xref: /llvm-project/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp (revision c4fb7180cbbe977f1ab1ce945a691550f8fdd1fb)
1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ScopeExit.h"
10 #include "llvm/ADT/StringRef.h"
11 
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
15 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
16 #include "lldb/Core/Debugger.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Progress.h"
21 #include "lldb/Core/Section.h"
22 #include "lldb/Host/Host.h"
23 #include "lldb/Symbol/DWARFCallFrameInfo.h"
24 #include "lldb/Symbol/ObjectFile.h"
25 #include "lldb/Target/DynamicLoader.h"
26 #include "lldb/Target/MemoryRegionInfo.h"
27 #include "lldb/Target/Platform.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/SectionLoadList.h"
30 #include "lldb/Target/Target.h"
31 #include "lldb/Target/Thread.h"
32 #include "lldb/Target/ThreadList.h"
33 #include "lldb/Utility/ArchSpec.h"
34 #include "lldb/Utility/DataBuffer.h"
35 #include "lldb/Utility/FileSpec.h"
36 #include "lldb/Utility/FileSpecList.h"
37 #include "lldb/Utility/LLDBLog.h"
38 #include "lldb/Utility/Log.h"
39 #include "lldb/Utility/RangeMap.h"
40 #include "lldb/Utility/RegisterValue.h"
41 #include "lldb/Utility/Status.h"
42 #include "lldb/Utility/StreamString.h"
43 #include "lldb/Utility/Timer.h"
44 #include "lldb/Utility/UUID.h"
45 
46 #include "lldb/Host/SafeMachO.h"
47 
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/Support/FormatVariadic.h"
50 #include "llvm/Support/MemoryBuffer.h"
51 
52 #include "ObjectFileMachO.h"
53 
54 #if defined(__APPLE__)
55 #include <TargetConditionals.h>
56 // GetLLDBSharedCacheUUID() needs to call dlsym()
57 #include <dlfcn.h>
58 #include <mach/mach_init.h>
59 #include <mach/vm_map.h>
60 #include <lldb/Host/SafeMachO.h>
61 #endif
62 
63 #ifndef __APPLE__
64 #include "lldb/Utility/AppleUuidCompatibility.h"
65 #else
66 #include <uuid/uuid.h>
67 #endif
68 
69 #include <bitset>
70 #include <memory>
71 #include <optional>
72 
73 // Unfortunately the signpost header pulls in the system MachO header, too.
74 #ifdef CPU_TYPE_ARM
75 #undef CPU_TYPE_ARM
76 #endif
77 #ifdef CPU_TYPE_ARM64
78 #undef CPU_TYPE_ARM64
79 #endif
80 #ifdef CPU_TYPE_ARM64_32
81 #undef CPU_TYPE_ARM64_32
82 #endif
83 #ifdef CPU_TYPE_I386
84 #undef CPU_TYPE_I386
85 #endif
86 #ifdef CPU_TYPE_X86_64
87 #undef CPU_TYPE_X86_64
88 #endif
89 #ifdef MH_DYLINKER
90 #undef MH_DYLINKER
91 #endif
92 #ifdef MH_OBJECT
93 #undef MH_OBJECT
94 #endif
95 #ifdef LC_VERSION_MIN_MACOSX
96 #undef LC_VERSION_MIN_MACOSX
97 #endif
98 #ifdef LC_VERSION_MIN_IPHONEOS
99 #undef LC_VERSION_MIN_IPHONEOS
100 #endif
101 #ifdef LC_VERSION_MIN_TVOS
102 #undef LC_VERSION_MIN_TVOS
103 #endif
104 #ifdef LC_VERSION_MIN_WATCHOS
105 #undef LC_VERSION_MIN_WATCHOS
106 #endif
107 #ifdef LC_BUILD_VERSION
108 #undef LC_BUILD_VERSION
109 #endif
110 #ifdef PLATFORM_MACOS
111 #undef PLATFORM_MACOS
112 #endif
113 #ifdef PLATFORM_MACCATALYST
114 #undef PLATFORM_MACCATALYST
115 #endif
116 #ifdef PLATFORM_IOS
117 #undef PLATFORM_IOS
118 #endif
119 #ifdef PLATFORM_IOSSIMULATOR
120 #undef PLATFORM_IOSSIMULATOR
121 #endif
122 #ifdef PLATFORM_TVOS
123 #undef PLATFORM_TVOS
124 #endif
125 #ifdef PLATFORM_TVOSSIMULATOR
126 #undef PLATFORM_TVOSSIMULATOR
127 #endif
128 #ifdef PLATFORM_WATCHOS
129 #undef PLATFORM_WATCHOS
130 #endif
131 #ifdef PLATFORM_WATCHOSSIMULATOR
132 #undef PLATFORM_WATCHOSSIMULATOR
133 #endif
134 
135 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
136 using namespace lldb;
137 using namespace lldb_private;
138 using namespace llvm::MachO;
139 
140 static constexpr llvm::StringLiteral g_loader_path = "@loader_path";
141 static constexpr llvm::StringLiteral g_executable_path = "@executable_path";
142 
143 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
144 
145 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
146                                const char *alt_name, size_t reg_byte_size,
147                                Stream &data) {
148   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
149   if (reg_info == nullptr)
150     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
151   if (reg_info) {
152     lldb_private::RegisterValue reg_value;
153     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
154       if (reg_info->byte_size >= reg_byte_size)
155         data.Write(reg_value.GetBytes(), reg_byte_size);
156       else {
157         data.Write(reg_value.GetBytes(), reg_info->byte_size);
158         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
159           data.PutChar(0);
160       }
161       return;
162     }
163   }
164   // Just write zeros if all else fails
165   for (size_t i = 0; i < reg_byte_size; ++i)
166     data.PutChar(0);
167 }
168 
169 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
170 public:
171   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
172                                     const DataExtractor &data)
173       : RegisterContextDarwin_x86_64(thread, 0) {
174     SetRegisterDataFrom_LC_THREAD(data);
175   }
176 
177   void InvalidateAllRegisters() override {
178     // Do nothing... registers are always valid...
179   }
180 
181   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
182     lldb::offset_t offset = 0;
183     SetError(GPRRegSet, Read, -1);
184     SetError(FPURegSet, Read, -1);
185     SetError(EXCRegSet, Read, -1);
186     bool done = false;
187 
188     while (!done) {
189       int flavor = data.GetU32(&offset);
190       if (flavor == 0)
191         done = true;
192       else {
193         uint32_t i;
194         uint32_t count = data.GetU32(&offset);
195         switch (flavor) {
196         case GPRRegSet:
197           for (i = 0; i < count; ++i)
198             (&gpr.rax)[i] = data.GetU64(&offset);
199           SetError(GPRRegSet, Read, 0);
200           done = true;
201 
202           break;
203         case FPURegSet:
204           // TODO: fill in FPU regs....
205           // SetError (FPURegSet, Read, -1);
206           done = true;
207 
208           break;
209         case EXCRegSet:
210           exc.trapno = data.GetU32(&offset);
211           exc.err = data.GetU32(&offset);
212           exc.faultvaddr = data.GetU64(&offset);
213           SetError(EXCRegSet, Read, 0);
214           done = true;
215           break;
216         case 7:
217         case 8:
218         case 9:
219           // fancy flavors that encapsulate of the above flavors...
220           break;
221 
222         default:
223           done = true;
224           break;
225         }
226       }
227     }
228   }
229 
230   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
231     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
232     if (reg_ctx_sp) {
233       RegisterContext *reg_ctx = reg_ctx_sp.get();
234 
235       data.PutHex32(GPRRegSet); // Flavor
236       data.PutHex32(GPRWordCount);
237       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
238       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
239       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
240       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
241       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
242       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
243       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
244       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
245       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
246       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
247       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
248       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
249       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
250       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
251       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
252       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
253       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
254       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
255       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
256       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
257       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
258 
259       //            // Write out the FPU registers
260       //            const size_t fpu_byte_size = sizeof(FPU);
261       //            size_t bytes_written = 0;
262       //            data.PutHex32 (FPURegSet);
263       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
264       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
265       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
266       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
267       //            data);   // uint16_t    fcw;    // "fctrl"
268       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
269       //            data);  // uint16_t    fsw;    // "fstat"
270       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
271       //            data);   // uint8_t     ftw;    // "ftag"
272       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
273       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
274       //            data);     // uint16_t    fop;    // "fop"
275       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
276       //            data);    // uint32_t    ip;     // "fioff"
277       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
278       //            data);    // uint16_t    cs;     // "fiseg"
279       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
280       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
281       //            data);   // uint32_t    dp;     // "fooff"
282       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
283       //            data);    // uint16_t    ds;     // "foseg"
284       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
285       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
286       //            data);    // uint32_t    mxcsr;
287       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
288       //            4, data);// uint32_t    mxcsrmask;
289       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
290       //            sizeof(MMSReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
292       //            sizeof(MMSReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
294       //            sizeof(MMSReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
296       //            sizeof(MMSReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
298       //            sizeof(MMSReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
300       //            sizeof(MMSReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
302       //            sizeof(MMSReg), data);
303       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
304       //            sizeof(MMSReg), data);
305       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
306       //            sizeof(XMMReg), data);
307       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
308       //            sizeof(XMMReg), data);
309       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
310       //            sizeof(XMMReg), data);
311       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
312       //            sizeof(XMMReg), data);
313       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
314       //            sizeof(XMMReg), data);
315       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
316       //            sizeof(XMMReg), data);
317       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
318       //            sizeof(XMMReg), data);
319       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
320       //            sizeof(XMMReg), data);
321       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
322       //            sizeof(XMMReg), data);
323       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
324       //            sizeof(XMMReg), data);
325       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
326       //            sizeof(XMMReg), data);
327       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
328       //            sizeof(XMMReg), data);
329       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
330       //            sizeof(XMMReg), data);
331       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
332       //            sizeof(XMMReg), data);
333       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
334       //            sizeof(XMMReg), data);
335       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
336       //            sizeof(XMMReg), data);
337       //
338       //            // Fill rest with zeros
339       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
340       //            i)
341       //                data.PutChar(0);
342 
343       // Write out the EXC registers
344       data.PutHex32(EXCRegSet);
345       data.PutHex32(EXCWordCount);
346       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
347       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
348       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
349       return true;
350     }
351     return false;
352   }
353 
354 protected:
355   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
356 
357   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
358 
359   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
360 
361   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
362     return 0;
363   }
364 
365   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
366     return 0;
367   }
368 
369   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
370     return 0;
371   }
372 };
373 
374 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
375 public:
376   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
377                                   const DataExtractor &data)
378       : RegisterContextDarwin_i386(thread, 0) {
379     SetRegisterDataFrom_LC_THREAD(data);
380   }
381 
382   void InvalidateAllRegisters() override {
383     // Do nothing... registers are always valid...
384   }
385 
386   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
387     lldb::offset_t offset = 0;
388     SetError(GPRRegSet, Read, -1);
389     SetError(FPURegSet, Read, -1);
390     SetError(EXCRegSet, Read, -1);
391     bool done = false;
392 
393     while (!done) {
394       int flavor = data.GetU32(&offset);
395       if (flavor == 0)
396         done = true;
397       else {
398         uint32_t i;
399         uint32_t count = data.GetU32(&offset);
400         switch (flavor) {
401         case GPRRegSet:
402           for (i = 0; i < count; ++i)
403             (&gpr.eax)[i] = data.GetU32(&offset);
404           SetError(GPRRegSet, Read, 0);
405           done = true;
406 
407           break;
408         case FPURegSet:
409           // TODO: fill in FPU regs....
410           // SetError (FPURegSet, Read, -1);
411           done = true;
412 
413           break;
414         case EXCRegSet:
415           exc.trapno = data.GetU32(&offset);
416           exc.err = data.GetU32(&offset);
417           exc.faultvaddr = data.GetU32(&offset);
418           SetError(EXCRegSet, Read, 0);
419           done = true;
420           break;
421         case 7:
422         case 8:
423         case 9:
424           // fancy flavors that encapsulate of the above flavors...
425           break;
426 
427         default:
428           done = true;
429           break;
430         }
431       }
432     }
433   }
434 
435   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
436     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
437     if (reg_ctx_sp) {
438       RegisterContext *reg_ctx = reg_ctx_sp.get();
439 
440       data.PutHex32(GPRRegSet); // Flavor
441       data.PutHex32(GPRWordCount);
442       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
443       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
444       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
445       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
446       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
447       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
448       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
449       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
450       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
451       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
452       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
453       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
454       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
455       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
456       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
457       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
458 
459       // Write out the EXC registers
460       data.PutHex32(EXCRegSet);
461       data.PutHex32(EXCWordCount);
462       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
463       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
464       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
465       return true;
466     }
467     return false;
468   }
469 
470 protected:
471   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
472 
473   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
474 
475   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
476 
477   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
478     return 0;
479   }
480 
481   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
482     return 0;
483   }
484 
485   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
486     return 0;
487   }
488 };
489 
490 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
491 public:
492   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
493                                  const DataExtractor &data)
494       : RegisterContextDarwin_arm(thread, 0) {
495     SetRegisterDataFrom_LC_THREAD(data);
496   }
497 
498   void InvalidateAllRegisters() override {
499     // Do nothing... registers are always valid...
500   }
501 
502   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
503     lldb::offset_t offset = 0;
504     SetError(GPRRegSet, Read, -1);
505     SetError(FPURegSet, Read, -1);
506     SetError(EXCRegSet, Read, -1);
507     bool done = false;
508 
509     while (!done) {
510       int flavor = data.GetU32(&offset);
511       uint32_t count = data.GetU32(&offset);
512       lldb::offset_t next_thread_state = offset + (count * 4);
513       switch (flavor) {
514       case GPRAltRegSet:
515       case GPRRegSet: {
516         // r0-r15, plus CPSR
517         uint32_t gpr_buf_count = (sizeof(gpr.r) / sizeof(gpr.r[0])) + 1;
518         if (count == gpr_buf_count) {
519           for (uint32_t i = 0; i < (count - 1); ++i) {
520             gpr.r[i] = data.GetU32(&offset);
521           }
522           gpr.cpsr = data.GetU32(&offset);
523 
524           SetError(GPRRegSet, Read, 0);
525         }
526       }
527         offset = next_thread_state;
528         break;
529 
530       case FPURegSet: {
531         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats;
532         const int fpu_reg_buf_size = sizeof(fpu.floats);
533         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
534                               fpu_reg_buf) == fpu_reg_buf_size) {
535           offset += fpu_reg_buf_size;
536           fpu.fpscr = data.GetU32(&offset);
537           SetError(FPURegSet, Read, 0);
538         } else {
539           done = true;
540         }
541       }
542         offset = next_thread_state;
543         break;
544 
545       case EXCRegSet:
546         if (count == 3) {
547           exc.exception = data.GetU32(&offset);
548           exc.fsr = data.GetU32(&offset);
549           exc.far = data.GetU32(&offset);
550           SetError(EXCRegSet, Read, 0);
551         }
552         done = true;
553         offset = next_thread_state;
554         break;
555 
556       // Unknown register set flavor, stop trying to parse.
557       default:
558         done = true;
559       }
560     }
561   }
562 
563   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
564     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
565     if (reg_ctx_sp) {
566       RegisterContext *reg_ctx = reg_ctx_sp.get();
567 
568       data.PutHex32(GPRRegSet); // Flavor
569       data.PutHex32(GPRWordCount);
570       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
571       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
572       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
573       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
574       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
575       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
576       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
577       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
578       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
579       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
580       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
581       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
582       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
583       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
584       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
585       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
586       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
587 
588       // Write out the EXC registers
589       //            data.PutHex32 (EXCRegSet);
590       //            data.PutHex32 (EXCWordCount);
591       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
592       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
593       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
594       return true;
595     }
596     return false;
597   }
598 
599 protected:
600   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
601 
602   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
603 
604   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
605 
606   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
607 
608   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
609     return 0;
610   }
611 
612   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
613     return 0;
614   }
615 
616   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
617     return 0;
618   }
619 
620   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
621     return -1;
622   }
623 };
624 
625 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
626 public:
627   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
628                                    const DataExtractor &data)
629       : RegisterContextDarwin_arm64(thread, 0) {
630     SetRegisterDataFrom_LC_THREAD(data);
631   }
632 
633   void InvalidateAllRegisters() override {
634     // Do nothing... registers are always valid...
635   }
636 
637   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
638     lldb::offset_t offset = 0;
639     SetError(GPRRegSet, Read, -1);
640     SetError(FPURegSet, Read, -1);
641     SetError(EXCRegSet, Read, -1);
642     bool done = false;
643     while (!done) {
644       int flavor = data.GetU32(&offset);
645       uint32_t count = data.GetU32(&offset);
646       lldb::offset_t next_thread_state = offset + (count * 4);
647       switch (flavor) {
648       case GPRRegSet:
649         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
650         // 32-bit register)
651         if (count >= (33 * 2) + 1) {
652           for (uint32_t i = 0; i < 29; ++i)
653             gpr.x[i] = data.GetU64(&offset);
654           gpr.fp = data.GetU64(&offset);
655           gpr.lr = data.GetU64(&offset);
656           gpr.sp = data.GetU64(&offset);
657           gpr.pc = data.GetU64(&offset);
658           gpr.cpsr = data.GetU32(&offset);
659           SetError(GPRRegSet, Read, 0);
660         }
661         offset = next_thread_state;
662         break;
663       case FPURegSet: {
664         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
665         const int fpu_reg_buf_size = sizeof(fpu);
666         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
667             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
668                               fpu_reg_buf) == fpu_reg_buf_size) {
669           SetError(FPURegSet, Read, 0);
670         } else {
671           done = true;
672         }
673       }
674         offset = next_thread_state;
675         break;
676       case EXCRegSet:
677         if (count == 4) {
678           exc.far = data.GetU64(&offset);
679           exc.esr = data.GetU32(&offset);
680           exc.exception = data.GetU32(&offset);
681           SetError(EXCRegSet, Read, 0);
682         }
683         offset = next_thread_state;
684         break;
685       default:
686         done = true;
687         break;
688       }
689     }
690   }
691 
692   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
693     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
694     if (reg_ctx_sp) {
695       RegisterContext *reg_ctx = reg_ctx_sp.get();
696 
697       data.PutHex32(GPRRegSet); // Flavor
698       data.PutHex32(GPRWordCount);
699       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
700       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
701       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
702       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
703       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
704       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
705       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
706       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
707       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
708       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
709       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
710       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
711       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
712       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
713       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
714       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
715       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
716       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
717       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
718       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
719       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
720       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
721       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
722       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
723       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
724       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
725       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
726       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
727       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
728       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
729       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
730       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
731       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
732       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
733       data.PutHex32(0); // uint32_t pad at the end
734 
735       // Write out the EXC registers
736       data.PutHex32(EXCRegSet);
737       data.PutHex32(EXCWordCount);
738       PrintRegisterValue(reg_ctx, "far", nullptr, 8, data);
739       PrintRegisterValue(reg_ctx, "esr", nullptr, 4, data);
740       PrintRegisterValue(reg_ctx, "exception", nullptr, 4, data);
741       return true;
742     }
743     return false;
744   }
745 
746 protected:
747   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
748 
749   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
750 
751   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
752 
753   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
754 
755   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
756     return 0;
757   }
758 
759   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
760     return 0;
761   }
762 
763   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
764     return 0;
765   }
766 
767   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
768     return -1;
769   }
770 };
771 
772 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
773   switch (magic) {
774   case MH_MAGIC:
775   case MH_CIGAM:
776     return sizeof(struct llvm::MachO::mach_header);
777 
778   case MH_MAGIC_64:
779   case MH_CIGAM_64:
780     return sizeof(struct llvm::MachO::mach_header_64);
781     break;
782 
783   default:
784     break;
785   }
786   return 0;
787 }
788 
789 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
790 
791 char ObjectFileMachO::ID;
792 
793 void ObjectFileMachO::Initialize() {
794   PluginManager::RegisterPlugin(
795       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
796       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
797 }
798 
799 void ObjectFileMachO::Terminate() {
800   PluginManager::UnregisterPlugin(CreateInstance);
801 }
802 
803 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
804                                             DataBufferSP data_sp,
805                                             lldb::offset_t data_offset,
806                                             const FileSpec *file,
807                                             lldb::offset_t file_offset,
808                                             lldb::offset_t length) {
809   if (!data_sp) {
810     data_sp = MapFileData(*file, length, file_offset);
811     if (!data_sp)
812       return nullptr;
813     data_offset = 0;
814   }
815 
816   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
817     return nullptr;
818 
819   // Update the data to contain the entire file if it doesn't already
820   if (data_sp->GetByteSize() < length) {
821     data_sp = MapFileData(*file, length, file_offset);
822     if (!data_sp)
823       return nullptr;
824     data_offset = 0;
825   }
826   auto objfile_up = std::make_unique<ObjectFileMachO>(
827       module_sp, data_sp, data_offset, file, file_offset, length);
828   if (!objfile_up || !objfile_up->ParseHeader())
829     return nullptr;
830 
831   return objfile_up.release();
832 }
833 
834 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
835     const lldb::ModuleSP &module_sp, WritableDataBufferSP data_sp,
836     const ProcessSP &process_sp, lldb::addr_t header_addr) {
837   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
838     std::unique_ptr<ObjectFile> objfile_up(
839         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
840     if (objfile_up.get() && objfile_up->ParseHeader())
841       return objfile_up.release();
842   }
843   return nullptr;
844 }
845 
846 size_t ObjectFileMachO::GetModuleSpecifications(
847     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
848     lldb::offset_t data_offset, lldb::offset_t file_offset,
849     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
850   const size_t initial_count = specs.GetSize();
851 
852   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
853     DataExtractor data;
854     data.SetData(data_sp);
855     llvm::MachO::mach_header header;
856     if (ParseHeader(data, &data_offset, header)) {
857       size_t header_and_load_cmds =
858           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
859       if (header_and_load_cmds >= data_sp->GetByteSize()) {
860         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
861         data.SetData(data_sp);
862         data_offset = MachHeaderSizeFromMagic(header.magic);
863       }
864       if (data_sp) {
865         ModuleSpec base_spec;
866         base_spec.GetFileSpec() = file;
867         base_spec.SetObjectOffset(file_offset);
868         base_spec.SetObjectSize(length);
869         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
870       }
871     }
872   }
873   return specs.GetSize() - initial_count;
874 }
875 
876 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
877   static ConstString g_segment_name_TEXT("__TEXT");
878   return g_segment_name_TEXT;
879 }
880 
881 ConstString ObjectFileMachO::GetSegmentNameDATA() {
882   static ConstString g_segment_name_DATA("__DATA");
883   return g_segment_name_DATA;
884 }
885 
886 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
887   static ConstString g_segment_name("__DATA_DIRTY");
888   return g_segment_name;
889 }
890 
891 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
892   static ConstString g_segment_name("__DATA_CONST");
893   return g_segment_name;
894 }
895 
896 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
897   static ConstString g_segment_name_OBJC("__OBJC");
898   return g_segment_name_OBJC;
899 }
900 
901 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
902   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
903   return g_section_name_LINKEDIT;
904 }
905 
906 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
907   static ConstString g_section_name("__DWARF");
908   return g_section_name;
909 }
910 
911 ConstString ObjectFileMachO::GetSegmentNameLLVM_COV() {
912   static ConstString g_section_name("__LLVM_COV");
913   return g_section_name;
914 }
915 
916 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
917   static ConstString g_section_name_eh_frame("__eh_frame");
918   return g_section_name_eh_frame;
919 }
920 
921 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP data_sp,
922                                       lldb::addr_t data_offset,
923                                       lldb::addr_t data_length) {
924   DataExtractor data;
925   data.SetData(data_sp, data_offset, data_length);
926   lldb::offset_t offset = 0;
927   uint32_t magic = data.GetU32(&offset);
928 
929   offset += 4; // cputype
930   offset += 4; // cpusubtype
931   uint32_t filetype = data.GetU32(&offset);
932 
933   // A fileset has a Mach-O header but is not an
934   // individual file and must be handled via an
935   // ObjectContainer plugin.
936   if (filetype == llvm::MachO::MH_FILESET)
937     return false;
938 
939   return MachHeaderSizeFromMagic(magic) != 0;
940 }
941 
942 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
943                                  DataBufferSP data_sp,
944                                  lldb::offset_t data_offset,
945                                  const FileSpec *file,
946                                  lldb::offset_t file_offset,
947                                  lldb::offset_t length)
948     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
949       m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(),
950       m_thread_context_offsets_valid(false), m_reexported_dylibs(),
951       m_allow_assembly_emulation_unwind_plans(true) {
952   ::memset(&m_header, 0, sizeof(m_header));
953   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
954 }
955 
956 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
957                                  lldb::WritableDataBufferSP header_data_sp,
958                                  const lldb::ProcessSP &process_sp,
959                                  lldb::addr_t header_addr)
960     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
961       m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(),
962       m_thread_context_offsets_valid(false), m_reexported_dylibs(),
963       m_allow_assembly_emulation_unwind_plans(true) {
964   ::memset(&m_header, 0, sizeof(m_header));
965   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
966 }
967 
968 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
969                                   lldb::offset_t *data_offset_ptr,
970                                   llvm::MachO::mach_header &header) {
971   data.SetByteOrder(endian::InlHostByteOrder());
972   // Leave magic in the original byte order
973   header.magic = data.GetU32(data_offset_ptr);
974   bool can_parse = false;
975   bool is_64_bit = false;
976   switch (header.magic) {
977   case MH_MAGIC:
978     data.SetByteOrder(endian::InlHostByteOrder());
979     data.SetAddressByteSize(4);
980     can_parse = true;
981     break;
982 
983   case MH_MAGIC_64:
984     data.SetByteOrder(endian::InlHostByteOrder());
985     data.SetAddressByteSize(8);
986     can_parse = true;
987     is_64_bit = true;
988     break;
989 
990   case MH_CIGAM:
991     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
992                           ? eByteOrderLittle
993                           : eByteOrderBig);
994     data.SetAddressByteSize(4);
995     can_parse = true;
996     break;
997 
998   case MH_CIGAM_64:
999     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1000                           ? eByteOrderLittle
1001                           : eByteOrderBig);
1002     data.SetAddressByteSize(8);
1003     is_64_bit = true;
1004     can_parse = true;
1005     break;
1006 
1007   default:
1008     break;
1009   }
1010 
1011   if (can_parse) {
1012     data.GetU32(data_offset_ptr, &header.cputype, 6);
1013     if (is_64_bit)
1014       *data_offset_ptr += 4;
1015     return true;
1016   } else {
1017     memset(&header, 0, sizeof(header));
1018   }
1019   return false;
1020 }
1021 
1022 bool ObjectFileMachO::ParseHeader() {
1023   ModuleSP module_sp(GetModule());
1024   if (!module_sp)
1025     return false;
1026 
1027   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1028   bool can_parse = false;
1029   lldb::offset_t offset = 0;
1030   m_data.SetByteOrder(endian::InlHostByteOrder());
1031   // Leave magic in the original byte order
1032   m_header.magic = m_data.GetU32(&offset);
1033   switch (m_header.magic) {
1034   case MH_MAGIC:
1035     m_data.SetByteOrder(endian::InlHostByteOrder());
1036     m_data.SetAddressByteSize(4);
1037     can_parse = true;
1038     break;
1039 
1040   case MH_MAGIC_64:
1041     m_data.SetByteOrder(endian::InlHostByteOrder());
1042     m_data.SetAddressByteSize(8);
1043     can_parse = true;
1044     break;
1045 
1046   case MH_CIGAM:
1047     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1048                             ? eByteOrderLittle
1049                             : eByteOrderBig);
1050     m_data.SetAddressByteSize(4);
1051     can_parse = true;
1052     break;
1053 
1054   case MH_CIGAM_64:
1055     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1056                             ? eByteOrderLittle
1057                             : eByteOrderBig);
1058     m_data.SetAddressByteSize(8);
1059     can_parse = true;
1060     break;
1061 
1062   default:
1063     break;
1064   }
1065 
1066   if (can_parse) {
1067     m_data.GetU32(&offset, &m_header.cputype, 6);
1068 
1069     ModuleSpecList all_specs;
1070     ModuleSpec base_spec;
1071     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1072                     base_spec, all_specs);
1073 
1074     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1075       ArchSpec mach_arch =
1076           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1077 
1078       // Check if the module has a required architecture
1079       const ArchSpec &module_arch = module_sp->GetArchitecture();
1080       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1081         continue;
1082 
1083       if (SetModulesArchitecture(mach_arch)) {
1084         const size_t header_and_lc_size =
1085             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1086         if (m_data.GetByteSize() < header_and_lc_size) {
1087           DataBufferSP data_sp;
1088           ProcessSP process_sp(m_process_wp.lock());
1089           if (process_sp) {
1090             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1091           } else {
1092             // Read in all only the load command data from the file on disk
1093             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1094             if (data_sp->GetByteSize() != header_and_lc_size)
1095               continue;
1096           }
1097           if (data_sp)
1098             m_data.SetData(data_sp);
1099         }
1100       }
1101       return true;
1102     }
1103     // None found.
1104     return false;
1105   } else {
1106     memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1107   }
1108   return false;
1109 }
1110 
1111 ByteOrder ObjectFileMachO::GetByteOrder() const {
1112   return m_data.GetByteOrder();
1113 }
1114 
1115 bool ObjectFileMachO::IsExecutable() const {
1116   return m_header.filetype == MH_EXECUTE;
1117 }
1118 
1119 bool ObjectFileMachO::IsDynamicLoader() const {
1120   return m_header.filetype == MH_DYLINKER;
1121 }
1122 
1123 bool ObjectFileMachO::IsSharedCacheBinary() const {
1124   return m_header.flags & MH_DYLIB_IN_CACHE;
1125 }
1126 
1127 bool ObjectFileMachO::IsKext() const {
1128   return m_header.filetype == MH_KEXT_BUNDLE;
1129 }
1130 
1131 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1132   return m_data.GetAddressByteSize();
1133 }
1134 
1135 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1136   Symtab *symtab = GetSymtab();
1137   if (!symtab)
1138     return AddressClass::eUnknown;
1139 
1140   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1141   if (symbol) {
1142     if (symbol->ValueIsAddress()) {
1143       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1144       if (section_sp) {
1145         const lldb::SectionType section_type = section_sp->GetType();
1146         switch (section_type) {
1147         case eSectionTypeInvalid:
1148           return AddressClass::eUnknown;
1149 
1150         case eSectionTypeCode:
1151           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1152             // For ARM we have a bit in the n_desc field of the symbol that
1153             // tells us ARM/Thumb which is bit 0x0008.
