module entries.
6401   std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6402   for (size_t i = 0; i < modules_count; i++) {
6403     ModuleSP module = modules.GetModuleAtIndex(i);
6404 
6405     SectionList *sections = module->GetSectionList();
6406     size_t sections_count = sections->GetSize();
6407     std::vector<segment_vmaddr> segment_vmaddrs;
6408     for (size_t j = 0; j < sections_count; j++) {
6409       SectionSP section = sections->GetSectionAtIndex(j);
6410       if (!section->GetParent().get()) {
6411         addr_t vmaddr = section->GetLoadBaseAddress(&target);
6412         if (vmaddr == LLDB_INVALID_ADDRESS)
6413           continue;
6414         ConstString name = section->GetName();
6415         segment_vmaddr seg_vmaddr;
6416         // This is the uncommon case where strncpy is exactly
6417         // the right one, doesn't need to be nul terminated.
6418         // The segment name in a Mach-O LC_SEGMENT/LC_SEGMENT_64 is char[16] and
6419         // is not guaranteed to be nul-terminated if all 16 characters are
6420         // used.
6421         // coverity[buffer_size_warning]
6422         strncpy(seg_vmaddr.segname, name.AsCString(),
6423                 sizeof(seg_vmaddr.segname));
6424         seg_vmaddr.vmaddr = vmaddr;
6425         seg_vmaddr.unused = 0;
6426         segment_vmaddrs.push_back(seg_vmaddr);
6427       }
6428     }
6429     modules_segment_vmaddrs.push_back(segment_vmaddrs);
6430   }
6431 
6432   offset_t size_of_vmaddr_structs = 0;
6433   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6434     size_of_vmaddr_structs +=
6435         modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6436   }
6437 
6438   offset_t size_of_filepath_cstrings = 0;
6439   for (size_t i = 0; i < modules_count; i++) {
6440     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6441     size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6442   }
6443 
6444   // Calculate the file offsets of our "all image infos" payload in the
6445   // corefile. initial_file_offset the original value passed in to this method.
6446 
6447   offset_t start_of_entries =
6448       initial_file_offset + sizeof(all_image_infos_header);
6449   offset_t start_of_seg_vmaddrs =
6450       start_of_entries + sizeof(image_entry) * modules_count;
6451   offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6452 
6453   offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6454 
6455   // Now write the one-per-module 'struct image_entry' into the
6456   // StringStream; keep track of where the struct segment_vmaddr
6457   // entries for each module will end up in the corefile.
6458 
6459   offset_t current_string_offset = start_of_filenames;
6460   offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6461   std::vector<struct image_entry> image_entries;
6462   for (size_t i = 0; i < modules_count; i++) {
6463     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6464 
6465     struct image_entry ent;
6466     memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6467     if (modules_segment_vmaddrs[i].size() > 0) {
6468       ent.segment_count = modules_segment_vmaddrs[i].size();
6469       ent.seg_addrs_offset = current_segaddrs_offset;
6470     }
6471     ent.filepath_offset = current_string_offset;
6472     ObjectFile *objfile = module_sp->GetObjectFile();
6473     if (objfile) {
6474       Address base_addr(objfile->GetBaseAddress());
6475       if (base_addr.IsValid()) {
6476         ent.load_address = base_addr.GetLoadAddress(&target);
6477       }
6478     }
6479 
6480     all_image_infos_payload.PutHex64(ent.filepath_offset);
6481     all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6482     all_image_infos_payload.PutHex64(ent.load_address);
6483     all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6484     all_image_infos_payload.PutHex32(ent.segment_count);
6485 
6486     if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6487         executing_uuids.end())
6488       all_image_infos_payload.PutHex32(1);
6489     else
6490       all_image_infos_payload.PutHex32(0);
6491 
6492     current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6493     current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6494   }
6495 
6496   // Now write the struct segment_vmaddr entries into the StringStream.
