xref: /llvm-project/libclc/generic/lib/math/clc_remquo.cl (revision 7441e87fe05376782d0ddb90a13e1756eb1b1976)
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
21 */
22
23#include <clc/clc.h>
24#include <clc/clcmacro.h>
25#include <clc/integer/clc_clz.h>
26#include <clc/math/clc_floor.h>
27#include <clc/math/clc_subnormal_config.h>
28#include <clc/math/clc_trunc.h>
29#include <clc/math/math.h>
30#include <clc/shared/clc_max.h>
31#include <math/clc_remainder.h>
32
33_CLC_DEF _CLC_OVERLOAD float __clc_remquo(float x, float y,
34                                          __private int *quo) {
35  x = __clc_flush_denormal_if_not_supported(x);
36  y = __clc_flush_denormal_if_not_supported(y);
37  int ux = as_int(x);
38  int ax = ux & EXSIGNBIT_SP32;
39  float xa = as_float(ax);
40  int sx = ux ^ ax;
41  int ex = ax >> EXPSHIFTBITS_SP32;
42
43  int uy = as_int(y);
44  int ay = uy & EXSIGNBIT_SP32;
45  float ya = as_float(ay);
46  int sy = uy ^ ay;
47  int ey = ay >> EXPSHIFTBITS_SP32;
48
49  float xr = as_float(0x3f800000 | (ax & 0x007fffff));
50  float yr = as_float(0x3f800000 | (ay & 0x007fffff));
51  int c;
52  int k = ex - ey;
53
54  uint q = 0;
55
56  while (k > 0) {
57    c = xr >= yr;
58    q = (q << 1) | c;
59    xr -= c ? yr : 0.0f;
60    xr += xr;
61    --k;
62  }
63
64  c = xr > yr;
65  q = (q << 1) | c;
66  xr -= c ? yr : 0.0f;
67
68  int lt = ex < ey;
69
70  q = lt ? 0 : q;
71  xr = lt ? xa : xr;
72  yr = lt ? ya : yr;
73
74  c = (yr < 2.0f * xr) | ((yr == 2.0f * xr) & ((q & 0x1) == 0x1));
75  xr -= c ? yr : 0.0f;
76  q += c;
77
78  float s = as_float(ey << EXPSHIFTBITS_SP32);
79  xr *= lt ? 1.0f : s;
80
81  int qsgn = sx == sy ? 1 : -1;
82  int quot = (q & 0x7f) * qsgn;
83
84  c = ax == ay;
85  quot = c ? qsgn : quot;
86  xr = c ? 0.0f : xr;
87
88  xr = as_float(sx ^ as_int(xr));
89
90  c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 |
91      ay == 0;
92  quot = c ? 0 : quot;
93  xr = c ? as_float(QNANBITPATT_SP32) : xr;
94
95  *quo = quot;
96
97  return xr;
98}
99// remquo signature is special, we don't have macro for this
100#define __VEC_REMQUO(TYPE, VEC_SIZE, HALF_VEC_SIZE)                            \
101  _CLC_DEF _CLC_OVERLOAD TYPE##VEC_SIZE __clc_remquo(                          \
102      TYPE##VEC_SIZE x, TYPE##VEC_SIZE y, __private int##VEC_SIZE *quo) {      \
103    int##HALF_VEC_SIZE lo, hi;                                                 \
104    TYPE##VEC_SIZE ret;                                                        \
105    ret.lo = __clc_remquo(x.lo, y.lo, &lo);                                    \
106    ret.hi = __clc_remquo(x.hi, y.hi, &hi);                                    \
107    (*quo).lo = lo;                                                            \
108    (*quo).hi = hi;                                                            \
109    return ret;                                                                \
110  }
111
112#define __VEC3_REMQUO(TYPE)                                                    \
113  _CLC_DEF _CLC_OVERLOAD TYPE##3 __clc_remquo(TYPE##3 x, TYPE##3 y,            \
114                                              __private int##3 * quo) {        \
115    int2 lo;                                                                   \
116    int hi;                                                                    \
117    TYPE##3 ret;                                                               \
118    ret.s01 = __clc_remquo(x.s01, y.s01, &lo);                                 \
119    ret.s2 = __clc_remquo(x.s2, y.s2, &hi);                                    \
120    (*quo).s01 = lo;                                                           \
121    (*quo).s2 = hi;                                                            \
122    return ret;                                                                \
123  }
124__VEC_REMQUO(float, 2, )
125__VEC3_REMQUO(float)
126__VEC_REMQUO(float, 4, 2)
127__VEC_REMQUO(float, 8, 4)
128__VEC_REMQUO(float, 16, 8)
129
130#ifdef cl_khr_fp64
131_CLC_DEF _CLC_OVERLOAD double __clc_remquo(double x, double y,
132                                           __private int *pquo) {
133  ulong ux = as_ulong(x);
134  ulong ax = ux & ~SIGNBIT_DP64;
135  ulong xsgn = ux ^ ax;
136  double dx = as_double(ax);
137  int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
138  int xexp1 = 11 - (int)__clc_clz(ax & MANTBITS_DP64);
139  xexp1 = xexp < 1 ? xexp1 : xexp;
140
141  ulong uy = as_ulong(y);
142  ulong ay = uy & ~SIGNBIT_DP64;
143  double dy = as_double(ay);
144  int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
145  int yexp1 = 11 - (int)__clc_clz(ay & MANTBITS_DP64);
146  yexp1 = yexp < 1 ? yexp1 : yexp;
147
148  int qsgn = ((ux ^ uy) & SIGNBIT_DP64) == 0UL ? 1 : -1;
149
150  // First assume |x| > |y|
151
152  // Set ntimes to the number of times we need to do a
153  // partial remainder. If the exponent of x is an exact multiple
154  // of 53 larger than the exponent of y, and the mantissa of x is
155  // less than the mantissa of y, ntimes will be one too large
156  // but it doesn't matter - it just means that we'll go round
157  // the loop below one extra time.