1154             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1155               return AddressClass::eCodeAlternateISA;
1156           }
1157           return AddressClass::eCode;
1158 
1159         case eSectionTypeContainer:
1160           return AddressClass::eUnknown;
1161 
1162         case eSectionTypeData:
1163         case eSectionTypeDataCString:
1164         case eSectionTypeDataCStringPointers:
1165         case eSectionTypeDataSymbolAddress:
1166         case eSectionTypeData4:
1167         case eSectionTypeData8:
1168         case eSectionTypeData16:
1169         case eSectionTypeDataPointers:
1170         case eSectionTypeZeroFill:
1171         case eSectionTypeDataObjCMessageRefs:
1172         case eSectionTypeDataObjCCFStrings:
1173         case eSectionTypeGoSymtab:
1174           return AddressClass::eData;
1175 
1176         case eSectionTypeDebug:
1177         case eSectionTypeDWARFDebugAbbrev:
1178         case eSectionTypeDWARFDebugAbbrevDwo:
1179         case eSectionTypeDWARFDebugAddr:
1180         case eSectionTypeDWARFDebugAranges:
1181         case eSectionTypeDWARFDebugCuIndex:
1182         case eSectionTypeDWARFDebugFrame:
1183         case eSectionTypeDWARFDebugInfo:
1184         case eSectionTypeDWARFDebugInfoDwo:
1185         case eSectionTypeDWARFDebugLine:
1186         case eSectionTypeDWARFDebugLineStr:
1187         case eSectionTypeDWARFDebugLoc:
1188         case eSectionTypeDWARFDebugLocDwo:
1189         case eSectionTypeDWARFDebugLocLists:
1190         case eSectionTypeDWARFDebugLocListsDwo:
1191         case eSectionTypeDWARFDebugMacInfo:
1192         case eSectionTypeDWARFDebugMacro:
1193         case eSectionTypeDWARFDebugNames:
1194         case eSectionTypeDWARFDebugPubNames:
1195         case eSectionTypeDWARFDebugPubTypes:
1196         case eSectionTypeDWARFDebugRanges:
1197         case eSectionTypeDWARFDebugRngLists:
1198         case eSectionTypeDWARFDebugRngListsDwo:
1199         case eSectionTypeDWARFDebugStr:
1200         case eSectionTypeDWARFDebugStrDwo:
1201         case eSectionTypeDWARFDebugStrOffsets:
1202         case eSectionTypeDWARFDebugStrOffsetsDwo:
1203         case eSectionTypeDWARFDebugTuIndex:
1204         case eSectionTypeDWARFDebugTypes:
1205         case eSectionTypeDWARFDebugTypesDwo:
1206         case eSectionTypeDWARFAppleNames:
1207         case eSectionTypeDWARFAppleTypes:
1208         case eSectionTypeDWARFAppleNamespaces:
1209         case eSectionTypeDWARFAppleObjC:
1210         case eSectionTypeDWARFGNUDebugAltLink:
1211         case eSectionTypeCTF:
1212         case eSectionTypeLLDBTypeSummaries:
1213         case eSectionTypeLLDBFormatters:
1214         case eSectionTypeSwiftModules:
1215           return AddressClass::eDebug;
1216 
1217         case eSectionTypeEHFrame:
1218         case eSectionTypeARMexidx:
1219         case eSectionTypeARMextab:
1220         case eSectionTypeCompactUnwind:
1221           return AddressClass::eRuntime;
1222 
1223         case eSectionTypeAbsoluteAddress:
1224         case eSectionTypeELFSymbolTable:
1225         case eSectionTypeELFDynamicSymbols:
1226         case eSectionTypeELFRelocationEntries:
1227         case eSectionTypeELFDynamicLinkInfo:
1228         case eSectionTypeOther:
1229           return AddressClass::eUnknown;
1230         }
1231       }
1232     }
1233 
1234     const SymbolType symbol_type = symbol->GetType();
1235     switch (symbol_type) {
1236     case eSymbolTypeAny:
1237       return AddressClass::eUnknown;
1238     case eSymbolTypeAbsolute:
1239       return AddressClass::eUnknown;
1240 
1241     case eSymbolTypeCode:
1242     case eSymbolTypeTrampoline:
1243     case eSymbolTypeResolver:
1244       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1245         // For ARM we have a bit in the n_desc field of the symbol that tells
1246         // us ARM/Thumb which is bit 0x0008.
1247         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1248           return AddressClass::eCodeAlternateISA;
1249       }
1250       return AddressClass::eCode;
1251 
1252     case eSymbolTypeData:
1253       return AddressClass::eData;
1254     case eSymbolTypeRuntime:
1255       return AddressClass::eRuntime;
1256     case eSymbolTypeException:
1257       return AddressClass::eRuntime;
1258     case eSymbolTypeSourceFile:
1259       return AddressClass::eDebug;
1260     case eSymbolTypeHeaderFile:
1261       return AddressClass::eDebug;
1262     case eSymbolTypeObjectFile:
1263       return AddressClass::eDebug;
1264     case eSymbolTypeCommonBlock:
1265       return AddressClass::eDebug;
1266     case eSymbolTypeBlock:
1267       return AddressClass::eDebug;
1268     case eSymbolTypeLocal:
1269       return AddressClass::eData;
1270     case eSymbolTypeParam:
1271       return AddressClass::eData;
1272     case eSymbolTypeVariable:
1273       return AddressClass::eData;
1274     case eSymbolTypeVariableType:
1275       return AddressClass::eDebug;
1276     case eSymbolTypeLineEntry:
1277       return AddressClass::eDebug;
1278     case eSymbolTypeLineHeader:
1279       return AddressClass::eDebug;
1280     case eSymbolTypeScopeBegin:
1281       return AddressClass::eDebug;
1282     case eSymbolTypeScopeEnd:
1283       return AddressClass::eDebug;
1284     case eSymbolTypeAdditional:
1285       return AddressClass::eUnknown;
1286     case eSymbolTypeCompiler:
1287       return AddressClass::eDebug;
1288     case eSymbolTypeInstrumentation:
1289       return AddressClass::eDebug;
1290     case eSymbolTypeUndefined:
1291       return AddressClass::eUnknown;
1292     case eSymbolTypeObjCClass:
1293       return AddressClass::eRuntime;
1294     case eSymbolTypeObjCMetaClass:
1295       return AddressClass::eRuntime;
1296     case eSymbolTypeObjCIVar:
1297       return AddressClass::eRuntime;
1298     case eSymbolTypeReExported:
1299       return AddressClass::eRuntime;
1300     }
1301   }
1302   return AddressClass::eUnknown;
1303 }
1304 
1305 bool ObjectFileMachO::IsStripped() {
1306   if (m_dysymtab.cmd == 0) {
1307     ModuleSP module_sp(GetModule());
1308     if (module_sp) {
1309       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1310       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1311         const lldb::offset_t load_cmd_offset = offset;
1312 
1313         llvm::MachO::load_command lc = {};
1314         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1315           break;
1316         if (lc.cmd == LC_DYSYMTAB) {
1317           m_dysymtab.cmd = lc.cmd;
1318           m_dysymtab.cmdsize = lc.cmdsize;
1319           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1320                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1321               nullptr) {
1322             // Clear m_dysymtab if we were unable to read all items from the
1323             // load command
1324             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1325           }
1326         }
1327         offset = load_cmd_offset + lc.cmdsize;
1328       }
1329     }
1330   }
1331   if (m_dysymtab.cmd)
1332     return m_dysymtab.nlocalsym <= 1;
1333   return false;
1334 }
1335 
1336 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1337   EncryptedFileRanges result;
1338   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1339 
1340   llvm::MachO::encryption_info_command encryption_cmd;
1341   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1342     const lldb::offset_t load_cmd_offset = offset;
1343     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1344       break;
1345 
1346     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1347     // 3 fields we care about, so treat them the same.
1348     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1349         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1350       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1351         if (encryption_cmd.cryptid != 0) {
1352           EncryptedFileRanges::Entry entry;
1353           entry.SetRangeBase(encryption_cmd.cryptoff);
1354           entry.SetByteSize(encryption_cmd.cryptsize);
1355           result.Append(entry);
1356         }
1357       }
1358     }
1359     offset = load_cmd_offset + encryption_cmd.cmdsize;
1360   }
1361 
1362   return result;
1363 }
1364 
1365 void ObjectFileMachO::SanitizeSegmentCommand(
1366     llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1367   if (m_length == 0 || seg_cmd.filesize == 0)
1368     return;
1369 
1370   if (IsSharedCacheBinary() && !IsInMemory()) {
1371     // In shared cache images, the load commands are relative to the
1372     // shared cache file, and not the specific image we are
1373     // examining. Let's fix this up so that it looks like a normal
1374     // image.
1375     if (strncmp(seg_cmd.segname, GetSegmentNameTEXT().GetCString(),
1376                 sizeof(seg_cmd.segname)) == 0)
1377       m_text_address = seg_cmd.vmaddr;
1378     if (strncmp(seg_cmd.segname, GetSegmentNameLINKEDIT().GetCString(),
1379                 sizeof(seg_cmd.segname)) == 0)
1380       m_linkedit_original_offset = seg_cmd.fileoff;
1381 
1382     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1383   }
1384 
1385   if (seg_cmd.fileoff > m_length) {
1386     // We have a load command that says it extends past the end of the file.
1387     // This is likely a corrupt file.  We don't have any way to return an error
1388     // condition here (this method was likely invoked from something like
1389     // ObjectFile::GetSectionList()), so we just null out the section contents,
1390     // and dump a message to stdout.  The most common case here is core file
1391     // debugging with a truncated file.
1392     const char *lc_segment_name =
1393         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1394     GetModule()->ReportWarning(
1395         "load command {0} {1} has a fileoff ({2:x16}) that extends beyond "
1396         "the end of the file ({3:x16}), ignoring this section",
1397         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1398 
1399     seg_cmd.fileoff = 0;
1400     seg_cmd.filesize = 0;
1401   }
1402 
1403   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1404     // We have a load command that says it extends past the end of the file.
1405     // This is likely a corrupt file.  We don't have any way to return an error
1406     // condition here (this method was likely invoked from something like
1407     // ObjectFile::GetSectionList()), so we just null out the section contents,
1408     // and dump a message to stdout.  The most common case here is core file
1409     // debugging with a truncated file.
1410     const char *lc_segment_name =
1411         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1412     GetModule()->ReportWarning(
1413         "load command {0} {1} has a fileoff + filesize ({2:x16}) that "
1414         "extends beyond the end of the file ({3:x16}), the segment will be "
1415         "truncated to match",
1416         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1417 
1418     // Truncate the length
1419     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1420   }
1421 }
1422 
1423 static uint32_t
1424 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1425   uint32_t result = 0;
1426   if (seg_cmd.initprot & VM_PROT_READ)
1427     result |= ePermissionsReadable;
1428   if (seg_cmd.initprot & VM_PROT_WRITE)
1429     result |= ePermissionsWritable;
1430   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1431     result |= ePermissionsExecutable;
1432   return result;
1433 }
1434 
1435 static lldb::SectionType GetSectionType(uint32_t flags,
1436                                         ConstString section_name) {
1437 
1438   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1439     return eSectionTypeCode;
1440 
1441   uint32_t mach_sect_type = flags & SECTION_TYPE;
1442   static ConstString g_sect_name_objc_data("__objc_data");
1443   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1444   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1445   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1446   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1447   static ConstString g_sect_name_objc_const("__objc_const");
1448   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1449   static ConstString g_sect_name_cfstring("__cfstring");
1450 
1451   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1452   static ConstString g_sect_name_dwarf_debug_abbrev_dwo("__debug_abbrev.dwo");
1453   static ConstString g_sect_name_dwarf_debug_addr("__debug_addr");
1454   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1455   static ConstString g_sect_name_dwarf_debug_cu_index("__debug_cu_index");
1456   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1457   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1458   static ConstString g_sect_name_dwarf_debug_info_dwo("__debug_info.dwo");
1459   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1460   static ConstString g_sect_name_dwarf_debug_line_dwo("__debug_line.dwo");
1461   static ConstString g_sect_name_dwarf_debug_line_str("__debug_line_str");
1462   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1463   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1464   static ConstString g_sect_name_dwarf_debug_loclists_dwo("__debug_loclists.dwo");
1465   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1466   static ConstString g_sect_name_dwarf_debug_macro("__debug_macro");
1467   static ConstString g_sect_name_dwarf_debug_macro_dwo("__debug_macro.dwo");
1468   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1469   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1470   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1471   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1472   static ConstString g_sect_name_dwarf_debug_rnglists("__debug_rnglists");
1473   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1474   static ConstString g_sect_name_dwarf_debug_str_dwo("__debug_str.dwo");
1475   static ConstString g_sect_name_dwarf_debug_str_offs("__debug_str_offs");
1476   static ConstString g_sect_name_dwarf_debug_str_offs_dwo("__debug_str_offs.dwo");
1477   static ConstString g_sect_name_dwarf_debug_tu_index("__debug_tu_index");
1478   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1479   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1480   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1481   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1482   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1483   static ConstString g_sect_name_eh_frame("__eh_frame");
1484   static ConstString g_sect_name_compact_unwind("__unwind_info");
1485   static ConstString g_sect_name_text("__text");
1486   static ConstString g_sect_name_data("__data");
1487   static ConstString g_sect_name_go_symtab("__gosymtab");
1488   static ConstString g_sect_name_ctf("__ctf");
1489   static ConstString g_sect_name_lldb_summaries("__lldbsummaries");
1490   static ConstString g_sect_name_lldb_formatters("__lldbformatters");
1491   static ConstString g_sect_name_swift_ast("__swift_ast");
1492 
1493   if (section_name == g_sect_name_dwarf_debug_abbrev)
1494     return eSectionTypeDWARFDebugAbbrev;
1495   if (section_name == g_sect_name_dwarf_debug_abbrev_dwo)
1496     return eSectionTypeDWARFDebugAbbrevDwo;
1497   if (section_name == g_sect_name_dwarf_debug_addr)
1498     return eSectionTypeDWARFDebugAddr;
1499   if (section_name == g_sect_name_dwarf_debug_aranges)
1500     return eSectionTypeDWARFDebugAranges;
1501   if (section_name == g_sect_name_dwarf_debug_cu_index)
1502     return eSectionTypeDWARFDebugCuIndex;
1503   if (section_name == g_sect_name_dwarf_debug_frame)
1504     return eSectionTypeDWARFDebugFrame;
1505   if (section_name == g_sect_name_dwarf_debug_info)
1506     return eSectionTypeDWARFDebugInfo;
1507   if (section_name == g_sect_name_dwarf_debug_info_dwo)
1508     return eSectionTypeDWARFDebugInfoDwo;
1509   if (section_name == g_sect_name_dwarf_debug_line)
1510     return eSectionTypeDWARFDebugLine;
1511   if (section_name == g_sect_name_dwarf_debug_line_dwo)
1512     return eSectionTypeDWARFDebugLine; // Same as debug_line.
1513   if (section_name == g_sect_name_dwarf_debug_line_str)
1514     return eSectionTypeDWARFDebugLineStr;
1515   if (section_name == g_sect_name_dwarf_debug_loc)
1516     return eSectionTypeDWARFDebugLoc;
1517   if (section_name == g_sect_name_dwarf_debug_loclists)
1518     return eSectionTypeDWARFDebugLocLists;
1519   if (section_name == g_sect_name_dwarf_debug_loclists_dwo)
1520     return eSectionTypeDWARFDebugLocListsDwo;
1521   if (section_name == g_sect_name_dwarf_debug_macinfo)
1522     return eSectionTypeDWARFDebugMacInfo;
1523   if (section_name == g_sect_name_dwarf_debug_macro)
1524     return eSectionTypeDWARFDebugMacro;
1525   if (section_name == g_sect_name_dwarf_debug_macro_dwo)
1526     return eSectionTypeDWARFDebugMacInfo; // Same as debug_macro.
1527   if (section_name == g_sect_name_dwarf_debug_names)
1528     return eSectionTypeDWARFDebugNames;
1529   if (section_name == g_sect_name_dwarf_debug_pubnames)
1530     return eSectionTypeDWARFDebugPubNames;
1531   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1532     return eSectionTypeDWARFDebugPubTypes;
1533   if (section_name == g_sect_name_dwarf_debug_ranges)
1534     return eSectionTypeDWARFDebugRanges;
1535   if (section_name == g_sect_name_dwarf_debug_rnglists)
1536     return eSectionTypeDWARFDebugRngLists;
1537   if (section_name == g_sect_name_dwarf_debug_str)
1538     return eSectionTypeDWARFDebugStr;
1539   if (section_name == g_sect_name_dwarf_debug_str_dwo)
1540     return eSectionTypeDWARFDebugStrDwo;
1541   if (section_name == g_sect_name_dwarf_debug_str_offs)
1542     return eSectionTypeDWARFDebugStrOffsets;
1543   if (section_name == g_sect_name_dwarf_debug_str_offs_dwo)
1544     return eSectionTypeDWARFDebugStrOffsetsDwo;
1545   if (section_name == g_sect_name_dwarf_debug_tu_index)
1546     return eSectionTypeDWARFDebugTuIndex;
1547   if (section_name == g_sect_name_dwarf_debug_types)
1548     return eSectionTypeDWARFDebugTypes;
1549   if (section_name == g_sect_name_dwarf_apple_names)
1550     return eSectionTypeDWARFAppleNames;
1551   if (section_name == g_sect_name_dwarf_apple_types)
1552     return eSectionTypeDWARFAppleTypes;
1553   if (section_name == g_sect_name_dwarf_apple_namespaces)
1554     return eSectionTypeDWARFAppleNamespaces;
1555   if (section_name == g_sect_name_dwarf_apple_objc)
1556     return eSectionTypeDWARFAppleObjC;
1557   if (section_name == g_sect_name_objc_selrefs)
1558     return eSectionTypeDataCStringPointers;
1559   if (section_name == g_sect_name_objc_msgrefs)
1560     return eSectionTypeDataObjCMessageRefs;
1561   if (section_name == g_sect_name_eh_frame)
1562     return eSectionTypeEHFrame;
1563   if (section_name == g_sect_name_compact_unwind)
1564     return eSectionTypeCompactUnwind;
1565   if (section_name == g_sect_name_cfstring)
1566     return eSectionTypeDataObjCCFStrings;
1567   if (section_name == g_sect_name_go_symtab)
1568     return eSectionTypeGoSymtab;
1569   if (section_name == g_sect_name_ctf)
1570     return eSectionTypeCTF;
1571   if (section_name == g_sect_name_lldb_summaries)
1572     return lldb::eSectionTypeLLDBTypeSummaries;
1573   if (section_name == g_sect_name_lldb_formatters)
1574     return lldb::eSectionTypeLLDBFormatters;
1575   if (section_name == g_sect_name_swift_ast)
1576     return eSectionTypeSwiftModules;
1577   if (section_name == g_sect_name_objc_data ||
1578       section_name == g_sect_name_objc_classrefs ||
1579       section_name == g_sect_name_objc_superrefs ||
1580       section_name == g_sect_name_objc_const ||
1581       section_name == g_sect_name_objc_classlist) {
1582     return eSectionTypeDataPointers;
1583   }
1584 
1585   switch (mach_sect_type) {
1586   // TODO: categorize sections by other flags for regular sections
1587   case S_REGULAR:
1588     if (section_name == g_sect_name_text)
1589       return eSectionTypeCode;
1590     if (section_name == g_sect_name_data)
1591       return eSectionTypeData;
1592     return eSectionTypeOther;
1593   case S_ZEROFILL:
1594     return eSectionTypeZeroFill;
1595   case S_CSTRING_LITERALS: // section with only literal C strings
1596     return eSectionTypeDataCString;
1597   case S_4BYTE_LITERALS: // section with only 4 byte literals
1598     return eSectionTypeData4;
1599   case S_8BYTE_LITERALS: // section with only 8 byte literals
1600     return eSectionTypeData8;
1601   case S_LITERAL_POINTERS: // section with only pointers to literals
1602     return eSectionTypeDataPointers;
1603   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1604     return eSectionTypeDataPointers;
1605   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1606     return eSectionTypeDataPointers;
1607   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1608                        // the reserved2 field
1609     return eSectionTypeCode;
1610   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1611                                  // initialization
1612     return eSectionTypeDataPointers;
1613   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1614                                  // termination
1615     return eSectionTypeDataPointers;
1616   case S_COALESCED:
1617     return eSectionTypeOther;
1618   case S_GB_ZEROFILL:
1619     return eSectionTypeZeroFill;
1620   case S_INTERPOSING: // section with only pairs of function pointers for
1621                       // interposing
1622     return eSectionTypeCode;
1623   case S_16BYTE_LITERALS: // section with only 16 byte literals
1624     return eSectionTypeData16;
1625   case S_DTRACE_DOF:
1626     return eSectionTypeDebug;
1627   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1628     return eSectionTypeDataPointers;
1629   default:
1630     return eSectionTypeOther;
1631   }
1632 }
1633 
1634 struct ObjectFileMachO::SegmentParsingContext {
1635   const EncryptedFileRanges EncryptedRanges;
1636   lldb_private::SectionList &UnifiedList;
1637   uint32_t NextSegmentIdx = 0;
1638   uint32_t NextSectionIdx = 0;
1639   bool FileAddressesChanged = false;
1640 
1641   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1642                         lldb_private::SectionList &UnifiedList)
1643       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1644 };
1645 
1646 void ObjectFileMachO::ProcessSegmentCommand(
1647     const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1648     uint32_t cmd_idx, SegmentParsingContext &context) {
1649   llvm::MachO::segment_command_64 load_cmd;
1650   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1651 
1652   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1653     return;
1654 
1655   ModuleSP module_sp = GetModule();
1656   const bool is_core = GetType() == eTypeCoreFile;
1657   const bool is_dsym = (m_header.filetype == MH_DSYM);
1658   bool add_section = true;
1659   bool add_to_unified = true;
1660   ConstString const_segname(
1661       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1662 
1663   SectionSP unified_section_sp(
1664       context.UnifiedList.FindSectionByName(const_segname));
1665   if (is_dsym && unified_section_sp) {
1666     if (const_segname == GetSegmentNameLINKEDIT()) {
1667       // We need to keep the __LINKEDIT segment private to this object file
1668       // only
1669       add_to_unified = false;
1670     } else {
1671       // This is the dSYM file and this section has already been created by the
1672       // object file, no need to create it.
1673       add_section = false;
1674     }
1675   }
1676   load_cmd.vmaddr = m_data.GetAddress(&offset);
1677   load_cmd.vmsize = m_data.GetAddress(&offset);
1678   load_cmd.fileoff = m_data.GetAddress(&offset);
1679   load_cmd.filesize = m_data.GetAddress(&offset);
1680   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1681     return;
1682 
1683   SanitizeSegmentCommand(load_cmd, cmd_idx);
1684 
1685   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1686   const bool segment_is_encrypted =
1687       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1688 
1689   // Use a segment ID of the segment index shifted left by 8 so they never
1690   // conflict with any of the sections.
1691   SectionSP segment_sp;
1692   if (add_section && (const_segname || is_core)) {
1693     segment_sp = std::make_shared<Section>(
1694         module_sp, // Module to which this section belongs
1695         this,      // Object file to which this sections belongs
1696         ++context.NextSegmentIdx
1697             << 8, // Section ID is the 1 based segment index
1698         // shifted right by 8 bits as not to collide with any of the 256
1699         // section IDs that are possible
1700         const_segname,         // Name of this section
1701         eSectionTypeContainer, // This section is a container of other
1702         // sections.
1703         load_cmd.vmaddr, // File VM address == addresses as they are
1704         // found in the object file
1705         load_cmd.vmsize,  // VM size in bytes of this section
1706         load_cmd.fileoff, // Offset to the data for this section in
1707         // the file
1708         load_cmd.filesize, // Size in bytes of this section as found
1709         // in the file
1710         0,               // Segments have no alignment information
1711         load_cmd.flags); // Flags for this section
1712 
1713     segment_sp->SetIsEncrypted(segment_is_encrypted);
1714     m_sections_up->AddSection(segment_sp);
1715     segment_sp->SetPermissions(segment_permissions);
1716     if (add_to_unified)
1717       context.UnifiedList.AddSection(segment_sp);
1718   } else if (unified_section_sp) {
1719     // If this is a dSYM and the file addresses in the dSYM differ from the
1720     // file addresses in the ObjectFile, we must use the file base address for
1721     // the Section from the dSYM for the DWARF to resolve correctly.
1722     // This only happens with binaries in the shared cache in practice;
1723     // normally a mismatch like this would give a binary & dSYM that do not
1724     // match UUIDs. When a binary is included in the shared cache, its
1725     // segments are rearranged to optimize the shared cache, so its file
1726     // addresses will differ from what the ObjectFile had originally,
1727     // and what the dSYM has.
1728     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1729       Log *log = GetLog(LLDBLog::Symbols);
1730       if (log) {
1731         log->Printf(
1732             "Installing dSYM's %s segment file address over ObjectFile's "
1733             "so symbol table/debug info resolves correctly for %s",
1734             const_segname.AsCString(),
1735             module_sp->GetFileSpec().GetFilename().AsCString());
1736       }
1737 
1738       // Make sure we've parsed the symbol table from the ObjectFile before
1739       // we go around changing its Sections.
1740       module_sp->GetObjectFile()->GetSymtab();
1741       // eh_frame would present the same problems but we parse that on a per-
1742       // function basis as-needed so it's more difficult to remove its use of
1743       // the Sections.  Realistically, the environments where this code path
1744       // will be taken will not have eh_frame sections.
1745 
1746       unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1747 
1748       // Notify the module that the section addresses have been changed once
1749       // we're done so any file-address caches can be updated.
1750       context.FileAddressesChanged = true;
1751     }
1752     m_sections_up->AddSection(unified_section_sp);
1753   }
1754 
1755   llvm::MachO::section_64 sect64;
1756   ::memset(&sect64, 0, sizeof(sect64));
1757   // Push a section into our mach sections for the section at index zero
1758   // (NO_SECT) if we don't have any mach sections yet...
1759   if (m_mach_sections.empty())
1760     m_mach_sections.push_back(sect64);
1761   uint32_t segment_sect_idx;
1762   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1763 
1764   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1765   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1766        ++segment_sect_idx) {
1767     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1768                      sizeof(sect64.sectname)) == nullptr)
1769       break;
1770     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1771                      sizeof(sect64.segname)) == nullptr)
1772       break;
1773     sect64.addr = m_data.GetAddress(&offset);
1774     sect64.size = m_data.GetAddress(&offset);
1775 
1776     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1777       break;
1778 
1779     if (IsSharedCacheBinary() && !IsInMemory()) {
1780       sect64.offset = sect64.addr - m_text_address;
1781     }
1782 
1783     // Keep a list of mach sections around in case we need to get at data that
1784     // isn't stored in the abstracted Sections.
1785     m_mach_sections.push_back(sect64);
1786 
1787     if (add_section) {
1788       ConstString section_name(
1789           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1790       if (!const_segname) {
1791         // We have a segment with no name so we need to conjure up segments
1792         // that correspond to the section's segname if there isn't already such
1793         // a section. If there is such a section, we resize the section so that
1794         // it spans all sections.  We also mark these sections as fake so
1795         // address matches don't hit if they land in the gaps between the child
1796         // sections.
1797         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1798                                                   sizeof(sect64.segname));
1799         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1800         if (segment_sp.get()) {
1801           Section *segment = segment_sp.get();
1802           // Grow the section size as needed.
1803           const lldb::addr_t sect64_min_addr = sect64.addr;
1804           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1805           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1806           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1807           const lldb::addr_t curr_seg_max_addr =
1808               curr_seg_min_addr + curr_seg_byte_size;
1809           if (sect64_min_addr >= curr_seg_min_addr) {
1810             const lldb::addr_t new_seg_byte_size =
1811                 sect64_max_addr - curr_seg_min_addr;
1812             // Only grow the section size if needed
1813             if (new_seg_byte_size > curr_seg_byte_size)
1814               segment->SetByteSize(new_seg_byte_size);
1815           } else {
1816             // We need to change the base address of the segment and adjust the
1817             // child section offsets for all existing children.
1818             const lldb::addr_t slide_amount =
1819                 sect64_min_addr - curr_seg_min_addr;
1820             segment->Slide(slide_amount, false);
1821             segment->GetChildren().Slide(-slide_amount, false);
1822             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1823           }
1824 
1825           // Grow the section size as needed.
1826           if (sect64.offset) {
1827             const lldb::addr_t segment_min_file_offset =
1828                 segment->GetFileOffset();
1829             const lldb::addr_t segment_max_file_offset =
1830                 segment_min_file_offset + segment->GetFileSize();
1831 
1832             const lldb::addr_t section_min_file_offset = sect64.offset;
1833             const lldb::addr_t section_max_file_offset =
1834                 section_min_file_offset + sect64.size;
1835             const lldb::addr_t new_file_offset =
1836                 std::min(section_min_file_offset, segment_min_file_offset);
1837             const lldb::addr_t new_file_size =
1838                 std::max(section_max_file_offset, segment_max_file_offset) -
1839                 new_file_offset;
1840             segment->SetFileOffset(new_file_offset);
1841             segment->SetFileSize(new_file_size);
1842           }
1843         } else {
1844           // Create a fake section for the section's named segment
1845           segment_sp = std::make_shared<Section>(
1846               segment_sp, // Parent section
1847               module_sp,  // Module to which this section belongs
1848               this,       // Object file to which this section belongs
1849               ++context.NextSegmentIdx
1850                   << 8, // Section ID is the 1 based segment index
1851               // shifted right by 8 bits as not to
1852               // collide with any of the 256 section IDs
1853               // that are possible
1854               const_segname,         // Name of this section
1855               eSectionTypeContainer, // This section is a container of
1856               // other sections.
1857               sect64.addr, // File VM address == addresses as they are
1858               // found in the object file
1859               sect64.size,   // VM size in bytes of this section
1860               sect64.offset, // Offset to the data for this section in
1861               // the file
1862               sect64.offset ? sect64.size : 0, // Size in bytes of
1863               // this section as
1864               // found in the file
1865               sect64.align,
1866               load_cmd.flags); // Flags for this section
1867           segment_sp->SetIsFake(true);
1868           segment_sp->SetPermissions(segment_permissions);
1869           m_sections_up->AddSection(segment_sp);
1870           if (add_to_unified)
1871             context.UnifiedList.AddSection(segment_sp);
1872           segment_sp->SetIsEncrypted(segment_is_encrypted);
1873         }
1874       }
1875       assert(segment_sp.get());
1876 
1877       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1878 
1879       SectionSP section_sp(new Section(
1880           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1881           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1882           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1883           sect64.flags));
1884       // Set the section to be encrypted to match the segment
1885 
1886       bool section_is_encrypted = false;
1887       if (!segment_is_encrypted && load_cmd.filesize != 0)
1888         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1889                                    sect64.offset) != nullptr;
1890 
1891       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1892       section_sp->SetPermissions(segment_permissions);
1893       segment_sp->GetChildren().AddSection(section_sp);
1894 
1895       if (segment_sp->IsFake()) {
1896         segment_sp.reset();
1897         const_segname.Clear();
1898       }
1899     }
1900   }
1901   if (segment_sp && is_dsym) {
1902     if (first_segment_sectID <= context.NextSectionIdx) {
1903       lldb::user_id_t sect_uid;
1904       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1905            ++sect_uid) {
1906         SectionSP curr_section_sp(
1907             segment_sp->GetChildren().FindSectionByID(sect_uid));
1908         SectionSP next_section_sp;
1909         if (sect_uid + 1 <= context.NextSectionIdx)
1910           next_section_sp =
1911               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1912 
1913         if (curr_section_sp.get()) {
1914           if (curr_section_sp->GetByteSize() == 0) {
1915             if (next_section_sp.get() != nullptr)
1916               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1917                                            curr_section_sp->GetFileAddress());
1918             else
1919               curr_section_sp->SetByteSize(load_cmd.vmsize);
1920           }
1921         }
1922       }
1923     }
1924   }
1925 }
1926 
1927 void ObjectFileMachO::ProcessDysymtabCommand(
1928     const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1929   m_dysymtab.cmd = load_cmd.cmd;
1930   m_dysymtab.cmdsize = load_cmd.cmdsize;
1931   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1932                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1933 }
1934 
1935 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1936   if (m_sections_up)
1937     return;
1938 
1939   m_sections_up = std::make_unique<SectionList>();
1940 
1941   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1942   // bool dump_sections = false;
1943   ModuleSP module_sp(GetModule());
1944 
1945   offset = MachHeaderSizeFromMagic(m_header.magic);
1946 
1947   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1948   llvm::MachO::load_command load_cmd;
1949   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1950     const lldb::offset_t load_cmd_offset = offset;
1951     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1952       break;
1953 
1954     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1955       ProcessSegmentCommand(load_cmd, offset, i, context);
1956     else if (load_cmd.cmd == LC_DYSYMTAB)
1957       ProcessDysymtabCommand(load_cmd, offset);
1958 
1959     offset = load_cmd_offset + load_cmd.cmdsize;
1960   }
1961 
1962   if (context.FileAddressesChanged && module_sp)
1963     module_sp->SectionFileAddressesChanged();
1964 }
1965 
1966 class MachSymtabSectionInfo {
1967 public:
1968   MachSymtabSectionInfo(SectionList *section_list)
1969       : m_section_list(section_list), m_section_infos() {
1970     // Get the number of sections down to a depth of 1 to include all segments
1971     // and their sections, but no other sections that may be added for debug
1972     // map or
1973     m_section_infos.resize(section_list->GetNumSections(1));
1974   }
1975 
1976   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1977     if (n_sect == 0)
1978       return SectionSP();
1979     if (n_sect < m_section_infos.size()) {
1980       if (!m_section_infos[n_sect].section_sp) {
1981         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1982         m_section_infos[n_sect].section_sp = section_sp;
1983         if (section_sp) {
1984           m_section_infos[n_sect].vm_range.SetBaseAddress(
1985               section_sp->GetFileAddress());
1986           m_section_infos[n_sect].vm_range.SetByteSize(
1987               section_sp->GetByteSize());
1988         } else {
1989           std::string filename = "<unknown>";
1990           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1991           if (first_section_sp)
1992             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1993 
1994           Debugger::ReportError(
1995               llvm::formatv("unable to find section {0} for a symbol in "
1996                             "{1}, corrupt file?",
1997                             n_sect, filename));
1998         }
1999       }
2000       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
2001         // Symbol is in section.
