xref: /llvm-project/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp (revision 0351dc522a25df0473a63b414a5bfde5814d3dc3)
1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ScopeExit.h"
10 #include "llvm/ADT/StringRef.h"
11 
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
15 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
16 #include "lldb/Core/Debugger.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Progress.h"
21 #include "lldb/Core/Section.h"
22 #include "lldb/Host/Host.h"
23 #include "lldb/Symbol/DWARFCallFrameInfo.h"
24 #include "lldb/Symbol/ObjectFile.h"
25 #include "lldb/Target/DynamicLoader.h"
26 #include "lldb/Target/MemoryRegionInfo.h"
27 #include "lldb/Target/Platform.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/SectionLoadList.h"
30 #include "lldb/Target/Target.h"
31 #include "lldb/Target/Thread.h"
32 #include "lldb/Target/ThreadList.h"
33 #include "lldb/Utility/ArchSpec.h"
34 #include "lldb/Utility/DataBuffer.h"
35 #include "lldb/Utility/FileSpec.h"
36 #include "lldb/Utility/FileSpecList.h"
37 #include "lldb/Utility/LLDBLog.h"
38 #include "lldb/Utility/Log.h"
39 #include "lldb/Utility/RangeMap.h"
40 #include "lldb/Utility/RegisterValue.h"
41 #include "lldb/Utility/Status.h"
42 #include "lldb/Utility/StreamString.h"
43 #include "lldb/Utility/Timer.h"
44 #include "lldb/Utility/UUID.h"
45 
46 #include "lldb/Host/SafeMachO.h"
47 
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/Support/FormatVariadic.h"
50 #include "llvm/Support/MemoryBuffer.h"
51 
52 #include "ObjectFileMachO.h"
53 
54 #if defined(__APPLE__)
55 #include <TargetConditionals.h>
56 // GetLLDBSharedCacheUUID() needs to call dlsym()
57 #include <dlfcn.h>
58 #include <mach/mach_init.h>
59 #include <mach/vm_map.h>
60 #include <lldb/Host/SafeMachO.h>
61 #endif
62 
63 #ifndef __APPLE__
64 #include "lldb/Utility/AppleUuidCompatibility.h"
65 #else
66 #include <uuid/uuid.h>
67 #endif
68 
69 #include <bitset>
70 #include <memory>
71 #include <optional>
72 
73 // Unfortunately the signpost header pulls in the system MachO header, too.
74 #ifdef CPU_TYPE_ARM
75 #undef CPU_TYPE_ARM
76 #endif
77 #ifdef CPU_TYPE_ARM64
78 #undef CPU_TYPE_ARM64
79 #endif
80 #ifdef CPU_TYPE_ARM64_32
81 #undef CPU_TYPE_ARM64_32
82 #endif
83 #ifdef CPU_TYPE_I386
84 #undef CPU_TYPE_I386
85 #endif
86 #ifdef CPU_TYPE_X86_64
87 #undef CPU_TYPE_X86_64
88 #endif
89 #ifdef MH_DYLINKER
90 #undef MH_DYLINKER
91 #endif
92 #ifdef MH_OBJECT
93 #undef MH_OBJECT
94 #endif
95 #ifdef LC_VERSION_MIN_MACOSX
96 #undef LC_VERSION_MIN_MACOSX
97 #endif
98 #ifdef LC_VERSION_MIN_IPHONEOS
99 #undef LC_VERSION_MIN_IPHONEOS
100 #endif
101 #ifdef LC_VERSION_MIN_TVOS
102 #undef LC_VERSION_MIN_TVOS
103 #endif
104 #ifdef LC_VERSION_MIN_WATCHOS
105 #undef LC_VERSION_MIN_WATCHOS
106 #endif
107 #ifdef LC_BUILD_VERSION
108 #undef LC_BUILD_VERSION
109 #endif
110 #ifdef PLATFORM_MACOS
111 #undef PLATFORM_MACOS
112 #endif
113 #ifdef PLATFORM_MACCATALYST
114 #undef PLATFORM_MACCATALYST
115 #endif
116 #ifdef PLATFORM_IOS
117 #undef PLATFORM_IOS
118 #endif
119 #ifdef PLATFORM_IOSSIMULATOR
120 #undef PLATFORM_IOSSIMULATOR
121 #endif
122 #ifdef PLATFORM_TVOS
123 #undef PLATFORM_TVOS
124 #endif
125 #ifdef PLATFORM_TVOSSIMULATOR
126 #undef PLATFORM_TVOSSIMULATOR
127 #endif
128 #ifdef PLATFORM_WATCHOS
129 #undef PLATFORM_WATCHOS
130 #endif
131 #ifdef PLATFORM_WATCHOSSIMULATOR
132 #undef PLATFORM_WATCHOSSIMULATOR
133 #endif
134 
135 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
136 using namespace lldb;
137 using namespace lldb_private;
138 using namespace llvm::MachO;
139 
140 static constexpr llvm::StringLiteral g_loader_path = "@loader_path";
141 static constexpr llvm::StringLiteral g_executable_path = "@executable_path";
142 
143 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
144 
145 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
146                                const char *alt_name, size_t reg_byte_size,
147                                Stream &data) {
148   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
149   if (reg_info == nullptr)
150     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
151   if (reg_info) {
152     lldb_private::RegisterValue reg_value;
153     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
154       if (reg_info->byte_size >= reg_byte_size)
155         data.Write(reg_value.GetBytes(), reg_byte_size);
156       else {
157         data.Write(reg_value.GetBytes(), reg_info->byte_size);
158         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
159           data.PutChar(0);
160       }
161       return;
162     }
163   }
164   // Just write zeros if all else fails
165   for (size_t i = 0; i < reg_byte_size; ++i)
166     data.PutChar(0);
167 }
168 
169 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
170 public:
171   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
172                                     const DataExtractor &data)
173       : RegisterContextDarwin_x86_64(thread, 0) {
174     SetRegisterDataFrom_LC_THREAD(data);
175   }
176 
177   void InvalidateAllRegisters() override {
178     // Do nothing... registers are always valid...
179   }
180 
181   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
182     lldb::offset_t offset = 0;
183     SetError(GPRRegSet, Read, -1);
184     SetError(FPURegSet, Read, -1);
185     SetError(EXCRegSet, Read, -1);
186     bool done = false;
187 
188     while (!done) {
189       int flavor = data.GetU32(&offset);
190       if (flavor == 0)
191         done = true;
192       else {
193         uint32_t i;
194         uint32_t count = data.GetU32(&offset);
195         switch (flavor) {
196         case GPRRegSet:
197           for (i = 0; i < count; ++i)
198             (&gpr.rax)[i] = data.GetU64(&offset);
199           SetError(GPRRegSet, Read, 0);
200           done = true;
201 
202           break;
203         case FPURegSet:
204           // TODO: fill in FPU regs....
205           // SetError (FPURegSet, Read, -1);
206           done = true;
207 
208           break;
209         case EXCRegSet:
210           exc.trapno = data.GetU32(&offset);
211           exc.err = data.GetU32(&offset);
212           exc.faultvaddr = data.GetU64(&offset);
213           SetError(EXCRegSet, Read, 0);
214           done = true;
215           break;
216         case 7:
217         case 8:
218         case 9:
219           // fancy flavors that encapsulate of the above flavors...
220           break;
221 
222         default:
223           done = true;
224           break;
225         }
226       }
227     }
228   }
229 
230   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
231     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
232     if (reg_ctx_sp) {
233       RegisterContext *reg_ctx = reg_ctx_sp.get();
234 
235       data.PutHex32(GPRRegSet); // Flavor
236       data.PutHex32(GPRWordCount);
237       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
238       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
239       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
240       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
241       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
242       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
243       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
244       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
245       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
246       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
247       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
248       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
249       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
250       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
251       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
252       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
253       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
254       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
255       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
256       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
257       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
258 
259       //            // Write out the FPU registers
260       //            const size_t fpu_byte_size = sizeof(FPU);
261       //            size_t bytes_written = 0;
262       //            data.PutHex32 (FPURegSet);
263       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
264       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
265       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
266       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
267       //            data);   // uint16_t    fcw;    // "fctrl"
268       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
269       //            data);  // uint16_t    fsw;    // "fstat"
270       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
271       //            data);   // uint8_t     ftw;    // "ftag"
272       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
273       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
274       //            data);     // uint16_t    fop;    // "fop"
275       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
276       //            data);    // uint32_t    ip;     // "fioff"
277       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
278       //            data);    // uint16_t    cs;     // "fiseg"
279       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
280       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
281       //            data);   // uint32_t    dp;     // "fooff"
282       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
283       //            data);    // uint16_t    ds;     // "foseg"
284       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
285       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
286       //            data);    // uint32_t    mxcsr;
287       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
288       //            4, data);// uint32_t    mxcsrmask;
289       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
290       //            sizeof(MMSReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
292       //            sizeof(MMSReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
294       //            sizeof(MMSReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
296       //            sizeof(MMSReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
298       //            sizeof(MMSReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
300       //            sizeof(MMSReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
302       //            sizeof(MMSReg), data);
303       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
304       //            sizeof(MMSReg), data);
305       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
306       //            sizeof(XMMReg), data);
307       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
308       //            sizeof(XMMReg), data);
309       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
310       //            sizeof(XMMReg), data);
311       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
312       //            sizeof(XMMReg), data);
313       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
314       //            sizeof(XMMReg), data);
315       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
316       //            sizeof(XMMReg), data);
317       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
318       //            sizeof(XMMReg), data);
319       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
320       //            sizeof(XMMReg), data);
321       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
322       //            sizeof(XMMReg), data);
323       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
324       //            sizeof(XMMReg), data);
325       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
326       //            sizeof(XMMReg), data);
327       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
328       //            sizeof(XMMReg), data);
329       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
330       //            sizeof(XMMReg), data);
331       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
332       //            sizeof(XMMReg), data);
333       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
334       //            sizeof(XMMReg), data);
335       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
336       //            sizeof(XMMReg), data);
337       //
338       //            // Fill rest with zeros
339       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
340       //            i)
341       //                data.PutChar(0);
342 
343       // Write out the EXC registers
344       data.PutHex32(EXCRegSet);
345       data.PutHex32(EXCWordCount);
346       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
347       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
348       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
349       return true;
350     }
351     return false;
352   }
353 
354 protected:
355   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
356 
357   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
358 
359   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
360 
361   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
362     return 0;
363   }
364 
365   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
366     return 0;
367   }
368 
369   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
370     return 0;
371   }
372 };
373 
374 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
375 public:
376   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
377                                   const DataExtractor &data)
378       : RegisterContextDarwin_i386(thread, 0) {
379     SetRegisterDataFrom_LC_THREAD(data);
380   }
381 
382   void InvalidateAllRegisters() override {
383     // Do nothing... registers are always valid...
384   }
385 
386   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
387     lldb::offset_t offset = 0;
388     SetError(GPRRegSet, Read, -1);
389     SetError(FPURegSet, Read, -1);
390     SetError(EXCRegSet, Read, -1);
391     bool done = false;
392 
393     while (!done) {
394       int flavor = data.GetU32(&offset);
395       if (flavor == 0)
396         done = true;
397       else {
398         uint32_t i;
399         uint32_t count = data.GetU32(&offset);
400         switch (flavor) {
401         case GPRRegSet:
402           for (i = 0; i < count; ++i)
403             (&gpr.eax)[i] = data.GetU32(&offset);
404           SetError(GPRRegSet, Read, 0);
405           done = true;
406 
407           break;
408         case FPURegSet:
409           // TODO: fill in FPU regs....
410           // SetError (FPURegSet, Read, -1);
411           done = true;
412 
413           break;
414         case EXCRegSet:
415           exc.trapno = data.GetU32(&offset);
416           exc.err = data.GetU32(&offset);
417           exc.faultvaddr = data.GetU32(&offset);
418           SetError(EXCRegSet, Read, 0);
419           done = true;
420           break;
421         case 7:
422         case 8:
423         case 9:
424           // fancy flavors that encapsulate of the above flavors...
425           break;
426 
427         default:
428           done = true;
429           break;
430         }
431       }
432     }
433   }
434 
435   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
436     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
437     if (reg_ctx_sp) {
438       RegisterContext *reg_ctx = reg_ctx_sp.get();
439 
440       data.PutHex32(GPRRegSet); // Flavor
441       data.PutHex32(GPRWordCount);
442       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
443       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
444       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
445       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
446       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
447       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
448       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
449       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
450       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
451       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
452       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
453       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
454       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
455       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
456       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
457       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
458 
459       // Write out the EXC registers
460       data.PutHex32(EXCRegSet);
461       data.PutHex32(EXCWordCount);
462       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
463       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
464       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
465       return true;
466     }
467     return false;
468   }
469 
470 protected:
471   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
472 
473   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
474 
475   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
476 
477   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
478     return 0;
479   }
480 
481   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
482     return 0;
483   }
484 
485   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
486     return 0;
487   }
488 };
489 
490 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
491 public:
492   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
493                                  const DataExtractor &data)
494       : RegisterContextDarwin_arm(thread, 0) {
495     SetRegisterDataFrom_LC_THREAD(data);
496   }
497 
498   void InvalidateAllRegisters() override {
499     // Do nothing... registers are always valid...
500   }
501 
502   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
503     lldb::offset_t offset = 0;
504     SetError(GPRRegSet, Read, -1);
505     SetError(FPURegSet, Read, -1);
506     SetError(EXCRegSet, Read, -1);
507     bool done = false;
508 
509     while (!done) {
510       int flavor = data.GetU32(&offset);
511       uint32_t count = data.GetU32(&offset);
512       lldb::offset_t next_thread_state = offset + (count * 4);
513       switch (flavor) {
514       case GPRAltRegSet:
515       case GPRRegSet: {
516         // r0-r15, plus CPSR
517         uint32_t gpr_buf_count = (sizeof(gpr.r) / sizeof(gpr.r[0])) + 1;
518         if (count == gpr_buf_count) {
519           for (uint32_t i = 0; i < (count - 1); ++i) {
520             gpr.r[i] = data.GetU32(&offset);
521           }
522           gpr.cpsr = data.GetU32(&offset);
523 
524           SetError(GPRRegSet, Read, 0);
525         }
526       }
527         offset = next_thread_state;
528         break;
529 
530       case FPURegSet: {
531         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats;
532         const int fpu_reg_buf_size = sizeof(fpu.floats);
533         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
534                               fpu_reg_buf) == fpu_reg_buf_size) {
535           offset += fpu_reg_buf_size;
536           fpu.fpscr = data.GetU32(&offset);
537           SetError(FPURegSet, Read, 0);
538         } else {
539           done = true;
540         }
541       }
542         offset = next_thread_state;
543         break;
544 
545       case EXCRegSet:
546         if (count == 3) {
547           exc.exception = data.GetU32(&offset);
548           exc.fsr = data.GetU32(&offset);
549           exc.far = data.GetU32(&offset);
550           SetError(EXCRegSet, Read, 0);
551         }
552         done = true;
553         offset = next_thread_state;
554         break;
555 
556       // Unknown register set flavor, stop trying to parse.
557       default:
558         done = true;
559       }
560     }
561   }
562 
563   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
564     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
565     if (reg_ctx_sp) {
566       RegisterContext *reg_ctx = reg_ctx_sp.get();
567 
568       data.PutHex32(GPRRegSet); // Flavor
569       data.PutHex32(GPRWordCount);
570       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
571       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
572       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
573       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
574       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
575       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
576       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
577       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
578       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
579       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
580       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
581       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
582       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
583       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
584       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
585       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
586       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
587 
588       // Write out the EXC registers
589       //            data.PutHex32 (EXCRegSet);
590       //            data.PutHex32 (EXCWordCount);
591       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
592       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
593       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
594       return true;
595     }
596     return false;
597   }
598 
599 protected:
600   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
601 
602   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
603 
604   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
605 
606   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
607 
608   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
609     return 0;
610   }
611 
612   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
613     return 0;
614   }
615 
616   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
617     return 0;
618   }
619 
620   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
621     return -1;
622   }
623 };
624 
625 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
626 public:
627   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
628                                    const DataExtractor &data)
629       : RegisterContextDarwin_arm64(thread, 0) {
630     SetRegisterDataFrom_LC_THREAD(data);
631   }
632 
633   void InvalidateAllRegisters() override {
634     // Do nothing... registers are always valid...
635   }
636 
637   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
638     lldb::offset_t offset = 0;
639     SetError(GPRRegSet, Read, -1);
640     SetError(FPURegSet, Read, -1);
641     SetError(EXCRegSet, Read, -1);
642     bool done = false;
643     while (!done) {
644       int flavor = data.GetU32(&offset);
645       uint32_t count = data.GetU32(&offset);
646       lldb::offset_t next_thread_state = offset + (count * 4);
647       switch (flavor) {
648       case GPRRegSet:
649         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
650         // 32-bit register)
651         if (count >= (33 * 2) + 1) {
652           for (uint32_t i = 0; i < 29; ++i)
653             gpr.x[i] = data.GetU64(&offset);
654           gpr.fp = data.GetU64(&offset);
655           gpr.lr = data.GetU64(&offset);
656           gpr.sp = data.GetU64(&offset);
657           gpr.pc = data.GetU64(&offset);
658           gpr.cpsr = data.GetU32(&offset);
659           SetError(GPRRegSet, Read, 0);
660         }
661         offset = next_thread_state;
662         break;
663       case FPURegSet: {
664         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
665         const int fpu_reg_buf_size = sizeof(fpu);
666         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
667             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
668                               fpu_reg_buf) == fpu_reg_buf_size) {
669           SetError(FPURegSet, Read, 0);
670         } else {
671           done = true;
672         }
673       }
674         offset = next_thread_state;
675         break;
676       case EXCRegSet:
677         if (count == 4) {
678           exc.far = data.GetU64(&offset);
679           exc.esr = data.GetU32(&offset);
680           exc.exception = data.GetU32(&offset);
681           SetError(EXCRegSet, Read, 0);
682         }
683         offset = next_thread_state;
684         break;
685       default:
686         done = true;
687         break;
688       }
689     }
690   }
691 
692   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
693     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
694     if (reg_ctx_sp) {
695       RegisterContext *reg_ctx = reg_ctx_sp.get();
696 
697       data.PutHex32(GPRRegSet); // Flavor
698       data.PutHex32(GPRWordCount);
699       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
700       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
701       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
702       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
703       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
704       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
705       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
706       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
707       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
708       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
709       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
710       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
711       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
712       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
713       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
714       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
715       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
716       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
717       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
718       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
719       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
720       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
721       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
722       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
723       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
724       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
725       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
726       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
727       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
728       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
729       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
730       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
731       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
732       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
733       data.PutHex32(0); // uint32_t pad at the end
734 
735       // Write out the EXC registers
736       data.PutHex32(EXCRegSet);
737       data.PutHex32(EXCWordCount);
738       PrintRegisterValue(reg_ctx, "far", nullptr, 8, data);
739       PrintRegisterValue(reg_ctx, "esr", nullptr, 4, data);
740       PrintRegisterValue(reg_ctx, "exception", nullptr, 4, data);
741       return true;
742     }
743     return false;
744   }
745 
746 protected:
747   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
748 
749   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
750 
751   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
752 
753   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
754 
755   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
756     return 0;
757   }
758 
759   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
760     return 0;
761   }
762 
763   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
764     return 0;
765   }
766 
767   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
768     return -1;
769   }
770 };
771 
772 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
773   switch (magic) {
774   case MH_MAGIC:
775   case MH_CIGAM:
776     return sizeof(struct llvm::MachO::mach_header);
777 
778   case MH_MAGIC_64:
779   case MH_CIGAM_64:
780     return sizeof(struct llvm::MachO::mach_header_64);
781     break;
782 
783   default:
784     break;
785   }
786   return 0;
787 }
788 
789 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
790 
791 char ObjectFileMachO::ID;
792 
793 void ObjectFileMachO::Initialize() {
794   PluginManager::RegisterPlugin(
795       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
796       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
797 }
798 
799 void ObjectFileMachO::Terminate() {
800   PluginManager::UnregisterPlugin(CreateInstance);
801 }
802 
803 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
804                                             DataBufferSP data_sp,
805                                             lldb::offset_t data_offset,
806                                             const FileSpec *file,
807                                             lldb::offset_t file_offset,
808                                             lldb::offset_t length) {
809   if (!data_sp) {
810     data_sp = MapFileData(*file, length, file_offset);
811     if (!data_sp)
812       return nullptr;
813     data_offset = 0;
814   }
815 
816   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
817     return nullptr;
818 
819   // Update the data to contain the entire file if it doesn't already
820   if (data_sp->GetByteSize() < length) {
821     data_sp = MapFileData(*file, length, file_offset);
822     if (!data_sp)
823       return nullptr;
824     data_offset = 0;
825   }
826   auto objfile_up = std::make_unique<ObjectFileMachO>(
827       module_sp, data_sp, data_offset, file, file_offset, length);
828   if (!objfile_up || !objfile_up->ParseHeader())
829     return nullptr;
830 
831   return objfile_up.release();
832 }
833 
834 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
835     const lldb::ModuleSP &module_sp, WritableDataBufferSP data_sp,
836     const ProcessSP &process_sp, lldb::addr_t header_addr) {
837   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
838     std::unique_ptr<ObjectFile> objfile_up(
839         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
840     if (objfile_up.get() && objfile_up->ParseHeader())
841       return objfile_up.release();
842   }
843   return nullptr;
844 }
845 
846 size_t ObjectFileMachO::GetModuleSpecifications(
847     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
848     lldb::offset_t data_offset, lldb::offset_t file_offset,
849     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
850   const size_t initial_count = specs.GetSize();
851 
852   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
853     DataExtractor data;
854     data.SetData(data_sp);
855     llvm::MachO::mach_header header;
856     if (ParseHeader(data, &data_offset, header)) {
857       size_t header_and_load_cmds =
858           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
859       if (header_and_load_cmds >= data_sp->GetByteSize()) {
860         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
861         data.SetData(data_sp);
862         data_offset = MachHeaderSizeFromMagic(header.magic);
863       }
864       if (data_sp) {
865         ModuleSpec base_spec;
866         base_spec.GetFileSpec() = file;
867         base_spec.SetObjectOffset(file_offset);
868         base_spec.SetObjectSize(length);
869         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
870       }
871     }
872   }
873   return specs.GetSize() - initial_count;
874 }
875 
876 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
877   static ConstString g_segment_name_TEXT("__TEXT");
878   return g_segment_name_TEXT;
879 }
880 
881 ConstString ObjectFileMachO::GetSegmentNameDATA() {
882   static ConstString g_segment_name_DATA("__DATA");
883   return g_segment_name_DATA;
884 }
885 
886 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
887   static ConstString g_segment_name("__DATA_DIRTY");
888   return g_segment_name;
889 }
890 
891 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
892   static ConstString g_segment_name("__DATA_CONST");
893   return g_segment_name;
894 }
895 
896 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
897   static ConstString g_segment_name_OBJC("__OBJC");
898   return g_segment_name_OBJC;
899 }
900 
901 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
902   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
903   return g_section_name_LINKEDIT;
904 }
905 
906 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
907   static ConstString g_section_name("__DWARF");
908   return g_section_name;
909 }
910 
911 ConstString ObjectFileMachO::GetSegmentNameLLVM_COV() {
912   static ConstString g_section_name("__LLVM_COV");
913   return g_section_name;
914 }
915 
916 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
917   static ConstString g_section_name_eh_frame("__eh_frame");
918   return g_section_name_eh_frame;
919 }
920 
921 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP data_sp,
922                                       lldb::addr_t data_offset,
923                                       lldb::addr_t data_length) {
924   DataExtractor data;
925   data.SetData(data_sp, data_offset, data_length);
926   lldb::offset_t offset = 0;
927   uint32_t magic = data.GetU32(&offset);
928 
929   offset += 4; // cputype
930   offset += 4; // cpusubtype
931   uint32_t filetype = data.GetU32(&offset);
932 
933   // A fileset has a Mach-O header but is not an
934   // individual file and must be handled via an
935   // ObjectContainer plugin.
936   if (filetype == llvm::MachO::MH_FILESET)
937     return false;
938 
939   return MachHeaderSizeFromMagic(magic) != 0;
940 }
941 
942 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
943                                  DataBufferSP data_sp,
944                                  lldb::offset_t data_offset,
945                                  const FileSpec *file,
946                                  lldb::offset_t file_offset,
947                                  lldb::offset_t length)
948     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
949       m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(),
950       m_thread_context_offsets_valid(false), m_reexported_dylibs(),
951       m_allow_assembly_emulation_unwind_plans(true) {
952   ::memset(&m_header, 0, sizeof(m_header));
953   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
954 }
955 
956 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
957                                  lldb::WritableDataBufferSP header_data_sp,
958                                  const lldb::ProcessSP &process_sp,
959                                  lldb::addr_t header_addr)
960     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
961       m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(),
962       m_thread_context_offsets_valid(false), m_reexported_dylibs(),
963       m_allow_assembly_emulation_unwind_plans(true) {
964   ::memset(&m_header, 0, sizeof(m_header));
965   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
966 }
967 
968 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
969                                   lldb::offset_t *data_offset_ptr,
970                                   llvm::MachO::mach_header &header) {
971   data.SetByteOrder(endian::InlHostByteOrder());
972   // Leave magic in the original byte order
973   header.magic = data.GetU32(data_offset_ptr);
974   bool can_parse = false;
975   bool is_64_bit = false;
976   switch (header.magic) {
977   case MH_MAGIC:
978     data.SetByteOrder(endian::InlHostByteOrder());
979     data.SetAddressByteSize(4);
980     can_parse = true;
981     break;
982 
983   case MH_MAGIC_64:
984     data.SetByteOrder(endian::InlHostByteOrder());
985     data.SetAddressByteSize(8);
986     can_parse = true;
987     is_64_bit = true;
988     break;
989 
990   case MH_CIGAM:
991     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
992                           ? eByteOrderLittle
993                           : eByteOrderBig);
994     data.SetAddressByteSize(4);
995     can_parse = true;
996     break;
997 
998   case MH_CIGAM_64:
999     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1000                           ? eByteOrderLittle
1001                           : eByteOrderBig);
1002     data.SetAddressByteSize(8);
1003     is_64_bit = true;
1004     can_parse = true;
1005     break;
1006 
1007   default:
1008     break;
1009   }
1010 
1011   if (can_parse) {
1012     data.GetU32(data_offset_ptr, &header.cputype, 6);
1013     if (is_64_bit)
1014       *data_offset_ptr += 4;
1015     return true;
1016   } else {
1017     memset(&header, 0, sizeof(header));
1018   }
1019   return false;
1020 }
1021 
1022 bool ObjectFileMachO::ParseHeader() {
1023   ModuleSP module_sp(GetModule());
1024   if (!module_sp)
1025     return false;
1026 
1027   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1028   bool can_parse = false;
1029   lldb::offset_t offset = 0;
1030   m_data.SetByteOrder(endian::InlHostByteOrder());
1031   // Leave magic in the original byte order
1032   m_header.magic = m_data.GetU32(&offset);
1033   switch (m_header.magic) {
1034   case MH_MAGIC:
1035     m_data.SetByteOrder(endian::InlHostByteOrder());
1036     m_data.SetAddressByteSize(4);
1037     can_parse = true;
1038     break;
1039 
1040   case MH_MAGIC_64:
1041     m_data.SetByteOrder(endian::InlHostByteOrder());
1042     m_data.SetAddressByteSize(8);
1043     can_parse = true;
1044     break;
1045 
1046   case MH_CIGAM:
1047     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1048                             ? eByteOrderLittle
1049                             : eByteOrderBig);
1050     m_data.SetAddressByteSize(4);
1051     can_parse = true;
1052     break;
1053 
1054   case MH_CIGAM_64:
1055     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1056                             ? eByteOrderLittle
1057                             : eByteOrderBig);
1058     m_data.SetAddressByteSize(8);
1059     can_parse = true;
1060     break;
1061 
1062   default:
1063     break;
1064   }
1065 
1066   if (can_parse) {
1067     m_data.GetU32(&offset, &m_header.cputype, 6);
1068 
1069     ModuleSpecList all_specs;
1070     ModuleSpec base_spec;
1071     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1072                     base_spec, all_specs);
1073 
1074     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1075       ArchSpec mach_arch =
1076           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1077 
1078       // Check if the module has a required architecture
1079       const ArchSpec &module_arch = module_sp->GetArchitecture();
1080       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1081         continue;
1082 
1083       if (SetModulesArchitecture(mach_arch)) {
1084         const size_t header_and_lc_size =
1085             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1086         if (m_data.GetByteSize() < header_and_lc_size) {
1087           DataBufferSP data_sp;
1088           ProcessSP process_sp(m_process_wp.lock());
1089           if (process_sp) {
1090             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1091           } else {
1092             // Read in all only the load command data from the file on disk
1093             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1094             if (data_sp->GetByteSize() != header_and_lc_size)
1095               continue;
1096           }
1097           if (data_sp)
1098             m_data.SetData(data_sp);
1099         }
1100       }
1101       return true;
1102     }
1103     // None found.
1104     return false;
1105   } else {
1106     memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1107   }
1108   return false;
1109 }
1110 
1111 ByteOrder ObjectFileMachO::GetByteOrder() const {
1112   return m_data.GetByteOrder();
1113 }
1114 
1115 bool ObjectFileMachO::IsExecutable() const {
1116   return m_header.filetype == MH_EXECUTE;
1117 }
1118 
1119 bool ObjectFileMachO::IsDynamicLoader() const {
1120   return m_header.filetype == MH_DYLINKER;
1121 }
1122 
1123 bool ObjectFileMachO::IsSharedCacheBinary() const {
1124   return m_header.flags & MH_DYLIB_IN_CACHE;
1125 }
1126 
1127 bool ObjectFileMachO::IsKext() const {
1128   return m_header.filetype == MH_KEXT_BUNDLE;
1129 }
1130 
1131 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1132   return m_data.GetAddressByteSize();
1133 }
1134 
1135 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1136   Symtab *symtab = GetSymtab();
1137   if (!symtab)
1138     return AddressClass::eUnknown;
1139 
1140   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1141   if (symbol) {
1142     if (symbol->ValueIsAddress()) {
1143       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1144       if (section_sp) {
1145         const lldb::SectionType section_type = section_sp->GetType();
1146         switch (section_type) {
1147         case eSectionTypeInvalid:
1148           return AddressClass::eUnknown;
1149 
1150         case eSectionTypeCode:
1151           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1152             // For ARM we have a bit in the n_desc field of the symbol that
1153             // tells us ARM/Thumb which is bit 0x0008.
