1 //===- Symbols.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Symbols.h" 10 #include "Driver.h" 11 #include "InputFiles.h" 12 #include "InputSection.h" 13 #include "OutputSections.h" 14 #include "SymbolTable.h" 15 #include "SyntheticSections.h" 16 #include "Target.h" 17 #include "Writer.h" 18 #include "lld/Common/ErrorHandler.h" 19 #include "llvm/Demangle/Demangle.h" 20 #include "llvm/Support/Compiler.h" 21 #include <cstring> 22 23 using namespace llvm; 24 using namespace llvm::object; 25 using namespace llvm::ELF; 26 using namespace lld; 27 using namespace lld::elf; 28 29 static_assert(sizeof(SymbolUnion) <= 64, "SymbolUnion too large"); 30 31 template <typename T> struct AssertSymbol { 32 static_assert(std::is_trivially_destructible<T>(), 33 "Symbol types must be trivially destructible"); 34 static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small"); 35 static_assert(alignof(T) <= alignof(SymbolUnion), 36 "SymbolUnion not aligned enough"); 37 }; 38 39 LLVM_ATTRIBUTE_UNUSED static inline void assertSymbols() { 40 AssertSymbol<Defined>(); 41 AssertSymbol<CommonSymbol>(); 42 AssertSymbol<Undefined>(); 43 AssertSymbol<SharedSymbol>(); 44 AssertSymbol<LazySymbol>(); 45 } 46 47 // Returns a symbol for an error message. 48 static std::string maybeDemangleSymbol(Ctx &ctx, StringRef symName) { 49 return ctx.arg.demangle ? demangle(symName.str()) : symName.str(); 50 } 51 52 std::string elf::toStr(Ctx &ctx, const elf::Symbol &sym) { 53 StringRef name = sym.getName(); 54 std::string ret = maybeDemangleSymbol(ctx, name); 55 56 const char *suffix = sym.getVersionSuffix(); 57 if (*suffix == '@') 58 ret += suffix; 59 return ret; 60 } 61 62 const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, 63 const Symbol *sym) { 64 return s << toStr(s.ctx, *sym); 65 } 66 67 static uint64_t getSymVA(Ctx &ctx, const Symbol &sym, int64_t addend) { 68 switch (sym.kind()) { 69 case Symbol::DefinedKind: { 70 auto &d = cast<Defined>(sym); 71 SectionBase *isec = d.section; 72 73 // This is an absolute symbol. 74 if (!isec) 75 return d.value; 76 77 assert(isec != &InputSection::discarded); 78 79 uint64_t offset = d.value; 80 81 // An object in an SHF_MERGE section might be referenced via a 82 // section symbol (as a hack for reducing the number of local 83 // symbols). 84 // Depending on the addend, the reference via a section symbol 85 // refers to a different object in the merge section. 86 // Since the objects in the merge section are not necessarily 87 // contiguous in the output, the addend can thus affect the final 88 // VA in a non-linear way. 89 // To make this work, we incorporate the addend into the section 90 // offset (and zero out the addend for later processing) so that 91 // we find the right object in the section. 92 if (d.isSection()) 93 offset += addend; 94 95 // In the typical case, this is actually very simple and boils 96 // down to adding together 3 numbers: 97 // 1. The address of the output section. 98 // 2. The offset of the input section within the output section. 99 // 3. The offset within the input section (this addition happens 100 // inside InputSection::getOffset). 101 // 102 // If you understand the data structures involved with this next 103 // line (and how they get built), then you have a pretty good 104 // understanding of the linker. 