6497 
6498   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6499     if (modules_segment_vmaddrs[i].size() == 0)
6500       continue;
6501     for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6502       all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6503       all_image_infos_payload.PutHex64(segvm.vmaddr);
6504       all_image_infos_payload.PutHex64(segvm.unused);
6505     }
6506   }
6507 
6508   for (size_t i = 0; i < modules_count; i++) {
6509     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6510     std::string filepath = module_sp->GetFileSpec().GetPath();
6511     all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6512   }
6513 
6514   return final_file_offset;
6515 }
6516 
6517 // Temp struct used to combine contiguous memory regions with
6518 // identical permissions.
6519 struct page_object {
6520   addr_t addr;
6521   addr_t size;
6522   uint32_t prot;
6523 };
6524 
6525 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6526                                lldb_private::SaveCoreOptions &options,
6527                                Status &error) {
6528   // The FileSpec and Process are already checked in PluginManager::SaveCore.
6529   assert(options.GetOutputFile().has_value());
6530   assert(process_sp);
6531   const FileSpec outfile = options.GetOutputFile().value();
6532 
6533   // MachO defaults to dirty pages
6534   if (options.GetStyle() == SaveCoreStyle::eSaveCoreUnspecified)
6535     options.SetStyle(eSaveCoreDirtyOnly);
6536 
6537   Target &target = process_sp->GetTarget();
6538   const ArchSpec target_arch = target.GetArchitecture();
6539   const llvm::Triple &target_triple = target_arch.GetTriple();
6540   if (target_triple.getVendor() == llvm::Triple::Apple &&
6541       (target_triple.getOS() == llvm::Triple::MacOSX ||
6542        target_triple.getOS() == llvm::Triple::IOS ||
6543        target_triple.getOS() == llvm::Triple::WatchOS ||
6544        target_triple.getOS() == llvm::Triple::TvOS ||
6545        target_triple.getOS() == llvm::Triple::XROS)) {
6546     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6547     // {
6548     bool make_core = false;
6549     switch (target_arch.GetMachine()) {
6550     case llvm::Triple::aarch64:
6551     case llvm::Triple::aarch64_32:
6552     case llvm::Triple::arm:
6553     case llvm::Triple::thumb:
6554     case llvm::Triple::x86:
6555     case llvm::Triple::x86_64:
6556       make_core = true;
6557       break;
6558     default:
6559       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6560                                      target_triple.str().c_str());
6561       break;
6562     }
6563 
6564     if (make_core) {
6565       Process::CoreFileMemoryRanges core_ranges;
6566       error = process_sp->CalculateCoreFileSaveRanges(options, core_ranges);
6567       if (error.Success()) {
6568         const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6569         const ByteOrder byte_order = target_arch.GetByteOrder();
6570         std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6571         for (const auto &core_range : core_ranges) {
6572           uint32_t cmd_type = LC_SEGMENT_64;
6573           uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6574           if (addr_byte_size == 4) {
6575             cmd_type = LC_SEGMENT;
6576             segment_size = sizeof(llvm::MachO::segment_command);
6577           }
6578           // Skip any ranges with no read/write/execute permissions and empty
6579           // ranges.
6580           if (core_range.lldb_permissions == 0 || core_range.range.size() == 0)
6581             continue;
6582           uint32_t vm_prot = 0;
6583           if (core_range.lldb_permissions & ePermissionsReadable)
6584             vm_prot |= VM_PROT_READ;
6585           if (core_range.lldb_permissions & ePermissionsWritable)
6586             vm_prot |= VM_PROT_WRITE;
6587           if (core_range.lldb_permissions & ePermissionsExecutable)
6588             vm_prot |= VM_PROT_EXECUTE;
6589           const addr_t vm_addr = core_range.range.start();
6590           const addr_t vm_size = core_range.range.size();
6591           llvm::MachO::segment_command_64 segment = {
6592               cmd_type,     // uint32_t cmd;
6593               segment_size, // uint32_t cmdsize;
6594               {0},          // char segname[16];
6595               vm_addr,      // uint64_t vmaddr;   // uint32_t for 32-bit Mach-O
6596               vm_size,      // uint64_t vmsize;   // uint32_t for 32-bit Mach-O
6597               0,            // uint64_t fileoff;  // uint32_t for 32-bit Mach-O
6598               vm_size,      // uint64_t filesize; // uint32_t for 32-bit Mach-O
6599               vm_prot,      // uint32_t maxprot;
6600               vm_prot,      // uint32_t initprot;
6601               0,            // uint32_t nsects;
6602               0};           // uint32_t flags;
6603           segment_load_commands.push_back(segment);
6604         }
6605 
6606         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6607 
6608         llvm::MachO::mach_header_64 mach_header;
6609         mach_header.magic = addr_byte_size == 8 ? MH_MAGIC_64 : MH_MAGIC;
6610         mach_header.cputype = target_arch.GetMachOCPUType();
6611         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6612         mach_header.filetype = MH_CORE;
6613         mach_header.ncmds = segment_load_commands.size();
6614         mach_header.flags = 0;
6615         mach_header.reserved = 0;
6616         ThreadList &thread_list = process_sp->GetThreadList();
6617         const uint32_t num_threads = thread_list.GetSize();
6618 
6619         // Make an array of LC_THREAD data items. Each one contains the
6620         // contents of the LC_THREAD load command. The data doesn't contain
6621         // the load command + load command size, we will add the load command
6622         // and load command size as we emit the data.
