1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <cstddef> 10 #include <memory> 11 #include <memory_resource> 12 13 #if _LIBCPP_HAS_ATOMIC_HEADER 14 # include <atomic> 15 #elif _LIBCPP_HAS_THREADS 16 # include <mutex> 17 # if defined(__ELF__) && defined(_LIBCPP_LINK_PTHREAD_LIB) 18 # pragma comment(lib, "pthread") 19 # endif 20 #endif 21 22 _LIBCPP_BEGIN_NAMESPACE_STD 23 24 namespace pmr { 25 26 // memory_resource 27 28 memory_resource::~memory_resource() = default; 29 30 // new_delete_resource() 31 32 #if !_LIBCPP_HAS_ALIGNED_ALLOCATION 33 static bool is_aligned_to(void* ptr, size_t align) { 34 void* p2 = ptr; 35 size_t space = 1; 36 void* result = std::align(align, 1, p2, space); 37 return (result == ptr); 38 } 39 #endif 40 41 class _LIBCPP_HIDDEN __new_delete_memory_resource_imp : public memory_resource { 42 void* do_allocate(size_t bytes, size_t align) override { 43 #if _LIBCPP_HAS_ALIGNED_ALLOCATION 44 return std::__libcpp_allocate<std::byte>(__element_count(bytes), align); 45 #else 46 if (bytes == 0) 47 bytes = 1; 48 std::byte* result = std::__libcpp_allocate<std::byte>(__element_count(bytes), align); 49 if (!is_aligned_to(result, align)) { 50 std::__libcpp_deallocate<std::byte>(result, __element_count(bytes), align); 51 __throw_bad_alloc(); 52 } 53 return result; 54 #endif 55 } 56 57 void do_deallocate(void* p, size_t bytes, size_t align) override { 58 std::__libcpp_deallocate<std::byte>(static_cast<std::byte*>(p), __element_count(bytes), align); 59 } 60 61 bool do_is_equal(const memory_resource& other) const noexcept override { return &other == this; } 62 }; 63 64 // null_memory_resource() 65 66 class _LIBCPP_HIDDEN __null_memory_resource_imp : public memory_resource { 67 void* do_allocate(size_t, size_t) override { __throw_bad_alloc(); } 68 void do_deallocate(void*, size_t, size_t) override {} 69 bool do_is_equal(const memory_resource& other) const noexcept override { return &other == this; } 70 }; 71 72 namespace { 73 74 union ResourceInitHelper { 75 struct { 76 __new_delete_memory_resource_imp new_delete_res; 77 __null_memory_resource_imp null_res; 78 } resources; 79 char dummy; 80 constexpr ResourceInitHelper() : resources() {} 81 ~ResourceInitHelper() {} 82 }; 83 84 // Pretend we're inside a system header so the compiler doesn't flag the use of the init_priority 85 // attribute with a value that's reserved for the implementation (we're the implementation). 86 #include "memory_resource_init_helper.h" 87 88 } // namespace 89 90 memory_resource* new_delete_resource() noexcept { return &res_init.resources.new_delete_res; } 91 92 memory_resource* null_memory_resource() noexcept { return &res_init.resources.null_res; } 93 94 // default_memory_resource() 95 96 static memory_resource* __default_memory_resource(bool set = false, memory_resource* new_res = nullptr) noexcept { 97 #if _LIBCPP_HAS_ATOMIC_HEADER 98 static constinit atomic<memory_resource*> __res{&res_init.resources.new_delete_res}; 99 if (set) { 100 new_res = new_res ? new_res : new_delete_resource(); 101 // TODO: Can a weaker ordering be used? 102 return std::atomic_exchange_explicit(&__res, new_res, memory_order_acq_rel); 103 } else { 104 return std::atomic_load_explicit(&__res, memory_order_acquire); 105 } 106 #elif _LIBCPP_HAS_THREADS 107 static constinit memory_resource* res = &res_init.resources.new_delete_res; 108 static mutex res_lock; 109 if (set) { 110 new_res = new_res ? new_res : new_delete_resource(); 111 lock_guard<mutex> guard(res_lock); 112 memory_resource* old_res = res; 113 res = new_res; 114 return old_res; 115 } else { 116 lock_guard<mutex> guard(res_lock); 