158  int ntimes = __clc_max(0, (xexp1 - yexp1) / 53);
159  double w = ldexp(dy, ntimes * 53);
160  w = ntimes == 0 ? dy : w;
161  double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
162
163  // Each time round the loop we compute a partial remainder.
164  // This is done by subtracting a large multiple of w
165  // from x each time, where w is a scaled up version of y.
166  // The subtraction must be performed exactly in quad
167  // precision, though the result at each stage can
168  // fit exactly in a double precision number.
169  int i;
170  double t, v, p, pp;
171
172  for (i = 0; i < ntimes; i++) {
173    // Compute integral multiplier
174    t = __clc_trunc(dx / w);
175
176    // Compute w * t in quad precision
177    p = w * t;
178    pp = fma(w, t, -p);
179
180    // Subtract w * t from dx
181    v = dx - p;
182    dx = v + (((dx - v) - p) - pp);
183
184    // If t was one too large, dx will be negative. Add back one w.
185    dx += dx < 0.0 ? w : 0.0;
186
187    // Scale w down by 2^(-53) for the next iteration
188    w *= scale;
189  }
190
191  // One more time
192  // Variable todd says whether the integer t is odd or not
193  t = __clc_floor(dx / w);
194  long lt = (long)t;
195  int todd = lt & 1;
196
197  p = w * t;
198  pp = fma(w, t, -p);
199  v = dx - p;
200  dx = v + (((dx - v) - p) - pp);
201  i = dx < 0.0;
202  todd ^= i;
203  dx += i ? w : 0.0;
204
205  lt -= i;
206
207  // At this point, dx lies in the range [0,dy)
208
209  // For the remainder function, we need to adjust dx
210  // so that it lies in the range (-y/2, y/2] by carefully
211  // subtracting w (== dy == y) if necessary. The rigmarole
212  // with todd is to get the correct sign of the result
213  // when x/y lies exactly half way between two integers,
214  // when we need to choose the even integer.
215
216  int al = (2.0 * dx > w) | (todd & (2.0 * dx == w));
217  double dxl = dx - (al ? w : 0.0);
218
219  int ag = (dx > 0.5 * w) | (todd & (dx == 0.5 * w));
220  double dxg = dx - (ag ? w : 0.0);
221
222  dx = dy < 0x1.0p+1022 ? dxl : dxg;
223  lt += dy < 0x1.0p+1022 ? al : ag;
224  int quo = ((int)lt & 0x7f) * qsgn;
225
226  double ret = as_double(xsgn ^ as_ulong(dx));
227  dx = as_double(ax);
228
229  // Now handle |x| == |y|
230  int c = dx == dy;
231  t = as_double(xsgn);
232  quo = c ? qsgn : quo;
233  ret = c ? t : ret;
234
235  // Next, handle |x| < |y|
236  c = dx < dy;
237  quo = c ? 0 : quo;
238  ret = c ? x : ret;
239
240  c &= (yexp<1023 & 2.0 * dx> dy) | (dx > 0.5 * dy);
241  quo = c ? qsgn : quo;
242  // we could use a conversion here instead since qsgn = +-1
243  p = qsgn == 1 ? -1.0 : 1.0;
244  t = fma(y, p, x);
245  ret = c ? t : ret;
246
247  // We don't need anything special for |x| == 0
248
249  // |y| is 0
250  c = dy == 0.0;
251  quo = c ? 0 : quo;
252  ret = c ? as_double(QNANBITPATT_DP64) : ret;
253
254  // y is +-Inf, NaN
255  c = yexp > BIASEDEMAX_DP64;
256  quo = c ? 0 : quo;
257  t = y == y ? x : y;
258  ret = c ? t : ret;
259
260  // x is +=Inf, NaN
261  c = xexp > BIASEDEMAX_DP64;
262  quo = c ? 0 : quo;
263  ret = c ? as_double(QNANBITPATT_DP64) : ret;
264
265  *pquo = quo;
266  return ret;
267}
268__VEC_REMQUO(double, 2, )
269__VEC3_REMQUO(double)
270__VEC_REMQUO(double, 4, 2)
271__VEC_REMQUO(double, 8, 4)
272__VEC_REMQUO(double, 16, 8)
273#endif
274
275#ifdef cl_khr_fp16
276
277#pragma OPENCL EXTENSION cl_khr_fp16 : enable
278
279_CLC_OVERLOAD _CLC_DEF half __clc_remquo(half x, half y, __private int *pquo) {
280  return (half)__clc_remquo((float)x, (float)y, pquo);
281}
282__VEC_REMQUO(half, 2, )
283__VEC3_REMQUO(half)
284__VEC_REMQUO(half, 4, 2)
285__VEC_REMQUO(half, 8, 4)
286__VEC_REMQUO(half, 16, 8)
287
288#endif
289