6623         std::vector<StreamString> LC_THREAD_datas(num_threads);
6624         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6625           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6626           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6627           LC_THREAD_data.SetByteOrder(byte_order);
6628         }
6629         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6630           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6631           if (thread_sp) {
6632             switch (mach_header.cputype) {
6633             case llvm::MachO::CPU_TYPE_ARM64:
6634             case llvm::MachO::CPU_TYPE_ARM64_32:
6635               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6636                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6637               break;
6638 
6639             case llvm::MachO::CPU_TYPE_ARM:
6640               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6641                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6642               break;
6643 
6644             case llvm::MachO::CPU_TYPE_I386:
6645               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6646                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6647               break;
6648 
6649             case llvm::MachO::CPU_TYPE_X86_64:
6650               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6651                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6652               break;
6653             }
6654           }
6655         }
6656 
6657         // The size of the load command is the size of the segments...
6658         if (addr_byte_size == 8) {
6659           mach_header.sizeofcmds = segment_load_commands.size() *
6660                                    sizeof(llvm::MachO::segment_command_64);
6661         } else {
6662           mach_header.sizeofcmds = segment_load_commands.size() *
6663                                    sizeof(llvm::MachO::segment_command);
6664         }
6665 
6666         // and the size of all LC_THREAD load command
6667         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6668           ++mach_header.ncmds;
6669           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6670         }
6671 
6672         // Bits will be set to indicate which bits are NOT used in
6673         // addressing in this process or 0 for unknown.
6674         uint64_t address_mask = process_sp->GetCodeAddressMask();
6675         if (address_mask != LLDB_INVALID_ADDRESS_MASK) {
6676           // LC_NOTE "addrable bits"
6677           mach_header.ncmds++;
6678           mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6679         }
6680 
6681         // LC_NOTE "process metadata"
6682         mach_header.ncmds++;
6683         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6684 
6685         // LC_NOTE "all image infos"
6686         mach_header.ncmds++;
6687         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6688 
6689         // Write the mach header
6690         buffer.PutHex32(mach_header.magic);
6691         buffer.PutHex32(mach_header.cputype);
6692         buffer.PutHex32(mach_header.cpusubtype);
6693         buffer.PutHex32(mach_header.filetype);
6694         buffer.PutHex32(mach_header.ncmds);
6695         buffer.PutHex32(mach_header.sizeofcmds);
6696         buffer.PutHex32(mach_header.flags);
6697         if (addr_byte_size == 8) {
6698           buffer.PutHex32(mach_header.reserved);
6699         }
6700 
6701         // Skip the mach header and all load commands and align to the next
6702         // 0x1000 byte boundary
6703         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6704 
6705         file_offset = llvm::alignTo(file_offset, 16);
6706         std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6707 
6708         // Add "addrable bits" LC_NOTE when an address mask is available
