xref: /llvm-project/compiler-rt/lib/sanitizer_common/tests/sanitizer_common_test.cpp (revision 4e659c6ca3cb6fb24e84b8744516478096f23c73)
1 //===-- sanitizer_common_test.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer/AddressSanitizer runtime.
10 //
11 //===----------------------------------------------------------------------===//
12 #include <algorithm>
13 
14 // This ensures that including both internal sanitizer_common headers
15 // and the interface headers does not lead to compilation failures.
16 // Both may be included in unit tests, where googletest transitively
17 // pulls in sanitizer interface headers.
18 // The headers are specifically included using relative paths,
19 // because a compiler may use a different mismatching version
20 // of sanitizer headers.
21 #include "../../../include/sanitizer/asan_interface.h"
22 #include "../../../include/sanitizer/msan_interface.h"
23 #include "../../../include/sanitizer/tsan_interface.h"
24 #include "gtest/gtest.h"
25 #include "sanitizer_common/sanitizer_allocator_internal.h"
26 #include "sanitizer_common/sanitizer_common.h"
27 #include "sanitizer_common/sanitizer_file.h"
28 #include "sanitizer_common/sanitizer_flags.h"
29 #include "sanitizer_common/sanitizer_libc.h"
30 #include "sanitizer_common/sanitizer_platform.h"
31 #include "sanitizer_pthread_wrappers.h"
32 
33 namespace __sanitizer {
34 
35 static bool IsSorted(const uptr *array, uptr n) {
36   for (uptr i = 1; i < n; i++) {
37     if (array[i] < array[i - 1]) return false;
38   }
39   return true;
40 }
41 
42 TEST(SanitizerCommon, SortTest) {
43   uptr array[100];
44   uptr n = 100;
45   // Already sorted.
46   for (uptr i = 0; i < n; i++) {
47     array[i] = i;
48   }
49   Sort(array, n);
50   EXPECT_TRUE(IsSorted(array, n));
51   // Reverse order.
52   for (uptr i = 0; i < n; i++) {
53     array[i] = n - 1 - i;
54   }
55   Sort(array, n);
56   EXPECT_TRUE(IsSorted(array, n));
57   // Mixed order.
58   for (uptr i = 0; i < n; i++) {
59     array[i] = (i % 2 == 0) ? i : n - 1 - i;
60   }
61   Sort(array, n);
62   EXPECT_TRUE(IsSorted(array, n));
63   // All equal.
64   for (uptr i = 0; i < n; i++) {
65     array[i] = 42;
66   }
67   Sort(array, n);
68   EXPECT_TRUE(IsSorted(array, n));
69   // All but one sorted.
70   for (uptr i = 0; i < n - 1; i++) {
71     array[i] = i;
72   }
73   array[n - 1] = 42;
74   Sort(array, n);
75   EXPECT_TRUE(IsSorted(array, n));
76   // Minimal case - sort three elements.
77   array[0] = 1;
78   array[1] = 0;
79   Sort(array, 2);
80   EXPECT_TRUE(IsSorted(array, 2));
81 }
82 
83 TEST(SanitizerCommon, MmapAlignedOrDieOnFatalError) {
84   uptr PageSize = GetPageSizeCached();
85   for (uptr size = 1; size <= 32; size *= 2) {
86     for (uptr alignment = 1; alignment <= 32; alignment *= 2) {
87       for (int iter = 0; iter < 100; iter++) {
88         uptr res = (uptr)MmapAlignedOrDieOnFatalError(
89             size * PageSize, alignment * PageSize, "MmapAlignedOrDieTest");
90         EXPECT_EQ(0U, res % (alignment * PageSize));
91         internal_memset((void*)res, 1, size * PageSize);
92         UnmapOrDie((void*)res, size * PageSize);
93       }
94     }
95   }
96 }
97 
98 TEST(SanitizerCommon, Mprotect) {
99   uptr PageSize = GetPageSizeCached();
100   u8 *mem = reinterpret_cast<u8 *>(MmapOrDie(PageSize, "MprotectTest"));
101   for (u8 *p = mem; p < mem + PageSize; ++p) ++(*p);
102 
103   MprotectReadOnly(reinterpret_cast<uptr>(mem), PageSize);
104   for (u8 *p = mem; p < mem + PageSize; ++p) EXPECT_EQ(1u, *p);
105   EXPECT_DEATH(++mem[0], "");
106   EXPECT_DEATH(++mem[PageSize / 2], "");