105 uint64_t va = isec->getVA(offset); 106 if (d.isSection()) 107 va -= addend; 108 109 // MIPS relocatable files can mix regular and microMIPS code. 110 // Linker needs to distinguish such code. To do so microMIPS 111 // symbols has the `STO_MIPS_MICROMIPS` flag in the `st_other` 112 // field. Unfortunately, the `MIPS::relocate()` method has 113 // a symbol value only. To pass type of the symbol (regular/microMIPS) 114 // to that routine as well as other places where we write 115 // a symbol value as-is (.dynamic section, `Elf_Ehdr::e_entry` 116 // field etc) do the same trick as compiler uses to mark microMIPS 117 // for CPU - set the less-significant bit. 118 if (ctx.arg.emachine == EM_MIPS && isMicroMips(ctx) && 119 ((sym.stOther & STO_MIPS_MICROMIPS) || sym.hasFlag(NEEDS_COPY))) 120 va |= 1; 121 122 if (d.isTls() && !ctx.arg.relocatable) { 123 // Use the address of the TLS segment's first section rather than the 124 // segment's address, because segment addresses aren't initialized until 125 // after sections are finalized. (e.g. Measuring the size of .rela.dyn 126 // for Android relocation packing requires knowing TLS symbol addresses 127 // during section finalization.) 128 if (!ctx.tlsPhdr || !ctx.tlsPhdr->firstSec) { 129 Err(ctx) << d.file 130 << " has an STT_TLS symbol but doesn't have a PT_TLS segment"; 131 return 0; 132 } 133 return va - ctx.tlsPhdr->firstSec->addr; 134 } 135 return va; 136 } 137 case Symbol::SharedKind: 138 case Symbol::UndefinedKind: 139 return 0; 140 case Symbol::LazyKind: 141 llvm_unreachable("lazy symbol reached writer"); 142 case Symbol::CommonKind: 143 llvm_unreachable("common symbol reached writer"); 144 case Symbol::PlaceholderKind: 145 llvm_unreachable("placeholder symbol reached writer"); 146 } 147 llvm_unreachable("invalid symbol kind"); 148 } 149 150 uint64_t Symbol::getVA(Ctx &ctx, int64_t addend) const { 151 return getSymVA(ctx, *this, addend) + addend; 152 } 153 154 uint64_t Symbol::getGotVA(Ctx &ctx) const { 155 if (gotInIgot) 156 return ctx.in.igotPlt->getVA() + getGotPltOffset(ctx); 157 return ctx.in.got->getVA() + getGotOffset(ctx); 158 } 159 160 uint64_t Symbol::getGotOffset(Ctx &ctx) const { 161 return getGotIdx(ctx) * ctx.target->gotEntrySize; 162 } 163 164 uint64_t Symbol::getGotPltVA(Ctx &ctx) const { 165 if (isInIplt) 166 return ctx.in.igotPlt->getVA() + getGotPltOffset(ctx); 167 return ctx.in.gotPlt->getVA() + getGotPltOffset(ctx); 168 } 169 170 uint64_t Symbol::getGotPltOffset(Ctx &ctx) const { 171 if (isInIplt) 172 return getPltIdx(ctx) * ctx.target->gotEntrySize; 173 return (getPltIdx(ctx) + ctx.target->gotPltHeaderEntriesNum) * 174 ctx.target->gotEntrySize; 175 } 176 177 uint64_t Symbol::getPltVA(Ctx &ctx) const { 178 uint64_t outVA = isInIplt ? ctx.in.iplt->getVA() + 179 getPltIdx(ctx) * ctx.target->ipltEntrySize 180 : ctx.in.plt->getVA() + ctx.in.plt->headerSize + 181 getPltIdx(ctx) * ctx.target->pltEntrySize; 182 183 // While linking microMIPS code PLT code are always microMIPS 184 // code. Set the less-significant bit to track that fact. 185 // See detailed comment in the `getSymVA` function. 186 if (ctx.arg.emachine == EM_MIPS && isMicroMips(ctx)) 187 outVA |= 1; 188 return outVA; 189 } 190 191 uint64_t Symbol::getSize() const { 192 if (const auto *dr = dyn_cast<Defined>(this)) 193 return dr->size; 194 return cast<SharedSymbol>(this)->size; 195 } 196 197 OutputSection *Symbol::getOutputSection() const { 198 if (auto *s = dyn_cast<Defined>(this)) { 199 if (auto *sec = s->section) 200 return sec->getOutputSection(); 201 return nullptr; 202 } 203 return nullptr; 204 } 205 206 // If a symbol name contains '@', the characters after that is 207 // a symbol version name. This function parses that. 208 void Symbol::parseSymbolVersion(Ctx &ctx) { 209 // Return if localized by a local: pattern in a version script. 