xref: /llvm-project/libclc/generic/lib/math/clc_remainder.cl (revision 7441e87fe05376782d0ddb90a13e1756eb1b1976)
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
21 */
22
23#include <clc/clc.h>
24#include <clc/clcmacro.h>
25#include <clc/integer/clc_clz.h>
26#include <clc/math/clc_floor.h>
27#include <clc/math/clc_subnormal_config.h>
28#include <clc/math/clc_trunc.h>
29#include <clc/math/math.h>
30#include <clc/shared/clc_max.h>
31#include <math/clc_remainder.h>
32
33_CLC_DEF _CLC_OVERLOAD float __clc_remainder(float x, float y)
34{
35    int ux = as_int(x);
36    int ax = ux & EXSIGNBIT_SP32;
37    float xa = as_float(ax);
38    int sx = ux ^ ax;
39    int ex = ax >> EXPSHIFTBITS_SP32;
40
41    int uy = as_int(y);
42    int ay = uy & EXSIGNBIT_SP32;
43    float ya = as_float(ay);
44    int ey = ay >> EXPSHIFTBITS_SP32;
45
46    float xr = as_float(0x3f800000 | (ax & 0x007fffff));
47    float yr = as_float(0x3f800000 | (ay & 0x007fffff));
48    int c;
49    int k = ex - ey;
50
51    uint q = 0;
52
53    while (k > 0) {
54        c = xr >= yr;
55        q = (q << 1) | c;
56        xr -= c ? yr : 0.0f;
57        xr += xr;
58	--k;
59    }
60
61    c = xr > yr;
62    q = (q << 1) | c;
63    xr -= c ? yr : 0.0f;
64
65    int lt = ex < ey;
66
67    q = lt ? 0 : q;
68    xr = lt ? xa : xr;
69    yr = lt ? ya : yr;
70
71    c = (yr < 2.0f * xr) | ((yr == 2.0f * xr) & ((q & 0x1) == 0x1));
72    xr -= c ? yr : 0.0f;
73    q += c;
74
75    float s = as_float(ey << EXPSHIFTBITS_SP32);
76    xr *= lt ? 1.0f : s;
77
78    c = ax == ay;
79    xr = c ? 0.0f : xr;
80
81    xr = as_float(sx ^ as_int(xr));
82
83    c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0;
84    xr = c ? as_float(QNANBITPATT_SP32) : xr;
85
86    return xr;
87
88}
89_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_remainder, float, float);
90
91#ifdef cl_khr_fp64
92_CLC_DEF _CLC_OVERLOAD double __clc_remainder(double x, double y)
93{
94    ulong ux = as_ulong(x);
95    ulong ax = ux & ~SIGNBIT_DP64;
96    ulong xsgn = ux ^ ax;
97    double dx = as_double(ax);
98    int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
99    int xexp1 = 11 - (int) __clc_clz(ax & MANTBITS_DP64);
100    xexp1 = xexp < 1 ? xexp1 : xexp;
101
102    ulong uy = as_ulong(y);
103    ulong ay = uy & ~SIGNBIT_DP64;
104    double dy = as_double(ay);
105    int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
106    int yexp1 = 11 - (int) __clc_clz(ay & MANTBITS_DP64);
107    yexp1 = yexp < 1 ? yexp1 : yexp;
108
109    int qsgn = ((ux ^ uy) & SIGNBIT_DP64) == 0UL ? 1 : -1;
110
111    // First assume |x| > |y|
112
113    // Set ntimes to the number of times we need to do a
114    // partial remainder. If the exponent of x is an exact multiple
115    // of 53 larger than the exponent of y, and the mantissa of x is
116    // less than the mantissa of y, ntimes will be one too large
117    // but it doesn't matter - it just means that we'll go round
118    // the loop below one extra time.
119    int ntimes = __clc_max(0, (xexp1 - yexp1) / 53);
120    double w =  ldexp(dy, ntimes * 53);
121    w = ntimes == 0 ? dy : w;
122    double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
123
124    // Each time round the loop we compute a partial remainder.
125    // This is done by subtracting a large multiple of w
126    // from x each time, where w is a scaled up version of y.
127    // The subtraction must be performed exactly in quad
128    // precision, though the result at each stage can
129    // fit exactly in a double precision number.
130    int i;
131    double t, v, p, pp;
132
133    for (i = 0; i < ntimes; i++) {
134        // Compute integral multiplier
135        t = __clc_trunc(dx / w);
136
137        // Compute w * t in quad precision
138        p = w * t;
139        pp = fma(w, t, -p);
140
141        // Subtract w * t from dx
142        v = dx - p;
143        dx = v + (((dx - v) - p) - pp);
144
145        // If t was one too large, dx will be negative. Add back one w.
146        dx += dx < 0.0 ? w : 0.0;
147
148        // Scale w down by 2^(-53) for the next iteration
149        w *= scale;
150    }
151
152    // One more time
153    // Variable todd says whether the integer t is odd or not
154    t = __clc_floor(dx / w);
155    long lt = (long)t;
156    int todd = lt & 1;
157
158    p = w * t;
159    pp = fma(w, t, -p);
160    v = dx - p;
161    dx = v + (((dx - v) - p) - pp);
162    i = dx < 0.0;
163    todd ^= i;
164    dx += i ? w : 0.0;
165
166    // At this point, dx lies in the range [0,dy)
167
168    // For the fmod function, we're done apart from setting the correct sign.
169    //
170    // For the remainder function, we need to adjust dx
171    // so that it lies in the range (-y/2, y/2] by carefully
172    // subtracting w (== dy == y) if necessary. The rigmarole
173    // with todd is to get the correct sign of the result
174    // when x/y lies exactly half way between two integers,
175    // when we need to choose the even integer.
176
177    int al = (2.0*dx > w) | (todd & (2.0*dx == w));
178    double dxl = dx - (al ? w : 0.0);
179
180    int ag = (dx > 0.5*w) | (todd & (dx == 0.5*w));
181    double dxg = dx - (ag ? w : 0.0);
182
183    dx = dy < 0x1.0p+1022 ? dxl : dxg;
184
185    double ret = as_double(xsgn ^ as_ulong(dx));
186    dx = as_double(ax);
187
188    // Now handle |x| == |y|
189    int c = dx == dy;
190    t = as_double(xsgn);
191    ret = c ? t : ret;
192
193    // Next, handle |x| < |y|
194    c = dx < dy;
195    ret = c ? x : ret;
196
197    c &= (yexp < 1023 & 2.0*dx > dy) | (dx > 0.5*dy);
198    // we could use a conversion here instead since qsgn = +-1
199    p = qsgn == 1 ? -1.0 : 1.0;
200    t = fma(y, p, x);
201    ret = c ? t : ret;
202
203    // We don't need anything special for |x| == 0
204
205    // |y| is 0
206    c = dy == 0.0;
207    ret = c ? as_double(QNANBITPATT_DP64) : ret;
208
209    // y is +-Inf, NaN
210    c = yexp > BIASEDEMAX_DP64;
211    t = y == y ? x : y;
212    ret = c ? t : ret;
213
214    // x is +=Inf, NaN
215    c = xexp > BIASEDEMAX_DP64;
216    ret = c ? as_double(QNANBITPATT_DP64) : ret;
217
218    return ret;
219}
220_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_remainder, double, double);
221#endif
222