107   EXPECT_DEATH(++mem[PageSize - 1], "");
108 
109   MprotectNoAccess(reinterpret_cast<uptr>(mem), PageSize);
110   volatile u8 t;
111   (void)t;
112   EXPECT_DEATH(t = mem[0], "");
113   EXPECT_DEATH(t = mem[PageSize / 2], "");
114   EXPECT_DEATH(t = mem[PageSize - 1], "");
115 }
116 
117 TEST(SanitizerCommon, InternalMmapVectorRoundUpCapacity) {
118   InternalMmapVector<uptr> v;
119   v.reserve(1);
120   CHECK_EQ(v.capacity(), GetPageSizeCached() / sizeof(uptr));
121 }
122 
123 TEST(SanitizerCommon, InternalMmapVectorReize) {
124   InternalMmapVector<uptr> v;
125   CHECK_EQ(0U, v.size());
126   CHECK_GE(v.capacity(), v.size());
127 
128   v.reserve(1000);
129   CHECK_EQ(0U, v.size());
130   CHECK_GE(v.capacity(), 1000U);
131 
132   v.resize(10000);
133   CHECK_EQ(10000U, v.size());
134   CHECK_GE(v.capacity(), v.size());
135   uptr cap = v.capacity();
136 
137   v.resize(100);
138   CHECK_EQ(100U, v.size());
139   CHECK_EQ(v.capacity(), cap);
140 
141   v.reserve(10);
142   CHECK_EQ(100U, v.size());
143   CHECK_EQ(v.capacity(), cap);
144 }
145 
146 TEST(SanitizerCommon, InternalMmapVector) {
147   InternalMmapVector<uptr> vector;
148   for (uptr i = 0; i < 100; i++) {
149     EXPECT_EQ(i, vector.size());
150     vector.push_back(i);
151   }
152   for (uptr i = 0; i < 100; i++) {
153     EXPECT_EQ(i, vector[i]);
154   }
155   for (int i = 99; i >= 0; i--) {
156     EXPECT_EQ((uptr)i, vector.back());
157     vector.pop_back();
158     EXPECT_EQ((uptr)i, vector.size());
159   }
160   InternalMmapVector<uptr> empty_vector;
161   CHECK_EQ(empty_vector.capacity(), 0U);
162   CHECK_EQ(0U, empty_vector.size());
163 }
164 
165 TEST(SanitizerCommon, InternalMmapVectorEq) {
166   InternalMmapVector<uptr> vector1;
167   InternalMmapVector<uptr> vector2;
168   for (uptr i = 0; i < 100; i++) {
169     vector1.push_back(i);
170     vector2.push_back(i);
171   }
172   EXPECT_TRUE(vector1 == vector2);
173   EXPECT_FALSE(vector1 != vector2);
174 
175   vector1.push_back(1);
176   EXPECT_FALSE(vector1 == vector2);
177   EXPECT_TRUE(vector1 != vector2);
178 
179   vector2.push_back(1);
180   EXPECT_TRUE(vector1 == vector2);
181   EXPECT_FALSE(vector1 != vector2);
182 
183   vector1[55] = 1;
184   EXPECT_FALSE(vector1 == vector2);
185   EXPECT_TRUE(vector1 != vector2);
186 }
187 
188 TEST(SanitizerCommon, InternalMmapVectorSwap) {
189   InternalMmapVector<uptr> vector1;
190   InternalMmapVector<uptr> vector2;
191   InternalMmapVector<uptr> vector3;
192   InternalMmapVector<uptr> vector4;
193   for (uptr i = 0; i < 100; i++) {
194     vector1.push_back(i);
195     vector2.push_back(i);
196     vector3.push_back(-i);
197     vector4.push_back(-i);
198   }
199   EXPECT_NE(vector2, vector3);
200   EXPECT_NE(vector1, vector4);
201   vector1.swap(vector3);
202   EXPECT_EQ(vector2, vector3);
203   EXPECT_EQ(vector1, vector4);
204 }
205 
206 void TestThreadInfo(bool main) {
207   uptr stk_begin = 0;
208   uptr stk_end = 0;
209   uptr tls_begin = 0;
210   uptr tls_end = 0;
211   GetThreadStackAndTls(main, &stk_begin, &stk_end, &tls_begin, &tls_end);
212 
213   int stack_var;
214   EXPECT_NE(stk_begin, (uptr)0);
215   EXPECT_GT(stk_end, stk_begin);
216   EXPECT_GT((uptr)&stack_var, stk_begin);
217   EXPECT_LT((uptr)&stack_var, stk_end);
218 
219 #if SANITIZER_LINUX && defined(__x86_64__)
220   static __thread int thread_var;
221   EXPECT_NE(tls_begin, (uptr)0);
222   EXPECT_GT(tls_end, tls_begin);
223   EXPECT_GT((uptr)&thread_var, tls_begin);
224   EXPECT_LT((uptr)&thread_var, tls_end);
225 
226   // Ensure that tls and stack do not intersect.