6709         if (address_mask != LLDB_INVALID_ADDRESS_MASK) {
6710           std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6711               new LCNoteEntry(addr_byte_size, byte_order));
6712           addrable_bits_lcnote_up->name = "addrable bits";
6713           addrable_bits_lcnote_up->payload_file_offset = file_offset;
6714           int bits = std::bitset<64>(~address_mask).count();
6715           addrable_bits_lcnote_up->payload.PutHex32(4); // version
6716           addrable_bits_lcnote_up->payload.PutHex32(
6717               bits); // # of bits used for low addresses
6718           addrable_bits_lcnote_up->payload.PutHex32(
6719               bits); // # of bits used for high addresses
6720           addrable_bits_lcnote_up->payload.PutHex32(0); // reserved
6721 
6722           file_offset += addrable_bits_lcnote_up->payload.GetSize();
6723 
6724           lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6725         }
6726 
6727         // Add "process metadata" LC_NOTE
6728         std::unique_ptr<LCNoteEntry> thread_extrainfo_lcnote_up(
6729             new LCNoteEntry(addr_byte_size, byte_order));
6730         thread_extrainfo_lcnote_up->name = "process metadata";
6731         thread_extrainfo_lcnote_up->payload_file_offset = file_offset;
6732 
6733         StructuredData::DictionarySP dict(
6734             std::make_shared<StructuredData::Dictionary>());
6735         StructuredData::ArraySP threads(
6736             std::make_shared<StructuredData::Array>());
6737         for (const ThreadSP &thread_sp :
6738              process_sp->CalculateCoreFileThreadList(options)) {
6739           StructuredData::DictionarySP thread(
6740               std::make_shared<StructuredData::Dictionary>());
6741           thread->AddIntegerItem("thread_id", thread_sp->GetID());
6742           threads->AddItem(thread);
6743         }
6744         dict->AddItem("threads", threads);
6745         StreamString strm;
6746         dict->Dump(strm, /* pretty */ false);
6747         thread_extrainfo_lcnote_up->payload.PutRawBytes(strm.GetData(),
6748                                                         strm.GetSize());
6749 
6750         file_offset += thread_extrainfo_lcnote_up->payload.GetSize();
6751         file_offset = llvm::alignTo(file_offset, 16);
6752         lc_notes.push_back(std::move(thread_extrainfo_lcnote_up));
6753 
6754         // Add "all image infos" LC_NOTE
6755         std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6756             new LCNoteEntry(addr_byte_size, byte_order));
6757         all_image_infos_lcnote_up->name = "all image infos";
6758         all_image_infos_lcnote_up->payload_file_offset = file_offset;
6759         file_offset = CreateAllImageInfosPayload(
6760             process_sp, file_offset, all_image_infos_lcnote_up->payload,
6761             options);
6762         lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6763 
6764         // Add LC_NOTE load commands
6765         for (auto &lcnote : lc_notes) {
6766           // Add the LC_NOTE load command to the file.
6767           buffer.PutHex32(LC_NOTE);
6768           buffer.PutHex32(sizeof(llvm::MachO::note_command));
6769           char namebuf[16];
6770           memset(namebuf, 0, sizeof(namebuf));
6771           // This is the uncommon case where strncpy is exactly
6772           // the right one, doesn't need to be nul terminated.
6773           // LC_NOTE name field is char[16] and is not guaranteed to be
6774           // nul-terminated.
6775           // coverity[buffer_size_warning]
6776           strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6777           buffer.PutRawBytes(namebuf, sizeof(namebuf));
6778           buffer.PutHex64(lcnote->payload_file_offset);
6779           buffer.PutHex64(lcnote->payload.GetSize());
6780         }
6781 
6782         // Align to 4096-byte page boundary for the LC_SEGMENTs.
