xref: /llvm-project/libc/AOR_v20.02/string/aarch64/strncmp.S (revision 0928368f623a0f885894f9c3ef1b740b060c0d9c)
1/*
2 * strncmp - compare two strings
3 *
4 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 * See https://llvm.org/LICENSE.txt for license information.
6 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 */
8
9/* Assumptions:
10 *
11 * ARMv8-a, AArch64
12 */
13
14#include "../asmdefs.h"
15
16#define REP8_01 0x0101010101010101
17#define REP8_7f 0x7f7f7f7f7f7f7f7f
18#define REP8_80 0x8080808080808080
19
20/* Parameters and result.  */
21#define src1		x0
22#define src2		x1
23#define limit		x2
24#define result		x0
25
26/* Internal variables.  */
27#define data1		x3
28#define data1w		w3
29#define data2		x4
30#define data2w		w4
31#define has_nul		x5
32#define diff		x6
33#define syndrome	x7
34#define tmp1		x8
35#define tmp2		x9
36#define tmp3		x10
37#define zeroones	x11
38#define pos		x12
39#define limit_wd	x13
40#define mask		x14
41#define endloop		x15
42#define count		mask
43
44	.text
45	.p2align 6
46	.rep 7
47	nop	/* Pad so that the loop below fits a cache line.  */
48	.endr
49ENTRY_ALIGN (__strncmp_aarch64, 0)
50	cbz	limit, L(ret0)
51	eor	tmp1, src1, src2
52	mov	zeroones, #REP8_01
53	tst	tmp1, #7
54	and	count, src1, #7
55	b.ne	L(misaligned8)
56	cbnz	count, L(mutual_align)
57	/* Calculate the number of full and partial words -1.  */
58	sub	limit_wd, limit, #1	/* limit != 0, so no underflow.  */
59	lsr	limit_wd, limit_wd, #3	/* Convert to Dwords.  */
60
61	/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
62	   (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
63	   can be done in parallel across the entire word.  */
64	/* Start of performance-critical section  -- one 64B cache line.  */
65L(loop_aligned):
66	ldr	data1, [src1], #8
67	ldr	data2, [src2], #8
68L(start_realigned):
69	subs	limit_wd, limit_wd, #1
70	sub	tmp1, data1, zeroones
71	orr	tmp2, data1, #REP8_7f
72	eor	diff, data1, data2	/* Non-zero if differences found.  */
73	csinv	endloop, diff, xzr, pl	/* Last Dword or differences.  */
74	bics	has_nul, tmp1, tmp2	/* Non-zero if NUL terminator.  */
75	ccmp	endloop, #0, #0, eq
76	b.eq	L(loop_aligned)
77	/* End of performance-critical section  -- one 64B cache line.  */
78
79	/* Not reached the limit, must have found the end or a diff.  */
80	tbz	limit_wd, #63, L(not_limit)
81
82	/* Limit % 8 == 0 => all bytes significant.  */
83	ands	limit, limit, #7
84	b.eq	L(not_limit)
85
86	lsl	limit, limit, #3	/* Bits -> bytes.  */
87	mov	mask, #~0
88#ifdef __AARCH64EB__
89	lsr	mask, mask, limit
90#else
91	lsl	mask, mask, limit
92#endif
93	bic	data1, data1, mask
94	bic	data2, data2, mask
95
96	/* Make sure that the NUL byte is marked in the syndrome.  */
97	orr	has_nul, has_nul, mask
98
99L(not_limit):
100	orr	syndrome, diff, has_nul
101
102#ifndef	__AARCH64EB__
103	rev	syndrome, syndrome
104	rev	data1, data1
105	/* The MS-non-zero bit of the syndrome marks either the first bit
106	   that is different, or the top bit of the first zero byte.
107	   Shifting left now will bring the critical information into the
108	   top bits.  */
109	clz	pos, syndrome
110	rev	data2, data2
111	lsl	data1, data1, pos
112	lsl	data2, data2, pos
113	/* But we need to zero-extend (char is unsigned) the value and then
114	   perform a signed 32-bit subtraction.  */
115	lsr	data1, data1, #56
116	sub	result, data1, data2, lsr #56
117	ret
118#else
119	/* For big-endian we cannot use the trick with the syndrome value
120	   as carry-propagation can corrupt the upper bits if the trailing
121	   bytes in the string contain 0x01.  */
122	/* However, if there is no NUL byte in the dword, we can generate
123	   the result directly.  We can't just subtract the bytes as the
124	   MSB might be significant.  */
125	cbnz	has_nul, 1f
126	cmp	data1, data2
127	cset	result, ne
128	cneg	result, result, lo
129	ret
1301:
131	/* Re-compute the NUL-byte detection, using a byte-reversed value.  */
132	rev	tmp3, data1
133	sub	tmp1, tmp3, zeroones
134	orr	tmp2, tmp3, #REP8_7f
135	bic	has_nul, tmp1, tmp2
136	rev	has_nul, has_nul
137	orr	syndrome, diff, has_nul
138	clz	pos, syndrome
139	/* The MS-non-zero bit of the syndrome marks either the first bit
140	   that is different, or the top bit of the first zero byte.