210 if (versionId == VER_NDX_LOCAL) 211 return; 212 StringRef s = getName(); 213 size_t pos = s.find('@'); 214 if (pos == StringRef::npos) 215 return; 216 StringRef verstr = s.substr(pos + 1); 217 218 // Truncate the symbol name so that it doesn't include the version string. 219 nameSize = pos; 220 221 if (verstr.empty()) 222 return; 223 224 // If this is not in this DSO, it is not a definition. 225 if (!isDefined()) 226 return; 227 228 // '@@' in a symbol name means the default version. 229 // It is usually the most recent one. 230 bool isDefault = (verstr[0] == '@'); 231 if (isDefault) 232 verstr = verstr.substr(1); 233 234 for (const VersionDefinition &ver : namedVersionDefs(ctx)) { 235 if (ver.name != verstr) 236 continue; 237 238 if (isDefault) 239 versionId = ver.id; 240 else 241 versionId = ver.id | VERSYM_HIDDEN; 242 return; 243 } 244 245 // It is an error if the specified version is not defined. 246 // Usually version script is not provided when linking executable, 247 // but we may still want to override a versioned symbol from DSO, 248 // so we do not report error in this case. We also do not error 249 // if the symbol has a local version as it won't be in the dynamic 250 // symbol table. 251 if (ctx.arg.shared && versionId != VER_NDX_LOCAL) 252 ErrAlways(ctx) << file << ": symbol " << s << " has undefined version " 253 << verstr; 254 } 255 256 void Symbol::extract(Ctx &ctx) const { 257 assert(file->lazy); 258 file->lazy = false; 259 parseFile(ctx, file); 260 } 261 262 uint8_t Symbol::computeBinding(Ctx &ctx) const { 263 auto v = visibility(); 264 if ((v != STV_DEFAULT && v != STV_PROTECTED) || versionId == VER_NDX_LOCAL) 265 return STB_LOCAL; 266 if (binding == STB_GNU_UNIQUE && !ctx.arg.gnuUnique) 267 return STB_GLOBAL; 268 return binding; 269 } 270 271 bool Symbol::includeInDynsym(Ctx &ctx) const { 272 if (computeBinding(ctx) == STB_LOCAL) 273 return false; 274 if (!isDefined() && !isCommon()) 275 return true; 276 277 return exportDynamic || 278 (ctx.arg.exportDynamic && (isUsedInRegularObj || !ltoCanOmit)); 279 } 280 281 // Print out a log message for --trace-symbol. 282 void elf::printTraceSymbol(const Symbol &sym, StringRef name) { 283 std::string s; 284 if (sym.isUndefined()) 285 s = ": reference to "; 286 else if (sym.isLazy()) 287 s = ": lazy definition of "; 288 else if (sym.isShared()) 289 s = ": shared definition of "; 290 else if (sym.isCommon()) 291 s = ": common definition of "; 292 else 293 s = ": definition of "; 294 295 Msg(sym.file->ctx) << sym.file << s << name; 296 } 297 298 static void recordWhyExtract(Ctx &ctx, const InputFile *reference, 299 const InputFile &extracted, const Symbol &sym) { 300 ctx.whyExtractRecords.emplace_back(toStr(ctx, reference), &extracted, sym); 301 } 302 303 void elf::maybeWarnUnorderableSymbol(Ctx &ctx, const Symbol *sym) { 304 if (!ctx.arg.warnSymbolOrdering) 305 return; 306 307 // If UnresolvedPolicy::Ignore is used, no "undefined symbol" error/warning is 308 // emitted. It makes sense to not warn on undefined symbols (excluding those 309 // demoted by demoteSymbols). 