6783         file_offset = llvm::alignTo(file_offset, 4096);
6784 
6785         for (auto &segment : segment_load_commands) {
6786           segment.fileoff = file_offset;
6787           file_offset += segment.filesize;
6788         }
6789 
6790         // Write out all of the LC_THREAD load commands
6791         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6792           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6793           buffer.PutHex32(LC_THREAD);
6794           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6795           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6796         }
6797 
6798         // Write out all of the segment load commands
6799         for (const auto &segment : segment_load_commands) {
6800           buffer.PutHex32(segment.cmd);
6801           buffer.PutHex32(segment.cmdsize);
6802           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6803           if (addr_byte_size == 8) {
6804             buffer.PutHex64(segment.vmaddr);
6805             buffer.PutHex64(segment.vmsize);
6806             buffer.PutHex64(segment.fileoff);
6807             buffer.PutHex64(segment.filesize);
6808           } else {
6809             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6810             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6811             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6812             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6813           }
6814           buffer.PutHex32(segment.maxprot);
6815           buffer.PutHex32(segment.initprot);
6816           buffer.PutHex32(segment.nsects);
6817           buffer.PutHex32(segment.flags);
6818         }
6819 
6820         std::string core_file_path(outfile.GetPath());
6821         auto core_file = FileSystem::Instance().Open(
6822             outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6823                          File::eOpenOptionCanCreate);
6824         if (!core_file) {
6825           error = core_file.takeError();
6826         } else {
6827           // Read 1 page at a time
6828           uint8_t bytes[0x1000];
6829           // Write the mach header and load commands out to the core file
6830           size_t bytes_written = buffer.GetString().size();
6831           error =
6832               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6833           if (error.Success()) {
6834 
6835             for (auto &lcnote : lc_notes) {
6836               if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6837                   -1) {
6838                 error.SetErrorStringWithFormat("Unable to seek to corefile pos "
6839                                                "to write '%s' LC_NOTE payload",
6840                                                lcnote->name.c_str());
6841                 return false;
6842               }
6843               bytes_written = lcnote->payload.GetSize();
6844               error = core_file.get()->Write(lcnote->payload.GetData(),
6845                                              bytes_written);
6846               if (!error.Success())
6847                 return false;
6848             }
6849 
6850             // Now write the file data for all memory segments in the process
6851             for (const auto &segment : segment_load_commands) {
6852               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6853                 error.SetErrorStringWithFormat(
6854                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6855                     segment.fileoff, core_file_path.c_str());
6856                 break;
6857               }
6858 
6859               target.GetDebugger().GetAsyncOutputStream()->Printf(
6860                   "Saving %" PRId64
6861                   " bytes of data for memory region at 0x%" PRIx64 "\n",
6862                   segment.vmsize, segment.vmaddr);
6863               addr_t bytes_left = segment.vmsize;
6864               addr_t addr = segment.vmaddr;
6865               Status memory_read_error;
6866               while (bytes_left > 0 && error.Success()) {
6867                 const size_t bytes_to_read =
6868                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6869 
6870                 // In a savecore setting, we don't really care about caching,
6871                 // as the data is dumped and very likely never read again,
6872                 // so we call ReadMemoryFromInferior to bypass it.
6873                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6874                     addr, bytes, bytes_to_read, memory_read_error);
6875 
6876                 if (bytes_read == bytes_to_read) {
6877                   size_t bytes_written = bytes_read;
6878                   error = core_file.get()->Write(bytes, bytes_written);
6879                   bytes_left -= bytes_read;
6880                   addr += bytes_read;
6881                 } else {
6882                   // Some pages within regions are not readable, those should
6883                   // be zero filled
6884                   memset(bytes, 0, bytes_to_read);
6885                   size_t bytes_written = bytes_to_read;
6886                   error = core_file.get()->Write(bytes, bytes_written);
6887                   bytes_left -= bytes_to_read;
6888                   addr += bytes_to_read;
6889                 }
6890               }
6891             }
6892           }
6893         }
6894       }
6895     }
6896     return true; // This is the right plug to handle saving core files for
6897                  // this process
6898   }
6899   return false;
6900 }
6901 
6902 ObjectFileMachO::MachOCorefileAllImageInfos
6903 ObjectFileMachO::GetCorefileAllImageInfos() {
6904   MachOCorefileAllImageInfos image_infos;
6905   Log *log(GetLog(LLDBLog::Object | LLDBLog::Symbols | LLDBLog::Process |
6906                   LLDBLog::DynamicLoader));
6907 
6908   auto lc_notes = FindLC_NOTEByName("all image infos");
6909   for (auto lc_note : lc_notes) {
6910     offset_t payload_offset = std::get<0>(lc_note);
6911     // Read the struct all_image_infos_header.