117 return res; 118 } 119 #else 120 static constinit memory_resource* res = &res_init.resources.new_delete_res; 121 if (set) { 122 new_res = new_res ? new_res : new_delete_resource(); 123 memory_resource* old_res = res; 124 res = new_res; 125 return old_res; 126 } else { 127 return res; 128 } 129 #endif 130 } 131 132 memory_resource* get_default_resource() noexcept { return __default_memory_resource(); } 133 134 memory_resource* set_default_resource(memory_resource* __new_res) noexcept { 135 return __default_memory_resource(true, __new_res); 136 } 137 138 // 23.12.5, mem.res.pool 139 140 static size_t roundup(size_t count, size_t alignment) { 141 size_t mask = alignment - 1; 142 return (count + mask) & ~mask; 143 } 144 145 struct unsynchronized_pool_resource::__adhoc_pool::__chunk_footer { 146 __chunk_footer* __next_; 147 char* __start_; 148 size_t __align_; 149 size_t __allocation_size() { return (reinterpret_cast<char*>(this) - __start_) + sizeof(*this); } 150 }; 151 152 void unsynchronized_pool_resource::__adhoc_pool::__release_ptr(memory_resource* upstream) { 153 while (__first_ != nullptr) { 154 __chunk_footer* next = __first_->__next_; 155 upstream->deallocate(__first_->__start_, __first_->__allocation_size(), __first_->__align_); 156 __first_ = next; 157 } 158 } 159 160 void* unsynchronized_pool_resource::__adhoc_pool::__do_allocate(memory_resource* upstream, size_t bytes, size_t align) { 161 const size_t footer_size = sizeof(__chunk_footer); 162 const size_t footer_align = alignof(__chunk_footer); 163 164 if (align < footer_align) 165 align = footer_align; 166 167 size_t aligned_capacity = roundup(bytes, footer_align) + footer_size; 168 169 void* result = upstream->allocate(aligned_capacity, align); 170 171 __chunk_footer* h = (__chunk_footer*)((char*)result + aligned_capacity - footer_size); 172 h->__next_ = __first_; 173 h->__start_ = (char*)result; 174 h->__align_ = align; 175 __first_ = h; 176 return result; 177 } 178 179 void unsynchronized_pool_resource::__adhoc_pool::__do_deallocate( 180 memory_resource* upstream, void* p, size_t bytes, size_t align) { 181 _LIBCPP_ASSERT_NON_NULL(__first_ != nullptr, "deallocating a block that was not allocated with this allocator"); 182 if (__first_->__start_ == p) { 183 __chunk_footer* next = __first_->__next_; 184 upstream->deallocate(p, __first_->__allocation_size(), __first_->__align_); 185 __first_ = next; 186 } else { 187 for (__chunk_footer* h = __first_; h->__next_ != nullptr; h = h->__next_) { 188 if (h->__next_->__start_ == p) { 189 __chunk_footer* next = h->__next_->__next_; 190 upstream->deallocate(p, h->__next_->__allocation_size(), h->__next_->__align_); 191 h->__next_ = next; 192 return; 193 } 194 } 195 // The request to deallocate memory ends up being a no-op, likely resulting in a memory leak. 196 _LIBCPP_ASSERT_VALID_DEALLOCATION(false, "deallocating a block that was not allocated with this allocator"); 197 } 198 } 199 200 class unsynchronized_pool_resource::__fixed_pool { 201 struct __chunk_footer { 202 __chunk_footer* __next_; 203 char* __start_; 204 size_t __align_; 205 size_t __allocation_size() { return (reinterpret_cast<char*>(this) - __start_) + sizeof(*this); } 206 }; 207 208 struct __vacancy_header { 209 __vacancy_header* __next_vacancy_; 210 }; 211 212 __chunk_footer* __first_chunk_ = nullptr; 213 __vacancy_header* __first_vacancy_ = nullptr; 214 215 public: 216 explicit __fixed_pool() = default; 217 218 void __release_ptr(memory_resource* upstream) { 219 __first_vacancy_ = nullptr; 220 while (__first_chunk_ != nullptr) { 221 __chunk_footer* next = __first_chunk_->__next_; 222 upstream->deallocate(__first_chunk_->__start_, __first_chunk_->__allocation_size(), __first_chunk_->__align_); 223 __first_chunk_ = next; 224 } 225 } 226 227 void* __try_allocate_from_vacancies() { 228 if (__first_vacancy_ != nullptr) { 229 void* result = __first_vacancy_; 230 __first_vacancy_ = __first_vacancy_->__next_vacancy_; 231 return result; 232 } 233 return nullptr; 234 } 235 236 void* __allocate_in_new_chunk(memory_resource* upstream, size_t block_size, size_t chunk_size) { 237 _LIBCPP_ASSERT_INTERNAL(chunk_size % block_size == 0, ""); 238 static_assert(__default_alignment >= alignof(std::max_align_t), ""); 239 static_assert(__default_alignment >= alignof(__chunk_footer), ""); 240 static_assert(__default_alignment >= alignof(__vacancy_header), ""); 241 242 const size_t footer_size = sizeof(__chunk_footer); 243 const size_t footer_align = alignof(__chunk_footer); 244 245 size_t aligned_capacity = roundup(chunk_size, footer_align) + footer_size; 246 247 void* result = upstream->allocate(aligned_capacity, __default_alignment); 248 249 __chunk_footer* h = (__chunk_footer*)((char*)result + aligned_capacity - footer_size); 250 h->__next_ = __first_chunk_; 251 h->__start_ = (char*)result; 252 h->__align_ = __default_alignment; 253 __first_chunk_ = h; 254 255 if (chunk_size > block_size) { 256 __vacancy_header* last_vh = this->__first_vacancy_; 257 for (size_t i = block_size; i != chunk_size; i += block_size) { 258 __vacancy_header* vh = (__vacancy_header*)((char*)result + i); 259 vh->__next_vacancy_ = last_vh; 260 last_vh = vh; 261 } 262 this->__first_vacancy_ = last_vh; 263 } 264 return result; 265 } 266 267 void __evacuate(void* p) { 268 __vacancy_header* vh = (__vacancy_header*)(p); 269 vh->__next_vacancy_ = __first_vacancy_; 270 __first_vacancy_ = vh; 271 } 272 273 size_t __previous_chunk_size_in_bytes() const { return __first_chunk_ ? __first_chunk_->__allocation_size() : 0; } 274 275 static const size_t __default_alignment = alignof(max_align_t); 276 }; 277 278 size_t unsynchronized_pool_resource::__pool_block_size(int i) const { return size_t(1) << __log2_pool_block_size(i); } 279 280 int unsynchronized_pool_resource::__log2_pool_block_size(int i) const { return (i + __log2_smallest_block_size); } 281 282 int unsynchronized_pool_resource::__pool_index(size_t bytes, size_t align) const { 283 if (align > alignof(std::max_align_t) || bytes > (size_t(1) << __num_fixed_pools_)) 284 return __num_fixed_pools_; 285 else { 286 int i = 0; 287 bytes = (bytes > align) ? bytes : align; 288 bytes -= 1; 289 bytes >>= __log2_smallest_block_size; 290 while (bytes != 0) { 291 bytes >>= 1; 292 i += 1; 293 } 294 return i; 295 } 296 } 297 298 unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream) 299 : __res_(upstream), __fixed_pools_(nullptr) { 300 size_t largest_block_size; 301 if (opts.largest_required_pool_block == 0) 302 largest_block_size = __default_largest_block_size; 303 else if (opts.largest_required_pool_block < __smallest_block_size) 304 largest_block_size = __smallest_block_size; 305 else if (opts.largest_required_pool_block > __max_largest_block_size) 306 largest_block_size = __max_largest_block_size; 307 else 308 largest_block_size = opts.largest_required_pool_block; 309 310 if (opts.max_blocks_per_chunk == 0) 311 __options_max_blocks_per_chunk_ = __max_blocks_per_chunk; 312 else if (opts.max_blocks_per_chunk < __min_blocks_per_chunk) 313 __options_max_blocks_per_chunk_ = __min_blocks_per_chunk; 314 else if (opts.max_blocks_per_chunk > __max_blocks_per_chunk) 315 __options_max_blocks_per_chunk_ = __max_blocks_per_chunk; 316 else 317 __options_max_blocks_per_chunk_ = opts.max_blocks_per_chunk; 318 319 __num_fixed_pools_ = 1; 320 size_t capacity = __smallest_block_size; 321 while (capacity < largest_block_size) { 322 capacity <<= 1; 323 __num_fixed_pools_ += 1; 324 } 325 } 326 327 pool_options unsynchronized_pool_resource::options() const { 328 pool_options p; 329 p.max_blocks_per_chunk = __options_max_blocks_per_chunk_; 330 p.largest_required_pool_block = __pool_block_size(__num_fixed_pools_ - 1); 331 return p; 332 } 333 334 void unsynchronized_pool_resource::release() { 335 __adhoc_pool_.__release_ptr(__res_); 336 if (__fixed_pools_ != nullptr) { 337 const int n = __num_fixed_pools_; 338 for (int i = 0; i < n; ++i) 339 __fixed_pools_[i].__release_ptr(__res_); 340 __res_->deallocate(__fixed_pools_, __num_fixed_pools_ * sizeof(__fixed_pool), alignof(__fixed_pool)); 341 __fixed_pools_ = nullptr; 342 } 343 } 344 345 void* unsynchronized_pool_resource::do_allocate(size_t bytes, size_t align) { 346 // A pointer to allocated storage (6.6.4.4.1) with a size of at least bytes. 347 // The size and alignment of the allocated memory shall meet the requirements for 348 // a class derived from memory_resource (23.12). 349 // If the pool selected for a block of size bytes is unable to satisfy the memory request 350 // from its own internal data structures, it will call upstream_resource()->allocate() 351 // to obtain more memory. If bytes is larger than that which the largest pool can handle, 352 // then memory will be allocated using upstream_resource()->allocate(). 353 354 int i = __pool_index(bytes, align); 355 if (i == __num_fixed_pools_) 356 return __adhoc_pool_.__do_allocate(__res_, bytes, align); 357 else { 358 if (__fixed_pools_ == nullptr) { 359 __fixed_pools_ = 360 (__fixed_pool*)__res_->allocate(__num_fixed_pools_ * sizeof(__fixed_pool), alignof(__fixed_pool)); 361 __fixed_pool* first = __fixed_pools_; 362 __fixed_pool* last = __fixed_pools_ + __num_fixed_pools_; 363 for (__fixed_pool* pool = first; pool != last; ++pool) 364 ::new ((void*)pool) __fixed_pool; 365 } 366 void* result = __fixed_pools_[i].__try_allocate_from_vacancies(); 367 if (result == nullptr) { 368 auto min = [](size_t a, size_t b) { return a < b ? a : b; }; 369 auto max = [](size_t a, size_t b) { return a < b ? b : a; }; 370 371 size_t prev_chunk_size_in_bytes = __fixed_pools_[i].__previous_chunk_size_in_bytes(); 372 size_t prev_chunk_size_in_blocks = prev_chunk_size_in_bytes >> __log2_pool_block_size(i); 373 374 size_t chunk_size_in_blocks; 375 376 if (prev_chunk_size_in_blocks == 0) { 377 size_t min_blocks_per_chunk = max(__min_bytes_per_chunk >> __log2_pool_block_size(i), __min_blocks_per_chunk); 378 chunk_size_in_blocks = min_blocks_per_chunk; 379 } else { 380 static_assert(__max_bytes_per_chunk <= SIZE_MAX - (__max_bytes_per_chunk / 4), "unsigned overflow is possible"); 381 chunk_size_in_blocks = prev_chunk_size_in_blocks + (prev_chunk_size_in_blocks / 4); 382 } 383 384 size_t max_blocks_per_chunk = 385 min((__max_bytes_per_chunk >> __log2_pool_block_size(i)), 386 min(__max_blocks_per_chunk, __options_max_blocks_per_chunk_)); 387 if (chunk_size_in_blocks > max_blocks_per_chunk) 388 chunk_size_in_blocks = max_blocks_per_chunk; 389 390 size_t block_size = __pool_block_size(i); 391 392 size_t chunk_size_in_bytes = (chunk_size_in_blocks << __log2_pool_block_size(i)); 393 result = __fixed_pools_[i].