141	   Shifting left now will bring the critical information into the
142	   top bits.  */
143	lsl	data1, data1, pos
144	lsl	data2, data2, pos
145	/* But we need to zero-extend (char is unsigned) the value and then
146	   perform a signed 32-bit subtraction.  */
147	lsr	data1, data1, #56
148	sub	result, data1, data2, lsr #56
149	ret
150#endif
151
152L(mutual_align):
153	/* Sources are mutually aligned, but are not currently at an
154	   alignment boundary.  Round down the addresses and then mask off
155	   the bytes that precede the start point.
156	   We also need to adjust the limit calculations, but without
157	   overflowing if the limit is near ULONG_MAX.  */
158	bic	src1, src1, #7
159	bic	src2, src2, #7
160	ldr	data1, [src1], #8
161	neg	tmp3, count, lsl #3	/* 64 - bits(bytes beyond align). */
162	ldr	data2, [src2], #8
163	mov	tmp2, #~0
164	sub	limit_wd, limit, #1	/* limit != 0, so no underflow.  */
165#ifdef __AARCH64EB__
166	/* Big-endian.  Early bytes are at MSB.  */
167	lsl	tmp2, tmp2, tmp3	/* Shift (count & 63).  */
168#else
169	/* Little-endian.  Early bytes are at LSB.  */
170	lsr	tmp2, tmp2, tmp3	/* Shift (count & 63).  */
171#endif
172	and	tmp3, limit_wd, #7
173	lsr	limit_wd, limit_wd, #3
174	/* Adjust the limit. Only low 3 bits used, so overflow irrelevant.  */
175	add	limit, limit, count
176	add	tmp3, tmp3, count
177	orr	data1, data1, tmp2
178	orr	data2, data2, tmp2
179	add	limit_wd, limit_wd, tmp3, lsr #3
180	b	L(start_realigned)
181
182	.p2align 6
183	/* Don't bother with dwords for up to 16 bytes.  */
184L(misaligned8):
185	cmp	limit, #16
186	b.hs	L(try_misaligned_words)
187
188L(byte_loop):
189	/* Perhaps we can do better than this.  */
190	ldrb	data1w, [src1], #1
191	ldrb	data2w, [src2], #1
192	subs	limit, limit, #1
193	ccmp	data1w, #1, #0, hi	/* NZCV = 0b0000.  */
194	ccmp	data1w, data2w, #0, cs	/* NZCV = 0b0000.  */
195	b.eq	L(byte_loop)
196L(done):
197	sub	result, data1, data2
198	ret
199	/* Align the SRC1 to a dword by doing a bytewise compare and then do
200	   the dword loop.  */
201L(try_misaligned_words):
202	lsr	limit_wd, limit, #3
203	cbz	count, L(do_misaligned)
204
205	neg	count, count
206	and	count, count, #7
207	sub	limit, limit, count
208	lsr	limit_wd, limit, #3
209
210L(page_end_loop):
211	ldrb	data1w, [src1], #1
212	ldrb	data2w, [src2], #1
213	cmp	data1w, #1
214	ccmp	data1w, data2w, #0, cs	/* NZCV = 0b0000.  */
215	b.ne	L(done)
216	subs	count, count, #1
217	b.hi	L(page_end_loop)
218
219L(do_misaligned):
220	/* Prepare ourselves for the next page crossing.  Unlike the aligned
221	   loop, we fetch 1 less dword because we risk crossing bounds on
222	   SRC2.  */
223	mov	count, #8
224	subs	limit_wd, limit_wd, #1
225	b.lo	L(done_loop)
226L(loop_misaligned):
227	and	tmp2, src2, #0xff8
228	eor	tmp2, tmp2, #0xff8
229	cbz	tmp2, L(page_end_loop)
230
231	ldr	data1, [src1], #8
232	ldr	data2, [src2], #8
233	sub	tmp1, data1, zeroones
234	orr	tmp2, data1, #REP8_7f
235	eor	diff, data1, data2	/* Non-zero if differences found.  */
236	bics	has_nul, tmp1, tmp2	/* Non-zero if NUL terminator.  */
237	ccmp	diff, #0, #0, eq
238	b.ne	L(not_limit)
239	subs	limit_wd, limit_wd, #1
240	b.pl	L(loop_misaligned)
241
242L(done_loop):
243	/* We found a difference or a NULL before the limit was reached.  */
244	and	limit, limit, #7
245	cbz	limit, L(not_limit)
246	/* Read the last word.  */
247	sub	src1, src1, 8
248	sub	src2, src2, 8
249	ldr	data1, [src1, limit]
250	ldr	data2, [src2, limit]
251	sub	tmp1, data1, zeroones
252	orr	tmp2, data1, #REP8_7f
253	eor	diff, data1, data2	/* Non-zero if differences found.  */
254	bics	has_nul, tmp1, tmp2	/* Non-zero if NUL terminator.  */
255	ccmp	diff, #0, #0, eq
256	b.ne	L(not_limit)
257
258L(ret0):
259	mov	result, #0
260	ret
261
262END ( __strncmp_aarch64)
263