6912     uint32_t version = m_data.GetU32(&payload_offset);
6913     if (version != 1) {
6914       return image_infos;
6915     }
6916     uint32_t imgcount = m_data.GetU32(&payload_offset);
6917     uint64_t entries_fileoff = m_data.GetU64(&payload_offset);
6918     // 'entries_size' is not used, nor is the 'unused' entry.
6919     //  offset += 4; // uint32_t entries_size;
6920     //  offset += 4; // uint32_t unused;
6921 
6922     LLDB_LOGF(log, "LC_NOTE 'all image infos' found version %d with %d images",
6923               version, imgcount);
6924     payload_offset = entries_fileoff;
6925     for (uint32_t i = 0; i < imgcount; i++) {
6926       // Read the struct image_entry.
6927       offset_t filepath_offset = m_data.GetU64(&payload_offset);
6928       uuid_t uuid;
6929       memcpy(&uuid, m_data.GetData(&payload_offset, sizeof(uuid_t)),
6930              sizeof(uuid_t));
6931       uint64_t load_address = m_data.GetU64(&payload_offset);
6932       offset_t seg_addrs_offset = m_data.GetU64(&payload_offset);
6933       uint32_t segment_count = m_data.GetU32(&payload_offset);
6934       uint32_t currently_executing = m_data.GetU32(&payload_offset);
6935 
6936       MachOCorefileImageEntry image_entry;
6937       image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6938       image_entry.uuid = UUID(uuid, sizeof(uuid_t));
6939       image_entry.load_address = load_address;
6940       image_entry.currently_executing = currently_executing;
6941 
6942       offset_t seg_vmaddrs_offset = seg_addrs_offset;
6943       for (uint32_t j = 0; j < segment_count; j++) {
6944         char segname[17];
6945         m_data.CopyData(seg_vmaddrs_offset, 16, segname);
6946         segname[16] = '\0';
6947         seg_vmaddrs_offset += 16;
6948         uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
6949         seg_vmaddrs_offset += 8; /* unused */
6950 
6951         std::tuple<ConstString, addr_t> new_seg{ConstString(segname), vmaddr};
6952         image_entry.segment_load_addresses.push_back(new_seg);
6953       }
6954       LLDB_LOGF(log, "  image entry: %s %s 0x%" PRIx64 " %s",
6955                 image_entry.filename.c_str(),
6956                 image_entry.uuid.GetAsString().c_str(),
6957                 image_entry.load_address,
6958                 image_entry.currently_executing ? "currently executing"
6959                                                 : "not currently executing");
6960       image_infos.all_image_infos.push_back(image_entry);
6961     }
6962   }
6963 
6964   lc_notes = FindLC_NOTEByName("load binary");
6965   for (auto lc_note : lc_notes) {
6966     offset_t payload_offset = std::get<0>(lc_note);
6967     uint32_t version = m_data.GetU32(&payload_offset);
6968     if (version == 1) {
6969       uuid_t uuid;
6970       memcpy(&uuid, m_data.GetData(&payload_offset, sizeof(uuid_t)),
6971              sizeof(uuid_t));
6972       uint64_t load_address = m_data.GetU64(&payload_offset);
6973       uint64_t slide = m_data.GetU64(&payload_offset);
6974       std::string filename = m_data.GetCStr(&payload_offset);
6975 
6976       MachOCorefileImageEntry image_entry;
6977       image_entry.filename = filename;
6978       image_entry.uuid = UUID(uuid, sizeof(uuid_t));
6979       image_entry.load_address = load_address;
6980       image_entry.slide = slide;
6981       image_entry.currently_executing = true;
6982       image_infos.all_image_infos.push_back(image_entry);
6983       LLDB_LOGF(log,
6984                 "LC_NOTE 'load binary' found, filename %s uuid %s load "
6985                 "address 0x%" PRIx64 " slide 0x%" PRIx64,
6986                 filename.c_str(),
6987                 image_entry.uuid.IsValid()
6988                     ? image_entry.uuid.GetAsString().c_str()
6989                     : "00000000-0000-0000-0000-000000000000",
6990                 load_address, slide);
6991     }
6992   }
6993 
6994   return image_infos;
6995 }
6996 
6997 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
6998   MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
6999   Log *log = GetLog(LLDBLog::Object | LLDBLog::DynamicLoader);
7000   Status error;
7001 
7002   bool found_platform_binary = false;
7003   ModuleList added_modules;
7004   for (MachOCorefileImageEntry &image : image_infos.all_image_infos) {
7005     ModuleSP module_sp, local_filesystem_module_sp;
7006 
7007     // If this is a platform binary, it has been loaded (or registered with
7008     // the DynamicLoader to be loaded), we don't need to do any further
7009     // processing.  We're not going to call ModulesDidLoad on this in this
7010     // method, so notify==true.