227   EXPECT_TRUE(tls_begin < stk_begin || tls_begin >= stk_end);
228   EXPECT_TRUE(tls_end < stk_begin || tls_end >= stk_end);
229   EXPECT_TRUE((tls_begin < stk_begin) == (tls_end < stk_begin));
230 #endif
231 }
232 
233 static void *WorkerThread(void *arg) {
234   TestThreadInfo(false);
235   return 0;
236 }
237 
238 TEST(SanitizerCommon, ThreadStackTlsMain) {
239   InitializePlatformEarly();
240   TestThreadInfo(true);
241 }
242 
243 TEST(SanitizerCommon, ThreadStackTlsWorker) {
244   InitializePlatformEarly();
245   pthread_t t;
246   PTHREAD_CREATE(&t, 0, WorkerThread, 0);
247   PTHREAD_JOIN(t, 0);
248 }
249 
250 bool UptrLess(uptr a, uptr b) {
251   return a < b;
252 }
253 
254 TEST(SanitizerCommon, InternalLowerBound) {
255   std::vector<int> arr = {1, 3, 5, 7, 11};
256 
257   EXPECT_EQ(0u, InternalLowerBound(arr, 0));
258   EXPECT_EQ(0u, InternalLowerBound(arr, 1));
259   EXPECT_EQ(1u, InternalLowerBound(arr, 2));
260   EXPECT_EQ(1u, InternalLowerBound(arr, 3));
261   EXPECT_EQ(2u, InternalLowerBound(arr, 4));
262   EXPECT_EQ(2u, InternalLowerBound(arr, 5));
263   EXPECT_EQ(3u, InternalLowerBound(arr, 6));
264   EXPECT_EQ(3u, InternalLowerBound(arr, 7));
265   EXPECT_EQ(4u, InternalLowerBound(arr, 8));
266   EXPECT_EQ(4u, InternalLowerBound(arr, 9));
267   EXPECT_EQ(4u, InternalLowerBound(arr, 10));
268   EXPECT_EQ(4u, InternalLowerBound(arr, 11));
269   EXPECT_EQ(5u, InternalLowerBound(arr, 12));
270 }
271 
272 TEST(SanitizerCommon, InternalLowerBoundVsStdLowerBound) {
273   std::vector<int> data;
274   auto create_item = [] (size_t i, size_t j) {
275     auto v = i * 10000 + j;
276     return ((v << 6) + (v >> 6) + 0x9e3779b9) % 100;
277   };
278   for (size_t i = 0; i < 1000; ++i) {
279     data.resize(i);
280     for (size_t j = 0; j < i; ++j) {
281       data[j] = create_item(i, j);
282     }
283 
284     std::sort(data.begin(), data.end());
285 
286     for (size_t j = 0; j < i; ++j) {
287       int val = create_item(i, j);
288       for (auto to_find : {val - 1, val, val + 1}) {
289         uptr expected =
290             std::lower_bound(data.begin(), data.end(), to_find) - data.begin();
291         EXPECT_EQ(expected,
292                   InternalLowerBound(data, to_find, std::less<int>()));
293       }
294     }
295   }
296 }
297 
298 class SortAndDedupTest : public ::testing::TestWithParam<std::vector<int>> {};
299 
300 TEST_P(SortAndDedupTest, SortAndDedup) {
301   std::vector<int> v_std = GetParam();
302   std::sort(v_std.begin(), v_std.end());
303   v_std.erase(std::unique(v_std.begin(), v_std.end()), v_std.end());
304 
305   std::vector<int> v = GetParam();
306   SortAndDedup(v);
307 
308   EXPECT_EQ(v_std, v);
309 }
310 
311 const std::vector<int> kSortAndDedupTests[] = {
312     {},
313     {1},
314     {1, 1},
315     {1, 1, 1},
316     {1, 2, 3},
317     {3, 2, 1},
318     {1, 2, 2, 3},
319     {3, 3, 2, 1, 2},
320     {3, 3, 2, 1, 2},
321     {1, 2, 1, 1, 2, 1, 1, 1, 2, 2},
322     {1, 3, 3, 2, 3, 1, 3, 1, 4, 4, 2, 1, 4, 1, 1, 2, 2},
323 };
324 INSTANTIATE_TEST_SUITE_P(SortAndDedupTest, SortAndDedupTest,
325                          ::testing::ValuesIn(kSortAndDedupTests));
326 
327 #if SANITIZER_LINUX && !SANITIZER_ANDROID
328 TEST(SanitizerCommon, FindPathToBinary) {
329   char *true_path = FindPathToBinary("true");
330   EXPECT_NE((char*)0, internal_strstr(true_path, "/bin/true"));
331   InternalFree(true_path);
332   EXPECT_EQ(0, FindPathToBinary("unexisting_binary.ergjeorj"));
333 }
334 #elif SANITIZER_WINDOWS
335 TEST(SanitizerCommon, FindPathToBinary) {
336   // ntdll.dll should be on PATH in all supported test environments on all
337   // supported Windows versions.