2002         return m_section_infos[n_sect].section_sp;
2003       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
2004                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
2005                      file_addr) {
2006         // Symbol is in section with zero size, but has the same start address
2007         // as the section. This can happen with linker symbols (symbols that
2008         // start with the letter 'l' or 'L'.
2009         return m_section_infos[n_sect].section_sp;
2010       }
2011     }
2012     return m_section_list->FindSectionContainingFileAddress(file_addr);
2013   }
2014 
2015 protected:
2016   struct SectionInfo {
2017     SectionInfo() : vm_range(), section_sp() {}
2018 
2019     VMRange vm_range;
2020     SectionSP section_sp;
2021   };
2022   SectionList *m_section_list;
2023   std::vector<SectionInfo> m_section_infos;
2024 };
2025 
2026 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
2027 struct TrieEntry {
2028   void Dump() const {
2029     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
2030            static_cast<unsigned long long>(address),
2031            static_cast<unsigned long long>(flags),
2032            static_cast<unsigned long long>(other), name.GetCString());
2033     if (import_name)
2034       printf(" -> \"%s\"\n", import_name.GetCString());
2035     else
2036       printf("\n");
2037   }
2038   ConstString name;
2039   uint64_t address = LLDB_INVALID_ADDRESS;
2040   uint64_t flags =
2041       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
2042          // TRIE_SYMBOL_IS_THUMB
2043   uint64_t other = 0;
2044   ConstString import_name;
2045 };
2046 
2047 struct TrieEntryWithOffset {
2048   lldb::offset_t nodeOffset;
2049   TrieEntry entry;
2050 
2051   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
2052 
2053   void Dump(uint32_t idx) const {
2054     printf("[%3u] 0x%16.16llx: ", idx,
2055            static_cast<unsigned long long>(nodeOffset));
2056     entry.Dump();
2057   }
2058 
2059   bool operator<(const TrieEntryWithOffset &other) const {
2060     return (nodeOffset < other.nodeOffset);
2061   }
2062 };
2063 
2064 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2065                              const bool is_arm, addr_t text_seg_base_addr,
2066                              std::vector<llvm::StringRef> &nameSlices,
2067                              std::set<lldb::addr_t> &resolver_addresses,
2068                              std::vector<TrieEntryWithOffset> &reexports,
2069                              std::vector<TrieEntryWithOffset> &ext_symbols) {
2070   if (!data.ValidOffset(offset))
2071     return true;
2072 
2073   // Terminal node -- end of a branch, possibly add this to
2074   // the symbol table or resolver table.
2075   const uint64_t terminalSize = data.GetULEB128(&offset);
2076   lldb::offset_t children_offset = offset + terminalSize;
2077   if (terminalSize != 0) {
2078     TrieEntryWithOffset e(offset);
2079     e.entry.flags = data.GetULEB128(&offset);
2080     const char *import_name = nullptr;
2081     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2082       e.entry.address = 0;
2083       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2084       import_name = data.GetCStr(&offset);
2085     } else {
2086       e.entry.address = data.GetULEB128(&offset);
2087       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2088         e.entry.address += text_seg_base_addr;
2089       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2090         e.entry.other = data.GetULEB128(&offset);
2091         uint64_t resolver_addr = e.entry.other;
2092         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2093           resolver_addr += text_seg_base_addr;
2094         if (is_arm)
2095           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2096         resolver_addresses.insert(resolver_addr);
2097       } else
2098         e.entry.other = 0;
2099     }
2100     bool add_this_entry = false;
2101     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2102         import_name && import_name[0]) {
2103       // add symbols that are reexport symbols with a valid import name.
2104       add_this_entry = true;
2105     } else if (e.entry.flags == 0 &&
2106                (import_name == nullptr || import_name[0] == '\0')) {
2107       // add externally visible symbols, in case the nlist record has
2108       // been stripped/omitted.
2109       add_this_entry = true;
2110     }
2111     if (add_this_entry) {
2112       std::string name;
2113       if (!nameSlices.empty()) {
2114         for (auto name_slice : nameSlices)
2115           name.append(name_slice.data(), name_slice.size());
2116       }
2117       if (name.size() > 1) {
2118         // Skip the leading '_'
2119         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2120       }
2121       if (import_name) {
2122         // Skip the leading '_'
2123         e.entry.import_name.SetCString(import_name + 1);
2124       }
2125       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2126         reexports.push_back(e);
2127       } else {
2128         if (is_arm && (e.entry.address & 1)) {
2129           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2130           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2131         }
2132         ext_symbols.push_back(e);
2133       }
2134     }
2135   }
2136 
2137   const uint8_t childrenCount = data.GetU8(&children_offset);
2138   for (uint8_t i = 0; i < childrenCount; ++i) {
2139     const char *cstr = data.GetCStr(&children_offset);
2140     if (cstr)
2141       nameSlices.push_back(llvm::StringRef(cstr));
2142     else
2143       return false; // Corrupt data
2144     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2145     if (childNodeOffset) {
2146       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2147                             nameSlices, resolver_addresses, reexports,
2148                             ext_symbols)) {
2149         return false;
2150       }
2151     }
2152     nameSlices.pop_back();
2153   }
2154   return true;
2155 }
2156 
2157 static SymbolType GetSymbolType(const char *&symbol_name,
2158                                 bool &demangled_is_synthesized,
2159                                 const SectionSP &text_section_sp,
2160                                 const SectionSP &data_section_sp,
2161                                 const SectionSP &data_dirty_section_sp,
2162                                 const SectionSP &data_const_section_sp,
2163                                 const SectionSP &symbol_section) {
2164   SymbolType type = eSymbolTypeInvalid;
2165 
2166   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2167   if (symbol_section->IsDescendant(text_section_sp.get())) {
2168     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2169                                 S_ATTR_SELF_MODIFYING_CODE |
2170                                 S_ATTR_SOME_INSTRUCTIONS))
2171       type = eSymbolTypeData;
2172     else
2173       type = eSymbolTypeCode;
2174   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2175              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2176              symbol_section->IsDescendant(data_const_section_sp.get())) {
2177     if (symbol_sect_name &&
2178         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2179       type = eSymbolTypeRuntime;
2180 
2181       if (symbol_name) {
2182         llvm::StringRef symbol_name_ref(symbol_name);
2183         if (symbol_name_ref.starts_with("OBJC_")) {
2184           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2185           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2186               "OBJC_METACLASS_$_");
2187           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2188           if (symbol_name_ref.starts_with(g_objc_v2_prefix_class)) {
2189             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2190             type = eSymbolTypeObjCClass;
2191             demangled_is_synthesized = true;
2192           } else if (symbol_name_ref.starts_with(g_objc_v2_prefix_metaclass)) {
2193             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2194             type = eSymbolTypeObjCMetaClass;
2195             demangled_is_synthesized = true;
2196           } else if (symbol_name_ref.starts_with(g_objc_v2_prefix_ivar)) {
2197             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2198             type = eSymbolTypeObjCIVar;
2199             demangled_is_synthesized = true;
2200           }
2201         }
2202       }
2203     } else if (symbol_sect_name &&
2204                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2205                    symbol_sect_name) {
2206       type = eSymbolTypeException;
2207     } else {
2208       type = eSymbolTypeData;
2209     }
2210   } else if (symbol_sect_name &&
2211              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2212     type = eSymbolTypeTrampoline;
2213   }
2214   return type;
2215 }
2216 
2217 static std::optional<struct nlist_64>
2218 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2219            size_t nlist_byte_size) {
2220   struct nlist_64 nlist;
2221   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2222     return {};
2223   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2224   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2225   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2226   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2227   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2228   return nlist;
2229 }
2230 
2231 enum { DebugSymbols = true, NonDebugSymbols = false };
2232 
2233 void ObjectFileMachO::ParseSymtab(Symtab &symtab) {
2234   ModuleSP module_sp(GetModule());
2235   if (!module_sp)
2236     return;
2237 
2238   Log *log = GetLog(LLDBLog::Symbols);
2239 
2240   const FileSpec &file = m_file ? m_file : module_sp->GetFileSpec();
2241   const char *file_name = file.GetFilename().AsCString("<Unknown>");
2242   LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s", file_name);
2243   LLDB_LOG(log, "Parsing symbol table for {0}", file_name);
2244   Progress progress("Parsing symbol table", file_name);
2245 
2246   llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2247   llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2248   llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2249   llvm::MachO::dysymtab_command dysymtab = m_dysymtab;
2250   SymtabCommandLargeOffsets symtab_load_command;
2251   // The data element of type bool indicates that this entry is thumb
2252   // code.
2253   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2254 
2255   // Record the address of every function/data that we add to the symtab.
2256   // We add symbols to the table in the order of most information (nlist
2257   // records) to least (function starts), and avoid duplicating symbols
2258   // via this set.
2259   llvm::DenseSet<addr_t> symbols_added;
2260 
2261   // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2262   // do not add the tombstone or empty keys to the set.
2263   auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2264     // Don't add the tombstone or empty keys.
2265     if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2266       return;
2267     symbols_added.insert(file_addr);
2268   };
2269   FunctionStarts function_starts;
2270   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2271   uint32_t i;
2272   FileSpecList dylib_files;
2273   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2274   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2275   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2276   UUID image_uuid;
2277 
2278   for (i = 0; i < m_header.ncmds; ++i) {
2279     const lldb::offset_t cmd_offset = offset;
2280     // Read in the load command and load command size
2281     llvm::MachO::load_command lc;
2282     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2283       break;
2284     // Watch for the symbol table load command
2285     switch (lc.cmd) {
2286     case LC_SYMTAB:
2287       // struct symtab_command {
2288       //   uint32_t        cmd;            /* LC_SYMTAB */
2289       //   uint32_t        cmdsize;        /* sizeof(struct symtab_command) */
2290       //   uint32_t        symoff;         /* symbol table offset */
2291       //   uint32_t        nsyms;          /* number of symbol table entries */
2292       //   uint32_t        stroff;         /* string table offset */
2293       //   uint32_t        strsize;        /* string table size in bytes */
2294       // };
2295       symtab_load_command.cmd = lc.cmd;
2296       symtab_load_command.cmdsize = lc.cmdsize;
2297       symtab_load_command.symoff = m_data.GetU32(&offset);
2298       symtab_load_command.nsyms = m_data.GetU32(&offset);
2299       symtab_load_command.stroff = m_data.GetU32(&offset);
2300       symtab_load_command.strsize = m_data.GetU32(&offset);
2301       break;
2302 
2303     case LC_DYLD_INFO:
2304     case LC_DYLD_INFO_ONLY:
2305       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2306         dyld_info.cmd = lc.cmd;
2307         dyld_info.cmdsize = lc.cmdsize;
2308       } else {
2309         memset(&dyld_info, 0, sizeof(dyld_info));
2310       }
2311       break;
2312 
2313     case LC_LOAD_DYLIB:
2314     case LC_LOAD_WEAK_DYLIB:
2315     case LC_REEXPORT_DYLIB:
2316     case LC_LOADFVMLIB:
2317     case LC_LOAD_UPWARD_DYLIB: {
2318       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2319       const char *path = m_data.PeekCStr(name_offset);
2320       if (path) {
2321         FileSpec file_spec(path);
2322         // Strip the path if there is @rpath, @executable, etc so we just use
2323         // the basename
2324         if (path[0] == '@')
2325           file_spec.ClearDirectory();
2326 
2327         if (lc.cmd == LC_REEXPORT_DYLIB) {
2328           m_reexported_dylibs.AppendIfUnique(file_spec);
2329         }
2330 
2331         dylib_files.Append(file_spec);
2332       }
2333     } break;
2334 
2335     case LC_DYLD_EXPORTS_TRIE:
2336       exports_trie_load_command.cmd = lc.cmd;
2337       exports_trie_load_command.cmdsize = lc.cmdsize;
2338       if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2339           nullptr) // fill in offset and size fields
2340         memset(&exports_trie_load_command, 0,
2341                sizeof(exports_trie_load_command));
2342       break;
2343     case LC_FUNCTION_STARTS:
2344       function_starts_load_command.cmd = lc.cmd;
2345       function_starts_load_command.cmdsize = lc.cmdsize;
2346       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2347           nullptr) // fill in data offset and size fields
2348         memset(&function_starts_load_command, 0,
2349                sizeof(function_starts_load_command));
2350       break;
2351 
2352     case LC_UUID: {
2353       const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
2354 
2355       if (uuid_bytes)
2356         image_uuid = UUID(uuid_bytes, 16);
2357       break;
2358     }
2359 
2360     default:
2361       break;
2362     }
2363     offset = cmd_offset + lc.cmdsize;
2364   }
2365 
2366   if (!symtab_load_command.cmd)
2367     return;
2368 
2369   SectionList *section_list = GetSectionList();
2370   if (section_list == nullptr)
2371     return;
2372 
2373   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2374   const ByteOrder byte_order = m_data.GetByteOrder();
2375   bool bit_width_32 = addr_byte_size == 4;
2376   const size_t nlist_byte_size =
2377       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2378 
2379   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2380   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2381   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2382   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2383                                            addr_byte_size);
2384   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2385 
2386   const addr_t nlist_data_byte_size =
2387       symtab_load_command.nsyms * nlist_byte_size;
2388   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2389   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2390 
2391   ProcessSP process_sp(m_process_wp.lock());
2392   Process *process = process_sp.get();
2393 
2394   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2395   bool is_shared_cache_image = IsSharedCacheBinary();
2396   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2397   SectionSP linkedit_section_sp(
2398       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2399 
2400   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2401       !is_local_shared_cache_image) {
2402     Target &target = process->GetTarget();
2403 
2404     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2405 
2406     // Reading mach file from memory in a process or core file...
2407 
2408     if (linkedit_section_sp) {
2409       addr_t linkedit_load_addr =
2410           linkedit_section_sp->GetLoadBaseAddress(&target);
2411       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2412         // We might be trying to access the symbol table before the
2413         // __LINKEDIT's load address has been set in the target. We can't
2414         // fail to read the symbol table, so calculate the right address
2415         // manually
2416         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2417             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2418       }
2419 
2420       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2421       const addr_t symoff_addr = linkedit_load_addr +
2422                                  symtab_load_command.symoff -
2423                                  linkedit_file_offset;
2424       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2425                     linkedit_file_offset;
2426 
2427       // Always load dyld - the dynamic linker - from memory if we didn't
2428       // find a binary anywhere else. lldb will not register
2429       // dylib/framework/bundle loads/unloads if we don't have the dyld
2430       // symbols, we force dyld to load from memory despite the user's
2431       // target.memory-module-load-level setting.
2432       if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2433           m_header.filetype == llvm::MachO::MH_DYLINKER) {
2434         DataBufferSP nlist_data_sp(
2435             ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2436         if (nlist_data_sp)
2437           nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2438         if (dysymtab.nindirectsyms != 0) {
2439           const addr_t indirect_syms_addr = linkedit_load_addr +
2440                                             dysymtab.indirectsymoff -
2441                                             linkedit_file_offset;
2442           DataBufferSP indirect_syms_data_sp(ReadMemory(
2443               process_sp, indirect_syms_addr, dysymtab.nindirectsyms * 4));
2444           if (indirect_syms_data_sp)
2445             indirect_symbol_index_data.SetData(
2446                 indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize());
2447           // If this binary is outside the shared cache,
2448           // cache the string table.
2449           // Binaries in the shared cache all share a giant string table,
2450           // and we can't share the string tables across multiple
2451           // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2452           // for every binary in the shared cache - it would be a big perf
2453           // problem. For binaries outside the shared cache, it's faster to
2454           // read the entire strtab at once instead of piece-by-piece as we
2455           // process the nlist records.
2456           if (!is_shared_cache_image) {
2457             DataBufferSP strtab_data_sp(
2458                 ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2459             if (strtab_data_sp) {
2460               strtab_data.SetData(strtab_data_sp, 0,
2461                                   strtab_data_sp->GetByteSize());
2462             }
2463           }
2464         }
2465         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2466           if (function_starts_load_command.cmd) {
2467             const addr_t func_start_addr =
2468                 linkedit_load_addr + function_starts_load_command.dataoff -
2469                 linkedit_file_offset;
2470             DataBufferSP func_start_data_sp(
2471                 ReadMemory(process_sp, func_start_addr,
2472                            function_starts_load_command.datasize));
2473             if (func_start_data_sp)
2474               function_starts_data.SetData(func_start_data_sp, 0,
2475                                            func_start_data_sp->GetByteSize());
2476           }
2477         }
2478       }
2479     }
2480   } else {
2481     if (is_local_shared_cache_image) {
2482       // The load commands in shared cache images are relative to the
2483       // beginning of the shared cache, not the library image. The
2484       // data we get handed when creating the ObjectFileMachO starts
2485       // at the beginning of a specific library and spans to the end
2486       // of the cache to be able to reach the shared LINKEDIT
2487       // segments. We need to convert the load command offsets to be
2488       // relative to the beginning of our specific image.
2489       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2490       lldb::offset_t linkedit_slide =
2491           linkedit_offset - m_linkedit_original_offset;
2492       symtab_load_command.symoff += linkedit_slide;
2493       symtab_load_command.stroff += linkedit_slide;
2494       dyld_info.export_off += linkedit_slide;
2495       dysymtab.indirectsymoff += linkedit_slide;
2496       function_starts_load_command.dataoff += linkedit_slide;
2497       exports_trie_load_command.dataoff += linkedit_slide;
2498     }
2499 
2500     nlist_data.SetData(m_data, symtab_load_command.symoff,
2501                        nlist_data_byte_size);
2502     strtab_data.SetData(m_data, symtab_load_command.stroff,
2503                         strtab_data_byte_size);
2504 
2505     // We shouldn't have exports data from both the LC_DYLD_INFO command
2506     // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2507     lldbassert(!((dyld_info.export_size > 0)
2508                  && (exports_trie_load_command.datasize > 0)));
2509     if (dyld_info.export_size > 0) {
2510       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2511                              dyld_info.export_size);
2512     } else if (exports_trie_load_command.datasize > 0) {
2513       dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2514                              exports_trie_load_command.datasize);
2515     }
2516 
2517     if (dysymtab.nindirectsyms != 0) {
2518       indirect_symbol_index_data.SetData(m_data, dysymtab.indirectsymoff,
2519                                          dysymtab.nindirectsyms * 4);
2520     }
2521     if (function_starts_load_command.cmd) {
2522       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2523                                    function_starts_load_command.datasize);
2524     }
2525   }
2526 
2527   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2528 
2529   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2530   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2531   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2532   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2533   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2534   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2535   SectionSP text_section_sp(
2536       section_list->FindSectionByName(g_segment_name_TEXT));
2537   SectionSP data_section_sp(
2538       section_list->FindSectionByName(g_segment_name_DATA));
2539   SectionSP data_dirty_section_sp(
2540       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2541   SectionSP data_const_section_sp(
2542       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2543   SectionSP objc_section_sp(
2544       section_list->FindSectionByName(g_segment_name_OBJC));
2545   SectionSP eh_frame_section_sp;
2546   if (text_section_sp.get())
2547     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2548         g_section_name_eh_frame);
2549   else
2550     eh_frame_section_sp =
2551         section_list->FindSectionByName(g_section_name_eh_frame);
2552 
2553   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2554   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2555 
2556   // lldb works best if it knows the start address of all functions in a
2557   // module. Linker symbols or debug info are normally the best source of
2558   // information for start addr / size but they may be stripped in a released
2559   // binary. Two additional sources of information exist in Mach-O binaries:
2560   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2561   //    function's start address in the
2562   //                         binary, relative to the text section.
2563   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2564   //    each function
2565   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2566   //  all modern binaries.
2567   //  Binaries built to run on older releases may need to use eh_frame
2568   //  information.
2569 
2570   if (text_section_sp && function_starts_data.GetByteSize()) {
2571     FunctionStarts::Entry function_start_entry;
2572     function_start_entry.data = false;
2573     lldb::offset_t function_start_offset = 0;
2574     function_start_entry.addr = text_section_sp->GetFileAddress();
2575     uint64_t delta;
2576     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2577            0) {
2578       // Now append the current entry
2579       function_start_entry.addr += delta;
2580       if (is_arm) {
2581         if (function_start_entry.addr & 1) {
2582           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2583           function_start_entry.data = true;
2584         } else if (always_thumb) {
2585           function_start_entry.data = true;
2586         }
2587       }
2588       function_starts.Append(function_start_entry);
2589     }
2590   } else {
2591     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2592     // load command claiming an eh_frame but it doesn't actually have the
2593     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2594     // this fill-in-the-missing-symbols works anyway - the debug info should
2595     // give us all the functions in the module.
2596     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2597         m_type != eTypeDebugInfo) {
2598       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2599                                   DWARFCallFrameInfo::EH);
2600       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2601       eh_frame.GetFunctionAddressAndSizeVector(functions);
2602       addr_t text_base_addr = text_section_sp->GetFileAddress();
2603       size_t count = functions.GetSize();
2604       for (size_t i = 0; i < count; ++i) {
2605         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2606             functions.GetEntryAtIndex(i);
2607         if (func) {
2608           FunctionStarts::Entry function_start_entry;
2609           function_start_entry.addr = func->base - text_base_addr;
2610           if (is_arm) {
2611             if (function_start_entry.addr & 1) {
2612               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2613               function_start_entry.data = true;
2614             } else if (always_thumb) {
2615               function_start_entry.data = true;
2616             }
2617           }
2618           function_starts.Append(function_start_entry);
2619         }
2620       }
2621     }
2622   }
2623 
2624   const size_t function_starts_count = function_starts.GetSize();
2625 
2626   // For user process binaries (executables, dylibs, frameworks, bundles), if
2627   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2628   // going to assume the binary has been stripped.  Don't allow assembly
2629   // language instruction emulation because we don't know proper function
2630   // start boundaries.
2631   //
2632   // For all other types of binaries (kernels, stand-alone bare board
2633   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2634   // sections - we should not make any assumptions about them based on that.
2635   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2636     m_allow_assembly_emulation_unwind_plans = false;
2637     Log *unwind_or_symbol_log(GetLog(LLDBLog::Symbols | LLDBLog::Unwind));
2638 
2639     if (unwind_or_symbol_log)
2640       module_sp->LogMessage(
2641           unwind_or_symbol_log,
2642           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2643   }
2644 
2645   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2646                                              ? eh_frame_section_sp->GetID()
2647                                              : static_cast<user_id_t>(NO_SECT);
2648 
2649   uint32_t N_SO_index = UINT32_MAX;
2650 
2651   MachSymtabSectionInfo section_info(section_list);
2652   std::vector<uint32_t> N_FUN_indexes;
2653   std::vector<uint32_t> N_NSYM_indexes;
2654   std::vector<uint32_t> N_INCL_indexes;
2655   std::vector<uint32_t> N_BRAC_indexes;
2656   std::vector<uint32_t> N_COMM_indexes;
2657   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2658   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2659   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2660   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2661   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2662   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2663   // Any symbols that get merged into another will get an entry in this map
2664   // so we know
2665   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2666   uint32_t nlist_idx = 0;
2667   Symbol *symbol_ptr = nullptr;
2668 
2669   uint32_t sym_idx = 0;
2670   Symbol *sym = nullptr;
2671   size_t num_syms = 0;
2672   std::string memory_symbol_name;
2673   uint32_t unmapped_local_symbols_found = 0;
2674 
2675   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2676   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2677   std::set<lldb::addr_t> resolver_addresses;
2678 
2679   const size_t dyld_trie_data_size = dyld_trie_data.GetByteSize();
2680   if (dyld_trie_data_size > 0) {
2681     LLDB_LOG(log, "Parsing {0} bytes of dyld trie data", dyld_trie_data_size);
2682     SectionSP text_segment_sp =
2683         GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
2684     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2685     if (text_segment_sp)
2686       text_segment_file_addr = text_segment_sp->GetFileAddress();
2687     std::vector<llvm::StringRef> nameSlices;
2688     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2689                      nameSlices, resolver_addresses, reexport_trie_entries,
2690                      external_sym_trie_entries);
2691   }
2692 
2693   typedef std::set<ConstString> IndirectSymbols;
2694   IndirectSymbols indirect_symbol_names;
2695 
2696 #if TARGET_OS_IPHONE
2697 
2698   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2699   // optimized by moving LOCAL symbols out of the memory mapped portion of
2700   // the DSC. The symbol information has all been retained, but it isn't
2701   // available in the normal nlist data. However, there *are* duplicate
2702   // entries of *some*
2703   // LOCAL symbols in the normal nlist data. To handle this situation
2704   // correctly, we must first attempt
2705   // to parse any DSC unmapped symbol information. If we find any, we set a
2706   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2707 
2708   if (IsSharedCacheBinary()) {
2709     // Before we can start mapping the DSC, we need to make certain the
2710     // target process is actually using the cache we can find.
2711 
2712     // Next we need to determine the correct path for the dyld shared cache.
2713 
2714     ArchSpec header_arch = GetArchitecture();
2715 
2716     UUID dsc_uuid;
2717     UUID process_shared_cache_uuid;
2718     addr_t process_shared_cache_base_addr;
2719 
2720     if (process) {
2721       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2722                                 process_shared_cache_uuid);
2723     }
2724 
2725     __block bool found_image = false;
2726     __block void *nlist_buffer = nullptr;
2727     __block unsigned nlist_count = 0;
2728     __block char *string_table = nullptr;
2729     __block vm_offset_t vm_nlist_memory = 0;
2730     __block mach_msg_type_number_t vm_nlist_bytes_read = 0;
2731     __block vm_offset_t vm_string_memory = 0;
2732     __block mach_msg_type_number_t vm_string_bytes_read = 0;
2733 
2734     auto _ = llvm::make_scope_exit(^{
2735       if (vm_nlist_memory)
2736         vm_deallocate(mach_task_self(), vm_nlist_memory, vm_nlist_bytes_read);
2737       if (vm_string_memory)
2738         vm_deallocate(mach_task_self(), vm_string_memory, vm_string_bytes_read);
2739     });
2740 
2741     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2742     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2743     UndefinedNameToDescMap undefined_name_to_desc;
2744     SymbolIndexToName reexport_shlib_needs_fixup;
2745 
2746     dyld_for_each_installed_shared_cache(^(dyld_shared_cache_t shared_cache) {
2747       uuid_t cache_uuid;
2748       dyld_shared_cache_copy_uuid(shared_cache, &cache_uuid);
2749       if (found_image)
2750         return;
2751 
2752         if (process_shared_cache_uuid.IsValid() &&
2753           process_shared_cache_uuid != UUID::fromData(&cache_uuid, 16))
2754         return;
2755 
2756       dyld_shared_cache_for_each_image(shared_cache, ^(dyld_image_t image) {
2757         uuid_t dsc_image_uuid;
2758         if (found_image)
2759           return;
2760 
2761         dyld_image_copy_uuid(image, &dsc_image_uuid);
2762         if (image_uuid != UUID::fromData(dsc_image_uuid, 16))
2763           return;
2764 
2765         found_image = true;
2766 
2767         // Compute the size of the string table. We need to ask dyld for a
2768         // new SPI to avoid this step.
2769         dyld_image_local_nlist_content_4Symbolication(
2770             image, ^(const void *nlistStart, uint64_t nlistCount,
2771                      const char *stringTable) {
2772               if (!nlistStart || !nlistCount)
2773                 return;
2774 
2775               // The buffers passed here are valid only inside the block.
2776               // Use vm_read to make a cheap copy of them available for our
2777               // processing later.
2778               kern_return_t ret =
2779                   vm_read(mach_task_self(), (vm_address_t)nlistStart,
2780                           nlist_byte_size * nlistCount, &vm_nlist_memory,
2781                           &vm_nlist_bytes_read);
2782               if (ret != KERN_SUCCESS)
2783                 return;
2784               assert(vm_nlist_bytes_read == nlist_byte_size * nlistCount);
2785 
2786               // We don't know the size of the string table. It's cheaper
2787               // to map the whole VM region than to determine the size by
2788               // parsing all the nlist entries.
2789               vm_address_t string_address = (vm_address_t)stringTable;
2790               vm_size_t region_size;
2791               mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
2792               vm_region_basic_info_data_t info;
2793               memory_object_name_t object;
2794               ret = vm_region_64(mach_task_self(), &string_address,
2795                                  &region_size, VM_REGION_BASIC_INFO_64,
2796                                  (vm_region_info_t)&info, &info_count, &object);
2797               if (ret != KERN_SUCCESS)
2798                 return;
2799 
2800               ret = vm_read(mach_task_self(), (vm_address_t)stringTable,
2801                             region_size -
2802                                 ((vm_address_t)stringTable - string_address),
2803                             &vm_string_memory, &vm_string_bytes_read);
2804               if (ret != KERN_SUCCESS)
2805                 return;
2806 
2807               nlist_buffer = (void *)vm_nlist_memory;
2808               string_table = (char *)vm_string_memory;
2809               nlist_count = nlistCount;
2810             });
2811       });
2812     });
2813     if (nlist_buffer) {
2814       DataExtractor dsc_local_symbols_data(nlist_buffer,
2815                                            nlist_count * nlist_byte_size,
2816                                            byte_order, addr_byte_size);
2817       unmapped_local_symbols_found = nlist_count;
2818 
2819                 // The normal nlist code cannot correctly size the Symbols
2820                 // array, we need to allocate it here.