310 // 311 // Note, ld.bfd --symbol-ordering-file= does not warn on undefined symbols, 312 // but we don't have to be compatible here. 313 if (sym->isUndefined() && !cast<Undefined>(sym)->discardedSecIdx && 314 ctx.arg.unresolvedSymbols == UnresolvedPolicy::Ignore) 315 return; 316 317 const InputFile *file = sym->file; 318 auto *d = dyn_cast<Defined>(sym); 319 320 auto report = [&](StringRef s) { Warn(ctx) << file << s << sym->getName(); }; 321 322 if (sym->isUndefined()) { 323 if (cast<Undefined>(sym)->discardedSecIdx) 324 report(": unable to order discarded symbol: "); 325 else 326 report(": unable to order undefined symbol: "); 327 } else if (sym->isShared()) 328 report(": unable to order shared symbol: "); 329 else if (d && !d->section) 330 report(": unable to order absolute symbol: "); 331 else if (d && isa<OutputSection>(d->section)) 332 report(": unable to order synthetic symbol: "); 333 else if (d && !d->section->isLive()) 334 report(": unable to order discarded symbol: "); 335 } 336 337 // Returns true if a symbol can be replaced at load-time by a symbol 338 // with the same name defined in other ELF executable or DSO. 339 bool elf::computeIsPreemptible(Ctx &ctx, const Symbol &sym) { 340 assert(!sym.isLocal() || sym.isPlaceholder()); 341 342 // Only symbols with default visibility that appear in dynsym can be 343 // preempted. Symbols with protected visibility cannot be preempted. 344 if (sym.visibility() != STV_DEFAULT) 345 return false; 346 347 // At this point copy relocations have not been created yet, so any 348 // symbol that is not defined locally is preemptible. 349 if (!sym.isDefined()) 350 return true; 351 352 if (!ctx.arg.shared) 353 return false; 354 355 // If -Bsymbolic or --dynamic-list is specified, or -Bsymbolic-functions is 356 // specified and the symbol is STT_FUNC, the symbol is preemptible iff it is 357 // in the dynamic list. -Bsymbolic-non-weak-functions is a non-weak subset of 358 // -Bsymbolic-functions. 359 if (ctx.arg.symbolic || 360 (ctx.arg.bsymbolic == BsymbolicKind::NonWeak && 361 sym.binding != STB_WEAK) || 362 (ctx.arg.bsymbolic == BsymbolicKind::Functions && sym.isFunc()) || 363 (ctx.arg.bsymbolic == BsymbolicKind::NonWeakFunctions && sym.isFunc() && 364 sym.binding != STB_WEAK)) 365 return sym.inDynamicList; 366 return true; 367 } 368 369 void elf::parseVersionAndComputeIsPreemptible(Ctx &ctx) { 370 // Symbol themselves might know their versions because symbols 371 // can contain versions in the form of <name>@<version>. 372 // Let them parse and update their names to exclude version suffix. 373 bool hasDynsym = ctx.hasDynsym; 374 for (Symbol *sym : ctx.symtab->getSymbols()) { 375 if (sym->hasVersionSuffix) 376 sym->parseSymbolVersion(ctx); 377 if (hasDynsym) { 378 sym->isExported = sym->includeInDynsym(ctx); 379 sym->isPreemptible = sym->isExported && computeIsPreemptible(ctx, *sym); 380 } 381 } 382 } 383 384 // Merge symbol properties. 385 // 386 // When we have many symbols of the same name, we choose one of them, 387 // and that's the result of symbol resolution. However, symbols that 388 // were not chosen still affect some symbol properties. 389 void Symbol::mergeProperties(const Symbol &other) { 390 // DSO symbols do not affect visibility in the output. 391 if (!other.isShared() && other.visibility() != STV_DEFAULT) { 392 uint8_t v = visibility(), ov = other.visibility(); 393 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 394 } 395 } 396 397 void Symbol::resolve(Ctx &ctx, const Undefined &other) { 398 if (other.visibility() != STV_DEFAULT) { 399 uint8_t v = visibility(), ov = other.visibility(); 400 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 401 } 402 // An undefined symbol with non default visibility must be satisfied 403 // in the same DSO. 404 // 405 // If this is a non-weak defined symbol in a discarded section, override the 406 // existing undefined symbol for better error message later. 