338   char *ntdll_path = FindPathToBinary("ntdll.dll");
339   EXPECT_NE((char*)0, internal_strstr(ntdll_path, "ntdll.dll"));
340   InternalFree(ntdll_path);
341   EXPECT_EQ(0, FindPathToBinary("unexisting_binary.ergjeorj"));
342 }
343 #endif
344 
345 TEST(SanitizerCommon, StripPathPrefix) {
346   EXPECT_EQ(0, StripPathPrefix(0, "prefix"));
347   EXPECT_STREQ("foo", StripPathPrefix("foo", 0));
348   EXPECT_STREQ("dir/file.cc",
349                StripPathPrefix("/usr/lib/dir/file.cc", "/usr/lib/"));
350   EXPECT_STREQ("/file.cc", StripPathPrefix("/usr/myroot/file.cc", "/myroot"));
351   EXPECT_STREQ("file.h", StripPathPrefix("/usr/lib/./file.h", "/usr/lib/"));
352 }
353 
354 TEST(SanitizerCommon, RemoveANSIEscapeSequencesFromString) {
355   RemoveANSIEscapeSequencesFromString(nullptr);
356   const char *buffs[22] = {
357     "Default",                                "Default",
358     "\033[95mLight magenta",                  "Light magenta",
359     "\033[30mBlack\033[32mGreen\033[90mGray", "BlackGreenGray",
360     "\033[106mLight cyan \033[107mWhite ",    "Light cyan White ",
361     "\033[31mHello\033[0m World",             "Hello World",
362     "\033[38;5;82mHello \033[38;5;198mWorld", "Hello World",
363     "123[653456789012",                       "123[653456789012",
364     "Normal \033[5mBlink \033[25mNormal",     "Normal Blink Normal",
365     "\033[106m\033[107m",                     "",
366     "",                                       "",
367     " ",                                      " ",
368   };
369 
370   for (size_t i = 0; i < ARRAY_SIZE(buffs); i+=2) {
371     char *buffer_copy = internal_strdup(buffs[i]);
372     RemoveANSIEscapeSequencesFromString(buffer_copy);
373     EXPECT_STREQ(buffer_copy, buffs[i+1]);
374     InternalFree(buffer_copy);
375   }
376 }
377 
378 TEST(SanitizerCommon, InternalScopedStringAppend) {
379   InternalScopedString str;
380   EXPECT_EQ(0U, str.length());
381   EXPECT_STREQ("", str.data());
382 
383   str.Append("");
384   EXPECT_EQ(0U, str.length());
385   EXPECT_STREQ("", str.data());
386 
387   str.Append("foo");
388   EXPECT_EQ(3U, str.length());
389   EXPECT_STREQ("foo", str.data());
390 
391   str.Append("");
392   EXPECT_EQ(3U, str.length());
393   EXPECT_STREQ("foo", str.data());
394 
395   str.Append("123\000456");
396   EXPECT_EQ(6U, str.length());
397   EXPECT_STREQ("foo123", str.data());
398 }
399 
400 TEST(SanitizerCommon, InternalScopedStringAppendF) {
401   InternalScopedString str;
402   EXPECT_EQ(0U, str.length());
403   EXPECT_STREQ("", str.data());
404 
405   str.AppendF("foo");
406   EXPECT_EQ(3U, str.length());
407   EXPECT_STREQ("foo", str.data());
408 
409   int x = 1234;
410   str.AppendF("%d", x);
411   EXPECT_EQ(7U, str.length());
412   EXPECT_STREQ("foo1234", str.data());
413 
414   str.AppendF("%d", x);
415   EXPECT_EQ(11U, str.length());
416   EXPECT_STREQ("foo12341234", str.data());
417 
418   str.clear();
419   EXPECT_EQ(0U, str.length());
420   EXPECT_STREQ("", str.data());
421 }
422 
423 TEST(SanitizerCommon, InternalScopedStringLarge) {
424   InternalScopedString str;
425   std::string expected;
426   for (int i = 0; i < 1000; ++i) {
427     std::string append(i, 'a' + i % 26);
428     expected += append;
429     str.AppendF("%s", append.c_str());
430     EXPECT_EQ(expected, str.data());
431   }
432 }
433 
434 TEST(SanitizerCommon, InternalScopedStringLargeFormat) {
435   InternalScopedString str;
436   std::string expected;
437   for (int i = 0; i < 1000; ++i) {
438     std::string append(i, 'a' + i % 26);
