xref: /llvm-project/libc/AOR_v20.02/math/logf.c (revision 0928368f623a0f885894f9c3ef1b740b060c0d9c)
1 /*
2  * Single-precision log function.
3  *
4  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5  * See https://llvm.org/LICENSE.txt for license information.
6  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7  */
8 
9 #include <math.h>
10 #include <stdint.h>
11 #include "math_config.h"
12 
13 /*
14 LOGF_TABLE_BITS = 4
15 LOGF_POLY_ORDER = 4
16 
17 ULP error: 0.818 (nearest rounding.)
18 Relative error: 1.957 * 2^-26 (before rounding.)
19 */
20 
21 #define T __logf_data.tab
22 #define A __logf_data.poly
23 #define Ln2 __logf_data.ln2
24 #define N (1 << LOGF_TABLE_BITS)
25 #define OFF 0x3f330000
26 
27 float
logf(float x)28 logf (float x)
29 {
30   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
31   double_t z, r, r2, y, y0, invc, logc;
32   uint32_t ix, iz, tmp;
33   int k, i;
34 
35   ix = asuint (x);
36 #if WANT_ROUNDING
37   /* Fix sign of zero with downward rounding when x==1.  */
38   if (unlikely (ix == 0x3f800000))
39     return 0;
40 #endif
41   if (unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000))
42     {
43       /* x < 0x1p-126 or inf or nan.  */
44       if (ix * 2 == 0)
45 	return __math_divzerof (1);
46       if (ix == 0x7f800000) /* log(inf) == inf.  */
47 	return x;
48       if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
49 	return __math_invalidf (x);
50       /* x is subnormal, normalize it.  */
51       ix = asuint (x * 0x1p23f);
52       ix -= 23 << 23;
53     }
54 
55   /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
56      The range is split into N subintervals.
57      The ith subinterval contains z and c is near its center.  */
58   tmp = ix - OFF;
59   i = (tmp >> (23 - LOGF_TABLE_BITS)) % N;
60   k = (int32_t) tmp >> 23; /* arithmetic shift */
61   iz = ix - (tmp & 0x1ff << 23);
62   invc = T[i].invc;
63   logc = T[i].logc;
64   z = (double_t) asfloat (iz);
65 
66   /* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */
67   r = z * invc - 1;
68   y0 = logc + (double_t) k * Ln2;
69 
70   /* Pipelined polynomial evaluation to approximate log1p(r).  */
71   r2 = r * r;
72   y = A[1] * r + A[2];
73   y = A[0] * r2 + y;
74   y = y * r2 + (y0 + r);
75   return eval_as_float (y);
76 }
77 #if USE_GLIBC_ABI
78 strong_alias (logf, __logf_finite)
79 hidden_alias (logf, __ieee754_logf)
80 #endif
81