407 if (isPlaceholder() || (isShared() && other.visibility() != STV_DEFAULT) || 408 (isUndefined() && other.binding != STB_WEAK && other.discardedSecIdx)) { 409 other.overwrite(*this); 410 return; 411 } 412 413 if (traced) 414 printTraceSymbol(other, getName()); 415 416 if (isLazy()) { 417 // An undefined weak will not extract archive members. See comment on Lazy 418 // in Symbols.h for the details. 419 if (other.binding == STB_WEAK) { 420 binding = STB_WEAK; 421 type = other.type; 422 return; 423 } 424 425 // Do extra check for --warn-backrefs. 426 // 427 // --warn-backrefs is an option to prevent an undefined reference from 428 // extracting an archive member written earlier in the command line. It can 429 // be used to keep compatibility with GNU linkers to some degree. I'll 430 // explain the feature and why you may find it useful in this comment. 431 // 432 // lld's symbol resolution semantics is more relaxed than traditional Unix 433 // linkers. For example, 434 // 435 // ld.lld foo.a bar.o 436 // 437 // succeeds even if bar.o contains an undefined symbol that has to be 438 // resolved by some object file in foo.a. Traditional Unix linkers don't 439 // allow this kind of backward reference, as they visit each file only once 440 // from left to right in the command line while resolving all undefined 441 // symbols at the moment of visiting. 442 // 443 // In the above case, since there's no undefined symbol when a linker visits 444 // foo.a, no files are pulled out from foo.a, and because the linker forgets 445 // about foo.a after visiting, it can't resolve undefined symbols in bar.o 446 // that could have been resolved otherwise. 447 // 448 // That lld accepts more relaxed form means that (besides it'd make more 449 // sense) you can accidentally write a command line or a build file that 450 // works only with lld, even if you have a plan to distribute it to wider 451 // users who may be using GNU linkers. With --warn-backrefs, you can detect 452 // a library order that doesn't work with other Unix linkers. 453 // 454 // The option is also useful to detect cyclic dependencies between static 455 // archives. Again, lld accepts 456 // 457 // ld.lld foo.a bar.a 458 // 459 // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is 460 // handled as an error. 461 // 462 // Here is how the option works. We assign a group ID to each file. A file 463 // with a smaller group ID can pull out object files from an archive file 464 // with an equal or greater group ID. Otherwise, it is a reverse dependency 465 // and an error. 466 // 467 // A file outside --{start,end}-group gets a fresh ID when instantiated. All 468 // files within the same --{start,end}-group get the same group ID. E.g. 469 // 470 // ld.lld A B --start-group C D --end-group E 471 // 472 // A forms group 0. B form group 1. C and D (including their member object 473 // files) form group 2. E forms group 3. I think that you can see how this 474 // group assignment rule simulates the traditional linker's semantics. 475 bool backref = ctx.arg.warnBackrefs && file->groupId < other.file->groupId; 476 extract(ctx); 477 478 if (!ctx.arg.whyExtract.empty()) 479 recordWhyExtract(ctx, other.file, *file, *this); 480 481 // We don't report backward references to weak symbols as they can be 482 // overridden later. 