2821                 sym = symtab.Resize(
2822                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2823                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2824                 num_syms = symtab.GetNumSymbols();
2825 
2826       lldb::offset_t nlist_data_offset = 0;
2827 
2828                 for (uint32_t nlist_index = 0;
2829                      nlist_index < nlist_count;
2830                      nlist_index++) {
2831                   /////////////////////////////
2832                   {
2833                     std::optional<struct nlist_64> nlist_maybe =
2834                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2835                                    nlist_byte_size);
2836                     if (!nlist_maybe)
2837                       break;
2838                     struct nlist_64 nlist = *nlist_maybe;
2839 
2840                     SymbolType type = eSymbolTypeInvalid;
2841           const char *symbol_name = string_table + nlist.n_strx;
2842 
2843                     if (symbol_name == NULL) {
2844                       // No symbol should be NULL, even the symbols with no
2845                       // string values should have an offset zero which
2846                       // points to an empty C-string
2847                       Debugger::ReportError(llvm::formatv(
2848                           "DSC unmapped local symbol[{0}] has invalid "
2849                           "string table offset {1:x} in {2}, ignoring symbol",
2850                           nlist_index, nlist.n_strx,
2851                           module_sp->GetFileSpec().GetPath());
2852                       continue;
2853                     }
2854                     if (symbol_name[0] == '\0')
2855                       symbol_name = NULL;
2856 
2857                     const char *symbol_name_non_abi_mangled = NULL;
2858 
2859                     SectionSP symbol_section;
2860                     uint32_t symbol_byte_size = 0;
2861                     bool add_nlist = true;
2862                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2863                     bool demangled_is_synthesized = false;
2864                     bool is_gsym = false;
2865                     bool set_value = true;
2866 
2867                     assert(sym_idx < num_syms);
2868 
2869                     sym[sym_idx].SetDebug(is_debug);
2870 
2871                     if (is_debug) {
2872                       switch (nlist.n_type) {
2873                       case N_GSYM:
2874                         // global symbol: name,,NO_SECT,type,0
2875                         // Sometimes the N_GSYM value contains the address.
2876 
2877                         // FIXME: In the .o files, we have a GSYM and a debug
2878                         // symbol for all the ObjC data.  They
2879                         // have the same address, but we want to ensure that
2880                         // we always find only the real symbol, 'cause we
2881                         // don't currently correctly attribute the
2882                         // GSYM one to the ObjCClass/Ivar/MetaClass
2883                         // symbol type.  This is a temporary hack to make
2884                         // sure the ObjectiveC symbols get treated correctly.
2885                         // To do this right, we should coalesce all the GSYM
2886                         // & global symbols that have the same address.
2887 
2888                         is_gsym = true;
2889                         sym[sym_idx].SetExternal(true);
2890 
2891                         if (symbol_name && symbol_name[0] == '_' &&
2892                             symbol_name[1] == 'O') {
2893                           llvm::StringRef symbol_name_ref(symbol_name);
2894                           if (symbol_name_ref.starts_with(
2895                                   g_objc_v2_prefix_class)) {
2896                             symbol_name_non_abi_mangled = symbol_name + 1;
2897                             symbol_name =
2898                                 symbol_name + g_objc_v2_prefix_class.size();
2899                             type = eSymbolTypeObjCClass;
2900                             demangled_is_synthesized = true;
2901 
2902                           } else if (symbol_name_ref.starts_with(
2903                                          g_objc_v2_prefix_metaclass)) {
2904                             symbol_name_non_abi_mangled = symbol_name + 1;
2905                             symbol_name =
2906                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2907                             type = eSymbolTypeObjCMetaClass;
2908                             demangled_is_synthesized = true;
2909                           } else if (symbol_name_ref.starts_with(
2910                                          g_objc_v2_prefix_ivar)) {
2911                             symbol_name_non_abi_mangled = symbol_name + 1;
2912                             symbol_name =
2913                                 symbol_name + g_objc_v2_prefix_ivar.size();
2914                             type = eSymbolTypeObjCIVar;
2915                             demangled_is_synthesized = true;
2916                           }
2917                         } else {
2918                           if (nlist.n_value != 0)
2919                             symbol_section = section_info.GetSection(
2920                                 nlist.n_sect, nlist.n_value);
2921                           type = eSymbolTypeData;
2922                         }
2923                         break;
2924 
2925                       case N_FNAME:
2926                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2927                         type = eSymbolTypeCompiler;
2928                         break;
2929 
2930                       case N_FUN:
2931                         // procedure: name,,n_sect,linenumber,address
2932                         if (symbol_name) {
2933                           type = eSymbolTypeCode;
2934                           symbol_section = section_info.GetSection(
2935                               nlist.n_sect, nlist.n_value);
2936 
2937                           N_FUN_addr_to_sym_idx.insert(
2938                               std::make_pair(nlist.n_value, sym_idx));
2939                           // We use the current number of symbols in the
2940                           // symbol table in lieu of using nlist_idx in case
2941                           // we ever start trimming entries out
2942                           N_FUN_indexes.push_back(sym_idx);
2943                         } else {
2944                           type = eSymbolTypeCompiler;
2945 
2946                           if (!N_FUN_indexes.empty()) {
2947                             // Copy the size of the function into the
2948                             // original
2949                             // STAB entry so we don't have
2950                             // to hunt for it later
2951                             symtab.SymbolAtIndex(N_FUN_indexes.back())
2952                                 ->SetByteSize(nlist.n_value);
2953                             N_FUN_indexes.pop_back();
2954                             // We don't really need the end function STAB as
2955                             // it contains the size which we already placed
2956                             // with the original symbol, so don't add it if
2957                             // we want a minimal symbol table
2958                             add_nlist = false;
2959                           }
2960                         }
2961                         break;
2962 
2963                       case N_STSYM:
2964                         // static symbol: name,,n_sect,type,address
2965                         N_STSYM_addr_to_sym_idx.insert(
2966                             std::make_pair(nlist.n_value, sym_idx));
2967                         symbol_section = section_info.GetSection(nlist.n_sect,
2968                                                                  nlist.n_value);
2969                         if (symbol_name && symbol_name[0]) {
2970                           type = ObjectFile::GetSymbolTypeFromName(
2971                               symbol_name + 1, eSymbolTypeData);
2972                         }
2973                         break;
2974 
2975                       case N_LCSYM:
2976                         // .lcomm symbol: name,,n_sect,type,address
2977                         symbol_section = section_info.GetSection(nlist.n_sect,
2978                                                                  nlist.n_value);
2979                         type = eSymbolTypeCommonBlock;
2980                         break;
2981 
2982                       case N_BNSYM:
2983                         // We use the current number of symbols in the symbol
2984                         // table in lieu of using nlist_idx in case we ever
2985                         // start trimming entries out Skip these if we want
2986                         // minimal symbol tables
2987                         add_nlist = false;
2988                         break;
2989 
2990                       case N_ENSYM:
2991                         // Set the size of the N_BNSYM to the terminating
2992                         // index of this N_ENSYM so that we can always skip
2993                         // the entire symbol if we need to navigate more
2994                         // quickly at the source level when parsing STABS
2995                         // Skip these if we want minimal symbol tables
2996                         add_nlist = false;
2997                         break;
2998 
2999                       case N_OPT:
3000                         // emitted with gcc2_compiled and in gcc source
3001                         type = eSymbolTypeCompiler;
3002                         break;
3003 
3004                       case N_RSYM:
3005                         // register sym: name,,NO_SECT,type,register
3006                         type = eSymbolTypeVariable;
3007                         break;
3008 
3009                       case N_SLINE:
3010                         // src line: 0,,n_sect,linenumber,address
3011                         symbol_section = section_info.GetSection(nlist.n_sect,
3012                                                                  nlist.n_value);
3013                         type = eSymbolTypeLineEntry;
3014                         break;
3015 
3016                       case N_SSYM:
3017                         // structure elt: name,,NO_SECT,type,struct_offset
3018                         type = eSymbolTypeVariableType;
3019                         break;
3020 
3021                       case N_SO:
3022                         // source file name
3023                         type = eSymbolTypeSourceFile;
3024                         if (symbol_name == NULL) {
3025                           add_nlist = false;
3026                           if (N_SO_index != UINT32_MAX) {
3027                             // Set the size of the N_SO to the terminating
3028                             // index of this N_SO so that we can always skip
3029                             // the entire N_SO if we need to navigate more
3030                             // quickly at the source level when parsing STABS
3031                             symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3032                             symbol_ptr->SetByteSize(sym_idx);
3033                             symbol_ptr->SetSizeIsSibling(true);
3034                           }
3035                           N_NSYM_indexes.clear();
3036                           N_INCL_indexes.clear();
3037                           N_BRAC_indexes.clear();
3038                           N_COMM_indexes.clear();
3039                           N_FUN_indexes.clear();
3040                           N_SO_index = UINT32_MAX;
3041                         } else {
3042                           // We use the current number of symbols in the
3043                           // symbol table in lieu of using nlist_idx in case
3044                           // we ever start trimming entries out
3045                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3046                           if (N_SO_has_full_path) {
3047                             if ((N_SO_index == sym_idx - 1) &&
3048                                 ((sym_idx - 1) < num_syms)) {
3049                               // We have two consecutive N_SO entries where
3050                               // the first contains a directory and the
3051                               // second contains a full path.
3052                               sym[sym_idx - 1].GetMangled().SetValue(
3053                                   ConstString(symbol_name));
3054                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3055                               add_nlist = false;
3056                             } else {
3057                               // This is the first entry in a N_SO that
3058                               // contains a directory or
3059                               // a full path to the source file
3060                               N_SO_index = sym_idx;
3061                             }
3062                           } else if ((N_SO_index == sym_idx - 1) &&
3063                                      ((sym_idx - 1) < num_syms)) {
3064                             // This is usually the second N_SO entry that
3065                             // contains just the filename, so here we combine
3066                             // it with the first one if we are minimizing the
3067                             // symbol table
3068                             const char *so_path = sym[sym_idx - 1]
3069                                                       .GetMangled()
3070                                                       .GetDemangledName()
3071                                                       .AsCString();
3072                             if (so_path && so_path[0]) {
3073                               std::string full_so_path(so_path);
3074                               const size_t double_slash_pos =
3075                                   full_so_path.find("//");
3076                               if (double_slash_pos != std::string::npos) {
3077                                 // The linker has been generating bad N_SO
3078                                 // entries with doubled up paths
3079                                 // in the format "%s%s" where the first
3080                                 // string in the DW_AT_comp_dir, and the
3081                                 // second is the directory for the source
3082                                 // file so you end up with a path that looks
3083                                 // like "/tmp/src//tmp/src/"
3084                                 FileSpec so_dir(so_path);
3085                                 if (!FileSystem::Instance().Exists(so_dir)) {
3086                                   so_dir.SetFile(
3087                                       &full_so_path[double_slash_pos + 1],
3088                                       FileSpec::Style::native);
3089                                   if (FileSystem::Instance().Exists(so_dir)) {
3090                                     // Trim off the incorrect path
3091                                     full_so_path.erase(0, double_slash_pos + 1);
3092                                   }
3093                                 }
3094                               }
3095                               if (*full_so_path.rbegin() != '/')
3096                                 full_so_path += '/';
3097                               full_so_path += symbol_name;
3098                               sym[sym_idx - 1].GetMangled().SetValue(
3099                                   ConstString(full_so_path.c_str()));
3100                               add_nlist = false;
3101                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3102                             }
3103                           } else {
3104                             // This could be a relative path to a N_SO
3105                             N_SO_index = sym_idx;
3106                           }
3107                         }
3108                         break;
3109 
3110                       case N_OSO:
3111                         // object file name: name,,0,0,st_mtime
3112                         type = eSymbolTypeObjectFile;
3113                         break;
3114 
3115                       case N_LSYM:
3116                         // local sym: name,,NO_SECT,type,offset
3117                         type = eSymbolTypeLocal;
3118                         break;
3119 
3120                       // INCL scopes
3121                       case N_BINCL:
3122                         // include file beginning: name,,NO_SECT,0,sum We use
3123                         // the current number of symbols in the symbol table
3124                         // in lieu of using nlist_idx in case we ever start
3125                         // trimming entries out
3126                         N_INCL_indexes.push_back(sym_idx);
3127                         type = eSymbolTypeScopeBegin;
3128                         break;
3129 
3130                       case N_EINCL:
3131                         // include file end: name,,NO_SECT,0,0
3132                         // Set the size of the N_BINCL to the terminating
3133                         // index of this N_EINCL so that we can always skip
3134                         // the entire symbol if we need to navigate more
3135                         // quickly at the source level when parsing STABS
3136                         if (!N_INCL_indexes.empty()) {
3137                           symbol_ptr =
3138                               symtab.SymbolAtIndex(N_INCL_indexes.back());
3139                           symbol_ptr->SetByteSize(sym_idx + 1);
3140                           symbol_ptr->SetSizeIsSibling(true);
3141                           N_INCL_indexes.pop_back();
3142                         }
3143                         type = eSymbolTypeScopeEnd;
3144                         break;
3145 
3146                       case N_SOL:
3147                         // #included file name: name,,n_sect,0,address
3148                         type = eSymbolTypeHeaderFile;
3149 
3150                         // We currently don't use the header files on darwin
3151                         add_nlist = false;
3152                         break;
3153 
3154                       case N_PARAMS:
3155                         // compiler parameters: name,,NO_SECT,0,0
3156                         type = eSymbolTypeCompiler;
3157                         break;
3158 
3159                       case N_VERSION:
3160                         // compiler version: name,,NO_SECT,0,0
3161                         type = eSymbolTypeCompiler;
3162                         break;
3163 
3164                       case N_OLEVEL:
3165                         // compiler -O level: name,,NO_SECT,0,0
3166                         type = eSymbolTypeCompiler;
3167                         break;
3168 
3169                       case N_PSYM:
3170                         // parameter: name,,NO_SECT,type,offset
3171                         type = eSymbolTypeVariable;
3172                         break;
3173 
3174                       case N_ENTRY:
3175                         // alternate entry: name,,n_sect,linenumber,address
3176                         symbol_section = section_info.GetSection(nlist.n_sect,
3177                                                                  nlist.n_value);
3178                         type = eSymbolTypeLineEntry;
3179                         break;
3180 
3181                       // Left and Right Braces
3182                       case N_LBRAC:
3183                         // left bracket: 0,,NO_SECT,nesting level,address We
3184                         // use the current number of symbols in the symbol
3185                         // table in lieu of using nlist_idx in case we ever
3186                         // start trimming entries out
3187                         symbol_section = section_info.GetSection(nlist.n_sect,
3188                                                                  nlist.n_value);
3189                         N_BRAC_indexes.push_back(sym_idx);
3190                         type = eSymbolTypeScopeBegin;
3191                         break;
3192 
3193                       case N_RBRAC:
3194                         // right bracket: 0,,NO_SECT,nesting level,address
3195                         // Set the size of the N_LBRAC to the terminating
3196                         // index of this N_RBRAC so that we can always skip
3197                         // the entire symbol if we need to navigate more
3198                         // quickly at the source level when parsing STABS
3199                         symbol_section = section_info.GetSection(nlist.n_sect,
3200                                                                  nlist.n_value);
3201                         if (!N_BRAC_indexes.empty()) {
3202                           symbol_ptr =
3203                               symtab.SymbolAtIndex(N_BRAC_indexes.back());
3204                           symbol_ptr->SetByteSize(sym_idx + 1);
3205                           symbol_ptr->SetSizeIsSibling(true);
3206                           N_BRAC_indexes.pop_back();
3207                         }
3208                         type = eSymbolTypeScopeEnd;
3209                         break;
3210 
3211                       case N_EXCL:
3212                         // deleted include file: name,,NO_SECT,0,sum
3213                         type = eSymbolTypeHeaderFile;
3214                         break;
3215 
3216                       // COMM scopes
3217                       case N_BCOMM:
3218                         // begin common: name,,NO_SECT,0,0
3219                         // We use the current number of symbols in the symbol
3220                         // table in lieu of using nlist_idx in case we ever
3221                         // start trimming entries out
3222                         type = eSymbolTypeScopeBegin;
3223                         N_COMM_indexes.push_back(sym_idx);
3224                         break;
3225 
3226                       case N_ECOML:
3227                         // end common (local name): 0,,n_sect,0,address
3228                         symbol_section = section_info.GetSection(nlist.n_sect,
3229                                                                  nlist.n_value);
3230                         // Fall through
3231 
3232                       case N_ECOMM:
3233                         // end common: name,,n_sect,0,0
3234                         // Set the size of the N_BCOMM to the terminating
3235                         // index of this N_ECOMM/N_ECOML so that we can
3236                         // always skip the entire symbol if we need to
3237                         // navigate more quickly at the source level when
3238                         // parsing STABS
3239                         if (!N_COMM_indexes.empty()) {
3240                           symbol_ptr =
3241                               symtab.SymbolAtIndex(N_COMM_indexes.back());
3242                           symbol_ptr->SetByteSize(sym_idx + 1);
3243                           symbol_ptr->SetSizeIsSibling(true);
3244                           N_COMM_indexes.pop_back();
3245                         }
3246                         type = eSymbolTypeScopeEnd;
3247                         break;
3248 
3249                       case N_LENG:
3250                         // second stab entry with length information
3251                         type = eSymbolTypeAdditional;
3252                         break;
3253 
3254                       default:
3255                         break;
3256                       }
3257                     } else {
3258                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3259                       uint8_t n_type = N_TYPE & nlist.n_type;
3260                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3261 
3262                       switch (n_type) {
3263                       case N_INDR: {
3264                         const char *reexport_name_cstr =
3265                             strtab_data.PeekCStr(nlist.n_value);
3266                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3267                           type = eSymbolTypeReExported;
3268                           ConstString reexport_name(
3269                               reexport_name_cstr +
3270                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3271                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3272                           set_value = false;
3273                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3274                           indirect_symbol_names.insert(ConstString(
3275                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3276                         } else
3277                           type = eSymbolTypeUndefined;
3278                       } break;
3279 
3280                       case N_UNDF:
3281                         if (symbol_name && symbol_name[0]) {
3282                           ConstString undefined_name(
3283                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3284                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3285                         }
3286                       // Fall through
3287                       case N_PBUD:
3288                         type = eSymbolTypeUndefined;
3289                         break;
3290 
3291                       case N_ABS:
3292                         type = eSymbolTypeAbsolute;
3293                         break;
3294 
3295                       case N_SECT: {
3296                         symbol_section = section_info.GetSection(nlist.n_sect,
3297                                                                  nlist.n_value);
3298 
3299                         if (symbol_section == NULL) {
3300                           // TODO: warn about this?
3301                           add_nlist = false;
3302                           break;
3303                         }
3304 
3305                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3306                           type = eSymbolTypeException;
3307                         } else {
3308                           uint32_t section_type =
3309                               symbol_section->Get() & SECTION_TYPE;
3310 
3311                           switch (section_type) {
3312                           case S_CSTRING_LITERALS:
3313                             type = eSymbolTypeData;
3314                             break; // section with only literal C strings
3315                           case S_4BYTE_LITERALS:
3316                             type = eSymbolTypeData;
3317                             break; // section with only 4 byte literals
3318                           case S_8BYTE_LITERALS:
3319                             type = eSymbolTypeData;
3320                             break; // section with only 8 byte literals
3321                           case S_LITERAL_POINTERS:
3322                             type = eSymbolTypeTrampoline;
3323                             break; // section with only pointers to literals
3324                           case S_NON_LAZY_SYMBOL_POINTERS:
3325                             type = eSymbolTypeTrampoline;
3326                             break; // section with only non-lazy symbol
3327                                    // pointers
3328                           case S_LAZY_SYMBOL_POINTERS:
3329                             type = eSymbolTypeTrampoline;
3330                             break; // section with only lazy symbol pointers
3331                           case S_SYMBOL_STUBS:
3332                             type = eSymbolTypeTrampoline;
3333                             break; // section with only symbol stubs, byte
3334                                    // size of stub in the reserved2 field
3335                           case S_MOD_INIT_FUNC_POINTERS:
3336                             type = eSymbolTypeCode;
3337                             break; // section with only function pointers for
3338                                    // initialization
3339                           case S_MOD_TERM_FUNC_POINTERS:
3340                             type = eSymbolTypeCode;
3341                             break; // section with only function pointers for
3342                                    // termination
3343                           case S_INTERPOSING:
3344                             type = eSymbolTypeTrampoline;
3345                             break; // section with only pairs of function
3346                                    // pointers for interposing
3347                           case S_16BYTE_LITERALS:
3348                             type = eSymbolTypeData;
3349                             break; // section with only 16 byte literals
3350                           case S_DTRACE_DOF:
3351                             type = eSymbolTypeInstrumentation;
3352                             break;
3353                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3354                             type = eSymbolTypeTrampoline;
3355                             break;
3356                           default:
3357                             switch (symbol_section->GetType()) {
3358                             case lldb::eSectionTypeCode:
3359                               type = eSymbolTypeCode;
3360                               break;
3361                             case eSectionTypeData:
3362                             case eSectionTypeDataCString: // Inlined C string
3363                                                           // data
3364                             case eSectionTypeDataCStringPointers: // Pointers
3365                                                                   // to C
3366                                                                   // string
3367                                                                   // data
3368                             case eSectionTypeDataSymbolAddress:   // Address of
3369                                                                   // a symbol in
3370                                                                   // the symbol
3371                                                                   // table
3372                             case eSectionTypeData4:
3373                             case eSectionTypeData8:
3374                             case eSectionTypeData16:
3375                               type = eSymbolTypeData;
3376                               break;
3377                             default:
3378                               break;
3379                             }
3380                             break;
3381                           }
3382 
3383                           if (type == eSymbolTypeInvalid) {
3384                             const char *symbol_sect_name =
3385                                 symbol_section->GetName().AsCString();
3386                             if (symbol_section->IsDescendant(
3387                                     text_section_sp.get())) {
3388                               if (symbol_section->IsClear(
3389                                       S_ATTR_PURE_INSTRUCTIONS |
3390                                       S_ATTR_SELF_MODIFYING_CODE |
3391                                       S_ATTR_SOME_INSTRUCTIONS))
3392                                 type = eSymbolTypeData;
3393                               else
3394                                 type = eSymbolTypeCode;
3395                             } else if (symbol_section->IsDescendant(
3396                                            data_section_sp.get()) ||
3397                                        symbol_section->IsDescendant(
3398                                            data_dirty_section_sp.get()) ||
3399                                        symbol_section->IsDescendant(
3400                                            data_const_section_sp.get())) {
3401                               if (symbol_sect_name &&
3402                                   ::strstr(symbol_sect_name, "__objc") ==
3403                                       symbol_sect_name) {
3404                                 type = eSymbolTypeRuntime;
3405 
3406                                 if (symbol_name) {
3407                                   llvm::StringRef symbol_name_ref(symbol_name);
3408                                   if (symbol_name_ref.starts_with("_OBJC_")) {
3409                                     llvm::StringRef
3410                                         g_objc_v2_prefix_class(
3411                                             "_OBJC_CLASS_$_");
3412                                     llvm::StringRef
3413                                         g_objc_v2_prefix_metaclass(
3414                                             "_OBJC_METACLASS_$_");
3415                                     llvm::StringRef
3416                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3417                                     if (symbol_name_ref.starts_with(
3418                                             g_objc_v2_prefix_class)) {
3419                                       symbol_name_non_abi_mangled =
3420                                           symbol_name + 1;
3421                                       symbol_name =
3422                                           symbol_name +
3423                                           g_objc_v2_prefix_class.size();
3424                                       type = eSymbolTypeObjCClass;
3425                                       demangled_is_synthesized = true;
3426                                     } else if (
3427                                         symbol_name_ref.starts_with(
3428                                             g_objc_v2_prefix_metaclass)) {
3429                                       symbol_name_non_abi_mangled =
3430                                           symbol_name + 1;
3431                                       symbol_name =
3432                                           symbol_name +
3433                                           g_objc_v2_prefix_metaclass.size();
3434                                       type = eSymbolTypeObjCMetaClass;
3435                                       demangled_is_synthesized = true;
3436                                     } else if (symbol_name_ref.starts_with(
3437                                                    g_objc_v2_prefix_ivar)) {
3438                                       symbol_name_non_abi_mangled =
3439                                           symbol_name + 1;
3440                                       symbol_name =
3441                                           symbol_name +
3442                                           g_objc_v2_prefix_ivar.size();
3443                                       type = eSymbolTypeObjCIVar;
3444                                       demangled_is_synthesized = true;
3445                                     }
3446                                   }
3447                                 }
3448                               } else if (symbol_sect_name &&
3449                                          ::strstr(symbol_sect_name,
3450                                                   "__gcc_except_tab") ==
3451                                              symbol_sect_name) {
3452                                 type = eSymbolTypeException;
3453                               } else {
3454                                 type = eSymbolTypeData;
3455                               }
3456                             } else if (symbol_sect_name &&
3457                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3458                                            symbol_sect_name) {
3459                               type = eSymbolTypeTrampoline;
3460                             } else if (symbol_section->IsDescendant(
3461                                            objc_section_sp.get())) {
3462                               type = eSymbolTypeRuntime;
3463                               if (symbol_name && symbol_name[0] == '.') {
3464                                 llvm::StringRef symbol_name_ref(symbol_name);
3465                                 llvm::StringRef
3466                                     g_objc_v1_prefix_class(".objc_class_name_");
3467                                 if (symbol_name_ref.starts_with(
3468                                         g_objc_v1_prefix_class)) {
3469                                   symbol_name_non_abi_mangled = symbol_name;
3470                                   symbol_name = symbol_name +
3471                                                 g_objc_v1_prefix_class.size();
3472                                   type = eSymbolTypeObjCClass;
3473                                   demangled_is_synthesized = true;
3474                                 }
3475                               }
3476                             }
3477                           }
3478                         }
3479                       } break;
3480                       }
3481                     }
3482 
3483                     if (add_nlist) {
3484                       uint64_t symbol_value = nlist.n_value;
3485                       if (symbol_name_non_abi_mangled) {
3486                         sym[sym_idx].GetMangled().SetMangledName(
3487                             ConstString(symbol_name_non_abi_mangled));
3488                         sym[sym_idx].GetMangled().SetDemangledName(
3489                             ConstString(symbol_name));
3490                       } else {
3491                         if (symbol_name && symbol_name[0] == '_') {
3492                           symbol_name++; // Skip the leading underscore
3493                         }
3494 
3495                         if (symbol_name) {
3496                           ConstString const_symbol_name(symbol_name);
3497                           sym[sym_idx].GetMangled().SetValue(const_symbol_name);
3498                           if (is_gsym && is_debug) {
3499                             const char *gsym_name =
3500                                 sym[sym_idx]
3501                                     .GetMangled()
3502                                     .GetName(Mangled::ePreferMangled)
3503                                     .GetCString();
3504                             if (gsym_name)
3505                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3506                           }
3507                         }
3508                       }
3509                       if (symbol_section) {
3510                         const addr_t section_file_addr =
3511                             symbol_section->GetFileAddress();
3512                         if (symbol_byte_size == 0 &&
3513                             function_starts_count > 0) {
3514                           addr_t symbol_lookup_file_addr = nlist.n_value;
3515                           // Do an exact address match for non-ARM addresses,
3516                           // else get the closest since the symbol might be a
3517                           // thumb symbol which has an address with bit zero
3518                           // set
3519                           FunctionStarts::Entry *func_start_entry =
3520                               function_starts.FindEntry(symbol_lookup_file_addr,
3521                                                         !is_arm);
3522                           if (is_arm && func_start_entry) {
3523                             // Verify that the function start address is the
3524                             // symbol address (ARM) or the symbol address + 1
3525                             // (thumb)
3526                             if (func_start_entry->addr !=
3527                                     symbol_lookup_file_addr &&
3528                                 func_start_entry->addr !=
3529                                     (symbol_lookup_file_addr + 1)) {
3530                               // Not the right entry, NULL it out...
3531                               func_start_entry = NULL;
3532                             }
3533                           }
3534                           if (func_start_entry) {
3535                             func_start_entry->data = true;
3536 
3537                             addr_t symbol_file_addr = func_start_entry->addr;
3538                             uint32_t symbol_flags = 0;
3539                             if (is_arm) {
3540                               if (symbol_file_addr & 1)
3541                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3542                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3543                             }
3544 
3545                             const FunctionStarts::Entry *next_func_start_entry =
3546                                 function_starts.FindNextEntry(func_start_entry);
3547                             const addr_t section_end_file_addr =
3548                                 section_file_addr +
3549                                 symbol_section->GetByteSize();
3550                             if (next_func_start_entry) {
3551                               addr_t next_symbol_file_addr =
3552                                   next_func_start_entry->addr;
3553                               // Be sure the clear the Thumb address bit when
3554                               // we calculate the size from the current and
3555                               // next address
3556                               if (is_arm)
3557                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3558                               symbol_byte_size = std::min<lldb::addr_t>(
3559                                   next_symbol_file_addr - symbol_file_addr,
3560                                   section_end_file_addr - symbol_file_addr);
3561                             } else {
3562                               symbol_byte_size =
3563                                   section_end_file_addr - symbol_file_addr;
3564                             }
3565                           }
3566                         }
3567                         symbol_value -= section_file_addr;
3568                       }
3569 
3570                       if (is_debug == false) {
3571                         if (type == eSymbolTypeCode) {
3572                           // See if we can find a N_FUN entry for any code
3573                           // symbols. If we do find a match, and the name
3574                           // matches, then we can merge the two into just the
3575                           // function symbol to avoid duplicate entries in
3576                           // the symbol table
3577                           auto range =
3578                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3579                           if (range.first != range.second) {
3580                             bool found_it = false;
3581                             for (auto pos = range.first; pos != range.second;
3582                                  ++pos) {
3583                               if (sym[sym_idx].GetMangled().GetName(
3584                                       Mangled::ePreferMangled) ==
3585                                   sym[pos->second].GetMangled().GetName(
3586                                       Mangled::ePreferMangled)) {
3587                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3588                                 // We just need the flags from the linker
3589                                 // symbol, so put these flags
3590                                 // into the N_FUN flags to avoid duplicate
3591                                 // symbols in the symbol table
3592                                 sym[pos->second].SetExternal(
3593                                     sym[sym_idx].IsExternal());
3594                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3595                                                           nlist.n_desc);
3596                                 if (resolver_addresses.find(nlist.n_value) !=
3597                                     resolver_addresses.end())
3598                                   sym[pos->second].SetType(eSymbolTypeResolver);
3599                                 sym[sym_idx].Clear();
3600                                 found_it = true;
3601                                 break;
3602                               }
3603                             }
3604                             if (found_it)
3605                               continue;
3606                           } else {
3607                             if (resolver_addresses.find(nlist.n_value) !=
3608                                 resolver_addresses.end())
3609                               type = eSymbolTypeResolver;
3610                           }
3611                         } else if (type == eSymbolTypeData ||
3612                                    type == eSymbolTypeObjCClass ||
3613                                    type == eSymbolTypeObjCMetaClass ||
3614                                    type == eSymbolTypeObjCIVar) {
3615                           // See if we can find a N_STSYM entry for any data
3616                           // symbols. If we do find a match, and the name
3617                           // matches, then we can merge the two into just the
3618                           // Static symbol to avoid duplicate entries in the
3619                           // symbol table
3620                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3621                               nlist.n_value);
3622                           if (range.first != range.second) {
3623                             bool found_it = false;
3624                             for (auto pos = range.first; pos != range.second;
3625                                  ++pos) {
3626                               if (sym[sym_idx].GetMangled().GetName(
3627                                       Mangled::ePreferMangled) ==
3628                                   sym[pos->second].GetMangled().GetName(
3629                                       Mangled::ePreferMangled)) {
3630                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3631                                 // We just need the flags from the linker
3632                                 // symbol, so put these flags
3633                                 // into the N_STSYM flags to avoid duplicate
3634                                 // symbols in the symbol table
3635                                 sym[pos->second].SetExternal(
3636                                     sym[sym_idx].IsExternal());
3637                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3638                                                           nlist.n_desc);
3639                                 sym[sym_idx].Clear();
3640                                 found_it = true;
3641                                 break;
3642                               }
3643                             }
3644                             if (found_it)
3645                               continue;
3646                           } else {
3647                             const char *gsym_name =
3648                                 sym[sym_idx]
3649                                     .GetMangled()
3650                                     .GetName(Mangled::ePreferMangled)
3651                                     .GetCString();
3652                             if (gsym_name) {
3653                               // Combine N_GSYM stab entries with the non
3654                               // stab symbol
3655                               ConstNameToSymbolIndexMap::const_iterator pos =
3656                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3657                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3658                                 const uint32_t GSYM_sym_idx = pos->second;
3659                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3660                                     GSYM_sym_idx;
3661                                 // Copy the address, because often the N_GSYM
3662                                 // address has an invalid address of zero
3663                                 // when the global is a common symbol
3664                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3665                                     symbol_section);
3666                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3667                                     symbol_value);
3668                                 add_symbol_addr(sym[GSYM_sym_idx]
3669                                                     .GetAddress()
3670                                                     .GetFileAddress());
3671                                 // We just need the flags from the linker
3672                                 // symbol, so put these flags
3673                                 // into the N_GSYM flags to avoid duplicate
3674                                 // symbols in the symbol table
3675                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3676                                                            nlist.n_desc);
3677                                 sym[sym_idx].Clear();
3678                                 continue;
3679                               }
3680                             }
3681                           }
3682                         }
3683                       }
3684 
3685                       sym[sym_idx].SetID(nlist_idx);
3686                       sym[sym_idx].SetType(type);
3687                       if (set_value) {
3688                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3689                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3690                         add_symbol_addr(
3691                             sym[sym_idx].GetAddress().GetFileAddress());
3692                       }
3693                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3694 
3695                       if (symbol_byte_size > 0)
3696                         sym[sym_idx].SetByteSize(symbol_byte_size);
3697 
3698                       if (demangled_is_synthesized)
3699                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3700                       ++sym_idx;
3701                     } else {
3702                       sym[sym_idx].Clear();
3703                     }
3704                   }
3705                   /////////////////////////////
3706                 }
3707             }
3708 
3709             for (const auto &pos : reexport_shlib_needs_fixup) {
3710               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3711               if (undef_pos != undefined_name_to_desc.end()) {
3712                 const uint8_t dylib_ordinal =
3713                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3714                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3715                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3716                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3717               }
3718             }
3719           }
3720 
3721 #endif
3722   lldb::offset_t nlist_data_offset = 0;
3723 
3724   if (nlist_data.GetByteSize() > 0) {
3725 
3726     // If the sym array was not created while parsing the DSC unmapped
3727     // symbols, create it now.