1154             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1155               return AddressClass::eCodeAlternateISA;
1156           }
1157           return AddressClass::eCode;
1158 
1159         case eSectionTypeContainer:
1160           return AddressClass::eUnknown;
1161 
1162         case eSectionTypeData:
1163         case eSectionTypeDataCString:
1164         case eSectionTypeDataCStringPointers:
1165         case eSectionTypeDataSymbolAddress:
1166         case eSectionTypeData4:
1167         case eSectionTypeData8:
1168         case eSectionTypeData16:
1169         case eSectionTypeDataPointers:
1170         case eSectionTypeZeroFill:
1171         case eSectionTypeDataObjCMessageRefs:
1172         case eSectionTypeDataObjCCFStrings:
1173         case eSectionTypeGoSymtab:
1174           return AddressClass::eData;
1175 
1176         case eSectionTypeDebug:
1177         case eSectionTypeDWARFDebugAbbrev:
1178         case eSectionTypeDWARFDebugAbbrevDwo:
1179         case eSectionTypeDWARFDebugAddr:
1180         case eSectionTypeDWARFDebugAranges:
1181         case eSectionTypeDWARFDebugCuIndex:
1182         case eSectionTypeDWARFDebugFrame:
1183         case eSectionTypeDWARFDebugInfo:
1184         case eSectionTypeDWARFDebugInfoDwo:
1185         case eSectionTypeDWARFDebugLine:
1186         case eSectionTypeDWARFDebugLineStr:
1187         case eSectionTypeDWARFDebugLoc:
1188         case eSectionTypeDWARFDebugLocDwo:
1189         case eSectionTypeDWARFDebugLocLists:
1190         case eSectionTypeDWARFDebugLocListsDwo:
1191         case eSectionTypeDWARFDebugMacInfo:
1192         case eSectionTypeDWARFDebugMacro:
1193         case eSectionTypeDWARFDebugNames:
1194         case eSectionTypeDWARFDebugPubNames:
1195         case eSectionTypeDWARFDebugPubTypes:
1196         case eSectionTypeDWARFDebugRanges:
1197         case eSectionTypeDWARFDebugRngLists:
1198         case eSectionTypeDWARFDebugRngListsDwo:
1199         case eSectionTypeDWARFDebugStr:
1200         case eSectionTypeDWARFDebugStrDwo:
1201         case eSectionTypeDWARFDebugStrOffsets:
1202         case eSectionTypeDWARFDebugStrOffsetsDwo:
1203         case eSectionTypeDWARFDebugTuIndex:
1204         case eSectionTypeDWARFDebugTypes:
1205         case eSectionTypeDWARFDebugTypesDwo:
1206         case eSectionTypeDWARFAppleNames:
1207         case eSectionTypeDWARFAppleTypes:
1208         case eSectionTypeDWARFAppleNamespaces:
1209         case eSectionTypeDWARFAppleObjC:
1210         case eSectionTypeDWARFGNUDebugAltLink:
1211         case eSectionTypeCTF:
1212         case eSectionTypeSwiftModules:
1213           return AddressClass::eDebug;
1214 
1215         case eSectionTypeEHFrame:
1216         case eSectionTypeARMexidx:
1217         case eSectionTypeARMextab:
1218         case eSectionTypeCompactUnwind:
1219           return AddressClass::eRuntime;
1220 
1221         case eSectionTypeAbsoluteAddress:
1222         case eSectionTypeELFSymbolTable:
1223         case eSectionTypeELFDynamicSymbols:
1224         case eSectionTypeELFRelocationEntries:
1225         case eSectionTypeELFDynamicLinkInfo:
1226         case eSectionTypeOther:
1227           return AddressClass::eUnknown;
1228         }
1229       }
1230     }
1231 
1232     const SymbolType symbol_type = symbol->GetType();
1233     switch (symbol_type) {
1234     case eSymbolTypeAny:
1235       return AddressClass::eUnknown;
1236     case eSymbolTypeAbsolute:
1237       return AddressClass::eUnknown;
1238 
1239     case eSymbolTypeCode:
1240     case eSymbolTypeTrampoline:
1241     case eSymbolTypeResolver:
1242       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1243         // For ARM we have a bit in the n_desc field of the symbol that tells
1244         // us ARM/Thumb which is bit 0x0008.
1245         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1246           return AddressClass::eCodeAlternateISA;
1247       }
1248       return AddressClass::eCode;
1249 
1250     case eSymbolTypeData:
1251       return AddressClass::eData;
1252     case eSymbolTypeRuntime:
1253       return AddressClass::eRuntime;
1254     case eSymbolTypeException:
1255       return AddressClass::eRuntime;
1256     case eSymbolTypeSourceFile:
1257       return AddressClass::eDebug;
1258     case eSymbolTypeHeaderFile:
1259       return AddressClass::eDebug;
1260     case eSymbolTypeObjectFile:
1261       return AddressClass::eDebug;
1262     case eSymbolTypeCommonBlock:
1263       return AddressClass::eDebug;
1264     case eSymbolTypeBlock:
1265       return AddressClass::eDebug;
1266     case eSymbolTypeLocal:
1267       return AddressClass::eData;
1268     case eSymbolTypeParam:
1269       return AddressClass::eData;
1270     case eSymbolTypeVariable:
1271       return AddressClass::eData;
1272     case eSymbolTypeVariableType:
1273       return AddressClass::eDebug;
1274     case eSymbolTypeLineEntry:
1275       return AddressClass::eDebug;
1276     case eSymbolTypeLineHeader:
1277       return AddressClass::eDebug;
1278     case eSymbolTypeScopeBegin:
1279       return AddressClass::eDebug;
1280     case eSymbolTypeScopeEnd:
1281       return AddressClass::eDebug;
1282     case eSymbolTypeAdditional:
1283       return AddressClass::eUnknown;
1284     case eSymbolTypeCompiler:
1285       return AddressClass::eDebug;
1286     case eSymbolTypeInstrumentation:
1287       return AddressClass::eDebug;
1288     case eSymbolTypeUndefined:
1289       return AddressClass::eUnknown;
1290     case eSymbolTypeObjCClass:
1291       return AddressClass::eRuntime;
1292     case eSymbolTypeObjCMetaClass:
1293       return AddressClass::eRuntime;
1294     case eSymbolTypeObjCIVar:
1295       return AddressClass::eRuntime;
1296     case eSymbolTypeReExported:
1297       return AddressClass::eRuntime;
1298     }
1299   }
1300   return AddressClass::eUnknown;
1301 }
1302 
1303 bool ObjectFileMachO::IsStripped() {
1304   if (m_dysymtab.cmd == 0) {
1305     ModuleSP module_sp(GetModule());
1306     if (module_sp) {
1307       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1308       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1309         const lldb::offset_t load_cmd_offset = offset;
1310 
1311         llvm::MachO::load_command lc = {};
1312         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1313           break;
1314         if (lc.cmd == LC_DYSYMTAB) {
1315           m_dysymtab.cmd = lc.cmd;
1316           m_dysymtab.cmdsize = lc.cmdsize;
1317           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1318                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1319               nullptr) {
1320             // Clear m_dysymtab if we were unable to read all items from the
1321             // load command
1322             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1323           }
1324         }
1325         offset = load_cmd_offset + lc.cmdsize;
1326       }
1327     }
1328   }
1329   if (m_dysymtab.cmd)
1330     return m_dysymtab.nlocalsym <= 1;
1331   return false;
1332 }
1333 
1334 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1335   EncryptedFileRanges result;
1336   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1337 
1338   llvm::MachO::encryption_info_command encryption_cmd;
1339   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1340     const lldb::offset_t load_cmd_offset = offset;
1341     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1342       break;
1343 
1344     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1345     // 3 fields we care about, so treat them the same.
1346     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1347         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1348       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1349         if (encryption_cmd.cryptid != 0) {
1350           EncryptedFileRanges::Entry entry;
1351           entry.SetRangeBase(encryption_cmd.cryptoff);
1352           entry.SetByteSize(encryption_cmd.cryptsize);
1353           result.Append(entry);
1354         }
1355       }
1356     }
1357     offset = load_cmd_offset + encryption_cmd.cmdsize;
1358   }
1359 
1360   return result;
1361 }
1362 
1363 void ObjectFileMachO::SanitizeSegmentCommand(
1364     llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1365   if (m_length == 0 || seg_cmd.filesize == 0)
1366     return;
1367 
1368   if (IsSharedCacheBinary() && !IsInMemory()) {
1369     // In shared cache images, the load commands are relative to the
1370     // shared cache file, and not the specific image we are
1371     // examining. Let's fix this up so that it looks like a normal
1372     // image.
1373     if (strncmp(seg_cmd.segname, GetSegmentNameTEXT().GetCString(),
1374                 sizeof(seg_cmd.segname)) == 0)
1375       m_text_address = seg_cmd.vmaddr;
1376     if (strncmp(seg_cmd.segname, GetSegmentNameLINKEDIT().GetCString(),
1377                 sizeof(seg_cmd.segname)) == 0)
1378       m_linkedit_original_offset = seg_cmd.fileoff;
1379 
1380     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1381   }
1382 
1383   if (seg_cmd.fileoff > m_length) {
1384     // We have a load command that says it extends past the end of the file.
1385     // This is likely a corrupt file.  We don't have any way to return an error
1386     // condition here (this method was likely invoked from something like
1387     // ObjectFile::GetSectionList()), so we just null out the section contents,
1388     // and dump a message to stdout.  The most common case here is core file
1389     // debugging with a truncated file.
1390     const char *lc_segment_name =
1391         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1392     GetModule()->ReportWarning(
1393         "load command {0} {1} has a fileoff ({2:x16}) that extends beyond "
1394         "the end of the file ({3:x16}), ignoring this section",
1395         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1396 
1397     seg_cmd.fileoff = 0;
1398     seg_cmd.filesize = 0;
1399   }
1400 
1401   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1402     // We have a load command that says it extends past the end of the file.
1403     // This is likely a corrupt file.  We don't have any way to return an error
1404     // condition here (this method was likely invoked from something like
1405     // ObjectFile::GetSectionList()), so we just null out the section contents,
1406     // and dump a message to stdout.  The most common case here is core file
1407     // debugging with a truncated file.
1408     const char *lc_segment_name =
1409         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1410     GetModule()->ReportWarning(
1411         "load command {0} {1} has a fileoff + filesize ({2:x16}) that "
1412         "extends beyond the end of the file ({4:x16}), the segment will be "
1413         "truncated to match",
1414         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1415 
1416     // Truncate the length
1417     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1418   }
1419 }
1420 
1421 static uint32_t
1422 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1423   uint32_t result = 0;
1424   if (seg_cmd.initprot & VM_PROT_READ)
1425     result |= ePermissionsReadable;
1426   if (seg_cmd.initprot & VM_PROT_WRITE)
1427     result |= ePermissionsWritable;
1428   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1429     result |= ePermissionsExecutable;
1430   return result;
1431 }
1432 
1433 static lldb::SectionType GetSectionType(uint32_t flags,
1434                                         ConstString section_name) {
1435 
1436   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1437     return eSectionTypeCode;
1438 
1439   uint32_t mach_sect_type = flags & SECTION_TYPE;
1440   static ConstString g_sect_name_objc_data("__objc_data");
1441   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1442   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1443   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1444   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1445   static ConstString g_sect_name_objc_const("__objc_const");
1446   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1447   static ConstString g_sect_name_cfstring("__cfstring");
1448 
1449   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1450   static ConstString g_sect_name_dwarf_debug_abbrev_dwo("__debug_abbrev.dwo");
1451   static ConstString g_sect_name_dwarf_debug_addr("__debug_addr");
1452   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1453   static ConstString g_sect_name_dwarf_debug_cu_index("__debug_cu_index");
1454   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1455   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1456   static ConstString g_sect_name_dwarf_debug_info_dwo("__debug_info.dwo");
1457   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1458   static ConstString g_sect_name_dwarf_debug_line_dwo("__debug_line.dwo");
1459   static ConstString g_sect_name_dwarf_debug_line_str("__debug_line_str");
1460   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1461   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1462   static ConstString g_sect_name_dwarf_debug_loclists_dwo("__debug_loclists.dwo");
1463   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1464   static ConstString g_sect_name_dwarf_debug_macro("__debug_macro");
1465   static ConstString g_sect_name_dwarf_debug_macro_dwo("__debug_macro.dwo");
1466   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1467   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1468   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1469   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1470   static ConstString g_sect_name_dwarf_debug_rnglists("__debug_rnglists");
1471   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1472   static ConstString g_sect_name_dwarf_debug_str_dwo("__debug_str.dwo");
1473   static ConstString g_sect_name_dwarf_debug_str_offs("__debug_str_offs");
1474   static ConstString g_sect_name_dwarf_debug_str_offs_dwo("__debug_str_offs.dwo");
1475   static ConstString g_sect_name_dwarf_debug_tu_index("__debug_tu_index");
1476   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1477   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1478   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1479   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1480   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1481   static ConstString g_sect_name_eh_frame("__eh_frame");
1482   static ConstString g_sect_name_compact_unwind("__unwind_info");
1483   static ConstString g_sect_name_text("__text");
1484   static ConstString g_sect_name_data("__data");
1485   static ConstString g_sect_name_go_symtab("__gosymtab");
1486   static ConstString g_sect_name_ctf("__ctf");
1487   static ConstString g_sect_name_swift_ast("__swift_ast");
1488 
1489   if (section_name == g_sect_name_dwarf_debug_abbrev)
1490     return eSectionTypeDWARFDebugAbbrev;
1491   if (section_name == g_sect_name_dwarf_debug_abbrev_dwo)
1492     return eSectionTypeDWARFDebugAbbrevDwo;
1493   if (section_name == g_sect_name_dwarf_debug_addr)
1494     return eSectionTypeDWARFDebugAddr;
1495   if (section_name == g_sect_name_dwarf_debug_aranges)
1496     return eSectionTypeDWARFDebugAranges;
1497   if (section_name == g_sect_name_dwarf_debug_cu_index)
1498     return eSectionTypeDWARFDebugCuIndex;
1499   if (section_name == g_sect_name_dwarf_debug_frame)
1500     return eSectionTypeDWARFDebugFrame;
1501   if (section_name == g_sect_name_dwarf_debug_info)
1502     return eSectionTypeDWARFDebugInfo;
1503   if (section_name == g_sect_name_dwarf_debug_info_dwo)
1504     return eSectionTypeDWARFDebugInfoDwo;
1505   if (section_name == g_sect_name_dwarf_debug_line)
1506     return eSectionTypeDWARFDebugLine;
1507   if (section_name == g_sect_name_dwarf_debug_line_dwo)
1508     return eSectionTypeDWARFDebugLine; // Same as debug_line.
1509   if (section_name == g_sect_name_dwarf_debug_line_str)
1510     return eSectionTypeDWARFDebugLineStr;
1511   if (section_name == g_sect_name_dwarf_debug_loc)
1512     return eSectionTypeDWARFDebugLoc;
1513   if (section_name == g_sect_name_dwarf_debug_loclists)
1514     return eSectionTypeDWARFDebugLocLists;
1515   if (section_name == g_sect_name_dwarf_debug_loclists_dwo)
1516     return eSectionTypeDWARFDebugLocListsDwo;
1517   if (section_name == g_sect_name_dwarf_debug_macinfo)
1518     return eSectionTypeDWARFDebugMacInfo;
1519   if (section_name == g_sect_name_dwarf_debug_macro)
1520     return eSectionTypeDWARFDebugMacro;
1521   if (section_name == g_sect_name_dwarf_debug_macro_dwo)
1522     return eSectionTypeDWARFDebugMacInfo; // Same as debug_macro.
1523   if (section_name == g_sect_name_dwarf_debug_names)
1524     return eSectionTypeDWARFDebugNames;
1525   if (section_name == g_sect_name_dwarf_debug_pubnames)
1526     return eSectionTypeDWARFDebugPubNames;
1527   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1528     return eSectionTypeDWARFDebugPubTypes;
1529   if (section_name == g_sect_name_dwarf_debug_ranges)
1530     return eSectionTypeDWARFDebugRanges;
1531   if (section_name == g_sect_name_dwarf_debug_rnglists)
1532     return eSectionTypeDWARFDebugRngLists;
1533   if (section_name == g_sect_name_dwarf_debug_str)
1534     return eSectionTypeDWARFDebugStr;
1535   if (section_name == g_sect_name_dwarf_debug_str_dwo)
1536     return eSectionTypeDWARFDebugStrDwo;
1537   if (section_name == g_sect_name_dwarf_debug_str_offs)
1538     return eSectionTypeDWARFDebugStrOffsets;
1539   if (section_name == g_sect_name_dwarf_debug_str_offs_dwo)
1540     return eSectionTypeDWARFDebugStrOffsetsDwo;
1541   if (section_name == g_sect_name_dwarf_debug_tu_index)
1542     return eSectionTypeDWARFDebugTuIndex;
1543   if (section_name == g_sect_name_dwarf_debug_types)
1544     return eSectionTypeDWARFDebugTypes;
1545   if (section_name == g_sect_name_dwarf_apple_names)
1546     return eSectionTypeDWARFAppleNames;
1547   if (section_name == g_sect_name_dwarf_apple_types)
1548     return eSectionTypeDWARFAppleTypes;
1549   if (section_name == g_sect_name_dwarf_apple_namespaces)
1550     return eSectionTypeDWARFAppleNamespaces;
1551   if (section_name == g_sect_name_dwarf_apple_objc)
1552     return eSectionTypeDWARFAppleObjC;
1553   if (section_name == g_sect_name_objc_selrefs)
1554     return eSectionTypeDataCStringPointers;
1555   if (section_name == g_sect_name_objc_msgrefs)
1556     return eSectionTypeDataObjCMessageRefs;
1557   if (section_name == g_sect_name_eh_frame)
1558     return eSectionTypeEHFrame;
1559   if (section_name == g_sect_name_compact_unwind)
1560     return eSectionTypeCompactUnwind;
1561   if (section_name == g_sect_name_cfstring)
1562     return eSectionTypeDataObjCCFStrings;
1563   if (section_name == g_sect_name_go_symtab)
1564     return eSectionTypeGoSymtab;
1565   if (section_name == g_sect_name_ctf)
1566     return eSectionTypeCTF;
1567   if (section_name == g_sect_name_swift_ast)
1568     return eSectionTypeSwiftModules;
1569   if (section_name == g_sect_name_objc_data ||
1570       section_name == g_sect_name_objc_classrefs ||
1571       section_name == g_sect_name_objc_superrefs ||
1572       section_name == g_sect_name_objc_const ||
1573       section_name == g_sect_name_objc_classlist) {
1574     return eSectionTypeDataPointers;
1575   }
1576 
1577   switch (mach_sect_type) {
1578   // TODO: categorize sections by other flags for regular sections
1579   case S_REGULAR:
1580     if (section_name == g_sect_name_text)
1581       return eSectionTypeCode;
1582     if (section_name == g_sect_name_data)
1583       return eSectionTypeData;
1584     return eSectionTypeOther;
1585   case S_ZEROFILL:
1586     return eSectionTypeZeroFill;
1587   case S_CSTRING_LITERALS: // section with only literal C strings
1588     return eSectionTypeDataCString;
1589   case S_4BYTE_LITERALS: // section with only 4 byte literals
1590     return eSectionTypeData4;
1591   case S_8BYTE_LITERALS: // section with only 8 byte literals
1592     return eSectionTypeData8;
1593   case S_LITERAL_POINTERS: // section with only pointers to literals
1594     return eSectionTypeDataPointers;
1595   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1596     return eSectionTypeDataPointers;
1597   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1598     return eSectionTypeDataPointers;
1599   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1600                        // the reserved2 field
1601     return eSectionTypeCode;
1602   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1603                                  // initialization
1604     return eSectionTypeDataPointers;
1605   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1606                                  // termination
1607     return eSectionTypeDataPointers;
1608   case S_COALESCED:
1609     return eSectionTypeOther;
1610   case S_GB_ZEROFILL:
1611     return eSectionTypeZeroFill;
1612   case S_INTERPOSING: // section with only pairs of function pointers for
1613                       // interposing
1614     return eSectionTypeCode;
1615   case S_16BYTE_LITERALS: // section with only 16 byte literals
1616     return eSectionTypeData16;
1617   case S_DTRACE_DOF:
1618     return eSectionTypeDebug;
1619   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1620     return eSectionTypeDataPointers;
1621   default:
1622     return eSectionTypeOther;
1623   }
1624 }
1625 
1626 struct ObjectFileMachO::SegmentParsingContext {
1627   const EncryptedFileRanges EncryptedRanges;
1628   lldb_private::SectionList &UnifiedList;
1629   uint32_t NextSegmentIdx = 0;
1630   uint32_t NextSectionIdx = 0;
1631   bool FileAddressesChanged = false;
1632 
1633   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1634                         lldb_private::SectionList &UnifiedList)
1635       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1636 };
1637 
1638 void ObjectFileMachO::ProcessSegmentCommand(
1639     const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1640     uint32_t cmd_idx, SegmentParsingContext &context) {
1641   llvm::MachO::segment_command_64 load_cmd;
1642   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1643 
1644   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1645     return;
1646 
1647   ModuleSP module_sp = GetModule();
1648   const bool is_core = GetType() == eTypeCoreFile;
1649   const bool is_dsym = (m_header.filetype == MH_DSYM);
1650   bool add_section = true;
1651   bool add_to_unified = true;
1652   ConstString const_segname(
1653       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1654 
1655   SectionSP unified_section_sp(
1656       context.UnifiedList.FindSectionByName(const_segname));
1657   if (is_dsym && unified_section_sp) {
1658     if (const_segname == GetSegmentNameLINKEDIT()) {
1659       // We need to keep the __LINKEDIT segment private to this object file
1660       // only
1661       add_to_unified = false;
1662     } else {
1663       // This is the dSYM file and this section has already been created by the
1664       // object file, no need to create it.
1665       add_section = false;
1666     }
1667   }
1668   load_cmd.vmaddr = m_data.GetAddress(&offset);
1669   load_cmd.vmsize = m_data.GetAddress(&offset);
1670   load_cmd.fileoff = m_data.GetAddress(&offset);
1671   load_cmd.filesize = m_data.GetAddress(&offset);
1672   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1673     return;
1674 
1675   SanitizeSegmentCommand(load_cmd, cmd_idx);
1676 
1677   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1678   const bool segment_is_encrypted =
1679       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1680 
1681   // Use a segment ID of the segment index shifted left by 8 so they never
1682   // conflict with any of the sections.
1683   SectionSP segment_sp;
1684   if (add_section && (const_segname || is_core)) {
1685     segment_sp = std::make_shared<Section>(
1686         module_sp, // Module to which this section belongs
1687         this,      // Object file to which this sections belongs
1688         ++context.NextSegmentIdx
1689             << 8, // Section ID is the 1 based segment index
1690         // shifted right by 8 bits as not to collide with any of the 256
1691         // section IDs that are possible
1692         const_segname,         // Name of this section
1693         eSectionTypeContainer, // This section is a container of other
1694         // sections.
1695         load_cmd.vmaddr, // File VM address == addresses as they are
1696         // found in the object file
1697         load_cmd.vmsize,  // VM size in bytes of this section
1698         load_cmd.fileoff, // Offset to the data for this section in
1699         // the file
1700         load_cmd.filesize, // Size in bytes of this section as found
1701         // in the file
1702         0,               // Segments have no alignment information
1703         load_cmd.flags); // Flags for this section
1704 
1705     segment_sp->SetIsEncrypted(segment_is_encrypted);
1706     m_sections_up->AddSection(segment_sp);
1707     segment_sp->SetPermissions(segment_permissions);
1708     if (add_to_unified)
1709       context.UnifiedList.AddSection(segment_sp);
1710   } else if (unified_section_sp) {
1711     // If this is a dSYM and the file addresses in the dSYM differ from the
1712     // file addresses in the ObjectFile, we must use the file base address for
1713     // the Section from the dSYM for the DWARF to resolve correctly.
1714     // This only happens with binaries in the shared cache in practice;
1715     // normally a mismatch like this would give a binary & dSYM that do not
1716     // match UUIDs. When a binary is included in the shared cache, its
1717     // segments are rearranged to optimize the shared cache, so its file
1718     // addresses will differ from what the ObjectFile had originally,
1719     // and what the dSYM has.
1720     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1721       Log *log = GetLog(LLDBLog::Symbols);
1722       if (log) {
1723         log->Printf(
1724             "Installing dSYM's %s segment file address over ObjectFile's "
1725             "so symbol table/debug info resolves correctly for %s",
1726             const_segname.AsCString(),
1727             module_sp->GetFileSpec().GetFilename().AsCString());
1728       }
1729 
1730       // Make sure we've parsed the symbol table from the ObjectFile before
1731       // we go around changing its Sections.
1732       module_sp->GetObjectFile()->GetSymtab();
1733       // eh_frame would present the same problems but we parse that on a per-
1734       // function basis as-needed so it's more difficult to remove its use of
1735       // the Sections.  Realistically, the environments where this code path
1736       // will be taken will not have eh_frame sections.
1737 
1738       unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1739 
1740       // Notify the module that the section addresses have been changed once
1741       // we're done so any file-address caches can be updated.
1742       context.FileAddressesChanged = true;
1743     }
1744     m_sections_up->AddSection(unified_section_sp);
1745   }
1746 
1747   llvm::MachO::section_64 sect64;
1748   ::memset(&sect64, 0, sizeof(sect64));
1749   // Push a section into our mach sections for the section at index zero
1750   // (NO_SECT) if we don't have any mach sections yet...
1751   if (m_mach_sections.empty())
1752     m_mach_sections.push_back(sect64);
1753   uint32_t segment_sect_idx;
1754   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1755 
1756   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1757   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1758        ++segment_sect_idx) {
1759     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1760                      sizeof(sect64.sectname)) == nullptr)
1761       break;
1762     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1763                      sizeof(sect64.segname)) == nullptr)
1764       break;
1765     sect64.addr = m_data.GetAddress(&offset);
1766     sect64.size = m_data.GetAddress(&offset);
1767 
1768     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1769       break;
1770 
1771     if (IsSharedCacheBinary() && !IsInMemory()) {
1772       sect64.offset = sect64.addr - m_text_address;
1773     }
1774 
1775     // Keep a list of mach sections around in case we need to get at data that
1776     // isn't stored in the abstracted Sections.
1777     m_mach_sections.push_back(sect64);
1778 
1779     if (add_section) {
1780       ConstString section_name(
1781           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1782       if (!const_segname) {
1783         // We have a segment with no name so we need to conjure up segments
1784         // that correspond to the section's segname if there isn't already such
1785         // a section. If there is such a section, we resize the section so that
1786         // it spans all sections.  We also mark these sections as fake so
1787         // address matches don't hit if they land in the gaps between the child
1788         // sections.
1789         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1790                                                   sizeof(sect64.segname));
1791         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1792         if (segment_sp.get()) {
1793           Section *segment = segment_sp.get();
1794           // Grow the section size as needed.
1795           const lldb::addr_t sect64_min_addr = sect64.addr;
1796           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1797           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1798           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1799           const lldb::addr_t curr_seg_max_addr =
1800               curr_seg_min_addr + curr_seg_byte_size;
1801           if (sect64_min_addr >= curr_seg_min_addr) {
1802             const lldb::addr_t new_seg_byte_size =
1803                 sect64_max_addr - curr_seg_min_addr;
1804             // Only grow the section size if needed
1805             if (new_seg_byte_size > curr_seg_byte_size)
1806               segment->SetByteSize(new_seg_byte_size);
1807           } else {
1808             // We need to change the base address of the segment and adjust the
1809             // child section offsets for all existing children.
1810             const lldb::addr_t slide_amount =
1811                 sect64_min_addr - curr_seg_min_addr;
1812             segment->Slide(slide_amount, false);
1813             segment->GetChildren().Slide(-slide_amount, false);
1814             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1815           }
1816 
1817           // Grow the section size as needed.
1818           if (sect64.offset) {
1819             const lldb::addr_t segment_min_file_offset =
1820                 segment->GetFileOffset();
1821             const lldb::addr_t segment_max_file_offset =
1822                 segment_min_file_offset + segment->GetFileSize();
1823 
1824             const lldb::addr_t section_min_file_offset = sect64.offset;
1825             const lldb::addr_t section_max_file_offset =
1826                 section_min_file_offset + sect64.size;
1827             const lldb::addr_t new_file_offset =
1828                 std::min(section_min_file_offset, segment_min_file_offset);
1829             const lldb::addr_t new_file_size =
1830                 std::max(section_max_file_offset, segment_max_file_offset) -
1831                 new_file_offset;
1832             segment->SetFileOffset(new_file_offset);
1833             segment->SetFileSize(new_file_size);
1834           }
1835         } else {
1836           // Create a fake section for the section's named segment
1837           segment_sp = std::make_shared<Section>(
1838               segment_sp, // Parent section
1839               module_sp,  // Module to which this section belongs
1840               this,       // Object file to which this section belongs
1841               ++context.NextSegmentIdx
1842                   << 8, // Section ID is the 1 based segment index
1843               // shifted right by 8 bits as not to
1844               // collide with any of the 256 section IDs
1845               // that are possible
1846               const_segname,         // Name of this section
1847               eSectionTypeContainer, // This section is a container of
1848               // other sections.
1849               sect64.addr, // File VM address == addresses as they are
1850               // found in the object file
1851               sect64.size,   // VM size in bytes of this section
1852               sect64.offset, // Offset to the data for this section in
1853               // the file
1854               sect64.offset ? sect64.size : 0, // Size in bytes of
1855               // this section as
1856               // found in the file
1857               sect64.align,
1858               load_cmd.flags); // Flags for this section
1859           segment_sp->SetIsFake(true);
1860           segment_sp->SetPermissions(segment_permissions);
1861           m_sections_up->AddSection(segment_sp);
1862           if (add_to_unified)
1863             context.UnifiedList.AddSection(segment_sp);
1864           segment_sp->SetIsEncrypted(segment_is_encrypted);
1865         }
1866       }
1867       assert(segment_sp.get());
1868 
1869       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1870 
1871       SectionSP section_sp(new Section(
1872           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1873           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1874           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1875           sect64.flags));
1876       // Set the section to be encrypted to match the segment
1877 
1878       bool section_is_encrypted = false;
1879       if (!segment_is_encrypted && load_cmd.filesize != 0)
1880         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1881                                    sect64.offset) != nullptr;
1882 
1883       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1884       section_sp->SetPermissions(segment_permissions);
1885       segment_sp->GetChildren().AddSection(section_sp);
1886 
1887       if (segment_sp->IsFake()) {
1888         segment_sp.reset();
1889         const_segname.Clear();
1890       }
1891     }
1892   }
1893   if (segment_sp && is_dsym) {
1894     if (first_segment_sectID <= context.NextSectionIdx) {
1895       lldb::user_id_t sect_uid;
1896       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1897            ++sect_uid) {
1898         SectionSP curr_section_sp(
1899             segment_sp->GetChildren().FindSectionByID(sect_uid));
1900         SectionSP next_section_sp;
1901         if (sect_uid + 1 <= context.NextSectionIdx)
1902           next_section_sp =
1903               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1904 
1905         if (curr_section_sp.get()) {
1906           if (curr_section_sp->GetByteSize() == 0) {
1907             if (next_section_sp.get() != nullptr)
1908               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1909                                            curr_section_sp->GetFileAddress());
1910             else
1911               curr_section_sp->SetByteSize(load_cmd.vmsize);
1912           }
1913         }
1914       }
1915     }
1916   }
1917 }
1918 
1919 void ObjectFileMachO::ProcessDysymtabCommand(
1920     const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1921   m_dysymtab.cmd = load_cmd.cmd;
1922   m_dysymtab.cmdsize = load_cmd.cmdsize;
1923   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1924                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1925 }
1926 
1927 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1928   if (m_sections_up)
1929     return;
1930 
1931   m_sections_up = std::make_unique<SectionList>();
1932 
1933   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1934   // bool dump_sections = false;
1935   ModuleSP module_sp(GetModule());
1936 
1937   offset = MachHeaderSizeFromMagic(m_header.magic);
1938 
1939   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1940   llvm::MachO::load_command load_cmd;
1941   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1942     const lldb::offset_t load_cmd_offset = offset;
1943     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1944       break;
1945 
1946     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1947       ProcessSegmentCommand(load_cmd, offset, i, context);
1948     else if (load_cmd.cmd == LC_DYSYMTAB)
1949       ProcessDysymtabCommand(load_cmd, offset);
1950 
1951     offset = load_cmd_offset + load_cmd.cmdsize;
1952   }
1953 
1954   if (context.FileAddressesChanged && module_sp)
1955     module_sp->SectionFileAddressesChanged();
1956 }
1957 
1958 class MachSymtabSectionInfo {
1959 public:
1960   MachSymtabSectionInfo(SectionList *section_list)
1961       : m_section_list(section_list), m_section_infos() {
1962     // Get the number of sections down to a depth of 1 to include all segments
1963     // and their sections, but no other sections that may be added for debug
1964     // map or
1965     m_section_infos.resize(section_list->GetNumSections(1));
1966   }
1967 
1968   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1969     if (n_sect == 0)
1970       return SectionSP();
1971     if (n_sect < m_section_infos.size()) {
1972       if (!m_section_infos[n_sect].section_sp) {
1973         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1974         m_section_infos[n_sect].section_sp = section_sp;
1975         if (section_sp) {
1976           m_section_infos[n_sect].vm_range.SetBaseAddress(
1977               section_sp->GetFileAddress());
1978           m_section_infos[n_sect].vm_range.SetByteSize(
1979               section_sp->GetByteSize());
1980         } else {
1981           std::string filename = "<unknown>";
1982           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1983           if (first_section_sp)
1984             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1985 
1986           Debugger::ReportError(
1987               llvm::formatv("unable to find section {0} for a symbol in "
1988                             "{1}, corrupt file?",
1989                             n_sect, filename));
1990         }
1991       }
1992       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1993         // Symbol is in section.