483 // 484 // A traditional linker does not error for -ldef1 -lref -ldef2 (linking 485 // sandwich), where def2 may or may not be the same as def1. We don't want 486 // to warn for this case, so dismiss the warning if we see a subsequent lazy 487 // definition. this->file needs to be saved because in the case of LTO it 488 // may be reset to internalFile or be replaced with a file named lto.tmp. 489 if (backref && !isWeak()) 490 ctx.backwardReferences.try_emplace(this, 491 std::make_pair(other.file, file)); 492 return; 493 } 494 495 // Undefined symbols in a SharedFile do not change the binding. 496 if (isa<SharedFile>(other.file)) 497 return; 498 499 if (isUndefined() || isShared()) { 500 // The binding will be weak if there is at least one reference and all are 501 // weak. The binding has one opportunity to change to weak: if the first 502 // reference is weak. 503 if (other.binding != STB_WEAK || !referenced) 504 binding = other.binding; 505 } 506 } 507 508 // Compare two symbols. Return true if the new symbol should win. 509 bool Symbol::shouldReplace(Ctx &ctx, const Defined &other) const { 510 if (LLVM_UNLIKELY(isCommon())) { 511 if (ctx.arg.warnCommon) 512 Warn(ctx) << "common " << getName() << " is overridden"; 513 return !other.isWeak(); 514 } 515 if (!isDefined()) 516 return true; 517 518 // Incoming STB_GLOBAL overrides STB_WEAK/STB_GNU_UNIQUE. -fgnu-unique changes 519 // some vague linkage data in COMDAT from STB_WEAK to STB_GNU_UNIQUE. Treat 520 // STB_GNU_UNIQUE like STB_WEAK so that we prefer the first among all 521 // STB_WEAK/STB_GNU_UNIQUE copies. If we prefer an incoming STB_GNU_UNIQUE to 522 // an existing STB_WEAK, there may be discarded section errors because the 523 // selected copy may be in a non-prevailing COMDAT. 524 return !isGlobal() && other.isGlobal(); 525 } 526 527 void elf::reportDuplicate(Ctx &ctx, const Symbol &sym, const InputFile *newFile, 528 InputSectionBase *errSec, uint64_t errOffset) { 529 if (ctx.arg.allowMultipleDefinition) 530 return; 531 // In glibc<2.32, crti.o has .gnu.linkonce.t.__x86.get_pc_thunk.bx, which 532 // is sort of proto-comdat. There is actually no duplicate if we have 533 // full support for .gnu.linkonce. 534 const Defined *d = dyn_cast<Defined>(&sym); 535 if (!d || d->getName() == "__x86.get_pc_thunk.bx") 536 return; 537 // Allow absolute symbols with the same value for GNU ld compatibility. 538 if (!d->section && !errSec && errOffset && d->value == errOffset) 539 return; 540 if (!d->section || !errSec) { 541 Err(ctx) << "duplicate symbol: " << &sym << "\n>>> defined in " << sym.file 542 << "\n>>> defined in " << newFile; 543 return; 544 } 545 546 // Construct and print an error message in the form of: 547 // 548 // ld.lld: error: duplicate symbol: foo 549 // >>> defined at bar.c:30 550 // >>> bar.o (/home/alice/src/bar.o) 551 // >>> defined at baz.c:563 552 // >>> baz.o in archive libbaz.a 553 auto *sec1 = cast<InputSectionBase>(d->section); 554 auto diag = Err(ctx); 555 diag << "duplicate symbol: " << &sym << "\n>>> defined at "; 556 auto tell = diag.tell(); 557 diag << sec1->getSrcMsg(sym, d->value); 558 if (tell != diag.tell()) 559 diag << "\n>>> "; 560 diag << sec1->getObjMsg(d->value) << "\n>>> defined at "; 561 tell = diag.tell(); 562 diag << errSec->getSrcMsg(sym, errOffset); 563 if (tell != diag.tell()) 564 diag << "\n>>> "; 565 diag << errSec->getObjMsg(errOffset); 566 } 567 568 void Symbol::checkDuplicate(Ctx &ctx, const Defined &other) const { 569 if (isDefined() && !isWeak() && !other.isWeak()) 570 reportDuplicate(ctx, *this, other.file, 571 dyn_cast_or_null<InputSectionBase>(other.section), 572 other.value); 573 } 574 575 void Symbol::resolve(Ctx &ctx, const CommonSymbol &other) { 576 if (other.visibility() != STV_DEFAULT) { 577 uint8_t v = visibility(), ov = other.visibility(); 578 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 579 } 580 if (isDefined() && !isWeak()) { 581 if (ctx.arg.warnCommon) 582 Warn(ctx) << "common " << getName() << " is overridden"; 583 return; 584 } 585 586 if (CommonSymbol *oldSym = dyn_cast<CommonSymbol>(this)) { 587 if (ctx.arg.warnCommon) 588 Warn(ctx) << "multiple common of " << getName(); 589 oldSym->alignment = std::max(oldSym->alignment, other.alignment); 590 if (oldSym->size < other.size) { 591 oldSym->file = other.file; 592 oldSym->size = other.size; 593 } 594 return; 595 } 596 597 if (auto *s = dyn_cast<SharedSymbol>(this)) { 598 // Increase st_size if the shared symbol has a larger st_size. The shared 599 // symbol may be created from common symbols. The fact that some object 600 // files were linked into a shared object first should not change the 601 // regular rule that picks the largest st_size. 602 uint64_t size = s->size; 603 other.overwrite(*this); 604 if (size > cast<CommonSymbol>(this)->size) 605 cast<CommonSymbol>(this)->size = size; 606 } else { 607 other.overwrite(*this); 608 } 609 } 610 611 void Symbol::resolve(Ctx &ctx, const Defined &other) { 612 if (other.visibility() != STV_DEFAULT) { 613 uint8_t v = visibility(), ov = other.visibility(); 614 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov)); 615 } 616 if (shouldReplace(ctx, other)) 617 other.overwrite(*this); 618 } 619 620 void Symbol::resolve(Ctx &ctx, const LazySymbol &other) { 621 if (isPlaceholder()) { 622 other.overwrite(*this); 623 return; 624 } 625 626 if (LLVM_UNLIKELY(!isUndefined())) { 627 // See the comment in resolve(Ctx &, const Undefined &). 628 if (isDefined()) { 629 ctx.backwardReferences.erase(this); 630 } else if (isCommon() && ctx.arg.fortranCommon && 631 other.file->shouldExtractForCommon(getName())) { 632 // For common objects, we want to look for global or weak definitions that 633 // should be extracted as the canonical definition instead. 634 ctx.backwardReferences.erase(this); 635 other.overwrite(*this); 636 other.extract(ctx); 637 } 638 return; 639 } 640 641 // An undefined weak will not extract archive members. See comment on Lazy in 642 // Symbols.h for the details. 643 if (isWeak()) { 644 uint8_t ty = type; 645 other.overwrite(*this); 646 type = ty; 647 binding = STB_WEAK; 648 return; 649 } 650 651 const InputFile *oldFile = file; 652 other.extract(ctx); 653 if (!ctx.arg.whyExtract.empty()) 654 recordWhyExtract(ctx, oldFile, *file, *this); 655 } 656 657 void Symbol::resolve(Ctx &ctx, const SharedSymbol &other) { 658 exportDynamic = true; 659 if (isPlaceholder()) { 660 other.overwrite(*this); 661 return; 662 } 663 if (isCommon()) { 664 // See the comment in resolveCommon() above. 665 if (other.size > cast<CommonSymbol>(this)->size) 666 cast<CommonSymbol>(this)->size = other.size; 667 return; 668 } 669 if (visibility() == STV_DEFAULT && (isUndefined() || isLazy())) { 670 // An undefined symbol with non default visibility must be satisfied 671 // in the same DSO. 672 uint8_t bind = binding; 673 other.overwrite(*this); 674 binding = bind; 675 } else if (traced) 676 printTraceSymbol(other, getName()); 677 } 678 679 void Defined::overwrite(Symbol &sym) const { 680 if (isa_and_nonnull<SharedFile>(sym.file)) 681 sym.versionId = VER_NDX_GLOBAL; 682 Symbol::overwrite(sym, DefinedKind); 683 auto &s = static_cast<Defined &>(sym); 684 s.value = value; 685 s.size = size; 686 s.section = section; 687 } 688