3728     if (sym == nullptr) {
3729       sym =
3730           symtab.Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3731       num_syms = symtab.GetNumSymbols();
3732     }
3733 
3734     if (unmapped_local_symbols_found) {
3735       assert(m_dysymtab.ilocalsym == 0);
3736       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3737       nlist_idx = m_dysymtab.nlocalsym;
3738     } else {
3739       nlist_idx = 0;
3740     }
3741 
3742     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3743     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3744     UndefinedNameToDescMap undefined_name_to_desc;
3745     SymbolIndexToName reexport_shlib_needs_fixup;
3746 
3747     // Symtab parsing is a huge mess. Everything is entangled and the code
3748     // requires access to a ridiculous amount of variables. LLDB depends
3749     // heavily on the proper merging of symbols and to get that right we need
3750     // to make sure we have parsed all the debug symbols first. Therefore we
3751     // invoke the lambda twice, once to parse only the debug symbols and then
3752     // once more to parse the remaining symbols.
3753     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3754                                  bool debug_only) {
3755       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3756       if (is_debug != debug_only)
3757         return true;
3758 
3759       const char *symbol_name_non_abi_mangled = nullptr;
3760       const char *symbol_name = nullptr;
3761 
3762       if (have_strtab_data) {
3763         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3764 
3765         if (symbol_name == nullptr) {
3766           // No symbol should be NULL, even the symbols with no string values
3767           // should have an offset zero which points to an empty C-string
3768           Debugger::ReportError(llvm::formatv(
3769               "symbol[{0}] has invalid string table offset {1:x} in {2}, "
3770               "ignoring symbol",
3771               nlist_idx, nlist.n_strx, module_sp->GetFileSpec().GetPath()));
3772           return true;
3773         }
3774         if (symbol_name[0] == '\0')
3775           symbol_name = nullptr;
3776       } else {
3777         const addr_t str_addr = strtab_addr + nlist.n_strx;
3778         Status str_error;
3779         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3780                                            str_error))
3781           symbol_name = memory_symbol_name.c_str();
3782       }
3783 
3784       SymbolType type = eSymbolTypeInvalid;
3785       SectionSP symbol_section;
3786       lldb::addr_t symbol_byte_size = 0;
3787       bool add_nlist = true;
3788       bool is_gsym = false;
3789       bool demangled_is_synthesized = false;
3790       bool set_value = true;
3791 
3792       assert(sym_idx < num_syms);
3793       sym[sym_idx].SetDebug(is_debug);
3794 
3795       if (is_debug) {
3796         switch (nlist.n_type) {
3797         case N_GSYM:
3798           // global symbol: name,,NO_SECT,type,0
3799           // Sometimes the N_GSYM value contains the address.
3800 
3801           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3802           // the ObjC data.  They
3803           // have the same address, but we want to ensure that we always find
3804           // only the real symbol, 'cause we don't currently correctly
3805           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3806           // type.  This is a temporary hack to make sure the ObjectiveC
3807           // symbols get treated correctly.  To do this right, we should
3808           // coalesce all the GSYM & global symbols that have the same
3809           // address.
3810           is_gsym = true;
3811           sym[sym_idx].SetExternal(true);
3812 
3813           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3814             llvm::StringRef symbol_name_ref(symbol_name);
3815             if (symbol_name_ref.starts_with(g_objc_v2_prefix_class)) {
3816               symbol_name_non_abi_mangled = symbol_name + 1;
3817               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3818               type = eSymbolTypeObjCClass;
3819               demangled_is_synthesized = true;
3820 
3821             } else if (symbol_name_ref.starts_with(
3822                            g_objc_v2_prefix_metaclass)) {
3823               symbol_name_non_abi_mangled = symbol_name + 1;
3824               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3825               type = eSymbolTypeObjCMetaClass;
3826               demangled_is_synthesized = true;
3827             } else if (symbol_name_ref.starts_with(g_objc_v2_prefix_ivar)) {
3828               symbol_name_non_abi_mangled = symbol_name + 1;
3829               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3830               type = eSymbolTypeObjCIVar;
3831               demangled_is_synthesized = true;
3832             }
3833           } else {
3834             if (nlist.n_value != 0)
3835               symbol_section =
3836                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3837             type = eSymbolTypeData;
3838           }
3839           break;
3840 
3841         case N_FNAME:
3842           // procedure name (f77 kludge): name,,NO_SECT,0,0
3843           type = eSymbolTypeCompiler;
3844           break;
3845 
3846         case N_FUN:
3847           // procedure: name,,n_sect,linenumber,address
3848           if (symbol_name) {
3849             type = eSymbolTypeCode;
3850             symbol_section =
3851                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3852 
3853             N_FUN_addr_to_sym_idx.insert(
3854                 std::make_pair(nlist.n_value, sym_idx));
3855             // We use the current number of symbols in the symbol table in
3856             // lieu of using nlist_idx in case we ever start trimming entries
3857             // out
3858             N_FUN_indexes.push_back(sym_idx);
3859           } else {
3860             type = eSymbolTypeCompiler;
3861 
3862             if (!N_FUN_indexes.empty()) {
3863               // Copy the size of the function into the original STAB entry
3864               // so we don't have to hunt for it later
3865               symtab.SymbolAtIndex(N_FUN_indexes.back())
3866                   ->SetByteSize(nlist.n_value);
3867               N_FUN_indexes.pop_back();
3868               // We don't really need the end function STAB as it contains
3869               // the size which we already placed with the original symbol,
3870               // so don't add it if we want a minimal symbol table
3871               add_nlist = false;
3872             }
3873           }
3874           break;
3875 
3876         case N_STSYM:
3877           // static symbol: name,,n_sect,type,address
3878           N_STSYM_addr_to_sym_idx.insert(
3879               std::make_pair(nlist.n_value, sym_idx));
3880           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3881           if (symbol_name && symbol_name[0]) {
3882             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3883                                                      eSymbolTypeData);
3884           }
3885           break;
3886 
3887         case N_LCSYM:
3888           // .lcomm symbol: name,,n_sect,type,address
3889           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3890           type = eSymbolTypeCommonBlock;
3891           break;
3892 
3893         case N_BNSYM:
3894           // We use the current number of symbols in the symbol table in lieu
3895           // of using nlist_idx in case we ever start trimming entries out
3896           // Skip these if we want minimal symbol tables
3897           add_nlist = false;
3898           break;
3899 
3900         case N_ENSYM:
3901           // Set the size of the N_BNSYM to the terminating index of this
3902           // N_ENSYM so that we can always skip the entire symbol if we need
3903           // to navigate more quickly at the source level when parsing STABS
3904           // Skip these if we want minimal symbol tables
3905           add_nlist = false;
3906           break;
3907 
3908         case N_OPT:
3909           // emitted with gcc2_compiled and in gcc source
3910           type = eSymbolTypeCompiler;
3911           break;
3912 
3913         case N_RSYM:
3914           // register sym: name,,NO_SECT,type,register
3915           type = eSymbolTypeVariable;
3916           break;
3917 
3918         case N_SLINE:
3919           // src line: 0,,n_sect,linenumber,address
3920           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3921           type = eSymbolTypeLineEntry;
3922           break;
3923 
3924         case N_SSYM:
3925           // structure elt: name,,NO_SECT,type,struct_offset
3926           type = eSymbolTypeVariableType;
3927           break;
3928 
3929         case N_SO:
3930           // source file name
3931           type = eSymbolTypeSourceFile;
3932           if (symbol_name == nullptr) {
3933             add_nlist = false;
3934             if (N_SO_index != UINT32_MAX) {
3935               // Set the size of the N_SO to the terminating index of this
3936               // N_SO so that we can always skip the entire N_SO if we need
3937               // to navigate more quickly at the source level when parsing
3938               // STABS
3939               symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3940               symbol_ptr->SetByteSize(sym_idx);
3941               symbol_ptr->SetSizeIsSibling(true);
3942             }
3943             N_NSYM_indexes.clear();
3944             N_INCL_indexes.clear();
3945             N_BRAC_indexes.clear();
3946             N_COMM_indexes.clear();
3947             N_FUN_indexes.clear();
3948             N_SO_index = UINT32_MAX;
3949           } else {
3950             // We use the current number of symbols in the symbol table in
3951             // lieu of using nlist_idx in case we ever start trimming entries
3952             // out
3953             const bool N_SO_has_full_path = symbol_name[0] == '/';
3954             if (N_SO_has_full_path) {
3955               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3956                 // We have two consecutive N_SO entries where the first
3957                 // contains a directory and the second contains a full path.
3958                 sym[sym_idx - 1].GetMangled().SetValue(
3959                     ConstString(symbol_name));
3960                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3961                 add_nlist = false;
3962               } else {
3963                 // This is the first entry in a N_SO that contains a
3964                 // directory or a full path to the source file
3965                 N_SO_index = sym_idx;
3966               }
3967             } else if ((N_SO_index == sym_idx - 1) &&
3968                        ((sym_idx - 1) < num_syms)) {
3969               // This is usually the second N_SO entry that contains just the
3970               // filename, so here we combine it with the first one if we are
3971               // minimizing the symbol table
3972               const char *so_path =
3973                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3974               if (so_path && so_path[0]) {
3975                 std::string full_so_path(so_path);
3976                 const size_t double_slash_pos = full_so_path.find("//");
3977                 if (double_slash_pos != std::string::npos) {
3978                   // The linker has been generating bad N_SO entries with
3979                   // doubled up paths in the format "%s%s" where the first
3980                   // string in the DW_AT_comp_dir, and the second is the
3981                   // directory for the source file so you end up with a path
3982                   // that looks like "/tmp/src//tmp/src/"
3983                   FileSpec so_dir(so_path);
3984                   if (!FileSystem::Instance().Exists(so_dir)) {
3985                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3986                                    FileSpec::Style::native);
3987                     if (FileSystem::Instance().Exists(so_dir)) {
3988                       // Trim off the incorrect path
3989                       full_so_path.erase(0, double_slash_pos + 1);
3990                     }
3991                   }
3992                 }
3993                 if (*full_so_path.rbegin() != '/')
3994                   full_so_path += '/';
3995                 full_so_path += symbol_name;
3996                 sym[sym_idx - 1].GetMangled().SetValue(
3997                     ConstString(full_so_path.c_str()));
3998                 add_nlist = false;
3999                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4000               }
4001             } else {
4002               // This could be a relative path to a N_SO
4003               N_SO_index = sym_idx;
4004             }
4005           }
4006           break;
4007 
4008         case N_OSO:
4009           // object file name: name,,0,0,st_mtime
4010           type = eSymbolTypeObjectFile;
4011           break;
4012 
4013         case N_LSYM:
4014           // local sym: name,,NO_SECT,type,offset
4015           type = eSymbolTypeLocal;
4016           break;
4017 
4018         // INCL scopes
4019         case N_BINCL:
4020           // include file beginning: name,,NO_SECT,0,sum We use the current
4021           // number of symbols in the symbol table in lieu of using nlist_idx
4022           // in case we ever start trimming entries out
4023           N_INCL_indexes.push_back(sym_idx);
4024           type = eSymbolTypeScopeBegin;
4025           break;
4026 
4027         case N_EINCL:
4028           // include file end: name,,NO_SECT,0,0
4029           // Set the size of the N_BINCL to the terminating index of this
4030           // N_EINCL so that we can always skip the entire symbol if we need
4031           // to navigate more quickly at the source level when parsing STABS
4032           if (!N_INCL_indexes.empty()) {
4033             symbol_ptr = symtab.SymbolAtIndex(N_INCL_indexes.back());
4034             symbol_ptr->SetByteSize(sym_idx + 1);
4035             symbol_ptr->SetSizeIsSibling(true);
4036             N_INCL_indexes.pop_back();
4037           }
4038           type = eSymbolTypeScopeEnd;
4039           break;
4040 
4041         case N_SOL:
4042           // #included file name: name,,n_sect,0,address
4043           type = eSymbolTypeHeaderFile;
4044 
4045           // We currently don't use the header files on darwin
4046           add_nlist = false;
4047           break;
4048 
4049         case N_PARAMS:
4050           // compiler parameters: name,,NO_SECT,0,0
4051           type = eSymbolTypeCompiler;
4052           break;
4053 
4054         case N_VERSION:
4055           // compiler version: name,,NO_SECT,0,0
4056           type = eSymbolTypeCompiler;
4057           break;
4058 
4059         case N_OLEVEL:
4060           // compiler -O level: name,,NO_SECT,0,0
4061           type = eSymbolTypeCompiler;
4062           break;
4063 
4064         case N_PSYM:
4065           // parameter: name,,NO_SECT,type,offset
4066           type = eSymbolTypeVariable;
4067           break;
4068 
4069         case N_ENTRY:
4070           // alternate entry: name,,n_sect,linenumber,address
4071           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4072           type = eSymbolTypeLineEntry;
4073           break;
4074 
4075         // Left and Right Braces
4076         case N_LBRAC:
4077           // left bracket: 0,,NO_SECT,nesting level,address We use the
4078           // current number of symbols in the symbol table in lieu of using
4079           // nlist_idx in case we ever start trimming entries out
4080           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4081           N_BRAC_indexes.push_back(sym_idx);
4082           type = eSymbolTypeScopeBegin;
4083           break;
4084 
4085         case N_RBRAC:
4086           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4087           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4088           // can always skip the entire symbol if we need to navigate more
4089           // quickly at the source level when parsing STABS
4090           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4091           if (!N_BRAC_indexes.empty()) {
4092             symbol_ptr = symtab.SymbolAtIndex(N_BRAC_indexes.back());
4093             symbol_ptr->SetByteSize(sym_idx + 1);
4094             symbol_ptr->SetSizeIsSibling(true);
4095             N_BRAC_indexes.pop_back();
4096           }
4097           type = eSymbolTypeScopeEnd;
4098           break;
4099 
4100         case N_EXCL:
4101           // deleted include file: name,,NO_SECT,0,sum
4102           type = eSymbolTypeHeaderFile;
4103           break;
4104 
4105         // COMM scopes
4106         case N_BCOMM:
4107           // begin common: name,,NO_SECT,0,0
4108           // We use the current number of symbols in the symbol table in lieu
4109           // of using nlist_idx in case we ever start trimming entries out
4110           type = eSymbolTypeScopeBegin;
4111           N_COMM_indexes.push_back(sym_idx);
4112           break;
4113 
4114         case N_ECOML:
4115           // end common (local name): 0,,n_sect,0,address
4116           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4117           [[fallthrough]];
4118 
4119         case N_ECOMM:
4120           // end common: name,,n_sect,0,0
4121           // Set the size of the N_BCOMM to the terminating index of this
4122           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4123           // we need to navigate more quickly at the source level when
4124           // parsing STABS
4125           if (!N_COMM_indexes.empty()) {
4126             symbol_ptr = symtab.SymbolAtIndex(N_COMM_indexes.back());
4127             symbol_ptr->SetByteSize(sym_idx + 1);
4128             symbol_ptr->SetSizeIsSibling(true);
4129             N_COMM_indexes.pop_back();
4130           }
4131           type = eSymbolTypeScopeEnd;
4132           break;
4133 
4134         case N_LENG:
4135           // second stab entry with length information
4136           type = eSymbolTypeAdditional;
4137           break;
4138 
4139         default:
4140           break;
4141         }
4142       } else {
4143         uint8_t n_type = N_TYPE & nlist.n_type;
4144         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4145 
4146         switch (n_type) {
4147         case N_INDR: {
4148           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4149           if (reexport_name_cstr && reexport_name_cstr[0] && symbol_name) {
4150             type = eSymbolTypeReExported;
4151             ConstString reexport_name(reexport_name_cstr +
4152                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4153             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4154             set_value = false;
4155             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4156             indirect_symbol_names.insert(
4157                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4158           } else
4159             type = eSymbolTypeUndefined;
4160         } break;
4161 
4162         case N_UNDF:
4163           if (symbol_name && symbol_name[0]) {
4164             ConstString undefined_name(symbol_name +
4165                                        ((symbol_name[0] == '_') ? 1 : 0));
4166             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4167           }
4168           [[fallthrough]];
4169 
4170         case N_PBUD:
4171           type = eSymbolTypeUndefined;
4172           break;
4173 
4174         case N_ABS:
4175           type = eSymbolTypeAbsolute;
4176           break;
4177 
4178         case N_SECT: {
4179           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4180 
4181           if (!symbol_section) {
4182             // TODO: warn about this?
4183             add_nlist = false;
4184             break;
4185           }
4186 
4187           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4188             type = eSymbolTypeException;
4189           } else {
4190             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4191 
4192             switch (section_type) {
4193             case S_CSTRING_LITERALS:
4194               type = eSymbolTypeData;
4195               break; // section with only literal C strings
4196             case S_4BYTE_LITERALS:
4197               type = eSymbolTypeData;
4198               break; // section with only 4 byte literals
4199             case S_8BYTE_LITERALS:
4200               type = eSymbolTypeData;
4201               break; // section with only 8 byte literals
4202             case S_LITERAL_POINTERS:
4203               type = eSymbolTypeTrampoline;
4204               break; // section with only pointers to literals
4205             case S_NON_LAZY_SYMBOL_POINTERS:
4206               type = eSymbolTypeTrampoline;
4207               break; // section with only non-lazy symbol pointers
4208             case S_LAZY_SYMBOL_POINTERS:
4209               type = eSymbolTypeTrampoline;
4210               break; // section with only lazy symbol pointers
4211             case S_SYMBOL_STUBS:
4212               type = eSymbolTypeTrampoline;
4213               break; // section with only symbol stubs, byte size of stub in
4214                      // the reserved2 field
4215             case S_MOD_INIT_FUNC_POINTERS:
4216               type = eSymbolTypeCode;
4217               break; // section with only function pointers for initialization
4218             case S_MOD_TERM_FUNC_POINTERS:
4219               type = eSymbolTypeCode;
4220               break; // section with only function pointers for termination
4221             case S_INTERPOSING:
4222               type = eSymbolTypeTrampoline;
4223               break; // section with only pairs of function pointers for
4224                      // interposing
4225             case S_16BYTE_LITERALS:
4226               type = eSymbolTypeData;
4227               break; // section with only 16 byte literals
4228             case S_DTRACE_DOF:
4229               type = eSymbolTypeInstrumentation;
4230               break;
4231             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4232               type = eSymbolTypeTrampoline;
4233               break;
4234             default:
4235               switch (symbol_section->GetType()) {
4236               case lldb::eSectionTypeCode:
4237                 type = eSymbolTypeCode;
4238                 break;
4239               case eSectionTypeData:
4240               case eSectionTypeDataCString:         // Inlined C string data
4241               case eSectionTypeDataCStringPointers: // Pointers to C string
4242                                                     // data
4243               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4244                                                     // the symbol table
4245               case eSectionTypeData4:
4246               case eSectionTypeData8:
4247               case eSectionTypeData16:
4248                 type = eSymbolTypeData;
4249                 break;
4250               default:
4251                 break;
4252               }
4253               break;
4254             }
4255 
4256             if (type == eSymbolTypeInvalid) {
4257               const char *symbol_sect_name =
4258                   symbol_section->GetName().AsCString();
4259               if (symbol_section->IsDescendant(text_section_sp.get())) {
4260                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4261                                             S_ATTR_SELF_MODIFYING_CODE |
4262                                             S_ATTR_SOME_INSTRUCTIONS))
4263                   type = eSymbolTypeData;
4264                 else
4265                   type = eSymbolTypeCode;
4266               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4267                          symbol_section->IsDescendant(
4268                              data_dirty_section_sp.get()) ||
4269                          symbol_section->IsDescendant(
4270                              data_const_section_sp.get())) {
4271                 if (symbol_sect_name &&
4272                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4273                   type = eSymbolTypeRuntime;
4274 
4275                   if (symbol_name) {
4276                     llvm::StringRef symbol_name_ref(symbol_name);
4277                     if (symbol_name_ref.starts_with("_OBJC_")) {
4278                       llvm::StringRef g_objc_v2_prefix_class(
4279                           "_OBJC_CLASS_$_");
4280                       llvm::StringRef g_objc_v2_prefix_metaclass(
4281                           "_OBJC_METACLASS_$_");
4282                       llvm::StringRef g_objc_v2_prefix_ivar(
4283                           "_OBJC_IVAR_$_");
4284                       if (symbol_name_ref.starts_with(g_objc_v2_prefix_class)) {
4285                         symbol_name_non_abi_mangled = symbol_name + 1;
4286                         symbol_name =
4287                             symbol_name + g_objc_v2_prefix_class.size();
4288                         type = eSymbolTypeObjCClass;
4289                         demangled_is_synthesized = true;
4290                       } else if (symbol_name_ref.starts_with(
4291                                      g_objc_v2_prefix_metaclass)) {
4292                         symbol_name_non_abi_mangled = symbol_name + 1;
4293                         symbol_name =
4294                             symbol_name + g_objc_v2_prefix_metaclass.size();
4295                         type = eSymbolTypeObjCMetaClass;
4296                         demangled_is_synthesized = true;
4297                       } else if (symbol_name_ref.starts_with(
4298                                      g_objc_v2_prefix_ivar)) {
4299                         symbol_name_non_abi_mangled = symbol_name + 1;
4300                         symbol_name =
4301                             symbol_name + g_objc_v2_prefix_ivar.size();
4302                         type = eSymbolTypeObjCIVar;
4303                         demangled_is_synthesized = true;
4304                       }
4305                     }
4306                   }
4307                 } else if (symbol_sect_name &&
4308                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4309                                symbol_sect_name) {
4310                   type = eSymbolTypeException;
4311                 } else {
4312                   type = eSymbolTypeData;
4313                 }
4314               } else if (symbol_sect_name &&
4315                          ::strstr(symbol_sect_name, "__IMPORT") ==
4316                              symbol_sect_name) {
4317                 type = eSymbolTypeTrampoline;
4318               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4319                 type = eSymbolTypeRuntime;
4320                 if (symbol_name && symbol_name[0] == '.') {
4321                   llvm::StringRef symbol_name_ref(symbol_name);
4322                   llvm::StringRef g_objc_v1_prefix_class(
4323                       ".objc_class_name_");
4324                   if (symbol_name_ref.starts_with(g_objc_v1_prefix_class)) {
4325                     symbol_name_non_abi_mangled = symbol_name;
4326                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4327                     type = eSymbolTypeObjCClass;
4328                     demangled_is_synthesized = true;
4329                   }
4330                 }
4331               }
4332             }
4333           }
4334         } break;
4335         }
4336       }
4337 
4338       if (!add_nlist) {
4339         sym[sym_idx].Clear();
4340         return true;
4341       }
4342 
4343       uint64_t symbol_value = nlist.n_value;
4344 
4345       if (symbol_name_non_abi_mangled) {
4346         sym[sym_idx].GetMangled().SetMangledName(
4347             ConstString(symbol_name_non_abi_mangled));
4348         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4349       } else {
4350 
4351         if (symbol_name && symbol_name[0] == '_') {
4352           symbol_name++; // Skip the leading underscore
4353         }
4354 
4355         if (symbol_name) {
4356           ConstString const_symbol_name(symbol_name);
4357           sym[sym_idx].GetMangled().SetValue(const_symbol_name);
4358         }
4359       }
4360 
4361       if (is_gsym) {
4362         const char *gsym_name = sym[sym_idx]
4363                                     .GetMangled()
4364                                     .GetName(Mangled::ePreferMangled)
4365                                     .GetCString();
4366         if (gsym_name)
4367           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4368       }
4369 
4370       if (symbol_section) {
4371         const addr_t section_file_addr = symbol_section->GetFileAddress();
4372         if (symbol_byte_size == 0 && function_starts_count > 0) {
4373           addr_t symbol_lookup_file_addr = nlist.n_value;
4374           // Do an exact address match for non-ARM addresses, else get the
4375           // closest since the symbol might be a thumb symbol which has an
4376           // address with bit zero set.
4377           FunctionStarts::Entry *func_start_entry =
4378               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4379           if (is_arm && func_start_entry) {
4380             // Verify that the function start address is the symbol address
4381             // (ARM) or the symbol address + 1 (thumb).
4382             if (func_start_entry->addr != symbol_lookup_file_addr &&
4383                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4384               // Not the right entry, NULL it out...
4385               func_start_entry = nullptr;
4386             }
4387           }
4388           if (func_start_entry) {
4389             func_start_entry->data = true;
4390 
4391             addr_t symbol_file_addr = func_start_entry->addr;
4392             if (is_arm)
4393               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4394 
4395             const FunctionStarts::Entry *next_func_start_entry =
4396                 function_starts.FindNextEntry(func_start_entry);
4397             const addr_t section_end_file_addr =
4398                 section_file_addr + symbol_section->GetByteSize();
4399             if (next_func_start_entry) {
4400               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4401               // Be sure the clear the Thumb address bit when we calculate the
4402               // size from the current and next address
4403               if (is_arm)
4404                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4405               symbol_byte_size = std::min<lldb::addr_t>(
4406                   next_symbol_file_addr - symbol_file_addr,
4407                   section_end_file_addr - symbol_file_addr);
4408             } else {
4409               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4410             }
4411           }
4412         }
4413         symbol_value -= section_file_addr;
4414       }
4415 
4416       if (!is_debug) {
4417         if (type == eSymbolTypeCode) {
4418           // See if we can find a N_FUN entry for any code symbols. If we do
4419           // find a match, and the name matches, then we can merge the two into
4420           // just the function symbol to avoid duplicate entries in the symbol
4421           // table.
4422           std::pair<ValueToSymbolIndexMap::const_iterator,
4423                     ValueToSymbolIndexMap::const_iterator>
4424               range;
4425           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4426           if (range.first != range.second) {
4427             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4428                  pos != range.second; ++pos) {
4429               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4430                   sym[pos->second].GetMangled().GetName(
4431                       Mangled::ePreferMangled)) {
4432                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4433                 // We just need the flags from the linker symbol, so put these
4434                 // flags into the N_FUN flags to avoid duplicate symbols in the
4435                 // symbol table.
4436                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4437                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4438                 if (resolver_addresses.find(nlist.n_value) !=
4439                     resolver_addresses.end())
4440                   sym[pos->second].SetType(eSymbolTypeResolver);
4441                 sym[sym_idx].Clear();
4442                 return true;
4443               }
4444             }
4445           } else {
4446             if (resolver_addresses.find(nlist.n_value) !=
4447                 resolver_addresses.end())
4448               type = eSymbolTypeResolver;
4449           }
4450         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4451                    type == eSymbolTypeObjCMetaClass ||
4452                    type == eSymbolTypeObjCIVar) {
4453           // See if we can find a N_STSYM entry for any data symbols. If we do
4454           // find a match, and the name matches, then we can merge the two into
4455           // just the Static symbol to avoid duplicate entries in the symbol
4456           // table.
4457           std::pair<ValueToSymbolIndexMap::const_iterator,
4458                     ValueToSymbolIndexMap::const_iterator>
4459               range;
4460           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4461           if (range.first != range.second) {
4462             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4463                  pos != range.second; ++pos) {
4464               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4465                   sym[pos->second].GetMangled().GetName(
4466                       Mangled::ePreferMangled)) {
4467                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4468                 // We just need the flags from the linker symbol, so put these
4469                 // flags into the N_STSYM flags to avoid duplicate symbols in
4470                 // the symbol table.
4471                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4472                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4473                 sym[sym_idx].Clear();
4474                 return true;
4475               }
4476             }
4477           } else {
4478             // Combine N_GSYM stab entries with the non stab symbol.
4479             const char *gsym_name = sym[sym_idx]
4480                                         .GetMangled()
4481                                         .GetName(Mangled::ePreferMangled)
4482                                         .GetCString();
4483             if (gsym_name) {
4484               ConstNameToSymbolIndexMap::const_iterator pos =
4485                   N_GSYM_name_to_sym_idx.find(gsym_name);
4486               if (pos != N_GSYM_name_to_sym_idx.end()) {
4487                 const uint32_t GSYM_sym_idx = pos->second;
4488                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4489                 // Copy the address, because often the N_GSYM address has an
4490                 // invalid address of zero when the global is a common symbol.
4491                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4492                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4493                 add_symbol_addr(
4494                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4495                 // We just need the flags from the linker symbol, so put these
4496                 // flags into the N_GSYM flags to avoid duplicate symbols in
4497                 // the symbol table.
4498                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4499                 sym[sym_idx].Clear();
4500                 return true;
4501               }
4502             }
4503           }
4504         }
4505       }
4506 
4507       sym[sym_idx].SetID(nlist_idx);
4508       sym[sym_idx].SetType(type);
4509       if (set_value) {
4510         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4511         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4512         if (symbol_section)
4513           add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4514       }
4515       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4516       if (nlist.n_desc & N_WEAK_REF)
4517         sym[sym_idx].SetIsWeak(true);
4518 
4519       if (symbol_byte_size > 0)
4520         sym[sym_idx].SetByteSize(symbol_byte_size);
4521 
4522       if (demangled_is_synthesized)
4523         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4524 
4525       ++sym_idx;
4526       return true;
4527     };
4528 
4529     // First parse all the nlists but don't process them yet. See the next
4530     // comment for an explanation why.
4531     std::vector<struct nlist_64> nlists;
4532     nlists.reserve(symtab_load_command.nsyms);
4533     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4534       if (auto nlist =
4535               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4536         nlists.push_back(*nlist);
4537       else
4538         break;
4539     }
4540 
4541     // Now parse all the debug symbols. This is needed to merge non-debug
4542     // symbols in the next step. Non-debug symbols are always coalesced into
4543     // the debug symbol. Doing this in one step would mean that some symbols
4544     // won't be merged.