__allocate_in_new_chunk(__res_, block_size, chunk_size_in_bytes); 394 } 395 return result; 396 } 397 } 398 399 void unsynchronized_pool_resource::do_deallocate(void* p, size_t bytes, size_t align) { 400 // Returns the memory at p to the pool. It is unspecified if, 401 // or under what circumstances, this operation will result in 402 // a call to upstream_resource()->deallocate(). 403 404 int i = __pool_index(bytes, align); 405 if (i == __num_fixed_pools_) 406 return __adhoc_pool_.__do_deallocate(__res_, p, bytes, align); 407 else { 408 _LIBCPP_ASSERT_NON_NULL( 409 __fixed_pools_ != nullptr, "deallocating a block that was not allocated with this allocator"); 410 __fixed_pools_[i].__evacuate(p); 411 } 412 } 413 414 bool synchronized_pool_resource::do_is_equal(const memory_resource& other) const noexcept { return &other == this; } 415 416 // 23.12.6, mem.res.monotonic.buffer 417 418 constexpr size_t __default_growth_factor = 2; 419 420 static void* align_down(size_t align, size_t size, void*& ptr, size_t& space) { 421 if (size > space) 422 return nullptr; 423 424 char* p1 = static_cast<char*>(ptr); 425 char* new_ptr = reinterpret_cast<char*>(reinterpret_cast<uintptr_t>(p1 - size) & ~(align - 1)); 426 427 if (new_ptr < (p1 - space)) 428 return nullptr; 429 430 ptr = new_ptr; 431 space -= p1 - new_ptr; 432 433 return ptr; 434 } 435 436 template <bool is_initial, typename Chunk> 437 void* __try_allocate_from_chunk(Chunk& self, size_t bytes, size_t align) { 438 if constexpr (is_initial) { 439 // only for __initial_descriptor. 440 // if __initial_descriptor.__cur_ equals nullptr, means no available buffer given when ctor. 441 // here we just return nullptr, let the caller do the next handling. 442 if (!self.__cur_) 443 return nullptr; 444 } 445 void* new_ptr = static_cast<void*>(self.__cur_); 446 size_t new_capacity = (self.__cur_ - self.__start_); 447 void* aligned_ptr = align_down(align, bytes, new_ptr, new_capacity); 448 if (aligned_ptr != nullptr) 449 self.__cur_ = static_cast<char*>(new_ptr); 450 return aligned_ptr; 451 } 452 453 void* monotonic_buffer_resource::do_allocate(size_t bytes, size_t align) { 454 const size_t footer_size = sizeof(__chunk_footer); 455 const size_t footer_align = alignof(__chunk_footer); 456 457 auto previous_allocation_size = [&]() { 458 if (__chunks_ != nullptr) 459 return __chunks_->__allocation_size(); 460 461 size_t newsize = (__initial_.__start_ != nullptr) ? (__initial_.__end_ - __initial_.__start_) : __initial_.__size_; 462 463 return roundup(newsize, footer_align) + footer_size; 464 }; 465 466 if (void* result = __try_allocate_from_chunk<true, __initial_descriptor>(__initial_, bytes, align)) 467 return result; 468 if (__chunks_ != nullptr) { 469 if (void* result = __try_allocate_from_chunk<false, __chunk_footer>(*__chunks_, bytes, align)) 470 return result; 471 } 472 473 // Allocate a brand-new chunk. 474 475 if (align < footer_align) 476 align = footer_align; 477 478 size_t aligned_capacity = roundup(bytes, footer_align) + footer_size; 479 size_t previous_capacity = previous_allocation_size(); 480 481 if (aligned_capacity <= previous_capacity) { 482 size_t newsize = __default_growth_factor * (previous_capacity - footer_size); 483 aligned_capacity = roundup(newsize, footer_align) + footer_size; 484 } 485 486 char* start = (char*)__res_->allocate(aligned_capacity, align); 487 auto end = start + aligned_capacity - footer_size; 488 __chunk_footer* footer = (__chunk_footer*)(end); 489 footer->__next_ = __chunks_; 490 footer->__start_ = start; 491 footer->__cur_ = end; 492 footer->__align_ = align; 493 __chunks_ = footer; 494 495 return __try_allocate_from_chunk<false, __chunk_footer>(*__chunks_, bytes, align); 496 } 497 498 } // namespace pmr 499 500 _LIBCPP_END_NAMESPACE_STD 501