7011     if (process.GetTarget()
7012             .GetDebugger()
7013             .GetPlatformList()
7014             .LoadPlatformBinaryAndSetup(&process, image.load_address,
7015                                         true /* notify */)) {
7016       LLDB_LOGF(log,
7017                 "ObjectFileMachO::%s binary at 0x%" PRIx64
7018                 " is a platform binary, has been handled by a Platform plugin.",
7019                 __FUNCTION__, image.load_address);
7020       continue;
7021     }
7022 
7023     bool value_is_offset = image.load_address == LLDB_INVALID_ADDRESS;
7024     uint64_t value = value_is_offset ? image.slide : image.load_address;
7025     if (value_is_offset && value == LLDB_INVALID_ADDRESS) {
7026       // We have neither address nor slide; so we will find the binary
7027       // by UUID and load it at slide/offset 0.
7028       value = 0;
7029     }
7030 
7031     // We have either a UUID, or we have a load address which
7032     // and can try to read load commands and find a UUID.
7033     if (image.uuid.IsValid() ||
7034         (!value_is_offset && value != LLDB_INVALID_ADDRESS)) {
7035       const bool set_load_address = image.segment_load_addresses.size() == 0;
7036       const bool notify = false;
7037       // Userland Darwin binaries will have segment load addresses via
7038       // the `all image infos` LC_NOTE.
7039       const bool allow_memory_image_last_resort =
7040           image.segment_load_addresses.size();
7041       module_sp = DynamicLoader::LoadBinaryWithUUIDAndAddress(
7042           &process, image.filename, image.uuid, value, value_is_offset,
7043           image.currently_executing, notify, set_load_address,
7044           allow_memory_image_last_resort);
7045     }
7046 
7047     // We have a ModuleSP to load in the Target.  Load it at the
7048     // correct address/slide and notify/load scripting resources.
7049     if (module_sp) {
7050       added_modules.Append(module_sp, false /* notify */);
7051 
7052       // We have a list of segment load address
7053       if (image.segment_load_addresses.size() > 0) {
7054         if (log) {
7055           std::string uuidstr = image.uuid.GetAsString();
7056           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7057                       "UUID %s with section load addresses",
7058                       module_sp->GetFileSpec().GetPath().c_str(),
7059                       uuidstr.c_str());
7060         }
7061         for (auto name_vmaddr_tuple : image.segment_load_addresses) {
7062           SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
7063           if (sectlist) {
7064             SectionSP sect_sp =
7065                 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
7066             if (sect_sp) {
7067               process.GetTarget().SetSectionLoadAddress(
7068                   sect_sp, std::get<1>(name_vmaddr_tuple));
7069             }
7070           }
7071         }
7072       } else {
7073         if (log) {
7074           std::string uuidstr = image.uuid.GetAsString();
7075           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7076                       "UUID %s with %s 0x%" PRIx64,
7077                       module_sp->GetFileSpec().GetPath().c_str(),
7078                       uuidstr.c_str(),
7079                       value_is_offset ? "slide" : "load address", value);
7080         }
7081         bool changed;
7082         module_sp->SetLoadAddress(process.GetTarget(), value, value_is_offset,
7083                                   changed);
7084       }
7085     }
7086   }
7087   if (added_modules.GetSize() > 0) {
7088     process.GetTarget().ModulesDidLoad(added_modules);
7089     process.Flush();
7090     return true;
7091   }
7092   // Return true if the only binary we found was the platform binary,
7093   // and it was loaded outside the scope of this method.
7094   if (found_platform_binary)
7095     return true;
7096 
7097   // No binaries.
7098   return false;
7099 }
7100