4545     nlist_idx = 0;
4546     for (auto &nlist : nlists) {
4547       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4548         break;
4549     }
4550 
4551     // Finally parse all the non debug symbols.
4552     nlist_idx = 0;
4553     for (auto &nlist : nlists) {
4554       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4555         break;
4556     }
4557 
4558     for (const auto &pos : reexport_shlib_needs_fixup) {
4559       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4560       if (undef_pos != undefined_name_to_desc.end()) {
4561         const uint8_t dylib_ordinal =
4562             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4563         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4564           sym[pos.first].SetReExportedSymbolSharedLibrary(
4565               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4566       }
4567     }
4568   }
4569 
4570   // Count how many trie symbols we'll add to the symbol table
4571   int trie_symbol_table_augment_count = 0;
4572   for (auto &e : external_sym_trie_entries) {
4573     if (!symbols_added.contains(e.entry.address))
4574       trie_symbol_table_augment_count++;
4575   }
4576 
4577   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4578     num_syms = sym_idx + trie_symbol_table_augment_count;
4579     sym = symtab.Resize(num_syms);
4580   }
4581   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4582 
4583   // Add symbols from the trie to the symbol table.
4584   for (auto &e : external_sym_trie_entries) {
4585     if (symbols_added.contains(e.entry.address))
4586       continue;
4587 
4588     // Find the section that this trie address is in, use that to annotate
4589     // symbol type as we add the trie address and name to the symbol table.
4590     Address symbol_addr;
4591     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4592       SectionSP symbol_section(symbol_addr.GetSection());
4593       const char *symbol_name = e.entry.name.GetCString();
4594       bool demangled_is_synthesized = false;
4595       SymbolType type =
4596           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4597                         data_section_sp, data_dirty_section_sp,
4598                         data_const_section_sp, symbol_section);
4599 
4600       sym[sym_idx].SetType(type);
4601       if (symbol_section) {
4602         sym[sym_idx].SetID(synthetic_sym_id++);
4603         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4604         if (demangled_is_synthesized)
4605           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4606         sym[sym_idx].SetIsSynthetic(true);
4607         sym[sym_idx].SetExternal(true);
4608         sym[sym_idx].GetAddressRef() = symbol_addr;
4609         add_symbol_addr(symbol_addr.GetFileAddress());
4610         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4611           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4612         ++sym_idx;
4613       }
4614     }
4615   }
4616 
4617   if (function_starts_count > 0) {
4618     uint32_t num_synthetic_function_symbols = 0;
4619     for (i = 0; i < function_starts_count; ++i) {
4620       if (!symbols_added.contains(function_starts.GetEntryRef(i).addr))
4621         ++num_synthetic_function_symbols;
4622     }
4623 
4624     if (num_synthetic_function_symbols > 0) {
4625       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4626         num_syms = sym_idx + num_synthetic_function_symbols;
4627         sym = symtab.Resize(num_syms);
4628       }
4629       for (i = 0; i < function_starts_count; ++i) {
4630         const FunctionStarts::Entry *func_start_entry =
4631             function_starts.GetEntryAtIndex(i);
4632         if (!symbols_added.contains(func_start_entry->addr)) {
4633           addr_t symbol_file_addr = func_start_entry->addr;
4634           uint32_t symbol_flags = 0;
4635           if (func_start_entry->data)
4636             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4637           Address symbol_addr;
4638           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4639             SectionSP symbol_section(symbol_addr.GetSection());
4640             uint32_t symbol_byte_size = 0;
4641             if (symbol_section) {
4642               const addr_t section_file_addr = symbol_section->GetFileAddress();
4643               const FunctionStarts::Entry *next_func_start_entry =
4644                   function_starts.FindNextEntry(func_start_entry);
4645               const addr_t section_end_file_addr =
4646                   section_file_addr + symbol_section->GetByteSize();
4647               if (next_func_start_entry) {
4648                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4649                 if (is_arm)
4650                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4651                 symbol_byte_size = std::min<lldb::addr_t>(
4652                     next_symbol_file_addr - symbol_file_addr,
4653                     section_end_file_addr - symbol_file_addr);
4654               } else {
4655                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4656               }
4657               sym[sym_idx].SetID(synthetic_sym_id++);
4658               // Don't set the name for any synthetic symbols, the Symbol
4659               // object will generate one if needed when the name is accessed
4660               // via accessors.
4661               sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4662               sym[sym_idx].SetType(eSymbolTypeCode);
4663               sym[sym_idx].SetIsSynthetic(true);
4664               sym[sym_idx].GetAddressRef() = symbol_addr;
4665               add_symbol_addr(symbol_addr.GetFileAddress());
4666               if (symbol_flags)
4667                 sym[sym_idx].SetFlags(symbol_flags);
4668               if (symbol_byte_size)
4669                 sym[sym_idx].SetByteSize(symbol_byte_size);
4670               ++sym_idx;
4671             }
4672           }
4673         }
4674       }
4675     }
4676   }
4677 
4678   // Trim our symbols down to just what we ended up with after removing any
4679   // symbols.
4680   if (sym_idx < num_syms) {
4681     num_syms = sym_idx;
4682     sym = symtab.Resize(num_syms);
4683   }
4684 
4685   // Now synthesize indirect symbols
4686   if (m_dysymtab.nindirectsyms != 0) {
4687     if (indirect_symbol_index_data.GetByteSize()) {
4688       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4689           m_nlist_idx_to_sym_idx.end();
4690 
4691       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4692            ++sect_idx) {
4693         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4694             S_SYMBOL_STUBS) {
4695           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4696           if (symbol_stub_byte_size == 0)
4697             continue;
4698 
4699           const uint32_t num_symbol_stubs =
4700               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4701 
4702           if (num_symbol_stubs == 0)
4703             continue;
4704 
4705           const uint32_t symbol_stub_index_offset =
4706               m_mach_sections[sect_idx].reserved1;
4707           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4708             const uint32_t symbol_stub_index =
4709                 symbol_stub_index_offset + stub_idx;
4710             const lldb::addr_t symbol_stub_addr =
4711                 m_mach_sections[sect_idx].addr +
4712                 (stub_idx * symbol_stub_byte_size);
4713             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4714             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4715                     symbol_stub_offset, 4)) {
4716               const uint32_t stub_sym_id =
4717                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4718               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4719                 continue;
4720 
4721               NListIndexToSymbolIndexMap::const_iterator index_pos =
4722                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4723               Symbol *stub_symbol = nullptr;
4724               if (index_pos != end_index_pos) {
4725                 // We have a remapping from the original nlist index to a
4726                 // current symbol index, so just look this up by index
4727                 stub_symbol = symtab.SymbolAtIndex(index_pos->second);
4728               } else {
4729                 // We need to lookup a symbol using the original nlist symbol
4730                 // index since this index is coming from the S_SYMBOL_STUBS
4731                 stub_symbol = symtab.FindSymbolByID(stub_sym_id);
4732               }
4733 
4734               if (stub_symbol) {
4735                 Address so_addr(symbol_stub_addr, section_list);
4736 
4737                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4738                   // Change the external symbol into a trampoline that makes
4739                   // sense These symbols were N_UNDF N_EXT, and are useless
4740                   // to us, so we can re-use them so we don't have to make up
4741                   // a synthetic symbol for no good reason.
4742                   if (resolver_addresses.find(symbol_stub_addr) ==
4743                       resolver_addresses.end())
4744                     stub_symbol->SetType(eSymbolTypeTrampoline);
4745                   else
4746                     stub_symbol->SetType(eSymbolTypeResolver);
4747                   stub_symbol->SetExternal(false);
4748                   stub_symbol->GetAddressRef() = so_addr;
4749                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4750                 } else {
4751                   // Make a synthetic symbol to describe the trampoline stub
4752                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4753                   if (sym_idx >= num_syms) {
4754                     sym = symtab.Resize(++num_syms);
4755                     stub_symbol = nullptr; // this pointer no longer valid
4756                   }
4757                   sym[sym_idx].SetID(synthetic_sym_id++);
4758                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4759                   if (resolver_addresses.find(symbol_stub_addr) ==
4760                       resolver_addresses.end())
4761                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4762                   else
4763                     sym[sym_idx].SetType(eSymbolTypeResolver);
4764                   sym[sym_idx].SetIsSynthetic(true);
4765                   sym[sym_idx].GetAddressRef() = so_addr;
4766                   add_symbol_addr(so_addr.GetFileAddress());
4767                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4768                   ++sym_idx;
4769                 }
4770               } else {
4771                 if (log)
4772                   log->Warning("symbol stub referencing symbol table symbol "
4773                                "%u that isn't in our minimal symbol table, "
4774                                "fix this!!!",
4775                                stub_sym_id);
4776               }
4777             }
4778           }
4779         }
4780       }
4781     }
4782   }
4783 
4784   if (!reexport_trie_entries.empty()) {
4785     for (const auto &e : reexport_trie_entries) {
4786       if (e.entry.import_name) {
4787         // Only add indirect symbols from the Trie entries if we didn't have
4788         // a N_INDR nlist entry for this already
4789         if (indirect_symbol_names.find(e.entry.name) ==
4790             indirect_symbol_names.end()) {
4791           // Make a synthetic symbol to describe re-exported symbol.
4792           if (sym_idx >= num_syms)
4793             sym = symtab.Resize(++num_syms);
4794           sym[sym_idx].SetID(synthetic_sym_id++);
4795           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4796           sym[sym_idx].SetType(eSymbolTypeReExported);
4797           sym[sym_idx].SetIsSynthetic(true);
4798           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4799           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4800             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4801                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4802           }
4803           ++sym_idx;
4804         }
4805       }
4806     }
4807   }
4808 }
4809 
4810 void ObjectFileMachO::Dump(Stream *s) {
4811   ModuleSP module_sp(GetModule());
4812   if (module_sp) {
4813     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4814     s->Printf("%p: ", static_cast<void *>(this));
4815     s->Indent();
4816     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4817       s->PutCString("ObjectFileMachO64");
4818     else
4819       s->PutCString("ObjectFileMachO32");
4820 
4821     *s << ", file = '" << m_file;
4822     ModuleSpecList all_specs;
4823     ModuleSpec base_spec;
4824     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4825                     base_spec, all_specs);
4826     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4827       *s << "', triple";
4828       if (e)
4829         s->Printf("[%d]", i);
4830       *s << " = ";
4831       *s << all_specs.GetModuleSpecRefAtIndex(i)
4832                 .GetArchitecture()
4833                 .GetTriple()
4834                 .getTriple();
4835     }
4836     *s << "\n";
4837     SectionList *sections = GetSectionList();
4838     if (sections)
4839       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4840                      UINT32_MAX);
4841 
4842     if (m_symtab_up)
4843       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4844   }
4845 }
4846 
4847 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4848                               const lldb_private::DataExtractor &data,
4849                               lldb::offset_t lc_offset) {
4850   uint32_t i;
4851   llvm::MachO::uuid_command load_cmd;
4852 
4853   lldb::offset_t offset = lc_offset;
4854   for (i = 0; i < header.ncmds; ++i) {
4855     const lldb::offset_t cmd_offset = offset;
4856     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4857       break;
4858 
4859     if (load_cmd.cmd == LC_UUID) {
4860       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4861 
4862       if (uuid_bytes) {
4863         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4864         // We pretend these object files have no UUID to prevent crashing.
4865 
4866         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4867                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4868                                        0xbb, 0x14, 0xf0, 0x0d};
4869 
4870         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4871           return UUID();
4872 
4873         return UUID(uuid_bytes, 16);
4874       }
4875       return UUID();
4876     }
4877     offset = cmd_offset + load_cmd.cmdsize;
4878   }
4879   return UUID();
4880 }
4881 
4882 static llvm::StringRef GetOSName(uint32_t cmd) {
4883   switch (cmd) {
4884   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4885     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4886   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4887     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4888   case llvm::MachO::LC_VERSION_MIN_TVOS:
4889     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4890   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4891     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4892   default:
4893     llvm_unreachable("unexpected LC_VERSION load command");
4894   }
4895 }
4896 
4897 namespace {
4898 struct OSEnv {
4899   llvm::StringRef os_type;
4900   llvm::StringRef environment;
4901   OSEnv(uint32_t cmd) {
4902     switch (cmd) {
4903     case llvm::MachO::PLATFORM_MACOS:
4904       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4905       return;
4906     case llvm::MachO::PLATFORM_IOS:
4907       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4908       return;
4909     case llvm::MachO::PLATFORM_TVOS:
4910       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4911       return;
4912     case llvm::MachO::PLATFORM_WATCHOS:
4913       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4914       return;
4915     case llvm::MachO::PLATFORM_BRIDGEOS:
4916       os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4917       return;
4918     case llvm::MachO::PLATFORM_DRIVERKIT:
4919       os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
4920       return;
4921     case llvm::MachO::PLATFORM_MACCATALYST:
4922       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4923       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4924       return;
4925     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4926       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4927       environment =
4928           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4929       return;
4930     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4931       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4932       environment =
4933           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4934       return;
4935     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4936       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4937       environment =
4938           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4939       return;
4940     case llvm::MachO::PLATFORM_XROS:
4941       os_type = llvm::Triple::getOSTypeName(llvm::Triple::XROS);
4942       return;
4943     case llvm::MachO::PLATFORM_XROS_SIMULATOR:
4944       os_type = llvm::Triple::getOSTypeName(llvm::Triple::XROS);
4945       environment =
4946           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4947       return;
4948     default: {
4949       Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
4950       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4951     }
4952     }
4953   }
4954 };
4955 
4956 struct MinOS {
4957   uint32_t major_version, minor_version, patch_version;
4958   MinOS(uint32_t version)
4959       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4960         patch_version(version & 0xffu) {}
4961 };
4962 } // namespace
4963 
4964 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4965                                       const lldb_private::DataExtractor &data,
4966                                       lldb::offset_t lc_offset,
4967                                       ModuleSpec &base_spec,
4968                                       lldb_private::ModuleSpecList &all_specs) {
4969   auto &base_arch = base_spec.GetArchitecture();
4970   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4971   if (!base_arch.IsValid())
4972     return;
4973 
4974   bool found_any = false;
4975   auto add_triple = [&](const llvm::Triple &triple) {
4976     auto spec = base_spec;
4977     spec.GetArchitecture().GetTriple() = triple;
4978     if (spec.GetArchitecture().IsValid()) {
4979       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4980       all_specs.Append(spec);
4981       found_any = true;
4982     }
4983   };
4984 
4985   // Set OS to an unspecified unknown or a "*" so it can match any OS
4986   llvm::Triple base_triple = base_arch.GetTriple();
4987   base_triple.setOS(llvm::Triple::UnknownOS);
4988   base_triple.setOSName(llvm::StringRef());
4989 
4990   if (header.filetype == MH_PRELOAD) {
4991     if (header.cputype == CPU_TYPE_ARM) {
4992       // If this is a 32-bit arm binary, and it's a standalone binary, force
4993       // the Vendor to Apple so we don't accidentally pick up the generic
4994       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4995       // frame pointer register; most other armv7 ABIs use a combination of
4996       // r7 and r11.
4997       base_triple.setVendor(llvm::Triple::Apple);
4998     } else {
4999       // Set vendor to an unspecified unknown or a "*" so it can match any
5000       // vendor This is required for correct behavior of EFI debugging on
5001       // x86_64
5002       base_triple.setVendor(llvm::Triple::UnknownVendor);
5003       base_triple.setVendorName(llvm::StringRef());
5004     }
5005     return add_triple(base_triple);
5006   }
5007 
5008   llvm::MachO::load_command load_cmd;
5009 
5010   // See if there is an LC_VERSION_MIN_* load command that can give
5011   // us the OS type.
5012   lldb::offset_t offset = lc_offset;
5013   for (uint32_t i = 0; i < header.ncmds; ++i) {
5014     const lldb::offset_t cmd_offset = offset;
5015     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
5016       break;
5017 
5018     llvm::MachO::version_min_command version_min;
5019     switch (load_cmd.cmd) {
5020     case llvm::MachO::LC_VERSION_MIN_MACOSX:
5021     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
5022     case llvm::MachO::LC_VERSION_MIN_TVOS:
5023     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
5024       if (load_cmd.cmdsize != sizeof(version_min))
5025         break;
5026       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
5027                             data.GetByteOrder(), &version_min) == 0)
5028         break;
5029       MinOS min_os(version_min.version);
5030       llvm::SmallString<32> os_name;
5031       llvm::raw_svector_ostream os(os_name);
5032       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
5033          << min_os.minor_version << '.' << min_os.patch_version;
5034 
5035       auto triple = base_triple;
5036       triple.setOSName(os.str());
5037 
5038       // Disambiguate legacy simulator platforms.
5039       if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5040           (base_triple.getArch() == llvm::Triple::x86_64 ||
5041            base_triple.getArch() == llvm::Triple::x86)) {
5042         // The combination of legacy LC_VERSION_MIN load command and
5043         // x86 architecture always indicates a simulator environment.
5044         // The combination of LC_VERSION_MIN and arm architecture only
5045         // appears for native binaries. Back-deploying simulator
5046         // binaries on Apple Silicon Macs use the modern unambigous
5047         // LC_BUILD_VERSION load commands; no special handling required.
5048         triple.setEnvironment(llvm::Triple::Simulator);
5049       }
5050       add_triple(triple);
5051       break;
5052     }
5053     default:
5054       break;
5055     }
5056 
5057     offset = cmd_offset + load_cmd.cmdsize;
5058   }
5059 
5060   // See if there are LC_BUILD_VERSION load commands that can give
5061   // us the OS type.
5062   offset = lc_offset;
5063   for (uint32_t i = 0; i < header.ncmds; ++i) {
5064     const lldb::offset_t cmd_offset = offset;
5065     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
5066       break;
5067 
5068     do {
5069       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5070         llvm::MachO::build_version_command build_version;
5071         if (load_cmd.cmdsize < sizeof(build_version)) {
5072           // Malformed load command.
5073           break;
5074         }
5075         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5076                               data.GetByteOrder(), &build_version) == 0)
5077           break;
5078         MinOS min_os(build_version.minos);
5079         OSEnv os_env(build_version.platform);
5080         llvm::SmallString<16> os_name;
5081         llvm::raw_svector_ostream os(os_name);
5082         os << os_env.os_type << min_os.major_version << '.'
5083            << min_os.minor_version << '.' << min_os.patch_version;
5084         auto triple = base_triple;
5085         triple.setOSName(os.str());
5086         os_name.clear();
5087         if (!os_env.environment.empty())
5088           triple.setEnvironmentName(os_env.environment);
5089         add_triple(triple);
5090       }
5091     } while (false);
5092     offset = cmd_offset + load_cmd.cmdsize;
5093   }
5094 
5095   if (!found_any) {
5096     add_triple(base_triple);
5097   }
5098 }
5099 
5100 ArchSpec ObjectFileMachO::GetArchitecture(
5101     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5102     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5103   ModuleSpecList all_specs;
5104   ModuleSpec base_spec;
5105   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5106                   base_spec, all_specs);
5107 
5108   // If the object file offers multiple alternative load commands,
5109   // pick the one that matches the module.
5110   if (module_sp) {
5111     const ArchSpec &module_arch = module_sp->GetArchitecture();
5112     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5113       ArchSpec mach_arch =
5114           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5115       if (module_arch.IsCompatibleMatch(mach_arch))
5116         return mach_arch;
5117     }
5118   }
5119 
5120   // Return the first arch we found.
5121   if (all_specs.GetSize() == 0)
5122     return {};
5123   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5124 }
5125 
5126 UUID ObjectFileMachO::GetUUID() {
5127   ModuleSP module_sp(GetModule());
5128   if (module_sp) {
5129     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5130     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5131     return GetUUID(m_header, m_data, offset);
5132   }
5133   return UUID();
5134 }
5135 
5136 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5137   ModuleSP module_sp = GetModule();
5138   if (!module_sp)
5139     return 0;
5140 
5141   uint32_t count = 0;
5142   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5143   llvm::MachO::load_command load_cmd;
5144   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5145   std::vector<std::string> rpath_paths;
5146   std::vector<std::string> rpath_relative_paths;
5147   std::vector<std::string> at_exec_relative_paths;
5148   uint32_t i;
5149   for (i = 0; i < m_header.ncmds; ++i) {
5150     const uint32_t cmd_offset = offset;
5151     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5152       break;
5153 
5154     switch (load_cmd.cmd) {
5155     case LC_RPATH:
5156     case LC_LOAD_DYLIB:
5157     case LC_LOAD_WEAK_DYLIB:
5158     case LC_REEXPORT_DYLIB:
5159     case LC_LOAD_DYLINKER:
5160     case LC_LOADFVMLIB:
5161     case LC_LOAD_UPWARD_DYLIB: {
5162       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5163       // For LC_LOAD_DYLIB there is an alternate encoding
5164       // which adds a uint32_t `flags` field for `DYLD_USE_*`
5165       // flags.  This can be detected by a timestamp field with
5166       // the `DYLIB_USE_MARKER` constant value.
5167       bool is_delayed_init = false;
5168       uint32_t use_command_marker = m_data.GetU32(&offset);
5169       if (use_command_marker == 0x1a741800 /* DYLIB_USE_MARKER */) {
5170         offset += 4; /* uint32_t current_version */
5171         offset += 4; /* uint32_t compat_version */
5172         uint32_t flags = m_data.GetU32(&offset);
5173         // If this LC_LOAD_DYLIB is marked delay-init,
5174         // don't report it as a dependent library -- it
5175         // may be loaded in the process at some point,
5176         // but will most likely not be load at launch.
5177         if (flags & 0x08 /* DYLIB_USE_DELAYED_INIT */)
5178           is_delayed_init = true;
5179       }
5180       const char *path = m_data.PeekCStr(name_offset);
5181       if (path && !is_delayed_init) {
5182         if (load_cmd.cmd == LC_RPATH)
5183           rpath_paths.push_back(path);
5184         else {
5185           if (path[0] == '@') {
5186             if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5187               rpath_relative_paths.push_back(path + strlen("@rpath"));
5188             else if (strncmp(path, "@executable_path",
5189                              strlen("@executable_path")) == 0)
5190               at_exec_relative_paths.push_back(path +
5191                                                strlen("@executable_path"));
5192           } else {
5193             FileSpec file_spec(path);
5194             if (files.AppendIfUnique(file_spec))
5195               count++;
5196           }
5197         }
5198       }
5199     } break;
5200 
5201     default:
5202       break;
5203     }
5204     offset = cmd_offset + load_cmd.cmdsize;
5205   }
5206 
5207   FileSpec this_file_spec(m_file);
5208   FileSystem::Instance().Resolve(this_file_spec);
5209 
5210   if (!rpath_paths.empty()) {
5211     // Fixup all LC_RPATH values to be absolute paths.
5212     const std::string this_directory =
5213         this_file_spec.GetDirectory().GetString();
5214     for (auto &rpath : rpath_paths) {
5215       if (llvm::StringRef(rpath).starts_with(g_loader_path))
5216         rpath = this_directory + rpath.substr(g_loader_path.size());
5217       else if (llvm::StringRef(rpath).starts_with(g_executable_path))
5218         rpath = this_directory + rpath.substr(g_executable_path.size());
5219     }
5220 
5221     for (const auto &rpath_relative_path : rpath_relative_paths) {
5222       for (const auto &rpath : rpath_paths) {
5223         std::string path = rpath;
5224         path += rpath_relative_path;
5225         // It is OK to resolve this path because we must find a file on disk
5226         // for us to accept it anyway if it is rpath relative.
5227         FileSpec file_spec(path);
5228         FileSystem::Instance().Resolve(file_spec);
5229         if (FileSystem::Instance().Exists(file_spec) &&
5230             files.AppendIfUnique(file_spec)) {
5231           count++;
5232           break;
5233         }
5234       }
5235     }
5236   }
5237 
5238   // We may have @executable_paths but no RPATHS.  Figure those out here.
5239   // Only do this if this object file is the executable.  We have no way to
5240   // get back to the actual executable otherwise, so we won't get the right
5241   // path.
5242   if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5243     FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5244     for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5245       FileSpec file_spec =
5246           exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5247       if (FileSystem::Instance().Exists(file_spec) &&
5248           files.AppendIfUnique(file_spec))
5249         count++;
5250     }
5251   }
5252   return count;
5253 }
5254 
5255 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5256   // If the object file is not an executable it can't hold the entry point.
5257   // m_entry_point_address is initialized to an invalid address, so we can just
5258   // return that. If m_entry_point_address is valid it means we've found it
5259   // already, so return the cached value.
5260 
5261   if ((!IsExecutable() && !IsDynamicLoader()) ||
5262       m_entry_point_address.IsValid()) {
5263     return m_entry_point_address;
5264   }
5265 
5266   // Otherwise, look for the UnixThread or Thread command.  The data for the
5267   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5268   //
5269   //  uint32_t flavor  - this is the flavor argument you would pass to
5270   //  thread_get_state
5271   //  uint32_t count   - this is the count of longs in the thread state data
5272   //  struct XXX_thread_state state - this is the structure from
5273   //  <machine/thread_status.h> corresponding to the flavor.
5274   //  <repeat this trio>
5275   //
5276   // So we just keep reading the various register flavors till we find the GPR
5277   // one, then read the PC out of there.
5278   // FIXME: We will need to have a "RegisterContext data provider" class at some
5279   // point that can get all the registers
5280   // out of data in this form & attach them to a given thread.  That should
5281   // underlie the MacOS X User process plugin, and we'll also need it for the
5282   // MacOS X Core File process plugin.  When we have that we can also use it
5283   // here.
5284   //
5285   // For now we hard-code the offsets and flavors we need:
5286   //
5287   //
5288 
5289   ModuleSP module_sp(GetModule());
5290   if (module_sp) {
5291     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5292     llvm::MachO::load_command load_cmd;
5293     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5294     uint32_t i;
5295     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5296     bool done = false;
5297 
5298     for (i = 0; i < m_header.ncmds; ++i) {
5299       const lldb::offset_t cmd_offset = offset;
5300       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5301         break;
5302 
5303       switch (load_cmd.cmd) {
5304       case LC_UNIXTHREAD:
5305       case LC_THREAD: {
5306         while (offset < cmd_offset + load_cmd.cmdsize) {
5307           uint32_t flavor = m_data.GetU32(&offset);
5308           uint32_t count = m_data.GetU32(&offset);
5309           if (count == 0) {
5310             // We've gotten off somehow, log and exit;
5311             return m_entry_point_address;
5312           }
5313 
5314           switch (m_header.cputype) {
5315           case llvm::MachO::CPU_TYPE_ARM:
5316             if (flavor == 1 ||
5317                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5318                              // from mach/arm/thread_status.h
5319             {
5320               offset += 60; // This is the offset of pc in the GPR thread state
5321                             // data structure.
5322               start_address = m_data.GetU32(&offset);
5323               done = true;
5324             }
5325             break;
5326           case llvm::MachO::CPU_TYPE_ARM64:
5327           case llvm::MachO::CPU_TYPE_ARM64_32:
5328             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5329             {
5330               offset += 256; // This is the offset of pc in the GPR thread state
5331                              // data structure.
5332               start_address = m_data.GetU64(&offset);
5333               done = true;
5334             }
5335             break;
5336           case llvm::MachO::CPU_TYPE_I386:
5337             if (flavor ==
5338                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5339             {
5340               offset += 40; // This is the offset of eip in the GPR thread state
5341                             // data structure.
5342               start_address = m_data.GetU32(&offset);
5343               done = true;
5344             }
5345             break;
5346           case llvm::MachO::CPU_TYPE_X86_64:
5347             if (flavor ==
5348                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5349             {
5350               offset += 16 * 8; // This is the offset of rip in the GPR thread
5351                                 // state data structure.
5352               start_address = m_data.GetU64(&offset);
5353               done = true;
5354             }
5355             break;
5356           default:
5357             return m_entry_point_address;
5358           }
5359           // Haven't found the GPR flavor yet, skip over the data for this
5360           // flavor:
5361           if (done)
5362             break;
5363           offset += count * 4;
5364         }
5365       } break;
5366       case LC_MAIN: {
5367         uint64_t entryoffset = m_data.GetU64(&offset);
5368         SectionSP text_segment_sp =
5369             GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
5370         if (text_segment_sp) {
5371           done = true;
5372           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5373         }
5374       } break;
5375 
5376       default:
5377         break;
5378       }
5379       if (done)
5380         break;
5381 
5382       // Go to the next load command:
5383       offset = cmd_offset + load_cmd.cmdsize;
5384     }
5385 
5386     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5387       if (GetSymtab()) {
5388         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5389             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5390             Symtab::eDebugAny, Symtab::eVisibilityAny);
5391         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5392           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5393         }
5394       }
5395     }
5396 
5397     if (start_address != LLDB_INVALID_ADDRESS) {
5398       // We got the start address from the load commands, so now resolve that
5399       // address in the sections of this ObjectFile:
5400       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5401               start_address, GetSectionList())) {
5402         m_entry_point_address.Clear();
5403       }
5404     } else {
5405       // We couldn't read the UnixThread load command - maybe it wasn't there.
5406       // As a fallback look for the "start" symbol in the main executable.
5407 
5408       ModuleSP module_sp(GetModule());
5409 
5410       if (module_sp) {
5411         SymbolContextList contexts;
5412         SymbolContext context;
5413         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5414                                               eSymbolTypeCode, contexts);
5415         if (contexts.GetSize()) {
5416           if (contexts.GetContextAtIndex(0, context))
5417             m_entry_point_address = context.symbol->GetAddress();
5418         }
5419       }
5420     }
5421   }
5422 
5423   return m_entry_point_address;
5424 }
5425 
5426 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5427   lldb_private::Address header_addr;
5428   SectionList *section_list = GetSectionList();
5429   if (section_list) {
5430     SectionSP text_segment_sp(
5431         section_list->FindSectionByName(GetSegmentNameTEXT()));
5432     if (text_segment_sp) {
5433       header_addr.SetSection(text_segment_sp);
5434       header_addr.SetOffset(0);
5435     }
5436   }
5437   return header_addr;
5438 }
5439 
5440 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5441   ModuleSP module_sp(GetModule());
5442   if (module_sp) {
5443     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5444     if (!m_thread_context_offsets_valid) {
5445       m_thread_context_offsets_valid = true;
5446       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5447       FileRangeArray::Entry file_range;
5448       llvm::MachO::thread_command thread_cmd;
5449       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5450         const uint32_t cmd_offset = offset;
5451         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5452           break;
5453 
5454         if (thread_cmd.cmd == LC_THREAD) {
5455           file_range.SetRangeBase(offset);
5456           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5457           m_thread_context_offsets.Append(file_range);
5458         }
5459         offset = cmd_offset + thread_cmd.cmdsize;
5460       }
5461     }
5462   }
5463   return m_thread_context_offsets.GetSize();
5464 }
5465 
5466 std::vector<std::tuple<offset_t, offset_t>>
5467 ObjectFileMachO::FindLC_NOTEByName(std::string name) {
5468   std::vector<std::tuple<offset_t, offset_t>> results;
5469   ModuleSP module_sp(GetModule());
5470   if (module_sp) {
5471     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5472 
5473     offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5474     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5475       const uint32_t cmd_offset = offset;
5476       llvm::MachO::load_command lc = {};
5477       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5478         break;
5479       if (lc.cmd == LC_NOTE) {
5480         char data_owner[17];
5481         m_data.CopyData(offset, 16, data_owner);
5482         data_owner[16] = '\0';
5483         offset += 16;
5484 
5485         if (name == data_owner) {
5486           offset_t payload_offset = m_data.GetU64_unchecked(&offset);
5487           offset_t payload_size = m_data.GetU64_unchecked(&offset);
5488           results.push_back({payload_offset, payload_size});
5489         }
5490       }
5491       offset = cmd_offset + lc.cmdsize;
5492     }
5493   }
5494   return results;
5495 }
5496 
5497 std::string ObjectFileMachO::GetIdentifierString() {
5498   Log *log(
5499       GetLog(LLDBLog::Symbols | LLDBLog::Process | LLDBLog::DynamicLoader));
5500   ModuleSP module_sp(GetModule());
5501   if (module_sp) {
5502     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5503 
5504     auto lc_notes = FindLC_NOTEByName("kern ver str");
5505     for (auto lc_note : lc_notes) {
5506       offset_t payload_offset = std::get<0>(lc_note);
5507       offset_t payload_size = std::get<1>(lc_note);
5508       uint32_t version;
5509       if (m_data.GetU32(&payload_offset, &version, 1) != nullptr) {
5510         if (version == 1) {
5511           uint32_t strsize = payload_size - sizeof(uint32_t);
5512           std::string result(strsize, '\0');
5513           m_data.CopyData(payload_offset, strsize, result.data());
5514           LLDB_LOGF(log, "LC_NOTE 'kern ver str' found with text '%s'",
5515                     result.c_str());
5516           return result;
5517         }
5518       }
5519     }
5520 
5521     // Second, make a pass over the load commands looking for an obsolete
5522     // LC_IDENT load command.