1994         return m_section_infos[n_sect].section_sp;
1995       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1996                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1997                      file_addr) {
1998         // Symbol is in section with zero size, but has the same start address
1999         // as the section. This can happen with linker symbols (symbols that
2000         // start with the letter 'l' or 'L'.
2001         return m_section_infos[n_sect].section_sp;
2002       }
2003     }
2004     return m_section_list->FindSectionContainingFileAddress(file_addr);
2005   }
2006 
2007 protected:
2008   struct SectionInfo {
2009     SectionInfo() : vm_range(), section_sp() {}
2010 
2011     VMRange vm_range;
2012     SectionSP section_sp;
2013   };
2014   SectionList *m_section_list;
2015   std::vector<SectionInfo> m_section_infos;
2016 };
2017 
2018 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
2019 struct TrieEntry {
2020   void Dump() const {
2021     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
2022            static_cast<unsigned long long>(address),
2023            static_cast<unsigned long long>(flags),
2024            static_cast<unsigned long long>(other), name.GetCString());
2025     if (import_name)
2026       printf(" -> \"%s\"\n", import_name.GetCString());
2027     else
2028       printf("\n");
2029   }
2030   ConstString name;
2031   uint64_t address = LLDB_INVALID_ADDRESS;
2032   uint64_t flags =
2033       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
2034          // TRIE_SYMBOL_IS_THUMB
2035   uint64_t other = 0;
2036   ConstString import_name;
2037 };
2038 
2039 struct TrieEntryWithOffset {
2040   lldb::offset_t nodeOffset;
2041   TrieEntry entry;
2042 
2043   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
2044 
2045   void Dump(uint32_t idx) const {
2046     printf("[%3u] 0x%16.16llx: ", idx,
2047            static_cast<unsigned long long>(nodeOffset));
2048     entry.Dump();
2049   }
2050 
2051   bool operator<(const TrieEntryWithOffset &other) const {
2052     return (nodeOffset < other.nodeOffset);
2053   }
2054 };
2055 
2056 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2057                              const bool is_arm, addr_t text_seg_base_addr,
2058                              std::vector<llvm::StringRef> &nameSlices,
2059                              std::set<lldb::addr_t> &resolver_addresses,
2060                              std::vector<TrieEntryWithOffset> &reexports,
2061                              std::vector<TrieEntryWithOffset> &ext_symbols) {
2062   if (!data.ValidOffset(offset))
2063     return true;
2064 
2065   // Terminal node -- end of a branch, possibly add this to
2066   // the symbol table or resolver table.
2067   const uint64_t terminalSize = data.GetULEB128(&offset);
2068   lldb::offset_t children_offset = offset + terminalSize;
2069   if (terminalSize != 0) {
2070     TrieEntryWithOffset e(offset);
2071     e.entry.flags = data.GetULEB128(&offset);
2072     const char *import_name = nullptr;
2073     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2074       e.entry.address = 0;
2075       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2076       import_name = data.GetCStr(&offset);
2077     } else {
2078       e.entry.address = data.GetULEB128(&offset);
2079       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2080         e.entry.address += text_seg_base_addr;
2081       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2082         e.entry.other = data.GetULEB128(&offset);
2083         uint64_t resolver_addr = e.entry.other;
2084         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2085           resolver_addr += text_seg_base_addr;
2086         if (is_arm)
2087           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2088         resolver_addresses.insert(resolver_addr);
2089       } else
2090         e.entry.other = 0;
2091     }
2092     bool add_this_entry = false;
2093     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2094         import_name && import_name[0]) {
2095       // add symbols that are reexport symbols with a valid import name.
2096       add_this_entry = true;
2097     } else if (e.entry.flags == 0 &&
2098                (import_name == nullptr || import_name[0] == '\0')) {
2099       // add externally visible symbols, in case the nlist record has
2100       // been stripped/omitted.
2101       add_this_entry = true;
2102     }
2103     if (add_this_entry) {
2104       std::string name;
2105       if (!nameSlices.empty()) {
2106         for (auto name_slice : nameSlices)
2107           name.append(name_slice.data(), name_slice.size());
2108       }
2109       if (name.size() > 1) {
2110         // Skip the leading '_'
2111         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2112       }
2113       if (import_name) {
2114         // Skip the leading '_'
2115         e.entry.import_name.SetCString(import_name + 1);
2116       }
2117       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2118         reexports.push_back(e);
2119       } else {
2120         if (is_arm && (e.entry.address & 1)) {
2121           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2122           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2123         }
2124         ext_symbols.push_back(e);
2125       }
2126     }
2127   }
2128 
2129   const uint8_t childrenCount = data.GetU8(&children_offset);
2130   for (uint8_t i = 0; i < childrenCount; ++i) {
2131     const char *cstr = data.GetCStr(&children_offset);
2132     if (cstr)
2133       nameSlices.push_back(llvm::StringRef(cstr));
2134     else
2135       return false; // Corrupt data
2136     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2137     if (childNodeOffset) {
2138       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2139                             nameSlices, resolver_addresses, reexports,
2140                             ext_symbols)) {
2141         return false;
2142       }
2143     }
2144     nameSlices.pop_back();
2145   }
2146   return true;
2147 }
2148 
2149 static SymbolType GetSymbolType(const char *&symbol_name,
2150                                 bool &demangled_is_synthesized,
2151                                 const SectionSP &text_section_sp,
2152                                 const SectionSP &data_section_sp,
2153                                 const SectionSP &data_dirty_section_sp,
2154                                 const SectionSP &data_const_section_sp,
2155                                 const SectionSP &symbol_section) {
2156   SymbolType type = eSymbolTypeInvalid;
2157 
2158   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2159   if (symbol_section->IsDescendant(text_section_sp.get())) {
2160     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2161                                 S_ATTR_SELF_MODIFYING_CODE |
2162                                 S_ATTR_SOME_INSTRUCTIONS))
2163       type = eSymbolTypeData;
2164     else
2165       type = eSymbolTypeCode;
2166   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2167              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2168              symbol_section->IsDescendant(data_const_section_sp.get())) {
2169     if (symbol_sect_name &&
2170         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2171       type = eSymbolTypeRuntime;
2172 
2173       if (symbol_name) {
2174         llvm::StringRef symbol_name_ref(symbol_name);
2175         if (symbol_name_ref.starts_with("OBJC_")) {
2176           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2177           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2178               "OBJC_METACLASS_$_");
2179           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2180           if (symbol_name_ref.starts_with(g_objc_v2_prefix_class)) {
2181             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2182             type = eSymbolTypeObjCClass;
2183             demangled_is_synthesized = true;
2184           } else if (symbol_name_ref.starts_with(g_objc_v2_prefix_metaclass)) {
2185             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2186             type = eSymbolTypeObjCMetaClass;
2187             demangled_is_synthesized = true;
2188           } else if (symbol_name_ref.starts_with(g_objc_v2_prefix_ivar)) {
2189             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2190             type = eSymbolTypeObjCIVar;
2191             demangled_is_synthesized = true;
2192           }
2193         }
2194       }
2195     } else if (symbol_sect_name &&
2196                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2197                    symbol_sect_name) {
2198       type = eSymbolTypeException;
2199     } else {
2200       type = eSymbolTypeData;
2201     }
2202   } else if (symbol_sect_name &&
2203              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2204     type = eSymbolTypeTrampoline;
2205   }
2206   return type;
2207 }
2208 
2209 static std::optional<struct nlist_64>
2210 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2211            size_t nlist_byte_size) {
2212   struct nlist_64 nlist;
2213   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2214     return {};
2215   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2216   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2217   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2218   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2219   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2220   return nlist;
2221 }
2222 
2223 enum { DebugSymbols = true, NonDebugSymbols = false };
2224 
2225 void ObjectFileMachO::ParseSymtab(Symtab &symtab) {
2226   ModuleSP module_sp(GetModule());
2227   if (!module_sp)
2228     return;
2229 
2230   Log *log = GetLog(LLDBLog::Symbols);
2231 
2232   const FileSpec &file = m_file ? m_file : module_sp->GetFileSpec();
2233   const char *file_name = file.GetFilename().AsCString("<Unknown>");
2234   LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s", file_name);
2235   LLDB_LOG(log, "Parsing symbol table for {0}", file_name);
2236   Progress progress("Parsing symbol table", file_name);
2237 
2238   llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2239   llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2240   llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2241   llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2242   llvm::MachO::dysymtab_command dysymtab = m_dysymtab;
2243   // The data element of type bool indicates that this entry is thumb
2244   // code.
2245   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2246 
2247   // Record the address of every function/data that we add to the symtab.
2248   // We add symbols to the table in the order of most information (nlist
2249   // records) to least (function starts), and avoid duplicating symbols
2250   // via this set.
2251   llvm::DenseSet<addr_t> symbols_added;
2252 
2253   // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2254   // do not add the tombstone or empty keys to the set.
2255   auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2256     // Don't add the tombstone or empty keys.
2257     if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2258       return;
2259     symbols_added.insert(file_addr);
2260   };
2261   FunctionStarts function_starts;
2262   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2263   uint32_t i;
2264   FileSpecList dylib_files;
2265   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2266   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2267   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2268   UUID image_uuid;
2269 
2270   for (i = 0; i < m_header.ncmds; ++i) {
2271     const lldb::offset_t cmd_offset = offset;
2272     // Read in the load command and load command size
2273     llvm::MachO::load_command lc;
2274     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2275       break;
2276     // Watch for the symbol table load command
2277     switch (lc.cmd) {
2278     case LC_SYMTAB:
2279       symtab_load_command.cmd = lc.cmd;
2280       symtab_load_command.cmdsize = lc.cmdsize;
2281       // Read in the rest of the symtab load command
2282       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2283           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2284         return;
2285       break;
2286 
2287     case LC_DYLD_INFO:
2288     case LC_DYLD_INFO_ONLY:
2289       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2290         dyld_info.cmd = lc.cmd;
2291         dyld_info.cmdsize = lc.cmdsize;
2292       } else {
2293         memset(&dyld_info, 0, sizeof(dyld_info));
2294       }
2295       break;
2296 
2297     case LC_LOAD_DYLIB:
2298     case LC_LOAD_WEAK_DYLIB:
2299     case LC_REEXPORT_DYLIB:
2300     case LC_LOADFVMLIB:
2301     case LC_LOAD_UPWARD_DYLIB: {
2302       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2303       const char *path = m_data.PeekCStr(name_offset);
2304       if (path) {
2305         FileSpec file_spec(path);
2306         // Strip the path if there is @rpath, @executable, etc so we just use
2307         // the basename
2308         if (path[0] == '@')
2309           file_spec.ClearDirectory();
2310 
2311         if (lc.cmd == LC_REEXPORT_DYLIB) {
2312           m_reexported_dylibs.AppendIfUnique(file_spec);
2313         }
2314 
2315         dylib_files.Append(file_spec);
2316       }
2317     } break;
2318 
2319     case LC_DYLD_EXPORTS_TRIE:
2320       exports_trie_load_command.cmd = lc.cmd;
2321       exports_trie_load_command.cmdsize = lc.cmdsize;
2322       if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2323           nullptr) // fill in offset and size fields
2324         memset(&exports_trie_load_command, 0,
2325                sizeof(exports_trie_load_command));
2326       break;
2327     case LC_FUNCTION_STARTS:
2328       function_starts_load_command.cmd = lc.cmd;
2329       function_starts_load_command.cmdsize = lc.cmdsize;
2330       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2331           nullptr) // fill in data offset and size fields
2332         memset(&function_starts_load_command, 0,
2333                sizeof(function_starts_load_command));
2334       break;
2335 
2336     case LC_UUID: {
2337       const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
2338 
2339       if (uuid_bytes)
2340         image_uuid = UUID(uuid_bytes, 16);
2341       break;
2342     }
2343 
2344     default:
2345       break;
2346     }
2347     offset = cmd_offset + lc.cmdsize;
2348   }
2349 
2350   if (!symtab_load_command.cmd)
2351     return;
2352 
2353   SectionList *section_list = GetSectionList();
2354   if (section_list == nullptr)
2355     return;
2356 
2357   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2358   const ByteOrder byte_order = m_data.GetByteOrder();
2359   bool bit_width_32 = addr_byte_size == 4;
2360   const size_t nlist_byte_size =
2361       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2362 
2363   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2364   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2365   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2366   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2367                                            addr_byte_size);
2368   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2369 
2370   const addr_t nlist_data_byte_size =
2371       symtab_load_command.nsyms * nlist_byte_size;
2372   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2373   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2374 
2375   ProcessSP process_sp(m_process_wp.lock());
2376   Process *process = process_sp.get();
2377 
2378   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2379   bool is_shared_cache_image = IsSharedCacheBinary();
2380   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2381   SectionSP linkedit_section_sp(
2382       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2383 
2384   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2385       !is_local_shared_cache_image) {
2386     Target &target = process->GetTarget();
2387 
2388     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2389 
2390     // Reading mach file from memory in a process or core file...
2391 
2392     if (linkedit_section_sp) {
2393       addr_t linkedit_load_addr =
2394           linkedit_section_sp->GetLoadBaseAddress(&target);
2395       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2396         // We might be trying to access the symbol table before the
2397         // __LINKEDIT's load address has been set in the target. We can't
2398         // fail to read the symbol table, so calculate the right address
2399         // manually
2400         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2401             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2402       }
2403 
2404       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2405       const addr_t symoff_addr = linkedit_load_addr +
2406                                  symtab_load_command.symoff -
2407                                  linkedit_file_offset;
2408       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2409                     linkedit_file_offset;
2410 
2411         // Always load dyld - the dynamic linker - from memory if we didn't
2412         // find a binary anywhere else. lldb will not register
2413         // dylib/framework/bundle loads/unloads if we don't have the dyld
2414         // symbols, we force dyld to load from memory despite the user's
2415         // target.memory-module-load-level setting.
2416         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2417             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2418           DataBufferSP nlist_data_sp(
2419               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2420           if (nlist_data_sp)
2421             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2422           if (dysymtab.nindirectsyms != 0) {
2423             const addr_t indirect_syms_addr = linkedit_load_addr +
2424                                               dysymtab.indirectsymoff -
2425                                               linkedit_file_offset;
2426             DataBufferSP indirect_syms_data_sp(ReadMemory(
2427                 process_sp, indirect_syms_addr, dysymtab.nindirectsyms * 4));
2428             if (indirect_syms_data_sp)
2429               indirect_symbol_index_data.SetData(
2430                   indirect_syms_data_sp, 0,
2431                   indirect_syms_data_sp->GetByteSize());
2432             // If this binary is outside the shared cache,
2433             // cache the string table.
2434             // Binaries in the shared cache all share a giant string table,
2435             // and we can't share the string tables across multiple
2436             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2437             // for every binary in the shared cache - it would be a big perf
2438             // problem. For binaries outside the shared cache, it's faster to
2439             // read the entire strtab at once instead of piece-by-piece as we
2440             // process the nlist records.
2441             if (!is_shared_cache_image) {
2442               DataBufferSP strtab_data_sp(
2443                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2444               if (strtab_data_sp) {
2445                 strtab_data.SetData(strtab_data_sp, 0,
2446                                     strtab_data_sp->GetByteSize());
2447               }
2448             }
2449           }
2450         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2451           if (function_starts_load_command.cmd) {
2452             const addr_t func_start_addr =
2453                 linkedit_load_addr + function_starts_load_command.dataoff -
2454                 linkedit_file_offset;
2455             DataBufferSP func_start_data_sp(
2456                 ReadMemory(process_sp, func_start_addr,
2457                            function_starts_load_command.datasize));
2458             if (func_start_data_sp)
2459               function_starts_data.SetData(func_start_data_sp, 0,
2460                                            func_start_data_sp->GetByteSize());
2461           }
2462         }
2463       }
2464     }
2465   } else {
2466     if (is_local_shared_cache_image) {
2467       // The load commands in shared cache images are relative to the
2468       // beginning of the shared cache, not the library image. The
2469       // data we get handed when creating the ObjectFileMachO starts
2470       // at the beginning of a specific library and spans to the end
2471       // of the cache to be able to reach the shared LINKEDIT
2472       // segments. We need to convert the load command offsets to be
2473       // relative to the beginning of our specific image.
2474       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2475       lldb::offset_t linkedit_slide =
2476           linkedit_offset - m_linkedit_original_offset;
2477       symtab_load_command.symoff += linkedit_slide;
2478       symtab_load_command.stroff += linkedit_slide;
2479       dyld_info.export_off += linkedit_slide;
2480       dysymtab.indirectsymoff += linkedit_slide;
2481       function_starts_load_command.dataoff += linkedit_slide;
2482       exports_trie_load_command.dataoff += linkedit_slide;
2483     }
2484 
2485     nlist_data.SetData(m_data, symtab_load_command.symoff,
2486                        nlist_data_byte_size);
2487     strtab_data.SetData(m_data, symtab_load_command.stroff,
2488                         strtab_data_byte_size);
2489 
2490     // We shouldn't have exports data from both the LC_DYLD_INFO command
2491     // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2492     lldbassert(!((dyld_info.export_size > 0)
2493                  && (exports_trie_load_command.datasize > 0)));
2494     if (dyld_info.export_size > 0) {
2495       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2496                              dyld_info.export_size);
2497     } else if (exports_trie_load_command.datasize > 0) {
2498       dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2499                              exports_trie_load_command.datasize);
2500     }
2501 
2502     if (dysymtab.nindirectsyms != 0) {
2503       indirect_symbol_index_data.SetData(m_data, dysymtab.indirectsymoff,
2504                                          dysymtab.nindirectsyms * 4);
2505     }
2506     if (function_starts_load_command.cmd) {
2507       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2508                                    function_starts_load_command.datasize);
2509     }
2510   }
2511 
2512   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2513 
2514   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2515   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2516   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2517   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2518   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2519   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2520   SectionSP text_section_sp(
2521       section_list->FindSectionByName(g_segment_name_TEXT));
2522   SectionSP data_section_sp(
2523       section_list->FindSectionByName(g_segment_name_DATA));
2524   SectionSP data_dirty_section_sp(
2525       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2526   SectionSP data_const_section_sp(
2527       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2528   SectionSP objc_section_sp(
2529       section_list->FindSectionByName(g_segment_name_OBJC));
2530   SectionSP eh_frame_section_sp;
2531   if (text_section_sp.get())
2532     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2533         g_section_name_eh_frame);
2534   else
2535     eh_frame_section_sp =
2536         section_list->FindSectionByName(g_section_name_eh_frame);
2537 
2538   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2539   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2540 
2541   // lldb works best if it knows the start address of all functions in a
2542   // module. Linker symbols or debug info are normally the best source of
2543   // information for start addr / size but they may be stripped in a released
2544   // binary. Two additional sources of information exist in Mach-O binaries:
2545   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2546   //    function's start address in the
2547   //                         binary, relative to the text section.
2548   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2549   //    each function
2550   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2551   //  all modern binaries.
2552   //  Binaries built to run on older releases may need to use eh_frame
2553   //  information.
2554 
2555   if (text_section_sp && function_starts_data.GetByteSize()) {
2556     FunctionStarts::Entry function_start_entry;
2557     function_start_entry.data = false;
2558     lldb::offset_t function_start_offset = 0;
2559     function_start_entry.addr = text_section_sp->GetFileAddress();
2560     uint64_t delta;
2561     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2562            0) {
2563       // Now append the current entry
2564       function_start_entry.addr += delta;
2565       if (is_arm) {
2566         if (function_start_entry.addr & 1) {
2567           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2568           function_start_entry.data = true;
2569         } else if (always_thumb) {
2570           function_start_entry.data = true;
2571         }
2572       }
2573       function_starts.Append(function_start_entry);
2574     }
2575   } else {
2576     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2577     // load command claiming an eh_frame but it doesn't actually have the
2578     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2579     // this fill-in-the-missing-symbols works anyway - the debug info should
2580     // give us all the functions in the module.
2581     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2582         m_type != eTypeDebugInfo) {
2583       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2584                                   DWARFCallFrameInfo::EH);
2585       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2586       eh_frame.GetFunctionAddressAndSizeVector(functions);
2587       addr_t text_base_addr = text_section_sp->GetFileAddress();
2588       size_t count = functions.GetSize();
2589       for (size_t i = 0; i < count; ++i) {
2590         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2591             functions.GetEntryAtIndex(i);
2592         if (func) {
2593           FunctionStarts::Entry function_start_entry;
2594           function_start_entry.addr = func->base - text_base_addr;
2595           if (is_arm) {
2596             if (function_start_entry.addr & 1) {
2597               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2598               function_start_entry.data = true;
2599             } else if (always_thumb) {
2600               function_start_entry.data = true;
2601             }
2602           }
2603           function_starts.Append(function_start_entry);
2604         }
2605       }
2606     }
2607   }
2608 
2609   const size_t function_starts_count = function_starts.GetSize();
2610 
2611   // For user process binaries (executables, dylibs, frameworks, bundles), if
2612   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2613   // going to assume the binary has been stripped.  Don't allow assembly
2614   // language instruction emulation because we don't know proper function
2615   // start boundaries.
2616   //
2617   // For all other types of binaries (kernels, stand-alone bare board
2618   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2619   // sections - we should not make any assumptions about them based on that.
2620   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2621     m_allow_assembly_emulation_unwind_plans = false;
2622     Log *unwind_or_symbol_log(GetLog(LLDBLog::Symbols | LLDBLog::Unwind));
2623 
2624     if (unwind_or_symbol_log)
2625       module_sp->LogMessage(
2626           unwind_or_symbol_log,
2627           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2628   }
2629 
2630   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2631                                              ? eh_frame_section_sp->GetID()
2632                                              : static_cast<user_id_t>(NO_SECT);
2633 
2634   uint32_t N_SO_index = UINT32_MAX;
2635 
2636   MachSymtabSectionInfo section_info(section_list);
2637   std::vector<uint32_t> N_FUN_indexes;
2638   std::vector<uint32_t> N_NSYM_indexes;
2639   std::vector<uint32_t> N_INCL_indexes;
2640   std::vector<uint32_t> N_BRAC_indexes;
2641   std::vector<uint32_t> N_COMM_indexes;
2642   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2643   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2644   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2645   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2646   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2647   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2648   // Any symbols that get merged into another will get an entry in this map
2649   // so we know
2650   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2651   uint32_t nlist_idx = 0;
2652   Symbol *symbol_ptr = nullptr;
2653 
2654   uint32_t sym_idx = 0;
2655   Symbol *sym = nullptr;
2656   size_t num_syms = 0;
2657   std::string memory_symbol_name;
2658   uint32_t unmapped_local_symbols_found = 0;
2659 
2660   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2661   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2662   std::set<lldb::addr_t> resolver_addresses;
2663 
2664   const size_t dyld_trie_data_size = dyld_trie_data.GetByteSize();
2665   if (dyld_trie_data_size > 0) {
2666     LLDB_LOG(log, "Parsing {0} bytes of dyld trie data", dyld_trie_data_size);
2667     SectionSP text_segment_sp =
2668         GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
2669     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2670     if (text_segment_sp)
2671       text_segment_file_addr = text_segment_sp->GetFileAddress();
2672     std::vector<llvm::StringRef> nameSlices;
2673     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2674                      nameSlices, resolver_addresses, reexport_trie_entries,
2675                      external_sym_trie_entries);
2676   }
2677 
2678   typedef std::set<ConstString> IndirectSymbols;
2679   IndirectSymbols indirect_symbol_names;
2680 
2681 #if TARGET_OS_IPHONE
2682 
2683   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2684   // optimized by moving LOCAL symbols out of the memory mapped portion of
2685   // the DSC. The symbol information has all been retained, but it isn't
2686   // available in the normal nlist data. However, there *are* duplicate
2687   // entries of *some*
2688   // LOCAL symbols in the normal nlist data. To handle this situation
2689   // correctly, we must first attempt
2690   // to parse any DSC unmapped symbol information. If we find any, we set a
2691   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2692 
2693   if (IsSharedCacheBinary()) {
2694     // Before we can start mapping the DSC, we need to make certain the
2695     // target process is actually using the cache we can find.
2696 
2697     // Next we need to determine the correct path for the dyld shared cache.
2698 
2699     ArchSpec header_arch = GetArchitecture();
2700 
2701     UUID dsc_uuid;
2702     UUID process_shared_cache_uuid;
2703     addr_t process_shared_cache_base_addr;
2704 
2705     if (process) {
2706       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2707                                 process_shared_cache_uuid);
2708     }
2709 
2710     __block bool found_image = false;
2711     __block void *nlist_buffer = nullptr;
2712     __block unsigned nlist_count = 0;
2713     __block char *string_table = nullptr;
2714     __block vm_offset_t vm_nlist_memory = 0;
2715     __block mach_msg_type_number_t vm_nlist_bytes_read = 0;
2716     __block vm_offset_t vm_string_memory = 0;
2717     __block mach_msg_type_number_t vm_string_bytes_read = 0;
2718 
2719     auto _ = llvm::make_scope_exit(^{
2720       if (vm_nlist_memory)
2721         vm_deallocate(mach_task_self(), vm_nlist_memory, vm_nlist_bytes_read);
2722       if (vm_string_memory)
2723         vm_deallocate(mach_task_self(), vm_string_memory, vm_string_bytes_read);
2724     });
2725 
2726     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2727     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2728     UndefinedNameToDescMap undefined_name_to_desc;
2729     SymbolIndexToName reexport_shlib_needs_fixup;
2730 
2731     dyld_for_each_installed_shared_cache(^(dyld_shared_cache_t shared_cache) {
2732       uuid_t cache_uuid;
2733       dyld_shared_cache_copy_uuid(shared_cache, &cache_uuid);
2734       if (found_image)
2735         return;
2736 
2737         if (process_shared_cache_uuid.IsValid() &&
2738           process_shared_cache_uuid != UUID::fromData(&cache_uuid, 16))
2739         return;
2740 
2741       dyld_shared_cache_for_each_image(shared_cache, ^(dyld_image_t image) {
2742         uuid_t dsc_image_uuid;
2743         if (found_image)
2744           return;
2745 
2746         dyld_image_copy_uuid(image, &dsc_image_uuid);
2747         if (image_uuid != UUID::fromData(dsc_image_uuid, 16))
2748           return;
2749 
2750         found_image = true;
2751 
2752         // Compute the size of the string table. We need to ask dyld for a
2753         // new SPI to avoid this step.
2754         dyld_image_local_nlist_content_4Symbolication(
2755             image, ^(const void *nlistStart, uint64_t nlistCount,
2756                      const char *stringTable) {
2757               if (!nlistStart || !nlistCount)
2758                 return;
2759 
2760               // The buffers passed here are valid only inside the block.
2761               // Use vm_read to make a cheap copy of them available for our
2762               // processing later.
2763               kern_return_t ret =
2764                   vm_read(mach_task_self(), (vm_address_t)nlistStart,
2765                           nlist_byte_size * nlistCount, &vm_nlist_memory,
2766                           &vm_nlist_bytes_read);
2767               if (ret != KERN_SUCCESS)
2768                 return;
2769               assert(vm_nlist_bytes_read == nlist_byte_size * nlistCount);
2770 
2771               // We don't know the size of the string table. It's cheaper
2772               // to map the whole VM region than to determine the size by
2773               // parsing all the nlist entries.
2774               vm_address_t string_address = (vm_address_t)stringTable;
2775               vm_size_t region_size;
2776               mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
2777               vm_region_basic_info_data_t info;
2778               memory_object_name_t object;
2779               ret = vm_region_64(mach_task_self(), &string_address,
2780                                  &region_size, VM_REGION_BASIC_INFO_64,
2781                                  (vm_region_info_t)&info, &info_count, &object);
2782               if (ret != KERN_SUCCESS)
2783                 return;
2784 
2785               ret = vm_read(mach_task_self(), (vm_address_t)stringTable,
2786                             region_size -
2787                                 ((vm_address_t)stringTable - string_address),
2788                             &vm_string_memory, &vm_string_bytes_read);
2789               if (ret != KERN_SUCCESS)
2790                 return;
2791 
2792               nlist_buffer = (void *)vm_nlist_memory;
2793               string_table = (char *)vm_string_memory;
2794               nlist_count = nlistCount;
2795             });
2796       });
2797     });
2798     if (nlist_buffer) {
2799       DataExtractor dsc_local_symbols_data(nlist_buffer,
2800                                            nlist_count * nlist_byte_size,
2801                                            byte_order, addr_byte_size);
2802       unmapped_local_symbols_found = nlist_count;
2803 
2804                 // The normal nlist code cannot correctly size the Symbols
2805                 // array, we need to allocate it here.
