xref: /llvm-project/libclc/generic/lib/math/acospi.cl (revision 78b5bb702fe97fe85f66d72598d0dfa7c49fe001)
1/*
2 * Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
21 */
22
23#include <clc/clc.h>
24#include <clc/clcmacro.h>
25#include <clc/math/math.h>
26
27_CLC_OVERLOAD _CLC_DEF float acospi(float x) {
28    // Computes arccos(x).
29    // The argument is first reduced by noting that arccos(x)
30    // is invalid for abs(x) > 1. For denormal and small
31    // arguments arccos(x) = pi/2 to machine accuracy.
32    // Remaining argument ranges are handled as follows.
33    // For abs(x) <= 0.5 use
34    // arccos(x) = pi/2 - arcsin(x)
35    // = pi/2 - (x + x^3*R(x^2))
36    // where R(x^2) is a rational minimax approximation to
37    // (arcsin(x) - x)/x^3.
38    // For abs(x) > 0.5 exploit the identity:
39    // arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
40    // together with the above rational approximation, and
41    // reconstruct the terms carefully.
42
43
44    // Some constants and split constants.
45    const float pi = 3.1415926535897933e+00f;
46    const float piby2_head = 1.5707963267948965580e+00f;  /* 0x3ff921fb54442d18 */
47    const float piby2_tail = 6.12323399573676603587e-17f; /* 0x3c91a62633145c07 */
48
49    uint ux = as_uint(x);
50    uint aux = ux & ~SIGNBIT_SP32;
51    int xneg = ux != aux;
52    int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
53
54    float y = as_float(aux);
55
56    // transform if |x| >= 0.5
57    int transform = xexp >= -1;
58
59    float y2 = y * y;
60    float yt = 0.5f * (1.0f - y);
61    float r = transform ? yt : y2;
62
63    // Use a rational approximation for [0.0, 0.5]
64    float a = mad(r, mad(r, mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F),
65			    		                                                         -0.0565298683201845211985026327361F),
66		     	                                                                  0.184161606965100694821398249421F);
67    float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F);
68    float u = r * MATH_DIVIDE(a, b);
69
70    float s = MATH_SQRT(r);
71    y = s;
72    float s1 = as_float(as_uint(s) & 0xffff0000);
73    float c = MATH_DIVIDE(r - s1 * s1, s + s1);
74    // float rettn = 1.0f - MATH_DIVIDE(2.0f * (s + (y * u - piby2_tail)), pi);
75    float rettn = 1.0f - MATH_DIVIDE(2.0f * (s + mad(y, u, -piby2_tail)), pi);
76    // float rettp = MATH_DIVIDE(2.0F * s1 + (2.0F * c + 2.0F * y * u), pi);
77    float rettp = MATH_DIVIDE(2.0f*(s1 + mad(y, u, c)), pi);
78    float rett = xneg ? rettn : rettp;
79    // float ret = MATH_DIVIDE(piby2_head - (x - (piby2_tail - x * u)), pi);
80    float ret = MATH_DIVIDE(piby2_head - (x - mad(x, -u, piby2_tail)), pi);
81
82    ret = transform ? rett : ret;
83    ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret;
84    ret = ux == 0x3f800000U ? 0.0f : ret;
85    ret = ux == 0xbf800000U ? 1.0f : ret;
86    ret = xexp < -26 ? 0.5f : ret;
87    return ret;
88}
89
90_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, acospi, float)
91
92#ifdef cl_khr_fp64
93#pragma OPENCL EXTENSION cl_khr_fp64 : enable
94
95_CLC_OVERLOAD _CLC_DEF double acospi(double x) {
96    // Computes arccos(x).
97    // The argument is first reduced by noting that arccos(x)
98    // is invalid for abs(x) > 1. For denormal and small
99    // arguments arccos(x) = pi/2 to machine accuracy.
100    // Remaining argument ranges are handled as follows.
101    // For abs(x) <= 0.5 use
102    // arccos(x) = pi/2 - arcsin(x)
103    // = pi/2 - (x + x^3*R(x^2))
104    // where R(x^2) is a rational minimax approximation to
105    // (arcsin(x) - x)/x^3.
106    // For abs(x) > 0.5 exploit the identity:
107    // arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
108    // together with the above rational approximation, and
109    // reconstruct the terms carefully.
110
111    const double pi = 0x1.921fb54442d18p+1;
112    const double piby2_tail = 6.12323399573676603587e-17;        /* 0x3c91a62633145c07 */
113
114    double y = fabs(x);
115    int xneg = as_int2(x).hi < 0;
116    int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64;
117
118    // abs(x) >= 0.5
119    int transform = xexp >= -1;
120
121    // Transform y into the range [0,0.5)
122    double r1 = 0.5 * (1.0 - y);
123    double s = sqrt(r1);
124    double r = y * y;
125    r = transform ? r1 : r;
126    y = transform ? s : y;
127
128    // Use a rational approximation for [0.0, 0.5]
129    double un = fma(r,
130                    fma(r,
131                        fma(r,
132                            fma(r,
133                                fma(r, 0.0000482901920344786991880522822991,
134                                       0.00109242697235074662306043804220),
135                                -0.0549989809235685841612020091328),
136                            0.275558175256937652532686256258),
137                        -0.445017216867635649900123110649),
138                    0.227485835556935010735943483075);
139
140    double ud = fma(r,
141                    fma(r,
142                        fma(r,
143                            fma(r, 0.105869422087204370341222318533,
144                                   -0.943639137032492685763471240072),
145                            2.76568859157270989520376345954),
146                        -3.28431505720958658909889444194),
147                    1.36491501334161032038194214209);
148
149    double u = r * MATH_DIVIDE(un, ud);
150
151    // Reconstruct acos carefully in transformed region
152    double res1 = fma(-2.0, MATH_DIVIDE(s + fma(y, u, -piby2_tail), pi), 1.0);
153    double s1 = as_double(as_ulong(s) & 0xffffffff00000000UL);
154    double c = MATH_DIVIDE(fma(-s1, s1, r), s + s1);
155    double res2 = MATH_DIVIDE(fma(2.0, s1, fma(2.0, c, 2.0 * y * u)), pi);
156    res1 = xneg ? res1 : res2;
157    res2 = 0.5 - fma(x, u, x) / pi;
158    res1 = transform ? res1 : res2;
159
160    const double qnan = as_double(QNANBITPATT_DP64);
161    res2 = x == 1.0 ? 0.0 : qnan;
162    res2 = x == -1.0 ? 1.0 : res2;
163    res1 = xexp >= 0 ? res2 : res1;
164    res1 = xexp < -56 ? 0.5 : res1;
165
166    return res1;
167}
168
169_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, acospi, double)
170
171#endif
172
173#ifdef cl_khr_fp16
174
175#pragma OPENCL EXTENSION cl_khr_fp16 : enable
176
177_CLC_DEFINE_UNARY_BUILTIN_FP16(acospi)
178
179#endif
180