5523     offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5524     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5525       const uint32_t cmd_offset = offset;
5526       llvm::MachO::ident_command ident_command;
5527       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5528         break;
5529       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5530         std::string result(ident_command.cmdsize, '\0');
5531         if (m_data.CopyData(offset, ident_command.cmdsize, result.data()) ==
5532             ident_command.cmdsize) {
5533           LLDB_LOGF(log, "LC_IDENT found with text '%s'", result.c_str());
5534           return result;
5535         }
5536       }
5537       offset = cmd_offset + ident_command.cmdsize;
5538     }
5539   }
5540   return {};
5541 }
5542 
5543 AddressableBits ObjectFileMachO::GetAddressableBits() {
5544   AddressableBits addressable_bits;
5545 
5546   Log *log(GetLog(LLDBLog::Process));
5547   ModuleSP module_sp(GetModule());
5548   if (module_sp) {
5549     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5550     auto lc_notes = FindLC_NOTEByName("addrable bits");
5551     for (auto lc_note : lc_notes) {
5552       offset_t payload_offset = std::get<0>(lc_note);
5553       uint32_t version;
5554       if (m_data.GetU32(&payload_offset, &version, 1) != nullptr) {
5555         if (version == 3) {
5556           uint32_t num_addr_bits = m_data.GetU32_unchecked(&payload_offset);
5557           addressable_bits.SetAddressableBits(num_addr_bits);
5558           LLDB_LOGF(log,
5559                     "LC_NOTE 'addrable bits' v3 found, value %d "
5560                     "bits",
5561                     num_addr_bits);
5562         }
5563         if (version == 4) {
5564           uint32_t lo_addr_bits = m_data.GetU32_unchecked(&payload_offset);
5565           uint32_t hi_addr_bits = m_data.GetU32_unchecked(&payload_offset);
5566 
5567           if (lo_addr_bits == hi_addr_bits)
5568             addressable_bits.SetAddressableBits(lo_addr_bits);
5569           else
5570             addressable_bits.SetAddressableBits(lo_addr_bits, hi_addr_bits);
5571           LLDB_LOGF(log, "LC_NOTE 'addrable bits' v4 found, value %d & %d bits",
5572                     lo_addr_bits, hi_addr_bits);
5573         }
5574       }
5575     }
5576   }
5577   return addressable_bits;
5578 }
5579 
5580 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &value,
5581                                                 bool &value_is_offset,
5582                                                 UUID &uuid,
5583                                                 ObjectFile::BinaryType &type) {
5584   Log *log(
5585       GetLog(LLDBLog::Symbols | LLDBLog::Process | LLDBLog::DynamicLoader));
5586   value = LLDB_INVALID_ADDRESS;
5587   value_is_offset = false;
5588   uuid.Clear();
5589   uint32_t log2_pagesize = 0; // not currently passed up to caller
5590   uint32_t platform = 0;      // not currently passed up to caller
5591   ModuleSP module_sp(GetModule());
5592   if (module_sp) {
5593     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5594 
5595     auto lc_notes = FindLC_NOTEByName("main bin spec");
5596     for (auto lc_note : lc_notes) {
5597       offset_t payload_offset = std::get<0>(lc_note);
5598 
5599       // struct main_bin_spec
5600       // {
5601       //     uint32_t version;       // currently 2
5602       //     uint32_t type;          // 0 == unspecified, 1 == kernel,
5603       //                             // 2 == user process,
5604       //                             // 3 == standalone binary
5605       //     uint64_t address;       // UINT64_MAX if address not specified
5606       //     uint64_t slide;         // slide, UINT64_MAX if unspecified
5607       //                             // 0 if no slide needs to be applied to
5608       //                             // file address
5609       //     uuid_t   uuid;          // all zero's if uuid not specified
5610       //     uint32_t log2_pagesize; // process page size in log base 2,
5611       //                             // e.g. 4k pages are 12.
5612       //                             // 0 for unspecified
5613       //     uint32_t platform;      // The Mach-O platform for this corefile.
5614       //                             // 0 for unspecified.
5615       //                             // The values are defined in
5616       //                             // <mach-o/loader.h>, PLATFORM_*.
5617       // } __attribute((packed));
5618 
5619       // "main bin spec" (main binary specification) data payload is
5620       // formatted:
5621       //    uint32_t version       [currently 1]
5622       //    uint32_t type          [0 == unspecified, 1 == kernel,
5623       //                            2 == user process, 3 == firmware ]
5624       //    uint64_t address       [ UINT64_MAX if address not specified ]
5625       //    uuid_t   uuid          [ all zero's if uuid not specified ]
5626       //    uint32_t log2_pagesize [ process page size in log base
5627       //                             2, e.g. 4k pages are 12.
5628       //                             0 for unspecified ]
5629       //    uint32_t unused        [ for alignment ]
5630 
5631       uint32_t version;
5632       if (m_data.GetU32(&payload_offset, &version, 1) != nullptr &&
5633           version <= 2) {
5634         uint32_t binspec_type = 0;
5635         uuid_t raw_uuid;
5636         memset(raw_uuid, 0, sizeof(uuid_t));
5637 
5638         if (!m_data.GetU32(&payload_offset, &binspec_type, 1))
5639           return false;
5640         if (!m_data.GetU64(&payload_offset, &value, 1))
5641           return false;
5642         uint64_t slide = LLDB_INVALID_ADDRESS;
5643         if (version > 1 && !m_data.GetU64(&payload_offset, &slide, 1))
5644           return false;
5645         if (value == LLDB_INVALID_ADDRESS && slide != LLDB_INVALID_ADDRESS) {
5646           value = slide;
5647           value_is_offset = true;
5648         }
5649 
5650         if (m_data.CopyData(payload_offset, sizeof(uuid_t), raw_uuid) != 0) {
5651           uuid = UUID(raw_uuid, sizeof(uuid_t));
5652           // convert the "main bin spec" type into our
5653           // ObjectFile::BinaryType enum
5654           const char *typestr = "unrecognized type";
5655           switch (binspec_type) {
5656           case 0:
5657             type = eBinaryTypeUnknown;
5658             typestr = "uknown";
5659             break;
5660           case 1:
5661             type = eBinaryTypeKernel;
5662             typestr = "xnu kernel";
5663             break;
5664           case 2:
5665             type = eBinaryTypeUser;
5666             typestr = "userland dyld";
5667             break;
5668           case 3:
5669             type = eBinaryTypeStandalone;
5670             typestr = "standalone";
5671             break;
5672           }
5673           LLDB_LOGF(log,
5674                     "LC_NOTE 'main bin spec' found, version %d type %d "
5675                     "(%s), value 0x%" PRIx64 " value-is-slide==%s uuid %s",
5676                     version, type, typestr, value,
5677                     value_is_offset ? "true" : "false",
5678                     uuid.GetAsString().c_str());
5679           if (!m_data.GetU32(&payload_offset, &log2_pagesize, 1))
5680             return false;
5681           if (version > 1 && !m_data.GetU32(&payload_offset, &platform, 1))
5682             return false;
5683           return true;
5684         }
5685       }
5686     }
5687   }
5688   return false;
5689 }
5690 
5691 bool ObjectFileMachO::GetCorefileThreadExtraInfos(
5692     std::vector<lldb::tid_t> &tids) {
5693   tids.clear();
5694   ModuleSP module_sp(GetModule());
5695   if (module_sp) {
5696     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5697 
5698     Log *log(GetLog(LLDBLog::Object | LLDBLog::Process | LLDBLog::Thread));
5699     auto lc_notes = FindLC_NOTEByName("process metadata");
5700     for (auto lc_note : lc_notes) {
5701       offset_t payload_offset = std::get<0>(lc_note);
5702       offset_t strsize = std::get<1>(lc_note);
5703       std::string buf(strsize, '\0');
5704       if (m_data.CopyData(payload_offset, strsize, buf.data()) != strsize) {
5705         LLDB_LOGF(log,
5706                   "Unable to read %" PRIu64
5707                   " bytes of 'process metadata' LC_NOTE JSON contents",
5708                   strsize);
5709         return false;
5710       }
5711       while (buf.back() == '\0')
5712         buf.resize(buf.size() - 1);
5713       StructuredData::ObjectSP object_sp = StructuredData::ParseJSON(buf);
5714       StructuredData::Dictionary *dict = object_sp->GetAsDictionary();
5715       if (!dict) {
5716         LLDB_LOGF(log, "Unable to read 'process metadata' LC_NOTE, did not "
5717                        "get a dictionary.");
5718         return false;
5719       }
5720       StructuredData::Array *threads;
5721       if (!dict->GetValueForKeyAsArray("threads", threads) || !threads) {
5722         LLDB_LOGF(log,
5723                   "'process metadata' LC_NOTE does not have a 'threads' key");
5724         return false;
5725       }
5726       if (threads->GetSize() != GetNumThreadContexts()) {
5727         LLDB_LOGF(log, "Unable to read 'process metadata' LC_NOTE, number of "
5728                        "threads does not match number of LC_THREADS.");
5729         return false;
5730       }
5731       const size_t num_threads = threads->GetSize();
5732       for (size_t i = 0; i < num_threads; i++) {
5733         std::optional<StructuredData::Dictionary *> maybe_thread =
5734             threads->GetItemAtIndexAsDictionary(i);
5735         if (!maybe_thread) {
5736           LLDB_LOGF(log,
5737                     "Unable to read 'process metadata' LC_NOTE, threads "
5738                     "array does not have a dictionary at index %zu.",
5739                     i);
5740           return false;
5741         }
5742         StructuredData::Dictionary *thread = *maybe_thread;
5743         lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
5744         if (thread->GetValueForKeyAsInteger<lldb::tid_t>("thread_id", tid))
5745           if (tid == 0)
5746             tid = LLDB_INVALID_THREAD_ID;
5747         tids.push_back(tid);
5748       }
5749 
5750       if (log) {
5751         StreamString logmsg;
5752         logmsg.Printf("LC_NOTE 'process metadata' found: ");
5753         dict->Dump(logmsg, /* pretty_print */ false);
5754         LLDB_LOGF(log, "%s", logmsg.GetData());
5755       }
5756       return true;
5757     }
5758   }
5759   return false;
5760 }
5761 
5762 lldb::RegisterContextSP
5763 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5764                                          lldb_private::Thread &thread) {
5765   lldb::RegisterContextSP reg_ctx_sp;
5766 
5767   ModuleSP module_sp(GetModule());
5768   if (module_sp) {
5769     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5770     if (!m_thread_context_offsets_valid)
5771       GetNumThreadContexts();
5772 
5773     const FileRangeArray::Entry *thread_context_file_range =
5774         m_thread_context_offsets.GetEntryAtIndex(idx);
5775     if (thread_context_file_range) {
5776 
5777       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5778                          thread_context_file_range->GetByteSize());
5779 
5780       switch (m_header.cputype) {
5781       case llvm::MachO::CPU_TYPE_ARM64:
5782       case llvm::MachO::CPU_TYPE_ARM64_32:
5783         reg_ctx_sp =
5784             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5785         break;
5786 
5787       case llvm::MachO::CPU_TYPE_ARM:
5788         reg_ctx_sp =
5789             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5790         break;
5791 
5792       case llvm::MachO::CPU_TYPE_I386:
5793         reg_ctx_sp =
5794             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5795         break;
5796 
5797       case llvm::MachO::CPU_TYPE_X86_64:
5798         reg_ctx_sp =
5799             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5800         break;
5801       }
5802     }
5803   }
5804   return reg_ctx_sp;
5805 }
5806 
5807 ObjectFile::Type ObjectFileMachO::CalculateType() {
5808   switch (m_header.filetype) {
5809   case MH_OBJECT: // 0x1u
5810     if (GetAddressByteSize() == 4) {
5811       // 32 bit kexts are just object files, but they do have a valid
5812       // UUID load command.
5813       if (GetUUID()) {
5814         // this checking for the UUID load command is not enough we could
5815         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5816         // this is required of kexts
5817         if (m_strata == eStrataInvalid)
5818           m_strata = eStrataKernel;
5819         return eTypeSharedLibrary;
5820       }
5821     }
5822     return eTypeObjectFile;
5823 
5824   case MH_EXECUTE:
5825     return eTypeExecutable; // 0x2u
5826   case MH_FVMLIB:
5827     return eTypeSharedLibrary; // 0x3u
5828   case MH_CORE:
5829     return eTypeCoreFile; // 0x4u
5830   case MH_PRELOAD:
5831     return eTypeSharedLibrary; // 0x5u
5832   case MH_DYLIB:
5833     return eTypeSharedLibrary; // 0x6u
5834   case MH_DYLINKER:
5835     return eTypeDynamicLinker; // 0x7u
5836   case MH_BUNDLE:
5837     return eTypeSharedLibrary; // 0x8u
5838   case MH_DYLIB_STUB:
5839     return eTypeStubLibrary; // 0x9u
5840   case MH_DSYM:
5841     return eTypeDebugInfo; // 0xAu
5842   case MH_KEXT_BUNDLE:
5843     return eTypeSharedLibrary; // 0xBu
5844   default:
5845     break;
5846   }
5847   return eTypeUnknown;
5848 }
5849 
5850 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5851   switch (m_header.filetype) {
5852   case MH_OBJECT: // 0x1u
5853   {
5854     // 32 bit kexts are just object files, but they do have a valid
5855     // UUID load command.
5856     if (GetUUID()) {
5857       // this checking for the UUID load command is not enough we could
5858       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5859       // this is required of kexts
5860       if (m_type == eTypeInvalid)
5861         m_type = eTypeSharedLibrary;
5862 
5863       return eStrataKernel;
5864     }
5865   }
5866     return eStrataUnknown;
5867 
5868   case MH_EXECUTE: // 0x2u
5869     // Check for the MH_DYLDLINK bit in the flags
5870     if (m_header.flags & MH_DYLDLINK) {
5871       return eStrataUser;
5872     } else {
5873       SectionList *section_list = GetSectionList();
5874       if (section_list) {
5875         static ConstString g_kld_section_name("__KLD");
5876         if (section_list->FindSectionByName(g_kld_section_name))
5877           return eStrataKernel;
5878       }
5879     }
5880     return eStrataRawImage;
5881 
5882   case MH_FVMLIB:
5883     return eStrataUser; // 0x3u
5884   case MH_CORE:
5885     return eStrataUnknown; // 0x4u
5886   case MH_PRELOAD:
5887     return eStrataRawImage; // 0x5u
5888   case MH_DYLIB:
5889     return eStrataUser; // 0x6u
5890   case MH_DYLINKER:
5891     return eStrataUser; // 0x7u
5892   case MH_BUNDLE:
5893     return eStrataUser; // 0x8u
5894   case MH_DYLIB_STUB:
5895     return eStrataUser; // 0x9u
5896   case MH_DSYM:
5897     return eStrataUnknown; // 0xAu
5898   case MH_KEXT_BUNDLE:
5899     return eStrataKernel; // 0xBu
5900   default:
5901     break;
5902   }
5903   return eStrataUnknown;
5904 }
5905 
5906 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5907   ModuleSP module_sp(GetModule());
5908   if (module_sp) {
5909     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5910     llvm::MachO::dylib_command load_cmd;
5911     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5912     uint32_t version_cmd = 0;
5913     uint64_t version = 0;
5914     uint32_t i;
5915     for (i = 0; i < m_header.ncmds; ++i) {
5916       const lldb::offset_t cmd_offset = offset;
5917       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5918         break;
5919 
5920       if (load_cmd.cmd == LC_ID_DYLIB) {
5921         if (version_cmd == 0) {
5922           version_cmd = load_cmd.cmd;
5923           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5924             break;
5925           version = load_cmd.dylib.current_version;
5926         }
5927         break; // Break for now unless there is another more complete version
5928                // number load command in the future.
5929       }
5930       offset = cmd_offset + load_cmd.cmdsize;
5931     }
5932 
5933     if (version_cmd == LC_ID_DYLIB) {
5934       unsigned major = (version & 0xFFFF0000ull) >> 16;
5935       unsigned minor = (version & 0x0000FF00ull) >> 8;
5936       unsigned subminor = (version & 0x000000FFull);
5937       return llvm::VersionTuple(major, minor, subminor);
5938     }
5939   }
5940   return llvm::VersionTuple();
5941 }
5942 
5943 ArchSpec ObjectFileMachO::GetArchitecture() {
5944   ModuleSP module_sp(GetModule());
5945   ArchSpec arch;
5946   if (module_sp) {
5947     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5948 
5949     return GetArchitecture(module_sp, m_header, m_data,
5950                            MachHeaderSizeFromMagic(m_header.magic));
5951   }
5952   return arch;
5953 }
5954 
5955 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5956                                                 addr_t &base_addr, UUID &uuid) {
5957   uuid.Clear();
5958   base_addr = LLDB_INVALID_ADDRESS;
5959   if (process && process->GetDynamicLoader()) {
5960     DynamicLoader *dl = process->GetDynamicLoader();
5961     LazyBool using_shared_cache;
5962     LazyBool private_shared_cache;
5963     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5964                                   private_shared_cache);
5965   }
5966   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5967   LLDB_LOGF(
5968       log,
5969       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5970       uuid.GetAsString().c_str(), base_addr);
5971 }
5972 
5973 // From dyld SPI header dyld_process_info.h
5974 typedef void *dyld_process_info;
5975 struct lldb_copy__dyld_process_cache_info {
5976   uuid_t cacheUUID;          // UUID of cache used by process
5977   uint64_t cacheBaseAddress; // load address of dyld shared cache
5978   bool noCache;              // process is running without a dyld cache
5979   bool privateCache; // process is using a private copy of its dyld cache
5980 };
5981 
5982 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5983 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5984 // errors. So we need to use the actual underlying types of task_t and
5985 // kern_return_t below.
5986 extern "C" unsigned int /*task_t*/ mach_task_self();
5987 
5988 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5989   uuid.Clear();
5990   base_addr = LLDB_INVALID_ADDRESS;
5991 
5992 #if defined(__APPLE__)
5993   uint8_t *(*dyld_get_all_image_infos)(void);
5994   dyld_get_all_image_infos =
5995       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5996   if (dyld_get_all_image_infos) {
5997     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5998     if (dyld_all_image_infos_address) {
5999       uint32_t *version = (uint32_t *)
6000           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
6001       if (*version >= 13) {
6002         uuid_t *sharedCacheUUID_address = 0;
6003         int wordsize = sizeof(uint8_t *);
6004         if (wordsize == 8) {
6005           sharedCacheUUID_address =
6006               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
6007                          160); // sharedCacheUUID <mach-o/dyld_images.h>
6008           if (*version >= 15)
6009             base_addr =
6010                 *(uint64_t
6011                       *)((uint8_t *)dyld_all_image_infos_address +
6012                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
6013         } else {
6014           sharedCacheUUID_address =
6015               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
6016                          84); // sharedCacheUUID <mach-o/dyld_images.h>
6017           if (*version >= 15) {
6018             base_addr = 0;
6019             base_addr =
6020                 *(uint32_t
6021                       *)((uint8_t *)dyld_all_image_infos_address +
6022                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
6023           }
6024         }
6025         uuid = UUID(sharedCacheUUID_address, sizeof(uuid_t));
6026       }
6027     }
6028   } else {
6029     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
6030     dyld_process_info (*dyld_process_info_create)(
6031         unsigned int /* task_t */ task, uint64_t timestamp,
6032         unsigned int /*kern_return_t*/ *kernelError);
6033     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
6034     void (*dyld_process_info_release)(dyld_process_info info);
6035 
6036     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
6037                                           unsigned int /*kern_return_t*/ *))
6038         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
6039     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
6040         RTLD_DEFAULT, "_dyld_process_info_get_cache");
6041     dyld_process_info_release =
6042         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
6043 
6044     if (dyld_process_info_create && dyld_process_info_get_cache) {
6045       unsigned int /*kern_return_t */ kern_ret;
6046       dyld_process_info process_info =
6047           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
6048       if (process_info) {
6049         struct lldb_copy__dyld_process_cache_info sc_info;
6050         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
6051         dyld_process_info_get_cache(process_info, &sc_info);
6052         if (sc_info.cacheBaseAddress != 0) {
6053           base_addr = sc_info.cacheBaseAddress;
6054           uuid = UUID(sc_info.cacheUUID, sizeof(uuid_t));
6055         }
6056         dyld_process_info_release(process_info);
6057       }
6058     }
6059   }
6060   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
6061   if (log && uuid.IsValid())
6062     LLDB_LOGF(log,
6063               "lldb's in-memory shared cache has a UUID of %s base address of "
6064               "0x%" PRIx64,
6065               uuid.GetAsString().c_str(), base_addr);
6066 #endif
6067 }
6068 
6069 static llvm::VersionTuple FindMinimumVersionInfo(DataExtractor &data,
6070                                                  lldb::offset_t offset,
6071                                                  size_t ncmds) {
6072   for (size_t i = 0; i < ncmds; i++) {
6073     const lldb::offset_t load_cmd_offset = offset;
6074     llvm::MachO::load_command lc = {};
6075     if (data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6076       break;
6077 
6078     uint32_t version = 0;
6079     if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6080         lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6081         lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6082         lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6083       // struct version_min_command {
6084       //   uint32_t cmd; // LC_VERSION_MIN_*
6085       //   uint32_t cmdsize;
6086       //   uint32_t version; // X.Y.Z encoded in nibbles xxxx.yy.zz
6087       //   uint32_t sdk;
6088       // };
6089       // We want to read version.
6090       version = data.GetU32(&offset);
6091     } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6092       // struct build_version_command {
6093       //   uint32_t cmd; // LC_BUILD_VERSION
6094       //   uint32_t cmdsize;
6095       //   uint32_t platform;
6096       //   uint32_t minos; // X.Y.Z encoded in nibbles xxxx.yy.zz
6097       //   uint32_t sdk;
6098       //   uint32_t ntools;
6099       // };
6100       // We want to read minos.
6101       offset += sizeof(uint32_t);     // Skip over platform
6102       version = data.GetU32(&offset); // Extract minos
6103     }
6104 
6105     if (version) {
6106       const uint32_t xxxx = version >> 16;
6107       const uint32_t yy = (version >> 8) & 0xffu;
6108       const uint32_t zz = version & 0xffu;
6109       if (xxxx)
6110         return llvm::VersionTuple(xxxx, yy, zz);
6111     }
6112     offset = load_cmd_offset + lc.cmdsize;
6113   }
6114   return llvm::VersionTuple();
6115 }
6116 
6117 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
6118   if (!m_min_os_version)
6119     m_min_os_version = FindMinimumVersionInfo(
6120         m_data, MachHeaderSizeFromMagic(m_header.magic), m_header.ncmds);
6121   return *m_min_os_version;
6122 }
6123 
6124 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6125   if (!m_sdk_versions)
6126     m_sdk_versions = FindMinimumVersionInfo(
6127         m_data, MachHeaderSizeFromMagic(m_header.magic), m_header.ncmds);
6128   return *m_sdk_versions;
6129 }
6130 
6131 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6132   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6133 }
6134 
6135 bool ObjectFileMachO::CanTrustAddressRanges() {
6136   // Dsymutil guarantees that the .debug_aranges accelerator is complete and can
6137   // be trusted by LLDB.
6138   return m_header.filetype == llvm::MachO::MH_DSYM;
6139 }
6140 
6141 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6142   return m_allow_assembly_emulation_unwind_plans;
6143 }
6144 
6145 Section *ObjectFileMachO::GetMachHeaderSection() {
6146   // Find the first address of the mach header which is the first non-zero file
6147   // sized section whose file offset is zero. This is the base file address of
6148   // the mach-o file which can be subtracted from the vmaddr of the other
6149   // segments found in memory and added to the load address
6150   ModuleSP module_sp = GetModule();
6151   if (!module_sp)
6152     return nullptr;
6153   SectionList *section_list = GetSectionList();
6154   if (!section_list)
6155     return nullptr;
6156 
6157   // Some binaries can have a TEXT segment with a non-zero file offset.
6158   // Binaries in the shared cache are one example.  Some hand-generated
6159   // binaries may not be laid out in the normal TEXT,DATA,LC_SYMTAB order
6160   // in the file, even though they're laid out correctly in vmaddr terms.
6161   SectionSP text_segment_sp =
6162       section_list->FindSectionByName(GetSegmentNameTEXT());
6163   if (text_segment_sp.get() && SectionIsLoadable(text_segment_sp.get()))
6164     return text_segment_sp.get();
6165 
6166   const size_t num_sections = section_list->GetSize();
6167   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6168     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6169     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6170       return section;
6171   }
6172 
6173   return nullptr;
6174 }
6175 
6176 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6177   if (!section)
6178     return false;
6179   if (section->IsThreadSpecific())
6180     return false;
6181   if (GetModule().get() != section->GetModule().get())
6182     return false;
6183   // firmware style binaries with llvm gcov segment do
6184   // not have that segment mapped into memory.
6185   if (section->GetName() == GetSegmentNameLLVM_COV()) {
6186     const Strata strata = GetStrata();
6187     if (strata == eStrataKernel || strata == eStrataRawImage)
6188       return false;
6189   }
6190   // Be careful with __LINKEDIT and __DWARF segments
6191   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6192       section->GetName() == GetSegmentNameDWARF()) {
6193     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6194     // this isn't a kernel binary like a kext or mach_kernel.
6195     const bool is_memory_image = (bool)m_process_wp.lock();
6196     const Strata strata = GetStrata();
6197     if (is_memory_image == false || strata == eStrataKernel)
6198       return false;
6199   }
6200   return true;
6201 }
6202 
6203 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6204     lldb::addr_t header_load_address, const Section *header_section,
6205     const Section *section) {
6206   ModuleSP module_sp = GetModule();
6207   if (module_sp && header_section && section &&
6208       header_load_address != LLDB_INVALID_ADDRESS) {
6209     lldb::addr_t file_addr = header_section->GetFileAddress();
6210     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6211       return section->GetFileAddress() - file_addr + header_load_address;
6212   }
6213   return LLDB_INVALID_ADDRESS;
6214 }
6215 
6216 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6217                                      bool value_is_offset) {
6218   Log *log(GetLog(LLDBLog::DynamicLoader));
6219   ModuleSP module_sp = GetModule();
6220   if (!module_sp)
6221     return false;
6222 
6223   SectionList *section_list = GetSectionList();
6224   if (!section_list)
6225     return false;
6226 
6227   size_t num_loaded_sections = 0;
6228   const size_t num_sections = section_list->GetSize();
6229 
6230   // Warn if some top-level segments map to the same address. The binary may be
6231   // malformed.
6232   const bool warn_multiple = true;
6233 
6234   if (log) {
6235     StreamString logmsg;
6236     logmsg << "ObjectFileMachO::SetLoadAddress ";
6237     if (GetFileSpec())
6238       logmsg << "path='" << GetFileSpec().GetPath() << "' ";
6239     if (GetUUID()) {
6240       logmsg << "uuid=" << GetUUID().GetAsString();
6241     }
6242     LLDB_LOGF(log, "%s", logmsg.GetData());
6243   }
6244   if (value_is_offset) {
6245     // "value" is an offset to apply to each top level segment
6246     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6247       // Iterate through the object file sections to find all of the
6248       // sections that size on disk (to avoid __PAGEZERO) and load them
6249       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6250       if (SectionIsLoadable(section_sp.get())) {
6251         LLDB_LOGF(log,
6252                   "ObjectFileMachO::SetLoadAddress segment '%s' load addr is "
6253                   "0x%" PRIx64,
6254                   section_sp->GetName().AsCString(),
6255                   section_sp->GetFileAddress() + value);
6256         if (target.SetSectionLoadAddress(section_sp,
6257                                          section_sp->GetFileAddress() + value,
6258                                          warn_multiple))
6259           ++num_loaded_sections;
6260       }
6261     }
6262   } else {
6263     // "value" is the new base address of the mach_header, adjust each
6264     // section accordingly
6265 
6266     Section *mach_header_section = GetMachHeaderSection();
6267     if (mach_header_section) {
6268       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6269         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6270 
6271         lldb::addr_t section_load_addr =
6272             CalculateSectionLoadAddressForMemoryImage(
6273                 value, mach_header_section, section_sp.get());
6274         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6275           LLDB_LOGF(log,
6276                     "ObjectFileMachO::SetLoadAddress segment '%s' load addr is "
6277                     "0x%" PRIx64,
6278                     section_sp->GetName().AsCString(), section_load_addr);
6279           if (target.SetSectionLoadAddress(section_sp, section_load_addr,
6280                                            warn_multiple))
6281             ++num_loaded_sections;
6282         }
6283       }
6284     }
6285   }
6286   return num_loaded_sections > 0;
6287 }
6288 
6289 struct all_image_infos_header {
6290   uint32_t version;         // currently 1
6291   uint32_t imgcount;        // number of binary images
6292   uint64_t entries_fileoff; // file offset in the corefile of where the array of
6293                             // struct entry's begin.
6294   uint32_t entries_size;    // size of 'struct entry'.
6295   uint32_t unused;
6296 };
6297 
6298 struct image_entry {
6299   uint64_t filepath_offset;  // offset in corefile to c-string of the file path,
6300                              // UINT64_MAX if unavailable.
6301   uuid_t uuid;               // uint8_t[16].  should be set to all zeroes if
6302                              // uuid is unknown.
6303   uint64_t load_address;     // UINT64_MAX if unknown.
6304   uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6305   uint32_t segment_count;    // The number of segments for this binary.
6306   uint32_t unused;
6307 
6308   image_entry() {
6309     filepath_offset = UINT64_MAX;
6310     memset(&uuid, 0, sizeof(uuid_t));
6311     segment_count = 0;
6312     load_address = UINT64_MAX;
6313     seg_addrs_offset = UINT64_MAX;
6314     unused = 0;
6315   }
6316   image_entry(const image_entry &rhs) {
6317     filepath_offset = rhs.filepath_offset;
6318     memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6319     segment_count = rhs.segment_count;
6320     seg_addrs_offset = rhs.seg_addrs_offset;
6321     load_address = rhs.load_address;
6322     unused = rhs.unused;
6323   }
6324 };
6325 
6326 struct segment_vmaddr {
6327   char segname[16];
6328   uint64_t vmaddr;
6329   uint64_t unused;
6330 
6331   segment_vmaddr() {
6332     memset(&segname, 0, 16);
6333     vmaddr = UINT64_MAX;
6334     unused = 0;
6335   }
6336   segment_vmaddr(const segment_vmaddr &rhs) {
6337     memcpy(&segname, &rhs.segname, 16);
6338     vmaddr = rhs.vmaddr;
6339     unused = rhs.unused;
6340   }
6341 };
6342 
6343 // Write the payload for the "all image infos" LC_NOTE into
6344 // the supplied all_image_infos_payload, assuming that this
6345 // will be written into the corefile starting at
6346 // initial_file_offset.