2806                 sym = symtab.Resize(
2807                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2808                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2809                 num_syms = symtab.GetNumSymbols();
2810 
2811       lldb::offset_t nlist_data_offset = 0;
2812 
2813                 for (uint32_t nlist_index = 0;
2814                      nlist_index < nlist_count;
2815                      nlist_index++) {
2816                   /////////////////////////////
2817                   {
2818                     std::optional<struct nlist_64> nlist_maybe =
2819                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2820                                    nlist_byte_size);
2821                     if (!nlist_maybe)
2822                       break;
2823                     struct nlist_64 nlist = *nlist_maybe;
2824 
2825                     SymbolType type = eSymbolTypeInvalid;
2826           const char *symbol_name = string_table + nlist.n_strx;
2827 
2828                     if (symbol_name == NULL) {
2829                       // No symbol should be NULL, even the symbols with no
2830                       // string values should have an offset zero which
2831                       // points to an empty C-string
2832                       Debugger::ReportError(llvm::formatv(
2833                           "DSC unmapped local symbol[{0}] has invalid "
2834                           "string table offset {1:x} in {2}, ignoring symbol",
2835                           nlist_index, nlist.n_strx,
2836                           module_sp->GetFileSpec().GetPath());
2837                       continue;
2838                     }
2839                     if (symbol_name[0] == '\0')
2840                       symbol_name = NULL;
2841 
2842                     const char *symbol_name_non_abi_mangled = NULL;
2843 
2844                     SectionSP symbol_section;
2845                     uint32_t symbol_byte_size = 0;
2846                     bool add_nlist = true;
2847                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2848                     bool demangled_is_synthesized = false;
2849                     bool is_gsym = false;
2850                     bool set_value = true;
2851 
2852                     assert(sym_idx < num_syms);
2853 
2854                     sym[sym_idx].SetDebug(is_debug);
2855 
2856                     if (is_debug) {
2857                       switch (nlist.n_type) {
2858                       case N_GSYM:
2859                         // global symbol: name,,NO_SECT,type,0
2860                         // Sometimes the N_GSYM value contains the address.
2861 
2862                         // FIXME: In the .o files, we have a GSYM and a debug
2863                         // symbol for all the ObjC data.  They
2864                         // have the same address, but we want to ensure that
2865                         // we always find only the real symbol, 'cause we
2866                         // don't currently correctly attribute the
2867                         // GSYM one to the ObjCClass/Ivar/MetaClass
2868                         // symbol type.  This is a temporary hack to make
2869                         // sure the ObjectiveC symbols get treated correctly.
2870                         // To do this right, we should coalesce all the GSYM
2871                         // & global symbols that have the same address.
2872 
2873                         is_gsym = true;
2874                         sym[sym_idx].SetExternal(true);
2875 
2876                         if (symbol_name && symbol_name[0] == '_' &&
2877                             symbol_name[1] == 'O') {
2878                           llvm::StringRef symbol_name_ref(symbol_name);
2879                           if (symbol_name_ref.starts_with(
2880                                   g_objc_v2_prefix_class)) {
2881                             symbol_name_non_abi_mangled = symbol_name + 1;
2882                             symbol_name =
2883                                 symbol_name + g_objc_v2_prefix_class.size();
2884                             type = eSymbolTypeObjCClass;
2885                             demangled_is_synthesized = true;
2886 
2887                           } else if (symbol_name_ref.starts_with(
2888                                          g_objc_v2_prefix_metaclass)) {
2889                             symbol_name_non_abi_mangled = symbol_name + 1;
2890                             symbol_name =
2891                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2892                             type = eSymbolTypeObjCMetaClass;
2893                             demangled_is_synthesized = true;
2894                           } else if (symbol_name_ref.starts_with(
2895                                          g_objc_v2_prefix_ivar)) {
2896                             symbol_name_non_abi_mangled = symbol_name + 1;
2897                             symbol_name =
2898                                 symbol_name + g_objc_v2_prefix_ivar.size();
2899                             type = eSymbolTypeObjCIVar;
2900                             demangled_is_synthesized = true;
2901                           }
2902                         } else {
2903                           if (nlist.n_value != 0)
2904                             symbol_section = section_info.GetSection(
2905                                 nlist.n_sect, nlist.n_value);
2906                           type = eSymbolTypeData;
2907                         }
2908                         break;
2909 
2910                       case N_FNAME:
2911                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2912                         type = eSymbolTypeCompiler;
2913                         break;
2914 
2915                       case N_FUN:
2916                         // procedure: name,,n_sect,linenumber,address
2917                         if (symbol_name) {
2918                           type = eSymbolTypeCode;
2919                           symbol_section = section_info.GetSection(
2920                               nlist.n_sect, nlist.n_value);
2921 
2922                           N_FUN_addr_to_sym_idx.insert(
2923                               std::make_pair(nlist.n_value, sym_idx));
2924                           // We use the current number of symbols in the
2925                           // symbol table in lieu of using nlist_idx in case
2926                           // we ever start trimming entries out
2927                           N_FUN_indexes.push_back(sym_idx);
2928                         } else {
2929                           type = eSymbolTypeCompiler;
2930 
2931                           if (!N_FUN_indexes.empty()) {
2932                             // Copy the size of the function into the
2933                             // original
2934                             // STAB entry so we don't have
2935                             // to hunt for it later
2936                             symtab.SymbolAtIndex(N_FUN_indexes.back())
2937                                 ->SetByteSize(nlist.n_value);
2938                             N_FUN_indexes.pop_back();
2939                             // We don't really need the end function STAB as
2940                             // it contains the size which we already placed
2941                             // with the original symbol, so don't add it if
2942                             // we want a minimal symbol table
2943                             add_nlist = false;
2944                           }
2945                         }
2946                         break;
2947 
2948                       case N_STSYM:
2949                         // static symbol: name,,n_sect,type,address
2950                         N_STSYM_addr_to_sym_idx.insert(
2951                             std::make_pair(nlist.n_value, sym_idx));
2952                         symbol_section = section_info.GetSection(nlist.n_sect,
2953                                                                  nlist.n_value);
2954                         if (symbol_name && symbol_name[0]) {
2955                           type = ObjectFile::GetSymbolTypeFromName(
2956                               symbol_name + 1, eSymbolTypeData);
2957                         }
2958                         break;
2959 
2960                       case N_LCSYM:
2961                         // .lcomm symbol: name,,n_sect,type,address
2962                         symbol_section = section_info.GetSection(nlist.n_sect,
2963                                                                  nlist.n_value);
2964                         type = eSymbolTypeCommonBlock;
2965                         break;
2966 
2967                       case N_BNSYM:
2968                         // We use the current number of symbols in the symbol
2969                         // table in lieu of using nlist_idx in case we ever
2970                         // start trimming entries out Skip these if we want
2971                         // minimal symbol tables
2972                         add_nlist = false;
2973                         break;
2974 
2975                       case N_ENSYM:
2976                         // Set the size of the N_BNSYM to the terminating
2977                         // index of this N_ENSYM so that we can always skip
2978                         // the entire symbol if we need to navigate more
2979                         // quickly at the source level when parsing STABS
2980                         // Skip these if we want minimal symbol tables
2981                         add_nlist = false;
2982                         break;
2983 
2984                       case N_OPT:
2985                         // emitted with gcc2_compiled and in gcc source
2986                         type = eSymbolTypeCompiler;
2987                         break;
2988 
2989                       case N_RSYM:
2990                         // register sym: name,,NO_SECT,type,register
2991                         type = eSymbolTypeVariable;
2992                         break;
2993 
2994                       case N_SLINE:
2995                         // src line: 0,,n_sect,linenumber,address
2996                         symbol_section = section_info.GetSection(nlist.n_sect,
2997                                                                  nlist.n_value);
2998                         type = eSymbolTypeLineEntry;
2999                         break;
3000 
3001                       case N_SSYM:
3002                         // structure elt: name,,NO_SECT,type,struct_offset
3003                         type = eSymbolTypeVariableType;
3004                         break;
3005 
3006                       case N_SO:
3007                         // source file name
3008                         type = eSymbolTypeSourceFile;
3009                         if (symbol_name == NULL) {
3010                           add_nlist = false;
3011                           if (N_SO_index != UINT32_MAX) {
3012                             // Set the size of the N_SO to the terminating
3013                             // index of this N_SO so that we can always skip
3014                             // the entire N_SO if we need to navigate more
3015                             // quickly at the source level when parsing STABS
3016                             symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3017                             symbol_ptr->SetByteSize(sym_idx);
3018                             symbol_ptr->SetSizeIsSibling(true);
3019                           }
3020                           N_NSYM_indexes.clear();
3021                           N_INCL_indexes.clear();
3022                           N_BRAC_indexes.clear();
3023                           N_COMM_indexes.clear();
3024                           N_FUN_indexes.clear();
3025                           N_SO_index = UINT32_MAX;
3026                         } else {
3027                           // We use the current number of symbols in the
3028                           // symbol table in lieu of using nlist_idx in case
3029                           // we ever start trimming entries out
3030                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3031                           if (N_SO_has_full_path) {
3032                             if ((N_SO_index == sym_idx - 1) &&
3033                                 ((sym_idx - 1) < num_syms)) {
3034                               // We have two consecutive N_SO entries where
3035                               // the first contains a directory and the
3036                               // second contains a full path.
3037                               sym[sym_idx - 1].GetMangled().SetValue(
3038                                   ConstString(symbol_name));
3039                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3040                               add_nlist = false;
3041                             } else {
3042                               // This is the first entry in a N_SO that
3043                               // contains a directory or
3044                               // a full path to the source file
3045                               N_SO_index = sym_idx;
3046                             }
3047                           } else if ((N_SO_index == sym_idx - 1) &&
3048                                      ((sym_idx - 1) < num_syms)) {
3049                             // This is usually the second N_SO entry that
3050                             // contains just the filename, so here we combine
3051                             // it with the first one if we are minimizing the
3052                             // symbol table
3053                             const char *so_path = sym[sym_idx - 1]
3054                                                       .GetMangled()
3055                                                       .GetDemangledName()
3056                                                       .AsCString();
3057                             if (so_path && so_path[0]) {
3058                               std::string full_so_path(so_path);
3059                               const size_t double_slash_pos =
3060                                   full_so_path.find("//");
3061                               if (double_slash_pos != std::string::npos) {
3062                                 // The linker has been generating bad N_SO
3063                                 // entries with doubled up paths
3064                                 // in the format "%s%s" where the first
3065                                 // string in the DW_AT_comp_dir, and the
3066                                 // second is the directory for the source
3067                                 // file so you end up with a path that looks
3068                                 // like "/tmp/src//tmp/src/"
3069                                 FileSpec so_dir(so_path);
3070                                 if (!FileSystem::Instance().Exists(so_dir)) {
3071                                   so_dir.SetFile(
3072                                       &full_so_path[double_slash_pos + 1],
3073                                       FileSpec::Style::native);
3074                                   if (FileSystem::Instance().Exists(so_dir)) {
3075                                     // Trim off the incorrect path
3076                                     full_so_path.erase(0, double_slash_pos + 1);
3077                                   }
3078                                 }
3079                               }
3080                               if (*full_so_path.rbegin() != '/')
3081                                 full_so_path += '/';
3082                               full_so_path += symbol_name;
3083                               sym[sym_idx - 1].GetMangled().SetValue(
3084                                   ConstString(full_so_path.c_str()));
3085                               add_nlist = false;
3086                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3087                             }
3088                           } else {
3089                             // This could be a relative path to a N_SO
3090                             N_SO_index = sym_idx;
3091                           }
3092                         }
3093                         break;
3094 
3095                       case N_OSO:
3096                         // object file name: name,,0,0,st_mtime
3097                         type = eSymbolTypeObjectFile;
3098                         break;
3099 
3100                       case N_LSYM:
3101                         // local sym: name,,NO_SECT,type,offset
3102                         type = eSymbolTypeLocal;
3103                         break;
3104 
3105                       // INCL scopes
3106                       case N_BINCL:
3107                         // include file beginning: name,,NO_SECT,0,sum We use
3108                         // the current number of symbols in the symbol table
3109                         // in lieu of using nlist_idx in case we ever start
3110                         // trimming entries out
3111                         N_INCL_indexes.push_back(sym_idx);
3112                         type = eSymbolTypeScopeBegin;
3113                         break;
3114 
3115                       case N_EINCL:
3116                         // include file end: name,,NO_SECT,0,0
3117                         // Set the size of the N_BINCL to the terminating
3118                         // index of this N_EINCL so that we can always skip
3119                         // the entire symbol if we need to navigate more
3120                         // quickly at the source level when parsing STABS
3121                         if (!N_INCL_indexes.empty()) {
3122                           symbol_ptr =
3123                               symtab.SymbolAtIndex(N_INCL_indexes.back());
3124                           symbol_ptr->SetByteSize(sym_idx + 1);
3125                           symbol_ptr->SetSizeIsSibling(true);
3126                           N_INCL_indexes.pop_back();
3127                         }
3128                         type = eSymbolTypeScopeEnd;
3129                         break;
3130 
3131                       case N_SOL:
3132                         // #included file name: name,,n_sect,0,address
3133                         type = eSymbolTypeHeaderFile;
3134 
3135                         // We currently don't use the header files on darwin
3136                         add_nlist = false;
3137                         break;
3138 
3139                       case N_PARAMS:
3140                         // compiler parameters: name,,NO_SECT,0,0
3141                         type = eSymbolTypeCompiler;
3142                         break;
3143 
3144                       case N_VERSION:
3145                         // compiler version: name,,NO_SECT,0,0
3146                         type = eSymbolTypeCompiler;
3147                         break;
3148 
3149                       case N_OLEVEL:
3150                         // compiler -O level: name,,NO_SECT,0,0
3151                         type = eSymbolTypeCompiler;
3152                         break;
3153 
3154                       case N_PSYM:
3155                         // parameter: name,,NO_SECT,type,offset
3156                         type = eSymbolTypeVariable;
3157                         break;
3158 
3159                       case N_ENTRY:
3160                         // alternate entry: name,,n_sect,linenumber,address
3161                         symbol_section = section_info.GetSection(nlist.n_sect,
3162                                                                  nlist.n_value);
3163                         type = eSymbolTypeLineEntry;
3164                         break;
3165 
3166                       // Left and Right Braces
3167                       case N_LBRAC:
3168                         // left bracket: 0,,NO_SECT,nesting level,address We
3169                         // use the current number of symbols in the symbol
3170                         // table in lieu of using nlist_idx in case we ever
3171                         // start trimming entries out
3172                         symbol_section = section_info.GetSection(nlist.n_sect,
3173                                                                  nlist.n_value);
3174                         N_BRAC_indexes.push_back(sym_idx);
3175                         type = eSymbolTypeScopeBegin;
3176                         break;
3177 
3178                       case N_RBRAC:
3179                         // right bracket: 0,,NO_SECT,nesting level,address
3180                         // Set the size of the N_LBRAC to the terminating
3181                         // index of this N_RBRAC so that we can always skip
3182                         // the entire symbol if we need to navigate more
3183                         // quickly at the source level when parsing STABS
3184                         symbol_section = section_info.GetSection(nlist.n_sect,
3185                                                                  nlist.n_value);
3186                         if (!N_BRAC_indexes.empty()) {
3187                           symbol_ptr =
3188                               symtab.SymbolAtIndex(N_BRAC_indexes.back());
3189                           symbol_ptr->SetByteSize(sym_idx + 1);
3190                           symbol_ptr->SetSizeIsSibling(true);
3191                           N_BRAC_indexes.pop_back();
3192                         }
3193                         type = eSymbolTypeScopeEnd;
3194                         break;
3195 
3196                       case N_EXCL:
3197                         // deleted include file: name,,NO_SECT,0,sum
3198                         type = eSymbolTypeHeaderFile;
3199                         break;
3200 
3201                       // COMM scopes
3202                       case N_BCOMM:
3203                         // begin common: name,,NO_SECT,0,0
3204                         // We use the current number of symbols in the symbol
3205                         // table in lieu of using nlist_idx in case we ever
3206                         // start trimming entries out
3207                         type = eSymbolTypeScopeBegin;
3208                         N_COMM_indexes.push_back(sym_idx);
3209                         break;
3210 
3211                       case N_ECOML:
3212                         // end common (local name): 0,,n_sect,0,address
3213                         symbol_section = section_info.GetSection(nlist.n_sect,
3214                                                                  nlist.n_value);
3215                         // Fall through
3216 
3217                       case N_ECOMM:
3218                         // end common: name,,n_sect,0,0
3219                         // Set the size of the N_BCOMM to the terminating
3220                         // index of this N_ECOMM/N_ECOML so that we can
3221                         // always skip the entire symbol if we need to
3222                         // navigate more quickly at the source level when
3223                         // parsing STABS
3224                         if (!N_COMM_indexes.empty()) {
3225                           symbol_ptr =
3226                               symtab.SymbolAtIndex(N_COMM_indexes.back());
3227                           symbol_ptr->SetByteSize(sym_idx + 1);
3228                           symbol_ptr->SetSizeIsSibling(true);
3229                           N_COMM_indexes.pop_back();
3230                         }
3231                         type = eSymbolTypeScopeEnd;
3232                         break;
3233 
3234                       case N_LENG:
3235                         // second stab entry with length information
3236                         type = eSymbolTypeAdditional;
3237                         break;
3238 
3239                       default:
3240                         break;
3241                       }
3242                     } else {
3243                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3244                       uint8_t n_type = N_TYPE & nlist.n_type;
3245                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3246 
3247                       switch (n_type) {
3248                       case N_INDR: {
3249                         const char *reexport_name_cstr =
3250                             strtab_data.PeekCStr(nlist.n_value);
3251                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3252                           type = eSymbolTypeReExported;
3253                           ConstString reexport_name(
3254                               reexport_name_cstr +
3255                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3256                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3257                           set_value = false;
3258                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3259                           indirect_symbol_names.insert(ConstString(
3260                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3261                         } else
3262                           type = eSymbolTypeUndefined;
3263                       } break;
3264 
3265                       case N_UNDF:
3266                         if (symbol_name && symbol_name[0]) {
3267                           ConstString undefined_name(
3268                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3269                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3270                         }
3271                       // Fall through
3272                       case N_PBUD:
3273                         type = eSymbolTypeUndefined;
3274                         break;
3275 
3276                       case N_ABS:
3277                         type = eSymbolTypeAbsolute;
3278                         break;
3279 
3280                       case N_SECT: {
3281                         symbol_section = section_info.GetSection(nlist.n_sect,
3282                                                                  nlist.n_value);
3283 
3284                         if (symbol_section == NULL) {
3285                           // TODO: warn about this?
3286                           add_nlist = false;
3287                           break;
3288                         }
3289 
3290                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3291                           type = eSymbolTypeException;
3292                         } else {
3293                           uint32_t section_type =
3294                               symbol_section->Get() & SECTION_TYPE;
3295 
3296                           switch (section_type) {
3297                           case S_CSTRING_LITERALS:
3298                             type = eSymbolTypeData;
3299                             break; // section with only literal C strings
3300                           case S_4BYTE_LITERALS:
3301                             type = eSymbolTypeData;
3302                             break; // section with only 4 byte literals
3303                           case S_8BYTE_LITERALS:
3304                             type = eSymbolTypeData;
3305                             break; // section with only 8 byte literals
3306                           case S_LITERAL_POINTERS:
3307                             type = eSymbolTypeTrampoline;
3308                             break; // section with only pointers to literals
3309                           case S_NON_LAZY_SYMBOL_POINTERS:
3310                             type = eSymbolTypeTrampoline;
3311                             break; // section with only non-lazy symbol
3312                                    // pointers
3313                           case S_LAZY_SYMBOL_POINTERS:
3314                             type = eSymbolTypeTrampoline;
3315                             break; // section with only lazy symbol pointers
3316                           case S_SYMBOL_STUBS:
3317                             type = eSymbolTypeTrampoline;
3318                             break; // section with only symbol stubs, byte
3319                                    // size of stub in the reserved2 field
3320                           case S_MOD_INIT_FUNC_POINTERS:
3321                             type = eSymbolTypeCode;
3322                             break; // section with only function pointers for
3323                                    // initialization
3324                           case S_MOD_TERM_FUNC_POINTERS:
3325                             type = eSymbolTypeCode;
3326                             break; // section with only function pointers for
3327                                    // termination
3328                           case S_INTERPOSING:
3329                             type = eSymbolTypeTrampoline;
3330                             break; // section with only pairs of function
3331                                    // pointers for interposing
3332                           case S_16BYTE_LITERALS:
3333                             type = eSymbolTypeData;
3334                             break; // section with only 16 byte literals
3335                           case S_DTRACE_DOF:
3336                             type = eSymbolTypeInstrumentation;
3337                             break;
3338                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3339                             type = eSymbolTypeTrampoline;
3340                             break;
3341                           default:
3342                             switch (symbol_section->GetType()) {
3343                             case lldb::eSectionTypeCode:
3344                               type = eSymbolTypeCode;
3345                               break;
3346                             case eSectionTypeData:
3347                             case eSectionTypeDataCString: // Inlined C string
3348                                                           // data
3349                             case eSectionTypeDataCStringPointers: // Pointers
3350                                                                   // to C
3351                                                                   // string
3352                                                                   // data
3353                             case eSectionTypeDataSymbolAddress:   // Address of
3354                                                                   // a symbol in
3355                                                                   // the symbol
3356                                                                   // table
3357                             case eSectionTypeData4:
3358                             case eSectionTypeData8:
3359                             case eSectionTypeData16:
3360                               type = eSymbolTypeData;
3361                               break;
3362                             default:
3363                               break;
3364                             }
3365                             break;
3366                           }
3367 
3368                           if (type == eSymbolTypeInvalid) {
3369                             const char *symbol_sect_name =
3370                                 symbol_section->GetName().AsCString();
3371                             if (symbol_section->IsDescendant(
3372                                     text_section_sp.get())) {
3373                               if (symbol_section->IsClear(
3374                                       S_ATTR_PURE_INSTRUCTIONS |
3375                                       S_ATTR_SELF_MODIFYING_CODE |
3376                                       S_ATTR_SOME_INSTRUCTIONS))
3377                                 type = eSymbolTypeData;
3378                               else
3379                                 type = eSymbolTypeCode;
3380                             } else if (symbol_section->IsDescendant(
3381                                            data_section_sp.get()) ||
3382                                        symbol_section->IsDescendant(
3383                                            data_dirty_section_sp.get()) ||
3384                                        symbol_section->IsDescendant(
3385                                            data_const_section_sp.get())) {
3386                               if (symbol_sect_name &&
3387                                   ::strstr(symbol_sect_name, "__objc") ==
3388                                       symbol_sect_name) {
3389                                 type = eSymbolTypeRuntime;
3390 
3391                                 if (symbol_name) {
3392                                   llvm::StringRef symbol_name_ref(symbol_name);
3393                                   if (symbol_name_ref.starts_with("_OBJC_")) {
3394                                     llvm::StringRef
3395                                         g_objc_v2_prefix_class(
3396                                             "_OBJC_CLASS_$_");
3397                                     llvm::StringRef
3398                                         g_objc_v2_prefix_metaclass(
3399                                             "_OBJC_METACLASS_$_");
3400                                     llvm::StringRef
3401                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3402                                     if (symbol_name_ref.starts_with(
3403                                             g_objc_v2_prefix_class)) {
3404                                       symbol_name_non_abi_mangled =
3405                                           symbol_name + 1;
3406                                       symbol_name =
3407                                           symbol_name +
3408                                           g_objc_v2_prefix_class.size();
3409                                       type = eSymbolTypeObjCClass;
3410                                       demangled_is_synthesized = true;
3411                                     } else if (
3412                                         symbol_name_ref.starts_with(
3413                                             g_objc_v2_prefix_metaclass)) {
3414                                       symbol_name_non_abi_mangled =
3415                                           symbol_name + 1;
3416                                       symbol_name =
3417                                           symbol_name +
3418                                           g_objc_v2_prefix_metaclass.size();
3419                                       type = eSymbolTypeObjCMetaClass;
3420                                       demangled_is_synthesized = true;
3421                                     } else if (symbol_name_ref.starts_with(
3422                                                    g_objc_v2_prefix_ivar)) {
3423                                       symbol_name_non_abi_mangled =
3424                                           symbol_name + 1;
3425                                       symbol_name =
3426                                           symbol_name +
3427                                           g_objc_v2_prefix_ivar.size();
3428                                       type = eSymbolTypeObjCIVar;
3429                                       demangled_is_synthesized = true;
3430                                     }
3431                                   }
3432                                 }
3433                               } else if (symbol_sect_name &&
3434                                          ::strstr(symbol_sect_name,
3435                                                   "__gcc_except_tab") ==
3436                                              symbol_sect_name) {
3437                                 type = eSymbolTypeException;
3438                               } else {
3439                                 type = eSymbolTypeData;
3440                               }
3441                             } else if (symbol_sect_name &&
3442                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3443                                            symbol_sect_name) {
3444                               type = eSymbolTypeTrampoline;
3445                             } else if (symbol_section->IsDescendant(
3446                                            objc_section_sp.get())) {
3447                               type = eSymbolTypeRuntime;
3448                               if (symbol_name && symbol_name[0] == '.') {
3449                                 llvm::StringRef symbol_name_ref(symbol_name);
3450                                 llvm::StringRef
3451                                     g_objc_v1_prefix_class(".objc_class_name_");
3452                                 if (symbol_name_ref.starts_with(
3453                                         g_objc_v1_prefix_class)) {
3454                                   symbol_name_non_abi_mangled = symbol_name;
3455                                   symbol_name = symbol_name +
3456                                                 g_objc_v1_prefix_class.size();
3457                                   type = eSymbolTypeObjCClass;
3458                                   demangled_is_synthesized = true;
3459                                 }
3460                               }
3461                             }
3462                           }
3463                         }
3464                       } break;
3465                       }
3466                     }
3467 
3468                     if (add_nlist) {
3469                       uint64_t symbol_value = nlist.n_value;
3470                       if (symbol_name_non_abi_mangled) {
3471                         sym[sym_idx].GetMangled().SetMangledName(
3472                             ConstString(symbol_name_non_abi_mangled));
3473                         sym[sym_idx].GetMangled().SetDemangledName(
3474                             ConstString(symbol_name));
3475                       } else {
3476                         if (symbol_name && symbol_name[0] == '_') {
3477                           symbol_name++; // Skip the leading underscore
3478                         }
3479 
3480                         if (symbol_name) {
3481                           ConstString const_symbol_name(symbol_name);
3482                           sym[sym_idx].GetMangled().SetValue(const_symbol_name);
3483                           if (is_gsym && is_debug) {
3484                             const char *gsym_name =
3485                                 sym[sym_idx]
3486                                     .GetMangled()
3487                                     .GetName(Mangled::ePreferMangled)
3488                                     .GetCString();
3489                             if (gsym_name)
3490                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3491                           }
3492                         }
3493                       }
3494                       if (symbol_section) {
3495                         const addr_t section_file_addr =
3496                             symbol_section->GetFileAddress();
3497                         if (symbol_byte_size == 0 &&
3498                             function_starts_count > 0) {
3499                           addr_t symbol_lookup_file_addr = nlist.n_value;
3500                           // Do an exact address match for non-ARM addresses,
3501                           // else get the closest since the symbol might be a
3502                           // thumb symbol which has an address with bit zero
3503                           // set
3504                           FunctionStarts::Entry *func_start_entry =
3505                               function_starts.FindEntry(symbol_lookup_file_addr,
3506                                                         !is_arm);
3507                           if (is_arm && func_start_entry) {
3508                             // Verify that the function start address is the
3509                             // symbol address (ARM) or the symbol address + 1
3510                             // (thumb)
3511                             if (func_start_entry->addr !=
3512                                     symbol_lookup_file_addr &&
3513                                 func_start_entry->addr !=
3514                                     (symbol_lookup_file_addr + 1)) {
3515                               // Not the right entry, NULL it out...
3516                               func_start_entry = NULL;
3517                             }
3518                           }
3519                           if (func_start_entry) {
3520                             func_start_entry->data = true;
3521 
3522                             addr_t symbol_file_addr = func_start_entry->addr;
3523                             uint32_t symbol_flags = 0;
3524                             if (is_arm) {
3525                               if (symbol_file_addr & 1)
3526                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3527                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3528                             }
3529 
3530                             const FunctionStarts::Entry *next_func_start_entry =
3531                                 function_starts.FindNextEntry(func_start_entry);
3532                             const addr_t section_end_file_addr =
3533                                 section_file_addr +
3534                                 symbol_section->GetByteSize();
3535                             if (next_func_start_entry) {
3536                               addr_t next_symbol_file_addr =
3537                                   next_func_start_entry->addr;
3538                               // Be sure the clear the Thumb address bit when
3539                               // we calculate the size from the current and
3540                               // next address
3541                               if (is_arm)
3542                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3543                               symbol_byte_size = std::min<lldb::addr_t>(
3544                                   next_symbol_file_addr - symbol_file_addr,
3545                                   section_end_file_addr - symbol_file_addr);
3546                             } else {
3547                               symbol_byte_size =
3548                                   section_end_file_addr - symbol_file_addr;
3549                             }
3550                           }
3551                         }
3552                         symbol_value -= section_file_addr;
3553                       }
3554 
3555                       if (is_debug == false) {
3556                         if (type == eSymbolTypeCode) {
3557                           // See if we can find a N_FUN entry for any code
3558                           // symbols. If we do find a match, and the name
3559                           // matches, then we can merge the two into just the
3560                           // function symbol to avoid duplicate entries in
3561                           // the symbol table
3562                           auto range =
3563                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3564                           if (range.first != range.second) {
3565                             bool found_it = false;
3566                             for (auto pos = range.first; pos != range.second;
3567                                  ++pos) {
3568                               if (sym[sym_idx].GetMangled().GetName(
3569                                       Mangled::ePreferMangled) ==
3570                                   sym[pos->second].GetMangled().GetName(
3571                                       Mangled::ePreferMangled)) {
3572                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3573                                 // We just need the flags from the linker
3574                                 // symbol, so put these flags
3575                                 // into the N_FUN flags to avoid duplicate
3576                                 // symbols in the symbol table
3577                                 sym[pos->second].SetExternal(
3578                                     sym[sym_idx].IsExternal());
3579                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3580                                                           nlist.n_desc);
3581                                 if (resolver_addresses.find(nlist.n_value) !=
3582                                     resolver_addresses.end())
3583                                   sym[pos->second].SetType(eSymbolTypeResolver);
3584                                 sym[sym_idx].Clear();
3585                                 found_it = true;
3586                                 break;
3587                               }
3588                             }
3589                             if (found_it)
3590                               continue;
3591                           } else {
3592                             if (resolver_addresses.find(nlist.n_value) !=
3593                                 resolver_addresses.end())
3594                               type = eSymbolTypeResolver;
3595                           }
3596                         } else if (type == eSymbolTypeData ||
3597                                    type == eSymbolTypeObjCClass ||
3598                                    type == eSymbolTypeObjCMetaClass ||
3599                                    type == eSymbolTypeObjCIVar) {
3600                           // See if we can find a N_STSYM entry for any data
3601                           // symbols. If we do find a match, and the name
3602                           // matches, then we can merge the two into just the
3603                           // Static symbol to avoid duplicate entries in the
3604                           // symbol table
3605                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3606                               nlist.n_value);
3607                           if (range.first != range.second) {
3608                             bool found_it = false;
3609                             for (auto pos = range.first; pos != range.second;
3610                                  ++pos) {
3611                               if (sym[sym_idx].GetMangled().GetName(
3612                                       Mangled::ePreferMangled) ==
3613                                   sym[pos->second].GetMangled().GetName(
3614                                       Mangled::ePreferMangled)) {
3615                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3616                                 // We just need the flags from the linker
3617                                 // symbol, so put these flags
3618                                 // into the N_STSYM flags to avoid duplicate
3619                                 // symbols in the symbol table
3620                                 sym[pos->second].SetExternal(
3621                                     sym[sym_idx].IsExternal());
3622                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3623                                                           nlist.n_desc);
3624                                 sym[sym_idx].Clear();
3625                                 found_it = true;
3626                                 break;
3627                               }
3628                             }
3629                             if (found_it)
3630                               continue;
3631                           } else {
3632                             const char *gsym_name =
3633                                 sym[sym_idx]
3634                                     .GetMangled()
3635                                     .GetName(Mangled::ePreferMangled)
3636                                     .GetCString();
3637                             if (gsym_name) {
3638                               // Combine N_GSYM stab entries with the non
3639                               // stab symbol
3640                               ConstNameToSymbolIndexMap::const_iterator pos =
3641                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3642                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3643                                 const uint32_t GSYM_sym_idx = pos->second;
3644                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3645                                     GSYM_sym_idx;
3646                                 // Copy the address, because often the N_GSYM
3647                                 // address has an invalid address of zero
3648                                 // when the global is a common symbol
3649                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3650                                     symbol_section);
3651                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3652                                     symbol_value);
3653                                 add_symbol_addr(sym[GSYM_sym_idx]
3654                                                     .GetAddress()
3655                                                     .GetFileAddress());
3656                                 // We just need the flags from the linker
3657                                 // symbol, so put these flags
3658                                 // into the N_GSYM flags to avoid duplicate
3659                                 // symbols in the symbol table
3660                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3661                                                            nlist.n_desc);
3662                                 sym[sym_idx].Clear();
3663                                 continue;
3664                               }
3665                             }
3666                           }
3667                         }
3668                       }
3669 
3670                       sym[sym_idx].SetID(nlist_idx);
3671                       sym[sym_idx].SetType(type);
3672                       if (set_value) {
3673                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3674                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3675                         add_symbol_addr(
3676                             sym[sym_idx].GetAddress().GetFileAddress());
3677                       }
3678                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3679 
3680                       if (symbol_byte_size > 0)
3681                         sym[sym_idx].SetByteSize(symbol_byte_size);
3682 
3683                       if (demangled_is_synthesized)
3684                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3685                       ++sym_idx;
3686                     } else {
3687                       sym[sym_idx].Clear();
3688                     }
3689                   }
3690                   /////////////////////////////
3691                 }
3692             }
3693 
3694             for (const auto &pos : reexport_shlib_needs_fixup) {
3695               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3696               if (undef_pos != undefined_name_to_desc.end()) {
3697                 const uint8_t dylib_ordinal =
3698                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3699                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3700                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3701                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3702               }
3703             }
3704           }
3705 
3706 #endif
3707   lldb::offset_t nlist_data_offset = 0;
3708 
3709   if (nlist_data.GetByteSize() > 0) {
3710 
3711     // If the sym array was not created while parsing the DSC unmapped
3712     // symbols, create it now.