439     expected += append;
440     str.AppendF("%s", append.c_str());
441     EXPECT_EQ(expected, str.data());
442   }
443 }
444 
445 #if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_IOS
446 TEST(SanitizerCommon, GetRandom) {
447   u8 buffer_1[32], buffer_2[32];
448   for (bool blocking : { false, true }) {
449     EXPECT_FALSE(GetRandom(nullptr, 32, blocking));
450     EXPECT_FALSE(GetRandom(buffer_1, 0, blocking));
451     EXPECT_FALSE(GetRandom(buffer_1, 512, blocking));
452     EXPECT_EQ(ARRAY_SIZE(buffer_1), ARRAY_SIZE(buffer_2));
453     for (uptr size = 4; size <= ARRAY_SIZE(buffer_1); size += 4) {
454       for (uptr i = 0; i < 100; i++) {
455         EXPECT_TRUE(GetRandom(buffer_1, size, blocking));
456         EXPECT_TRUE(GetRandom(buffer_2, size, blocking));
457         EXPECT_NE(internal_memcmp(buffer_1, buffer_2, size), 0);
458       }
459     }
460   }
461 }
462 #endif
463 
464 TEST(SanitizerCommon, ReservedAddressRangeInit) {
465   uptr init_size = 0xffff;
466   ReservedAddressRange address_range;
467   uptr res = address_range.Init(init_size);
468   CHECK_NE(res, (void*)-1);
469   UnmapOrDie((void*)res, init_size);
470   // Should be able to map into the same space now.
471   ReservedAddressRange address_range2;
472   uptr res2 = address_range2.Init(init_size, nullptr, res);
473   CHECK_EQ(res, res2);
474 
475   // TODO(flowerhack): Once this is switched to the "real" implementation
476   // (rather than passing through to MmapNoAccess*), enforce and test "no
477   // double initializations allowed"
478 }
479 
480 TEST(SanitizerCommon, ReservedAddressRangeMap) {
481   constexpr uptr init_size = 0xffff;
482   ReservedAddressRange address_range;
483   uptr res = address_range.Init(init_size);
484   CHECK_NE(res, (void*) -1);
485 
486   // Valid mappings should succeed.
487   CHECK_EQ(res, address_range.Map(res, init_size));
488 
489   // Valid mappings should be readable.
490   unsigned char buffer[init_size];
491   memcpy(buffer, reinterpret_cast<void *>(res), init_size);
492 
493   // TODO(flowerhack): Once this is switched to the "real" implementation, make
494   // sure you can only mmap into offsets in the Init range.
495 }
496 
497 TEST(SanitizerCommon, ReservedAddressRangeUnmap) {
498   uptr PageSize = GetPageSizeCached();
499   uptr init_size = PageSize * 8;
500   ReservedAddressRange address_range;
501   uptr base_addr = address_range.Init(init_size);
502   CHECK_NE(base_addr, (void*)-1);
503   CHECK_EQ(base_addr, address_range.Map(base_addr, init_size));
504 
505   // Unmapping the entire range should succeed.
506   address_range.Unmap(base_addr, init_size);
507 
508   // Map a new range.
509   base_addr = address_range.Init(init_size);
510   CHECK_EQ(base_addr, address_range.Map(base_addr, init_size));
511 
512   // Windows doesn't allow partial unmappings.
513   #if !SANITIZER_WINDOWS
514 
515   // Unmapping at the beginning should succeed.
516   address_range.Unmap(base_addr, PageSize);
517 
518   // Unmapping at the end should succeed.
519   uptr new_start = reinterpret_cast<uptr>(address_range.base()) +
520                    address_range.size() - PageSize;
521   address_range.Unmap(new_start, PageSize);
522 
523   #endif
524 
525   // Unmapping in the middle of the ReservedAddressRange should fail.
526   EXPECT_DEATH(address_range.Unmap(base_addr + (PageSize * 2), PageSize), ".*");
527 }
528 
529 TEST(SanitizerCommon, ReadBinaryNameCached) {
530   char buf[256];
531   EXPECT_NE((uptr)0, ReadBinaryNameCached(buf, sizeof(buf)));
532 }
533 
534 }  // namespace __sanitizer
535