6347 //
6348 // The placement of this payload is a little tricky.  We're
6349 // laying this out as
6350 //
6351 // 1. header (struct all_image_info_header)
6352 // 2. Array of fixed-size (struct image_entry)'s, one
6353 //    per binary image present in the process.
6354 // 3. Arrays of (struct segment_vmaddr)'s, a varying number
6355 //    for each binary image.
6356 // 4. Variable length c-strings of binary image filepaths,
6357 //    one per binary.
6358 //
6359 // To compute where everything will be laid out in the
6360 // payload, we need to iterate over the images and calculate
6361 // how many segment_vmaddr structures each image will need,
6362 // and how long each image's filepath c-string is. There
6363 // are some multiple passes over the image list while calculating
6364 // everything.
6365 
6366 static offset_t
6367 CreateAllImageInfosPayload(const lldb::ProcessSP &process_sp,
6368                            offset_t initial_file_offset,
6369                            StreamString &all_image_infos_payload,
6370                            lldb_private::SaveCoreOptions &options) {
6371   Target &target = process_sp->GetTarget();
6372   ModuleList modules = target.GetImages();
6373 
6374   // stack-only corefiles have no reason to include binaries that
6375   // are not executing; we're trying to make the smallest corefile
6376   // we can, so leave the rest out.
6377   if (options.GetStyle() == SaveCoreStyle::eSaveCoreStackOnly)
6378     modules.Clear();
6379 
6380   std::set<std::string> executing_uuids;
6381   std::vector<ThreadSP> thread_list =
6382       process_sp->CalculateCoreFileThreadList(options);
6383   for (const ThreadSP &thread_sp : thread_list) {
6384     uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6385     for (uint32_t j = 0; j < stack_frame_count; j++) {
6386       StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6387       Address pc = stack_frame_sp->GetFrameCodeAddress();
6388       ModuleSP module_sp = pc.GetModule();
6389       if (module_sp) {
6390         UUID uuid = module_sp->GetUUID();
6391         if (uuid.IsValid()) {
6392           executing_uuids.insert(uuid.GetAsString());
6393           modules.AppendIfNeeded(module_sp);
6394         }
6395       }
6396     }
6397   }
6398   size_t modules_count = modules.GetSize();
6399 
6400   struct all_image_infos_header infos;
6401   infos.version = 1;
6402   infos.imgcount = modules_count;
6403   infos.entries_size = sizeof(image_entry);
6404   infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6405   infos.unused = 0;
6406 
6407   all_image_infos_payload.PutHex32(infos.version);
6408   all_image_infos_payload.PutHex32(infos.imgcount);
6409   all_image_infos_payload.PutHex64(infos.entries_fileoff);
6410   all_image_infos_payload.PutHex32(infos.entries_size);
6411   all_image_infos_payload.PutHex32(infos.unused);
6412 
6413   // First create the structures for all of the segment name+vmaddr vectors
6414   // for each module, so we will know the size of them as we add the
6415   // module entries.
6416   std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6417   for (size_t i = 0; i < modules_count; i++) {
6418     ModuleSP module = modules.GetModuleAtIndex(i);
6419 
6420     SectionList *sections = module->GetSectionList();
6421     size_t sections_count = sections->GetSize();
6422     std::vector<segment_vmaddr> segment_vmaddrs;
6423     for (size_t j = 0; j < sections_count; j++) {
6424       SectionSP section = sections->GetSectionAtIndex(j);
6425       if (!section->GetParent().get()) {
6426         addr_t vmaddr = section->GetLoadBaseAddress(&target);
6427         if (vmaddr == LLDB_INVALID_ADDRESS)
6428           continue;
6429         ConstString name = section->GetName();
6430         segment_vmaddr seg_vmaddr;
6431         // This is the uncommon case where strncpy is exactly
6432         // the right one, doesn't need to be nul terminated.
6433         // The segment name in a Mach-O LC_SEGMENT/LC_SEGMENT_64 is char[16] and
6434         // is not guaranteed to be nul-terminated if all 16 characters are
6435         // used.
6436         // coverity[buffer_size_warning]
6437         strncpy(seg_vmaddr.segname, name.AsCString(),
6438                 sizeof(seg_vmaddr.segname));
6439         seg_vmaddr.vmaddr = vmaddr;
6440         seg_vmaddr.unused = 0;
6441         segment_vmaddrs.push_back(seg_vmaddr);
6442       }
6443     }
6444     modules_segment_vmaddrs.push_back(segment_vmaddrs);
6445   }
6446 
6447   offset_t size_of_vmaddr_structs = 0;
6448   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6449     size_of_vmaddr_structs +=
6450         modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6451   }
6452 
6453   offset_t size_of_filepath_cstrings = 0;
6454   for (size_t i = 0; i < modules_count; i++) {
6455     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6456     size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6457   }
6458 
6459   // Calculate the file offsets of our "all image infos" payload in the
6460   // corefile. initial_file_offset the original value passed in to this method.
6461 
6462   offset_t start_of_entries =
6463       initial_file_offset + sizeof(all_image_infos_header);
6464   offset_t start_of_seg_vmaddrs =
6465       start_of_entries + sizeof(image_entry) * modules_count;
6466   offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6467 
6468   offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6469 
6470   // Now write the one-per-module 'struct image_entry' into the
6471   // StringStream; keep track of where the struct segment_vmaddr
6472   // entries for each module will end up in the corefile.
6473 
6474   offset_t current_string_offset = start_of_filenames;
6475   offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6476   std::vector<struct image_entry> image_entries;
6477   for (size_t i = 0; i < modules_count; i++) {
6478     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6479 
6480     struct image_entry ent;
6481     memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6482     if (modules_segment_vmaddrs[i].size() > 0) {
6483       ent.segment_count = modules_segment_vmaddrs[i].size();
6484       ent.seg_addrs_offset = current_segaddrs_offset;
6485     }
6486     ent.filepath_offset = current_string_offset;
6487     ObjectFile *objfile = module_sp->GetObjectFile();
6488     if (objfile) {
6489       Address base_addr(objfile->GetBaseAddress());
6490       if (base_addr.IsValid()) {
6491         ent.load_address = base_addr.GetLoadAddress(&target);
6492       }
6493     }
6494 
6495     all_image_infos_payload.PutHex64(ent.filepath_offset);
6496     all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6497     all_image_infos_payload.PutHex64(ent.load_address);
6498     all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6499     all_image_infos_payload.PutHex32(ent.segment_count);
6500 
6501     if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6502         executing_uuids.end())
6503       all_image_infos_payload.PutHex32(1);
6504     else
6505       all_image_infos_payload.PutHex32(0);
6506 
6507     current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6508     current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6509   }
6510 
6511   // Now write the struct segment_vmaddr entries into the StringStream.
6512 
6513   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6514     if (modules_segment_vmaddrs[i].size() == 0)
6515       continue;
6516     for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6517       all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6518       all_image_infos_payload.PutHex64(segvm.vmaddr);
6519       all_image_infos_payload.PutHex64(segvm.unused);
6520     }
6521   }
6522 
6523   for (size_t i = 0; i < modules_count; i++) {
6524     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6525     std::string filepath = module_sp->GetFileSpec().GetPath();
6526     all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6527   }
6528 
6529   return final_file_offset;
6530 }
6531 
6532 // Temp struct used to combine contiguous memory regions with
6533 // identical permissions.
6534 struct page_object {
6535   addr_t addr;
6536   addr_t size;
6537   uint32_t prot;
6538 };
6539 
6540 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6541                                lldb_private::SaveCoreOptions &options,
6542                                Status &error) {
6543   // The FileSpec and Process are already checked in PluginManager::SaveCore.
6544   assert(options.GetOutputFile().has_value());
6545   assert(process_sp);
6546   const FileSpec outfile = options.GetOutputFile().value();
6547 
6548   // MachO defaults to dirty pages
6549   if (options.GetStyle() == SaveCoreStyle::eSaveCoreUnspecified)
6550     options.SetStyle(eSaveCoreDirtyOnly);
6551 
6552   Target &target = process_sp->GetTarget();
6553   const ArchSpec target_arch = target.GetArchitecture();
6554   const llvm::Triple &target_triple = target_arch.GetTriple();
6555   if (target_triple.getVendor() == llvm::Triple::Apple &&
6556       (target_triple.getOS() == llvm::Triple::MacOSX ||
6557        target_triple.getOS() == llvm::Triple::IOS ||
6558        target_triple.getOS() == llvm::Triple::WatchOS ||
6559        target_triple.getOS() == llvm::Triple::TvOS ||
6560        target_triple.getOS() == llvm::Triple::XROS)) {
6561     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6562     // {
6563     bool make_core = false;
6564     switch (target_arch.GetMachine()) {
6565     case llvm::Triple::aarch64:
6566     case llvm::Triple::aarch64_32:
6567     case llvm::Triple::arm:
6568     case llvm::Triple::thumb:
6569     case llvm::Triple::x86:
6570     case llvm::Triple::x86_64:
6571       make_core = true;
6572       break;
6573     default:
6574       error = Status::FromErrorStringWithFormat(
6575           "unsupported core architecture: %s", target_triple.str().c_str());
6576       break;
6577     }
6578 
6579     if (make_core) {
6580       CoreFileMemoryRanges core_ranges;
6581       error = process_sp->CalculateCoreFileSaveRanges(options, core_ranges);
6582       if (error.Success()) {
6583         const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6584         const ByteOrder byte_order = target_arch.GetByteOrder();
6585         std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6586         for (const auto &core_range_info : core_ranges) {
6587           // TODO: Refactor RangeDataVector to have a data iterator.
6588           const auto &core_range = core_range_info.data;
6589           uint32_t cmd_type = LC_SEGMENT_64;
6590           uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6591           if (addr_byte_size == 4) {
6592             cmd_type = LC_SEGMENT;
6593             segment_size = sizeof(llvm::MachO::segment_command);
6594           }
6595           // Skip any ranges with no read/write/execute permissions and empty
6596           // ranges.
6597           if (core_range.lldb_permissions == 0 || core_range.range.size() == 0)
6598             continue;
6599           uint32_t vm_prot = 0;
6600           if (core_range.lldb_permissions & ePermissionsReadable)
6601             vm_prot |= VM_PROT_READ;
6602           if (core_range.lldb_permissions & ePermissionsWritable)
6603             vm_prot |= VM_PROT_WRITE;
6604           if (core_range.lldb_permissions & ePermissionsExecutable)
6605             vm_prot |= VM_PROT_EXECUTE;
6606           const addr_t vm_addr = core_range.range.start();
6607           const addr_t vm_size = core_range.range.size();
6608           llvm::MachO::segment_command_64 segment = {
6609               cmd_type,     // uint32_t cmd;
6610               segment_size, // uint32_t cmdsize;
6611               {0},          // char segname[16];
6612               vm_addr,      // uint64_t vmaddr;   // uint32_t for 32-bit Mach-O
6613               vm_size,      // uint64_t vmsize;   // uint32_t for 32-bit Mach-O
6614               0,            // uint64_t fileoff;  // uint32_t for 32-bit Mach-O
6615               vm_size,      // uint64_t filesize; // uint32_t for 32-bit Mach-O
6616               vm_prot,      // uint32_t maxprot;
6617               vm_prot,      // uint32_t initprot;
6618               0,            // uint32_t nsects;
6619               0};           // uint32_t flags;
6620           segment_load_commands.push_back(segment);
6621         }
6622 
6623         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6624 
6625         llvm::MachO::mach_header_64 mach_header;
6626         mach_header.magic = addr_byte_size == 8 ? MH_MAGIC_64 : MH_MAGIC;
6627         mach_header.cputype = target_arch.GetMachOCPUType();
6628         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6629         mach_header.filetype = MH_CORE;
6630         mach_header.ncmds = segment_load_commands.size();
6631         mach_header.flags = 0;
6632         mach_header.reserved = 0;
6633         ThreadList &thread_list = process_sp->GetThreadList();
6634         const uint32_t num_threads = thread_list.GetSize();
6635 
6636         // Make an array of LC_THREAD data items. Each one contains the
6637         // contents of the LC_THREAD load command. The data doesn't contain
6638         // the load command + load command size, we will add the load command
6639         // and load command size as we emit the data.
6640         std::vector<StreamString> LC_THREAD_datas(num_threads);
6641         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6642           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6643           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6644           LC_THREAD_data.SetByteOrder(byte_order);
6645         }
6646         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6647           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6648           if (thread_sp) {
6649             switch (mach_header.cputype) {
6650             case llvm::MachO::CPU_TYPE_ARM64:
6651             case llvm::MachO::CPU_TYPE_ARM64_32:
6652               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6653                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6654               break;
6655 
6656             case llvm::MachO::CPU_TYPE_ARM:
6657               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6658                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6659               break;
6660 
6661             case llvm::MachO::CPU_TYPE_I386:
6662               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6663                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6664               break;
6665 
6666             case llvm::MachO::CPU_TYPE_X86_64:
6667               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6668                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6669               break;
6670             }
6671           }
6672         }
6673 
6674         // The size of the load command is the size of the segments...
6675         if (addr_byte_size == 8) {
6676           mach_header.sizeofcmds = segment_load_commands.size() *
6677                                    sizeof(llvm::MachO::segment_command_64);
6678         } else {
6679           mach_header.sizeofcmds = segment_load_commands.size() *
6680                                    sizeof(llvm::MachO::segment_command);
6681         }
6682 
6683         // and the size of all LC_THREAD load command
6684         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6685           ++mach_header.ncmds;
6686           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6687         }
6688 
6689         // Bits will be set to indicate which bits are NOT used in
6690         // addressing in this process or 0 for unknown.
6691         uint64_t address_mask = process_sp->GetCodeAddressMask();
6692         if (address_mask != LLDB_INVALID_ADDRESS_MASK) {
6693           // LC_NOTE "addrable bits"
6694           mach_header.ncmds++;
6695           mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6696         }
6697 
6698         // LC_NOTE "process metadata"
6699         mach_header.ncmds++;
6700         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6701 
6702         // LC_NOTE "all image infos"
6703         mach_header.ncmds++;
6704         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6705 
6706         // Write the mach header
6707         buffer.PutHex32(mach_header.magic);
6708         buffer.PutHex32(mach_header.cputype);
6709         buffer.PutHex32(mach_header.cpusubtype);
6710         buffer.PutHex32(mach_header.filetype);
6711         buffer.PutHex32(mach_header.ncmds);
6712         buffer.PutHex32(mach_header.sizeofcmds);
6713         buffer.PutHex32(mach_header.flags);
6714         if (addr_byte_size == 8) {
6715           buffer.PutHex32(mach_header.reserved);
6716         }
6717 
6718         // Skip the mach header and all load commands and align to the next
6719         // 0x1000 byte boundary
6720         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6721 
6722         file_offset = llvm::alignTo(file_offset, 16);
6723         std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6724 
6725         // Add "addrable bits" LC_NOTE when an address mask is available
6726         if (address_mask != LLDB_INVALID_ADDRESS_MASK) {
6727           std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6728               new LCNoteEntry(addr_byte_size, byte_order));
6729           addrable_bits_lcnote_up->name = "addrable bits";
6730           addrable_bits_lcnote_up->payload_file_offset = file_offset;
6731           int bits = std::bitset<64>(~address_mask).count();
6732           addrable_bits_lcnote_up->payload.PutHex32(4); // version
6733           addrable_bits_lcnote_up->payload.PutHex32(
6734               bits); // # of bits used for low addresses
6735           addrable_bits_lcnote_up->payload.PutHex32(
6736               bits); // # of bits used for high addresses
6737           addrable_bits_lcnote_up->payload.PutHex32(0); // reserved
6738 
6739           file_offset += addrable_bits_lcnote_up->payload.GetSize();
6740 
6741           lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6742         }
6743 
6744         // Add "process metadata" LC_NOTE
6745         std::unique_ptr<LCNoteEntry> thread_extrainfo_lcnote_up(
6746             new LCNoteEntry(addr_byte_size, byte_order));
6747         thread_extrainfo_lcnote_up->name = "process metadata";
6748         thread_extrainfo_lcnote_up->payload_file_offset = file_offset;
6749 
6750         StructuredData::DictionarySP dict(
6751             std::make_shared<StructuredData::Dictionary>());
6752         StructuredData::ArraySP threads(
6753             std::make_shared<StructuredData::Array>());
6754         for (const ThreadSP &thread_sp :
6755              process_sp->CalculateCoreFileThreadList(options)) {
6756           StructuredData::DictionarySP thread(
6757               std::make_shared<StructuredData::Dictionary>());
6758           thread->AddIntegerItem("thread_id", thread_sp->GetID());
6759           threads->AddItem(thread);
6760         }
6761         dict->AddItem("threads", threads);
6762         StreamString strm;
6763         dict->Dump(strm, /* pretty */ false);
6764         thread_extrainfo_lcnote_up->payload.PutRawBytes(strm.GetData(),
6765                                                         strm.GetSize());
6766 
6767         file_offset += thread_extrainfo_lcnote_up->payload.GetSize();
6768         file_offset = llvm::alignTo(file_offset, 16);
6769         lc_notes.push_back(std::move(thread_extrainfo_lcnote_up));
6770 
6771         // Add "all image infos" LC_NOTE
6772         std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6773             new LCNoteEntry(addr_byte_size, byte_order));
6774         all_image_infos_lcnote_up->name = "all image infos";
6775         all_image_infos_lcnote_up->payload_file_offset = file_offset;
6776         file_offset = CreateAllImageInfosPayload(
6777             process_sp, file_offset, all_image_infos_lcnote_up->payload,
6778             options);
6779         lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6780 
6781         // Add LC_NOTE load commands
6782         for (auto &lcnote : lc_notes) {
6783           // Add the LC_NOTE load command to the file.
6784           buffer.PutHex32(LC_NOTE);
6785           buffer.PutHex32(sizeof(llvm::MachO::note_command));
6786           char namebuf[16];
6787           memset(namebuf, 0, sizeof(namebuf));
6788           // This is the uncommon case where strncpy is exactly
6789           // the right one, doesn't need to be nul terminated.
6790           // LC_NOTE name field is char[16] and is not guaranteed to be
6791           // nul-terminated.
6792           // coverity[buffer_size_warning]
6793           strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6794           buffer.PutRawBytes(namebuf, sizeof(namebuf));
6795           buffer.PutHex64(lcnote->payload_file_offset);
6796           buffer.PutHex64(lcnote->payload.GetSize());
6797         }
6798 
6799         // Align to 4096-byte page boundary for the LC_SEGMENTs.
6800         file_offset = llvm::alignTo(file_offset, 4096);
6801 
6802         for (auto &segment : segment_load_commands) {
6803           segment.fileoff = file_offset;
6804           file_offset += segment.filesize;
6805         }
6806 
6807         // Write out all of the LC_THREAD load commands
6808         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6809           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6810           buffer.PutHex32(LC_THREAD);
6811           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6812           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6813         }
6814 
6815         // Write out all of the segment load commands
6816         for (const auto &segment : segment_load_commands) {
6817           buffer.PutHex32(segment.cmd);
6818           buffer.PutHex32(segment.cmdsize);
6819           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6820           if (addr_byte_size == 8) {
6821             buffer.PutHex64(segment.vmaddr);
6822             buffer.PutHex64(segment.vmsize);
6823             buffer.PutHex64(segment.fileoff);
6824             buffer.PutHex64(segment.filesize);
6825           } else {
6826             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6827             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6828             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6829             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6830           }
6831           buffer.PutHex32(segment.maxprot);
6832           buffer.PutHex32(segment.initprot);
6833           buffer.PutHex32(segment.nsects);
6834           buffer.PutHex32(segment.flags);
6835         }
6836 
6837         std::string core_file_path(outfile.GetPath());
6838         auto core_file = FileSystem::Instance().Open(
6839             outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6840                          File::eOpenOptionCanCreate);
6841         if (!core_file) {
6842           error = Status::FromError(core_file.takeError());
6843         } else {
6844           // Read 1 page at a time
6845           uint8_t bytes[0x1000];
6846           // Write the mach header and load commands out to the core file
6847           size_t bytes_written = buffer.GetString().size();
6848           error =
6849               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6850           if (error.Success()) {
6851 
6852             for (auto &lcnote : lc_notes) {
6853               if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6854                   -1) {
6855                 error = Status::FromErrorStringWithFormat(
6856                     "Unable to seek to corefile pos "
6857                     "to write '%s' LC_NOTE payload",
6858                     lcnote->name.c_str());
6859                 return false;
6860               }
6861               bytes_written = lcnote->payload.GetSize();
6862               error = core_file.get()->Write(lcnote->payload.GetData(),
6863                                              bytes_written);
6864               if (!error.Success())
6865                 return false;
6866             }
6867 
6868             // Now write the file data for all memory segments in the process
6869             for (const auto &segment : segment_load_commands) {
6870               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6871                 error = Status::FromErrorStringWithFormat(
6872                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6873                     segment.fileoff, core_file_path.c_str());
6874                 break;
6875               }
6876 
6877               target.GetDebugger().GetAsyncOutputStream()->Printf(
6878                   "Saving %" PRId64
6879                   " bytes of data for memory region at 0x%" PRIx64 "\n",
6880                   segment.vmsize, segment.vmaddr);
6881               addr_t bytes_left = segment.vmsize;
6882               addr_t addr = segment.vmaddr;
6883               Status memory_read_error;
6884               while (bytes_left > 0 && error.Success()) {
6885                 const size_t bytes_to_read =
6886                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6887 
6888                 // In a savecore setting, we don't really care about caching,
6889                 // as the data is dumped and very likely never read again,
6890                 // so we call ReadMemoryFromInferior to bypass it.
6891                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6892                     addr, bytes, bytes_to_read, memory_read_error);
6893 
6894                 if (bytes_read == bytes_to_read) {
6895                   size_t bytes_written = bytes_read;
6896                   error = core_file.get()->Write(bytes, bytes_written);
6897                   bytes_left -= bytes_read;
6898                   addr += bytes_read;
6899                 } else {
6900                   // Some pages within regions are not readable, those should
6901                   // be zero filled
6902                   memset(bytes, 0, bytes_to_read);
6903                   size_t bytes_written = bytes_to_read;
6904                   error = core_file.get()->Write(bytes, bytes_written);
6905                   bytes_left -= bytes_to_read;
6906                   addr += bytes_to_read;
6907                 }
6908               }
6909             }
6910           }
6911         }
6912       }
6913     }
6914     return true; // This is the right plug to handle saving core files for
6915                  // this process
6916   }
6917   return false;
6918 }
6919 
6920 ObjectFileMachO::MachOCorefileAllImageInfos
6921 ObjectFileMachO::GetCorefileAllImageInfos() {
6922   MachOCorefileAllImageInfos image_infos;
6923   Log *log(GetLog(LLDBLog::Object | LLDBLog::Symbols | LLDBLog::Process |
6924                   LLDBLog::DynamicLoader));
6925 
6926   auto lc_notes = FindLC_NOTEByName("all image infos");
6927   for (auto lc_note : lc_notes) {
6928     offset_t payload_offset = std::get<0>(lc_note);
6929     // Read the struct all_image_infos_header.
6930     uint32_t version = m_data.GetU32(&payload_offset);
6931     if (version != 1) {
6932       return image_infos;
6933     }
6934     uint32_t imgcount = m_data.GetU32(&payload_offset);
6935     uint64_t entries_fileoff = m_data.GetU64(&payload_offset);
6936     // 'entries_size' is not used, nor is the 'unused' entry.
6937     //  offset += 4; // uint32_t entries_size;
6938     //  offset += 4; // uint32_t unused;
6939 
6940     LLDB_LOGF(log, "LC_NOTE 'all image infos' found version %d with %d images",
6941               version, imgcount);
6942     payload_offset = entries_fileoff;
6943     for (uint32_t i = 0; i < imgcount; i++) {
6944       // Read the struct image_entry.
6945       offset_t filepath_offset = m_data.GetU64(&payload_offset);
6946       uuid_t uuid;
6947       memcpy(&uuid, m_data.GetData(&payload_offset, sizeof(uuid_t)),
6948              sizeof(uuid_t));
6949       uint64_t load_address = m_data.GetU64(&payload_offset);
6950       offset_t seg_addrs_offset = m_data.GetU64(&payload_offset);
6951       uint32_t segment_count = m_data.GetU32(&payload_offset);
6952       uint32_t currently_executing = m_data.GetU32(&payload_offset);
6953 
6954       MachOCorefileImageEntry image_entry;
6955       image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6956       image_entry.uuid = UUID(uuid, sizeof(uuid_t));
6957       image_entry.load_address = load_address;
6958       image_entry.currently_executing = currently_executing;
6959 
6960       offset_t seg_vmaddrs_offset = seg_addrs_offset;
6961       for (uint32_t j = 0; j < segment_count; j++) {
6962         char segname[17];
6963         m_data.CopyData(seg_vmaddrs_offset, 16, segname);
6964         segname[16] = '\0';
6965         seg_vmaddrs_offset += 16;
6966         uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
6967         seg_vmaddrs_offset += 8; /* unused */
6968 
6969         std::tuple<ConstString, addr_t> new_seg{ConstString(segname), vmaddr};
6970         image_entry.segment_load_addresses.push_back(new_seg);
6971       }
6972       LLDB_LOGF(log, "  image entry: %s %s 0x%" PRIx64 " %s",
6973                 image_entry.filename.c_str(),
6974                 image_entry.uuid.GetAsString().c_str(),
6975                 image_entry.load_address,
6976                 image_entry.currently_executing ? "currently executing"
6977                                                 : "not currently executing");
6978       image_infos.all_image_infos.push_back(image_entry);
6979     }
6980   }
6981 
6982   lc_notes = FindLC_NOTEByName("load binary");
6983   for (auto lc_note : lc_notes) {
6984     offset_t payload_offset = std::get<0>(lc_note);
6985     uint32_t version = m_data.GetU32(&payload_offset);
6986     if (version == 1) {
6987       uuid_t uuid;
6988       memcpy(&uuid, m_data.GetData(&payload_offset, sizeof(uuid_t)),
6989              sizeof(uuid_t));
6990       uint64_t load_address = m_data.GetU64(&payload_offset);
6991       uint64_t slide = m_data.GetU64(&payload_offset);
6992       std::string filename = m_data.GetCStr(&payload_offset);
6993 
6994       MachOCorefileImageEntry image_entry;
6995       image_entry.filename = filename;
6996       image_entry.uuid = UUID(uuid, sizeof(uuid_t));
6997       image_entry.load_address = load_address;
6998       image_entry.slide = slide;
6999       image_entry.currently_executing = true;
7000       image_infos.all_image_infos.push_back(image_entry);
7001       LLDB_LOGF(log,
7002                 "LC_NOTE 'load binary' found, filename %s uuid %s load "
7003                 "address 0x%" PRIx64 " slide 0x%" PRIx64,
7004                 filename.c_str(),
7005                 image_entry.uuid.IsValid()
7006                     ? image_entry.uuid.GetAsString().c_str()
7007                     : "00000000-0000-0000-0000-000000000000",
7008                 load_address, slide);
7009     }
7010   }
7011 
7012   return image_infos;
7013 }
7014 
7015 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
7016   MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
7017   Log *log = GetLog(LLDBLog::Object | LLDBLog::DynamicLoader);
7018   Status error;
7019 
7020   bool found_platform_binary = false;
7021   ModuleList added_modules;
7022   for (MachOCorefileImageEntry &image : image_infos.all_image_infos) {
7023     ModuleSP module_sp, local_filesystem_module_sp;
7024 
7025     // If this is a platform binary, it has been loaded (or registered with
7026     // the DynamicLoader to be loaded), we don't need to do any further
7027     // processing.  We're not going to call ModulesDidLoad on this in this
7028     // method, so notify==true.
7029     if (process.GetTarget()
7030             .GetDebugger()
7031             .GetPlatformList()
7032             .LoadPlatformBinaryAndSetup(&process, image.load_address,
7033                                         true /* notify */)) {
7034       LLDB_LOGF(log,
7035                 "ObjectFileMachO::%s binary at 0x%" PRIx64
7036                 " is a platform binary, has been handled by a Platform plugin.",
7037                 __FUNCTION__, image.load_address);
7038       continue;
7039     }
7040 
7041     bool value_is_offset = image.load_address == LLDB_INVALID_ADDRESS;
7042     uint64_t value = value_is_offset ? image.slide : image.load_address;
7043     if (value_is_offset && value == LLDB_INVALID_ADDRESS) {
7044       // We have neither address nor slide; so we will find the binary
7045       // by UUID and load it at slide/offset 0.
7046       value = 0;
7047     }
7048 
7049     // We have either a UUID, or we have a load address which
7050     // and can try to read load commands and find a UUID.
7051     if (image.uuid.IsValid() ||
7052         (!value_is_offset && value != LLDB_INVALID_ADDRESS)) {
7053       const bool set_load_address = image.segment_load_addresses.size() == 0;
7054       const bool notify = false;
7055       // Userland Darwin binaries will have segment load addresses via
7056       // the `all image infos` LC_NOTE.
7057       const bool allow_memory_image_last_resort =
7058           image.segment_load_addresses.size();
7059       module_sp = DynamicLoader::LoadBinaryWithUUIDAndAddress(
7060           &process, image.filename, image.uuid, value, value_is_offset,
7061           image.currently_executing, notify, set_load_address,
7062           allow_memory_image_last_resort);
7063     }
7064 
7065     // We have a ModuleSP to load in the Target.  Load it at the
7066     // correct address/slide and notify/load scripting resources.
7067     if (module_sp) {
7068       added_modules.Append(module_sp, false /* notify */);
7069 
7070       // We have a list of segment load address
7071       if (image.segment_load_addresses.size() > 0) {
7072         if (log) {
7073           std::string uuidstr = image.uuid.GetAsString();
7074           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7075                       "UUID %s with section load addresses",
7076                       module_sp->GetFileSpec().GetPath().c_str(),
7077                       uuidstr.c_str());
7078         }
7079         for (auto name_vmaddr_tuple : image.segment_load_addresses) {
7080           SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
7081           if (sectlist) {
7082             SectionSP sect_sp =
7083                 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
7084             if (sect_sp) {
7085               process.GetTarget().SetSectionLoadAddress(
7086                   sect_sp, std::get<1>(name_vmaddr_tuple));
7087             }
7088           }
7089         }
7090       } else {
7091         if (log) {
7092           std::string uuidstr = image.uuid.GetAsString();
7093           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7094                       "UUID %s with %s 0x%" PRIx64,
7095                       module_sp->GetFileSpec().GetPath().c_str(),
7096                       uuidstr.c_str(),
7097                       value_is_offset ? "slide" : "load address", value);
7098         }
7099         bool changed;
7100         module_sp->SetLoadAddress(process.GetTarget(), value, value_is_offset,
7101                                   changed);
7102       }
7103     }
7104   }
7105   if (added_modules.GetSize() > 0) {
7106     process.GetTarget().ModulesDidLoad(added_modules);
7107     process.Flush();
7108     return true;
7109   }
7110   // Return true if the only binary we found was the platform binary,
7111   // and it was loaded outside the scope of this method.
7112   if (found_platform_binary)
7113     return true;
7114 
7115   // No binaries.
7116   return false;
7117 }
7118