3713     if (sym == nullptr) {
3714       sym =
3715           symtab.Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3716       num_syms = symtab.GetNumSymbols();
3717     }
3718 
3719     if (unmapped_local_symbols_found) {
3720       assert(m_dysymtab.ilocalsym == 0);
3721       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3722       nlist_idx = m_dysymtab.nlocalsym;
3723     } else {
3724       nlist_idx = 0;
3725     }
3726 
3727     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3728     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3729     UndefinedNameToDescMap undefined_name_to_desc;
3730     SymbolIndexToName reexport_shlib_needs_fixup;
3731 
3732     // Symtab parsing is a huge mess. Everything is entangled and the code
3733     // requires access to a ridiculous amount of variables. LLDB depends
3734     // heavily on the proper merging of symbols and to get that right we need
3735     // to make sure we have parsed all the debug symbols first. Therefore we
3736     // invoke the lambda twice, once to parse only the debug symbols and then
3737     // once more to parse the remaining symbols.
3738     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3739                                  bool debug_only) {
3740       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3741       if (is_debug != debug_only)
3742         return true;
3743 
3744       const char *symbol_name_non_abi_mangled = nullptr;
3745       const char *symbol_name = nullptr;
3746 
3747       if (have_strtab_data) {
3748         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3749 
3750         if (symbol_name == nullptr) {
3751           // No symbol should be NULL, even the symbols with no string values
3752           // should have an offset zero which points to an empty C-string
3753           Debugger::ReportError(llvm::formatv(
3754               "symbol[{0}] has invalid string table offset {1:x} in {2}, "
3755               "ignoring symbol",
3756               nlist_idx, nlist.n_strx, module_sp->GetFileSpec().GetPath()));
3757           return true;
3758         }
3759         if (symbol_name[0] == '\0')
3760           symbol_name = nullptr;
3761       } else {
3762         const addr_t str_addr = strtab_addr + nlist.n_strx;
3763         Status str_error;
3764         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3765                                            str_error))
3766           symbol_name = memory_symbol_name.c_str();
3767       }
3768 
3769       SymbolType type = eSymbolTypeInvalid;
3770       SectionSP symbol_section;
3771       bool add_nlist = true;
3772       bool is_gsym = false;
3773       bool demangled_is_synthesized = false;
3774       bool set_value = true;
3775 
3776       assert(sym_idx < num_syms);
3777       sym[sym_idx].SetDebug(is_debug);
3778 
3779       if (is_debug) {
3780         switch (nlist.n_type) {
3781         case N_GSYM:
3782           // global symbol: name,,NO_SECT,type,0
3783           // Sometimes the N_GSYM value contains the address.
3784 
3785           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3786           // the ObjC data.  They
3787           // have the same address, but we want to ensure that we always find
3788           // only the real symbol, 'cause we don't currently correctly
3789           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3790           // type.  This is a temporary hack to make sure the ObjectiveC
3791           // symbols get treated correctly.  To do this right, we should
3792           // coalesce all the GSYM & global symbols that have the same
3793           // address.
3794           is_gsym = true;
3795           sym[sym_idx].SetExternal(true);
3796 
3797           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3798             llvm::StringRef symbol_name_ref(symbol_name);
3799             if (symbol_name_ref.starts_with(g_objc_v2_prefix_class)) {
3800               symbol_name_non_abi_mangled = symbol_name + 1;
3801               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3802               type = eSymbolTypeObjCClass;
3803               demangled_is_synthesized = true;
3804 
3805             } else if (symbol_name_ref.starts_with(
3806                            g_objc_v2_prefix_metaclass)) {
3807               symbol_name_non_abi_mangled = symbol_name + 1;
3808               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3809               type = eSymbolTypeObjCMetaClass;
3810               demangled_is_synthesized = true;
3811             } else if (symbol_name_ref.starts_with(g_objc_v2_prefix_ivar)) {
3812               symbol_name_non_abi_mangled = symbol_name + 1;
3813               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3814               type = eSymbolTypeObjCIVar;
3815               demangled_is_synthesized = true;
3816             }
3817           } else {
3818             if (nlist.n_value != 0)
3819               symbol_section =
3820                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3821             type = eSymbolTypeData;
3822           }
3823           break;
3824 
3825         case N_FNAME:
3826           // procedure name (f77 kludge): name,,NO_SECT,0,0
3827           type = eSymbolTypeCompiler;
3828           break;
3829 
3830         case N_FUN:
3831           // procedure: name,,n_sect,linenumber,address
3832           if (symbol_name) {
3833             type = eSymbolTypeCode;
3834             symbol_section =
3835                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3836 
3837             N_FUN_addr_to_sym_idx.insert(
3838                 std::make_pair(nlist.n_value, sym_idx));
3839             // We use the current number of symbols in the symbol table in
3840             // lieu of using nlist_idx in case we ever start trimming entries
3841             // out
3842             N_FUN_indexes.push_back(sym_idx);
3843           } else {
3844             type = eSymbolTypeCompiler;
3845 
3846             if (!N_FUN_indexes.empty()) {
3847               // Copy the size of the function into the original STAB entry
3848               // so we don't have to hunt for it later
3849               symtab.SymbolAtIndex(N_FUN_indexes.back())
3850                   ->SetByteSize(nlist.n_value);
3851               N_FUN_indexes.pop_back();
3852               // We don't really need the end function STAB as it contains
3853               // the size which we already placed with the original symbol,
3854               // so don't add it if we want a minimal symbol table
3855               add_nlist = false;
3856             }
3857           }
3858           break;
3859 
3860         case N_STSYM:
3861           // static symbol: name,,n_sect,type,address
3862           N_STSYM_addr_to_sym_idx.insert(
3863               std::make_pair(nlist.n_value, sym_idx));
3864           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3865           if (symbol_name && symbol_name[0]) {
3866             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3867                                                      eSymbolTypeData);
3868           }
3869           break;
3870 
3871         case N_LCSYM:
3872           // .lcomm symbol: name,,n_sect,type,address
3873           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3874           type = eSymbolTypeCommonBlock;
3875           break;
3876 
3877         case N_BNSYM:
3878           // We use the current number of symbols in the symbol table in lieu
3879           // of using nlist_idx in case we ever start trimming entries out
3880           // Skip these if we want minimal symbol tables
3881           add_nlist = false;
3882           break;
3883 
3884         case N_ENSYM:
3885           // Set the size of the N_BNSYM to the terminating index of this
3886           // N_ENSYM so that we can always skip the entire symbol if we need
3887           // to navigate more quickly at the source level when parsing STABS
3888           // Skip these if we want minimal symbol tables
3889           add_nlist = false;
3890           break;
3891 
3892         case N_OPT:
3893           // emitted with gcc2_compiled and in gcc source
3894           type = eSymbolTypeCompiler;
3895           break;
3896 
3897         case N_RSYM:
3898           // register sym: name,,NO_SECT,type,register
3899           type = eSymbolTypeVariable;
3900           break;
3901 
3902         case N_SLINE:
3903           // src line: 0,,n_sect,linenumber,address
3904           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3905           type = eSymbolTypeLineEntry;
3906           break;
3907 
3908         case N_SSYM:
3909           // structure elt: name,,NO_SECT,type,struct_offset
3910           type = eSymbolTypeVariableType;
3911           break;
3912 
3913         case N_SO:
3914           // source file name
3915           type = eSymbolTypeSourceFile;
3916           if (symbol_name == nullptr) {
3917             add_nlist = false;
3918             if (N_SO_index != UINT32_MAX) {
3919               // Set the size of the N_SO to the terminating index of this
3920               // N_SO so that we can always skip the entire N_SO if we need
3921               // to navigate more quickly at the source level when parsing
3922               // STABS
3923               symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3924               symbol_ptr->SetByteSize(sym_idx);
3925               symbol_ptr->SetSizeIsSibling(true);
3926             }
3927             N_NSYM_indexes.clear();
3928             N_INCL_indexes.clear();
3929             N_BRAC_indexes.clear();
3930             N_COMM_indexes.clear();
3931             N_FUN_indexes.clear();
3932             N_SO_index = UINT32_MAX;
3933           } else {
3934             // We use the current number of symbols in the symbol table in
3935             // lieu of using nlist_idx in case we ever start trimming entries
3936             // out
3937             const bool N_SO_has_full_path = symbol_name[0] == '/';
3938             if (N_SO_has_full_path) {
3939               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3940                 // We have two consecutive N_SO entries where the first
3941                 // contains a directory and the second contains a full path.
3942                 sym[sym_idx - 1].GetMangled().SetValue(
3943                     ConstString(symbol_name));
3944                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3945                 add_nlist = false;
3946               } else {
3947                 // This is the first entry in a N_SO that contains a
3948                 // directory or a full path to the source file
3949                 N_SO_index = sym_idx;
3950               }
3951             } else if ((N_SO_index == sym_idx - 1) &&
3952                        ((sym_idx - 1) < num_syms)) {
3953               // This is usually the second N_SO entry that contains just the
3954               // filename, so here we combine it with the first one if we are
3955               // minimizing the symbol table
3956               const char *so_path =
3957                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3958               if (so_path && so_path[0]) {
3959                 std::string full_so_path(so_path);
3960                 const size_t double_slash_pos = full_so_path.find("//");
3961                 if (double_slash_pos != std::string::npos) {
3962                   // The linker has been generating bad N_SO entries with
3963                   // doubled up paths in the format "%s%s" where the first
3964                   // string in the DW_AT_comp_dir, and the second is the
3965                   // directory for the source file so you end up with a path
3966                   // that looks like "/tmp/src//tmp/src/"
3967                   FileSpec so_dir(so_path);
3968                   if (!FileSystem::Instance().Exists(so_dir)) {
3969                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3970                                    FileSpec::Style::native);
3971                     if (FileSystem::Instance().Exists(so_dir)) {
3972                       // Trim off the incorrect path
3973                       full_so_path.erase(0, double_slash_pos + 1);
3974                     }
3975                   }
3976                 }
3977                 if (*full_so_path.rbegin() != '/')
3978                   full_so_path += '/';
3979                 full_so_path += symbol_name;
3980                 sym[sym_idx - 1].GetMangled().SetValue(
3981                     ConstString(full_so_path.c_str()));
3982                 add_nlist = false;
3983                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3984               }
3985             } else {
3986               // This could be a relative path to a N_SO
3987               N_SO_index = sym_idx;
3988             }
3989           }
3990           break;
3991 
3992         case N_OSO:
3993           // object file name: name,,0,0,st_mtime
3994           type = eSymbolTypeObjectFile;
3995           break;
3996 
3997         case N_LSYM:
3998           // local sym: name,,NO_SECT,type,offset
3999           type = eSymbolTypeLocal;
4000           break;
4001 
4002         // INCL scopes
4003         case N_BINCL:
4004           // include file beginning: name,,NO_SECT,0,sum We use the current
4005           // number of symbols in the symbol table in lieu of using nlist_idx
4006           // in case we ever start trimming entries out
4007           N_INCL_indexes.push_back(sym_idx);
4008           type = eSymbolTypeScopeBegin;
4009           break;
4010 
4011         case N_EINCL:
4012           // include file end: name,,NO_SECT,0,0
4013           // Set the size of the N_BINCL to the terminating index of this
4014           // N_EINCL so that we can always skip the entire symbol if we need
4015           // to navigate more quickly at the source level when parsing STABS
4016           if (!N_INCL_indexes.empty()) {
4017             symbol_ptr = symtab.SymbolAtIndex(N_INCL_indexes.back());
4018             symbol_ptr->SetByteSize(sym_idx + 1);
4019             symbol_ptr->SetSizeIsSibling(true);
4020             N_INCL_indexes.pop_back();
4021           }
4022           type = eSymbolTypeScopeEnd;
4023           break;
4024 
4025         case N_SOL:
4026           // #included file name: name,,n_sect,0,address
4027           type = eSymbolTypeHeaderFile;
4028 
4029           // We currently don't use the header files on darwin
4030           add_nlist = false;
4031           break;
4032 
4033         case N_PARAMS:
4034           // compiler parameters: name,,NO_SECT,0,0
4035           type = eSymbolTypeCompiler;
4036           break;
4037 
4038         case N_VERSION:
4039           // compiler version: name,,NO_SECT,0,0
4040           type = eSymbolTypeCompiler;
4041           break;
4042 
4043         case N_OLEVEL:
4044           // compiler -O level: name,,NO_SECT,0,0
4045           type = eSymbolTypeCompiler;
4046           break;
4047 
4048         case N_PSYM:
4049           // parameter: name,,NO_SECT,type,offset
4050           type = eSymbolTypeVariable;
4051           break;
4052 
4053         case N_ENTRY:
4054           // alternate entry: name,,n_sect,linenumber,address
4055           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4056           type = eSymbolTypeLineEntry;
4057           break;
4058 
4059         // Left and Right Braces
4060         case N_LBRAC:
4061           // left bracket: 0,,NO_SECT,nesting level,address We use the
4062           // current number of symbols in the symbol table in lieu of using
4063           // nlist_idx in case we ever start trimming entries out
4064           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4065           N_BRAC_indexes.push_back(sym_idx);
4066           type = eSymbolTypeScopeBegin;
4067           break;
4068 
4069         case N_RBRAC:
4070           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4071           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4072           // can always skip the entire symbol if we need to navigate more
4073           // quickly at the source level when parsing STABS
4074           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4075           if (!N_BRAC_indexes.empty()) {
4076             symbol_ptr = symtab.SymbolAtIndex(N_BRAC_indexes.back());
4077             symbol_ptr->SetByteSize(sym_idx + 1);
4078             symbol_ptr->SetSizeIsSibling(true);
4079             N_BRAC_indexes.pop_back();
4080           }
4081           type = eSymbolTypeScopeEnd;
4082           break;
4083 
4084         case N_EXCL:
4085           // deleted include file: name,,NO_SECT,0,sum
4086           type = eSymbolTypeHeaderFile;
4087           break;
4088 
4089         // COMM scopes
4090         case N_BCOMM:
4091           // begin common: name,,NO_SECT,0,0
4092           // We use the current number of symbols in the symbol table in lieu
4093           // of using nlist_idx in case we ever start trimming entries out
4094           type = eSymbolTypeScopeBegin;
4095           N_COMM_indexes.push_back(sym_idx);
4096           break;
4097 
4098         case N_ECOML:
4099           // end common (local name): 0,,n_sect,0,address
4100           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4101           [[fallthrough]];
4102 
4103         case N_ECOMM:
4104           // end common: name,,n_sect,0,0
4105           // Set the size of the N_BCOMM to the terminating index of this
4106           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4107           // we need to navigate more quickly at the source level when
4108           // parsing STABS
4109           if (!N_COMM_indexes.empty()) {
4110             symbol_ptr = symtab.SymbolAtIndex(N_COMM_indexes.back());
4111             symbol_ptr->SetByteSize(sym_idx + 1);
4112             symbol_ptr->SetSizeIsSibling(true);
4113             N_COMM_indexes.pop_back();
4114           }
4115           type = eSymbolTypeScopeEnd;
4116           break;
4117 
4118         case N_LENG:
4119           // second stab entry with length information
4120           type = eSymbolTypeAdditional;
4121           break;
4122 
4123         default:
4124           break;
4125         }
4126       } else {
4127         uint8_t n_type = N_TYPE & nlist.n_type;
4128         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4129 
4130         switch (n_type) {
4131         case N_INDR: {
4132           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4133           if (reexport_name_cstr && reexport_name_cstr[0] && symbol_name) {
4134             type = eSymbolTypeReExported;
4135             ConstString reexport_name(reexport_name_cstr +
4136                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4137             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4138             set_value = false;
4139             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4140             indirect_symbol_names.insert(
4141                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4142           } else
4143             type = eSymbolTypeUndefined;
4144         } break;
4145 
4146         case N_UNDF:
4147           if (symbol_name && symbol_name[0]) {
4148             ConstString undefined_name(symbol_name +
4149                                        ((symbol_name[0] == '_') ? 1 : 0));
4150             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4151           }
4152           [[fallthrough]];
4153 
4154         case N_PBUD:
4155           type = eSymbolTypeUndefined;
4156           break;
4157 
4158         case N_ABS:
4159           type = eSymbolTypeAbsolute;
4160           break;
4161 
4162         case N_SECT: {
4163           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4164 
4165           if (!symbol_section) {
4166             // TODO: warn about this?
4167             add_nlist = false;
4168             break;
4169           }
4170 
4171           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4172             type = eSymbolTypeException;
4173           } else {
4174             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4175 
4176             switch (section_type) {
4177             case S_CSTRING_LITERALS:
4178               type = eSymbolTypeData;
4179               break; // section with only literal C strings
4180             case S_4BYTE_LITERALS:
4181               type = eSymbolTypeData;
4182               break; // section with only 4 byte literals
4183             case S_8BYTE_LITERALS:
4184               type = eSymbolTypeData;
4185               break; // section with only 8 byte literals
4186             case S_LITERAL_POINTERS:
4187               type = eSymbolTypeTrampoline;
4188               break; // section with only pointers to literals
4189             case S_NON_LAZY_SYMBOL_POINTERS:
4190               type = eSymbolTypeTrampoline;
4191               break; // section with only non-lazy symbol pointers
4192             case S_LAZY_SYMBOL_POINTERS:
4193               type = eSymbolTypeTrampoline;
4194               break; // section with only lazy symbol pointers
4195             case S_SYMBOL_STUBS:
4196               type = eSymbolTypeTrampoline;
4197               break; // section with only symbol stubs, byte size of stub in
4198                      // the reserved2 field
4199             case S_MOD_INIT_FUNC_POINTERS:
4200               type = eSymbolTypeCode;
4201               break; // section with only function pointers for initialization
4202             case S_MOD_TERM_FUNC_POINTERS:
4203               type = eSymbolTypeCode;
4204               break; // section with only function pointers for termination
4205             case S_INTERPOSING:
4206               type = eSymbolTypeTrampoline;
4207               break; // section with only pairs of function pointers for
4208                      // interposing
4209             case S_16BYTE_LITERALS:
4210               type = eSymbolTypeData;
4211               break; // section with only 16 byte literals
4212             case S_DTRACE_DOF:
4213               type = eSymbolTypeInstrumentation;
4214               break;
4215             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4216               type = eSymbolTypeTrampoline;
4217               break;
4218             default:
4219               switch (symbol_section->GetType()) {
4220               case lldb::eSectionTypeCode:
4221                 type = eSymbolTypeCode;
4222                 break;
4223               case eSectionTypeData:
4224               case eSectionTypeDataCString:         // Inlined C string data
4225               case eSectionTypeDataCStringPointers: // Pointers to C string
4226                                                     // data
4227               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4228                                                     // the symbol table
4229               case eSectionTypeData4:
4230               case eSectionTypeData8:
4231               case eSectionTypeData16:
4232                 type = eSymbolTypeData;
4233                 break;
4234               default:
4235                 break;
4236               }
4237               break;
4238             }
4239 
4240             if (type == eSymbolTypeInvalid) {
4241               const char *symbol_sect_name =
4242                   symbol_section->GetName().AsCString();
4243               if (symbol_section->IsDescendant(text_section_sp.get())) {
4244                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4245                                             S_ATTR_SELF_MODIFYING_CODE |
4246                                             S_ATTR_SOME_INSTRUCTIONS))
4247                   type = eSymbolTypeData;
4248                 else
4249                   type = eSymbolTypeCode;
4250               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4251                          symbol_section->IsDescendant(
4252                              data_dirty_section_sp.get()) ||
4253                          symbol_section->IsDescendant(
4254                              data_const_section_sp.get())) {
4255                 if (symbol_sect_name &&
4256                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4257                   type = eSymbolTypeRuntime;
4258 
4259                   if (symbol_name) {
4260                     llvm::StringRef symbol_name_ref(symbol_name);
4261                     if (symbol_name_ref.starts_with("_OBJC_")) {
4262                       llvm::StringRef g_objc_v2_prefix_class(
4263                           "_OBJC_CLASS_$_");
4264                       llvm::StringRef g_objc_v2_prefix_metaclass(
4265                           "_OBJC_METACLASS_$_");
4266                       llvm::StringRef g_objc_v2_prefix_ivar(
4267                           "_OBJC_IVAR_$_");
4268                       if (symbol_name_ref.starts_with(g_objc_v2_prefix_class)) {
4269                         symbol_name_non_abi_mangled = symbol_name + 1;
4270                         symbol_name =
4271                             symbol_name + g_objc_v2_prefix_class.size();
4272                         type = eSymbolTypeObjCClass;
4273                         demangled_is_synthesized = true;
4274                       } else if (symbol_name_ref.starts_with(
4275                                      g_objc_v2_prefix_metaclass)) {
4276                         symbol_name_non_abi_mangled = symbol_name + 1;
4277                         symbol_name =
4278                             symbol_name + g_objc_v2_prefix_metaclass.size();
4279                         type = eSymbolTypeObjCMetaClass;
4280                         demangled_is_synthesized = true;
4281                       } else if (symbol_name_ref.starts_with(
4282                                      g_objc_v2_prefix_ivar)) {
4283                         symbol_name_non_abi_mangled = symbol_name + 1;
4284                         symbol_name =
4285                             symbol_name + g_objc_v2_prefix_ivar.size();
4286                         type = eSymbolTypeObjCIVar;
4287                         demangled_is_synthesized = true;
4288                       }
4289                     }
4290                   }
4291                 } else if (symbol_sect_name &&
4292                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4293                                symbol_sect_name) {
4294                   type = eSymbolTypeException;
4295                 } else {
4296                   type = eSymbolTypeData;
4297                 }
4298               } else if (symbol_sect_name &&
4299                          ::strstr(symbol_sect_name, "__IMPORT") ==
4300                              symbol_sect_name) {
4301                 type = eSymbolTypeTrampoline;
4302               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4303                 type = eSymbolTypeRuntime;
4304                 if (symbol_name && symbol_name[0] == '.') {
4305                   llvm::StringRef symbol_name_ref(symbol_name);
4306                   llvm::StringRef g_objc_v1_prefix_class(
4307                       ".objc_class_name_");
4308                   if (symbol_name_ref.starts_with(g_objc_v1_prefix_class)) {
4309                     symbol_name_non_abi_mangled = symbol_name;
4310                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4311                     type = eSymbolTypeObjCClass;
4312                     demangled_is_synthesized = true;
4313                   }
4314                 }
4315               }
4316             }
4317           }
4318         } break;
4319         }
4320       }
4321 
4322       if (!add_nlist) {
4323         sym[sym_idx].Clear();
4324         return true;
4325       }
4326 
4327       uint64_t symbol_value = nlist.n_value;
4328 
4329       if (symbol_name_non_abi_mangled) {
4330         sym[sym_idx].GetMangled().SetMangledName(
4331             ConstString(symbol_name_non_abi_mangled));
4332         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4333       } else {
4334 
4335         if (symbol_name && symbol_name[0] == '_') {
4336           symbol_name++; // Skip the leading underscore
4337         }
4338 
4339         if (symbol_name) {
4340           ConstString const_symbol_name(symbol_name);
4341           sym[sym_idx].GetMangled().SetValue(const_symbol_name);
4342         }
4343       }
4344 
4345       if (is_gsym) {
4346         const char *gsym_name = sym[sym_idx]
4347                                     .GetMangled()
4348                                     .GetName(Mangled::ePreferMangled)
4349                                     .GetCString();
4350         if (gsym_name)
4351           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4352       }
4353 
4354       if (symbol_section) {
4355         const addr_t section_file_addr = symbol_section->GetFileAddress();
4356         symbol_value -= section_file_addr;
4357       }
4358 
4359       if (!is_debug) {
4360         if (type == eSymbolTypeCode) {
4361           // See if we can find a N_FUN entry for any code symbols. If we do
4362           // find a match, and the name matches, then we can merge the two into
4363           // just the function symbol to avoid duplicate entries in the symbol
4364           // table.
4365           std::pair<ValueToSymbolIndexMap::const_iterator,
4366                     ValueToSymbolIndexMap::const_iterator>
4367               range;
4368           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4369           if (range.first != range.second) {
4370             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4371                  pos != range.second; ++pos) {
4372               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4373                   sym[pos->second].GetMangled().GetName(
4374                       Mangled::ePreferMangled)) {
4375                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4376                 // We just need the flags from the linker symbol, so put these
4377                 // flags into the N_FUN flags to avoid duplicate symbols in the
4378                 // symbol table.
4379                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4380                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4381                 if (resolver_addresses.find(nlist.n_value) !=
4382                     resolver_addresses.end())
4383                   sym[pos->second].SetType(eSymbolTypeResolver);
4384                 sym[sym_idx].Clear();
4385                 return true;
4386               }
4387             }
4388           } else {
4389             if (resolver_addresses.find(nlist.n_value) !=
4390                 resolver_addresses.end())
4391               type = eSymbolTypeResolver;
4392           }
4393         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4394                    type == eSymbolTypeObjCMetaClass ||
4395                    type == eSymbolTypeObjCIVar) {
4396           // See if we can find a N_STSYM entry for any data symbols. If we do
4397           // find a match, and the name matches, then we can merge the two into
4398           // just the Static symbol to avoid duplicate entries in the symbol
4399           // table.
4400           std::pair<ValueToSymbolIndexMap::const_iterator,
4401                     ValueToSymbolIndexMap::const_iterator>
4402               range;
4403           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4404           if (range.first != range.second) {
4405             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4406                  pos != range.second; ++pos) {
4407               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4408                   sym[pos->second].GetMangled().GetName(
4409                       Mangled::ePreferMangled)) {
4410                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4411                 // We just need the flags from the linker symbol, so put these
4412                 // flags into the N_STSYM flags to avoid duplicate symbols in
4413                 // the symbol table.
4414                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4415                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4416                 sym[sym_idx].Clear();
4417                 return true;
4418               }
4419             }
4420           } else {
4421             // Combine N_GSYM stab entries with the non stab symbol.
4422             const char *gsym_name = sym[sym_idx]
4423                                         .GetMangled()
4424                                         .GetName(Mangled::ePreferMangled)
4425                                         .GetCString();
4426             if (gsym_name) {
4427               ConstNameToSymbolIndexMap::const_iterator pos =
4428                   N_GSYM_name_to_sym_idx.find(gsym_name);
4429               if (pos != N_GSYM_name_to_sym_idx.end()) {
4430                 const uint32_t GSYM_sym_idx = pos->second;
4431                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4432                 // Copy the address, because often the N_GSYM address has an
4433                 // invalid address of zero when the global is a common symbol.
4434                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4435                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4436                 add_symbol_addr(
4437                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4438                 // We just need the flags from the linker symbol, so put these
4439                 // flags into the N_GSYM flags to avoid duplicate symbols in
4440                 // the symbol table.
4441                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4442                 sym[sym_idx].Clear();
4443                 return true;
4444               }
4445             }
4446           }
4447         }
4448       }
4449 
4450       sym[sym_idx].SetID(nlist_idx);
4451       sym[sym_idx].SetType(type);
4452       if (set_value) {
4453         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4454         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4455         if (symbol_section)
4456           add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4457       }
4458       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4459       if (nlist.n_desc & N_WEAK_REF)
4460         sym[sym_idx].SetIsWeak(true);
4461 
4462       if (demangled_is_synthesized)
4463         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4464 
4465       ++sym_idx;
4466       return true;
4467     };
4468 
4469     // First parse all the nlists but don't process them yet. See the next
4470     // comment for an explanation why.
4471     std::vector<struct nlist_64> nlists;
4472     nlists.reserve(symtab_load_command.nsyms);
4473     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4474       if (auto nlist =
4475               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4476         nlists.push_back(*nlist);
4477       else
4478         break;
4479     }
4480 
4481     // Now parse all the debug symbols. This is needed to merge non-debug
4482     // symbols in the next step. Non-debug symbols are always coalesced into
4483     // the debug symbol. Doing this in one step would mean that some symbols
4484     // won't be merged.
4485     nlist_idx = 0;
4486     for (auto &nlist : nlists) {
4487       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4488         break;
4489     }
4490 
4491     // Finally parse all the non debug symbols.
4492     nlist_idx = 0;
4493     for (auto &nlist : nlists) {
4494       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4495         break;
4496     }
4497 
4498     for (const auto &pos : reexport_shlib_needs_fixup) {
4499       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4500       if (undef_pos != undefined_name_to_desc.end()) {
4501         const uint8_t dylib_ordinal =
4502             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4503         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4504           sym[pos.first].SetReExportedSymbolSharedLibrary(
4505               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4506       }
4507     }
4508   }
4509 
4510   // Count how many trie symbols we'll add to the symbol table
4511   int trie_symbol_table_augment_count = 0;
4512   for (auto &e : external_sym_trie_entries) {
4513     if (!symbols_added.contains(e.entry.address))
4514       trie_symbol_table_augment_count++;
4515   }
4516 
4517   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4518     num_syms = sym_idx + trie_symbol_table_augment_count;
4519     sym = symtab.Resize(num_syms);
4520   }
4521   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4522 
4523   // Add symbols from the trie to the symbol table.
4524   for (auto &e : external_sym_trie_entries) {
4525     if (symbols_added.contains(e.entry.address))
4526       continue;
4527 
4528     // Find the section that this trie address is in, use that to annotate
4529     // symbol type as we add the trie address and name to the symbol table.
4530     Address symbol_addr;
4531     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4532       SectionSP symbol_section(symbol_addr.GetSection());
4533       const char *symbol_name = e.entry.name.GetCString();
4534       bool demangled_is_synthesized = false;
4535       SymbolType type =
4536           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4537                         data_section_sp, data_dirty_section_sp,
4538                         data_const_section_sp, symbol_section);
4539 
4540       sym[sym_idx].SetType(type);
4541       if (symbol_section) {
4542         sym[sym_idx].SetID(synthetic_sym_id++);
4543         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4544         if (demangled_is_synthesized)
4545           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4546         sym[sym_idx].SetIsSynthetic(true);
4547         sym[sym_idx].SetExternal(true);
4548         sym[sym_idx].GetAddressRef() = symbol_addr;
4549         add_symbol_addr(symbol_addr.GetFileAddress());
4550         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4551           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4552         ++sym_idx;
4553       }
4554     }
4555   }
4556 
4557   if (function_starts_count > 0) {
4558     uint32_t num_synthetic_function_symbols = 0;
4559     for (i = 0; i < function_starts_count; ++i) {
4560       if (!symbols_added.contains(function_starts.GetEntryRef(i).addr))
4561         ++num_synthetic_function_symbols;
4562     }
4563 
4564     if (num_synthetic_function_symbols > 0) {
4565       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4566         num_syms = sym_idx + num_synthetic_function_symbols;
4567         sym = symtab.Resize(num_syms);
4568       }
4569       for (i = 0; i < function_starts_count; ++i) {
4570         const FunctionStarts::Entry *func_start_entry =
4571             function_starts.GetEntryAtIndex(i);
4572         if (!symbols_added.contains(func_start_entry->addr)) {
4573           addr_t symbol_file_addr = func_start_entry->addr;
4574           uint32_t symbol_flags = 0;
4575           if (func_start_entry->data)
4576             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4577           Address symbol_addr;
4578           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4579             SectionSP symbol_section(symbol_addr.GetSection());
4580             if (symbol_section) {
4581               sym[sym_idx].SetID(synthetic_sym_id++);
4582               // Don't set the name for any synthetic symbols, the Symbol
4583               // object will generate one if needed when the name is accessed
4584               // via accessors.
4585               sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4586               sym[sym_idx].SetType(eSymbolTypeCode);
4587               sym[sym_idx].SetIsSynthetic(true);
4588               sym[sym_idx].GetAddressRef() = symbol_addr;
4589               add_symbol_addr(symbol_addr.GetFileAddress());
4590               if (symbol_flags)
4591                 sym[sym_idx].SetFlags(symbol_flags);
4592               ++sym_idx;
4593             }
4594           }
4595         }
4596       }
4597     }
4598   }
4599 
4600   // Trim our symbols down to just what we ended up with after removing any
4601   // symbols.
4602   if (sym_idx < num_syms) {
4603     num_syms = sym_idx;
4604     sym = symtab.Resize(num_syms);
4605   }
4606 
4607   // Now synthesize indirect symbols
4608   if (m_dysymtab.nindirectsyms != 0) {
4609     if (indirect_symbol_index_data.GetByteSize()) {
4610       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4611           m_nlist_idx_to_sym_idx.end();
4612 
4613       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4614            ++sect_idx) {
4615         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4616             S_SYMBOL_STUBS) {
4617           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4618           if (symbol_stub_byte_size == 0)
4619             continue;
4620 
4621           const uint32_t num_symbol_stubs =
4622               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4623 
4624           if (num_symbol_stubs == 0)
4625             continue;
4626 
4627           const uint32_t symbol_stub_index_offset =
4628               m_mach_sections[sect_idx].reserved1;
4629           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4630             const uint32_t symbol_stub_index =
4631                 symbol_stub_index_offset + stub_idx;
4632             const lldb::addr_t symbol_stub_addr =
4633                 m_mach_sections[sect_idx].addr +
4634                 (stub_idx * symbol_stub_byte_size);
4635             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4636             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4637                     symbol_stub_offset, 4)) {
4638               const uint32_t stub_sym_id =
4639                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4640               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4641                 continue;
4642 
4643               NListIndexToSymbolIndexMap::const_iterator index_pos =
4644                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4645               Symbol *stub_symbol = nullptr;
4646               if (index_pos != end_index_pos) {
4647                 // We have a remapping from the original nlist index to a
4648                 // current symbol index, so just look this up by index
4649                 stub_symbol = symtab.SymbolAtIndex(index_pos->second);
4650               } else {
4651                 // We need to lookup a symbol using the original nlist symbol
4652                 // index since this index is coming from the S_SYMBOL_STUBS
4653                 stub_symbol = symtab.FindSymbolByID(stub_sym_id);
4654               }
4655 
4656               if (stub_symbol) {
4657                 Address so_addr(symbol_stub_addr, section_list);
4658 
4659                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4660                   // Change the external symbol into a trampoline that makes
4661                   // sense These symbols were N_UNDF N_EXT, and are useless
4662                   // to us, so we can re-use them so we don't have to make up
4663                   // a synthetic symbol for no good reason.
4664                   if (resolver_addresses.find(symbol_stub_addr) ==
4665                       resolver_addresses.end())
4666                     stub_symbol->SetType(eSymbolTypeTrampoline);
4667                   else
4668                     stub_symbol->SetType(eSymbolTypeResolver);
4669                   stub_symbol->SetExternal(false);
4670                   stub_symbol->GetAddressRef() = so_addr;
4671                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4672                 } else {
4673                   // Make a synthetic symbol to describe the trampoline stub
4674                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4675                   if (sym_idx >= num_syms) {
4676                     sym = symtab.Resize(++num_syms);
4677                     stub_symbol = nullptr; // this pointer no longer valid
4678                   }
4679                   sym[sym_idx].SetID(synthetic_sym_id++);
4680                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4681                   if (resolver_addresses.find(symbol_stub_addr) ==
4682                       resolver_addresses.end())
4683                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4684                   else
4685                     sym[sym_idx].SetType(eSymbolTypeResolver);
4686                   sym[sym_idx].SetIsSynthetic(true);
4687                   sym[sym_idx].GetAddressRef() = so_addr;
4688                   add_symbol_addr(so_addr.GetFileAddress());
4689                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4690                   ++sym_idx;
4691                 }
4692               } else {
4693                 if (log)
4694                   log->Warning("symbol stub referencing symbol table symbol "
4695                                "%u that isn't in our minimal symbol table, "
4696                                "fix this!!!",
4697                                stub_sym_id);
4698               }
4699             }
4700           }
4701         }
4702       }
4703     }
4704   }
4705 
4706   if (!reexport_trie_entries.empty()) {
4707     for (const auto &e : reexport_trie_entries) {
4708       if (e.entry.import_name) {
4709         // Only add indirect symbols from the Trie entries if we didn't have
4710         // a N_INDR nlist entry for this already
4711         if (indirect_symbol_names.find(e.entry.name) ==
4712             indirect_symbol_names.end()) {
4713           // Make a synthetic symbol to describe re-exported symbol.
4714           if (sym_idx >= num_syms)
4715             sym = symtab.Resize(++num_syms);
4716           sym[sym_idx].SetID(synthetic_sym_id++);
4717           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4718           sym[sym_idx].SetType(eSymbolTypeReExported);
4719           sym[sym_idx].SetIsSynthetic(true);
4720           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4721           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4722             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4723                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4724           }
4725           ++sym_idx;
4726         }
4727       }
4728     }
4729   }
4730 }
4731 
4732 void ObjectFileMachO::Dump(Stream *s) {
4733   ModuleSP module_sp(GetModule());
4734   if (module_sp) {
4735     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4736     s->Printf("%p: ", static_cast<void *>(this));
4737     s->Indent();
4738     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4739       s->PutCString("ObjectFileMachO64");
4740     else
4741       s->PutCString("ObjectFileMachO32");
4742 
4743     *s << ", file = '" << m_file;
4744     ModuleSpecList all_specs;
4745     ModuleSpec base_spec;
4746     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4747                     base_spec, all_specs);
4748     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4749       *s << "', triple";
4750       if (e)
4751         s->Printf("[%d]", i);
4752       *s << " = ";
4753       *s << all_specs.GetModuleSpecRefAtIndex(i)
4754                 .GetArchitecture()
4755                 .GetTriple()
4756                 .getTriple();
4757     }
4758     *s << "\n";
4759     SectionList *sections = GetSectionList();
4760     if (sections)
4761       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4762                      UINT32_MAX);
4763 
4764     if (m_symtab_up)
4765       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4766   }
4767 }
4768 
4769 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4770                               const lldb_private::DataExtractor &data,
4771                               lldb::offset_t lc_offset) {
4772   uint32_t i;
4773   llvm::MachO::uuid_command load_cmd;
4774 
4775   lldb::offset_t offset = lc_offset;
4776   for (i = 0; i < header.ncmds; ++i) {
4777     const lldb::offset_t cmd_offset = offset;
4778     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4779       break;
4780 
4781     if (load_cmd.cmd == LC_UUID) {
4782       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4783 
4784       if (uuid_bytes) {
4785         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4786         // We pretend these object files have no UUID to prevent crashing.
4787 
4788         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4789                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4790                                        0xbb, 0x14, 0xf0, 0x0d};
4791 
4792         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4793           return UUID();
4794 
4795         return UUID(uuid_bytes, 16);
4796       }
4797       return UUID();
4798     }
4799     offset = cmd_offset + load_cmd.cmdsize;
4800   }
4801   return UUID();
4802 }
4803 
4804 static llvm::StringRef GetOSName(uint32_t cmd) {
4805   switch (cmd) {
4806   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4807     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4808   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4809     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4810   case llvm::MachO::LC_VERSION_MIN_TVOS:
4811     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4812   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4813     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4814   default:
4815     llvm_unreachable("unexpected LC_VERSION load command");
4816   }
4817 }
4818 
4819 namespace {
4820 struct OSEnv {
4821   llvm::StringRef os_type;
4822   llvm::StringRef environment;
4823   OSEnv(uint32_t cmd) {
4824     switch (cmd) {
4825     case llvm::MachO::PLATFORM_MACOS:
4826       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4827       return;
4828     case llvm::MachO::PLATFORM_IOS:
4829       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4830       return;
4831     case llvm::MachO::PLATFORM_TVOS:
4832       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4833       return;
4834     case llvm::MachO::PLATFORM_WATCHOS:
4835       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4836       return;
4837     case llvm::MachO::PLATFORM_BRIDGEOS:
4838       os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4839       return;
4840     case llvm::MachO::PLATFORM_DRIVERKIT:
4841       os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
4842       return;
4843     case llvm::MachO::PLATFORM_MACCATALYST:
4844       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4845       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4846       return;
4847     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4848       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4849       environment =
4850           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4851       return;
4852     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4853       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4854       environment =
4855           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4856       return;
4857     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4858       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4859       environment =
4860           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4861       return;
4862     case llvm::MachO::PLATFORM_XROS:
4863       os_type = llvm::Triple::getOSTypeName(llvm::Triple::XROS);
4864       return;
4865     case llvm::MachO::PLATFORM_XROS_SIMULATOR:
4866       os_type = llvm::Triple::getOSTypeName(llvm::Triple::XROS);
4867       environment =
4868           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4869       return;
4870     default: {
4871       Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
4872       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4873     }
4874     }
4875   }
4876 };
4877 
4878 struct MinOS {
4879   uint32_t major_version, minor_version, patch_version;
4880   MinOS(uint32_t version)
4881       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4882         patch_version(version & 0xffu) {}
4883 };
4884 } // namespace
4885 
4886 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4887                                       const lldb_private::DataExtractor &data,
4888                                       lldb::offset_t lc_offset,
4889                                       ModuleSpec &base_spec,
4890                                       lldb_private::ModuleSpecList &all_specs) {
4891   auto &base_arch = base_spec.GetArchitecture();
4892   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4893   if (!base_arch.IsValid())
4894     return;
4895 
4896   bool found_any = false;
4897   auto add_triple = [&](const llvm::Triple &triple) {
4898     auto spec = base_spec;
4899     spec.GetArchitecture().GetTriple() = triple;
4900     if (spec.GetArchitecture().IsValid()) {
4901       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4902       all_specs.Append(spec);
4903       found_any = true;
4904     }
4905   };
4906 
4907   // Set OS to an unspecified unknown or a "*" so it can match any OS
4908   llvm::Triple base_triple = base_arch.GetTriple();
4909   base_triple.setOS(llvm::Triple::UnknownOS);
4910   base_triple.setOSName(llvm::StringRef());
4911 
4912   if (header.filetype == MH_PRELOAD) {
4913     if (header.cputype == CPU_TYPE_ARM) {
4914       // If this is a 32-bit arm binary, and it's a standalone binary, force
4915       // the Vendor to Apple so we don't accidentally pick up the generic
4916       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4917       // frame pointer register; most other armv7 ABIs use a combination of
4918       // r7 and r11.
4919       base_triple.setVendor(llvm::Triple::Apple);
4920     } else {
4921       // Set vendor to an unspecified unknown or a "*" so it can match any
4922       // vendor This is required for correct behavior of EFI debugging on
4923       // x86_64
4924       base_triple.setVendor(llvm::Triple::UnknownVendor);
4925       base_triple.setVendorName(llvm::StringRef());
4926     }
4927     return add_triple(base_triple);
4928   }
4929 
4930   llvm::MachO::load_command load_cmd;
4931 
4932   // See if there is an LC_VERSION_MIN_* load command that can give
4933   // us the OS type.
4934   lldb::offset_t offset = lc_offset;
4935   for (uint32_t i = 0; i < header.ncmds; ++i) {
4936     const lldb::offset_t cmd_offset = offset;
4937     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4938       break;
4939 
4940     llvm::MachO::version_min_command version_min;
4941     switch (load_cmd.cmd) {
4942     case llvm::MachO::LC_VERSION_MIN_MACOSX:
4943     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4944     case llvm::MachO::LC_VERSION_MIN_TVOS:
4945     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
4946       if (load_cmd.cmdsize != sizeof(version_min))
4947         break;
4948       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
4949                             data.GetByteOrder(), &version_min) == 0)
4950         break;
4951       MinOS min_os(version_min.version);
4952       llvm::SmallString<32> os_name;
4953       llvm::raw_svector_ostream os(os_name);
4954       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
4955          << min_os.minor_version << '.' << min_os.patch_version;
4956 
4957       auto triple = base_triple;
4958       triple.setOSName(os.str());
4959 
4960       // Disambiguate legacy simulator platforms.
4961       if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
4962           (base_triple.getArch() == llvm::Triple::x86_64 ||
4963            base_triple.getArch() == llvm::Triple::x86)) {
4964         // The combination of legacy LC_VERSION_MIN load command and
4965         // x86 architecture always indicates a simulator environment.
4966         // The combination of LC_VERSION_MIN and arm architecture only
4967         // appears for native binaries. Back-deploying simulator
4968         // binaries on Apple Silicon Macs use the modern unambigous
4969         // LC_BUILD_VERSION load commands; no special handling required.
4970         triple.setEnvironment(llvm::Triple::Simulator);
4971       }
4972       add_triple(triple);
4973       break;
4974     }
4975     default:
4976       break;
4977     }
4978 
4979     offset = cmd_offset + load_cmd.cmdsize;
4980   }
4981 
4982   // See if there are LC_BUILD_VERSION load commands that can give
4983   // us the OS type.
4984   offset = lc_offset;
4985   for (uint32_t i = 0; i < header.ncmds; ++i) {
4986     const lldb::offset_t cmd_offset = offset;
4987     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4988       break;
4989 
4990     do {
4991       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
4992         llvm::MachO::build_version_command build_version;
4993         if (load_cmd.cmdsize < sizeof(build_version)) {
4994           // Malformed load command.
4995           break;
4996         }
4997         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
4998                               data.GetByteOrder(), &build_version) == 0)
4999           break;
5000         MinOS min_os(build_version.minos);
5001         OSEnv os_env(build_version.platform);
5002         llvm::SmallString<16> os_name;
5003         llvm::raw_svector_ostream os(os_name);
5004         os << os_env.os_type << min_os.major_version << '.'
5005            << min_os.minor_version << '.' << min_os.patch_version;
5006         auto triple = base_triple;
5007         triple.setOSName(os.str());
5008         os_name.clear();
5009         if (!os_env.environment.empty())
5010           triple.setEnvironmentName(os_env.environment);
5011         add_triple(triple);
5012       }
5013     } while (false);
5014     offset = cmd_offset + load_cmd.cmdsize;
5015   }
5016 
5017   if (!found_any) {
5018     add_triple(base_triple);
5019   }
5020 }
5021 
5022 ArchSpec ObjectFileMachO::GetArchitecture(
5023     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5024     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5025   ModuleSpecList all_specs;
5026   ModuleSpec base_spec;
5027   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5028                   base_spec, all_specs);
5029 
5030   // If the object file offers multiple alternative load commands,
5031   // pick the one that matches the module.
5032   if (module_sp) {
5033     const ArchSpec &module_arch = module_sp->GetArchitecture();
5034     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5035       ArchSpec mach_arch =
5036           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5037       if (module_arch.IsCompatibleMatch(mach_arch))
5038         return mach_arch;
5039     }
5040   }
5041 
5042   // Return the first arch we found.
5043   if (all_specs.GetSize() == 0)
5044     return {};
5045   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5046 }
5047 
5048 UUID ObjectFileMachO::GetUUID() {
5049   ModuleSP module_sp(GetModule());
5050   if (module_sp) {
5051     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5052     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5053     return GetUUID(m_header, m_data, offset);
5054   }
5055   return UUID();
5056 }
5057 
5058 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5059   ModuleSP module_sp = GetModule();
5060   if (!module_sp)
5061     return 0;
5062 
5063   uint32_t count = 0;
5064   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5065   llvm::MachO::load_command load_cmd;
5066   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5067   std::vector<std::string> rpath_paths;
5068   std::vector<std::string> rpath_relative_paths;
5069   std::vector<std::string> at_exec_relative_paths;
5070   uint32_t i;
5071   for (i = 0; i < m_header.ncmds; ++i) {
5072     const uint32_t cmd_offset = offset;
5073     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5074       break;
5075 
5076     switch (load_cmd.cmd) {
5077     case LC_RPATH:
5078     case LC_LOAD_DYLIB:
5079     case LC_LOAD_WEAK_DYLIB:
5080     case LC_REEXPORT_DYLIB:
5081     case LC_LOAD_DYLINKER:
5082     case LC_LOADFVMLIB:
5083     case LC_LOAD_UPWARD_DYLIB: {
5084       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5085       // For LC_LOAD_DYLIB there is an alternate encoding
5086       // which adds a uint32_t `flags` field for `DYLD_USE_*`
5087       // flags.  This can be detected by a timestamp field with
5088       // the `DYLIB_USE_MARKER` constant value.
5089       bool is_delayed_init = false;
5090       uint32_t use_command_marker = m_data.GetU32(&offset);
5091       if (use_command_marker == 0x1a741800 /* DYLIB_USE_MARKER */) {
5092         offset += 4; /* uint32_t current_version */
5093         offset += 4; /* uint32_t compat_version */
5094         uint32_t flags = m_data.GetU32(&offset);
5095         // If this LC_LOAD_DYLIB is marked delay-init,
5096         // don't report it as a dependent library -- it
5097         // may be loaded in the process at some point,
5098         // but will most likely not be load at launch.
5099         if (flags & 0x08 /* DYLIB_USE_DELAYED_INIT */)
5100           is_delayed_init = true;
5101       }
5102       const char *path = m_data.PeekCStr(name_offset);
5103       if (path && !is_delayed_init) {
5104         if (load_cmd.cmd == LC_RPATH)
5105           rpath_paths.push_back(path);
5106         else {
5107           if (path[0] == '@') {
5108             if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5109               rpath_relative_paths.push_back(path + strlen("@rpath"));
5110             else if (strncmp(path, "@executable_path",
5111                              strlen("@executable_path")) == 0)
5112               at_exec_relative_paths.push_back(path +
5113                                                strlen("@executable_path"));
5114           } else {
5115             FileSpec file_spec(path);
5116             if (files.AppendIfUnique(file_spec))
5117               count++;
5118           }
5119         }
5120       }
5121     } break;
5122 
5123     default:
5124       break;
5125     }
5126     offset = cmd_offset + load_cmd.cmdsize;
5127   }
5128 
5129   FileSpec this_file_spec(m_file);
5130   FileSystem::Instance().Resolve(this_file_spec);
5131 
5132   if (!rpath_paths.empty()) {
5133     // Fixup all LC_RPATH values to be absolute paths.
5134     const std::string this_directory =
5135         this_file_spec.GetDirectory().GetString();
5136     for (auto &rpath : rpath_paths) {
5137       if (llvm::StringRef(rpath).starts_with(g_loader_path))
5138         rpath = this_directory + rpath.substr(g_loader_path.size());
5139       else if (llvm::StringRef(rpath).starts_with(g_executable_path))
5140         rpath = this_directory + rpath.substr(g_executable_path.size());
5141     }
5142 
5143     for (const auto &rpath_relative_path : rpath_relative_paths) {
5144       for (const auto &rpath : rpath_paths) {
5145         std::string path = rpath;
5146         path += rpath_relative_path;
5147         // It is OK to resolve this path because we must find a file on disk
5148         // for us to accept it anyway if it is rpath relative.
5149         FileSpec file_spec(path);
5150         FileSystem::Instance().Resolve(file_spec);
5151         if (FileSystem::Instance().Exists(file_spec) &&
5152             files.AppendIfUnique(file_spec)) {
5153           count++;
5154           break;
5155         }
5156       }
5157     }
5158   }
5159 
5160   // We may have @executable_paths but no RPATHS.  Figure those out here.
5161   // Only do this if this object file is the executable.  We have no way to
5162   // get back to the actual executable otherwise, so we won't get the right
5163   // path.
5164   if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5165     FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5166     for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5167       FileSpec file_spec =
5168           exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5169       if (FileSystem::Instance().Exists(file_spec) &&
5170           files.AppendIfUnique(file_spec))
5171         count++;
5172     }
5173   }
5174   return count;
5175 }
5176 
5177 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5178   // If the object file is not an executable it can't hold the entry point.
5179   // m_entry_point_address is initialized to an invalid address, so we can just
5180   // return that. If m_entry_point_address is valid it means we've found it
5181   // already, so return the cached value.
5182 
5183   if ((!IsExecutable() && !IsDynamicLoader()) ||
5184       m_entry_point_address.IsValid()) {
5185     return m_entry_point_address;
5186   }
5187 
5188   // Otherwise, look for the UnixThread or Thread command.  The data for the
5189   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5190   //
5191   //  uint32_t flavor  - this is the flavor argument you would pass to
5192   //  thread_get_state
5193   //  uint32_t count   - this is the count of longs in the thread state data
5194   //  struct XXX_thread_state state - this is the structure from
5195   //  <machine/thread_status.h> corresponding to the flavor.
5196   //  <repeat this trio>
5197   //
5198   // So we just keep reading the various register flavors till we find the GPR
5199   // one, then read the PC out of there.
5200   // FIXME: We will need to have a "RegisterContext data provider" class at some
5201   // point that can get all the registers
5202   // out of data in this form & attach them to a given thread.  That should
5203   // underlie the MacOS X User process plugin, and we'll also need it for the
5204   // MacOS X Core File process plugin.  When we have that we can also use it
5205   // here.
5206   //
5207   // For now we hard-code the offsets and flavors we need:
5208   //
5209   //
5210 
5211   ModuleSP module_sp(GetModule());
5212   if (module_sp) {
5213     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5214     llvm::MachO::load_command load_cmd;
5215     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5216     uint32_t i;
5217     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5218     bool done = false;
5219 
5220     for (i = 0; i < m_header.ncmds; ++i) {
5221       const lldb::offset_t cmd_offset = offset;
5222       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5223         break;
5224 
5225       switch (load_cmd.cmd) {
5226       case LC_UNIXTHREAD:
5227       case LC_THREAD: {
5228         while (offset < cmd_offset + load_cmd.cmdsize) {
5229           uint32_t flavor = m_data.GetU32(&offset);
5230           uint32_t count = m_data.GetU32(&offset);
5231           if (count == 0) {
5232             // We've gotten off somehow, log and exit;
5233             return m_entry_point_address;
5234           }
5235 
5236           switch (m_header.cputype) {
5237           case llvm::MachO::CPU_TYPE_ARM:
5238             if (flavor == 1 ||
5239                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5240                              // from mach/arm/thread_status.h
5241             {
5242               offset += 60; // This is the offset of pc in the GPR thread state
5243                             // data structure.
5244               start_address = m_data.GetU32(&offset);
5245               done = true;
5246             }
5247             break;
5248           case llvm::MachO::CPU_TYPE_ARM64:
5249           case llvm::MachO::CPU_TYPE_ARM64_32:
5250             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5251             {
5252               offset += 256; // This is the offset of pc in the GPR thread state
5253                              // data structure.
5254               start_address = m_data.GetU64(&offset);
5255               done = true;
5256             }
5257             break;
5258           case llvm::MachO::CPU_TYPE_I386:
5259             if (flavor ==
5260                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5261             {
5262               offset += 40; // This is the offset of eip in the GPR thread state
5263                             // data structure.
5264               start_address = m_data.GetU32(&offset);
5265               done = true;
5266             }
5267             break;
5268           case llvm::MachO::CPU_TYPE_X86_64:
5269             if (flavor ==
5270                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5271             {
5272               offset += 16 * 8; // This is the offset of rip in the GPR thread
5273                                 // state data structure.
5274               start_address = m_data.GetU64(&offset);
5275               done = true;
5276             }
5277             break;
5278           default:
5279             return m_entry_point_address;
5280           }
5281           // Haven't found the GPR flavor yet, skip over the data for this
5282           // flavor:
5283           if (done)
5284             break;
5285           offset += count * 4;
5286         }
5287       } break;
5288       case LC_MAIN: {
5289         uint64_t entryoffset = m_data.GetU64(&offset);
5290         SectionSP text_segment_sp =
5291             GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
5292         if (text_segment_sp) {
5293           done = true;
5294           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5295         }
5296       } break;
5297 
5298       default:
5299         break;
5300       }
5301       if (done)
5302         break;
5303 
5304       // Go to the next load command:
5305       offset = cmd_offset + load_cmd.cmdsize;
5306     }
5307 
5308     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5309       if (GetSymtab()) {
5310         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5311             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5312             Symtab::eDebugAny, Symtab::eVisibilityAny);
5313         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5314           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5315         }
5316       }
5317     }
5318 
5319     if (start_address != LLDB_INVALID_ADDRESS) {
5320       // We got the start address from the load commands, so now resolve that
5321       // address in the sections of this ObjectFile:
5322       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5323               start_address, GetSectionList())) {
5324         m_entry_point_address.Clear();
5325       }
5326     } else {
5327       // We couldn't read the UnixThread load command - maybe it wasn't there.
5328       // As a fallback look for the "start" symbol in the main executable.
5329 
5330       ModuleSP module_sp(GetModule());
5331 
5332       if (module_sp) {
5333         SymbolContextList contexts;
5334         SymbolContext context;
5335         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5336                                               eSymbolTypeCode, contexts);
5337         if (contexts.GetSize()) {
5338           if (contexts.GetContextAtIndex(0, context))
5339             m_entry_point_address = context.symbol->GetAddress();
5340         }
5341       }
5342     }
5343   }
5344 
5345   return m_entry_point_address;
5346 }
5347 
5348 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5349   lldb_private::Address header_addr;
5350   SectionList *section_list = GetSectionList();
5351   if (section_list) {
5352     SectionSP text_segment_sp(
5353         section_list->FindSectionByName(GetSegmentNameTEXT()));
5354     if (text_segment_sp) {
5355       header_addr.SetSection(text_segment_sp);
5356       header_addr.SetOffset(0);
5357     }
5358   }
5359   return header_addr;
5360 }
5361 
5362 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5363   ModuleSP module_sp(GetModule());
5364   if (module_sp) {
5365     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5366     if (!m_thread_context_offsets_valid) {
5367       m_thread_context_offsets_valid = true;
5368       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5369       FileRangeArray::Entry file_range;
5370       llvm::MachO::thread_command thread_cmd;
5371       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5372         const uint32_t cmd_offset = offset;
5373         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5374           break;
5375 
5376         if (thread_cmd.cmd == LC_THREAD) {
5377           file_range.SetRangeBase(offset);
5378           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5379           m_thread_context_offsets.Append(file_range);
5380         }
5381         offset = cmd_offset + thread_cmd.cmdsize;
5382       }
5383     }
5384   }
5385   return m_thread_context_offsets.GetSize();
5386 }
5387 
5388 std::vector<std::tuple<offset_t, offset_t>>
5389 ObjectFileMachO::FindLC_NOTEByName(std::string name) {
5390   std::vector<std::tuple<offset_t, offset_t>> results;
5391   ModuleSP module_sp(GetModule());
5392   if (module_sp) {
5393     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5394 
5395     offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5396     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5397       const uint32_t cmd_offset = offset;
5398       llvm::MachO::load_command lc = {};
5399       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5400         break;
5401       if (lc.cmd == LC_NOTE) {
5402         char data_owner[17];
5403         m_data.CopyData(offset, 16, data_owner);
5404         data_owner[16] = '\0';
5405         offset += 16;
5406 
5407         if (name == data_owner) {
5408           offset_t payload_offset = m_data.GetU64_unchecked(&offset);
5409           offset_t payload_size = m_data.GetU64_unchecked(&offset);
5410           results.push_back({payload_offset, payload_size});
5411         }
5412       }
5413       offset = cmd_offset + lc.cmdsize;
5414     }
5415   }
5416   return results;
5417 }
5418 
5419 std::string ObjectFileMachO::GetIdentifierString() {
5420   Log *log(
5421       GetLog(LLDBLog::Symbols | LLDBLog::Process | LLDBLog::DynamicLoader));
5422   ModuleSP module_sp(GetModule());
5423   if (module_sp) {
5424     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5425 
5426     auto lc_notes = FindLC_NOTEByName("kern ver str");
5427     for (auto lc_note : lc_notes) {
5428       offset_t payload_offset = std::get<0>(lc_note);
5429       offset_t payload_size = std::get<1>(lc_note);
5430       uint32_t version;
5431       if (m_data.GetU32(&payload_offset, &version, 1) != nullptr) {
5432         if (version == 1) {
5433           uint32_t strsize = payload_size - sizeof(uint32_t);
5434           std::string result(strsize, '\0');
5435           m_data.CopyData(payload_offset, strsize, result.data());
5436           LLDB_LOGF(log, "LC_NOTE 'kern ver str' found with text '%s'",
5437                     result.c_str());
5438           return result;
5439         }
5440       }
5441     }
5442 
5443     // Second, make a pass over the load commands looking for an obsolete
5444     // LC_IDENT load command.
5445     offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5446     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5447       const uint32_t cmd_offset = offset;
5448       llvm::MachO::ident_command ident_command;
5449       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5450         break;
5451       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5452         std::string result(ident_command.cmdsize, '\0');
5453         if (m_data.CopyData(offset, ident_command.cmdsize, result.data()) ==
5454             ident_command.cmdsize) {
5455           LLDB_LOGF(log, "LC_IDENT found with text '%s'", result.c_str());
5456           return result;
5457         }
5458       }
5459       offset = cmd_offset + ident_command.cmdsize;
5460     }
5461   }
5462   return {};
5463 }
5464 
5465 AddressableBits ObjectFileMachO::GetAddressableBits() {
5466   AddressableBits addressable_bits;
5467 
5468   Log *log(GetLog(LLDBLog::Process));
5469   ModuleSP module_sp(GetModule());
5470   if (module_sp) {
5471     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5472     auto lc_notes = FindLC_NOTEByName("addrable bits");
5473     for (auto lc_note : lc_notes) {
5474       offset_t payload_offset = std::get<0>(lc_note);
5475       uint32_t version;
5476       if (m_data.GetU32(&payload_offset, &version, 1) != nullptr) {
5477         if (version == 3) {
5478           uint32_t num_addr_bits = m_data.GetU32_unchecked(&payload_offset);
5479           addressable_bits.SetAddressableBits(num_addr_bits);
5480           LLDB_LOGF(log,
5481                     "LC_NOTE 'addrable bits' v3 found, value %d "
5482                     "bits",
5483                     num_addr_bits);
5484         }
5485         if (version == 4) {
5486           uint32_t lo_addr_bits = m_data.GetU32_unchecked(&payload_offset);
5487           uint32_t hi_addr_bits = m_data.GetU32_unchecked(&payload_offset);
5488 
5489           if (lo_addr_bits == hi_addr_bits)
5490             addressable_bits.SetAddressableBits(lo_addr_bits);
5491           else
5492             addressable_bits.SetAddressableBits(lo_addr_bits, hi_addr_bits);
5493           LLDB_LOGF(log, "LC_NOTE 'addrable bits' v4 found, value %d & %d bits",
5494                     lo_addr_bits, hi_addr_bits);
5495         }
5496       }
5497     }
5498   }
5499   return addressable_bits;
5500 }
5501 
5502 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &value,
5503                                                 bool &value_is_offset,
5504                                                 UUID &uuid,
5505                                                 ObjectFile::BinaryType &type) {
5506   Log *log(
5507       GetLog(LLDBLog::Symbols | LLDBLog::Process | LLDBLog::DynamicLoader));
5508   value = LLDB_INVALID_ADDRESS;
5509   value_is_offset = false;
5510   uuid.Clear();
5511   uint32_t log2_pagesize = 0; // not currently passed up to caller
5512   uint32_t platform = 0;      // not currently passed up to caller
5513   ModuleSP module_sp(GetModule());
5514   if (module_sp) {
5515     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5516 
5517     auto lc_notes = FindLC_NOTEByName("main bin spec");
5518     for (auto lc_note : lc_notes) {
5519       offset_t payload_offset = std::get<0>(lc_note);
5520 
5521       // struct main_bin_spec
5522       // {
5523       //     uint32_t version;       // currently 2
5524       //     uint32_t type;          // 0 == unspecified, 1 == kernel,
5525       //                             // 2 == user process,
5526       //                             // 3 == standalone binary
5527       //     uint64_t address;       // UINT64_MAX if address not specified
5528       //     uint64_t slide;         // slide, UINT64_MAX if unspecified
5529       //                             // 0 if no slide needs to be applied to
5530       //                             // file address
5531       //     uuid_t   uuid;          // all zero's if uuid not specified
5532       //     uint32_t log2_pagesize; // process page size in log base 2,
5533       //                             // e.g. 4k pages are 12.
5534       //                             // 0 for unspecified
5535       //     uint32_t platform;      // The Mach-O platform for this corefile.
5536       //                             // 0 for unspecified.
5537       //                             // The values are defined in
5538       //                             // <mach-o/loader.h>, PLATFORM_*.
5539       // } __attribute((packed));
5540 
5541       // "main bin spec" (main binary specification) data payload is
5542       // formatted:
5543       //    uint32_t version       [currently 1]
5544       //    uint32_t type          [0 == unspecified, 1 == kernel,
5545       //                            2 == user process, 3 == firmware ]
5546       //    uint64_t address       [ UINT64_MAX if address not specified ]
5547       //    uuid_t   uuid          [ all zero's if uuid not specified ]
5548       //    uint32_t log2_pagesize [ process page size in log base
5549       //                             2, e.g. 4k pages are 12.
5550       //                             0 for unspecified ]
5551       //    uint32_t unused        [ for alignment ]
5552 
5553       uint32_t version;
5554       if (m_data.GetU32(&payload_offset, &version, 1) != nullptr &&
5555           version <= 2) {
5556         uint32_t binspec_type = 0;
5557         uuid_t raw_uuid;
5558         memset(raw_uuid, 0, sizeof(uuid_t));
5559 
5560         if (!m_data.GetU32(&payload_offset, &binspec_type, 1))
5561           return false;
5562         if (!m_data.GetU64(&payload_offset, &value, 1))
5563           return false;
5564         uint64_t slide = LLDB_INVALID_ADDRESS;
5565         if (version > 1 && !m_data.GetU64(&payload_offset, &slide, 1))
5566           return false;
5567         if (value == LLDB_INVALID_ADDRESS && slide != LLDB_INVALID_ADDRESS) {
5568           value = slide;
5569           value_is_offset = true;
5570         }
5571 
5572         if (m_data.CopyData(payload_offset, sizeof(uuid_t), raw_uuid) != 0) {
5573           uuid = UUID(raw_uuid, sizeof(uuid_t));
5574           // convert the "main bin spec" type into our
5575           // ObjectFile::BinaryType enum
5576           const char *typestr = "unrecognized type";
5577           switch (binspec_type) {
5578           case 0:
5579             type = eBinaryTypeUnknown;
5580             typestr = "uknown";
5581             break;
5582           case 1:
5583             type = eBinaryTypeKernel;
5584             typestr = "xnu kernel";
5585             break;
5586           case 2:
5587             type = eBinaryTypeUser;
5588             typestr = "userland dyld";
5589             break;
5590           case 3:
5591             type = eBinaryTypeStandalone;
5592             typestr = "standalone";
5593             break;
5594           }
5595           LLDB_LOGF(log,
5596                     "LC_NOTE 'main bin spec' found, version %d type %d "
5597                     "(%s), value 0x%" PRIx64 " value-is-slide==%s uuid %s",
5598                     version, type, typestr, value,
5599                     value_is_offset ? "true" : "false",
5600                     uuid.GetAsString().c_str());
5601           if (!m_data.GetU32(&payload_offset, &log2_pagesize, 1))
5602             return false;
5603           if (version > 1 && !m_data.GetU32(&payload_offset, &platform, 1))
5604             return false;
5605           return true;
5606         }
5607       }
5608     }
5609   }
5610   return false;
5611 }
5612 
5613 bool ObjectFileMachO::GetCorefileThreadExtraInfos(
5614     std::vector<lldb::tid_t> &tids) {
5615   tids.clear();
5616   ModuleSP module_sp(GetModule());
5617   if (module_sp) {
5618     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5619 
5620     Log *log(GetLog(LLDBLog::Object | LLDBLog::Process | LLDBLog::Thread));
5621     auto lc_notes = FindLC_NOTEByName("process metadata");
5622     for (auto lc_note : lc_notes) {
5623       offset_t payload_offset = std::get<0>(lc_note);
5624       offset_t strsize = std::get<1>(lc_note);
5625       std::string buf(strsize, '\0');
5626       if (m_data.CopyData(payload_offset, strsize, buf.data()) != strsize) {
5627         LLDB_LOGF(log,
5628                   "Unable to read %" PRIu64
5629                   " bytes of 'process metadata' LC_NOTE JSON contents",
5630                   strsize);
5631         return false;
5632       }
5633       while (buf.back() == '\0')
5634         buf.resize(buf.size() - 1);
5635       StructuredData::ObjectSP object_sp = StructuredData::ParseJSON(buf);
5636       StructuredData::Dictionary *dict = object_sp->GetAsDictionary();
5637       if (!dict) {
5638         LLDB_LOGF(log, "Unable to read 'process metadata' LC_NOTE, did not "
5639                        "get a dictionary.");
5640         return false;
5641       }
5642       StructuredData::Array *threads;
5643       if (!dict->GetValueForKeyAsArray("threads", threads) || !threads) {
5644         LLDB_LOGF(log,
5645                   "'process metadata' LC_NOTE does not have a 'threads' key");
5646         return false;
5647       }
5648       if (threads->GetSize() != GetNumThreadContexts()) {
5649         LLDB_LOGF(log, "Unable to read 'process metadata' LC_NOTE, number of "
5650                        "threads does not match number of LC_THREADS.");
5651         return false;
5652       }
5653       const size_t num_threads = threads->GetSize();
5654       for (size_t i = 0; i < num_threads; i++) {
5655         std::optional<StructuredData::Dictionary *> maybe_thread =
5656             threads->GetItemAtIndexAsDictionary(i);
5657         if (!maybe_thread) {
5658           LLDB_LOGF(log,
5659                     "Unable to read 'process metadata' LC_NOTE, threads "
5660                     "array does not have a dictionary at index %zu.",
5661                     i);
5662           return false;
5663         }
5664         StructuredData::Dictionary *thread = *maybe_thread;
5665         lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
5666         if (thread->GetValueForKeyAsInteger<lldb::tid_t>("thread_id", tid))
5667           if (tid == 0)
5668             tid = LLDB_INVALID_THREAD_ID;
5669         tids.push_back(tid);
5670       }
5671 
5672       if (log) {
5673         StreamString logmsg;
5674         logmsg.Printf("LC_NOTE 'process metadata' found: ");
5675         dict->Dump(logmsg, /* pretty_print */ false);
5676         LLDB_LOGF(log, "%s", logmsg.GetData());
5677       }
5678       return true;
5679     }
5680   }
5681   return false;
5682 }
5683 
5684 lldb::RegisterContextSP
5685 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5686                                          lldb_private::Thread &thread) {
5687   lldb::RegisterContextSP reg_ctx_sp;
5688 
5689   ModuleSP module_sp(GetModule());
5690   if (module_sp) {
5691     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5692     if (!m_thread_context_offsets_valid)
5693       GetNumThreadContexts();
5694 
5695     const FileRangeArray::Entry *thread_context_file_range =
5696         m_thread_context_offsets.GetEntryAtIndex(idx);
5697     if (thread_context_file_range) {
5698 
5699       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5700                          thread_context_file_range->GetByteSize());
5701 
5702       switch (m_header.cputype) {
5703       case llvm::MachO::CPU_TYPE_ARM64:
5704       case llvm::MachO::CPU_TYPE_ARM64_32:
5705         reg_ctx_sp =
5706             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5707         break;
5708 
5709       case llvm::MachO::CPU_TYPE_ARM:
5710         reg_ctx_sp =
5711             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5712         break;
5713 
5714       case llvm::MachO::CPU_TYPE_I386:
5715         reg_ctx_sp =
5716             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5717         break;
5718 
5719       case llvm::MachO::CPU_TYPE_X86_64:
5720         reg_ctx_sp =
5721             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5722         break;
5723       }
5724     }
5725   }
5726   return reg_ctx_sp;
5727 }
5728 
5729 ObjectFile::Type ObjectFileMachO::CalculateType() {
5730   switch (m_header.filetype) {
5731   case MH_OBJECT: // 0x1u
5732     if (GetAddressByteSize() == 4) {
5733       // 32 bit kexts are just object files, but they do have a valid
5734       // UUID load command.
5735       if (GetUUID()) {
5736         // this checking for the UUID load command is not enough we could
5737         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5738         // this is required of kexts
5739         if (m_strata == eStrataInvalid)
5740           m_strata = eStrataKernel;
5741         return eTypeSharedLibrary;
5742       }
5743     }
5744     return eTypeObjectFile;
5745 
5746   case MH_EXECUTE:
5747     return eTypeExecutable; // 0x2u
5748   case MH_FVMLIB:
5749     return eTypeSharedLibrary; // 0x3u
5750   case MH_CORE:
5751     return eTypeCoreFile; // 0x4u
5752   case MH_PRELOAD:
5753     return eTypeSharedLibrary; // 0x5u
5754   case MH_DYLIB:
5755     return eTypeSharedLibrary; // 0x6u
5756   case MH_DYLINKER:
5757     return eTypeDynamicLinker; // 0x7u
5758   case MH_BUNDLE:
5759     return eTypeSharedLibrary; // 0x8u
5760   case MH_DYLIB_STUB:
5761     return eTypeStubLibrary; // 0x9u
5762   case MH_DSYM:
5763     return eTypeDebugInfo; // 0xAu
5764   case MH_KEXT_BUNDLE:
5765     return eTypeSharedLibrary; // 0xBu
5766   default:
5767     break;
5768   }
5769   return eTypeUnknown;
5770 }
5771 
5772 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5773   switch (m_header.filetype) {
5774   case MH_OBJECT: // 0x1u
5775   {
5776     // 32 bit kexts are just object files, but they do have a valid
5777     // UUID load command.
5778     if (GetUUID()) {
5779       // this checking for the UUID load command is not enough we could
5780       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5781       // this is required of kexts
5782       if (m_type == eTypeInvalid)
5783         m_type = eTypeSharedLibrary;
5784 
5785       return eStrataKernel;
5786     }
5787   }
5788     return eStrataUnknown;
5789 
5790   case MH_EXECUTE: // 0x2u
5791     // Check for the MH_DYLDLINK bit in the flags
5792     if (m_header.flags & MH_DYLDLINK) {
5793       return eStrataUser;
5794     } else {
5795       SectionList *section_list = GetSectionList();
5796       if (section_list) {
5797         static ConstString g_kld_section_name("__KLD");
5798         if (section_list->FindSectionByName(g_kld_section_name))
5799           return eStrataKernel;
5800       }
5801     }
5802     return eStrataRawImage;
5803 
5804   case MH_FVMLIB:
5805     return eStrataUser; // 0x3u
5806   case MH_CORE:
5807     return eStrataUnknown; // 0x4u
5808   case MH_PRELOAD:
5809     return eStrataRawImage; // 0x5u
5810   case MH_DYLIB:
5811     return eStrataUser; // 0x6u
5812   case MH_DYLINKER:
5813     return eStrataUser; // 0x7u
5814   case MH_BUNDLE:
5815     return eStrataUser; // 0x8u
5816   case MH_DYLIB_STUB:
5817     return eStrataUser; // 0x9u
5818   case MH_DSYM:
5819     return eStrataUnknown; // 0xAu
5820   case MH_KEXT_BUNDLE:
5821     return eStrataKernel; // 0xBu
5822   default:
5823     break;
5824   }
5825   return eStrataUnknown;
5826 }
5827 
5828 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5829   ModuleSP module_sp(GetModule());
5830   if (module_sp) {
5831     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5832     llvm::MachO::dylib_command load_cmd;
5833     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5834     uint32_t version_cmd = 0;
5835     uint64_t version = 0;
5836     uint32_t i;
5837     for (i = 0; i < m_header.ncmds; ++i) {
5838       const lldb::offset_t cmd_offset = offset;
5839       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5840         break;
5841 
5842       if (load_cmd.cmd == LC_ID_DYLIB) {
5843         if (version_cmd == 0) {
5844           version_cmd = load_cmd.cmd;
5845           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5846             break;
5847           version = load_cmd.dylib.current_version;
5848         }
5849         break; // Break for now unless there is another more complete version
5850                // number load command in the future.
5851       }
5852       offset = cmd_offset + load_cmd.cmdsize;
5853     }
5854 
5855     if (version_cmd == LC_ID_DYLIB) {
5856       unsigned major = (version & 0xFFFF0000ull) >> 16;
5857       unsigned minor = (version & 0x0000FF00ull) >> 8;
5858       unsigned subminor = (version & 0x000000FFull);
5859       return llvm::VersionTuple(major, minor, subminor);
5860     }
5861   }
5862   return llvm::VersionTuple();
5863 }
5864 
5865 ArchSpec ObjectFileMachO::GetArchitecture() {
5866   ModuleSP module_sp(GetModule());
5867   ArchSpec arch;
5868   if (module_sp) {
5869     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5870 
5871     return GetArchitecture(module_sp, m_header, m_data,
5872                            MachHeaderSizeFromMagic(m_header.magic));
5873   }
5874   return arch;
5875 }
5876 
5877 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5878                                                 addr_t &base_addr, UUID &uuid) {
5879   uuid.Clear();
5880   base_addr = LLDB_INVALID_ADDRESS;
5881   if (process && process->GetDynamicLoader()) {
5882     DynamicLoader *dl = process->GetDynamicLoader();
5883     LazyBool using_shared_cache;
5884     LazyBool private_shared_cache;
5885     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5886                                   private_shared_cache);
5887   }
5888   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5889   LLDB_LOGF(
5890       log,
5891       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5892       uuid.GetAsString().c_str(), base_addr);
5893 }
5894 
5895 // From dyld SPI header dyld_process_info.h
5896 typedef void *dyld_process_info;
5897 struct lldb_copy__dyld_process_cache_info {
5898   uuid_t cacheUUID;          // UUID of cache used by process
5899   uint64_t cacheBaseAddress; // load address of dyld shared cache
5900   bool noCache;              // process is running without a dyld cache
5901   bool privateCache; // process is using a private copy of its dyld cache
5902 };
5903 
5904 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5905 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5906 // errors. So we need to use the actual underlying types of task_t and
5907 // kern_return_t below.
5908 extern "C" unsigned int /*task_t*/ mach_task_self();
5909 
5910 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5911   uuid.Clear();
5912   base_addr = LLDB_INVALID_ADDRESS;
5913 
5914 #if defined(__APPLE__)
5915   uint8_t *(*dyld_get_all_image_infos)(void);
5916   dyld_get_all_image_infos =
5917       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5918   if (dyld_get_all_image_infos) {
5919     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5920     if (dyld_all_image_infos_address) {
5921       uint32_t *version = (uint32_t *)
5922           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5923       if (*version >= 13) {
5924         uuid_t *sharedCacheUUID_address = 0;
5925         int wordsize = sizeof(uint8_t *);
5926         if (wordsize == 8) {
5927           sharedCacheUUID_address =
5928               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5929                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5930           if (*version >= 15)
5931             base_addr =
5932                 *(uint64_t
5933                       *)((uint8_t *)dyld_all_image_infos_address +
5934                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5935         } else {
5936           sharedCacheUUID_address =
5937               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5938                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5939           if (*version >= 15) {
5940             base_addr = 0;
5941             base_addr =
5942                 *(uint32_t
5943                       *)((uint8_t *)dyld_all_image_infos_address +
5944                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5945           }
5946         }
5947         uuid = UUID(sharedCacheUUID_address, sizeof(uuid_t));
5948       }
5949     }
5950   } else {
5951     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5952     dyld_process_info (*dyld_process_info_create)(
5953         unsigned int /* task_t */ task, uint64_t timestamp,
5954         unsigned int /*kern_return_t*/ *kernelError);
5955     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5956     void (*dyld_process_info_release)(dyld_process_info info);
5957 
5958     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5959                                           unsigned int /*kern_return_t*/ *))
5960         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5961     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5962         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5963     dyld_process_info_release =
5964         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5965 
5966     if (dyld_process_info_create && dyld_process_info_get_cache) {
5967       unsigned int /*kern_return_t */ kern_ret;
5968       dyld_process_info process_info =
5969           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5970       if (process_info) {
5971         struct lldb_copy__dyld_process_cache_info sc_info;
5972         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5973         dyld_process_info_get_cache(process_info, &sc_info);
5974         if (sc_info.cacheBaseAddress != 0) {
5975           base_addr = sc_info.cacheBaseAddress;
5976           uuid = UUID(sc_info.cacheUUID, sizeof(uuid_t));
5977         }
5978         dyld_process_info_release(process_info);
5979       }
5980     }
5981   }
5982   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5983   if (log && uuid.IsValid())
5984     LLDB_LOGF(log,
5985               "lldb's in-memory shared cache has a UUID of %s base address of "
5986               "0x%" PRIx64,
5987               uuid.GetAsString().c_str(), base_addr);
5988 #endif
5989 }
5990 
5991 static llvm::VersionTuple FindMinimumVersionInfo(DataExtractor &data,
5992                                                  lldb::offset_t offset,
5993                                                  size_t ncmds) {
5994   for (size_t i = 0; i < ncmds; i++) {
5995     const lldb::offset_t load_cmd_offset = offset;
5996     llvm::MachO::load_command lc = {};
5997     if (data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5998       break;
5999 
6000     uint32_t version = 0;
6001     if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6002         lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6003         lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6004         lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6005       // struct version_min_command {
6006       //   uint32_t cmd; // LC_VERSION_MIN_*
6007       //   uint32_t cmdsize;
6008       //   uint32_t version; // X.Y.Z encoded in nibbles xxxx.yy.zz
6009       //   uint32_t sdk;
6010       // };
6011       // We want to read version.
6012       version = data.GetU32(&offset);
6013     } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6014       // struct build_version_command {
6015       //   uint32_t cmd; // LC_BUILD_VERSION
6016       //   uint32_t cmdsize;
6017       //   uint32_t platform;
6018       //   uint32_t minos; // X.Y.Z encoded in nibbles xxxx.yy.zz
6019       //   uint32_t sdk;
6020       //   uint32_t ntools;
6021       // };
6022       // We want to read minos.
6023       offset += sizeof(uint32_t);     // Skip over platform
6024       version = data.GetU32(&offset); // Extract minos
6025     }
6026 
6027     if (version) {
6028       const uint32_t xxxx = version >> 16;
6029       const uint32_t yy = (version >> 8) & 0xffu;
6030       const uint32_t zz = version & 0xffu;
6031       if (xxxx)
6032         return llvm::VersionTuple(xxxx, yy, zz);
6033     }
6034     offset = load_cmd_offset + lc.cmdsize;
6035   }
6036   return llvm::VersionTuple();
6037 }
6038 
6039 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
6040   if (!m_min_os_version)
6041     m_min_os_version = FindMinimumVersionInfo(
6042         m_data, MachHeaderSizeFromMagic(m_header.magic), m_header.ncmds);
6043   return *m_min_os_version;
6044 }
6045 
6046 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6047   if (!m_sdk_versions)
6048     m_sdk_versions = FindMinimumVersionInfo(
6049         m_data, MachHeaderSizeFromMagic(m_header.magic), m_header.ncmds);
6050   return *m_sdk_versions;
6051 }
6052 
6053 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6054   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6055 }
6056 
6057 bool ObjectFileMachO::CanTrustAddressRanges() {
6058   // Dsymutil guarantees that the .debug_aranges accelerator is complete and can
6059   // be trusted by LLDB.
6060   return m_header.filetype == llvm::MachO::MH_DSYM;
6061 }
6062 
6063 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6064   return m_allow_assembly_emulation_unwind_plans;
6065 }
6066 
6067 Section *ObjectFileMachO::GetMachHeaderSection() {
6068   // Find the first address of the mach header which is the first non-zero file
6069   // sized section whose file offset is zero. This is the base file address of
6070   // the mach-o file which can be subtracted from the vmaddr of the other
6071   // segments found in memory and added to the load address
6072   ModuleSP module_sp = GetModule();
6073   if (!module_sp)
6074     return nullptr;
6075   SectionList *section_list = GetSectionList();
6076   if (!section_list)
6077     return nullptr;
6078 
6079   // Some binaries can have a TEXT segment with a non-zero file offset.
6080   // Binaries in the shared cache are one example.  Some hand-generated
6081   // binaries may not be laid out in the normal TEXT,DATA,LC_SYMTAB order
6082   // in the file, even though they're laid out correctly in vmaddr terms.
6083   SectionSP text_segment_sp =
6084       section_list->FindSectionByName(GetSegmentNameTEXT());
6085   if (text_segment_sp.get() && SectionIsLoadable(text_segment_sp.get()))
6086     return text_segment_sp.get();
6087 
6088   const size_t num_sections = section_list->GetSize();
6089   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6090     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6091     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6092       return section;
6093   }
6094 
6095   return nullptr;
6096 }
6097 
6098 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6099   if (!section)
6100     return false;
6101   if (section->IsThreadSpecific())
6102     return false;
6103   if (GetModule().get() != section->GetModule().get())
6104     return false;
6105   // firmware style binaries with llvm gcov segment do
6106   // not have that segment mapped into memory.
6107   if (section->GetName() == GetSegmentNameLLVM_COV()) {
6108     const Strata strata = GetStrata();
6109     if (strata == eStrataKernel || strata == eStrataRawImage)
6110       return false;
6111   }
6112   // Be careful with __LINKEDIT and __DWARF segments
6113   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6114       section->GetName() == GetSegmentNameDWARF()) {
6115     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6116     // this isn't a kernel binary like a kext or mach_kernel.
6117     const bool is_memory_image = (bool)m_process_wp.lock();
6118     const Strata strata = GetStrata();
6119     if (is_memory_image == false || strata == eStrataKernel)
6120       return false;
6121   }
6122   return true;
6123 }
6124 
6125 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6126     lldb::addr_t header_load_address, const Section *header_section,
6127     const Section *section) {
6128   ModuleSP module_sp = GetModule();
6129   if (module_sp && header_section && section &&
6130       header_load_address != LLDB_INVALID_ADDRESS) {
6131     lldb::addr_t file_addr = header_section->GetFileAddress();
6132     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6133       return section->GetFileAddress() - file_addr + header_load_address;
6134   }
6135   return LLDB_INVALID_ADDRESS;
6136 }
6137 
6138 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6139                                      bool value_is_offset) {
6140   Log *log(GetLog(LLDBLog::DynamicLoader));
6141   ModuleSP module_sp = GetModule();
6142   if (!module_sp)
6143     return false;
6144 
6145   SectionList *section_list = GetSectionList();
6146   if (!section_list)
6147     return false;
6148 
6149   size_t num_loaded_sections = 0;
6150   const size_t num_sections = section_list->GetSize();
6151 
6152   // Warn if some top-level segments map to the same address. The binary may be
6153   // malformed.
6154   const bool warn_multiple = true;
6155 
6156   if (log) {
6157     StreamString logmsg;
6158     logmsg << "ObjectFileMachO::SetLoadAddress ";
6159     if (GetFileSpec())
6160       logmsg << "path='" << GetFileSpec().GetPath() << "' ";
6161     if (GetUUID()) {
6162       logmsg << "uuid=" << GetUUID().GetAsString();
6163     }
6164     LLDB_LOGF(log, "%s", logmsg.GetData());
6165   }
6166   if (value_is_offset) {
6167     // "value" is an offset to apply to each top level segment
6168     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6169       // Iterate through the object file sections to find all of the
6170       // sections that size on disk (to avoid __PAGEZERO) and load them
6171       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6172       if (SectionIsLoadable(section_sp.get())) {
6173         LLDB_LOGF(log,
6174                   "ObjectFileMachO::SetLoadAddress segment '%s' load addr is "
6175                   "0x%" PRIx64,
6176                   section_sp->GetName().AsCString(),
6177                   section_sp->GetFileAddress() + value);
6178         if (target.GetSectionLoadList().SetSectionLoadAddress(
6179                 section_sp, section_sp->GetFileAddress() + value,
6180                 warn_multiple))
6181           ++num_loaded_sections;
6182       }
6183     }
6184   } else {
6185     // "value" is the new base address of the mach_header, adjust each
6186     // section accordingly
6187 
6188     Section *mach_header_section = GetMachHeaderSection();
6189     if (mach_header_section) {
6190       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6191         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6192 
6193         lldb::addr_t section_load_addr =
6194             CalculateSectionLoadAddressForMemoryImage(
6195                 value, mach_header_section, section_sp.get());
6196         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6197           LLDB_LOGF(log,
6198                     "ObjectFileMachO::SetLoadAddress segment '%s' load addr is "
6199                     "0x%" PRIx64,
6200                     section_sp->GetName().AsCString(), section_load_addr);
6201           if (target.GetSectionLoadList().SetSectionLoadAddress(
6202                   section_sp, section_load_addr, warn_multiple))
6203             ++num_loaded_sections;
6204         }
6205       }
6206     }
6207   }
6208   return num_loaded_sections > 0;
6209 }
6210 
6211 struct all_image_infos_header {
6212   uint32_t version;         // currently 1
6213   uint32_t imgcount;        // number of binary images
6214   uint64_t entries_fileoff; // file offset in the corefile of where the array of
6215                             // struct entry's begin.
6216   uint32_t entries_size;    // size of 'struct entry'.
6217   uint32_t unused;
6218 };
6219 
6220 struct image_entry {
6221   uint64_t filepath_offset;  // offset in corefile to c-string of the file path,
6222                              // UINT64_MAX if unavailable.
6223   uuid_t uuid;               // uint8_t[16].  should be set to all zeroes if
6224                              // uuid is unknown.
6225   uint64_t load_address;     // UINT64_MAX if unknown.
6226   uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6227   uint32_t segment_count;    // The number of segments for this binary.
6228   uint32_t unused;
6229 
6230   image_entry() {
6231     filepath_offset = UINT64_MAX;
6232     memset(&uuid, 0, sizeof(uuid_t));
6233     segment_count = 0;
6234     load_address = UINT64_MAX;
6235     seg_addrs_offset = UINT64_MAX;
6236     unused = 0;
6237   }
6238   image_entry(const image_entry &rhs) {
6239     filepath_offset = rhs.filepath_offset;
6240     memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6241     segment_count = rhs.segment_count;
6242     seg_addrs_offset = rhs.seg_addrs_offset;
6243     load_address = rhs.load_address;
6244     unused = rhs.unused;
6245   }
6246 };
6247 
6248 struct segment_vmaddr {
6249   char segname[16];
6250   uint64_t vmaddr;
6251   uint64_t unused;
6252 
6253   segment_vmaddr() {
6254     memset(&segname, 0, 16);
6255     vmaddr = UINT64_MAX;
6256     unused = 0;
6257   }
6258   segment_vmaddr(const segment_vmaddr &rhs) {
6259     memcpy(&segname, &rhs.segname, 16);
6260     vmaddr = rhs.vmaddr;
6261     unused = rhs.unused;
6262   }
6263 };
6264 
6265 // Write the payload for the "all image infos" LC_NOTE into
6266 // the supplied all_image_infos_payload, assuming that this
6267 // will be written into the corefile starting at
6268 // initial_file_offset.
6269 //
6270 // The placement of this payload is a little tricky.  We're
6271 // laying this out as
6272 //
6273 // 1. header (struct all_image_info_header)
6274 // 2. Array of fixed-size (struct image_entry)'s, one
6275 //    per binary image present in the process.
6276 // 3. Arrays of (struct segment_vmaddr)'s, a varying number
6277 //    for each binary image.
6278 // 4. Variable length c-strings of binary image filepaths,
6279 //    one per binary.
6280 //
6281 // To compute where everything will be laid out in the
6282 // payload, we need to iterate over the images and calculate
6283 // how many segment_vmaddr structures each image will need,
6284 // and how long each image's filepath c-string is. There
6285 // are some multiple passes over the image list while calculating
6286 // everything.
6287 
6288 static offset_t
6289 CreateAllImageInfosPayload(const lldb::ProcessSP &process_sp,
6290                            offset_t initial_file_offset,
6291                            StreamString &all_image_infos_payload,
6292                            lldb_private::SaveCoreOptions &options) {
6293   Target &target = process_sp->GetTarget();
6294   ModuleList modules = target.GetImages();
6295 
6296   // stack-only corefiles have no reason to include binaries that
6297   // are not executing; we're trying to make the smallest corefile
6298   // we can, so leave the rest out.
6299   if (options.GetStyle() == SaveCoreStyle::eSaveCoreStackOnly)
6300     modules.Clear();
6301 
6302   std::set<std::string> executing_uuids;
6303   std::vector<ThreadSP> thread_list =
6304       process_sp->CalculateCoreFileThreadList(options);
6305   for (const ThreadSP &thread_sp : thread_list) {
6306     uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6307     for (uint32_t j = 0; j < stack_frame_count; j++) {
6308       StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6309       Address pc = stack_frame_sp->GetFrameCodeAddress();
6310       ModuleSP module_sp = pc.GetModule();
6311       if (module_sp) {
6312         UUID uuid = module_sp->GetUUID();
6313         if (uuid.IsValid()) {
6314           executing_uuids.insert(uuid.GetAsString());
6315           modules.AppendIfNeeded(module_sp);
6316         }
6317       }
6318     }
6319   }
6320   size_t modules_count = modules.GetSize();
6321 
6322   struct all_image_infos_header infos;
6323   infos.version = 1;
6324   infos.imgcount = modules_count;
6325   infos.entries_size = sizeof(image_entry);
6326   infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6327   infos.unused = 0;
6328 
6329   all_image_infos_payload.PutHex32(infos.version);
6330   all_image_infos_payload.PutHex32(infos.imgcount);
6331   all_image_infos_payload.PutHex64(infos.entries_fileoff);
6332   all_image_infos_payload.PutHex32(infos.entries_size);
6333   all_image_infos_payload.PutHex32(infos.unused);
6334 
6335   // First create the structures for all of the segment name+vmaddr vectors
6336   // for each module, so we will know the size of them as we add the
6337   // module entries.
6338   std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6339   for (size_t i = 0; i < modules_count; i++) {
6340     ModuleSP module = modules.GetModuleAtIndex(i);
6341 
6342     SectionList *sections = module->GetSectionList();
6343     size_t sections_count = sections->GetSize();
6344     std::vector<segment_vmaddr> segment_vmaddrs;
6345     for (size_t j = 0; j < sections_count; j++) {
6346       SectionSP section = sections->GetSectionAtIndex(j);
6347       if (!section->GetParent().get()) {
6348         addr_t vmaddr = section->GetLoadBaseAddress(&target);
6349         if (vmaddr == LLDB_INVALID_ADDRESS)
6350           continue;
6351         ConstString name = section->GetName();
6352         segment_vmaddr seg_vmaddr;
6353         // This is the uncommon case where strncpy is exactly
6354         // the right one, doesn't need to be nul terminated.
6355         // The segment name in a Mach-O LC_SEGMENT/LC_SEGMENT_64 is char[16] and
6356         // is not guaranteed to be nul-terminated if all 16 characters are
6357         // used.
6358         // coverity[buffer_size_warning]
6359         strncpy(seg_vmaddr.segname, name.AsCString(),
6360                 sizeof(seg_vmaddr.segname));
6361         seg_vmaddr.vmaddr = vmaddr;
6362         seg_vmaddr.unused = 0;
6363         segment_vmaddrs.push_back(seg_vmaddr);
6364       }
6365     }
6366     modules_segment_vmaddrs.push_back(segment_vmaddrs);
6367   }
6368 
6369   offset_t size_of_vmaddr_structs = 0;
6370   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6371     size_of_vmaddr_structs +=
6372         modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6373   }
6374 
6375   offset_t size_of_filepath_cstrings = 0;
6376   for (size_t i = 0; i < modules_count; i++) {
6377     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6378     size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6379   }
6380 
6381   // Calculate the file offsets of our "all image infos" payload in the
6382   // corefile. initial_file_offset the original value passed in to this method.
6383 
6384   offset_t start_of_entries =
6385       initial_file_offset + sizeof(all_image_infos_header);
6386   offset_t start_of_seg_vmaddrs =
6387       start_of_entries + sizeof(image_entry) * modules_count;
6388   offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6389 
6390   offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6391 
6392   // Now write the one-per-module 'struct image_entry' into the
6393   // StringStream; keep track of where the struct segment_vmaddr
6394   // entries for each module will end up in the corefile.
6395 
6396   offset_t current_string_offset = start_of_filenames;
6397   offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6398   std::vector<struct image_entry> image_entries;
6399   for (size_t i = 0; i < modules_count; i++) {
6400     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6401 
6402     struct image_entry ent;
6403     memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6404     if (modules_segment_vmaddrs[i].size() > 0) {
6405       ent.segment_count = modules_segment_vmaddrs[i].size();
6406       ent.seg_addrs_offset = current_segaddrs_offset;
6407     }
6408     ent.filepath_offset = current_string_offset;
6409     ObjectFile *objfile = module_sp->GetObjectFile();
6410     if (objfile) {
6411       Address base_addr(objfile->GetBaseAddress());
6412       if (base_addr.IsValid()) {
6413         ent.load_address = base_addr.GetLoadAddress(&target);
6414       }
6415     }
6416 
6417     all_image_infos_payload.PutHex64(ent.filepath_offset);
6418     all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6419     all_image_infos_payload.PutHex64(ent.load_address);
6420     all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6421     all_image_infos_payload.PutHex32(ent.segment_count);
6422 
6423     if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6424         executing_uuids.end())
6425       all_image_infos_payload.PutHex32(1);
6426     else
6427       all_image_infos_payload.PutHex32(0);
6428 
6429     current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6430     current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6431   }
6432 
6433   // Now write the struct segment_vmaddr entries into the StringStream.
6434 
6435   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6436     if (modules_segment_vmaddrs[i].size() == 0)
6437       continue;
6438     for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6439       all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6440       all_image_infos_payload.PutHex64(segvm.vmaddr);
6441       all_image_infos_payload.PutHex64(segvm.unused);
6442     }
6443   }
6444 
6445   for (size_t i = 0; i < modules_count; i++) {
6446     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6447     std::string filepath = module_sp->GetFileSpec().GetPath();
6448     all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6449   }
6450 
6451   return final_file_offset;
6452 }
6453 
6454 // Temp struct used to combine contiguous memory regions with
6455 // identical permissions.
6456 struct page_object {
6457   addr_t addr;
6458   addr_t size;
6459   uint32_t prot;
6460 };
6461 
6462 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6463                                lldb_private::SaveCoreOptions &options,
6464                                Status &error) {
6465   // The FileSpec and Process are already checked in PluginManager::SaveCore.
6466   assert(options.GetOutputFile().has_value());
6467   assert(process_sp);
6468   const FileSpec outfile = options.GetOutputFile().value();
6469 
6470   // MachO defaults to dirty pages
6471   if (options.GetStyle() == SaveCoreStyle::eSaveCoreUnspecified)
6472     options.SetStyle(eSaveCoreDirtyOnly);
6473 
6474   Target &target = process_sp->GetTarget();
6475   const ArchSpec target_arch = target.GetArchitecture();
6476   const llvm::Triple &target_triple = target_arch.GetTriple();
6477   if (target_triple.getVendor() == llvm::Triple::Apple &&
6478       (target_triple.getOS() == llvm::Triple::MacOSX ||
6479        target_triple.getOS() == llvm::Triple::IOS ||
6480        target_triple.getOS() == llvm::Triple::WatchOS ||
6481        target_triple.getOS() == llvm::Triple::TvOS ||
6482        target_triple.getOS() == llvm::Triple::XROS)) {
6483     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6484     // {
6485     bool make_core = false;
6486     switch (target_arch.GetMachine()) {
6487     case llvm::Triple::aarch64:
6488     case llvm::Triple::aarch64_32:
6489     case llvm::Triple::arm:
6490     case llvm::Triple::thumb:
6491     case llvm::Triple::x86:
6492     case llvm::Triple::x86_64:
6493       make_core = true;
6494       break;
6495     default:
6496       error = Status::FromErrorStringWithFormat(
6497           "unsupported core architecture: %s", target_triple.str().c_str());
6498       break;
6499     }
6500 
6501     if (make_core) {
6502       CoreFileMemoryRanges core_ranges;
6503       error = process_sp->CalculateCoreFileSaveRanges(options, core_ranges);
6504       if (error.Success()) {
6505         const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6506         const ByteOrder byte_order = target_arch.GetByteOrder();
6507         std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6508         for (const auto &core_range_info : core_ranges) {
6509           // TODO: Refactor RangeDataVector to have a data iterator.
6510           const auto &core_range = core_range_info.data;
6511           uint32_t cmd_type = LC_SEGMENT_64;
6512           uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6513           if (addr_byte_size == 4) {
6514             cmd_type = LC_SEGMENT;
6515             segment_size = sizeof(llvm::MachO::segment_command);
6516           }
6517           // Skip any ranges with no read/write/execute permissions and empty
6518           // ranges.
6519           if (core_range.lldb_permissions == 0 || core_range.range.size() == 0)
6520             continue;
6521           uint32_t vm_prot = 0;
6522           if (core_range.lldb_permissions & ePermissionsReadable)
6523             vm_prot |= VM_PROT_READ;
6524           if (core_range.lldb_permissions & ePermissionsWritable)
6525             vm_prot |= VM_PROT_WRITE;
6526           if (core_range.lldb_permissions & ePermissionsExecutable)
6527             vm_prot |= VM_PROT_EXECUTE;
6528           const addr_t vm_addr = core_range.range.start();
6529           const addr_t vm_size = core_range.range.size();
6530           llvm::MachO::segment_command_64 segment = {
6531               cmd_type,     // uint32_t cmd;
6532               segment_size, // uint32_t cmdsize;
6533               {0},          // char segname[16];
6534               vm_addr,      // uint64_t vmaddr;   // uint32_t for 32-bit Mach-O
6535               vm_size,      // uint64_t vmsize;   // uint32_t for 32-bit Mach-O
6536               0,            // uint64_t fileoff;  // uint32_t for 32-bit Mach-O
6537               vm_size,      // uint64_t filesize; // uint32_t for 32-bit Mach-O
6538               vm_prot,      // uint32_t maxprot;
6539               vm_prot,      // uint32_t initprot;
6540               0,            // uint32_t nsects;
6541               0};           // uint32_t flags;
6542           segment_load_commands.push_back(segment);
6543         }
6544 
6545         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6546 
6547         llvm::MachO::mach_header_64 mach_header;
6548         mach_header.magic = addr_byte_size == 8 ? MH_MAGIC_64 : MH_MAGIC;
6549         mach_header.cputype = target_arch.GetMachOCPUType();
6550         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6551         mach_header.filetype = MH_CORE;
6552         mach_header.ncmds = segment_load_commands.size();
6553         mach_header.flags = 0;
6554         mach_header.reserved = 0;
6555         ThreadList &thread_list = process_sp->GetThreadList();
6556         const uint32_t num_threads = thread_list.GetSize();
6557 
6558         // Make an array of LC_THREAD data items. Each one contains the
6559         // contents of the LC_THREAD load command. The data doesn't contain
6560         // the load command + load command size, we will add the load command
6561         // and load command size as we emit the data.
6562         std::vector<StreamString> LC_THREAD_datas(num_threads);
6563         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6564           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6565           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6566           LC_THREAD_data.SetByteOrder(byte_order);
6567         }
6568         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6569           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6570           if (thread_sp) {
6571             switch (mach_header.cputype) {
6572             case llvm::MachO::CPU_TYPE_ARM64:
6573             case llvm::MachO::CPU_TYPE_ARM64_32:
6574               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6575                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6576               break;
6577 
6578             case llvm::MachO::CPU_TYPE_ARM:
6579               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6580                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6581               break;
6582 
6583             case llvm::MachO::CPU_TYPE_I386:
6584               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6585                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6586               break;
6587 
6588             case llvm::MachO::CPU_TYPE_X86_64:
6589               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6590                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6591               break;
6592             }
6593           }
6594         }
6595 
6596         // The size of the load command is the size of the segments...
6597         if (addr_byte_size == 8) {
6598           mach_header.sizeofcmds = segment_load_commands.size() *
6599                                    sizeof(llvm::MachO::segment_command_64);
6600         } else {
6601           mach_header.sizeofcmds = segment_load_commands.size() *
6602                                    sizeof(llvm::MachO::segment_command);
6603         }
6604 
6605         // and the size of all LC_THREAD load command
6606         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6607           ++mach_header.ncmds;
6608           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6609         }
6610 
6611         // Bits will be set to indicate which bits are NOT used in
6612         // addressing in this process or 0 for unknown.
6613         uint64_t address_mask = process_sp->GetCodeAddressMask();
6614         if (address_mask != LLDB_INVALID_ADDRESS_MASK) {
6615           // LC_NOTE "addrable bits"
6616           mach_header.ncmds++;
6617           mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6618         }
6619 
6620         // LC_NOTE "process metadata"
6621         mach_header.ncmds++;
6622         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6623 
6624         // LC_NOTE "all image infos"
6625         mach_header.ncmds++;
6626         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6627 
6628         // Write the mach header
6629         buffer.PutHex32(mach_header.magic);
6630         buffer.PutHex32(mach_header.cputype);
6631         buffer.PutHex32(mach_header.cpusubtype);
6632         buffer.PutHex32(mach_header.filetype);
6633         buffer.PutHex32(mach_header.ncmds);
6634         buffer.PutHex32(mach_header.sizeofcmds);
6635         buffer.PutHex32(mach_header.flags);
6636         if (addr_byte_size == 8) {
6637           buffer.PutHex32(mach_header.reserved);
6638         }
6639 
6640         // Skip the mach header and all load commands and align to the next
6641         // 0x1000 byte boundary
6642         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6643 
6644         file_offset = llvm::alignTo(file_offset, 16);
6645         std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6646 
6647         // Add "addrable bits" LC_NOTE when an address mask is available
6648         if (address_mask != LLDB_INVALID_ADDRESS_MASK) {
6649           std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6650               new LCNoteEntry(addr_byte_size, byte_order));
6651           addrable_bits_lcnote_up->name = "addrable bits";
6652           addrable_bits_lcnote_up->payload_file_offset = file_offset;
6653           int bits = std::bitset<64>(~address_mask).count();
6654           addrable_bits_lcnote_up->payload.PutHex32(4); // version
6655           addrable_bits_lcnote_up->payload.PutHex32(
6656               bits); // # of bits used for low addresses
6657           addrable_bits_lcnote_up->payload.PutHex32(
6658               bits); // # of bits used for high addresses
6659           addrable_bits_lcnote_up->payload.PutHex32(0); // reserved
6660 
6661           file_offset += addrable_bits_lcnote_up->payload.GetSize();
6662 
6663           lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6664         }
6665 
6666         // Add "process metadata" LC_NOTE
6667         std::unique_ptr<LCNoteEntry> thread_extrainfo_lcnote_up(
6668             new LCNoteEntry(addr_byte_size, byte_order));
6669         thread_extrainfo_lcnote_up->name = "process metadata";
6670         thread_extrainfo_lcnote_up->payload_file_offset = file_offset;
6671 
6672         StructuredData::DictionarySP dict(
6673             std::make_shared<StructuredData::Dictionary>());
6674         StructuredData::ArraySP threads(
6675             std::make_shared<StructuredData::Array>());
6676         for (const ThreadSP &thread_sp :
6677              process_sp->CalculateCoreFileThreadList(options)) {
6678           StructuredData::DictionarySP thread(
6679               std::make_shared<StructuredData::Dictionary>());
6680           thread->AddIntegerItem("thread_id", thread_sp->GetID());
6681           threads->AddItem(thread);
6682         }
6683         dict->AddItem("threads", threads);
6684         StreamString strm;
6685         dict->Dump(strm, /* pretty */ false);
6686         thread_extrainfo_lcnote_up->payload.PutRawBytes(strm.GetData(),
6687                                                         strm.GetSize());
6688 
6689         file_offset += thread_extrainfo_lcnote_up->payload.GetSize();
6690         file_offset = llvm::alignTo(file_offset, 16);
6691         lc_notes.push_back(std::move(thread_extrainfo_lcnote_up));
6692 
6693         // Add "all image infos" LC_NOTE
6694         std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6695             new LCNoteEntry(addr_byte_size, byte_order));
6696         all_image_infos_lcnote_up->name = "all image infos";
6697         all_image_infos_lcnote_up->payload_file_offset = file_offset;
6698         file_offset = CreateAllImageInfosPayload(
6699             process_sp, file_offset, all_image_infos_lcnote_up->payload,
6700             options);
6701         lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6702 
6703         // Add LC_NOTE load commands
6704         for (auto &lcnote : lc_notes) {
6705           // Add the LC_NOTE load command to the file.
6706           buffer.PutHex32(LC_NOTE);
6707           buffer.PutHex32(sizeof(llvm::MachO::note_command));
6708           char namebuf[16];
6709           memset(namebuf, 0, sizeof(namebuf));
6710           // This is the uncommon case where strncpy is exactly
6711           // the right one, doesn't need to be nul terminated.
6712           // LC_NOTE name field is char[16] and is not guaranteed to be
6713           // nul-terminated.
6714           // coverity[buffer_size_warning]
6715           strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6716           buffer.PutRawBytes(namebuf, sizeof(namebuf));
6717           buffer.PutHex64(lcnote->payload_file_offset);
6718           buffer.PutHex64(lcnote->payload.GetSize());
6719         }
6720 
6721         // Align to 4096-byte page boundary for the LC_SEGMENTs.
6722         file_offset = llvm::alignTo(file_offset, 4096);
6723 
6724         for (auto &segment : segment_load_commands) {
6725           segment.fileoff = file_offset;
6726           file_offset += segment.filesize;
6727         }
6728 
6729         // Write out all of the LC_THREAD load commands
6730         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6731           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6732           buffer.PutHex32(LC_THREAD);
6733           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6734           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6735         }
6736 
6737         // Write out all of the segment load commands
6738         for (const auto &segment : segment_load_commands) {
6739           buffer.PutHex32(segment.cmd);
6740           buffer.PutHex32(segment.cmdsize);
6741           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6742           if (addr_byte_size == 8) {
6743             buffer.PutHex64(segment.vmaddr);
6744             buffer.PutHex64(segment.vmsize);
6745             buffer.PutHex64(segment.fileoff);
6746             buffer.PutHex64(segment.filesize);
6747           } else {
6748             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6749             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6750             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6751             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6752           }
6753           buffer.PutHex32(segment.maxprot);
6754           buffer.PutHex32(segment.initprot);
6755           buffer.PutHex32(segment.nsects);
6756           buffer.PutHex32(segment.flags);
6757         }
6758 
6759         std::string core_file_path(outfile.GetPath());
6760         auto core_file = FileSystem::Instance().Open(
6761             outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6762                          File::eOpenOptionCanCreate);
6763         if (!core_file) {
6764           error = Status::FromError(core_file.takeError());
6765         } else {
6766           // Read 1 page at a time
6767           uint8_t bytes[0x1000];
6768           // Write the mach header and load commands out to the core file
6769           size_t bytes_written = buffer.GetString().size();
6770           error =
6771               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6772           if (error.Success()) {
6773 
6774             for (auto &lcnote : lc_notes) {
6775               if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6776                   -1) {
6777                 error = Status::FromErrorStringWithFormat(
6778                     "Unable to seek to corefile pos "
6779                     "to write '%s' LC_NOTE payload",
6780                     lcnote->name.c_str());
6781                 return false;
6782               }
6783               bytes_written = lcnote->payload.GetSize();
6784               error = core_file.get()->Write(lcnote->payload.GetData(),
6785                                              bytes_written);
6786               if (!error.Success())
6787                 return false;
6788             }
6789 
6790             // Now write the file data for all memory segments in the process
6791             for (const auto &segment : segment_load_commands) {
6792               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6793                 error = Status::FromErrorStringWithFormat(
6794                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6795                     segment.fileoff, core_file_path.c_str());
6796                 break;
6797               }
6798 
6799               target.GetDebugger().GetAsyncOutputStream()->Printf(
6800                   "Saving %" PRId64
6801                   " bytes of data for memory region at 0x%" PRIx64 "\n",
6802                   segment.vmsize, segment.vmaddr);
6803               addr_t bytes_left = segment.vmsize;
6804               addr_t addr = segment.vmaddr;
6805               Status memory_read_error;
6806               while (bytes_left > 0 && error.Success()) {
6807                 const size_t bytes_to_read =
6808                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6809 
6810                 // In a savecore setting, we don't really care about caching,
6811                 // as the data is dumped and very likely never read again,
6812                 // so we call ReadMemoryFromInferior to bypass it.
6813                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6814                     addr, bytes, bytes_to_read, memory_read_error);
6815 
6816                 if (bytes_read == bytes_to_read) {
6817                   size_t bytes_written = bytes_read;
6818                   error = core_file.get()->Write(bytes, bytes_written);
6819                   bytes_left -= bytes_read;
6820                   addr += bytes_read;
6821                 } else {
6822                   // Some pages within regions are not readable, those should
6823                   // be zero filled
6824                   memset(bytes, 0, bytes_to_read);
6825                   size_t bytes_written = bytes_to_read;
6826                   error = core_file.get()->Write(bytes, bytes_written);
6827                   bytes_left -= bytes_to_read;
6828                   addr += bytes_to_read;
6829                 }
6830               }
6831             }
6832           }
6833         }
6834       }
6835     }
6836     return true; // This is the right plug to handle saving core files for
6837                  // this process
6838   }
6839   return false;
6840 }
6841 
6842 ObjectFileMachO::MachOCorefileAllImageInfos
6843 ObjectFileMachO::GetCorefileAllImageInfos() {
6844   MachOCorefileAllImageInfos image_infos;
6845   Log *log(GetLog(LLDBLog::Object | LLDBLog::Symbols | LLDBLog::Process |
6846                   LLDBLog::DynamicLoader));
6847 
6848   auto lc_notes = FindLC_NOTEByName("all image infos");
6849   for (auto lc_note : lc_notes) {
6850     offset_t payload_offset = std::get<0>(lc_note);
6851     // Read the struct all_image_infos_header.
6852     uint32_t version = m_data.GetU32(&payload_offset);
6853     if (version != 1) {
6854       return image_infos;
6855     }
6856     uint32_t imgcount = m_data.GetU32(&payload_offset);
6857     uint64_t entries_fileoff = m_data.GetU64(&payload_offset);
6858     // 'entries_size' is not used, nor is the 'unused' entry.
6859     //  offset += 4; // uint32_t entries_size;
6860     //  offset += 4; // uint32_t unused;
6861 
6862     LLDB_LOGF(log, "LC_NOTE 'all image infos' found version %d with %d images",
6863               version, imgcount);
6864     payload_offset = entries_fileoff;
6865     for (uint32_t i = 0; i < imgcount; i++) {
6866       // Read the struct image_entry.
6867       offset_t filepath_offset = m_data.GetU64(&payload_offset);
6868       uuid_t uuid;
6869       memcpy(&uuid, m_data.GetData(&payload_offset, sizeof(uuid_t)),
6870              sizeof(uuid_t));
6871       uint64_t load_address = m_data.GetU64(&payload_offset);
6872       offset_t seg_addrs_offset = m_data.GetU64(&payload_offset);
6873       uint32_t segment_count = m_data.GetU32(&payload_offset);
6874       uint32_t currently_executing = m_data.GetU32(&payload_offset);
6875 
6876       MachOCorefileImageEntry image_entry;
6877       image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6878       image_entry.uuid = UUID(uuid, sizeof(uuid_t));
6879       image_entry.load_address = load_address;
6880       image_entry.currently_executing = currently_executing;
6881 
6882       offset_t seg_vmaddrs_offset = seg_addrs_offset;
6883       for (uint32_t j = 0; j < segment_count; j++) {
6884         char segname[17];
6885         m_data.CopyData(seg_vmaddrs_offset, 16, segname);
6886         segname[16] = '\0';
6887         seg_vmaddrs_offset += 16;
6888         uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
6889         seg_vmaddrs_offset += 8; /* unused */
6890 
6891         std::tuple<ConstString, addr_t> new_seg{ConstString(segname), vmaddr};
6892         image_entry.segment_load_addresses.push_back(new_seg);
6893       }
6894       LLDB_LOGF(log, "  image entry: %s %s 0x%" PRIx64 " %s",
6895                 image_entry.filename.c_str(),
6896                 image_entry.uuid.GetAsString().c_str(),
6897                 image_entry.load_address,
6898                 image_entry.currently_executing ? "currently executing"
6899                                                 : "not currently executing");
6900       image_infos.all_image_infos.push_back(image_entry);
6901     }
6902   }
6903 
6904   lc_notes = FindLC_NOTEByName("load binary");
6905   for (auto lc_note : lc_notes) {
6906     offset_t payload_offset = std::get<0>(lc_note);
6907     uint32_t version = m_data.GetU32(&payload_offset);
6908     if (version == 1) {
6909       uuid_t uuid;
6910       memcpy(&uuid, m_data.GetData(&payload_offset, sizeof(uuid_t)),
6911              sizeof(uuid_t));
6912       uint64_t load_address = m_data.GetU64(&payload_offset);
6913       uint64_t slide = m_data.GetU64(&payload_offset);
6914       std::string filename = m_data.GetCStr(&payload_offset);
6915 
6916       MachOCorefileImageEntry image_entry;
6917       image_entry.filename = filename;
6918       image_entry.uuid = UUID(uuid, sizeof(uuid_t));
6919       image_entry.load_address = load_address;
6920       image_entry.slide = slide;
6921       image_entry.currently_executing = true;
6922       image_infos.all_image_infos.push_back(image_entry);
6923       LLDB_LOGF(log,
6924                 "LC_NOTE 'load binary' found, filename %s uuid %s load "
6925                 "address 0x%" PRIx64 " slide 0x%" PRIx64,
6926                 filename.c_str(),
6927                 image_entry.uuid.IsValid()
6928                     ? image_entry.uuid.GetAsString().c_str()
6929                     : "00000000-0000-0000-0000-000000000000",
6930                 load_address, slide);
6931     }
6932   }
6933 
6934   return image_infos;
6935 }
6936 
6937 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
6938   MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
6939   Log *log = GetLog(LLDBLog::Object | LLDBLog::DynamicLoader);
6940   Status error;
6941 
6942   bool found_platform_binary = false;
6943   ModuleList added_modules;
6944   for (MachOCorefileImageEntry &image : image_infos.all_image_infos) {
6945     ModuleSP module_sp, local_filesystem_module_sp;
6946 
6947     // If this is a platform binary, it has been loaded (or registered with
6948     // the DynamicLoader to be loaded), we don't need to do any further
6949     // processing.  We're not going to call ModulesDidLoad on this in this
6950     // method, so notify==true.
6951     if (process.GetTarget()
6952             .GetDebugger()
6953             .GetPlatformList()
6954             .LoadPlatformBinaryAndSetup(&process, image.load_address,
6955                                         true /* notify */)) {
6956       LLDB_LOGF(log,
6957                 "ObjectFileMachO::%s binary at 0x%" PRIx64
6958                 " is a platform binary, has been handled by a Platform plugin.",
6959                 __FUNCTION__, image.load_address);
6960       continue;
6961     }
6962 
6963     bool value_is_offset = image.load_address == LLDB_INVALID_ADDRESS;
6964     uint64_t value = value_is_offset ? image.slide : image.load_address;
6965     if (value_is_offset && value == LLDB_INVALID_ADDRESS) {
6966       // We have neither address nor slide; so we will find the binary
6967       // by UUID and load it at slide/offset 0.
6968       value = 0;
6969     }
6970 
6971     // We have either a UUID, or we have a load address which
6972     // and can try to read load commands and find a UUID.
6973     if (image.uuid.IsValid() ||
6974         (!value_is_offset && value != LLDB_INVALID_ADDRESS)) {
6975       const bool set_load_address = image.segment_load_addresses.size() == 0;
6976       const bool notify = false;
6977       // Userland Darwin binaries will have segment load addresses via
6978       // the `all image infos` LC_NOTE.
6979       const bool allow_memory_image_last_resort =
6980           image.segment_load_addresses.size();
6981       module_sp = DynamicLoader::LoadBinaryWithUUIDAndAddress(
6982           &process, image.filename, image.uuid, value, value_is_offset,
6983           image.currently_executing, notify, set_load_address,
6984           allow_memory_image_last_resort);
6985     }
6986 
6987     // We have a ModuleSP to load in the Target.  Load it at the
6988     // correct address/slide and notify/load scripting resources.
6989     if (module_sp) {
6990       added_modules.Append(module_sp, false /* notify */);
6991 
6992       // We have a list of segment load address
6993       if (image.segment_load_addresses.size() > 0) {
6994         if (log) {
6995           std::string uuidstr = image.uuid.GetAsString();
6996           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
6997                       "UUID %s with section load addresses",
6998                       module_sp->GetFileSpec().GetPath().c_str(),
6999                       uuidstr.c_str());
7000         }
7001         for (auto name_vmaddr_tuple : image.segment_load_addresses) {
7002           SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
7003           if (sectlist) {
7004             SectionSP sect_sp =
7005                 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
7006             if (sect_sp) {
7007               process.GetTarget().SetSectionLoadAddress(
7008                   sect_sp, std::get<1>(name_vmaddr_tuple));
7009             }
7010           }
7011         }
7012       } else {
7013         if (log) {
7014           std::string uuidstr = image.uuid.GetAsString();
7015           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7016                       "UUID %s with %s 0x%" PRIx64,
7017                       module_sp->GetFileSpec().GetPath().c_str(),
7018                       uuidstr.c_str(),
7019                       value_is_offset ? "slide" : "load address", value);
7020         }
7021         bool changed;
7022         module_sp->SetLoadAddress(process.GetTarget(), value, value_is_offset,
7023                                   changed);
7024       }
7025     }
7026   }
7027   if (added_modules.GetSize() > 0) {
7028     process.GetTarget().ModulesDidLoad(added_modules);
7029     process.Flush();
7030     return true;
7031   }
7032   // Return true if the only binary we found was the platform binary,
7033   // and it was loaded outside the scope of this method.
7034   if (found_platform_binary)
7035     return true;
7036 
7037   // No binaries.
7038   return false;
7039 }
7040